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ABSTRACT 
 
 

AN EVALUATION OF THE EFFECT OF STORMWATER TREATMENT  

PONDS ON WETLAND AND STREAM QUALITY INDICATORS 

 
 

by 
 
 

Subhomita Ghosh Roy 
The University of Wisconsin- Milwaukee,2012 

Under the Supervision of Timothy Ehlinger Ph.D. 
 

 

Modifications of land cover in urban areas are leading to hydrological, 

physiochemical and subsequent biological disturbances in the receiving 

aquatic ecosystems. Resulting in damage of the limited quantity of available 

freshwater. Based on the recognition of the value of natural wetlands in water 

quality improvement, constructed wetlands have been widely used for water 

treatment, to remove fine pollutants from catchment runoff also to control 

increased surface runoff from urbanization. The hypotheses of the study was 

that the surface water quality would improve while the sediment quality would 

vary moving from up-gradient to down-gradient through the interconnected 

wetlands, relative to precipitation, discharge rate and season. The 

interconnected wetlands in Pike River watershed (Racine, WI) were chosen for 

the study. Water quality (physical characters and nutrients) and sediment 

studies were performed in these three interconnected wetlands and in the  
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stream as well. Physical parameters (including pH, specific conductivity, 

dissolved oxygen, turbidity) and nutrient levels (nitrogen, phosphorus) were 

analyzed from the water. Sediment bioassays were performed with the plant 

species Sinapsis, Lepidium, and Sorghum and with the invertebrate 

Heterocypris as an indicator species. Also, Thamnocephalus was used as an 

indicator for the pore water bioassay. Results showed strong indication of 

water quality improvement by phosphate reduction towards the down-gradient 

wetland, high specific conductance, turbidity and Low dissolved oxygen partly 

in the up-gradient wetland. Although there were some exceptions in the 

results, but its important to realize that these wetlands are just 10 years old 

and may not have their biological potential at the fullest like natural wetlands. 

Another important finding of the study was that the stream also performed in a 

comparable fashion with the wetlands. These findings suggest that a 

functional interconnected wetland system can discharge less polluted fresh 

water to its connected water body. 
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INTRODUCTION 

  

 The process of urbanization in the United States since the mid 1900s has 

presented significant environmental challenges for the protection and 

maintenance of water resources. Increased public perception of these challenges 

lead to the establishment of the US Clean water Act (CWA) in 1972 for regulating 

discharges of pollutants into the waters of the United States and regulating 

quality standards for surface waters (EPA 2012, Carey and Hochmuth et al., 

2012).  Expanding areas of impervious surfaces result in reduced infiltration and 

increased storm-water runoff into receiving waterways (Bannerman et al.1993).  

In addition to flooding, the pollutants carried by storm-water can seriously harm 

water quality and biotic integrity in rivers, streams and lakes (EPA 2003).  

 Stormwater ponds are often constructed to mitigate the impacts of 

increased runoff flows, volumes and pollution loads (Tixier et al., 2011), 

stormwater ponds have been used extensively during the past 35 years (Chocat 

et al., 2001). Among the various best management practices (BMPs), stormwater 

management ponds have become common features of urban landscape in the 

USA, Canada, Australia, Denmark, France, Sweden, and UK, where tens of 

thousands of such ponds were built in residential, commercial and industrial 

urban areas, and in transportation corridors. First designed to provide stormwater 

storage for controlling runoff peaks and flooding, their functions soon expanded 

to enhancing stormwater quality by various treatments (e.g., settling, bacterial 
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degradation) and thereby protecting receiving waters against pollution. 

Stormwater ponds are commonly designed to provide additional benefits 

including aesthetic / recreational amenities, groundwater recharge, sub-potable 

water supply and new habitats for wildlife (Marsalek et al., 2005a).  

 Within the context at assessing the functionality of storm water ponds it is 

important to recognize the critical role that they also play by acting as wetlands in 

the natural cycling of sediments and nutrients in the environment – an attribute 

that is hugely beneficial to human livelihoods and well-being. The role wetlands 

play in trapping excess sediments and preventing them from entering river and 

lake systems present downstream is very important. As these sediment particles 

are often vehicles for transporting pollutants such as nutrients (for example, 

nitrate and phosphate), pesticides, and heavy metals (EPA, 2001).  

