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ABSTRACT
In the last decade, association mapping (AM) has become a well-established method to detect
genes and quantitative trait loci (QTLs) associated with agronomically important traits. The
identification of a large number of single nucleotide polymorphisms (SNPs) from genome
sequencing and concurrent development of high-throughput genotyping platforms has led to
AM being widely used for a range of crops. These technologies have been used in rice (Oryza
sativa) to explore the abundant diversity and there is enormous potential to identify novel QTLs
for traits of interest. Due to the availability of cost-effective high-throughput SNP genotyping
methods and rapid developments in rice genomics, it is inevitable that these AM approaches will
become more popular in the future, especially in the context of genome-wide association studies
(GWASs). In this paper, we review the fundamental concepts, critical considerations and limita-
tions of AM focusing on rice, and reiterate the importance of accurate phenotypic data. We also
include a section about connecting GWAS to molecular breeding, covering practical considera-
tion for breeders, which is required to use GWAS results in actual rice molecular breeding
programs and which has not received adequate attention in the scientific literature.

ARTICLE HISTORY
Received 23 August 2017
Revised 30 April 2018
Accepted 19 May 2018

KEYWORDS
Biparental QTL mapping
(BPQM); association
mapping (AM);
genome-wide association
study (GWAS); linkage
disequilibrium (LD); precision
phenotyping; marker-assisted
selection (MAS)

Introduction

The development of quantitative trait loci (QTL) map-
ping methods to identify genes or QTLs controlling
quantitative traits was a landmark achievement in plant
genetics research in the late 1980s (Doerge, 2002; Mohan
et al., 1997; Semagn, Bjornstad, & Xu, 2010). Since then
literally thousands of research papers have reported the
identification of genes or QTLs for important traits across
a diverse range of plant species. This wealth of genetic
information was built on the foundation of decades of
research in crop molecular genetics and genomics.

The selection and enrichment of QTLs within breeding
material was the inevitable next step fromQTL discovery to
application, and there have been numerous reports of
successful tracking of genes and QTLs within breeding
programs. DNA (or molecular) markers have enabled selec-
tion of major genes or QTLs for critical or important traits in
a process called marker-assisted selection (MAS), which has
revolutionized plant breeding. DNA markers are used as
tools by breeders to improve the accuracy or efficiency of
selection (Dwivedi et al., 2007; Xu & Crouch, 2008) as well
cost and time efficiency. Apart from MAS, DNA markers

have numerous applications including DNA fingerprinting,
genetic diversity analysis and parental characterization
(Collard &Mackill, 2008). Despite the availability of informa-
tion, the extent of actual product development using MAS
in rice breeding is limited to a fewmajor QTLs for biotic and
abiotic stress tolerance (Gregorio, Islam, Vergara, &
Thirumeni, 2013; Singh et al. 2015b).

Recent developments in genotyping platforms and
systems to implement molecular breeding schemes offer
new tools for modern rice breeders (Thomson, 2014).
Single nucleotide polymorphism (SNP) markers are bialle-
lic, co-dominant markers which are abundant in the gen-
ome (Mammadov, Aggarwal, Buyyarapu, & Kumpatla,
2012). Insertion-deletion (Indel) markers are also prevalent
and can be screened using high-throughput genotyping
platforms (Misra et al., 2017; Yonemaru et al., 2015). These
platforms are cost-efficient, can handle large sample sizes
and provide fast data turn-around time. The availability of
genome sequences and genomic resources continues to
provide a wealth of SNP and Indel markers which will
undoubtedly be the marker type of choice for decades
to come (McCouch et al., 2010).
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Rice was the first crop genome to be sequenced (Goff
et al., 2002; Yu et al., 2002; (International Rice Genome
Sequencing Project, 2005), and is uniquely poised as a
major food crop and amodel crop species, with abundant
genetic diversity and publicly available genomic and phe-
notypic resources. Genomics resources include several de
novo genome builds, thousands of re-sequenced gen-
omes, numerous SNP resources and validated high-
throughput SNP genotyping platforms. Developments in
next-generation sequencing technologies have led to a
wealth of genome sequence data that was not conceiva-
ble only a few years ago (Edwards, Batley, & Snowdon,
2013; Van, Rastogi, Kim, & Lee, 2013; Varshney & Dubey,
2009). While the japonica accession Nipponbare is still the
gold standard reference genome, several other represen-
tative rice varieties from all major subspecies were subse-
quently assembled de novo, including IR64, DJ123 (Schatz
et al., 2014) and Shuhiu498 (Du et al., 2017). Recently,
3000 rice genomes were re-sequenced and a resulting
set of over 29 million SNPs has been characterized and
made accessible (3,000 rice genomes project, 2014;
Alexandrov et al., 2015).

The availability of high-throughput SNP platforms in
conjunction with advances in computational methods
has also led to the molecular dissection of traits using
genome-wide association studies (GWASs) across diver-
sity panels and the development of genomics-based
molecular breeding strategies (Lipka et al., 2015;
Morrell, Buckler, & Ross-Ibarra, 2011; Varshney, Graner,
& Sorrells, 2005). Association mapping (AM) has now
emerged as a standard method for gene and QTL dis-
covery for major crops (Gupta, Kulwal, & Jaiswal, 2014;
Rafalski, 2002, 2010; Zhu, Gore, Buckler, & Yu, 2008).

