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Resilience in railway transport systems: a literature review and
research agenda
Nikola Bešinović

Department of Transport and Planning, Delft University of Technology, Delft, The Netherlands

ABSTRACT
Critical infrastructure networks, such as transport and power
networks, are essential for the functioning of a society and
economy. The rising transport demand increases the congestion
in railway networks and thus they become more interdependent
and more complex to operate. Also, an increasing number of
disruptions due to system failures as well as climate changes can
be expected in the future. As a consequence, many trains are
cancelled and excessively delayed, and thus, many passengers are
not reaching their destinations which compromises customers
need for mobility. Currently, there is a rising need to quantify
impacts of disruptions and the evolution of system performance.
This review paper aims to set-up a field-specific definition of
resilience in railway transport and gives a comprehensive, up-to-
date review of railway resilience papers. The focus is on
quantitative approaches. The review analyses peer-reviewed
papers in Web of Science and Scopus from January 2008 to
August 2019. The results show a steady increase of the number of
published papers in recent years. The review classifies resilience
metrics and approaches. It has been recognised that system-
based metrics tend to better capture effects on transport services
and transport demand. Also, mathematical optimization shows a
great potential to assess and improve resilience of railway
systems. Alternatively, data-driven approaches could be
potentially used for detailed ex-post analysis of past disruptions.
Finally, several rising future scientific topics are identified,
spanning from learning from historical data, to considering
interdependent critical systems and community resilience.
Practitioners can also benefit from the review to understand a
common terminology, recognise possible applications for
assessing and designing resilient railway transport systems.
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Introduction

Critical infrastructure networks, such as transport and power networks, are essential for the
functioning of a society and economy. On their regular functioning depend millions of com-
muters and travellers worldwide every day. The rising transport demand increases the
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congestion in railway networks and thus they become more interdependent and more
complex to operate. Therefore, urban mobility becomes more fragile to unexpected
changes to the networks. Such events may range from disturbances (daily variations in oper-
ations), disruptions (due to failures of infrastructure, vehicles, engineering works and adverse
weather conditions such as rain, snow storm,wind), to disasters (earthquakes, floods and hur-
ricanes). Disruptions and disasters commonly lead to temporary line or station closures, either
single or multiple, while incidents such as suicides, demonstrations or strikes may also affect
the frequency of the service. In addition, Dekker et al. (2018) recognize a so called out-of-
control situations, meaning that there is barely any train is running, even though the required
resources (infrastructure, rolling stock and crew) are available. These situations can either be
caused by large disruptions or unexpected propagation and accumulation of delays. For
example, in the Netherlands, in 2018, on average 14 disruptions a day occurred lasting
about 2 hours each. From these numbers, vehicle and infrastructure failures took about 70%.1

As a consequence, many cancelled and excessively delayed trains are observed, and thus,
many passengers are not reaching their destinations which compromises customers need
for mobility. In 2012, hurricane Sandy flooded several subway stations and tunnels in
New York City causing severe damage to the system. Most of the major services were recov-
ered within two weeks. It took several months for stations seriously affected to be fully func-
tional again (Zhu, Ozbay, Xie, & Yang, 2016). The direct economic costs of the 2008 ice storm
in China totalled $22.3 billion (Chen & Wang, 2019). Figure 1 shows the increasing number
and duration of disruptions in the past years in the Netherlands, while increasing disruption
impacts can be expected in the future due to increasing transport demand (Van Aken, Beši-
novic, & Goverde, 2017a) and climate changes (Dawson, Shaw, & Roland Gehrels, 2016).
Events like terrorist attacks, such as in London in 2005, have particularly far-reaching and

Figure 1. Number of disruptions and total duration in the Dutch railway network during 2011–2018
(source: https://www.rijdendetreinen.nl/en/statistics).
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long-lasting effects on the network. Several months after the metro attack, weekdays rider-
ship was still down between 5% and 15% (Rodríguez-Núñez & García-Palomares, 2014).

Even though it is generally recognized that transport planning and management needs
to improve system performance during disturbances, as well as to reduce losses due to
disruptions and disasters to the greatest extent possible, it is still challenging to address
and identify appropriate implementation measures to reduce negative consequences.
This is highly attributable to the lack of quantitative understanding of the effect of
single and multiple infrastructure failures and adverse weather conditions and the evol-
ution of system performance. In addition, traffic dispatchers/controllers often lack infor-
mation about the incorporated flexibility in the plans and its recovery capabilities
(Steenhuisen, 2009). Recently, significant attention has been given to improved protection
of critical infrastructure in Europe such as energy and transport networks (IMPROVER,
2019; MOWE-IT, 2019; RailAdapt, 2019). They identified that building a resilient railway
system is not only about concrete defences – it is just as much about working practices,
since gaps, shortcomings and difficulties in railway operations are often a result of bad
planning and preparation and lack of operational buffers. More quantitative research is
needed in these directions, which needs to gain more attention in future research.

There are several review papers related to our work on engineering resilience (Hosseini,
Barker, & Ramirez-Marquez, 2016) and resilience of transport systems (Mattsson & Jenelius,
2015; Wan, Yang, Zhang, Yan, & Fan, 2018; Zhou, Wang, & Yang, 2019). However, previous
reviews covered only a limited number of railway studies. This review paper aims to set-up
a field-specific definition of resilience in railway transport, give a comprehensive, up-to-
date review of railway resilience papers, and focus on quantitative approaches.

This review paper contributes to the following. This paper:

. synthesises the literature on resilient railway transport,

. gives the definition of resilience and related concepts,

. classifies metrics and approaches of research with its advantages and disadvantages
and

. determines gaps in literature and lays down fundamentals for future research.

This paper is expected to be useful to:

. junior researchers to draw attention towards open challenges in railway transport and
to get familiar with the state-of-the-art methodologies,

. senior researchers to provide a multidisciplinary research agenda and generate new
scientific research and

. practitioners to understand a common terminology, recognise diverse applications and
build understanding toward future implementations for assessing and designing resili-
ent railway transport systems.

