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ABSTRACT 
    
    

MICROFLUIDIC DEVICE INTEGRATION OF ELECTROSTATIC CORRAL 
TRAPPING SYSTEMS  

    
    

by 
 

Alaknanda P. Amin�Patel 
 
 

The University of Wisconsin�Milwaukee, 2014 
Under the Supervision of Jörg C. Woehl 

 
 

 
This thesis describes the development, characterization, and application of 

the microfluidic device integration of electrostatic corral trapping systems. Optical 

traps or “laser tweezers”, which are capable of trapping microscopic dielectric 

particles through the production of steep electromagnetic field gradients, have 

been significant in the development of the field of biophysics and the 

manipulation of microscopic objects. This method of trapping unfortunately has a 

fundamental size limitation, making it incapable of trapping molecular�scale 

objects. We have developed a new tool for the trapping and manipulation of 

nanoscale objects including single molecules, the corral trap, which has distinct 

characteristics that set it apart from other trapping techniques. In order to 

increase the versatility of this new trapping tool, steps have been taken to 

integrate corral traps in a microfluidic cell. The production of such integrated 

devices based on optical lithography techniques will be presented in detail. Corral 

trapping in microfluidics device is expected to have important future applications 

in areas such as biomedical assays, ultra�sensitive biochemical analysis, and 
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DNA manipulation and screening. Novelty: A novel method for the trapping of 

single molecules has been successfully used for the trapping of single ssDNA 

molecules. 
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1.11.11.11.1 Organization of the thesisOrganization of the thesisOrganization of the thesisOrganization of the thesis    

Nanoscience is the study of the phenomena and manipulation of materials 

at atomic, molecular and macromolecular scale. Nanotechnology represents for 

many researchers the great “challenge of 21st century”46in medicine with regard 

to three key areas diagnosis, treatment and regenerative medicine. There is wide 

interest in manipulation of nanoscale objects for the fabrication of nanosensors 

and nanodevices. 

The work performed in this thesis focuses on trapping single molecules 

and the fabrication of an electrostatic corral trapping system into a microfluidic 

device. Christina Carlson has successfully demonstrated corral trapping of 800 

nucleotide (nt)ssDNA10, 2 �m, and 20 nmpolystyrene beads10. In this thesis 

electrostatic corral trapping of 600 nt ssDNA and fabrication of integrated 

electrostatic corral trapping in a microfluidic device will be demonstrated.  

Chapter 1 presents the theory and experimental designs for the most 

significant approaches to the trapping of microscopic particles and molecular�size 

objects. Chapter 2 is based on electrostatic corral trapping theory. Chapter 3 

presents materials, lab setup, instrumentation, laser and microscope setup for 

fabrication of corral traps. Chapter 4 details the fabrication of microfluidic device. 

Chapter 5 presents the trapping of 600 nucleotide (600 nt) ssDNA. Chapter 6 

consists of conclusion and future direction of the trapping of objects in 

electrostatic corral integrated in a microfluidic device. 
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1.21.21.21.2 Optical tweezersOptical tweezersOptical tweezersOptical tweezers    

Ashkin and co�workers developed in 1986 what is now known as optical 

tweezers or laser tweezers, demonstrating for the first time1 optical trapping of 

dielectric particles by a single�beam gradient force trap. Trapping was observed 

for particles ranging in size from 10 Qm to 25 nm in water1. The single beam 

gradient trap has since become an essential tool for research in biology, 

chemistry and biophysics.  In the field of biological chemistry and biophysics it is 

important to be able to manipulate particles in the micron�size regime without 

damaging them. Optical tweezers prove very useful for this because not only can 

they manipulate small particles very specifically, but using infrared light, they can 

do so without causing damage1.Optical tweezers have been used to trap 

dielectric spheres5, viruses4, bacteria4, living cells1, and even strands of DNA11.  

Optical tweezers use extremely small forces resulting from a highly 

focused laser beam to manipulate nanometer and micron�sized dielectric 

particles. The beam width of a focused laser beam changes as a function of the 

axial distance and, at the narrowest point, is called the beam waist. In the beam 

waist, laser beam exhibits a very strong electric field gradient. A dielectric particle 

in an electric field gradient will move towards the point with the strongest electric 

field gradient. This is expressed by the following equation,

 

where, r is the particle radius, m is the effective refractive index of the sphere 

relative to that of the medium, bn
 
is theindex of refraction of the medium, and E  

the electric field of the incident light.  
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where, r is the radius of particle, m is the refractive index ratio between that of the 

particle and that of the medium, 0I is the intensity of incident light, c is the speed 

of light in vacuum, λ  is the wavelength in of the incident light, and bn is the index 

of refraction of the medium 7. Optical trapping behavior depends on relative 

comparison of the particle size and the wavelength of used laser. Simple ray 

optics can be used whenever the dimensions of the particle are much greater 

than the wavelength. If the trapped particle is much smaller than the wavelength 

of the trapping laser, the conditions for Rayleigh scattering are satisfied1. For the 

trapping to work the force gradient must be greater than the force pushing the 

dipole out of the field scattering7; therefore, the ratio of the gradient force to the 

scattering force must be greater than unity. As long as this condition is satisfied a 

single laser beam can be used to trap a particle in the Rayleigh regime. 

gradF

scatF
� 1 

For the gradient force to overcome the scattering force and Brownian 

force, two parameters, have to be consider: particle size and optical intensity. For 

smaller particle higher optical intensity is required, which can lead to optical 

damage. The optical trap has high positioning accuracy and is a well�established 

technology, but is limited by size of the particle being trapped. 

 

1.31.31.31.3 AntiAntiAntiAnti����Brownian electrokinetic trap (ABEL) trapBrownian electrokinetic trap (ABEL) trapBrownian electrokinetic trap (ABEL) trapBrownian electrokinetic trap (ABEL) trap    

The Anti�Brownian Electrokinetic (ABEL) trap eliminates the Brownian 

motion of one object in solution, allowing detailed examination of its properties. 
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ABEL trap gives scientist new technique to nano world. The first demonstration of 

this trap was in 2005, 100 years after Einstein's annus mirabilis, in which he 

addressed the fundamental thermal mechanisms for Brownian motion45.  

ABEL trapping works by monitoring the Brownian motion of the fluorescent 

particle and applying a time�dependent feedback voltage to the solution, so that 

the electrokinetic drift exactly cancels out the Brownian motion8. ABEL trap is 

non�invasive, gentle to handle biological molecules and can trap objects smaller 

than laser tweezers. The ABEL trap does not have the positioning accuracy of the 

optical trap since it is limited by the resolution of the imaging system. The 

electrophoretic trapping can only trap one particle at a time since the 

counteraction of this particle’s Brownian motion is at the heart of the method, 

which makes it impossible to cancel the (random) Brownian motion of a second 

object at the same time. 

1.41.41.41.4 The electrostatic corral trapThe electrostatic corral trapThe electrostatic corral trapThe electrostatic corral trap    

The electrostatic corral trap was developed in the Woehl Lab and first 

successfully demonstrated by Christine A. Carlson in 20109. It is a novel tool for 

trapping micro� and nano� scale objects. The function of the corral trap is based 

on pure electrostatic charges which create a stable potential energy well for 

trapping9. Once an object is trapped, the electrostatic corral trap doesn’t need 

information about its location and does not require a feedback loop.  

The electrostatic corral trap operates by generating a circular potential 

energy well shown in figure 1.210, due to charges at the rim of the circular pattern. 

Such a pattern can be fabricated by deposition of thin metal film on a substrate 
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with circular, uncoated areas (“holes”). By applying a potential to the metal film, 

accumulation of charges occurs at the metal rim of the circular holes, acting like 

an invisible fence.  

 
Figure 1.2. Electrostatic potential above a circular charge distribution (black ring 
in the xy plane; linear charge density: 0.3 e/nm; radius r) in a parallel plane at 
distance r/510 (This figure is taken from Christine Carlson’s thesis with her 
permission). 

 
The electrostatic corral is fabricated using conventional micro�patterning 

techniques, which will be discussed in detail in Chapter 3 to create a circular hole 

patterned into a thin metal film which has been evaporated onto a substrate. By 

charging the thin metal film a potential energy well can be created at the location 

of the micro�patterned circular hole due to the accumulation of charges at the rim 

of the circular hole (Figure 1.3).The trapped object can only be released by 

turning off the voltages. Electrostatic corral traps can be integrated in a 
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microfluidic device for trapping and manipulating single molecules such as 

viruses, proteins, beads and DNA in solution.  

 

 

Figure 1.3.The trap consists of a glass support covered with a thin layer of metal. 
Patterned into the metal is a micron�scale hole. When a potential is applied to the 
thin metal film an electric field is produced through the accumulation of charges 
on the edge of the hole10 (This figure is taken from Christine Carlson’s thesis with 
her permission). 
 