A number of excellent general review articles have
been written about AM in crops (Buckler, Ersoz, Yu, &
Buckler, 2009; Ersoz, Yu, & Buckler, 2009; Gupta et al.,
2014; Hamblin, Buckler, & Jannink, 2011; Ingvarsson &
Street, 2011; Mackay & Powell, 2007; Myles et al., 2009;
Rafalski, 2002, 2010; Zhang, Zhong, Shahid, & Tong, 2016;
Zhu et al., 2008). In this article, we review the fundamental
concepts and use of AM specifically focusing on rice, a
globally important food crop. We also discuss applied
research activities and relevant topics that are required
tomove fromQTL detection to actualmolecular breeding,
which has rarely been discussed in the scientific literature
to date. In our view, consideration of the latter topic is
critical to ensure that AM is fully integrated with rice
molecular breeding programs in the future.

Approaches to QTL mapping

Traditional QTL mapping utilizes biparental population
(BP) mapping populations from controlled crosses (Zhu

et al., 2008) which we refer to as biparental population
QTL mapping (BPQM) in this paper. The selected parents
usually differ for traits of interest, and the resulting map-
ping population should segregate for these traits,
although transgressive segregation can be detected
even when the parents do not differ for the trait
(Collard, Jahufer, Brouwer, & Pang, 2005; Mackay, Stone,
& Ayroles, 2009). BP mapping populations include
F2, backcross (BC), recombinant inbred lines (RILs) and
near-isogenic lines (NILs). F2 and BC1 populations only
require two generations to develop. Although they are
the simplest population types, these are not homozygous
(i.e. ‘fixed’) and cannot be repeatedly phenotyped. On the
other hand, more complex populations, such as NILs and
RILs, usually require seven or eight generations to
develop, but can be repeatedly phenotyped over multiple
years and across environments. Chromosome segment
substitution lines (CSSLs) contain chromosome segments
from the donor parent in the recurrent parent back-
ground. These secondary mapping populations are
required to facilitate more comprehensive analysis of tar-
get QTLs (Yano, 2001). More recently in rice, multi-parent
populations called multi-parent advanced generation
intercross (MAGIC; Bandillo et al., 2013), CSSLs (Bessho-
Uehara et al., 2017; Ogawa et al., 2016) and nested-asso-
ciation mapping populations (Fragoso et al., 2017) have
been used for QTL mapping.

Constructing linkage maps is necessary to identify
chromosomal locations and effects of genes and QTLs
associatedwith traits of interest. A linkagemap (or genetic
map) shows the relative position and genetic distances
between markers or genes along chromosomes (Collard
et al., 2005). QTL mapping is based on the co-segregation
of QTLs and DNA markers. Conceptually, this is based on
the principle of chromosome recombinationwhich occurs
duringmeiosis. The principle of QTL detection is based on
the association between phenotype and the genotype of
markers. The mapping population is partitioned into
groups based on the marker each individual carries. A
significant difference between the phenotypic means of
the groups indicates that the specific marker used is
linked to a QTL controlling the trait (Collard et al., 2005).

In contrast to BPQM, association analysis uses diverse
accessions from germplasm collections of varieties, land-
races or breeding material referred to as a ‘panel’ (also
‘diversity panel’ or ‘association panel’). Identifying novel
QTLs from these panels is the most important use of
GWAS for breeding. QTL identification is performed by
examining the associations of the markers with the trait
that can be explained by the ‘linkage disequilibrium’ (LD)
between markers and polymorphisms across a set of
diverse germplasm (Zhu et al., 2008). QTLs are identified
based on historical recombination events between SNPs
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and QTL at the population level (Nordborg & Tavaré,
2002). It is based on the principle that over multiple
generations of recombinations, markers that are tightly
linked to genes for the trait of interest will generally
remain to be associated with the trait.

Population sizes used in preliminary genetic map-
ping studies generally range from 100 to 250 indivi-
duals (Collard et al., 2005). A larger population size
(approximately >500) is required for the analysis of
QTLs having small effects on the target trait.
Population sizes used for AM are usually larger than
BPQM and, depending on the population structure
and diversity, generally require several hundred indivi-
duals to identify QTLs.

Comparison between BPQM and AM

Both BPQM and AM are based on the co-segregation of
DNA markers with traits of interest (Zhu et al., 2008).
While the development of a mapping population is
required for linkage analysis, AM usually uses diverse
populations, or individuals with contrasting geographi-
cal origin (Lipka et al., 2015). Therefore, AM requires less
time and resources because phenotypic data are some-
times available for the populations (i.e. panels) that are
used for analysis. There is no need to perform con-
trolled crosses to develop mapping populations,
although a large number of markers (in the order of
thousands or tens of thousands) are required compared
to only a few hundred markers for BPQM.

The mapping populations used in BPQM include
limited recombination events resulting from fewer gen-
erations to establish these populations (i.e. two genera-
tions for F2 population and six to ten generations for
RILs). For this reason, QTLs are usually span 10 to 20 cM
intervals. In contrast, AM utilizes populations which
have undergone many generations of recombination
since domestication and therefore in general, only mar-
kers that are physically located close to the QTL will be
detected as significant. This also explains why linkage
analysis has a lower resolution of QTL detection com-
pared to AM (Flint-Garcia, Thornsberry, & Buckler, 2003).
As the size of the interval for localizing the QTL
decreases, the number of individuals required to detect
at least one recombinant in the region of interest
increases, as does the number of molecular markers
necessary to detect recombination events.