The remainder of the paper is as follows. Section 2 provides a definition of resilience in
railway transport and is compared with existing concepts. Section 3 describes the meth-
odology used for literature review. Section 4 gives measures for quantifying resilience
and Section 5 gives mathematical approaches for evaluating and improving resilience.
Section 6 discusses main advantages and disadvantages of existing metrics and
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approaches. Section 7 discusses future research directions and finally, the concluding
remarks are given.

Definition and concept of resilience in railway transport

In essence, resilience comes from Latin resiliere which means to spring back, to rebound.
The widely accepted UN definition for resilience is:

The ability of a system, community or society exposed to hazards to resist, absorb, accommodate
to and recover from the effects of a hazard in a timely and efficientmanner, including through the
preservation and restoration of its essential basic structures and functions. (UNISDR, 2009)

Resilience can be found in many different domains such as engineering, organizational,
economic, ecologic and social (Hosseini et al., 2016). Regarding engineering resilience
and transport, in particular, it has been considerably studied in recent years. Examples
can be found in air (Janić, 2015), road (Wang, Liu, Szeto, & Chow, 2016), supply chain
(Ponomarov & Holcomb, 2009), waterborne (Mansouri, Sauser, & Boardman, 2009) and
railway networks (Khaled, Jin, Clarke, & Hoque, 2015).

Resilience in general transport

The review of resilience definitions, both in the reviewed papers and in other transport
modes given in recent review by Zhou et al. (2019), indicates that there is no unique
insight on how to define resilience. However, certain similarities can be observed across
these resilience definitions. The main highlights are summarised in Table 1.

We argue that resilience includes two aspects: proactive and reactive. The former covers
planning for resilient system, and the latter, protecting against possible disruptions or dis-
asters. Therefore, both aspects are equally important and should be treated as building
elements of resilience in railway transport systems. These current definitions are taken
into account and adapted to the context of railway transport systems.

Resilience in railway transport

Resilience of railway transport system is defined as the ability of a railway system to provide
effective services in normal conditions, as well as to resist, absorb, accommodate and

Table 1. Definitions of resilience in transport systems.
Definition Reference

Ability to recover quickly from a disruption Bababeik, Khademi, Chen, and Nasiri (2017), Chan and
Schofer (2016), Lu (2018), Saadat, Zhang, Zhang, Ayyub,
and Huang (2018), Adjetey-Bahun, Planchet, Birregah,
and Châtelet (2016), Jenelius and Cats (2015), Janić
(2015), D’Lima and Medda (2015)

Remaining system’s performance during a disruption Khaled et al. (2015), Diab and Shalaby (2019), Ferranti et al.
(2016), Dawson et al. (2016), Dorbritz (2011)

Described with four properties: robustness, redundancy,
resourcefulness and rapidity (based on Bruneau et al.,
2003)

Beiler, McNeil, Ames, and Gayley (2013), Bocchini,
Frangopol, Ummenhofer, and Zinke (2014)

A function of system’s vulnerability against potential
disruption, and its adaptive capacity in recovering to an
acceptable level of service within a reasonable timeframe
after being affected

Mansouri et al. (2009), Saadat et al. (2018), Zhang et al.
(2018)

460 N. BEŠINOVIĆ



recover quickly from disruptions or disasters. Resilience is a comprehensive systemmeasure
and covers the following building characteristics which represent distinct system states: vul-
nerability, survivability, response and recovery (Figure 2). Additional proactive (preventive)
characteristics to contribute to system’s resilience are mitigation and preparedness.

Vulnerability is defined as how much performance remained during a disruption
(Khaled et al., 2015). Similarly, Berdica (2002) defined vulnerability of a system as “suscep-
tibility to [disruptions] that can result in considerable reductions in [..] network serviceabil-
ity”. Similar definition can be found in Zhou et al. (2019). Other terms related to
vulnerability are resistance, flexibility, redundancy. In general transport systems, robust-
ness can be considered as a counterpart of vulnerability, however, we make a bigger dis-
tinction between the two. In the railway context, robustness defines ability to mitigate
from various everyday delays caused by disturbances. This definition is typical for
railway transport and may differ for other transport modes.

Response is set of actions taken directly/immediately after a disruption in order to provide
the best level of service possible during a disruption, ensure public safety, provide alternative
travelling options to reach destinations and meet the basic subsistence needs of the people
affected. This phase represents a disrupted steady-state of railway traffic. Depending on the
natureof thedisruption, itmay last fromonly a fewhours tomultipledays. Planning responses
in railways are sometimes referred as to contingency planning.

Survivability is the ability of the system to translate from the normal/planned system
performance (i.e. 100%) to a disrupted state, i.e. degrade gracefully. In practice, when a
disruption happens, the system can degrade differently, e.g. fail completely at once or
reducing slowly the performance until finally reaching the disrupted steady-state. For
example, the former can be observed with a power outage, then all trains will immediately
stop and performance equals 0%. Instead, when a single link in the network fails, it may
take significant time until the system translates to the disrupted steady-state.

Figure 2. Resilience of railway transport system including vulnerability, survivability, response and
recovery.
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Recovery is the ability of the system to return from the disrupted state to its original
condition. Depending on a disruption, recovery may last a few hours (e.g. due to a
vehicle failure) up to multiple weeks (e.g. due to severe flooding or tsunami).

During certain types of disruptions or disasters may omit some of the states of resili-
ence. For example, after a large-scale earthquake, railway traffic can be completely inter-
rupted, and thus no survivability occurs. Alternatively, after a smaller disruption, e.g. short
power outage, a system immediately starts recovering, without the need of reaching a dis-
rupted steady-state. Also, in some cases, survivability can be considered as part of
response, while in others, response can become part of recovery phase.

Mitigation represents enhancing infrastructure, particularly the vulnerable one, with
new links and nodes to improve the ability to resist the disruption.

Preparedness is considered when mitigation is too costly, and certain disruption
effects are expected to occur. For example, planning response actions in advance can
be assumed as part of preparedness strategies.

