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PHENOTYPIC VARIATION IN NATIVE NORTH AMERICAN AND INVASIVE CHINESE 

POPULATIONS OF PLANTAGO VIRGINICA 

by 

TERESA POPP 

Under the Direction of Lorne Wolfe  

ABSTRACT 

Alien plant species can cause significant economic and biological destruction by invading new 

environments and outcompeting native species. Through experimental research, the mechanisms by 

which these species invade can be better understood and applied to their management. Plantago 

virginica is a perennial herb, native to North America that has recently invaded China. It has been 

known to reduce crop growth and harbor diseases in the introduced range. A common garden study 

was conducted at the Georgia Southern University greenhouse, comparing twenty populations of P. 

virginica from both the native North American and invasive Chinese ranges. I examined if there were 

genetically based differences in a suite of life history, morphological and reproductive traits between 

populations from both the native and introduced range. Overall there were significant differences in 

traits among populations within regions. Specifically, Chinese populations germinated sooner, but 

produced reproductive structures and seeds later than their North American counterparts. Also, 

introduced populations had less phenotypic diversity in several traits compared the native populations. 

These patterns are consistent with the effects of natural selection, however, the role of random genetic 

drift cannot be ruled out. They also suggest that post-introduction phenotypic evolution has occurred 

in Chinese populations of P. virginica, contributing to its invasiveness. 

 

INDEX WORDS:  Plant invasion, Common garden, Plantago virginica, Competition, Phenotypic 

variation, Evolved Life History Traits 
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CHAPTER I 

INTRODUCTION 

 “…… for in all countries, the natives have been so far conquered by naturalised productions, that 

they have allowed foreigners to take firm possession of the land. And as foreigners have thus 

everywhere beaten some of the natives, we may safely conclude that the natives might have been 

modified with advantage, so as to have better resisted such intruders.” (Darwin 1859) 

 

An invasive species is an organism occupying a region in which it was not previously present, 

but has been able to develop self-sustaining populations at the expense of the native species (Sax et al. 

2005). These organisms are able to successfully establish by either (1) undergoing a genetic change to 

become a more aggressive colonizer, (2) escaping the attention of its natural pests and competitors 

(enemy release hypothesis), or (3) finding an unoccupied niche (Baker 1991). As the invader fills an 

empty niche within the new ecosystem, it may be able to acquire resources more easily than native 

species making these resources less available for the surrounding organisms (Mitchell et al. 2006). 

The invader could take over the new range and possibly change the ecological dynamics of the entire 

area, thus becoming a threat to the native biodiversity (Sax et al. 2005).  Regardless of how the 

organism was able to establish, the toll of these invasive species is estimated to range from millions to 

billions of dollars annually (Sakai et al. 2000, Suarez et al. 2008, Pimentel et al. 2000). Beyond these 

economic damages, invasive species are responsible for severe ecological damage (Ludsin & Wolfe 

2001) resulting from competition, predation, and hybridization, which can cause the transformation of 

populations and communities (Suarez et al. 2008).  

The evolutionary success of organismal invasion is influenced by the attributes of the invader, 

biotic characteristics of the invasive site, and the environmental characteristics of the invaded area 

(Perkins et al. 2011). The evolution of an invasive species occurs in three steps. First, the species 

needs to be introduced in to a novel environment, which poses selection pressures that were not 
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present in its native range. Second, if the species is able to establish, it may be selected upon by key 

ecological forces that impact its performance. Finally, after the successful traits have been selected, 

evolutionary adjustments can be made to fit the novel environment (Bossdorf et al. 2004).  

Baker (1965) coined the term “general purpose genotype” in order to describe colonizing 

species that thrive in a wide range of environmental conditions through phenotypic plasticity (Baker 

& Stebbins 1965). If these phenotypic traits affect the reproductive success of individuals, the next 

generation will be impacted. Although no set of traits has been found to be the same in every invasive 

species, there are factors that are known to promote the success of an invasion. Plants in particular are 

able to reproduce both sexually and asexually, rapidly grow from seedling to sexual maturity, endure 

environmental stress, and have a high tolerance to environmental heterogeneity (Sakai et al. 2001). A 

recent study looking at phenotypic plasticity in fitness-related traits, found that this plasticity 

promoted invasiveness in the native Mediterranean forb Centaurea melitensis by enhancing the 

plant’s competitive ability and reproductive success in the invaded California range. The non-native 

C. melintensis was able to flower earlier and grow faster in early growth stages, attributing to its 

invasiveness (Moroney et al. 2013).  Understanding the traits of a species of interest may allow 

researchers to better understand the forces underlying an invasion, uncover a defense against them, or 

learn how to protect the biodiversity in uninvaded areas.  

