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ABSTRACT
Long-term trend of crop yields has been widely studied in global scales to find which crops and which 
geographic regions offer the best hope of meeting food demands, and which regions needed the 
most improvements. In this study, a mathematical method was applied to analyze spatial patterns in 
long-term temporal trends of three major crops’ yields in Japan archipelago. The changes in annual 
yields of rice, wheat, and soybean over a period of about 60 years in all 47 prefectures of Japan was 
analyzed by using the data of agricultural records. For all the three crops, the nationwide yields 
previously improved, but currently were stagnating in Japan. The result suggests that the annual 
yields were not improving in 53, 85, and 89% of those prefectures in Japan for rice, wheat, and 
soybean, respectively. The spatial patterns in temporal trends show that the percentage of number 
of yield-not-improving prefecture was higher in low latitude regions than high latitude regions. 
These results highlight the increasingly difficult challenge of meeting the growing demands and 
stagnating supplies in daily staple foods not only for agricultural scientists but also for Japanese 
society.

1.  Introduction

Crop production in agriculture is directly related to food 
supply. As a result, the crop yield must be increased to 
meet the growing demands (Alexandratos, 1999; Cassman, 
1999; Glover et al., 2012; Tilman et al., 2002) driven by the 
increasing human population, meat consumption, and bio-
fuel use (Foley et al., 2011; Godfray et al., 2010; Holdren & 
Ehrlich, 1974; Pingali, 2006; Tilman et al., 2011). The global 
population is expected to grow to 9 billion by 2050 (Hafner, 
2003; United Nations Population Division, 2000), and 
global agricultural production may need to be increased 
by 60–110% to meet these increasing demands from 2005 
to 2050 (FAO, 2009; OECD/FAO, 2012; Tilman et al., 2011).

However, the total global crop production increased 
by only 28% between 1985 and 2005 (Foley et al., 2011). 
Recently, several studies reported that the yield of many 
crops, such as rice, maize, and cereal (barley, oat, rye, and 
wheat), may be not increasing any more in some regions 
around the world (Brisson et al., 2010; Cassman, 1999; 
Finger, 2010; Lin & Huybers, 2012; Peltonen-Sainio et al., 
2009; Ray et al., 2012, 2013). In addition, some reports have 
suggested that those crop yields may be stagnating or 

declining in many important global croplands (Brisson 
et al., 2010; Cassman, 1999; Finger, 2010; Hafner, 2003; 
Kendall & Pimentel, 1994; Peltonen-Sainio et al., 2009), 
in particular for three key crops – maize, rice, and wheat 
(Tilman et al., 2011). The yields were reported that either 
never improved, stagnated, or collapsed across 24–39% of 
maize-, rice-, wheat-, and soybean-growing areas includ-
ing the most important cropland areas over the world 
during the period 1961–2008 (Ray et al., 2012).

Japan is a country having one of the highest levels of 
crop yields per unit area over the world because only 12% 
of its land is suitable for cultivation (USDA, 2012). The over-
all agricultural self-sufficiency rate in Japan is ~50% on 
fewer than 14 million acres lands cultivated (USDA, 2012). 
Rice is considered the most important crop for Japan’s 
society. In 2014, Japan dedicated 10.7 million ha to rice 
cultivation (FAO, 2015), which ranks the 17th in the world. 
The other two important food staples in Japanese food 
culture, wheat and soybean, their ranks of production are 
the 35th and 47th in the world in 2014 (FAO, 2015).

Recently, long-term trends of crop yields has been 
widely studied by scientists using the records in global 
scales (Aizen et al., 2008; Godfray et al., 2010; Lesk et al., 
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go.jp/). Fifty-nine years’ data of rice from 1958 to 2016 were 
available for each prefecture except for Okinawa (43 years’ 
data). Sixty-nine years’ data of soybean from 1948 to 2016 
were available for each prefecture except for Okinawa (28 
years’ data). Fifty-nine years’ data of wheat from 1958 to 
2016 were available for 38 prefectures (Hokkaido, Aomori, 
Iwate, Miyagi, Akita, Yamagata, Fukushima, Ibaraki, Tochigi, 
Gunma, Saitama, Chiba, Tokyo, Kanagawa, Yamanashi, 
Nagano, Gifu, Shizuoka, Aichi, Mie, Shiga, Kyoto, Hyogo, 
Nara, Tottori, Shimane, Okayama, Hiroshima, Yamaguchi, 
Kagawa, Ehime, Fukuoka, Saga, Nagasaki, Kumamoto, 
Oita, Miyazaki, and Kagoshima). In addition, 55, 49, 52, 58, 
48, 52, 58, 58, and 43 years’ data of wheat were available 
for Niigata, Toyama, Ishikawa, Fukui, Osaka, Wakayama, 
Tokushima, Kochi, and Okinawa, respectively.