Literature review methodology

To give a comprehensive overview, we started with systematically searching for papers that
focus on resilience of railway transport systems (vanWee & Banister, 2016). Database search
was conductedon twowell-knowndatabasesWebof Science andScopus. Keywords such as
“resilien*”, “rail*” and “transport*” were searched in title, abstract and keywords and the
scope was restricted to academic papers in English, including journal papers and confer-
ence proceedings from 2008 to 2019, as no resilience papers occur before 2008.

In the first step, terms “resilien*”, “rail*” and “transport*” or “network”were searched for.
In the second step, we manually checked titles, keywords and abstracts and refined the
selection by removing all non-resilience and non-rail papers. In the third step, papers that
refer to resilience of single railway elements were removed, such as train switches, or
vehicles, as we aimed to network/system resilience in this review paper. In the fourth
step, the related papers were searched following a forward snowball effect, by exploring
references and citations of already selected papers. In the fifth step, papers including
terms such as “vulnerability” or “disruption management” were also included to cover all
building blocks of railway resilience. Finally, a final refinement was made based on full
texts and sorting of all papers based on full texts. After all steps, we reviewed 59 papers.

Distribution of papers per years and scientific journals

Table 2 gives the distribution of papers regarding the year of publication. It can see a clear
ascending trend which follows an increasing number of disruptions seen in Figure 1 and
clarifies that research on resilience in railways becomes increasingly important.

Table 3 shows the distribution of papers among scientific journals. Majority of papers
have been published in transport-related journals, such as Transportation Research Part
B: Methodological, Transportation, Transportation Research Part E: Logistics and Transpor-
tation Review and Transportation Science. The resilience in railway transport has been
additionally addressed in journals with the scope of safety and security, reliability and sus-
tainability such as Reliability Engineering and System Safety, Safety Science, International
Journal of Critical Infrastructure Protection, and Growth and Change.
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Classification of resilience papers

Existing resilience methodologies can be classified as qualitative and quantitative. The
former typically consider developing conceptual frameworks and determining best prac-
tices without quantitative evaluations (e.g. Armstrong, Preston, & Hood, 2017; Siegel &
Schraagen, 2017). Qualitative research on resilience focuses on individual human
aspects such as workload, stress (Lo, Sehić, & Meijer, 2017), and organizational aspects
such as team interaction and learning from experience (Siegel & Schraagen, 2017). The
focus of this review paper is on quantitative methods of railway transport networks.
Within quantitative methodologies, it can be further distinguished between two classifi-
cations based on metrics and approaches used. Table 4 gives an overview of the reviewed
papers classified based on metrics and approach and states some examples. In addition,
the application of resilience assessment can be distinguished between network-wide
and scenario-specific. Network-wide studies consider assessment of the system over all
disruption scenarios or a set of the most relevant ones. Scenario-specific approaches
deal with assessing resilience against a specific disruption scenario.

Measuring resilience

In this section, we review metrics for evaluating resilience (one or more of its aspects) of
railway transport systems. Resilience metrics are divided in two categories: topological and
system-based.

Table 2. Distribution of papers per year of publication.
Year References

2008 1
2009 3
2010 2
2011 2
2012 3
2014 5
2015 5
2016 9
2017 8
2018 12
2019* 9
Total 59

*until August 2019.

Table 3. Distribution of papers per journals.
Journal title References

Transportation Research Part B: Methodological 6
Transportation 3
Transportation Science 3
Transportation Research Part E: Logistics and Transportation Review 3
Journal of Rail Transport Planning and Management 2
Physica A: Statistical Mechanics and its Applications 2
Journal of Transport Geography 2
Transportation Research Record 2
Others (with one publication) 36
Total 59
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Topological metrics originate in complex network theory. The most common way has
been to look into the topological structure of the network and assess its structural (static)
characteristics assuming a failure of single component in the disrupted network while
ignoring dynamic features of the system. Typically, well-known network-based metrics
were used to interpret resilience such as size of a giant component, average shortest
paths, betweeness centrality and connectivity (Mattsson & Jenelius, 2015; Zhou et al.,
2019). Topological metrics were mostly static measures independent of services using
the network (Cats & Jenelius, 2014). Wang et al. (2017) used a number of metrics empha-
sising on alternative paths as well as on the length of the paths. Lam and Tai (2012) defined
resilience of a node in the infrastructure network as the weighted sum of all the reliable
independent paths of all the nodes in the network. Adjetey-Bahun et al. (2016) used
time-varying graphs to integrate time dependency of the system, and thus, betweenness
centrality and average shortest path on dynamic graph.

Table 4. Classification of the papers in resilience in railway transport systems.
Metric Approach References Examples

Topological Topological Derrible and Kennedy (2010a, 2010b), D’Lima and
Medda (2015)
Adjetey-Bahun et al. (2016), Wang et al. (2017),
Saadat et al. (2018), Zhang et al. (2018),
Candelieri, Galuzzi, Giordani, and Archetti (2019)

. Network-wide assessment of 30
metro networks around the world

. Recovery from a short disruption
in London Underground

System-
based

Data-driven Dawson et al. (2016), Ferranti et al. (2016), Zhu
et al. (2016);
Chan and Schofer (2016), Zhu, Xie, Ozbay, Zuo,
and Yang (2017), Janić (2018), Mudigonda,
Ozbay, and Bartin (2019), Diab and Shalaby
(2019), Chen and Wang (2019)

. Impacts of hurricane Sandy on
New York metro

. Effects of an earthquake on high-
speed railways in Japan

Topological Dorbritz (2011), Rodríguez-Núñez and García-
Palomares (2014)

. Assessment of failures in the Swiss
railway network

Simulation Cats and Jenelius (2014), Adjetey-Bahun, Birregah,
Châtelet, Planchet, and Laurens-Fonseca (2014),
Hong, Ouyang, Peeta, He, and Yan (2015),
Jenelius and Cats (2015), Zilko, Kurowicka, and
Goverde (2016), Zhu and Goverde (2017), Yap,
van Oort, van Nes, and van Arem (2018),
Meesit, Andrews, and Remenyte-Prescott (2019)