            Many studies have investigated the retention capacity and effects on 

nutrient levels in wetlands (Kadlec and Wallace 2009).  For example, a series of 

storm-water wetlands were monitored in a heavily urbanized 12.5 ha watershed 

in North Carolina (Hathaway and Hunt, 2010), which allowed for an examination 

of the diminishing returns provided by three successive BMPs of a similar type. 

At least 80% of the total concentration reduction for all pollutants occurred within 

the first wetland cell (Hathaway and Hunt, 2010).   

 Physical characteristics and hydrologic conditions can directly modify or 

change chemical and physical properties such as nutrient availability, degree of 

substrate anoxia, soil salinity, sediment properties, and pH (Mitsch and Gosselink 

1993). Surface Inflows and Outflows, may be seasonal, are often matched with 
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precipitation pattern or spring thaw, and can be channelized as stream flow or 

nonchannelized as runoff (Mitsch and Gosselink 1993, Kadlec and Wallace 

2009). 

 The self-purification potential (SPP) of stormwater pond-wetland systems 

reflects the capacity of the ecosystem to assimilate all inputs (Tixier et al., 2011). 

Within specific boundaries set by the hydraulic needs of the system to control 

flooding and erosion (e.g., storage volume, detention time), the SPP represents 

all nutrient cycling and detoxification processes that result from synergy of 

biological processes (metabolic activities of all living organisms), physical factors 

(e.g., hydro geomorphic context, dynamics of flow exchanges between surface 

water and groundwater, settling of solids with associated chemicals) and 

chemical factors, including redox potentials, binding of pollutants by 

complexants, speciation of heavy metals (Tixier et al., 2011). 

 Other studies have examined the spatial and seasonal performance of 

stormwater management systems using an integrated sediment quality 

assessment approach that incorporate monitoring of water quality, monitoring of 

nutrients input and ecotoxicological bioassays and biotic characters related to 

precipitation, discharge rate and season.  For example, Tixier et al. (2011) used 

detailed monitoring data for the characterization of self-purification potential of 

both constructed treatment ponds and natural riparian wetlands, reflecting their 

capacity to assimilate all inputs.  This included estimating effects on 

physiochemical parameters (conductivity, pH, suspended sediment, dissolved 

oxygen) and nutrient inputs and outputs (phosphorus and nitrogen).  In addition, 
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they included ecotoxicological assays as a tool for prospective risk assessment 

(Chapman, 1995).  The results from these and other studies demonstrate that the 

self-purification potential of constructed treatment pond-wetland systems varies 

seasonally and is contingent on patterns of precipitation, temperature and 

biological productivity of the system (Kadlec and Wallace 2009). 

          The purpose of this current study is to investigate the self-purification 

potential of a constructed stormwater pond-wetland system in the Pike River, 

located in the rapidly urbanizing watersheds of Racine and Kenosha Counties in 

southeastern Wisconsin (Figure 1).  A flood-control plan implemented for the 

Village of Mount Pleasant included significant modifications in channel 

morphology, creation of riparian wetland-pond systems, and the installation of 

fish habitat along an 8 Kilometer stretch of river (Crispell-Synder, Inc. 1997, 

Ehlinger et al. 2002, Ehlinger and DeThorne 2004). Phase 1 of the multi-phase 

project included the construction of a 10 hectare riparian wetland system which 

included a series of 3 connected stormwater ponds, designed to capture and 

treat runoff from surrounding residential development (Figure 2).  A field-

sampling program was initiated to collect data on water quality, nutrient 

concentrations, and sediment ecotoxicology. These data were then examined 

relative to seasonal precipitation and flow patterns to determine the effectiveness 

of the pond system in improving water quality in the Pike River. The hypotheses 

of the study was that the surface water quality would improve while the sediment 

quality would vary moving from up-gradient to down-gradient through the 

interconnected wetlands, relative to precipitation, discharge rate and season. 
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MATERIALS AND METHODS 

Study System 

Three wetland ponds were chosen as sampling sites in the Pike River 

watershed in order to assess the effect of the interconnected wetland systems on 

water quality, toxicity and nutrient loading (Figure 2).  Sampling sites included 3 

wetland locations (1-3 in Figure 2).  W1 receives water from a stormwater culvert 

draining a local residential subdivision.  Water flows from W1 into W2 through a 

metal culvert, and then through an open channel into W3 (Figure 2).  Water 

received into W3 then diffuses to the stream channel through a diffuse series of 

rivulet channels.  All three wetland ponds also receive runoff from the 

surrounding farm fields and bike paths (Figure 2).  The wetland ponds differed in 

physical dimensions with W1 being deepest and W3 being the shallowest (Table 

1).   