BPQM uncovers only a small portion of the genetic
architecture for a trait because only alleles that differ
between the two parental lines will segregate while AM
provides an alternative route to identifying QTL that has
effects across a broader range of germplasm. On the
other hand, BPQM can lead to the discovery of very rare

alleles provided the donor accession carries it, while in
AM, alleles below a certain minor allele frequency
(usually a MAF of < 5%) will be filtered out and hence
rare QTLs are usually not detectable. By highlighting
the differences between traditional BPQM and AM, it
becomes clear that these methods are complementary
to each other (Figure 1).

Key concepts in AM

The main purpose of AM is to dissect complex traits and
identify QTLs (Zhu et al., 2008). QTLs detected using AM
(also called ‘signals’, ‘peaks’ or ‘hits’) are usually repre-
sented using ‘Manhattan plots’ which show the associa-
tion of markers with the trait along a chromosome. The
y-axis indicates – log10 (P value) for the association
plotted against the SNPs along each chromosome on
the x-axis, so the map positions of all markers used
must be known (Figure 2).

Linkage disequilibrium (LD)

The fundamental basis of detecting QTLs using AM is
due to LD. LD is the ‘non-random association of alleles
at two or more different loci’ in a population (Flint-
Garcia et al., 2003; Slatkin, 2008). It measures the
strength of correlation between markers caused by
their shared genetic history. It is a characteristic of
pairs of SNP that describes the degree to which an
allele of one SNP is inherited or correlated with an allele
of another SNP within a population (Bush & Moore,
2012). The terms LD mapping and AM are often used
interchangeably.

AM is dependent upon the extent of LD across the
genome. Thus, the extent of LD should be known
before AM can be performed. Two markers that are in
LD show non-random association between alleles, but
do not necessarily correlate with a particular pheno-
type. An association is defined when there is significant
correlation between the covariance of a marker poly-
morphism and a trait of interest. This is the basis of
identifying QTLs associated with markers by AM (Soto-
Cerda & Cloutier, 2012). It is important to note that LD is
not the same as physical linkage; many allelic variants
that are very close to each other may have low LD
either due to recombination or because the variants
are not at equal frequencies. It is also worth noting
that SNPs in LD can be located on different chromo-
somes. If LD decays within a short distance, mapping
resolution is expected to be high, but a larger number
of markers are required (Rafalski, 2002). If LD extends
over a long distance, mapping resolution will be low,
but a relatively small number of markers are required.
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In practice, combinations of closely linked, adjacent
SNPs or ‘haplotypes’ are used to characterize a QTL
region or allele of a gene rather than a single SNP
(Buntjer, Sørensen, & Peleman, 2005; Rafalski, 2002).
Generally, about 5–15 SNP markers per locus are usually
sufficient to characterize haplotypes in crops (Famoso
et al., 2011). Haplotypes based on multiple SNPs are
generally multi-allelic, in contrast to a single SNP which
is biallelic. Variations in SNP haplotypes are of interest
to breeders in order to identify genomic regions under
selection. Recently in rice, efforts have been initiated to
compile data and investigate haplotype blocks in
breeding material (Yamamoto et al., 2010), or SNP hap-
lotypes for genes or QTLs (Yonemaru, Ebana, & Yano,
2014).

One of the first estimates of LD in O. sativawas ~100 kb
based on the region around xa5, a recessive gene confer-
ring resistance to bacterial leaf blight (Garris, McCouch, &
Kresovich, 2003). Targeting six genomic regions on chro-
mosomes 1 and 4 and unlinked background SNPs, LD was
estimated and ranged from 75 kb in indica,~150 kb in
tropical japonica and >500 kb in temperate japonica
(Mather et al., 2007). Huang et al. (2010) estimated that
genome-wide LD rates were ~123 kb for indica and ~167
kb for japonica subspecies. These estimates (< 1 cM)
represent a significant improvement in comparison with
the confidence interval of QTLs detected by BPQM.

It is worth noting that these average rates of LD
reflect ~10,000 years of historical recombination. In a
well-designed breeding program, these rates will be
higher due to the crossing structure and use of elite x
elite crosses. Based on the estimated LD in rice, a mini-
mum of 5000 markers should theoretically be sufficient
to cover the ~400 Mb rice genome using the estimate
of 75 kb (i.e. 400,000/75 = 5333 markers) as proposed
by Courtois et al. (2013). However, filtering for mono-
morphic markers and low allele frequencies may lead to
sub-optimal densities in practice, and therefore geno-
typing at higher densities is recommended.

Analysis methods for AM

In early reports of AM in crops, relative simple statistical
association tests (e.g. general linear models for normally
distributed traits or non-parametric tests) were per-
formed (Li & Zhu, 2013), analogous to the initial use
of single-marker analysis in BPQM. More advanced
methods for AM were subsequently developed, which
have become routinely used in crops (Lipka et al., 2015).

The effect of population structure (referred to as ‘Q’)
must be accounted for when performing AM. The most
commonly used approach to assess the level of popula-
tion structure is to use marker information to detect sub-
groups within the experimental population. This is

Figure 1. Comparison of QTL mapping methods.
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sometimes called ‘structured association’ and pieces of
information on population structure are considered as
fixed effects and used as cofactors in the analysis. Using
this method, a set of random markers is used to infer the
structure of the population as well as the ancestry of the
panel. Common methods used to calculate population
structure include: (1) using a computer program called
STRUCTURE (Pritchard, Stephens, & Donnelly, 2000) or (2)
principal component analysis (PCA) (Price et al., 2006).
One of the main advantages of PCA is that the computa-
tional analysis is considerably simpler.