. Estimation of disruptions costs at
Stockholm metro railway

. Effects of future floodings on
Chinese high-speed railways

Optimization Peterson and Church (2008), Babick (2009),
Jespersen-Groth, Potthoff, Clausen, Huisman,
and Kroon (2009), Hirai, Kunimatsu, Tomii,
Kondou, and Takaba (2009), Meng and Zhou
(2011), Fiondella, Rahman, Lownes, and
Basavaraj (2016), Chen and Miller-Hooks (2012);
Gedik, Medal, Rainwater, Pohl, and Mason
(2014), Jin, Tang, Sun, and Lee (2014), Khaled
et al. (2015), Azad, Hassini, and Verma (2016),
Veelenturf, Kidd, Cacchiani, Kroon, and Toth
(2016), Van Der Hurk, Koutsopoulos, Wilson,
Kroon, and Maróti (2016), Ghaemi, Cats, and
Goverde (2017), Whitman, Barker, Johansson,
and Darayi (2017), Van Aken et al. (2017a), Van
Aken, Bešinović, and Goverde (2017b), Bababeik
et al. (2017), Bababeik, Khademi, and Chen
(2018), van Lieshout, Bouman, and Huisman
(2018), Ghaemi et al. (2018), Bešinović, van Aken,
Looij, and Goverde (2018), Gu et al. (2017), Zhu
and Goverde (2019), Liu, Zhu, Bešinović,
Goverde, and Xu (2019), Bešinović et al. (2019),
Szymula and Bešinović (2019), Meesit and
Andrews (2019)

. Network-wide analysis of the US
freight railway network

. Allocate rescue trains for severe
disruptions in the Iranian railway
network

. Passenger-centered recovery in
the Dutch railway network/
Shanghai metro

. Designing alternative timetables
for planned disruptions

. Scheduling bus replacement
services for urban railways in
Boston (US)/Liverpool (UK)
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System-based metrics have been gaining more attention, as they overcome the limit-
ation of the graph methods and represent the demand and supply of the system as well as
responses to the disruption and recovery from it.

In freight railway systems, the total generalized cost has been often used and it includes
costs of rerouting and delay trains, resending of goods due to a disruption (Khaled et al.,
2015) and maximizing throughput in a freight network (Chen & Miller-Hooks, 2012). Also, it
can include the cost of transporting rerouting railcars, cost of itineraries using the dis-
rupted service legs, repair scenarios, fixed cost of providing different train services, cost
of repairing the disrupted service legs (Azad et al., 2016).

In passenger railway networks, performance has been evaluated based on train services
adaptations and/or passenger discomfort/changes. Focusing on railway supply side, studies
measured remaining transport capacity and cancelled and long-delayed transport services
imposed on rail operators and passengers (Hirai et al., 2009; Janić, 2015), transport recovery
in number of days, change in travel time (Mudigonda et al., 2019). Some studies quantified
resilience by the summed yearly disruption duration of railway track segments (Zhu &
Goverde, 2017; Yap et al., 2018) and similarly, by determining frequency and duration of dis-
ruptions per km, season, track type (Diab & Shalaby, 2019).

On demand side, more common system performance metrices capturing passenger
behaviour were the number of passengers that reach their destination and the total
delay of passengers after a serious perturbation (Adjetey-Bahun et al., 2014) which were
occasionally followed by rerouting passengers through the remaining operating part of
the network (Szymula & Bešinović, 2019). Additionally, some researchers considered a
total welfare cost including passengers’ dynamic travel choices, stochastic traffic con-
ditions and rail operations. Jenelius and Cats (2015) proposed value of robustness,
defined as the change in welfare during disruption compared to the baseline network,
and the value of redundancy, defined as the change in welfare losses due to disruption.
Lu (2018) used OD-based importance-impedance network degradation as weights of
the graph by using the betweenness centrality of nodes, and geographical distances in
the network, while omitting train operations.

Focussing on missed opportunity to serve customers during disruptions, several studies
measured economic-related losts based on Revenue Vehicle Miles (RVM), i.e. ability to
move people over distance, which depends on available rolling stock, tracks, personnel,
energy (Chan & Schofer, 2016); turnstile ridership (Zhu et al., 2016, 2017) and compromised
accessibility and consequent prevention of passenger trips and their contribution to the
Gross Domestic Product (Janić, 2015).

Approaches for quantifying resilience

In this section, we review methods to estimate resilience of railway transport systems.
Based on the classification in Table 4, the approaches can be categorized as data-
driven, topological, simulation and optimization.

Data-driven approach

Data-driven methods have directly looked into recorded historical data which can reflect
the change of system performance in different scenarios to assess the system’s property,
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instead of modelling the inherent mechanisms of the system. In addition, statistical
methods (e.g. descriptive statistics and statistical models) may have been used to process
the data before used as performance indicators. With the advancement of data acquisition
and storage, data-driven methods have become popular in different areas and typically
used for assessing ex-post effects of occurred disruptions. Most commonly used data are
historical traffic realization data, passenger ridership data and weather-related data.

So far, researchers mostly focused on scenario-specific studies and looked into weather-
related disruptions and disasters in railway networks such as earthquakes (Janić, 2018),
hurricanes (Chan & Schofer, 2016; Mudigonda et al., 2019; Zhu et al., 2016, 2017), snow-
and rainfalls (Chan & Schofer, 2016; Chen & Wang, 2019; Diab & Shalaby, 2019) and
climate change events like sea-level rise (Dawson et al., 2016) and heat-related failures
(Ferranti et al., 2016). Studies often estimate temporal and spatial distribution of disrup-
tions (Chen & Wang, 2019; Ferranti et al., 2016) and also the spatiotemporal variations
of system recovery behaviour (Zhu et al., 2016, 2017).