1.51.51.51.5 Microfluidic deviceMicrofluidic deviceMicrofluidic deviceMicrofluidic device    

Microfluidics is the science that deals with the flow of liquid inside 

channels where at least one dimension of the channel has micrometer size. 

Microfluidics has first emerged in 197713 at IBM, where ink jet printer nozzles 

were developed and were used in gas chromatography (GC) in 197912. Since 

then microfluidics has shown various applications in fields of chemistry, 

biochemistry, engineering, physics, nanotechnology and biotechnology. 

Microfluidics is used to study the behavior, precise control and manipulation of 

particles in fluid channel that are geometrically sub�millimeter scale (nL, pL, fL). 

The behavior of the particles in fluids at the micro scale can differ due to surface 

tension, energy dissipation and fluidic resistance dominating the system.  



9 

 

 

 

1.5.11.5.11.5.11.5.1 Application areasApplication areasApplication areasApplication areas    

Microfluidics has large number of applications, such as in pharmaceuticals 

and biotechnology. Pharmaceutical vaccines, cancer, antibiotics, and injectable 

as well as inhalable steroids can be studied with microfluidics14, 15. Biotechnology 

applications are quantification of E. coli, yeast, algae, bacteria, plant, insect, 

fungi. Benefits of microfluidics use of pharmaceutical and biotechnology 

applications are particle size reduction, uniform particle size distribution, reliable 

scale up14, 16, and rapid cell rupturing14, 16. In the field of energy microfluidics has 

applications in fuel cells, batteries, photovoltaics, biodiesel with benefits ranging 

from reducing reliance on fossil fuels, never degrade or emit minimal greenhouse 

gases14, 16.  

1.5.21.5.21.5.21.5.2 Manufacturing methodsManufacturing methodsManufacturing methodsManufacturing methods    

The manufacturing capability of microfluidic devices depends upon 

material selection. Materials used for fabrication of microfluidics device are wet 

silicon etching(chemical removal of layer), dry silicon etching (plasma assisted 

etching) , lithography (using series of chemical reactions), and laser ablation 

(bond�breakage by a pulsed UV source). Commonly used materials in 

microfluidics manufacturing are low fluorescence Schott borofloat glass, Corning 

0211 borosilicate glass fused silica, quartz silicon, PMMA, SU�8 photoresist, 

poly(dimethylsiloxane) (PDMS), and other more materials17, 18, 19. 

1.5.31.5.31.5.31.5.3     Bonding techniques Bonding techniques Bonding techniques Bonding techniques     

A microfluidic chip consists of a set of micro�channels etched or molded 

into a material. The micro�channels forming the microfluidic chip are bonded 
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together with substrate in order to achieve a desired function. Bonding remains a 

critical step in any fabrication process because of different materials being 

bonded together. Strong bonding in microfluidic devices is essential for good seal 

so that no leakage of solution occurs. Bonding methods can be divided into 

mainly two categories: direct wafer bonding or bonding with intermediate layers 

(Indirect wafer bonding) 20, 21.  

Direct wafer bonding refers to flat and clean wafers of almost any material 

brought into contact at room temperature and bonded together chemically or by 

attraction of each other due to van der Waals forces20, 21. Direct wafer bonding 

can be due to fusion bonding, which means bonding between two parts of the 

same materials and an anodic bonding, which means bonding between different 

materials22. Fusion bonding is achieved on a flat clean substrate washed with 

piranha solution and immersed in ammonium hydroxide, and then two wafers are 

pressed together for few hours22. Anodic bonding is done by contacting the 

substrates together, heating, bonding by the application of an electrostatic field 

and then cooling down22.   

Indirect wafer bonding has two categories; PDMS bonding and SU�8 

bonding. PDMS has O2 plasma treatment before bonding and bonding occurs 

due to siloxane bonds between two wafers23. SU�8 bonding is done by cleaning 

substrate using piranha solution; spinning a layer of SU�8 photoresist onto the 

substrate and sealing the cross�link SU�8 structures to a second cleaned 

substrate23. These bonding techniques can be used for materials such as silicon, 

glasses, polymers, ceramics, and metals. In this thesis indirect wafer bonding is 

used to make microfluidic devices and will be discussed in detail in Chapter 4.  
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2.1 Overview2.1 Overview2.1 Overview2.1 Overview    

    In this chapter electrostatic corral trap theory is presented. The chapter 

begins with a fundamental explanation for the trapping mechanism. Next, the 

shape of the potential well produced by the application of an electric potential to 

the corral trap is investigated and expression for the theoretical trap stiffness is 

given. The chapter concludes with a discussion of capacitance measurement. 

 

2.2 Fundamental idea of electrostatic corral trapping2.2 Fundamental idea of electrostatic corral trapping2.2 Fundamental idea of electrostatic corral trapping2.2 Fundamental idea of electrostatic corral trapping    

The basic idea of corral trapping lies in the action of purely electrostatic 

forces on charged particles. The idea of the corral trap is illustrated with the figure 

2.1. In the figure two positive charges Q1 and Q2 are shown at fixed spatial 

positions. The particle q in figure 2.1 also caries positive charge and is allowed to 

move freely within the plane. The force on q is the net Coulomb force repelling 

the charged particle from the fixed charges. If q lies on the perpendicular bisector 

axis, then the net force has no lateral component. On other hand if q shows a 

lateral displacement from the bisector axis, the symmetry is broken and the net 

force acquires a lateral force component (shown in red) that pulls the particle 

back to the null position. The lateral restoring force gradually increases with 

increasing lateral movement and, for large lateral displacements beyond one of 

the fixed charges, finally changes direction repelling the particle away from the 

null position. 
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Figure 2.1. One�dimensional analog of the corral trap. In the symmetric case 

shown left, the force exerted by two identical fixed charges Q1and Q2on the 

charge q does not have any lateral component (null position). A small lateral 

displacement of the charge, however, leads to a restoring force with a lateral 

component (red arrow) that pulls the particle back to the null position (right) (This 

figure is taken from Christine Carlson’s thesis with her permission). 

 
 

2.3 Ring of charge2.3 Ring of charge2.3 Ring of charge2.3 Ring of charge    

Imagine a thin metal film with circular holes on a glass substrate that has 

been fabricated by thermal evaporation. When the thin film is charged, the rim of 

metal around such a hole exhibits a very high surface charge density due to the 

small surface curvature at the rim. The accumulation of charges along the rim 

mimics the intended charge geometry, for corral trapping.  
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Figure 2.2. Circular charge distribution. The net electrostatic force due to each 
element of charge, dQ, in a circular charge distribution can be calculated from 
simple electrostatics. (Left) The net Coulombic force acting on a charged particle, 
q, on the axis of symmetry is solely comprised of an axial force (blue). (Right) If 
the charged particle is displaced from the axis of symmetry the net Coulombic 
force (blue) now contains both an axial and lateral component (red) (This figure is 
taken from Christine Carlson’s thesis with her permission). 
 
 

The potential a charged ring can be found by considering the ring as a line 

of charge bent into shape of a ring and dividing the ring into equal elements of 

length, dx. Each dx contains a charge dQ and each element of charge (dQ) can 

be considered as a point charge which contributes to the net electrostatic 

potential acting on the charged particle q. The electrostatic potential that q 

experiences due to the charge element dQ.    

�� �
� � �	



 

When,   
 � √�
 � �
  , we are dealing with a special case, namely the one 

depicted in Fig. 2.2 on the left, where the charged particle is on the bisector axis, 

where. 
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The total electrostatic potential can be found by integrating around the 

circumference of the ring, (adding the contribution from each element of 

charge),which in this special case results in 

� �� �
�

√�
 � �

� �	 

The electric potential when the particle is on the axis of symmetry is therefore: 

�� �
� � 	

√�
 � �

�

� · 	



 

Where Q is the total charge of the ring. 
 
The above equation, only gives the electrostatic potential on the bisector axis. To 

calculate the figure below, the more general equation (with the “r” in it), has been 

used directly. A simulation of the electrostatic potential of the circular charge 

geometry has been produced and results of these calculations are shown in 

Figure 2.3 for the xz plane, where, z is the axial direction. 

 

Figure 2.3. Electrostatic potential map. Simulation of the electrostatic potential (in 
V) of a corral trap (normalized to the trap radius), all distances are expressed as 
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multiples of the trap radius. (This figure is taken from Christine Carlson’s thesis 
with her permission). 

 

In figure 2.3 a linear charge density of 0.3 elementary charges per nm for 

the uniform circular charge distribution along the circumference of the trap is 

assumed. Approximately 10000 elementary charges were placed on a micro 

scale corral with a radius of 5 Im. It can be seen in figure 1.2 that the charge 

distribution generates a corral shaped, axis symmetric potential well. The 

potential well has a barrier height that decreases with the increasing axial 

distance. 