It was subsequently determined that taking into
account the level of genetic relatedness (called ‘kinship’;
referred to as ‘K’) improved the accuracy of AM (Yu et al.,

2006). In this landmark paper, mixed linear models (MLM)
were used to include information on population structure
and kinship (i.e. ‘Q + K’mixed-model) that was superior in
terms of reducing the false positive rate whilemaintaining
statistical power (Zhao et al., 2007). This has now become
commonly used in crops and algorithms have been
streamlined to improve the efficiency (i.e. speed) of the
‘data crunching’. The most commonly used approaches in
rice include efficient mixed model association (EMMA;
Kang et al., 2008), EMMA eXpediated (EMMAX, Kang, Sul,
& Service et al., 2010), compressed MLM and population
parameters previously determined (P3D) (Zhang et al.,
2010). Recently, even more advanced methods have
been developed (e.g. Settlement of MLM Under

(a) 

(b) 

Figure 2. AM results for agronomic traits on all 12 chromosomes (2012 dry season data), analyzed from Begum et al. (2015).
Manhattan plots for flowering date (a) and panicle length (b). Analysis was performed using TASSEL software Version 4.1.34
(Bradbury et al., 2007). Results indicate a major locus for flowering time on chromosome 3 and multiple QTLs for panicle length,
typical of quantitative traits.
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Progressively Exclusive Relationship (SUPER, Wang, Tian,
Pan, Buckler, & Zhang, 2014) andmulti-locusMLM (Segura
et al., 2012)).

False positive signals are an inherent problem in
GWAS, which is often referred to as the problem of ‘multi-
ple testing’ because a large number of markers are tested
and a P value is generated for each individual test
(reviewed by Balding (2006) and Gupta et al. (2014)).
Therefore, the cumulative possibilities of false positive
results are large when all of the multiple tests are con-
sidered. Among the methods to define significance levels
(i.e. that will reduce the chance of false positives but
increase the chance of false negatives and vice versa),
the Bonferroni correction and the false discovery rate
(FDR; Benjamini & Hochberg, 1995) are most commonly
used.

Practical considerations – scale of AM

There are two broad categories of AM: (1) candidate
gene (CG) analysis and (2) GWAS. While CG analysis is a
hypothesis-driven approach based on prior studies
about genes involved in the trait of interest, GWAS is
a more comprehensive approach which does not
require any initial information about the genetic control
of a trait of interest (Zhu et al., 2008). Due to the
increasing use of GWAS over CG, the term is now
used interchangeably with AM.

Genotyping is a critical component of GWAS experi-
ments, and two methods are usually employed.
Genotyping by sequencing (GBS) is a cheaper way to gen-
eratemedium to highmarker densities (i.e. 10,000–100,000
filtered data points per sample) (Elshire et al., 2011; He et al.,
2014). Although GBS has been optimized and successfully
applied in rice (Table 1), it requires considerable wet-lab
and computational expertise for library preparation and
bioinformatics data analysis, respectively. Fixed rice arrays
(i.e. ‘SNP chips’) are easier to use and several options for
different marker densities are available (Chen et al., 2014a;
McCouch et al., 2010; Singh et al. 2015a). At present, the
cost of rice is generally about US$30–US$50/sample. User-
friendly, open-access software to perform AM, such as
TASSEL (Bradbury et al., 2007) and GAPIT (Lipka et al.,
2012; Tang et al., 2016), have been commonly used in rice
and allow data formatting, data filtering, data visualization
for quality control and advanced analyses.

Limitations of AM

There are several inherent limitations of AM which
researchers must consider (reviewed by Korte & Farlow,
2013) when interpreting results, especially for down-
stream applications. Some of these limitations are

based on the fundamental architecture of complex
quantitative traits and are briefly discussed below.

Rare variants

Previous research has indicated that combinations of rare
alleles are usually involved in controlling complex traits.
The power to detect rare alleles, however, is low especially
since markers used in GWAS are often excluded based on
the MAF (i.e. < 0.05), since the statistical methods used for
AM are not reliable for very low MAF. Furthermore, these
variants may also be in strong/complete LD with non-
causative rare variants (e.g. specific SNPs within an indivi-
dual which have nothing to do with the target trait, but
appear to be associated). This is referred to as a ‘synthetic
association’ (Korte & Farlow, 2013). Importantly, indirect
associationsmay be detected due to LD betweenmultiple
factors affecting a single trait, especially caused by adap-
tation (Platt, Vilhjálmsson, & Nordborg, 2010). Thus, con-
ventional QTL mapping approaches still are and will likely
remain more effective in discovering rare alleles. The
deliberate inclusion of lines derived from BPs with parents
containing rare alleles (if known) to supplement the panel
and the use of ‘joint-linkage associationmapping’ are two
approaches to improve the detection for rare variants.

Small-effect QTLs

Many complex traits are controlled by multiple loci,
many of which are small effect QTLs (Holland, 2007).
Therefore, their presence may simply be too small to be
reliably detected, which is a problem when using any
QTL mapping method. Detection of these small-effect
QTLs can be increased by using a larger population size
and accurate phenotypic measurements (i.e. to increase
heritability).