Flowering plants display a unique range in the reproductive systems (Baker 1955, Barrett et 

al. 2008). They are able to reproduce sexually through pollen dispersion among unrelated individuals 

(outcrossing), through crossing pollen within a single plant (self-fertilization or selfing) or produce a 

mixed mating system (Barrett et al. 2008). Selfing plants have an advantage over outcrossing plants in 

that they do not need to rely on pollinators to ensure offspring production (Baker 1955). However, the 

offspring of outcrossing plants have a higher probability of survival because of high levels of genetic 

variation and are not subject to inbreeding depression (Barrett et al. 2008, Albert et al. 2011). One 

type of specialized selfing is cleistogamy, the production of permanently closed flowers (Culley & 

Klooster 2007). Cleistogamous flowers are less costly to produce than open flowers because they are 
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smaller and the plant no longer needs to rely on the presence of pollinators and allows both sets of 

maternal genes to be passed on to the offspring (Culley & Klooster 2007). These selfing mechanisms 

are believed to be favored in population establishment (Barrett et al. 2008), more commonly known 

as Baker’s Law (Stebbins 1957). The reproductive assurance provided by selfing can allow the 

establishment of an invasive plant species, even if the founding group is small in size. Theoretically, a 

single individual could initiate the establishment of the species through self-fertilization (Barrett et al. 

2008).  However, this type of reproductive system can lead to populations losing genetic diversity in 

the invasion process through genetic bottlenecking and restrictions on genetic recombination (Waller 

1984). This is why many large-scale invasions are thought to have occurred through multiple 

introductions as well as by plants with mixed mating systems (Barrett et al. 2008).  

The ecological forces involved in an invasion can be studied by comparing the invasive 

species to its native counterpart. This includes determining the phenotypic and genetic differences of 

these once genetically identical organisms, determining why it becomes more successful in a novel 

range, and what makes it problematic for the new ecosystem it has invaded (Wolfe & Blair 2009). 

One of the best methods to study invasive species is through the use of a common garden experiment, 

where several populations of the same species from both the native and invaded range are grown 

under controlled environmental conditions, and are measured for phenotypic differences. This allows 

researchers to determine whether observed differences among field populations have a genetic basis 

(Clausen et al. 1948, Parker et al. 2002, Blair & Wolfe 2007). Strickler (2013) found that when 

growing native and invasive species of the shrub Eugenia uniflora in a common garden study, 

invasive seedlings out performed their native counterpart. This study also suggests that because of 

having more robust seedlings, these invasive populations may possess a competitive advantage. 

Another study compared the morphological traits in 23 species, using herbarium specimens, from 

their native and invasive ranges approximately 150 years post introduction (Buswell 2011). They 

showed that 70% of the species exhibited a change in at least one trait through time, suggesting that 

rapid evolution of introduced plant species could be much more common in plant invasion than 
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previously thought. Daehler (2003) looked at the factors that make some plant species troublesome 

invaders and found that few invaders had universal advantages over naturally occurring species; but 

were more successful in their invasion when their introduction was associated with increased resource 

availability or altered disturbance regimes due to human activity (Dahler 2003).  Although Dahler 

(2003) showed that competitive ability with naturally occurring species may not be as influential in a 

species invasion as previously thought, the idea of the enemy release hypothesis could still be the key 

factor to some invasions. This idea of enemy release suggests that the new range allows for the 

introduced species to “escape” from their natural predators present in the native range (Genton et al. 

2005). This also can be described as reduced top-down control, meaning energy that was once 

allocated toward defenses can now be redistributed toward growth and reproduction. If this occurs, 

the evolution of increased competitive ability (EICA) can result in the enhanced performance of an 

organism compared to the native plant populations (Blossey & Notzold 1995, Wolfe 2002, Wolfe & 

Blair 2009), allowing it to express enhanced performance.  

The competitive ability of an invasive species can be understood by growing the species of 

interest in the presence of a second species; allowing genotypic traits to be attributed to the presence 

of the competition. Goldberg and Landa (1991) proposed that individual competitive ability can be 

compared between regions in two different ways: in their competitive effect on other individuals, and 

their competitive response in avoiding being suppressed by other individuals (Goldberg 1991). When 

considering the role of an invasive species and its competitive interactions, populations from both the 

native and invasive range need to be grown in the presence and absence of second species and well as 

growing the second species in the presence and absence of competiton. It is important to consider 

how the two species interact and how the native and invasive populations differ to determine an 

invasive’s dominance and persistence in natural plant communities around the world.  
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Thesis Research and Justification 

Biological invasions have become a global challenge. The study and management of invasive 

species is not limited to single regions; they are able to spread rapidly to previously uninhabited areas 

and have broad ecological consequences. International collaborations are particularly useful. This 

study had collaboration with China through the Fudan University in Shanghai, running parallel 

common garden experiments using Plantago virginica as a model. Joint research such as this can 

have significant academic benefits as well as enhancing the quality of scientific research.  

The overarching goal of this research is to compare genetically-based differences in the 

herbaceous annual Plantago virginica between populations from the native range of North America 

and populations from the invaded range of China. Introduced to China 50 years ago, P. virginica has 

spread over the entire country and into parts of northern Taiwan (Yan et al. 2000). Using an 

experimental approach, I addressed the following questions: 

(1) Are there differences in morphological traits between the North American and Chinese 

populations?  

(2) Are there differences in competitive ability between North American and Chinese populations?   