The question still remains, whether the assumed linear charge density is a 

realistic estimate for typical applied voltages. The problem is how to best model 

the charge accumulation on the metallic ring. 

 

2.4 Capacitance2.4 Capacitance2.4 Capacitance2.4 Capacitance    

In order to estimate the charge on the metallic ring the capacitance of the 

charge distribution needs to be determined. The capacitance (C) of an 

electrostatic system is defined as the ratio of the quantity of charge Q separated 

by the applied potential difference or voltage (V).  

� �
Q

V
 

The set up used for capacitance measurements of a10 nm thick Nickel�

Chromium (NiCr) and Gold�Palladium(AuPd) metal film with embedded corral 

traps and coved by ssDNA sample solution is shown in figure 2.4. A capacitance 

tester was made in house by Daniel Shurilla. A coverslip with corral traps, power 



17 

 

 

 

supply and oscilloscope were attached to capacitance tester by thin wire as 

shown in figure 2.4. The oscilloscope measured the decay of the potential of the 

coverslip (�30V were applied by power supply through capacitance tester) once 

the device was connected to ground. Charge and discharge were controlled by 

the two red and gray buttons on capacitance tester. 

 

Figure 2.4. The set up used for capacitance measurements. 

 

Ohm demonstrated that there are no perfect electrical conductors through 

a series of experiments in 1825 and every conductor he tested offered some level 

of resistance R. Ideally, the resistance can be expressed as a linear function of 

the applied voltage V, � �
�

�
 with the current defined by� � �

��

��
 where I is 

current, V is applied potential, R is resistance and t time. This means that the 

discharge current of a capacitor in series with a resistance is given by 
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, which can be integrated to result in the following expression: 
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The capacitances determined from the experiments resulted in an average value 

of 1.6 x 10�12F; the results are not what were expected compared to result 

reported by Christine Carlson10. This issue is still under investigation; higher 

capacitance measurements may be due to surface properties of the metal 

coating itself as the thermal evaporation conditions had dramatically changed 

since the early experiments. The evaporator has been changed as well as there 

is currently no method to accurately measure the film thickness, which is why we 

are setting up a new evaporation system with thickness monitor so that these 

effects can be studied more systematically. 

2.5 Trap stiffness2.5 Trap stiffness2.5 Trap stiffness2.5 Trap stiffness    

 Stiffness is measurement of how tightly a particle is held inside a trap. In a 

Hookean system, the force exerted upon the particle is proportional to the 

distance of the particle from the potential minimum, as represented by, 

* � �+, 
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where, x is the position of the particle relative to the center of the trap, and the 

parameter κ is referred to as the trap stiffness. In our experiments stiffness 

depends on the potential applied, the greater potential applied the stronger the 

hold on the trapped molecule. This has been investigated in great detail in 

Christine Carlson’s thesis10. 
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3.13.13.13.1 MaterialsMaterialsMaterialsMaterials    for microfor microfor microfor micro����scale trapsscale trapsscale trapsscale traps    

This chapter focuses on the fabrication of corral traps based on an 

experimental protocol established by Christine Carlson10.A solid substrate used 

for fabrication of the micro�scale traps is 25 mm x 25 mm traditional glass 

coverslip with a thickness of 0.16 mm � 0.19 mm (VWR 48366�249). The glass 

substrate was cleaned by highest grade solvents to ensure minimum impurities 

are:  

• Acetone (VWR BJ010�4; HPLC grade) 

• Methanol (Sigma�Aldrich 650609; HPLC grade) 

• Isopropanol (Sigma�Aldrich 650447; HPLC grade) 

• Toluene (Fisher Scientific 095606; HPLC grade) 

• Ultrapure water with a resistivity of 18.3 MS�cm was used for all 

aqueous preparations (Sartorius Arium 611V) 

10.0 Im polystyrene beads with a coefficient of variation of less than 4% 

(Microspheres�Nanospheres 100243�05, # C�PS�10.0) were used as a mask to 

make traps on 25 mm x 25 mm glass substrates. Thin metal film was formed by 

thermally evaporating a small amount of metal on the substrate using an 

Edwards coating system (Edwards Vacuum, E306A). Single strand tungsten 

filaments (Ted Pella 27�19) and single strand tungsten baskets (Ted Pella 72�1) 

were used to hold metal inside the evaporator. The metals used for thermal 

evaporation are: 

• Gold: ρ=19.3 g/cm3, mp=1062°C (VWR AA14722�FF) 
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• 60:40 Nickel�Chromium (Nichrome): ρ=8.5 g/cm3, mp=1395°C (Kurt J. 

Lesker, EVMNICR500) 

• 60:40 Gold�Palladium: ρ=16.4 g/cm3, mp=1552°C (Ted Pella 22�2) 

• Aluminum: ρ=2.7 g/cm3, mp=660.32°C (Ted Pella 20/10�1) 

• Silver: ρ=10.49 g/cm3, mp= 961.78°C (Alfa Aesar B06S033) 

 

3.23.23.23.2 Fabrication of trapsFabrication of trapsFabrication of trapsFabrication of traps    

So far only traps fabricated using the shadow evaporation method have 

been used in trapping experiments, although lithographically patterned traps 

could be used as well. The method used to fabricate traps has been established 

by Christine Carlson10 and same method has been followed in this thesis.  

3.2.13.2.13.2.13.2.1 Shadow evaporation Shadow evaporation Shadow evaporation Shadow evaporation     

Shadow evaporation was first developed by T. Fulton and G. Dolan in 

198724. It is a technique to create patterns on substrate by metal evaporation. 

Figure 3.1 illustrates the general process of making corral traps, which, consists 

of three basic steps: mask application, thermal evaporation, and mask removal. 

Mask application was done by placing 10Im polystyrene beads solution on top of 

a clean coverslip, letting dry, and depositing 10 nm thin layers of NiCr and AuPd 

metals. Wherever a bead was located, no metal is deposited on the coverslip due 

to a masking effect. Beads were then removed from the top of the coverslip by 

sonication in toluene for 10 minutes. The metal�free, circular holes act as corral 

traps. This method is relatively inexpensive and commonly used for the 

production of several different types of metal patterns.  
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Figure 3.1. Trap fabrication procedure. A dilute solution of 10 Im microspheres is 
applied to a clean coverslip to serve as a mask. The coverslip and beads are then 
covered with a thin layer of metal. The mask (beads) is subsequently removed, 
leaving holes in the metal film. The final image is an optical image of a typical 10 
Im hole (40x) 10. (This figure is taken from Christine Carlson’s thesis with her 
permission). 
 

3.2.1.13.2.1.13.2.1.13.2.1.1 Mask applicationMask applicationMask applicationMask application    

The first step of the fabrication is mask application on the coverslip substrate. 

First, coverslips were cleaned through sonication in an ultrasonic bath for fifteen 

minute intervals in a series of organic solvents at 35°C:  

1) acetone  

2) methanol  

3) isopropyl alcohol  

After sonication, the coverslips are dried under clean nitrogen gas. 

In order to create micro�scale traps10 Im polystyrene beads were being 

used. 1 IL solution of 10 Im polystyrene beads was placed in the center of a 
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cleaned coverslip, covering approximately 8×105 Im2 of the substrate surface10. 

The coverslip is next allowed to dry at room temperature in a clean environment 

for 15 minutes.  

 The 10 Im polystyrene beads stock solution was cleaned and then diluted 

as following. 2 mL of 10 Im polystyrene beads stock solution from vendor were 

well mixed in an amber vial and let sit overnight. 800 IL supernatant was 

removed and 800 IL ultrapure water was added and mixed well. This process 

was repeated five times. All the micro�scale traps were made using the same 

processed and cleaned polystyrene beads. Cleaned polystyrene beads were then 

diluted. A final 1:1000 dilution (25 Ig/mL) of the original stock bead solution was 

produced in ultrapure water10.  