Janić (2018) proposed models for assessing the resilience of a given rail network, i.e.
before, during and after the impacts of disruptive events, and estimating the indicators
of particular performances as the figures-of-merit for assessing the network’s resilience.
Zhu et al. (2016, 2017) used millions of individual ridership records per month to
analyse resilience of subway trips for hurricanes Sandy and Irene and estimate resilience
curves for each evacuation zone category to model time-dependent recovery patterns
of the roadway and subway systems. Diab and Shalaby (2019) studied the impact of
outdoor track segments of the metro system and weather conditions on the number of
service disruptions and the magnitude of resulting delays. They indicated that outdoor
tracks are up to four times more vulnerable to disruption, independently of season.
Dawson et al. (2016) assessed the impacts of sea-level rise on the functioning of the
part on the London to Penzance railway line. They identified a relationship between
sea-level change and rail disruptions, and afterwards, used a model-based sea-level pre-
dictions to estimate this relationship into the future. They found that by 2100 (in a high
sea-level rise scenario), the line may experience and increase to as many as 84–120
days (by up to 1170%) with line restrictions per year. Ferranti et al. (2016) analysed
heat-related resilience of railway assets and proposed the concept of “failure harvesting”,
i.e. that once failures have been harvested, and the failed equipment replaced, the infra-
structure system within that particular region become resilient for the remainder of the
year at that particular temperature.

Topological approach

The topological approaches have used the metrics developed in complex network theory
which are based on graph properties and most often perform network-wide assessments.
They are then applied on different graph representations, mainly modelling either the
infrastructure or the service network (see Mattsson & Jenelius, 2015). Typically, topological
approaches for assessing resilience of railway networks follow the given procedure. For a
given transport network, links are being removed either randomly or following a certain
strategy. While doing so, the evolution of the metrics is tracked and the resilience is ana-
lysed. This represents an approach of complete enumeration and thus, leads to determin-
ing the critical elements in the network. The majority of studies considered a single link/
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node at the time. Also, topological approaches have most often been applied on metro
networks with the exception of Dorbritz (2011). Wang et al. (2017) quantified vulnerability
of 30 metro networks around the world.

Topological approaches have mostly used to estimate vulnerability aspect of networks
(Derrible & Kennedy, 2010a, 2010b; Dorbritz, 2011; Mattsson & Jenelius, 2015). It has been
shown that that railway transport networks share the topological features of so-called
scale-free networks. It means they are robust against the failure and removal of randomly
chosen network elements. Simultaneously, they are highly sensitive towards tailored fail-
ures of specific important network elements (Derrible & Kennedy, 2010a, 2010b; Dorbritz,
2011). In particular, Derrible and Kennedy (2010a, 2010b) suggested that the vulnerability
of subway systems corresponds to the number of cyclic paths available in the network,
representing the possibility to use alternative routes under disruption. Dorbritz (2011)
also generated alternative paths and assesses several metrics such as the number of
additional track kilometres used or the number of vehicles needed for operating all lines.

To incorporate dynamic properties of the system, time-varying graphs were used to
integrate time dynamic dependency into resilience metrics (Adjetey-Bahun et al., 2016)
and evaluate the effects of disruption duration (Lu, 2018). Adjetey-Bahun et al. (2016)
and Lu (2018) compared static and dynamic metrics and concluded that in normal
traffic conditions in the network both resulting performances are quite the same. When
a disruption occurs, interdependencies and passenger flows in the network make the
static indicator less efficient and stress the importance of taking time dimension, i.e. recov-
ery strategies into consideration. In addition, when operational aspects were considered,
the importance of some edges and nodes may be changed such that some stations
become important for operations that are not necessarily also important for the infrastruc-
tural network and vice versa (Adjetey-Bahun et al., 2016; Dorbritz, 2011).

Alternative applications could be found such as using a mean-reverting stochastic
model to quantify system response to disruptive shocks (D’Lima & Medda, 2015) and
using trip assignment model focusing on increased passenger travel time and unsatisfied
passenger demand. In cases when multiple elements in the network are disrupted, best
recovery strategies under minimal costs could be determined (Saadat et al., 2018;
Zhang et al., 2018).

Simulation approach

Simulationmodels have usually used similar metrics as in the topological approach but also
system/performance indicators (e.g. delay, passenger loads) to evaluate the network per-
formance in a stochastic environment. Most commonly, simulation described the resilience
evaluation based on theoretical and/or real-life disruption distributions and modelling the
network impacts and reactions accordingly. Such methods were used e.g. for identifying
link vulnerability from a passenger perspective (Yap et al., 2018), evaluating network per-
formance using a discrete event simulation (Meesit et al., 2019) and assessing the
supply–demand interactions in a dynamic stochastic setting given a certain disruption scen-
arios (Adjetey-Bahun et al., 2014; Cats & Jenelius, 2014). In addition, Cats and Jenelius (2014)
estimated the value of real-time information provision (via displays at all stops) for reducing
disruption impacts. While being able to catch the dynamic effects of a disruption in a better
way, these approaches tend to suffer from the exponential growth of possible combinations
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when multi-component failures were considered. To overcome this, heuristics such as pre-
selection of promising candidate-sets or the evaluation of pre-defined scenarios were
applied (Cats & Jenelius, 2014; Yap et al., 2018). In addition, simulations were also used
for assessing the value of new links for public transport network vulnerability (Jenelius &
Cats, 2015).

Some studies applied amulti-stepmethodology to estimate vulnerability andmitigation
strategies against possible disruptions such as floods (Hong et al., 2015) and infrastructure
failures (Zhu & Goverde, 2017). The steps were as follows. First, disruption scenarios were
generated based on historical statistics and then used to estimate link disruption probabil-
ities. These are then used in a Monte Carlo simulation to calculate the average number of
interrupted trains and time period. Finally, evaluated is the effectiveness of alternative strat-
egies in selecting links for maintenance to reduce their disruption probabilities.

Optimization approach

For assessing resilience of railway transport networks, mathematical optimisation models
have also been used. In addition, a significant amount of work has been performed both
using both network-wide and scenario-specific approaches.