Comparing the growth and reproductive traits of different populations will aid in 

understanding the physical attributes that may have evolved in Chinese populations to make this plant 

an aggressive invader. When groups from different regions are grown under uniform environmental 

conditions, differences that exist in life history traits can be assumed to be genetically-based (Clausen 

et al. 1948). Using a common garden approach, I tested the hypothesis that Chinese populations of P. 

virginica have evolved life history traits that have allowed the plant to become a robust invader 

compared to its North American counterparts. A second greenhouse study was conducted to test the 

hypothesis that Chinese populations of P. virginica have evolved to become more aggressive 

competitors than their North American counterparts (i.e. have greater plant biomass). If there has 

been evolution in the Chinese ranges, the process by which they outcompete native species can be 

better understood.  
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CHAPTER II 

MATERIALS AND METHODS 

Study Species and Source Material 

The genus Plantago (Plantaginaceae) is distributed worldwide and consists of over 200 

species of both perennial and annual herbs and subshrubs (Ronsted et al. 2002, Dunbar-Co et al. 

2008). This dicotyledon genus is wind-pollinated and common to the eastern half of the United States 

(Poot 1997, Radford et al. 1968) found in grasslands and along roadsides (Cui et al. 2011). Plantago 

exhibits dimorphic cleistogamy, in that it produces both open and cleistogamous (closed) flowers 

(Albert et al. 2011, Barton 2007) arranged as spikes on inflorescences (Cui et al. 2011). It has been 

the focus of a number of studies examining the plasticity of phenotypic traits. Research suggests that 

the energy allocation by Plantago is almost exclusively to seed production (Primack 1979). Others 

have demonstrated differences in physiological traits in response to changes in environmental factors 

(Schlichting 1986); for example, it is tolerant of low temperatures, low nutrient availability, high salt 

concentrations, and high concentrations of heavy meatals (Hoggard 1998).  

 Both Plantago lanceolata and Plantago major are among the top ten most problematic weeds 

in the world (Hoggard 1998) and have been shown to reduce crop growth and harbor diseases 

(Hoggard 1998). Several Plantago species have been found invading new regions. Plantago virginica, 

for example, is native to North America but has invaded parts of China (Yan et al. 2000) and has been 

able to spread rapidly due to its prolific seed production.  First collected in Nanchang (Jiangsu 

Province) in 1951, P. virginica now occurs in the grasslands and roadsides of the Chinese provinces 

of Jiangsu, Anhui, Zhejiang, Fujian and parts of northern Taiwan (Yan et al. 2000). This plant is now 

being studied to help understand why it is such a successful invader, and perhaps to develop a 

potential defense against it in uninvaded areas such as Korea and Southern Taiwan.  
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Common Garden Experiment 

To determine if the life history and reproductive traits of P. virginica have evolved in China 

compared to plants in its native range in the United States, plant performance was compared using a 

common garden approach. Genetic factors were quantified through the comparison of phenotypic and 

life history traits of native and invasive populations by growing numerous genotypes under 

homogeneous conditions (Moloney et al. 2009). This common garden experiment was conducted in 

the greenhouse at Georgia Southern University (Bulloch County, GA) in the spring of 2013.  

 P. virginica seeds were previously collected by Dr. Hui Guo (Fudan University, Shanghai, 

China) and Dr. Lorne M. Wolfe, including ten populations from across the native North American 

and ten from the invasive Chinese range (Table 1, Fig 1). Twenty individual seeds from each 

population were germinated (20 x 10 x 2 = 400) on moistened filter paper in a petri dish, allowing for 

germination to be controlled for environmental influences to ensure germination success was due to 

genetic factors. After appearance of the first leaf, twenty seedlings from each population were 

transferred to individual conetainers (radius= 2cm, length= 13.5cm) filled with standard soil mix 

(Miracle Grow: moisture control potting mix). Conetainers were labeled with respect to population 

and continent and randomly arranged on the greenhouse benches. Plants were monitored for growth 

and watered as needed.  

Phenotypic and Life History Traits Measured 

The following traits were measured to test for genetically based differences between the 

native and invasive regions. Germination traits were measured to understand if the invader is better at 

establishing once introduced, while morphological traits show if the invader is able to allocate a 

greater amount of energy to growth and maintenance.  Reproductive traits indicate if the invader has 

been able to put energy into the production of the next generation, which could contribute to its 

invasion success. 

(i) Germination Traits 

a. Time to Germination- a plant was considered germinated when a cotyledon appeared. 
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b. Germination Success- the fraction of the initial 20 seeds per population that germinated. 

(ii) Morphological Traits 

a. Time to First True Leaf Emergence- the time it took for the first leaf to fully expand. 

b. Plant Size (measured as leaf number)- recorded approximately five weeks after FTL 

emergence and again two weeks after inflorescence emergence (before seeds developed). 

c. Leaf Size- one leaf from every individual was collected (five weeks after FTL 

emergence) by clipping the leaf at the plant stem. I measured the following traits: 

i. Length (from leaf base to top of leaf) 

ii. Petiole length (from plant stem to leaf base) 

iii. Width (widest part of the leaf) 

iv. Total leaf length (leaf length + petiole length) 

v. Dry biomass  

d. Specific Leaf Area (SLA)-  (��� �
� � � � 	

�
��������
 ), where l= length of leaf not including 

the petiole (Delph 2001).  

e. Total Plant Area ((π x l x w ) x leaf number before inflorescence emergence) 

(iii) Reproductive traits 

a. Time to Inflorescence Emergence- time inflorescence buds appeared at the base of the 

plant  

b. Time to Seed Maturation- (see appendix A) 

c. Number of Infructescences -The flowers on 25 infructescences were counted and the 

length of the infructescence was measured, suggesting that the number of flowers on an 

infructescence directly correlated with the length of that infructescence (R
2
=0.94, 