 

3.2.1.23.2.1.23.2.1.23.2.1.2 Vacuum thermal evaporation of thin metal filmsVacuum thermal evaporation of thin metal filmsVacuum thermal evaporation of thin metal filmsVacuum thermal evaporation of thin metal films    

The second step of the fabrication is thermal evaporation. Evaporation is 

vaporizing material by passing an electrical current through metal on a filament in 

the evaporator. In a chamber with perfect vacuum, the material evaporates from 

the source and forms a spherical cloud of vapor that reaches the substrate and 

deposits metal onto all surfaces. 5 nm thick Nichrome (60:40 Nickel � chromium) 

were thermally evaporated onto a coverslip with 10 Im polystyrene beads, 

followed by 5 nm thick Gold�Palladium (60:40). The vacuum chamber had 

~4.5×10�5torr pressure, and thermal deposition proceeded at an evaporation rate 

of roughly 0.1 A/sec10.Due to lack of thickness monitor the thickness of the metal 

layer was calculated prior to deposition using equation below: 
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where t is the desired film thickness, m is the mass of the metal needed to 

achieve the desired thickness, ρ is the metal density and d  is the distance from 

the tungsten filament (the source) to the exposed side of the coverslip. After 

evaporation, the coverslips were investigated under microscope to make sure 

that they do not have extensive cracks in the thin metal film, which could result in 

inefficient or lack of electrical conductivity. Cracks after the thermal evaporation is 

evidence of poor metal film adhesion, and during mask removal, the metal film 

can crack because of mechanical stress. Reproducibility and reusability of 

coverslip with traps was difficult due to continuous flaking and cracking of the thin 

metal film. Other metals were investigated for improvement of the film such as 

aluminum, silver and gold. Unfortunately, no success was achieved with silver 

and gold metal due to continuous flaking and cracking of the metal on coverslip. 

With aluminum metal there was some success, but the surface was oxidized in 

air making the thin metal coverslip not usable. Nichrome (60:40 Nickel�chromium) 

is well known for resistance to oxidation and commonly used as an adhesion 

layer between glass and other metals25. Also, it is well known that gold is a good 

conductor of electricity and does not easily corrode, which is why it is often used 

in electric connectors26. As a result, a layer of 60:40 gold�palladium worked best 

with adhesion of the nickel�chromium layer. 

 

3.2.1.33.2.1.33.2.1.33.2.1.3 Mask removalMask removalMask removalMask removal    



26 

 

 

 

The third step of the fabrication was mask removal. The 10 Im polystyrene 

beads were removed by sonication of the coverslip in toluene for five to six 

minutes.  Most of the beads were removed during the first attempt, but a few 

beads were still attached to the coverslip. So, sonication in toluene for five to six 

minutes was repeated until all the beads were removed from coverslip. Removal 

of beads was successful with this method, but cracks and tears in the metal film 

resulting from sonication (mechanical stress) were still sometimes observed on 

coverslips, especially if sonication of coverslip was done for more than five to ten 

minutes. To address this problem the time and the cycle of sonication was limited 

to just two times of five minutes10. Then the coverslip was rinsed by isopropyl 

alcohol and dried with nitrogen gas.  

 

3.2.23.2.23.2.23.2.2 Electrical property of the metalElectrical property of the metalElectrical property of the metalElectrical property of the metal    

The metal film on the coverslip provides a conductive layer that allows 

charges to flow to the embedded traps. An inefficient or lack of electrical 

conductivity would lead to failure of the experiment; therefore, the electrical 

conductivity of the metal film was tested on all coverslips. Electrical resistance 

measurements were taken across thin film with an Ohm meter (Fluke 179, 

resistance sensitivity ± (0.9%)) in order to determine the resistivity presented in 

Table 3.1. Resistance is the measure of difficulty electrons have in flowing 

through a particular object. The resistivity was then calculated by the following 

equation: 

R � 0
1

2
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where R is the resistance of the metal film on the coverslip,0 is its resistivity,1 is 

the length of the coverslip, and A is the cross section of the metal film. 

Table 3.1 Electrical properties of continuous thin metal films that were used as 
standards. 
 

 Resistance (S) Resistivity (S�m) 

60�40 Au�Pd 419.49 2.097 x 10�6 

Gold 21.65 1.082 x 10�7 

Aluminum 400.52 2.003 x 10�6 

 
 

3.33.33.33.3 AnalysisAnalysisAnalysisAnalysis    

3.3.13.3.13.3.13.3.1 Digital imagingDigital imagingDigital imagingDigital imaging    

Cascade II: 512 (Photometrics, Tucson, AZ) EMCCD (electronmultiplying 

charged coupled device) camera was used to capture bright�field and 

fluorescence images of the electrostatic trap. This camera is capable of single 

photon event detection while maintaining high quantum efficiency (>90%), which 

is achieved by a solid state electron multiplying register at the end of the normal 

CCD register and before the A/D converter. 

 

3.3.23.3.23.3.23.3.2 Fluorescence microscopyFluorescence microscopyFluorescence microscopyFluorescence microscopy    

A Jablonski diagram (shown in Fig. 3.2) illustrates the fundamental 

processes that are involved when a photon interacts with a molecular system. 

 



28 

 

 

 

 

Figure 3.2. The absorption from the electronic ground state S0 to the different 
vibrational levels of the corresponding excited electronic level together with the 
fluorescence and phosphorescence emission are shown. The processes of 
internal conversion (IC) and intersystem crossing (ISC) are depicted wavy lines 
indicate fast, radiationless transitions28. 
 

 
Fluorescence microscopy is a technique that utilizes fluorescence, the 

property of some atoms and molecules to absorb a photon of light at a 

wavelength corresponding to its particular absorption spectrum, and to 

subsequently emit a photon of longer wavelength or with “red�shifted” energy. 

(see figure 3.2 for an energy diagram). Since the fluorescence is at a different 

wavelength than the excitation light (blue arrow in figure 3.2), it can be easily 

filtered out using high quality optical band pass filters, which block all excitation 

light and pass only the fluorescence light (green arrow in figure 3.2). In our lab we 

are using a far� field optical set�up and an argon laser to produce diffraction 
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limited fluorescence images. The process of phosphorescence (red arrow in 

figure 3.2) occurs in a manner similar to fluorescence (green arrow in figure 3.2), 

but with a much longer excited state lifetime because photon emission couples 

an excited triplet state with the singlet ground state. The fluorescence process is 

governed by three important events, all of which occur on timescales that are 

separated by several orders of magnitude. Excitation of a susceptible molecule 

by an incoming photon happens in femto seconds, while vibrational relaxation of 

excited state electrons to the lowest vibrational energy level is much slower and 

can be measured in picoseconds. The final process, emission of a longer 

wavelength photon and return of the molecule to the ground state, occurs in the 

relatively long time period of nanoseconds. The “fluorescence microscope” refers 

to any microscope that uses fluorescence to generate an image, whether it is a 

more simple set up like an epi�fluorescence microscope, or a more complicated 

design such as a confocal microscope, which uses optical sectioning to get better 

resolution of the fluorescent image. All fluorescence microscopy was performed 

in epi�fluorescence mode by coupling laser light from an argon ion laser (Stabilite 

2017, Spectra Physics, Mountain View, CA) into the back port of the Zeiss 

Axiovert 200M inverted microscope that was also used for bright�field studies. 

Figure 3.3 shows the setup used for experiments. 
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Figure 3.3. Layout of laser light from an argon ion laser into the back port of the 
Zeiss Axiovert 200M inverted microscope. 
 
 
 

3.3.33.3.33.3.33.3.3 Optical microscopyOptical microscopyOptical microscopyOptical microscopy    

The optical microscope is a type of microscope which uses visible light 

and a system of lenses to magnify images of small samples. There are two basic 

configurations of the conventional optical microscope: the simple microscope and 

the compound microscope. A simple microscope is a microscope that uses a lens 

or set of lenses to enlarge an object through angular magnification giving the 

viewer an erect enlarged image. A compound microscope is a microscope which 

uses a lens close to the object being viewed to collect light which produces a real 

image of the object inside the microscope viewed through the eyepiece. 

Until the late 1980s, most microscopes had a fixed tube length with a 

specified distance between the nosepiece opening, where the objective is 
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attached, and the eyepiece seat in the observation tube29. This distance is known 

as the mechanical tube length of the microscope. When the specimen is placed 

in focus, it is a few micrometers further away than the front focal plane of the 

objective (Fig. 3.4a) 29. Finite tube lengths were standardized at 160 mm during 

the nineteenth century by the Royal Microscopical Society (RMS), and were in 

use for over 100 years29.  

 

 
 
Figure 3.4. Finite and infinity corrected microscope optical configuration. (a) 
Finite microscope optical train showing focused light rays from the objective at 
the intermediate image plane. (b) Infinity�corrected microscope with a parallel 
light beam between the objective and tube lens. This is the region of the optical 
train that is designed for auxiliary components, such as differential interference 
contrast (DIC) prisms, polarizers, and filters29.  
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Addition of optical accessories into the light path between the microscope frame 

and observation tube head of a fixed tube length microscope increases the 

effective tube length to a value greater than 160 mm29. Therefore, inserting 

auxiliary components, such as a reflected light or fluorescence illuminator, 

polarizers, filters, and differential interference contrast (DIC) prisms, can 

introduce spherical aberration and host images into a corrected optical system. 