Network-wide optimization approaches have focused on quantifying or improving
network resilience. Studies on quantifying resiliencemost commonly focused on determin-
ing themost critical network elements (Chen &Miller-Hooks, 2012; Gedik et al., 2014; Khaled
et al., 2015; Peterson&Church, 2008; Szymula & Bešinović, 2019;Whitman et al., 2017).While
doing so, the majority of these papers addressed a single resilience aspect being vulner-
ability, while Chen and Miller-Hooks (2012) emphasises recovery.

Different models could be found to model the railway network, services and disruptions
within. Peterson and Church (2008), Whitman et al. (2017) used a Multi Commodity Flow
(MCF) model to asses a freight railway network before and after the removal of single links
to assess network resilience (i.e. vulnerability) regarding link capacities. Gedik et al. (2014)
introduced an the interdiction model and used a dynamic network formulation consider-
ing capacity restrictions and congestion. Szymula and Bešinović (2019) proposed a model
which combines arc- and path-based formuation to determine the links which cause the
most adverse consequences to passengers and trains. Chen and Miller-Hooks (2012) pro-
posed a stochastic mixed-integer programme for quantifying network resilience and iden-
tifying an optimal post-event actions to take.

Research on improving network-wide resilience of railway systems has been limited, e.g.
Babick (2009), Fiondella et al. (2016), Azad et al. (2016), Bababeik et al. (2017). In order to
improve network resilience, several alternative improvement strategies, representing pre-
paredness and mitigation, have been considered such as network modifications (Babick,
2009), identifying an effective allocation of defence resources (Bababeik et al., 2017;
Babick, 2009; Fiondella et al., 2016) and alternative train services (Azad et al., 2016).

Babick (2009) developed a three-level defender-attacker-operator framework to model
mutual attacks on multiple links and defence reactions of a fictitious attacker and defender
of the network. In particular, he used a modified MCF model to allocate security resources,
and a Network Design Problem (NDP) approach to model network modifications. Fiondella
et al. (2016) combined optimization and game theory to introduce a dynamic multiperio-
dic problem of allocation of finite defence resources to the infrastructure links of the
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incremental high-speed rail network, i.e. during network construction period. Bababeik et
al. (2018) proposed a bi-level optimization model to allocate relief trains (RT) against
severe disruptions in a sparse railway network that would maximize cooperative coverage
of link exposure by RT stations and minimize total travel time from RT stations to all com-
ponents in the network. Azad et al. (2016) aimed to meet the demand in freight railway
networks by both recovering from disruptions, and mitigating against the most critical dis-
ruptions. The mitigation strategies applied were to create new itineraries by renting tracks
owned by competing railroad operators.

Frequently, an additional outcome of network-wide optimization models has been a set
of alternative train services during disruptions, i.e. an alternative timetable which includes
rerouting and rescheduling of trains (Chen & Miller-Hooks, 2012; Khaled et al., 2015), pas-
sengers (Szymula & Bešinović, 2019), re-sending goods from the origin nodes, and using
third party train services (Azad et al., 2016). In addition, Szymula and Bešinović (2019) con-
sidered cancelling trains in dense passenger networks, while Azad et al. (2016) detemined
repairing the disrupted rail segments.

Network-wide optimization models most often tackled one aspect of resilience, mainly
vulnerability and recovery, while several papers considered multiple aspects, e.g. recovery
and preparedness (Azad et al., 2016), and mitigation and recovery (Babick, 2009). Also,
network-wide models typically evaluated the reduced system performance against
single link or node disruption, with an exception of Babick (2009), Gedik et al. (2014)
and Szymula and Bešinović (2019) which focused on multiple simultaneous disruptions.
Also, freight railway networks gained more attention, while passenger networks were
addressed more recently, e.g. Szymula and Bešinović (2019). This could be explained
with the fact that most of the authors researching railway resilience are US-based
where freight transport dominates passenger. For solving optimization models, research-
ers often appllied hybrid approaches which combined e.g. augmented e-constraint and
fuzzy logic (Bababeik et al., 2017), or column generation and row generation with
mixed-integer linear programming (Szymula & Bešinović, 2019) and metaheuristic
approaches such as genetic algorithms (Fiondella et al., 2016).

Scenario-specific optimization approaches typically focused on generating optimal
rescheduling traffic actions for a given disruption scenario, consisting of single or multiple
disrutions, to minimize the impact on trains and/or passengers in terms of delays and/or
cancellations. These scenario-specific studies are also known in the literature as disruption
management. The most common rescheduling actions during disruptions have been
retiming, reordering, short-turning and cancelling, and also stop-skipping and additional
stopping can be found.

Scenario-specific studies most often covered multiple aspects of resilience being survi-
vability, response and recovery, i.e. they considered rescheduling actions from a disruption
start to returning to the original state again (Ghaemi et al., 2017; Liu et al., 2019; Veelenturf
et al., 2016; Zhu & Goverde, 2019;). Alternatively, some research focused exclusively on
recovery, i.e. to determine the best reinsertion strategies for cancelled services into the
network after a disruption finished (Jespersen-Groth et al., 2009), survivability, i.e. to
find the best stop locations for trains that are cancelled due to a disruption (Hirai et al.,
2009) and response in out-of-control situations, i.e. to develop a new line plan to
operate in an isolated disrupted area (van Lieshout et al., 2018). Majority of papers
addressed adjustments in railway lines and network, while Ghaemi et al. (2017) tackled
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rescheduling and rerouting trains in complex stations focusing on short-turning services.
To guarantee providing feasible adjusted timetables, optimization models may need to
incoroprate train circulations (Liu et al., 2019; Zhu & Goverde, 2019).

Understanding the impact of rescheduling decisions on passengers is of great impor-
tance, particularly in dense railway passenger networks like Switzerland and theNetherlands
as well as busymetro lines like Beijing, London, New York City and Tokyo. Therefore, passen-
ger assignment modelling has been used to estimate individual time-dependent passenger
demand (Zhu & Goverde, 2019). Furthermore, to overcome passenger overcrowding in
metro lines, an integrated disruption management has been considered to control both
train services and passenger flows, i.e. passenger overcrowding in stations by controlling
and limiting the inflow of passengers at station gates (Bešinović et al., 2019).