P<0.0001) (Fig 2).  

d. Infructescence Size - I measured the following on each infructescence  

i. Peduncle length  
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ii.  Infructescence length  

iii.  Total Infructescence Length per plant (number of infructescences x 

infructescence length) 

e. Number of Cleistogamous and Open Flowers per Infructescence (see appendix B) 

 

 

Competition Experiment 

Growing P. virginica from both the native and invasive regions in the presence of a second 

species (inter-specific competition), allows differences in life history traits to be contributed to the 

presence or absence of competition. Populations of P. virginica were grown in the presence of 

Cynodon dactylon (Bermuda grass), which is a species frequently used as lawn and garden grass seed 

in North America. A second Chinese competitor was not included in this study because, regardless of 

competitor’s origin, the two species grown together were competing for the same nutrients and water. 

 A preliminary experiment was conducted to determine the optimal density of Bermuda grass 

to plant with the P. virginica. In 2”x2” pots 0.5g, 1g, 2g, 3g and 4g of Bermuda grass seed were 

planted. After growth, the pot containing 0.5g of grass seed was considered to contain a similar 

coverage of grass that P. virginica would encounter in natural conditions within a lawn. Also, at 

higher densities, the grass was to unable survive because they were competing with themselves for 

resources and were over the carrying capacity of the pot.  

Plantago virginica seeds were germinated in Fall 2013. Twenty seeds from each P. virginica 

population were germinated on moistened filter paper in petri dishes (20 x 10 x 2 = 400). Once 
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germinated, fifteen seedlings from each population were transplanted (n=300) to individual 2”x 2” 

pots filled with standard soil mix (Jungle Growth). After the seedlings established (evident after 

emergence of a first true leaf), 0.5g of C. dactylon was added to the pots of ten individuals from each 

population (n=200). The remaining plants served as controls growing in the absence of competition 

(n=100). Plants were watered and monitored for growth for approximately 26 weeks and ended when 

infructescence growth ceased.  

  The effect of competition was measured by measuring and comparing the above ground dry 

biomass of P. virginica (excluding the biomass of C. dactylon). The more conventional approach 

proposed by Goldberg and Landa (1991) was not performed because measurements with the absence 

of competition were only acquired for P. virginica, C. dactylon was not grown in the absence of 

competition.  

Data Analysis 

Statistical analysis was conducted using the statistical package JMP Pro (SAS Institute Inc., 

version 10, 2012). All data was tested for normality and homogeneity of variance and is presented as 

non-transformed means ± standard error and the term region refers to North America vs. China. An 

ANOVA was used in the common garden experiment to determine if there were significant 

differences in the germination traits between regions, while a nested ANOVA was used to identify 

differences in morphological and reproductive traits. (General Model: Plant Trait = Region + 

Population (Region) + Error).  Correlation analysis was conducted to determine the association 

between traits within each region. The coefficient of variance was calculated for traits within 

populations and then compared between regions using a t-test to determine overall the genetic 

variance between regions.  A 2-way nested ANOVA was conducted in the competition experiment to 

determine if there were significant differences in above ground biomass among North American and 

Chinese populations in the presence or absence of competition (General Model: Biomass = Region + 

Population (Region) + Competition + Region*Competition + Error).  
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CHAPTER III 

RESULTS 

Common Garden Experiment 

Germination Traits 

Significant regional differences were detected for one germination trait. Chinese populations 

of P. virginica had a 25% greater germination success than North American populations (P=0.018; 

Table 2, Fig 3). Although not statistically significant, there was a trend of faster germination in 

Chinese populations (P=0.089; Table 2, Fig 3).  

Morphological Traits 

 Several morphological traits were found to be statistically different between the two regions. 

Chinese populations tended to produce their first true leaf faster than their North American 

counterparts (P=0.062; Table 3, Fig 4).  The regions did not differ in plant size (number of leaves) 

(P=0.18; Table 3, Fig 4). North American plants tended to have longer leaves (P=0.067) and 

significantly longer petioles (P=0.004), however, Chinese populations had significantly wider leaves 

(P=0.033; Table 3, Fig 4). North American leaves had a total length (including petiole) an average of 

3mm longer than Chinese plants (P=0.010), but did not differ in biomass (P=0.822; Table 3, Fig 4). 

There was no difference between regions in specific leaf area (SLA) (P=0.99) or total plant area 

(P=0.36; Table 3, Fig 4). 

Reproductive Traits 

Significant regional differences were detected for several reproductive traits. Chinese 

populations of P. virginica took 14 days longer to produce reproductive structures (inflorescences) 

than North American populations (P<0.0001; Table 4, Fig 5). North American populations produced 

seeds approximately 21 days earlier than Chinese populations (P<0.0001; Table 4, Fig 5) and had a 

greater number of infructescences (P=0.003; Table 4, Fig 5). Chinese populations, however, produced 
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68% higher infructescences (peduncle length)  (P<0.0001), and 38% longer infructescences 

(P<0.0001), but had no difference in total infructescence length per plant (P=0.858; Table 4, Fig 5).  

No chasmogamous flowers were produced in this study. Every inflorescence produced 

only cleistogamous flowers.  