Ascertainment bias

This refers to the fact that SNPs are pre-selected during
the SNP development stage prior to their use for asso-
ciation analysis. This is relevant for array-based SNP
genotyping platforms, which are usually derived by
sequencing a small number of accessions for SNP dis-
covery (McCouch et al., 2010; Myles et al., 2009).
Therefore, SNPs that are associated with a trait might
not be included in SNP chips, and therefore cannot be
detected. Furthermore, fixed arrays might be designed
to be maximally informative across certain subgroups
(e.g. indica), but might detect many monomorphic mar-
kers when deployed across panels of a different sub-
group (e.g. japonica) and hence may not be useful.
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Genetic heterogeneity

This can occur when different genes controlling a single
trait under investigation are included in the panel (i.e.
the mechanism of genetic control differs within the
population and causes confounding results because
the ability to detect associations is lower). This can be
understood by considering biology – plants originating
from different areas may have evolved different
mechanisms of adaptation. In rice, genetic heterogene-
ity is present (i.e. in O. sativa). Indica and japonica
varietal groups have evolved through independent
domestication process (Ikehashi, 2009). The conse-
quence of genetic heterogeneity reduces the strength
of the association between markers and traits.

Will AM always ‘land’ on genes?

One interesting finding from several GWAS experiments
in animal and plant species is that the SNPs at the QTL
peak are not always within the functional gene. For exam-
ple, in Arabidopsis, the highest associated SNPs were not
the causal SNPs for the vernalization-response gene (FRI);
this was attributed to complexities due to LDwith specific
alleles and population structure (Atwell et al., 2010).
Similar observations have been reported in independent
GWASs in rice (Huang et al., 2010; Yano et al., 2016) and
may be confusing for researchers who are familiar with
BPQM. In the pioneering work done by Yano et al. (2016),
this issue of undetectable causal SNPs was addressed by
using GWAS based on whole genome sequencing, fol-
lowed by the screening of candidate genes based on
the estimated effect of nucleotide polymorphisms.

AM in rice

A range of AM studies have been reported for rice in
the last decade (reviewed by Zhang et al., 2016).
Associations with important agronomic and morpholo-
gical traits have been the focus of most studies, while
others analyzed yield-related, abiotic and biotic stress
tolerance, reproductive and metabolic traits (Table 2).
SSRs were initially used in some of the earliest reports
of AM in rice (Agrama, Eizenga, & Yan, 2007; Borba
et al., 2010). SNPs have now clearly become the marker
of choice for GWAS in rice (McCouch et al., 2010). In this
section, we briefly review some of the seminal GWAS
papers in rice.

A landmark GWAS was reported by Huang et al.
(2010), who investigated 14 agronomic traits (morpho-
logical, yield components, grain quality and agronomic
or physiological) in a panel consisting of 517 landraces
and detected many novel QTLs with relatively small
effects. The panel was re-sequenced to identify a large
number of SNPs, which permitted a high resolution for
AM. Of the 3.6 million SNPs, 167,514 were located in
coding regions of >25,000 annotated genes, which was
important to investigate potential function effects of
the detected SNP signals. Due to the larger sample
size and genetic diversity, Huang and co-workers
focused on the indica subset of the panel. Putative
QTLs explained about 36% of the phenotypic variation
and QTLs for six traits were located close to known
genes (i.e. OsC1, Rc, ALK, Waxy, qSW5, GS3) that had
been previously characterized.

Zhao et al. (2011) conducted a large-scale GWAS,
exploring 34 traits (including morphological, agro-
nomic, yield component, stress tolerance, seed/grain

Table 2. Comparison of BPQM and AM.
Criteria Traditional QTL mapping (BPQM) Population-based AM

Number of markers Relatively few (100–200) Many (100s–1000s)
Populations Few parents or grandparents with many

offspring (100–500)
Many individuals with unknown or mixed relationships. If pedigreed, family

sizes are typically small relative to sampled population (>500)
QTL analysis Easy. Less sophisticated tools minimize ghost

QTL and increase mapping precision
Complex. Sophisticated tools reduce risk of false positives

Detection depends on QTL segregation in offspring, and marker-trait
linkage within-family(s)

QTL segregation in population, and marker-trait LD in mapping population

Mapping precision Low (5–15 cM)
QTL regions may contain many positional

candidate genes

Can be high (10–1000 kb). Depends on population LD

Variation detected Subset (only the portion segregating in
sampled pedigrees)

Larger subset (theoretically all variation segregating in targeted regions of
genome)

Extrapolation to other
families or populations

Poor (other families not segregating QTL,
changes in marker phase, etc.)

Good to excellent (although not all QTL will segregate in all population/
pedigree subsamples)

Time spent More research time in establishing a mapping
population

Less research time in establishing an association

Meiosis cycles Six to seven Many
Detection power Low resolution but high statistical power in

detecting rare allele
High resolution but low statistical power in detecting rare allele

Population structure Absent May be present
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morphology and quality) using a 44k SNP array plat-
form across a panel of 413 diverse accessions including
indica, aus, tropical and temperate japonica, and aro-
matic accessions. A large number of QTLs were
detected for all traits, including many signals located
near the locations of known major genes for the rele-
vant trait. A major finding was that significant genetic
heterogeneity was associated with subpopulation struc-
ture. In other words, different QTLs were observed
when the subpopulations were analyzed separately
compared to when the entire diversity panel was
used. Another important finding was the influence of
environmental effects. Flowering time was investigated
in three locations and revealed season specificity, even
for well-known major genes such as Hd1. Furthermore,
some of the strongest signals were relatively far away
from known candidate genes, which were attributed to
ascertainment bias.