Four additional sampling sites in the stream were selected (S4-S7 in 

Figure 2) in order to assess stream water quality and toxicity above and below 

the wetland-pond system.  The most upstream site (S4) also receives input from 

the local residential areas via a culvert. 

 

Water Quality: Multiparameter Sondes 

 In the wetland sites, continuous monitoring of the water quality at 30 

minute intervals was performed using YSI 6600 EDS multiparameter sondes 

equipped to measure the following parameters: pH, specific conductivity, 

dissolved oxygen, turbidity, depth and temperature from June through August 
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2012.  Sondes were installed in each of the wetland sites for 6-week durations 

after which they were retrieved, the data were downloaded and a replacement 

set of calibrated sondes was deployed. Sondes were also installed to three of the 

four stream sites (S4, S5, S7) during August and September 2012 for six weeks. 

Sondes were placed approximately 15 centimeters above the stream or the 

wetland bed (see photos in Appendix F). Due to unavailability in the number of 

sondes the installation period was different in the wetlands and streams. 

 

Surface Water Sampling and Nutrient Analysis 

Presence of nutrients like Nitrate and Phosphate in surface water of all 

wetlands and the stream sites were analyzed. Water samples were collected on 

11 dates during spring and summer 2012 using a US DH-81 integrated sampler.  

Samples were collected during dry periods (non-event) and following 

precipitation (event). The rainfall events were categorized as samples collected 

within 48 hours of precipitation falling greater than 1 cm in 24 hours at the Racine 

airport. The US DH-81 (Appendix E) integrated sampler was used for water 

sampling that enables to sample water in a 1-meter vertical column (USGS 2005, 

Appendix E i). In each wetland-pond, 3 water samples were collected along a 

vertical transect at the inflow and at the outflow and then spanning equidistant 

from the inflow to the outflow. For each stream site, water samples were 

collected from midstream thalwag. After collection, all water samples were 

transferred to 1000 mL Nalgene bottles and were placed on ice and transferred 

to the laboratory for analysis within 24 hours of sample collection. 
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 Nitrate and ortho-phosphate were analyzed with HACH DR 2800TM 

spectrophotometer. For nitrate, the Cadmium Reduction method with applicability 

in water, wastewater and seawater and a detection range of 0.3 - 30.0 mg/L 

NO3
—N was followed. Similarly for phosphorus the PhosVer 3 (Ascorbic Acid) 

method with applicability in water, wastewater and seawater and a detection 

range of 0.02 - 2.50 mg/L PO4 was followed. 

 

Sediment Sampling 

 An Ekman dredge was used to collect the biologically active layer of the 

benthic zone (near surface), or approximately top 10 cm of surface sediment 

from all of the wetland sites (1, 2 and 3) and three stream sites (4, 5 and 7). A 

steel corer was also used to collect core samples of about 40 cm from the 

wetland sites (1, 2 and 3) to incorporate the effect of deeper sediment 

accumulating layers in the wetlands.  Sediment samples were collected followed 

southflow. Sample grabs were taken from each location along the transect and 

were composited in the field as one sample for each wetland. Core sampling 

followed the same procedure as above except that samples were composited by 

layer (top and bottom) yielding two samples per wetland. Approximately top 15 

cm were collected as the top layer and the remainder of the total 30 cm core was 

taken out as the bottom layer. 

Three sample grabs were collected at each stream site using the Ekman 

dredge. Two grabs were along the two shores and one approximately at the 

middle of the two. Finally all the grabs were homogenized in the field yielding one 
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composite sample per stream site. All samples were stored in 1000 mL Nalgene 

bottles and placed in coolers temporarily while being transported back to 

laboratory. In lab, each sample was divided into 500 mL centrifuge bottles and 

spun at 4000 rpm for 15 minutes in Beckman J2-HS centrifuge to separate the 

pore water from the sediment. Both the sediment and the pore water were then 

frozen separately (-200C) and stored in accordance with the United States 

Geological Survey procedure (USGS et al 2011). Sediments and pore waters 

were transferred into the refrigerator (at 40C) from the freezer to thaw before at-

least 48 hours prior to testing. 