Correlation and Coefficient of Variation Relationships 

 In North American populations of P. virginica, the time to germination and the 

proportion of seeds germinated were correlated (R=-0.658, P=0.050) as well as the time to 

inflorescence production and the length of the infructescence (R=0.793, P=0.011) (Table 5). In 

Chinese populations, the time to inflorescence production was related to the number of 

inflorescences a plant produced (R=-0.688, P=0.028) (Table 6). In both North American and 

Chinese populations, the size of the plant and the time to inflorescence production were 

correlated (R=0.718,0.805, P=0.029, 0.005) as well as the length of infructescences and how 

many infructescences a plant produced (R=-0.75,-0.69, P=0.019, 0.025) (Table 5,6).   

The coefficient of variation among traits in Chinese (0.157±0.033) populations was lower 

than those of their North American (0.289±0.042) counterparts (F(1,8)=6.13, P=0.027; Fig 6).  

 Competition Experiment  

North American and Chinese populations of P. virginica did not differ in above ground 

biomass when the interaction of competition was introduced (P=0.217; Table 7, Fig 7). 
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CHAPTER IV 

DISCUSSION 

Overview 

Plantago virginica is a common herb residing along sidewalks and in the front lawns of 

many North American homes. Since its introduction into China 60 years ago, it has become a 

problematic immigrant in Chinese crop fields and amongst native biodiversity (Yan et al. 2000). 

The goal of this experiment was to examine if there were genetically based differences between 

North American and Chinese populations of P. virginica. Under the hypothesis that Chinese 

populations have evolved life history traits that have allowed the plant to progress into a more 

aggressive invader, a common garden study was conducted at Georgia Southern University. 

Results indicate that there are significant phenotypic differences in both growth and reproductive 

traits, suggesting that North American and Chinese populations of P. virginica have become 

genetically different since its introduction into China, which could contribute to its invasiveness 

in the new region. 

Phenotypic Variation 

The phenotypic variability within a region can differ between the native and invasive 

sites depending on the manner of its introduction. The calculated coefficient of variation used in 

my research is an effective estimator in indicating the extent of variability in relation to the mean 

of a population. By calculating this for observed traits and comparing the diversity in North 

American and Chinese populations from the common garden study, I was able to determine that 

Chinese populations had significantly less variability in phenotypic traits. Within the regions 

there were population level differences in the proportion of seeds that were able to germinate, the 

time it took inflorescences to emerge, and the number of infructescences on an individual. These 
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results could indicate that populations in North America exhibit more genetic variation than those 

in China, which could contribute to its ability to establish in a new area and produce offspring.  

 Both natural selection and genetic drift could alter genetic structures of populations in 

ways that modify their phenotypic variability. Together, these processes are the focus for the 

evolutionary mechanism of invasion (Lee 2002). The stochastic event of P. virginica’s invasion 

into China could be subject to natural selection because individuals not suited for the new area 

did not survive and produce offspring. Individuals that possessed advantageous traits for the new 

region were able to prosper and spread. This could contribute to the decrease in phenotypic 

variation found in this research. Similar research done by Blair and Wolfe (2004) showed that 

when comparing native European and invasive North American populations of Silene latifolia, 

selection in North America favored individuals in the invaded site that invested more energy into 

growth and reproduction and less into defense. They also determined that evolutionary forces like 

natural selection had an impact on the decreased phenotypic variability among populations. In 

these experiments with P. virginia and S. latifolia it is evident that selection has acted upon 

ecological forces that impacted its performance it the new range (Blair and Wolfe 2004, Bossdorf 

et al. 2004).  

P. virginica’s  introduction into China could have also been subject to genetic drift or 

more specifically, the founder effect. This is evident when levels of genetic variation in 

introduced species are often relatively low because of small founder population sizes (Wright 

1929). In some cases genetic drift alone has promoted successful invasions (Lee 2002). For 

example Tsutsui et al. (1999) found that a population bottleneck caused reduced genetic diversity 

in invasive California ant populations leading to interspecific aggression in the invaded site. 

While the native Argentine populations exhibit intraspecific aggression, this bottleneck allowed 

invasive ants to eliminate native ant populations, attributing to its invasive success in California. 

In my research, Chinese populations of P. virginica could have begun from only a few members 
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of the original North American populations, which represent a portion of the phenotypic variation 

for the species, thus passing down a fraction of gene pool to the current Chinese generations. It is 

possible that seeds from more vigorous North American populations, by chance, were the source 

material in China, causing more aggressive North American genotypes to colonize and spread 

throughout the novel environment. These results demonstrate how simple population genetic 

changes can have dramatic ecological consequences. 

Loss of phenotypic diversity can also be due to inbreeding depression. P. virginica, 

although wind pollinated, also has the capacity to self-fertilize. Invasive species with the ability to 

self-fertilize are a serious threat. According to Baker’s Law (Stebbins 1957), species with selfing 

mechanisms are believed to be favored in population establishment (Barrett et al. 2008), because 

of the reproductive assurance. It is possible that, because of P. virginica’s ability to produce 

cleistogamous flowers, less phenotypic diversity in Chinese populations could be a consequence 

of inbreeding depression (Waller 1984). Walker et al. (2009) found similar results when 

comparing several invasive populations of Impatiens glandulifera in introduced European regions. 