Famoso et al. (2011) combined GWAS with BPQM for
investigating aluminum tolerance, using the same
panel as Zhao et al. (2011). They discovered that a
large component of tolerance was due to subpopula-
tion structure, and several subpopulation-specific QTLs
for this trait were detected. Importantly, a detailed
haplotype and sequence analysis were performed
around the candidate gene Nrat1, which indicated a
large-effect QTL (explaining 40% of the phenotypic
variation within the aus subpopulation) and three
non-synonymous mutations within Nrat1 that were pre-
dictive of aluminum sensitivity (Famoso et al., 2011).

Huang, Zhao and Wei et al. (2012) extended their
previous GWAS results and focused on flowering time
and yield-related traits using >1.3 million SNPs
(>700,000 for the indica subset and >490,000 for the
japonica subset). In this study, a larger panel of acces-
sion (n = 950, including 508 indica and 383 japonica)
was used. Furthermore, detailed gene annotation,
expression data and genetic variation were integrated
to refine identification of candidate gene and potential
causal polymorphisms for the target traits. Novel QTLs
were detected for the traits investigated and the
authors identified unknown loci associated with well-
characterized traits such as flowering time, which were
not identified in their previous report.

Recently, a high-resolution open-access resource for
GWAS in rice has been made available to rice research-
ers (McCouch et al., 2016). The AM panel consists of
1568 diverse accessions including indica, aus, tropical
and temperate japonica, and aromatic accessions, com-
prising two separate rice diversity panels (RDPs). The
genotypic data were generated using a high-density
rice array (HDRA) with 700,000 SNPs (i.e. approx. 1
SNP every 540 bp) and a suite of bioinformatics tools

including a GWAS viewer, allele finder and Genome
Browser were developed to assist in data interpretation.

From GWAS to molecular breeding

The large number of published QTLs or GWAS signals
would imply that there are thousands of trait markers
(i.e. highly predictive of target traits) available for breeders
to use in selection programs. Most rice breeders, however,
would argue that this is certainly not the case. Several
authors have addressed the issue why only few reports of
QTL discovery from GWAS are resulting in the actual use
in MAS. Gupta et al. (2014) and Zhang et al. (2016) sug-
gested that the high FDR was the most likely reason for a
lack of application of GWAS signals in breeding.

We believe that the lack of validation of QTL-marker
trait associations is a major factor explaining the lack of
applied outcomes from GWASs. It is generally accepted
that BPQM research needs to be validated in a range of
genetic backgrounds and different environments (i.e.
field testing) prior to deployment (Nicholas, 2006; Xu
& Crouch, 2008). Due to high false discovery rates in AM
approaches, there is an even greater need to verify
marker-trait associations arising from AM experiments.
In other words, the utility of a marker to accurately
predict trait phenotype needs to be verified (referred
to as ‘marker-trait validation’). For example, Breseghello
and Sorrells (2006) suggested that this could simply be
performed by developing BPs and confirming this at
the F2 or F3 stage. In our experience, readily available
breeding populations (e.g. F2, BC, RILs or elite material)
should be used to validate GWAS results in rice. Other
methods involving gene expression of candidate genes
can be used if the objective is to identify the causal
gene for the trait, but this step is not required for
breeding.

For large-scale routine screening in breeding popu-
lations, GWAS-based markers need to be converted to
low-plex high-throughput marker assays (e.g. KASP,
Taqman, Fluidigm) and considerable work is required
to design and verify these assays. KASP assays currently
range from about US$0.10–US$0.36/marker data point
(Semagn, Babu, Hearne, & Olsen, 2014). Verification is
typically performed for the markers using 48 to 96
samples, which contain known donors and recipients
as well as a representative collection of the breeding
germplasm. This tests whether the assay is robust in a
variety of genetic backgrounds and whether it reliably
scores favorable and unfavorable alleles in known back-
grounds. Breeders should also be informed by molecu-
lar geneticists about details regarding the markers that
have been developed (i.e. reliability in terms of selec-
tion accuracy for a trait, as well as sensitivity, specificity
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and effectiveness in different genetic backgrounds). A
versatile analysis tool called ‘SNP Seek’ (http://snp-seek.
irri.org) was developed in conjunction with the 3000
rice genomes (Alexandrov et al., 2015) and provides a
valuable resource for the validation of markers located
in QTL peaks. Single highly significant SNPs or linked
SNP clusters/haplotypes of significant association can
be queried, analyzed for allele frequencies on a subpo-
pulation specific basis and put into context with global
variation within the region of interest, all of which can
greatly aid in the development of low-plex assay.

Phenotyping: critical considerations and new
high-throughput phenotyping methods

The importance of accurate trait data for GWAS has been
previously emphasized by several researchers (Myles
et al., 2009; Rafalski, 2010; Zhu et al., 2008) and we reiter-
ate the importance of phenotypic data for the success of
any QTL mapping experiment. Proper experimental
design and generation of high-quality phenotypic data
are absolutely critical. In practice, accurate phenotyping
of panels may be more complicated than molecular
geneticists may realize. In rice, for example, ordinal scales
are widely used for trait characterization because they are
commonly used by rice breeders (for example IRRI stan-
dard evaluation system; IRRI, 2014). Ideally, scoring scales
should not be based on subjective rating scales (Poland &
Nelson, 2011). In order to properly characterize quantita-
tive traits, reliable phenotyping methods based on quan-
titative measurements are required to accurately dissect
genetic variation (Cobb, DeClerck, Greenberg, Clark, &
McCouch, 2013). Broad- or narrow-sense heritability
should be calculated for each trait in order to understand
the proportion of genetic variance that has been
explained by the detected QTLs.