2.2.  Yield trend analysis

This study was inspired by Ray et al. (2012), who used 
parsimonious regression models to examine the trends 
in crop yields for maize, rice, wheat, and soybeans across 
the globe extending over the period 1961–2008. Yield 
trends were analyzed using these parsimonious regression 
models of increasing order for: an intercept-only model 
(Equation (1)), a linear model (Equation (2)), a quadratic 
model (Equation (3)), and a cubic model (Equation (4)).

2016; Ray et al., 2012, 2013; Tilman et al., 2011). By analyz-
ing spatial patterns in long-term temporal trends of crop 
yield, the aims of this work are to find which crops and 
which geographic regions in Japan archipelago offer the 
best hope of meeting food demands and which regions 
are improvements most needed. First, I analyze changes 
in annual yields of rice, wheat, and soybean over a period 
of ~60 years in all the 47 prefectures of Japan by using 
the data obtained from the governmental official website. 
The crop yield trends for each prefecture are classified into 
four categories including (1) increasing, (2) stagnating, (3) 
collapsed, and (4) never improved, by using parsimonious 
regression models of increasing order. Last, I map these 
different temporal trends in prefectures and discuss their 
spatial patterns for all the three crops. The results of this 
research highlight the increasingly difficult challenge of 
meeting the growing demands and stagnating supplies 
in daily staple foods for Japanese society.

2.  Material and methods

2.1.  Data of crop yield

Crop yield data of rice, wheat, and soybean in all the 47 
prefectures in Japan (Figure 1) were downloaded from 
the official website of Ministry of Agriculture, Forestry and 
Fisheries, Japan (available online from http://www.maff.

Figure 1. Map of 47 prefectures in Japan and their regions classified in the study.

http://www.maff.go.jp/
http://www.maff.go.jp/


 

 

 

 

Here, Y is the yield (g m−2), t is the year, a is the intercept, 
and b, c, and d are the coefficients of regression.

2.3.  Choosing the statistical model that best 
represents production trends

The Akaike Information Criterion (AIC) developed by 
Akaike (1974) was used to decide which statistical model 
fitted the observed data best, and computed AIC (Equation 
(5)) for each of the above four models (Equations (1)–(4)):
 

Here, ss is residual sum of squares, n is the sample size, 
and p is the number of parameters. The model with the 
minimum AIC was chosen as the best representation of 
the production trend for a given prefecture. All calcula-
tions and data analyses were performed using R v 3.0.2 (R 
Development Core Team, 2013).

2.4.  Classification of production trends

Based on the chosen model parameters, crop yield trends 
were classified into four main categories: increasing, stag-
nating, collapsed, and never improved. These classifica-
tions are defined as follows. (1) Yield increasing: (i) when 
the chosen model was linear, with a positive slope; (ii) 

(1)Y = a

(2)Y = a + bt

(3)Y = a + bt + ct2

(4)Y = a + bt + ct2 + dt3

(5)AIC = nlog
(

ss

n

)

+ 2p

when the chosen model was quadratic with a positive 
quadratic term, and the yield for the 2010s had reached 
the high values in the 1950s; (iii) when the chosen model 
was cubic, with the peak of yield after 2010. (2) Yield stag-
nating: (i) when the chosen model was quadratic with a 
negative quadratic term, and the yield for the 2010s had 
not reached the low values in the 1950s, and (ii) when the 
chosen model was cubic, and the yield for the 2010s had 
not reached the low values in the 1950s with the peak 
beyond 2010. (3) Yield collapsed: (i) when the chosen 
model was linear, with a negative slope; (ii) when the 
chosen model was quadratic, with a negative quadratic 
term, and the yield for the 2010s had reached the values 
in the 1950s; (iii) when the chosen model was cubic, and 
the yield for the 2010s had reached the low values in the 
1950s. (4) Yield never improved: when the chosen model 
was intercept-only model.