During planned maintenance, i.e. construction and maintenance work on railway tracks,
infrastructure becomes unavailable and thus, planned timetables cannot operate uninter-
ruptedly. To respond optimally to these planned disruptions, passenger railway services
needed to be adjusted while minimizing delays, cancellations and short-turnings (Van
Aken et al., 2017a, 2017b). In addition, simultaneously adjusting network scheduling and
train routing in stations can generate operationally feasible solutions (Bešinović et al.,
2018). Such precomputed alternative services represent so-called contingency plans
which can be applied as a response strategy as soon as a specific disruption happens. In
addition, in order to minimize the impact of a disruption, several studies suggested inte-
gration of bus services as substitutes to railway services during planned disruptions
(Meesit & Andrews, 2019), and also unplanned disruptions (Gu et al., 2017; Jin et al.,
2014; Van Der Hurk et al., 2016).

Majority of scenario-specific optimizationpapers focusedonpassenger railway andmetro
networks; whilemost of the authors are Europe and China-based. Typically, scenario-specific
optimization approaches were modelled based on event-activity networks where events
represent arrivals anddepartures, andactivities represent running, dwelling, turning, transfer
times (e.g. Ghaemi et al., 2018; Veelenturf et al., 2016; Zhu & Goverde, 2019).

Most of the current optimization models work with a given and certain information
about disruption length. However, in reality, disruption length may be highly uncertain
and it is difficult to tell exactly how long a disruption will last. Meng and Zhou (2011) incor-
porated uncertainty of the disruption duration in probabilistic disruption scenarios. Differ-
ently, Zilko et al. (2016) proposed the Copula Bayesian Network method to predict a
disruption length. The impact of these railway disruption predictions and the correspond-
ing train rescheduling on passenger delays has been estimated in Ghaemi et al. (2018).

Discussion

Resilience metrics

Using topological metrics, resilience has been assessed by analysing the structure of the
systems graph model assuming a failure of a (single) component in the disrupted
network and most often disregarding dynamic effects on the performance within the
system. The system-based metrics have been capable of capturing operations dynamics
the corresponding impacts/consequences such as the duration of disruptions, the
number of affected trains and the number of affected passengers.
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Therefore, system-based metrics are more appropriate to quantify resilience of railway
transport systems, while topological ones would be suitable for quantifying the general
network characteristics of a well-performing network. In general, researchers should
strive to understand the negative effects on passengers (e.g. Ghaemi et al., 2018; Zhu &
Goverde, 2019), freight (e.g. Azad et al., 2016; Khaled et al., 2015) and an overall impact
on society (e.g. Jenelius & Cats, 2015).

Resilience approaches

Here we discuss the usability of topological, simulation, optimization and data-driven
approaches.

Topological approaches have themain advantage that they require a limited amount of
data. Themethodology is built up to amathematically solid theory. Typically, a railway trans-
port network was presented as a graphwith stations as nodes, and tracks inbetween as uni-
directional links. Resilience was analysed by removing single links successively either
randomly or following a certain strategy, and while doing so, re-calculating and tracking
the evolution of the metric(s). This follows the approach of complete enumeration. This
methodology based on topological approaches is suitable for real-life applications due to
limited data needed and easy-to-use mathematical resilience indicators which allows com-
parisons of different railway network structures in short time. One of the disadvantages of
topological approaches is, when removingmultiple elements this method suffers from pro-
hibitively high computation times due to the exponential growth of combinations with the
increasing number of elements (Wang et al., 2016). Another disadvantage is that topological
approaches are not capable of capturing operations dynamics and fail to realistically repli-
cate the behaviour of the system caused by disruption. Overall, topological approaches can
be very useful to describe general characteristics and indicate various conceptual weak-
nesses of the transport systems, they are still not very helpful for assessing operations
and resilience actions of railway transport systems.

Simulation approaches have overcome the second disadvantage of topological; it
models accurately train services and consequently passenger adaptations during a disrup-
tion. Simulations commonly model system behaviour, but tend not to apply optimal traffic
recovery measures. In general, due to the high-complexity of detailed simulations, it is
impractical and time-consuming to use such approaches for complete enumeration of
all disruptions for larger railway networks. Instead, these can be suitable to obtain great
details for single (or a limited number of) disruptions.

Optimization approaches represent a valuable alternative to overcome both the
dynamics and combinatorial challenges of topological and simulation approaches.
Current simulation and topological approaches most often dealt with single link or
node disruptions. For tackling combinatorial complexity rising from multiple simultaneous
disruptions, i.e. a combination of disrupted elements, optimization approaches become
worthwhile considering due to their capability to determine extreme scenarios without
the complete enumeration of all other scenarios.

More comprehensive optimization models have included multiple resilience aspects
and typically solved one particular disruption scenario, but did not assess the network resi-
lience over all possible (or most critical) disruptions. Passengers behaviour has become
increasingly important and thus, it was introduced in modelling, particularly in dense
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railway and metro networks. Also, studying optimal planning of substitute services for dis-
rupted railway systems has been on the rise. Survivability, i.e. a graceful degradation of a
system, has rarely been tackled in literature explicitly.

Optimization models can address challenging tasks of capturing system dynamics such
as multiple disruptions (e.g. Babick, 2009), optimal train recovery strategies (e.g. Gedik
et al., 2014) and passenger behaviour (Szymula & Bešinović, 2019; Zhu & Goverde,
2019). Therefore, optimization seems particularly useful to target more complex problems
and therefore, gains more attention towards resilient railway systems. In addition, optimiz-
ing real-time information provided to passengers could alleviate congestions and further
improve system performance during disruptions. This may become more relevant with
innovative communication means becoming available such as “location aware” and “des-
tination aware” information services (Brakewood & Watkins, 2019).

Data-drivenapproacheshaveprovidedanalternative to all othermodel-basedapproaches
and provided very detailed insights on resilience without modelling the system explicitly. For
example, counted passenger ridership or total vehicle kilometres run can be good indicators
whether the system is performing as planned or not. Therefore, these approaches could be
used efficiently with limited preceding modelling effort to assess (for now) ex-post network
resilience performance. The only down side is that such approaches fully rely on available
good-quality and sufficient amount of historical realization data.