Infinity optical systems have a different objective design that produces a flux of 

parallel light wave fronts imaged at infinity, which can then brought into focus at 

the intermediate image plane by a special optical lens. The region between the 

objective’s rear aperture and the tube lens is called infinity space, as seen in 

figure 3.4b, where auxiliary components can be introduced into the light path 

without producing focus optical aberrations (Fig. 3.4b)29.  
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4.1 Overview4.1 Overview4.1 Overview4.1 Overview    

Microfluidics opened a new pathway for research and there are virtually 

unlimited applications of microfluidics in many fields, such as biology, chemistry, 

biophysics and engineering. With microfluidic devices, a host of information is 

easily and efficiently obtained with small volumes of fluids, such as, the rapid 

measurement of diffusion coefficients of large and small molecules in a 

microfluidic device30, fluid viscosity31, determining the pH of a multiple samples in 

separate channels at the same time 32, 33, chemical binding coefficients30 and 

enzyme reaction kinetics34, leading to reduction of reagent used. Quantities of 

waste produced are also minimized. Microfluidics is used for DNA analysis36, 37, 38, 

39, cell manipulation40, cell separation41, flow cytometry35 and others, leading to 

dramatic improvements for analysis. 

In this chapter materials and experimental methods for fabrication of 

microfluidic devices will be discussed. This chapter focuses on integrating 

electrostatic corral traps into a microfluidic device for experiments. Development 

of microfluidic devices with integrated electrostatic traps is essential for capturing 

single molecules in their natural environment in order to study their mechanics or 

dynamics over long time scales. There is room for improvement concerning the 

setup used so far for trapping molecules; the sample solution dries out typically 

within 45 minutes, and it is not possible to accurately control the conditions to 

create a flow that will carry “all” the particles from where they are to where they 

need to be in order to trapped. Integrating corral trap into microfluidic device will 

resolve many of these issues. There is one main process used for fabricating 

microfluidic devices, namely photolithography, that will be discussed in the thesis.  
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4.2 Instruments4.2 Instruments4.2 Instruments4.2 Instruments    
 
 4.2.1 Profilometer 4.2.1 Profilometer 4.2.1 Profilometer 4.2.1 Profilometer to measure thin film thicknessto measure thin film thicknessto measure thin film thicknessto measure thin film thickness    

A profilometer is a non�destructive, easy�to�use method of measuring 

surface high by taking step measurement. The Alpha Step 200 profilometer is 

used to measure step heights, etch depths, coating thicknesses, micro�

roughness and a variety of other high precision surface characteristics. Tencor 

AlphaStep 200 is used to measure thin film thickness between 10 Å and 165 

microns and has resolution 5 nanometers for scan lengths of 80, 400, 2,000, or 

10,000 microns. It measures the deflection of a 2D diamond�tipped stylus in 

direct contact as it is drawn over the sample surface, as shown in figure 4.2. The 

AlphaStep 200 is equipped with a standard stylus of 12.5 micron radius. Sample 

leveling is automatically computed after each scan. The scan area is imaged on 

a, 9�inch CRT. Figure 4.1 shows the instrument used for the thickness 

measurement. The sample was placed on the black circular surface. A standard 

from VLSI Standard Inc. 960 Å calibration features was used before every 

measurement. The standard was off by ±12 Å. The base of the channel was off 

±15 Å because of thickness of stylus could not reach the base. The instrument 

was used in Dr. Carolyn Aita’s lab with help of Elizabeth Hoppe. 
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Figure 4.1. Thin film thickness measurement Tencor Alpha�Step 200 
profilometer. 
 
 

 
Figure 4.2. Schematic of diamond�tipped stylus in direct contact, as it is drawn 
over the sample surface. 
 
 
 
 4.2.2 4.2.2 4.2.2 4.2.2 MJBMJBMJBMJB����3 contact mask aligner3 contact mask aligner3 contact mask aligner3 contact mask aligner    



37 

 

 

 

Karl Suss MJB�3 contact mask aligner was used for SU�8 resist 

processing. It is based in the cleanrooms for high resolution photolithography of 

the Wisconsin Center for Applied Microelectronics (WCAM) at the University of 

Wisconsin�Madison, as shown in figure 4.3. This is a standard MJB 3 aligner 

equipped with a 200 watt mercury short�arc lamp. The filtered light source 

produces a combination of g�line, h�line and i�line wavelengths between 320�

500nm.  Optimum line/space resolution is 1.5 microns.  The alignment range of 

the X and Y stage is 6mm and the in plane tilt range is 30°.  Alignment is 

performed manually by manipulating micrometers while observing the wafer and 

mask under a microscope.  A quartz mask is recommended for wavelengths of 

320nm while sodium glass masks are adequate for longer wavelengths. The 

aligner is used during the lithography process, projecting an image onto a wafer 

that has been coated with a thin layer of photosensitive material called 

photoresist. Contact or proximity printing is the simplest lithography method. 

When UV light passes through the patterned area of a chrome mask, it exposes 

the photoresist on the wafer and a chemical transformation occurs. After 

developing in a solution bath and rinsing, a pattern is transferred via the 

remaining photoresist onto the wafer. 
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Figure 4.3. Standard MJB 3 aligner equipped with a 200 watt mercury short�arc 
lamp. 
 
 
 
 

4.2.3 Spinner and HMDS 4.2.3 Spinner and HMDS 4.2.3 Spinner and HMDS 4.2.3 Spinner and HMDS     

The spinner in figure 4.4 is capable of coating substrates up to 8 inches in 

diameter.  A variety of chuck holders are available at the Wisconsin Center for 

Applied Microelectronics (WCAM) at the University of Wisconsin�Madison. The 

spinning speed is adjustable from 500 to 5,000 rpm and an electronic timer 

automatically controls the spin cycle.  For reproducible lithography, the 

photoresist needs to be uniform and pinhole�free.  The standard method of 

application is spinning.  In this method, the substrate is mounted on a vacuum 

chuck; a metered amount of photoresist is deposited onto the center of the wafer; 

and then the revolving wafer flings off the excess resist and a uniform film is 
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produced.  The viscosity of the photoresist, rotational speed and time of the spin 

are the controlling parameters. In figure 4.4, next to the spinner, is shown a 

chamber for applying the adhesion 

promoter/primerhexamethyldisilazane(HMDS), which improves the adhesion of 

the photoresist and provides a contaminant�free resist film. 

    

 

Figure 4.4. Spinner on the left side and HMDS on the right side. 

    

4.2.4 4.2.4 4.2.4 4.2.4 Ion beam sIon beam sIon beam sIon beam sputter coaterputter coaterputter coaterputter coater    

This instrument was used in Dr. Carolyn Aita’s lab with help of Elizabeth 

Hoppe. Ion beam sputter deposition is a physical vapor deposition (PVD) method, 

which (like thermal evaporation) results in a thin layer of conductive metal, such 
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as gold or palladium, on a substrate surface. The process, however, occurs at 

higher gas pressures, where ions collide with gas atoms that act as a moderator 

and move diffusively, reaching the substrates or vacuum chamber wall shown in 

figure 4.5. The high energy ballistic impact to low energy thermal motion is 

achieved by changing the gas pressure. The sputtering gas is often an inert gas 

such as argon. 

 

 
Figure 4.5.  Sputter coating process.  

 

4.3 Materials for fabrication of microfluidic device4.3 Materials for fabrication of microfluidic device4.3 Materials for fabrication of microfluidic device4.3 Materials for fabrication of microfluidic devicessss    

 Materials in chapter 3 are used as well as following:  

• Hexamethyldisilazane (HMDS) (Sigma�Aldrich 999973, grade ≥99%) 

• Photoresist s1813, (Shipley) 

• 6:1 Buffered Oxide Hydrofluoric Acid (BOE) with OHS (CPG Grade cat # 

880406 Fujifilm), 

• Developer 321, (Shipley) 
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• SU�8 (2000.5 series) (Micro Chem, Y1110140500L1GL) 

• Sylgard 184 Silicone Elastomer Kit Poly(dimethylsiloxane) (PDMS) 

(2404019862) 

The devices were made by photolithography using two types of photoresist, a 

positive photoresist where exposure to UV light removes the resist, and a 

negative photoresist in which exposure to UV light maintains the resist. Figure 4.6 

shows a typical positive and negative process of fabrication of microfluidic 

devices. In a typical process of fabrication photoresist is spin�coated on a 

substrate, and then a mask with the desired pattern is placed on top of it. The 

photoresist is illuminated through the mask by UV light, developed using a 

developer, and the undeveloped photoresist is finally removed by acetone. Both 

methods for fabricating devices were used and will be presented in detail. 