3.  Results

3.1.  Long-term trends of crop yield in Japan

According to Figure 2(a), the annual temporal variation in 
prefecture average of rice yield in Japan ranged between 
346 (in 1958) and 511 (in 2015) g m−2, with a mean of 455 
and standard deviation 48, during the 59-year period 
between 1958 and 2016. The chosen model for the average 
rice yield was quadratic with a negative quadratic term, 
and the yield for the 2010s had not reached the low values 
in the 1950s. That is, the yield previously improved, but cur-
rently was stagnating. As for wheat, the annual temporal 
variation in prefecture average of yield in Japan ranged 
between 108 (in 1963) and 306 (in 2000) g  m−2, with a 
mean of 258 and standard deviation 33, during the 59-year 
period between 1958 and 2016 (Figure 2(b)). The chosen 

(a) (b) (c)

Figure 2. Temporal variations in prefectures average of yearly crop yield in Japan from 1958 to 2016 for (a) rice and (b) wheat and from 
1948 to 2016 for (c) soybean. The curve in each panel is the statistical model fits to the data.
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Prefectures (wheat in Hokkaido and Miyagi, soybean in 
Fukushima, and rice in Yamagata) where yield were still 
increasing (Figure 2(a)–(d)). (2) Prefectures (wheat in Mie 
and Nagano and rice in Tottori and Kagoshima) where 
yield previously improved, but currently was stagnating 
or declining (has not reached the level in the 1950s) (Figure 
2(e)–(h)). (3) Prefectures (wheat in Yamagata, Fukushima, 
and Oita) where yield decreased since the 1950s (Figure 
2(i)), or initially increased and then collapsed to the level 
in the 1950s (Figure 2(j) and (k)). (4) Prefectures (soybean 
in Ishikawa) where yield never improved (Figure 2(l)). All 
graphics of the 47 prefectures for three crops can be found 
in Figures S1–S3.

In total, there are three types of increasing trends: 
Figure 2(a) shows the linear trend with a positive slope; 
Figure 2(b) shows the quadratic trend with a positive quad-
ratic term, and the yield for the 2010s had reached the high 
values in the 1950s; Figure 2(c) and (d) show the cubic 

model for the average wheat yield was quadratic with a 
negative quadratic term, and the yield for the 2010s had 
not reached the low values in the 1950s. The yield previ-
ously improved, but currently was stagnating. As for soy-
bean, the annual temporal variation in prefecture average 
of yield in Japan ranged between 94 (in 1949) and 166 (in 
1996) g m−2, with a mean of 133 and standard deviation 18, 
during the 69-year period between 1948 and 2016 (Figure 
2(c)). The chosen model for the average soybean yield was 
cubic, and the yield for the 2010s had not reached the low 
values in the 1950s with the peak beyond 2010. The yield 
previously improved, but currently was stagnating.

3.2.  Long-term trends of crop yield in each 
prefecture

The yield trends in Japan’s prefectures were divided into 
four types. Figure 3 illustrates examples for each type: (1) 

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 3. Illustration examples of the best-fit regression models for crop yield trends: (a)–(d) Yield increasing. (e)–(h) Yield stagnating. 
(i)–(k) Yield collapsed. (l) Yield never improved. (l) Intercept-only model. (a) and (i) Linear model. (b), (e), (f ), and (j) Quadratic model. 
(c), (d), (g), (h), and (k) Cubic model. Color codes correspond to the temporal pattern illustrated in Figure 4. The points represent the 
observations.
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collapsed in 11, 62, and 23% of the prefectures, respec-
tively, and it has never improved in two prefectures (Figure 
4(c) and Table 1). Yields were stagnating in more than half 
of all prefectures in the country for all the three crops. Rice 
yield was increasing in near half of the prefectures. On the 
other hand, the number of yield-decreasing prefecture 
were more than that of the yield-increasing prefecture 
for wheat and soybean.