They found decreased variation for several genes in all populations and attribute their results to 

small founder populations as well inbreeding depression. 

Because this common garden experiment used field-collected seeds, we cannot rule out 

the impact maternal effects could have on the interpretation of our results (Roach et al. 1987). 

Large maternal effects have been demonstrated for seed size, which in turn, can affect several 

morphological and reproductive traits throughout the lifetime of a plant (Roach et al. 1987, Wolfe 

1993). Although not collected in this experiment, the seed mass was collected in the Chinese 

common garden experiments that paralleled ours, and no difference was found when comparing 

regions. Also, genetic analysis revealed that North American populations had a greater number of 

alleles compared to their Chinese counterparts. Because of this and the comparable seed mass 
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between regions, results suggest that maternal effects did not influence other life history traits in 

P. virginica.  

Morphological and Life History Traits 

 I found significant overall regional differences in several germination, morphological and 

reproductive traits between the native North American and invasive Chinese populations of P. 

virginica in the greenhouse experiment. The identified differences in traits between regions could 

have occurred due to a combination of evolutionary forces previously described; but regardless of 

how they came about, these differences now being expressed in Chinese populations could be 

attributing to the aggressiveness of P. virginica’s invasion. This is consistent with the idea that 

plants in introduced ranges grow more vigorously than their native counterparts (Blossey and 

Notzold 1995).  

Chinese populations had a considerable advantage in germination traits over North 

America populations. Because Chinese P. virginica had greater germination success and a 

tendency to germinate sooner, a larger number of offspring may be able to establish in an area 

before other native species. Also photosynthesizing sooner (as indicated by the earlier emergence 

of the first true leaf), Chinese populations may be producing their own energy making it more 

difficult for natives to out-compete them for space if their seeds have yet to establish. Chinese 

and North American populations also differed in leaf shape, but not photosynthetic area. 

Contributing to the aggressiveness of P. virginica’s invasion, the difference in leaf shape could be 

a result of decreased genetic variability due to an ecological force or this weedy species may have 

a universal performance advantage compared to native biodiversity (Dahler 2003). 

Although populations of P. virginica from China possessed vigorous germination traits, 

North American plants were able to produce inflorescences and seeds in less time. North 

American populations may be making a trade off by allocating fewer resources to seed quality 
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and more to reproductive structure development. This approach of reproducing sooner may be 

beneficial in the native range, however, in order for P. virginica to be successful in China, 

individuals with a life history strategy of allocating resources to germination may be more 

successful in establishing and invading the new habitat. Chinese populations had longer, taller 

infructescences, but were unable to produce as many as North American populations. Because 

there was no difference in the total infructescence length per plant (average infructescence 

length*number) and because infructescence length is a proxy of flower number (regression 

analysis) plants from both regions had the potential for the same reproductive output using 

different strategies. However, because of greater germination success, a plant from China has a 

greater likelihood of getting to the point of flowering and producing offspring compared to a 

plant from North America.  

An intriguing result from the common garden experiment was that all North American 

and Chinese individuals produced cleistogamous flowers. The production of only cleistogamous 

flowers could be a major indicator of inbreeding depression in both Chinese and North American 

populations. Research in China that paralled this experiment, found similar results in all four 

common gardens performed and experiments are currently being designed to explore this 

phenomenon (Dr. Hui Guo personal communication). This suggests that the production of open 

and closed flowers may be determined by environmental factors instead of genetics.  

Effect of Competition Between Regions 

It has often been cited that competitive ability in an introduced species tends to contribute 

to its invasiveness in new regions (Baker 1991, Dahler 2003, Wolfe 2002, Wolfe & Blair 2009). 

However, I did not find significant differences in competitive ability between regions in the 

greenhouse experiment. In fact, plants in the presence of competition were able to have more 

above ground biomass than those in the absence of competition, regardless of the region.   
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When studying P. virginica’s competitive ability it is important to understand there are 

two aspects to competition. The first is the effect of the competitor on P. virginica and second the 

effect of P. virginica on the competitor (Goldberg et al. 1991) An important measurement that 

was not obtained in this experiment was the effect of P. virginica on the grass competitor. 

Populations of P. virginica were grown in the presence and absence of competition, but the 

competitor, C. dactylon, was not grown alone. In the event there were no regional differences in 

morphological traits of P. virginica, this measure would have shown if P. virginica was having a 

negative effect on the competitor.  

These results from the competition experiment may be inconclusive because throughout 

the course of the experiment every individual was exposed to various temperature and water 

stressors. Approximately ten weeks after germination, plants were moved from 23°C to an 

unheated room with temperatures reaching 10°C at night. Also at this time, all plants were 

deprived of water for one week and then overwatered for the remainder of the experiment. It is 

important to note that every individual was exposed to the same stressor, allowing regional 

differences to still be assessed, however, the stress had a negative impact on plant growth, making 

it impossible to take most measurements. For example, some individuals never produced plant 

material after their first true leaf, while others sent up inflorescences too early, which were unable 

to form seeds. These results could have led to concluding that the means were not different when 

in reality they were (type II error), affecting the outcome of the study.  

Summary 

 After conducting this investigation into determining differences in phenotypic traits 

between North American and Chinese populations of P. virginica, results suggest that P. 

virginica has advanced to a more aggressive phenotype in the invaded range. Differences in 

genetic traits were unveiled by growing plants from the introduced and native ranges in a 
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common garden experiment as well as genetic data provided by our Chinese collaborators. 