 

 
Figure 4.6.Photolithographyprocedure using negative and positive resist. 
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 4.3.1 4.3.1 4.3.1 4.3.1 SUSUSUSU����8 and PDMS photolithography8 and PDMS photolithography8 and PDMS photolithography8 and PDMS photolithography    

The purpose of photolithography is to create small structures or features 

on a silicon wafer using photoresist, and was used to create a mold for the micro�

channels. It has some similarities to the process of development of a photograph, 

except the result is a three dimensional structure. There are three main 

components in a lithography process: substrate, photoresist, and mask. Figure 

4.7 shows the technique for fabricating a microfluidic channel using SU�8 

photoresist (negative resist). The result of this procedure is a microfluidic 

channel, which can hold a stationary solution in the trapping setup. For the 

experiment the set up consists of a 0.17mm thick glass coverslip with the 10Qm 

traps and 0.5�2 Im thick Poly(dimethylsiloxane) (PDMS) layer with embedded 

pattern of channel on top of it.  

The procedure can be summarized as follows. PDMS base (Sylgard184 

Silicone Elastomer Base, Dow Corning Canada) was mixed with Sylgard 184 

Silicone Elastomer Curing Agent (Dow Corning Canada) at a ratio of 10:1. The 

mixture was placed in a vacuum chamber for 30 minutes in order to make it 

smooth and without bubbles. For this device SU�8 2000.5 was used following the 

recipe described below. Figure 4.8 shows SU�8 mold made with different 

designed patterns of channels using this recipe. SU�8 molding was done in Dr. 

Woo�Jin Chang’s lab at University of Wisconsin�Milwaukee using the recipe 

described below. 
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Figure 4.7. Lithography using SU�8 (2000.5) and PDMS. 

 

The recipe to build the device is as following:  

1) Substrate pre�treatment 

a. Soak in sulfuric acid, hydrogen peroxide 

b. Heat at 15°C for 10 minutes 

c. Wash with acetone, isopropyl alcohol and water repeatedly 

d. Air dry with N2 gas 

e. Put wafer on hot plate for 5 minutes to remove any water 

f. Spray with N2 gas 

2) Coat 

a. Pour 1mL of SU�8 2000.5 per 1 inch of wafer diameter. 

b. Spin at 500 rpm for 5 minutes with an acceleration of 100 rpm/second 

c. Spin at 3000 rpm for 30 seconds with an acceleration of 300 

rpm/second 
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d. This will result thickness of less than 0.5 Im of SU�8 2000.5. 

3) Edge bead removal 

a. Remove buildup of SU�8 2000.5 on edges of wafer to enable close 

contact with photomask. 

4) Soft Bake 

a. Bake SU�8 2000.5 at 95°C for 1 minute. 

5) Expose 

a. Put wafer with SU�8 2000.5 in an aligner for UV exposure at 60 

mJ/cm2. 

6) Post exposure bake 

a. Bake SU�8 2000.5 at 95°C for 1 minute. 

7) Develop 

a. Submerge SU�8 2000.5 in developer for 1 minute 

8) Rinse and dry 

a. Spray and wash SU�8 2000.5 with isopropyl alcohol for 10 minutes. 

b. Air dry with N2 gas. 

9) Hard bake 

a. Bake SU�8 2000.5 at 150°C for 5 minutes. 

10) Soft lithography (PDMS process) 

a. Mix curing agent:base in 1:10 ratio by mass and mix it well. 

b. Pour the mixture on the SU�8 mold and let it sit in air to remove all the 

bubbles. 

c. Then bake for 5�6 hours until PDMS gets hard. 
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d. Remove PDMS from SU�8 mold and attach on coverslip with the micro�

scale traps. 

 

 
A)                                                           B) 

Figure 4.8 a, b. SU�8 mold with different channel patterns. 

 

Figure 4.8 a, b shows a mold made with SU�8 photoresist. Figure 4.8a 

shows a channel supported by lots of poles (circular dots in figure 4.8a), that 

prevent the large channel from collapsing due to PDMS being very flexible. 

PDMS process is called soft lithography.  The most challenging part of soft 

lithography is keeping the channel from collapsing. Figure 4.8b shows a 

continuous channel from right to left without poles using SU�8 photoresist mold. 

Figure 4.9 shows thin film thickness measurements done with the Tencor Alpha�

Step 200 profilometer of a channel pattern in SU�8 mold. Many channels were 

measured and yielding an average SU�8 mold thickness of approximately 260 

nm, which was close to the desired channel depth. In the profile the side lines are 

not straight and the top is not flat, because the mask used was produced in 

house on transparency film using a laser printer; therefore, the quality of the 
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mask was poor. Due to poor quality mask the side walls of SU�8 do not show 

sharp edges in figure 4.9.  

 
Figure 4.9. Profile of channel made by SU�8 mold in figure 4.8b is approximately 
260nm (analysis done with help of Elizabeth Hoppe). 
 

 The last part is bonding PDMS to the metal surface. Here the thin metal 

film with micro�scale traps on coverslip (bottom) is bonded to PDMS (top). 

Bonding PDMS to non�glass surface is done by plasma bonding. For our device 

the PDMS adheres to the metal well without plasma bonding, but it can be peeled 

off. The devices are a little more delicate because of this.  

 4.3.2 Photolithography etching process4.3.2 Photolithography etching process4.3.2 Photolithography etching process4.3.2 Photolithography etching process    

Photolithography using a positive resist to etch channel was our preferred 

process of making channel. This process is similar to the above mentioned 

process, but with slight modifications. Figure 4.10 shows the technique for 

fabricating a microfluidic channel using photoresist s1813 (positive resist). The 

result of this procedure is a microfluidic channel, which can hold a stationary 

solution in the trapping setup. For the experiment, 0.17 mm thick 18 mm x 18 mm 
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coverslip with etched channel and with two holes for inlet and outlet of fluid was 

made using s1813 photoresist . Sharp edges and flat channels cannot be 

accomplished using regular glass coverslips (not quartz) due to impurities in the 

glass. Therefore, use of a pure silica (quartz) coverslip is essential in order to 

achieve well define channel. Figure 4.10 shows the process of channel made by 

HF etching using s1813 photoresist.  

 
Figure 4.10. Photolithography HF acid etching process. 

 

The receipt used to make channels is as following: 

1) 19 mm by 19 mm quartz coverslip is cleaned at 35°C for 15 minutes with  

• Acetone 

•  methanol  

• Isopropyl alcohol 

• Dried with N2 gas 
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2) The quartz coverslip is placed in vaporized HMDS chamber with vacuum 

at 105°C. 

3) Spin coat photoresist s1813  

• Spin coat as follows: 

• Step 1: 10 seconds, 500 RPM, 500 Ramp 

• Step 2:  30 seconds, 4000 RPM, 1000 Ramp 

• Step 3: 0 second, 0 RPM, 500 Ramp 

4) Put quartz coverslip with photoresist on a hot plate for 1minute at 115°C. 

5) Take the quartz coverslip with photoresist to MJB�3 contact aligner with 

the mask. 

6) Line up the mask and coverslip on the instrument and set up exposure 

time to 18 seconds. 

7) After exposure to UV light, take the quartz coverslip to develop. 

8) Use base 321 to wash PR s1813 for exactly 45 seconds. 

9) Dip the quartz coverslip under running water for 10�15 seconds. 

10)  Dry quartz coverslip with air. 

11)  Take the quartz coverslip for etching with Hydrogen Fluoride acid (HF) 

buffered oxide etch 6:1(BOE) for exactly 10 minutes. 

12) Then put quartz coverslip in running water for 5 minutes. 

Figure 4.11 shows coverslip with the channel made by above recipe and 

the channel’s shape with the two circles at the end of the channel. Figure 4.12 

shows profile done on the same coverslip across the channel to determined the 

depth of the channel. From 10 minutes etching, the channel depth came out to be 
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870 nm using a Tencor Alpha�Step 200 profilometer, very close to the intended 

depth of 1Qm. A 960 Å standard from VLSI Standard Inc. was used before every 

measurement. The standard was off by ±12 Å. The base of the channel was off 

±15 Å of the level due to thickness of the stylus. The side of the channel (under�

etching) is a problem as the etchant enters into the substrate, resulting in non�

vertical edges; however making microfluidic channels with the HF acid etching 

process produced the best results with quartz coverslips. However, in contrast to 

the  glass coverslips, we could no longer etch inlet/outlet holes into quartz 

coverslips with HF acid.  

 

 
Figure 4.11. Channel made by photolithography HF etching process, the 

coverslip has a thin layer metal deposited so that the channel is better visible. 
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Figure 4.12. Profile of channel of approximately 870 nm made by HF etching. 
(analysis done by help of Elizabeth Hoppe). 
 

Making two holes on the coverslip for inlet and outlet for the fluid, has 

been achieved by HF acid etching through the 0.17 mm thick glass coverslip. 