Furthermore, GWAS experiments often do not consider
genotype by environment (G x E) interactions. Breeders are
well aware that G x E interactions may complicate trait
phenotyping. Variation usually exists even within and
between controlled environment greenhouse trials and
certainly occurs between years, seasons and environments
in field trials (Atlin, Kleinknecht, Singh, & Piepho, 2011).
Further improvement of phenotyping can be achieved
under controlled environment conditions, which is useful
for reliable and precise phenotyping of plant responses to
abiotic stresses (Negin & Moshelion, 2017). However, trans-
ferability of controlled environment observations to actual
field conditions is difficult for some traits such as drought
(Passioura, 2012). In these cases, completely new pheno-
typing methods are required.

Plant phenomics for accurate high-throughput pheno-
typing has undergone rapid development in the last

decade. Both ground-based proximal sensing and aerial
remote sensing systems are now routinely used for field
phenomics. Rapid, GPS-guided, high-throughput semi- or
fully automated phenomics systems have been devel-
oped for quantitative measurement of above-ground bio-
mass, stem and canopy attributes, photosynthesis and
pigment content (Simko, Hayes, & Furbank, 2016), flower-
ing (Guo, Fukatsu, & Ninomiya, 2015), abiotic stress
responses (Cobb et al., 2013), pathogenesis (Mahlein,
2016), leaf traits (Yang et al., 2015) and agronomic traits
(Duan, Chapman, Guo, & Zheng, 2017). Advancements in
aerial vehicle engineering, automation, sensor-based ima-
ging, software capability, data storage and analytical
capacity underpin this phenomics revolution. Ground-
based platforms have the advantage of generating high-
resolution data, but they cannot screen large populations
simultaneously, which is critical for many applications.

Remote sensing platforms such as unmanned aerial
vehicles (UAVs) and satellites generate data with differ-
ent spatial resolution and spectral coverage. Manned
aircrafts are also used for aerial remote sensing. Most of
the commercially available phenomics systems can be
deployed directly for many crops though crop-specific
features may demand considerable system optimization.
UAV-based aerial phenomics platforms are the most
commonly used systems for germplasm development
and crop research (Watanabe et al., 2017). A range of
RGB (red, green, blue), multi-spectral, hyperspectral,
thermal-fluorescence, 3D, LIDAR and SONAR sensors
are available for plant phenotyping, and many of them
can be integrated with UAVs depending on their payload
capacity. Rapid progress in automated sensor-based
imaging and image-processing software solutions
became the cornerstones of field phenomics (Cobb
et al., 2013).

The success of high-throughput phenomics depends
on the accuracy and precision of data collected (Cobb
et al., 2013). Accuracy can be improved with the use of
known standards, while the stability of the object sen-
sing system determines the precision, which is impor-
tant to reduce error variance. Unfortunately increasing
the throughput may compromise accuracy and preci-
sion and this necessitates crop-specific system optimi-
zation. Despite the best efforts to maximize accuracy
and precision of primary sensory data, which are col-
lected as images over a relatively long period of time,
they carry a significant level of genetic, environmental
and experimental noise. Developing algorithms for con-
verting the primary sensory data to useful phenotypic
data for performance prediction of breeding lines thus
can be quite demanding.

Measuring phenotype during the entire crop cycle
requires the collection of a very large volume of data.
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This makes storage, processing and management of
phenomics data challenging. Successful high-through-
put field phenotyping is contingent on several factors
(Negin and Moshelion, 2017). These include the type of
the phenomics platform used, sensor systems with the
required spectral coverage, computational and analytical
capacity to convert sensory data to useful phenotypic
data and database management capability. Identifying
the appropriate phenotypic parameters that can be
quantified accurately, rapidly and cost-effectively using
a carefully designed experiment established with an
appropriate genetic population is also vital.

Closer integration with breeding is needed

Over the last decade, GWAS results have been poorly
utilized in breeding programs which have created an
‘application gap’ (Collard, Raghavan, & Islam, 2017).
Molecular geneticists, who typically perform most of
the gene discovery work and who are main users of
GWAS, are often not well aligned with breeding pro-
grams. The objectives of molecular geneticists are to
elucidate and begin to unravel the physiological basis
of phenotypic variation at the gene or molecular level.
While these are valid and noble endeavors, most of the
knowledge obtained from these efforts is not needed in
actual breeding programs.