Chinese plant have a decreased genetic variability and possess more vigorous traits compared to 

North American populations, which could be explained by natural selection, genetic drift 

(founder effects) or the combination of the two; uncovering the random chance that founding 

individuals possessed more aggressive North American phenotypes, survived in the new region 

because of these phenotypes, allowing this plant to spread successfully in the new region. This 

study is part of a collaboration with China in order to understand the mechanisms behind the 

invasion of P. virginica. The present study identified decreased phenotypic variation and more 

aggressive phenotypes in invasive populations. To further this research, an exploration into the 

mating system of P. virginica an what causes individuals to self fertilize could provide insight as 

to how the plant has been able to colonize and if the selfing mechanism has allowed it to spread 

more rapidly in the new region.  
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Table 1: Identity and location of Plantago virginica populations. 

N. America ID City State Latitude (N) Longitude (W) 
Elevation 

(m.a.s.l) 

 1 Morehead City N. Carolina 34°43'20.49" 76°45'30.22" 3 

 2 Logan County Oklahoma 35°43'53.48" 97°17'12.12" 329 

 3 Edmond Oklahoma 35°41'45.79" 97°20'44.74" 330 

 4 Greensboro N. Carolina 36°15'10.28" 79°45'24.74" 203 

 5 Twin City Georgia 32°33'48.92" 82°2'3.81" 71 

 6 Statesboro Georgia 32°25'13.54" 81°47'32.23" 66 

 7 Statesboro Georgia 32°24'8.27" 81°45'18.35" 33 

 8 Gainesville Florida 29°38'6.68" 82°20'20.03" 23 

 9 Blackville S. Carolina 33°19'57.89" 81°17'47.26" 57 

 10 Palm Springs California 33°49'22.80" 116°32'13.20" 106 

China ID City Province Latitude (N) Longitude (E) 
Elevation 

(m.a.s.l) 

 11 Nanjing Jiangsu 32°03'06.93" 118°49'39.10" 50 

 12 Nanjing Jiangsu 32°02'24.97" 118°52'27.61" 74 

 13 Jinhua Zhejiang 29°08'08.76" 119°38'29.45" 74 

 14 Nanchang Jiangxi 28°39'11.02" 115°47'26.95" 18 

 15 Nanchang Jiangxi 28°41'17.22" 115°55'19.50" 21 

 16 Nanchang Jiangxi 28°41'14.39" 115°56'02.30" 24 

 17 Fuzhou Fujian 26°01'41.64" 119°12'25.48" 7 

 18 Fuzhou Fujian 26°03'39.60" 119°11'41.53" 11 

 19 Shanghai Shanghai 31°08'46.34" 121°26'11.68" 4 

 20 Wuhan Jianhan 30°32'38.66" 114°24'26.53" 35 

 

 

 

 

 

 



 

 

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Results for sources of variation in germination traits of Plantago virginica. 

(*P<0.05, **P<0.01, ***P<0.001 as indicated by F-values, df=1,18). Error reports as

sum of squares. 

Trait Region Error 

Time to Germination (days) 3.25 14.23 

Proportion of Seeds Germinated 6.76** 0.31 
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Table 3: Results for sources of variation in morphological traits of Plantago virginica. (*P<0.05, 

**P<0.01, ***P<0.001 as indicated by F-values, df=1,17). Error reported as sum of squares, 

SLA=specific leaf area 

Trait Region Population (Region) Error 

Time to First True Leaf (days) 1.69 2.08* 419.45 

Plant size (# of leaves) 0.27 6.67*** 1885.04 

Leaf Length (mm) 0.98 3.46*** 1827.19 

Petiole Length (mm) 2.10** 4.12*** 371.07 

Leaf Width (mm) 2.17* 2.14** 234.35 

Total Leaf Length (mm) 1.57** 4.37*** 6092.59 

Leaf Biomass (mg) 0.03 1.80* 0.10 

SLA (mm
2
/mg) 0.0001 1.59 782000 

Total Plant Area (mm
2
) 0.83 4.33*** 3.19x10

7
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Table 4: Results for sources of variation in reproductive traits of Plantago virginica. (*P<0.05, 

**P<0.01, ***P<0.001 as indicated by F-values, df=1,17). Error reported as sum of squares. 

Trait Region Population (Region) Error 

Time to Inflorescence Production (days) 6.83*** 7.97*** 24226.49 

Time to Seed Maturation (days) 10.97*** 12.65*** 42418.29 

Number of Infructescences  5.75** 1.55 208.07 

Peduncle Length (mm) 12.87*** 12.95*** 147018.11 

Infructescence Length (mm) 6.41*** 8.11*** 29109.96 

Total Infructescence Length Per Plant (mm) 0.032 0.93 100388.49 
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Table 7: Results for sources of variation in above ground biomass in Plantago virgninc

populations from North America and China in the presence and absence of competition 

(*P<0.05, **P<0.01, ***P<0.001 as indicated by F-values, df=1,19).Error reported as 

sum of squares 

Region 

Population 

(Region) 