This was done by attaching two hollow Teflon tubes to the coverslip by UV glue 

around the tubes, but not inside the holes of tube (shown in figure 4.13a). The 

tube was then filled with HF (49%) acid and left there for two hours until the HF 

acid etched all the way through the coverslip (results shown in figure 4.15). The 

holes can only be made on regular glass coverslip with thickness of 0.17 mm. 

However, quartz with thickness of 0.5 mm failed to produce holes using this 

procedure. Therefore, the quartz coverslip was covered with beeswax (except for 

the locations of the desired inlet/outlet) and dipped in HF acid for 12�15 hours. 

The holes were made, but the coverslip formed an uneven surface as seen in 

figure 4.16. Because the holes on the coverslip were made prior to etching the 

channel; the channel could not be etched with sharp edges. Other methods were 

devised to make holes in quartz coverslips such as, sand blasting (which breaks 
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the coverslips), diamond bit drilling (which also breaks coverslips), ultra sonic 

drilling (didn’t make holes at all) and by covering coverslip by photoresist then 

etching with HF acid (the photoresist came off after 2�3 hours in the HF acid).  

 

Figure 4.13. a) Teflon tubes define the location of holes for outlet and inlet on the 
18 mm x 18 mm coverslip, fabricated by filling the tube channels with HF. b) 
Coverslip (18 mm x 18 mm) with two holes after Teflon tubes are removed. C) 
Coverslip (18 mm x 18 mm) with the mask on top. d) Coverslip (18 mm x 18 mm) 
on top of coverslip (25 mm x 25 mm) with corral traps in a thin metal film. e) The 
final fluidic device.  

 

Figure 4.13 shows how all the components were assembled together to 

produce a microfluidic device. Figure 4.13a shows Teflon tubes attached to 

coverslip to make holes after two hours of HF acid etching like figure 4.13b. Then 

channel was etched using a photolithography process and HF acid etching as 
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shown in figure 4.13c. Then ,using 3�trimethoxysilypropylmercaptan, the 

coverslip with 10Qm corral traps is attached to the quartz coverslip with the 

channel, as shown in figure 4.13d. The attachment of two coverslips cannot be 

achieved for quartz. Figure 4.14 shows how a coverslip (SiO2) is attached to 

coverslip with AuPd metal by 3�trimethoxysilypropylmercaptan (C6H16O3SSi). The 

OH groups are present on the channel coverslip surface and AuPd is present on 

opposing corral trap coverslip. 3�trimethoxysilypropylmercaptan is added to the 

corral trap coverslip and sandwiched together with channel coverslip. Then, the 

sandwiched coverslips are left overnight for curing. During the curing process, 

one bond from each silicon of 3�trimethoxysilypropylmercaptan is covalently 

linked to the oxygen on substrate surface, as shown in figure 4.14. Each thiol is 

linked to gold on the surface of subtract providing a monolayer coverage 

throughout the whole coverslip.  
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Figure 4.14. Two coverslips are linked together by 3� 
trimethoxysilypropylmercaptan.  

 

Figure 4.13e shows the final assembled device. A tube with a syringe is 

attached to the inlet hole, while a tube connected to a beaker collects fluid at the 

outlet hole. As stated before, the biggest challenge in making this device is 

making holes for inlet and outlet for fluid on both glass and quartz coverslip.  

 

Figure 4.15. Hole made on a glass coverslip by HF acid etching. 
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Figure 4.16. Holes made by covering quartz coverslip with beeswax and placing 
in HF acid. 

 

4.3.3 Other 4.3.3 Other 4.3.3 Other 4.3.3 Other methodsmethodsmethodsmethods    for fabricating a microfluidic channelfor fabricating a microfluidic channelfor fabricating a microfluidic channelfor fabricating a microfluidic channel    

Many methods for fabricating microfluidic channels were experimented 

with. One of them is shown in figure 4.17, were aluminum was evaporated on 18 

mm x 18 mm coverslip to make the sidewalls of the channel. Unfortunately, we 

were unable to deposit a thick enough layer due to instrument limitations. 

Aluminum was approximately 50 nm thick (this is estimated based on material 

used due to the lack of a thickness monitor in the evaporator). The desired 

channel depth was at least 500 nm; therefore this was not used for fabricating 

channels.  
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Figure 4.17. Thermal evaporation of Aluminum metal on 18 mm x 18 mm 
coverslip. 

 

The second method tried to make channels was using sputter coater to 

deposit the channel walls. Figure 4.18 shows HfO2 deposition on a 18 mm x 18 

mm coverslip with different patterns on coverslip. The maximum thickness we 

achieved by sputter coating HfO2 was 280 nm, while the desired thickness was 

1000 nm. Also, Hafnium (Hf) was sputter coated as well and the measured 

thickness was only 250 nm. The thickness measurements were carried out using 

Alpha�Step 200 profilometer, and the instrument was calibrated using a standard 

every time.  
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Figure 4.18. Sputter coating of HfO2 with the pattern seen on coverslip (analysis 
done by help of Elizabeth Hoppe). 

    

4.4 Displacement rate4.4 Displacement rate4.4 Displacement rate4.4 Displacement rate    

We have built many devices to control solution flow inside a confine space, 

because the direction of the flow as well as control of the displacement rate is 

essential for experiments. Fluids confined in these structures exhibit physical 

behaviors not observed in larger structures. In many microfluidic devices, syringe 

pumps are used to control liquid flow. However, even at the lowest speed these 

pumps produce particle displacements in shallow channels that are too rapid for 

corral trapping. In our microfluidic device, we therefore use gravity induced 

convective flow. Gravity induced flow is achieved by adding two drops of solution 

on top of each holes, one drop smaller than the other as shown in figure 4.19. It is 

well known in microfluidics that the flow of the solution is controlled by the volume 

of the drop, the surface free energy of the liquid, or the resistance of the 

microchanne43. The flow is induced in the direction of the bigger drop as shown in 
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figure 4.19, due to the surface tension in a drop of liquid43, channel resistances43 

and the PDMS material being hydrophobic. Other materials can be used, but the 

drop gets spread on the surface, which lowers the pressure inside the channel. 

 

Figure 4.19. Side view of a microchannel. A reservoir port with a large drop and 
pumping port with a smaller drop are required for fluid flow43. 

 

 Figure 4.20 shows sequence of images with red arrow pointing at a 20 nm 

bead that was used to calculate displacement rate of the solution in the 

microfluidic device. In our device flow of the particle varies from the beginning of 

experiments to after 20 minutes in to the experiments because of evaporation of 

the solution drops on the surface of the holes. Approximately 9 Im/s 

displacement rate has been calculated from the single 20nm bead traveling in 

figure 4.20. Such a flow rate is still about an order of magnitude higher than the 

desired rate for corral trapping, but can be further adjusted by fine�tuning inlet 

and outlet hole size and the viscosity of the solution.     

    



 

 

 

  

58 



59 

 

 

 

 

 

 

 

 

 

Chapter 5Chapter 5Chapter 5Chapter 5    

Trapping Experiment Trapping Experiment Trapping Experiment Trapping Experiment     
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5.1 Overview5.1 Overview5.1 Overview5.1 Overview    

The theory of corral trapping was presented in Chapter 1. This method has 

advantages of size, and depends only on particle charge. In this chapter the 

instruments used for the analysis of trapping experiments, as well as sample 

preparation and experimental setup are presented. Trapping of polystyrene bead 

and ssDNA results are described. 

 

5.2 Instrument5.2 Instrument5.2 Instrument5.2 Instruments ands ands ands and    analysisanalysisanalysisanalysis    

 5.2.1 CCD camera5.2.1 CCD camera5.2.1 CCD camera5.2.1 CCD camera    

 Our main source device for acquiring the images and videos, is a high 

performance CCD camera (charge coupled device). In a CCD video camera, light 

hitting the image sensor is converted to an electrical signal. This electron packet 

must then be transferred one pixel at a time through an output node to an image 

processor, at which point it is converted into a digital signal by the analog�to�

digital converter (ADC) that is then sent to the computer. All the data being 

collected is being processed by Matlab.  

 5.2.2 5.2.2 5.2.2 5.2.2 MatlabMatlabMatlabMatlab    

 Mathworks Inc. specializes in mathematical computing software called 

Matlab. Matlab can be used for range of applications, including signal processing 

and communications, image and video processing, control systems, test and 

measurement, computational finance, and computational biology. Here we use it 

for image and video processing by writing specific code to carry out the 

experiment and analyze experimental data.   
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5.3 5.3 5.3 5.3 Trapping polystyrene beadTrapping polystyrene beadTrapping polystyrene beadTrapping polystyrene bead    

In the experiment 20 nm spherical charged polystyrene microspheres 

beads were used. The experiment was conducted using the fluorescence signal 

since these objects are small and hard to image under brightfield conditions. 