In order to align gene discovery programs utilizing
GWAS and breeding programs, discovery efforts need
to be more closely integrated with actual breeding
activities. Traits that gene discovery groups work on
should be the same as those used to set breeding
priorities. Reviewing the literature, this is seldom the
case (examples in Table 1) and gene discovery work
and breeding are rarely connected in the public sector.
Often morphological or physiological traits are selected
for gene discovery because they are easily measured in
controlled environments with high accuracy, rather
than their relevance for breeding. These secondary
traits may be utilized, provided they are more heritable
and highly correlated with the trait of interest like yield.
Some notable exceptions were studies to specifically
identify loci associated with field blast resistance
(Raboin et al., 2016; Zhu et al., 2016). The challenge is
that high priority complex traits for breeders (e.g. yield)
often defy reductionist descriptions using component
traits due to complex interactions involving genetics,
physiology and the physical environment. When
attempts are made to measure complex traits, often
the phenotyping methods employed by molecular
geneticists are limited to controlled environments like
growth chambers and greenhouses, where the correla-
tion with field conditions is either low or unknown. Loci

discovered in this way may be highly reliable for a
specific assay (e.g. greenhouse-based disease or abiotic
stress tolerance test) but there would be little value
using markers developed for these loci if the assay
was not an effective predictor of field performance. In
private sector breeding organizations, gene discovery
and breeding teams are structured in a unified product
development pipeline, to efficiently evaluate germ-
plasm and identify new alleles of large effect that can
be easily deployed in a breeding program (Eathington,
Crosbie, Edwards, Reiter, & Bull, 2007).

In rice and other cereals, however, there are traits
(notably disease resistance, abiotic stress tolerance and
quality traits) for which single genes of large effect
suitable to MAS are well known (Collard & Mackill,
2008; Das, Patra, & Baek, 2017). Any breeding program
interested in doing MAS for these traits will need to
prioritize the loci of interest. Particularly for traits where
well-developed trait markers still need to be developed,
GWAS using breeding germplasm is suited to inform
marker development priorities by quickly identifying
which loci are both polymorphic and at high frequency
in the breeding germplasm and thus would have high
utility rates for MAS. In this context, GWAS results can
provide useful information by identifying loci (i.e. due
to the lack of a QTL peak where one might be
expected) that are already fixed in the breeding pro-
gram. If fixed for the favorable allele due to selection,
the expenditure of marker development resources can
be avoided for a locus that has no utility within the
breeding program. For example, one important finding
by Begum et al. (2015), who used a panel comprised of
elite breeding lines, was that major genes (e.g. for
flowering time) were often not segregating in elite
indica rice breeding germplasm, presumably because
fixation had already occurred. This information sheds
light on the genetic basis of flowering time among the
breeding lines they are using, and can thus help direct
future strategy for further modifications of flowering
time within the breeding program.

Likewise if a new disease or specific trait suddenly
becomes important to a breeding program, GWAS can-
not only help to determine if the existing breeding lines
contain loci easily amenable to MAS, but also to screen
panels of exotic germplasm in hope of finding large
effect genes/QTLs (provided they are present at reason-
able allele frequencies). However, the utility of GWAS to
a pre-breeding program is of limited use when the
genetic variants of large effect for a trait are already
well known. In these cases, gene discovery efforts are
focused on searching for rare alleles of large effect
which GWAS is unable to detect. In these situations, a
more effective strategy is to screen a large number of
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exotic lines to identify donors and create BPs with each
donor. Such populations can then be targeted for fine
mapping and marker development such that NILs in
elite backgrounds can be deployed in the breeding
program using marker-assisted forward breeding.

There has been some research using GWAS results as
covariates for inclusion in genomic selection (GS)models in
a breeding program and potentially increase prediction
accuracies (Spindel et al., 2016). GS is a new molecular
breeding method that was originally developed in animals
(Meuwissen, Hayes, & Goddard, 2001) and has recently
been implemented in crops (Heffner, Sorrells, & Jannink,
2009). The method is based on using high-density marker
data and advanced computational methods to calculate
predict trait performance (in contrast to MAS, which is
based on using a single or small number of target alleles).
This area of research urgently needs more attention and
could represent a critical application of GWAS to breeding
programs.

Conclusion and future perspective

AM has become an increasingly popular approach in crop
genetics to understand the architecture of quantitative
traits and to identify QTLs controlling important traits. This
method complements traditional linkage-based mapping
methods based on BPs. By combining GWAS with func-
tional genomics, it is inevitable that the growing use of
AM in rice will lead to the identification of new QTLs and
candidate genes in the future (Yano et al., 2016). It is likely
that future progress using AM approaches will be based on
two major factors: (1) greater integration with functional
analysis or gene annotation data (i.e. ‘post-GWAS research’,
Zhang, Bailey, & Lupien, 2014); and (2) improvements in
statistical and computational methods (e.g. methods using
Bayesian methods, haplotypes and SNP imputation).
Further advances in rice genome re-sequencing (3,000
rice genomes project, 2014) and developments inmamma-
lian andothermodel specieswill surely have amajor impact
on GWAS (Tak & Farnham, 2015; Visscher et al., 2017).
Current research in AM includes methods to combine
GWAS results from multiple studies (e.g. meta-analysis),
strategies to account for G x E and tests for epistatic inter-
actions. User-friendly analytical tools and genomics
resources will always need to be improved and further
developed.

In the meantime, researchers engaged in applied AM
activities need to focus on the fundamental factors such as
population size, marker density and accounting for popula-
tion structure. Accurate and relevant phenotypic data will
always remain to be one of the critical factors for success in

terms of integrating results with breeding. Ultimately, a
holistic and integrated approach (i.e. ‘systems genetics’)
for GWAS would be the ideal configuration. Currently, inte-
gration and relevance to actual rice breeding programs
remain a great challenge. Further application of GWAS
research specifically using breeding panels comprising
elite breeding germplasm needs further research.
Collectively this could facilitate the outstanding recent
achievements in rice genomics to be utilized in the devel-
opment of newand improved rice varieties usingmolecular
breeding.
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