Competition Competition*Region Error 

0.429 2.967*** 0.0047* 0.216 0.014 
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Fig 2 Relationship between infructescence length and flower number 

in Plantago virginica 

Fig 1 Locations of collected Plantago virginica populations in North America and China. Projected coordinate 

system: GCS WGS 1984  
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Fig 3 Germination traits (mean ± S.E.) of Chinese (C) and North American (NA) Plantago virginica 

populations in a common garden experiment (*P<0.05, **P<0.01, ***P<0.001). The values for the graph 

are found in Appendix C 

** 
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Fig 4 Morphological traits (mean ± S.E.) of Chinese (C) and North American (NA) Plantago virginica 

populations in a common garden experiment (*P<0.05, **P<0.01, ***P<0.001). SLA=Specific leaf area 

The values for the graph are found in Appendix C  
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Fig 5 Reproductive traits (mean ± S.E.) of Chinese (C) and North American (NA) Plantago virginica 

populations in a common garden experiment (*P<0.05, **P<0.01, ***P<0.001). The values for the graph 

are found in Appendix C  
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Fig 6 Coefficient of variation for selected traits of Plantago virginica from Chinese (C) and 

North American (NA) populations. The selected traits are as follows: time to germination 

(days), proportion of seeds germinated, size of plant (number of leaves), time to inflorescence 

emergence (days), infructescence length (mm), number of infructescences, total infructescence 

length per plant (mm), and time to seed maturation (days). Figures for particular traits are 

found in Appendix D 
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Fig 7 Above ground biomass (mean±SE) of Plantago virginica from North American (NA) and 

Chinese (C) populations in the presence and absence of competition. The values for the graph can be 

found in Appendix F.  
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Appendix A: Plantago virginica with A: inflorescences that are producing seeds and B: 

Infructesences with mature seeds 
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Appendix B: Plantago virginica with A: chasmagomous (open) flowers (Gibson 2012) and B: 

cleistogamous (closed) flowers  
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Appendix C: Descriptive statistics (mean ± SE) of germination traits, vegetative traits, and 

reproductive traits for Plantago virginica in a common garden study at Georgia Southern 

University. SLA = specific leaf area 

 Region   

Trait China North America F P 

Time to Germination (days) 4.60±0.49 6.33±0.85 3.25 0.089 

Proportion of Seeds 

Germinated 
0.97±0.02 0.72±0.09 6.76 0.018 

Time to First True Leaf (days) 22.36±0.39 23.39±0.34 1.70 0.062 

Plant Size (number of leaves) 12.74±0.43 11.76±0.72 0.27 0.18 

Leaf Length (mm) 24.75±0.59 26.55±0.81 0.98 0.067 

Petiole Length (mm) 6.01±0.24 7.14±0.32 2.10 0.004 

Leaf Width (mm) 10.72±0.28 9.83±0.28 2.17 0.033 

Total Leaf length (mm) 36.78±0.96 40.84±1.34 1.57 0.010 

Leaf Biomass (mg) 3.27±0.20 3.19±0.30 0.03 0.822 

SLA (mm
2
/mg) 0.33±0.03 0.33±0.04 0.0001 0.99 

Total Plant Area (mm
2
) 11245±974 10209±720 0.83 0.36 

Time to Inflorescence 

Production (days) 
92.20±1.77 78.11±1.73 6.83 <0.0001 

Time to Seed Maturation (days) 137.43±2.15 115.09±2.08 10.97 <0.0001 

Number of Infructescences  3.21±0.16 4.48±0.38 5.75 0.003 

Peduncle Length (mm) 111.57±2.97 66.39±3.92 12.88 <0.0001 

Infructescence Length (mm) 57.51±1.78 41.49±2.32 6.41 <0.0001 

Total Infructescence Length per 

plant (mm) 
138.78±4.16 136.10±5.70 34.69 0.86 

 

 



 

 

48

 

 

 

 

 

Appendix D: Population variation of selected traits in Plantago virginica populations from China 

(C) and North America (NA) presented as population means, coefficient of variation analysis is 

reported for each trait in Appendix E.  
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Appendix E:  Coefficient of Variation (standard deviation/mean) for selected traits of Plantago 

virginica from the common garden study. (*P<0.05, **P<0.01, ***P<0.001 as indicated by t-values

df=1,18) 

Trait North America China t 

Time to Germination (days) 0.39 0.32 3.25 

Proportion of Seeds Germinated 0.21 0.04 9.09** 

Size of Plant (# of leaves) 0.37 0.19 0.39 

Time to Inflorescence Emergence (days) 0.16 0.09 8.70** 

Infructescence Length 0.38 0.20 6.34* 

Number of Infructescences 0.42 0.21 6.32* 

Total Infructescence Length Per Plant (mm) 0.27 0.15 0.04 

Time to Seed Maturation (days) 0.11 0.06 2.55 
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Appendix F: Locations for North American and Chinese populations of Plantago virginica 

represented as proportional symbols for selected traits.  Projected coordinate system: GCS WGS 

1984. 
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Appendix F: Continued 
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Appendix G: Descriptive statistics (mean ± SE) of above ground biomass for Plantago virginica 

in a common garden study at Georgia Southern University of competition between North 

American and Chinese populations. (F=1.54, P=0.217) 

 North America China 

Competition 0.018±0.0012 0.014±0.0008 

No Competition 0.011±0.003 0.012±0.0022 
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