 

Ecotoxicological Bioassays 

Ecotoxicological tests were used for the assessment of the total toxicity of 

all wetland site sediments, covering organic and inorganic pollutants. While the 

pore water assays generally reveal only the dissolved (bioavailable) 

contaminants, direct‐contact tests provide a better assessment of overall 

ecotoxicological potential (Standard Operational Procedure, Ostracodtoxkit, 

Microbiotest Inc).  As such, three different methods developed by 

MICROBIOTESTS INC. were used to evaluate ecotoxicologial properties of the 

samples collected: (1) OSTRACODTOXKITTM for direct sediment contact, (2) 

RAPIDTOXKITTM for pore waters and (3) PHYTOTOXKITTM for sediments. 

 Ostracod, Heterocypris incongruens, cysts were hatched, pre-fed, and 

incubated for 48 hours. A subset of 10 individuals was sampled and initial body 

length measurements were recorded, and the remaining organisms were 



9 

 

 

distributed in sets of 10 into individual wells filled with control and test sediments. 

Test and standardized quartz control sediments were prepared by mixing with a 

standardized water solution (US EPA formula for “moderately hard water”). A 

prepared algal solution was added to the wells to serve as food and the 

organisms were incubated in darkness for 6 days at 25 0C.  After incubation, the 

contents of wells were micro-sieved and the ostracods were separated out from 

the sediments under microscope. The number of dead and living organisms was 

recorded. The surviving ostracods were placed in a fixative (lugol solution), 

digitally photographed, and the length of individuals was recorded using a 

micrometer (Appendix B). Growth inhibition and mortality rates were calculated 

by comparing responses of treatment sediments with controls (Standard 

Operational Procedure, Ostracodtoxkit, Microbiotest Inc).  

RAPIDTOXKITTM tests were used to evaluate the response of 

Thamnocephalus platyurus larvae to pore waters from the wetland sites as well 

as stream sites by measuring feeding inhibition relative to controls. T. platyurus 

cysts were hydrated, and then incubated for 30-45 hours (Appendix A). After 

incubation, the hydrated cysts were then distributed into separate test tubes with 

either control water or test pore water and were incubated for an hour. Next, 

colored microspheres acting as food (dyed red for color indicator) to be taken up 

by the organisms were added to the test tubes and were incubated for an 

additional 30 minutes. The T. platyurus were then fixed with a lugol solution, 

transferred to an observation plate and examined under a stereomicroscope. The 

digestive tracts of the T. platyurus were observed and scored as either “red”, 
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indicating that feeding had occurred (Appendix A) or as “clear”, indicating feeding 

inhibition (Standard Operational Procedure, Rapidtoxkit, Microbiotest Inc).  

           PHYTOTOXKITTM assays were used to assess the toxicity by measuring 

the rate of seed germination and the growth of young stems and roots of selected 

higher plants that are exposed to the stream and all wetland site sediments. The 

plants selected for the PHYTOTOXKIT included: the monocotyl Sorghum 

saccharatum, dicotyls Lepidium sativum (garden cress) and Sinapis alba 

(mustard). These species were selected due to their sensitivity to contaminants, 

rapid rates of germination, and growth of their stems or roots, allowing scoring of 

the results after three days or 72 hours. (Standard Operational Procedure, 

Phytotoxkit, Microbiotest Inc). This toxicity test utilizes a dual compartment test 

plate (Appendix C) where the bottom compartment of each transparent test plate 

(10cm square by 0.5 cm deep) was filled with 90 cm3 of water-saturated control 

or test sediment. Filter paper was placed over the saturated sediment and seeds 

of the test plants are positioned near the middle ridge of the test plate on top of 

the filter paper. Test plates were covered and incubated vertically in darkness at 

25 0C for three days. At the end of the incubation period, a digital image was 

taken of the test plates and stem and root lengths were measured using Image J 

software. 

 

Pond Zooplankton Community 

Zooplankton samples were collected from the wetland sites only during 

July 2012. Three samples were collected at random locations in each pond using 
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a plankton net (mesh size: 20 um) with an anterior reducing cone; a posterior 

conical filtering net; and Dolphin™ adapter with a bucket. The plankton net was 

dipped in water with a tow length of 0.75 meter to 1 meter.  Samples were 

washed through a 0.36 mm net and preserved in 95% ethanol. Organisms were 

identified in the laboratory under a stereomicroscope in 50x magnification up to 

the lowest possible taxonomic level (Balcer et al. 1984; Pennak 1978). 