The result shows some patterns of spatial differences 
in temporal trend for the regions located in different lati-
tude (Figure 1). For rice and wheat yields, the percentage 
of number of yield-increasing prefecture was higher in 
high latitude regions (northern and eastern regions), but 
the percentage of number of yield-stagnating prefecture 
was higher in low latitude regions (southern and western 
regions, Table 1). For soybean, both of the percentages of 
number of yield-increasing and -stagnating prefectures 
were higher in high latitude regions, but the percentage 
of number of yield-decreasing prefecture was higher in 
low latitude regions (Table 1).

4.  Discussion

Growing conditions of crops have changed over time due 
to the changes in the natural environment and cultivation 
(Craufurd & Wheeler, 2009; Lobell & Burke, 2010; Lobell et 

trend with the peak of yield after 2010. There are two types 
of stagnating trends: Figure 2(e) and (f ) show the quadratic 
trend with a negative quadratic term, and the yield for the 
2010s not reaching the low values in the 1950s; Figure 2(g) 
and (h) show the cubic trend with the yield for the 2010s 
not reaching the low values of the 1950s. There are three 
types of collapse trends: Figure 2(i) shows the linear trend 
with a negative slope; Figure 2(j) shows the quadratic trend 
with a negative quadratic term, and the yield for the 2010s 
reaching the low values in the 1950s; Figure 2(k) shows the 
cubic trend, with the yield for the 2010s reaching the low 
values of the 1950s. A list of classification of production 
trends and the coefficient of determination (R2) for all pre-
fectures of all crops can be found in Table S1.

3.3.  Spatial patterns in long-term trends of crop 
yield

Within the 59-year period of analysis, rice yield was increas-
ing and stagnating in 47 and 53% of the prefectures in 
Japan, respectively, and it has not collapsed in any prefec-
ture (Figure 4(a) and Table 1). Wheat yield was increasing, 
stagnating, and collapsed in 15, 55, and 28% of the prefec-
tures, respectively, and it has never improved in one pre-
fecture (Figure 4(b) and Table 1). Within the 69-year period 
of analysis, soybean yield was increasing, stagnating, and 

(a) (b) (c)

Figure 4. Spatial patterns in temporal trend of crop yield for 47 prefectures in Japan for (a) rice, (b) wheat, and (c) soybean.

Table 1. Crop yield status (percentage of number of prefecture in each region) in Japan.

Notes: I – yield increasing; S – yield stagnating; C – yield collapsed; NI – yield never improved.

Rice Wheat Soybean

Region I S C NI I S C NI I S C NI
Northern 85.7 14.3 0.0 0.0 28.6 28.6 42.9 0.0 28.6 71.4 0.0 0.0
Eastern 50.0 50.0 0.0 0.0 25.0 56.3 18.8 0.0 12.5 68.8 6.3 12.5
Western 33.3 66.7 0.0 0.0 0.0 41.7 50.0 8.3 0.0 66.7 33.3 0.0
Southern 33.3 66.7 0.0 0.0 8.3 83.3 8.3 0.0 8.3 41.7 50.0 0.0
Nationwide 46.8 53.2 0.0 0.0 14.9 55.3 27.7 2.1 10.6 61.7 23.4 4.3
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early period (1958−1967 for rice and wheat; 1948−1957 for 
soybean) were calculated as the original yield for each crop 
(Figure 5). For rice, the prefectures which originally had 
high yield (high during 1958−1967) are Nagano, Niigata, 
and the prefectures in northern region except Hokkaido. 
For wheat, the prefectures which originally had high yield 
(high during 1958−1967) are mostly the prefectures in 
eastern region, and Miyagi, Yamagata, and Fukushima in 
northern region. For soybean, the prefectures which origi-
nally had high yield (high during 1948−1957) are Kagawa, 
and some prefectures in eastern region. The yields of rice 
in those prefectures which originally had high yield were 
still increasing (Figures 4 and 5). However, for wheat and 
soybean, yields in those prefectures which originally had 
high yield were either stagnating or collapsed.