Overall, to accurately assess resilience of railway systems, methodological approaches
shall consider specific characteristics of railways such as operations (train routes, stopping
patterns, timetables) and transport demand (passenger and/or freight) together with infra-
structure network topolgy. Combining all elements will be crucial for addressing proactive
and reactive aspects of future resilient railway systems.

Future research directions

Based on the literature review presented in this paper, a few upcoming research directions
relevant to the academic and professional community dealing with resilience have been
identified as follows.

Learning from historical data

Most of the current papers have accepted the known duration of disruptions. It would be
worth investing in better structuring, documenting and storing disruption-related data
(Zilko et al., 2016), as well as analysing it using Artificial Intelligence applications, e.g.
natural language processing, to extract information from current disruption reports
(Chen & Wang, 2019). This would allow researchers to investigate nature and probability
of occurrences, as well as potentially predict future disruptions.

Considering interdependency of critical systems

Interdependency of critical systems such as water, telecommunication and transport
should be further supported by multidisciplinary approaches for assessing interdependent
resilience. To this purpose, we could expect to combine data sources (i.e. traffic, passenger,
weather, seismologic) and mathematical models (i.e. to simulate traffic, earthquakes,
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floods, blizzards). This would lead to developing multidisciplinary assessment methods
and early warning systems for predicting disruptions and disasters.

Dealing with multiple simultaneous disruptions

In practice, multiple links tend to become disrupted simultaneously either due to intrinsic
element failures or adverse weather implications, such as floods and storms. Therefore, it is
important to build resilience for such cases, that determine strategies to recover frommul-
tiple disruptions as well to resist/prepare/respond to multiple disruptions. For that, optim-
ization models become necessary due to combinatorial complexity due to a combination
of critical elements on one side, and alternative operations strategies, particularly in dense
and crowded railway networks on the other side.

Incorporating resilience in planning

Most of the reviewed papers have focused on recovery from a disruption or assessing resi-
lience of an existing railway system. More importance of improving railway planning is
required towards developing services that are more resilient and flexible to future disrup-
tions. In addition, more comprehensive models for network-wide resilience are still
needed, survivability is yet to gain more attention as well as investigating resilience trade-
offs between vulnerability and recovery, mitigation and preparedness, and response/recov-
ery and normal services.

Considering climate changes

Weather-related disruptions are assumed to increase due to the increasing impacts of
climate change (Dawson et al., 2016) and their consequences may be more substantive
lasting from multiple days to weeks. Therefore, weather-related research should gain
more attention in the future. We shall investigate infrastructure adaptations and improve-
ments, and also, allocating rescue teams and evacuation strategies. While doing so, the
resilience metrics shall be suitable to quantify the overall impacts on transport demand.

Integrating demand-centered and community resilience

Resilience research more has commonly focused on assessing and optimizing usage of
resources, and rather limited research was demand-centered. While doing so, demand
behaviour has been usually considered as uniform, expecting that everyone behaves
the same. In addition, during disruptions and disasters people may react differently to resi-
lience strategies considered. Vodopivec and Miller-Hooks (2019) represents one of the first
attempts in this direction. Thus, more research on demand-centered and community resi-
lience shall be considered in the future.

Conclusions

This paper provided taxonomy and reviewed the approaches on resilient railway trans-
port. The main contributions of the paper are the following. First, a comprehensive
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definition of resilience was defined incorporating aspects of vulnerability, survivability,
response, recovery, mitigation and preparedness. Second, resilience metrics were
classified to topological and system-based. Third, resilience approaches were classified
as data-driven, topological, simulation and optimization. This review paper is useful for
junior and senior researchers as well as practitioners and it is suitable for further
research in railway systems, as well as similar systems such as public transport and
air transport.

It has been concluded that, to obtain more accurate resilience assessment, system-
based metrics are required to capture effects on transport services and transport
demand. In particular, demand-centered resilience metrics shall be needed to precisely
capture impacts on users of transport systems. Meanwhile, topological measures are
more straight-forward to apply as they need less data, but also tend to provide limited
information about the system.

Mathematical optimization tends to be the most suitable for determining e.g. the most
critical combinations of critical links, and optimal response/recovery strategies due to its
ability to tackle an increased combinatorial complexity of resilience-related challenges.
In addition, with rising available historical data, data-driven approaches could become
more widely used for ex-post analysis of past disruptions without explicitly modelling
the system allowing quick assessments. Lastly, topological and simulation approaches
could find its use for quick evaluations of certain disruption scenarios, typically including
single failures. Simulations can provide relevant in-depth insights in system behaviour,
however, they may be too time consuming.

Considering still a rather limited research in railway resilience, each aspect of resili-
ence requires further investigation. Firstly, the focus shall be on operational changes
that can be made in short-term and with limited costs such as investigating traffic
adjustments to respond and recover quickly and effectively from both single and mul-
tiple disruptions. Secondly, research shall then address designing railway operations
that are also prepared, i.e. intrinsically flexible and easily adaptable, for future disrup-
tions. Thirdly, with an expected increasing impact of climate changes in the coming
decades, long-term investments need to be tackled, and therefore, attention shall be
put towards methods for improving railway infrastructure networks. Fourthly, develop-
ing multidisciplinary prediction models (disruption duration, rain/snow expectation,
flooding, etc.) shall be addressed in parallel with the other research since better predic-
tions would further contribute to extended accuracy of all future resilience-related
studies.

In summary, resilience is becoming more and more important with increased needs for
transport and future mobility on one side and climate changes on the other. It also gains
more attention in popular literature and general public. Approaches for resilience assess-
ment and planning in railways are still relatively unexplored. It is to expect an increase of
new methodologies, in particular, optimization and data-driven approaches as well as
combined approaches to address resilience of railway transport systems.

Note

1. www.rijdenoptreinen.nl, accessed on 19.08.2019.
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