Images of the sample were acquired at 1s intervals with an exposure time of 100 

ms.  

5.3.1 Sample preparation for beads5.3.1 Sample preparation for beads5.3.1 Sample preparation for beads5.3.1 Sample preparation for beads    

 For the experiment the sample consisted of a 2×10�6 g/L stock solution of 

20nm polystyrene spheres (Invitrogen F�8827) in a solution of 1.0 mol L�1 sodium 

hydroxide which was titrated to pH 10 in order to fully deprotonate the carboxylic 

acids on the microsphere surface. This solution was freshly made before use.  

 5.3.2 Experimental setup5.3.2 Experimental setup5.3.2 Experimental setup5.3.2 Experimental setup    

    A trap was found on the trapping electrode which had been created 

through the shadow evaporation method using a ~5 nm thick layer of 60:40 NiCr 

followed by AuPd on 25 mm x 25 mm coverslips. Contact was made to the thin 

metal film through the attachment of a thin copper wire by a carbon tape as 

shown in figure 5.1. A 1 IL drop of the 20 nm microsphere solution was deposited 

onto the trapping electrode in the region of a corral trap, then a second non�

metalized 18 mm x 18 mm ozone�cleaned coverslip was placed over the sample, 

and slight pressure was applied to spread the microsphere solution as much as 

possible while maintaining a continuous fluid film.  
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Figure 5.2. Zooms of four frames, of a longer video sequence of a �30 V trapping 
event of a negatively charged, 20 nm nanobead inside a 10 Im electrostatic 
corral trap. The circle (red if trap is active) outlines the location of the corral trap, 
as determined from a brightfield image of the same area. (This figure is taken 
from Christine Carlson’s thesis with her permission10). 
 
 

5.4 5.4 5.4 5.4 Trapping DNATrapping DNATrapping DNATrapping DNA    

Corral trap has shown to trap negatively charged particle in the center of 

the trapping area by applying negative trapping potentials. In subsequent 

experiments 600�nucleotide single stranded DNA molecules were used. The 

ssDNA carries a negative charge due to deprotonated phosphate groups on the 

phosphodiester backbone (seen in figure 5.2). Each ssDNA molecule was 

covalently linked to a single Cy3 fluorophore, whose chemical structure is shown 

in figure 5.4. Cy3 belongs to the group of cyanine dyes. The word cyanine is from 

the English word cyan, which conventionally means a shade of blue�green. 

Cyanine dyes have many uses as fluorescent dyes, particularly in biomedical 

imaging. The ssDNA molecule was imaged by fluorescence excitation of the Cy3 

dye. Figure 5.5 shows excitation and emission spectrum of Cy3�ssDNA in pH 7.2 

buffer44.Cy3 conjugates can be excited maximally at 550 nm, with peak emission 

at 570 nm and can be excited to ~ 50% of maximum with an argon ion laser44. 



64 

 

 

 

 

Figure 5.3. Chemical structure of a single strand DNA.  
 



65 

 

 

 

 
 

Figure 5.4.Chemical structure of a Cy3. 
 
 
 

 
 
Figure 5.5.Excitation and emission spectrum of Cy3�ssDNA (550/570) in pH 7.2 

buffer44. 
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5.4.1 Experimental setup5.4.1 Experimental setup5.4.1 Experimental setup5.4.1 Experimental setup 

The experiment was conducted under fluorescence imaging conditions, 

which allows for the observation of the molecules fluorescence signal, since 

these molecules are too small to be seen in a conventional microscope. The 

emitted light was collected by a 100× oil immersion objective (α�Plan�FLUAR 

100X/1.45; numerical aperture: 1.45, Carl Zeiss Inc.) and imaged with the 

EMCCD camera. The sample was illuminated by the 514.5 nm line of an argon 

Ion laser (Stabilite 2017�AR,Spectra�Physics). The laser light was coupled into 

the back port of the inverted microscope and focused near the back focal point of 

the microscope objective(epifluorescence mode). In this case, a set of optical 

filters adapted to the laser line and the fluorescence emission characteristics of 

the investigated sample were employed (excitation filter z514/10, dichroic filter 

z514rdc, emission filter hhq519lp; Chroma Technology). Images of the sample 

were acquired using the multiplication gain amplifier at 5 MHz readout rate with 

an exposure time of 100 ms, a frame rate of 7.6 fps.  The data of the experiment 

was acquired with the CCD camera. The multi�dimensional tiff�file containing the 

entire video sequence was then imported into Matlab and cut into individual 

frames. For each frame, a region of interest of 23 × 23 Im2 consisting of the 

trapping region was analyzed for fitting of the fluorescence peaks to 2D 

Gaussians. Since the fluorescence signal of a single molecule is very weak, the 

on�chip electron�multiplication gain was set to its maximum value, resulting in a 

signal amplification of approximately 1000 times12. 

5.4.2 Sample preparation for ssDNA5.4.2 Sample preparation for ssDNA5.4.2 Sample preparation for ssDNA5.4.2 Sample preparation for ssDNA    
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 The setup used here for experiments is same as figure 5.1. The ssDNA 

solution consisted of an 8 nM solution of singly Cy3 labeled 600�nt ssDNA 

molecules in a TBE buffer consisting of 44 mmol L�1 Tris 

(tris(hydroxymethyl)aminomethane), 44 mmol L�1 boric acid, and 1 mmol L�1 

EDTA (ethylenediaminetetraacetic acid). The solution is titrated to pH 8.5 with 1.0 

mmol L�1 sodium hydroxide to ensure deprotonating the phosphodiester 

backbone, producing the maximum effective charge. Then the sample was 

placed on coverslip with 60:40 NiCr/AuPd with electrodes attached. A flow was 

induced for ssDNA to move on a coverslip for trapping. 

5.4.3 Trapping ssDNA5.4.3 Trapping ssDNA5.4.3 Trapping ssDNA5.4.3 Trapping ssDNA    

A 600�nt ssDNA molecule was successfully trapped in a 10 Im corral trap; 

the experiments were done with help Christine Carlson. Figure 5.6 shows the 

successful trapping of a single 600nt ssDNA molecule in a corral trap. A trapping 

potential of �30 V was applied when a single ssDNA molecule had moved inside 

a corral trap. The molecule was observed in the center of the corral trap and 

remained centered due to the strong electrostatic potential well seen in figure 

5.6B.Once the trapping potential is turned off, the ssDNA moves away from the 

center and out of the trap (Fig. 5.6C).Furthermore, it is conceivable that the 

observed fluorescence signal is stemming from two or more ssDNA molecules 

that are clustered together, which would explain the absence of fluorescence 

blinking as well as the observed higher fluorescence intensity. Blinking occurs 

namely because it is very unlikely that two or more molecules would switch to the 

“off” state at the exact same moment and for the same duration, so only intensity 

fluctuations will be observed. 
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Chapter 6Chapter 6Chapter 6Chapter 6    

Conclusion and Future DirectionConclusion and Future DirectionConclusion and Future DirectionConclusion and Future Direction    
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6.1 6.1 6.1 6.1 Overall summeryOverall summeryOverall summeryOverall summery    

The goal of research was to trap 600nt ssDNA in a corral trap, which I 

have successfully demonstrated with the help of Dr. Carlson. This technique 

allowed us to isolate and study single molecules in their native solution 

environment. Along this line, we wanted to introduce another ssDNA to the 

trapped molecule as well as study trapped molecules for longer times to 

understand their dynamics and/or interactions with binding partners. This 

research focused us to consider the fabrication of microfluidic devices with corral 

traps. 

The intent of the thesis was to build electrostatic corral traps in microfluidic 

devices for trapping single molecules. In this thesis I have successfully fabricated 

a microfluidic devices that can be used in conjunction with corral traps. 

Microfluidic devices were fabricated by photolithography process using two 

different photoresists: a positive s1813 resist and a negative SU�8 resist. Both 

types of devices with integrated corral traps can be used for trapping and 

manipulating single molecules such as viruses, proteins, beads and DNA.  

6.2 Future direction6.2 Future direction6.2 Future direction6.2 Future direction    

 The fabrication of electrostatic corral trap integrated in a microfluidic 

device has great benefits. Now, the experiments can go for longer period of time 

and flow of solution is easily established. Future experiments focuses on the 

trapping of 400, 200, 100 and 50 nt ssDNA using microfluidic and other ssDNA 

will be introduced to study how will they react with each other. Also, a different pH 

solution can be established and to study its influence on biomolecules. Also, not 
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just DNA, but viruses can potentially be trapped and studied. Future work is 

needed to improve the fabrication of corral traps using a photolithography 

process. So, that arrays of corral traps positioned across the channel can be 

fabricated in microfluidic devices. This will make trapping more efficient, allowing 

us to trap molecules in parallels in multiple corral traps at the same time.  
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