Hokkaido is one of the leading producers of crop in 
Japan (Chen, 2016). The yields of rice and wheat were still 
increasing in Hokkaido currently (Figure 4). Miyagi and 
Fukui are the only two yield-increasing prefectures for all 
the three crops (Figure 4). In Japan, eating quality has been 
suggested as one of the most important factors for the pro-
duction. Koshihikari is a famous rice strain mainly grown 
in Niigata; it is the most popular and expensive strain in 
Japan (Ebitani et al., 2005). The fame and the high quality 
of this strain are due to the ideal growing conditions in 
Niigata (Ishizaki et al., 2005). Nagano prefecture has the 
largest yield of rice in Japan due to its rivers and com-
plicated water channels designed to bring nutrient-rich 
water to the crops. Nagano has a high elevation basin sur-
rounded by mountains; thus, the area experiences large 
differences in temperature between day and night that 
provide ideal growing conditions for crops (JMA, 2016). 
The yield of wheat collapsed in most of the prefectures in 
Kinki and Chūgoku regions (Shimane, Hiroshima, Kyoto, 
Osaka, Hyogo, and Wakayama, Figure 4). Because wheat 

al., 2011; Shimono et al., 2010; Walther et al., 2002). The 
yield of crop is affected by climatic factors such as annual 
rainfall (Drury & Tan, 1994; Spiecker, 1995), solar radiation 
(Lobell et al., 2013; Welch et al., 2010), and air temperature 
(Lobell & Field, 2007; Matsui et al., 2001). Besides, the long 
history of cultivation and the geographical variation of cli-
matic conditions, such as the number of rainy days during 
cropping season (for example, the length and starting day 
of Asian Rainy Season vary from area to area in different 
years), also result in large spatial differences in crop yield 
(Lobell et al., 2009). Furthermore, the impact of global 
warming can negatively affect crop yields on a global scale 
(Chen, 2016; Rosenzweig & Parry, 1994). To discuss these 
issues, a large number of studies have analyzed the contri-
butions of climatic factors for rice (Morita et al., 2016; Peng 
et al., 2004; Shimono, 2008; Shimono et al., 2010), wheat 
(Asseng et al., 2015), and soybean (Egli, 2008a, 2008b). In 
addition to the climatic factors, the extent of crop yield var-
iation may vary geographically according to the types of 
cultivation, nitrogen fertilization, and soil type and fertility 
(Adams et al., 1998; Aydinalp & Cresser, 2008; Chen et al., 
2014; Fuhrer, 2003). Contribution of cultivar differences has 
also been reported as an important factor on crop yield for 
rice (Peng et al., 1999; Saitoh et al., 1993; Zhang & Kokubun, 
2004), wheat (Zhou et al., 2007; Ziska, 2008), and soybean 
(Matsuo et al., 2016, 2017; Ziska & Bunce, 2000). In order to 
analyze so many factors accompanied with huge datasets, 
models of crop growth are required to estimate and to pre-
dict how crop yield responds to the natural environment 
and cultivation.

The result suggested that the annual yields were not 
improving in 53, 85, and 89% of the prefectures in Japan for 
rice, wheat, and soybean (Table 1). To see whether the pre-
fecture which originally had high yield is in increasing trend 
or not, 10-year averaged yield for each prefecture in the 

(a) (b) (c)

Figure 5. Spatial patterns in original crop yield (10-year averaged yield in early years) for 46 prefectures in Japan for (a) rice (1958–1967), 
(b) wheat (1958–1967), and (c) soybean (1948–1957).
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is a long-day plant and can grow among a wide range of 
area, sunshine hours and daily radiation may be the decid-
ing factors for the decline of yield (Bannayan et al., 2003). 
The yield of soybean collapsed in most of the prefectures 
in Kyushu (Oita, Miyazaki, and Kagoshima) and some in 
southern Japan (Figure 4). The collapse of yield may be 
related to the changing temperature in growing stage for 
soybean (Juang, 1993).

The results of this study showed that nationwide yields 
previously improved, but currently was stagnating for 
all the three crops in Japan. The annual yields were not 
improving in more than half of the prefectures in Japan for 
rice, wheat, and soybean. The result showed that the per-
centage of number of yield-not-improving prefecture was 
higher in low latitude regions than high latitude regions for 
the three crops in Japan. New investments and strategies 
to increase or maintain production in the high-performing 
areas are required, while simultaneously preserving a sus-
tainable environment and cultivation for all crops.
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