 

Vegetation survey 

Vegetation surveys were performed during August 2012 in the wetland-

pond sites. Eight 1m square quadrats (Appendix G) were sampled in the each 

wetland with half of the samples along the edge of the water and the remainder 

in the upper part of the bank. Dominant plant species in each location were 

identified and their percent cover estimated to the nearest 5 percent. This was 

repeated for all three wetland-ponds. Plants were identified to the lowest possible 

taxonomic level following the Wisconsin State Herbarium Website. 

 

Precipitation and Discharge 

Total daily precipitation data from Racine, WI (station- airport) were taken 

from wunderground.com from September 2011- August 2012.  Pike River 

discharge (m3/s) data at the USGS gauging station at Kenosha for the study 

period of September 2011 till first week of September 2012 were downloaded 

from the USGS database of National Water Information System. 
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Data Analyses 

Data were checked for normality and transformed as necessary to meet 

assumptions of statistical tests.  Count and length data were transformed using a 

log10 transformation (log10 (Y + 1)) while proportional data were transformed 

using an arcsine transformation (Sokal and Rohlf 1994).  Statistical analyses 

were conducted using JMP® 10 (SAS Institute 2011).  Analysis of variance 

(ANOVA) was used to test for differences among sites, and to examine the 

effects of precipitation (event, non-event) and interactions. 

 

RESULTS 

Stream Hydrological & Wetland-Pond Physical Characteristics  

Daily total Precipitation and mean stream discharge for the 2012 study 

period are presented in Figure 3.  Spring precipitation and high flows (January-

March) were followed by an extended period of dry weather and low discharge 

(May-July).  Precipitation increased in late July-August, resulting in higher stream 

flow. Of the 11 dates when water samples were collected for nutrient analysis 

(Figure 3), 4 were classified as non-event (baseflow) and 7 were classified as 

event samples (stormflow). 

Physical characteristics of the wetland-ponds are presented in Table 1. 

Surface area increased and depth decreased moving from W1-W3, resulting in 

W1 having a volume more than 3 times the volumes of W2 and W3 (Table 1).  

Discharge measured at the inflows to each pond during baseflow and stormflow 

allowed for the calculation of average turnover rates for each pond.  Turnover in 
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W1 was 3-4 times greater (longer retention time) compared to the other ponds 

during baseflow, but only 2-3 times higher during stormflow. 

 

Water Quality       

  Patterns of variation in water quality collected by multiparameter sondes 

across the study period for wetland and stream sites are presented in Figures 4 

and 5, respectively.  Analysis of covariance of hourly means using precipitation 

as a covariate was conducted.  A median filter was used to reduce random 

scatter in turbidity readings.  This analysis showed that wetland-ponds sites 

differed from each other for all parameters (Table 2 - pH, Specific Conductivity, 

Dissolved Oxygen and Turbidity), but only specific conductance and dissolved 

oxygen were affected by precipitation.  The same effects were observed in the 

stream sites, however pH levels were also affected by precipitation.    

 The patterns of precipitation effects differ over time. For example, during 

the extended dry period of June, the pH for sites varied among each other 

(Figure 4A). However, following extended rainy periods in late July, the pH levels 

for all wetland sites increased and remained high through August.  Similarly to 

pH, dissolved oxygen in the wetland-ponds decreased during the dry month of 

June, then was higher during the wetter periods later in the summer (Figure 4C).   

Overall, specific conductance exhibited the greatest sensitivity to precipitation for 

both wetland-ponds and stream sites (Figure 4B, Figure 5B).   The patterns of 

turbidity for the wetland-pond sites indicate turbidity was most often highest in 

W1 (Figure 4D). Although ANCOVA did not detect an effect of daily precipitation, 
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turbidity generally increased later in the summer, associated with increased 

frequency of rain (see Figure 3).  

 

Surface Water Nutrient Concentration 

Nitrate and phosphate concentrations varied significantly among sites and 

across sampling dates for both wetland-ponds and stream sites (Figure 6 and 

Figure 7).  Two-way analysis of variance was used to examine effect of rain 

events (event vs. non-event) on the differences among sites (Tables 4 and 5).  

The results of these analyses are presented separately for wetland-ponds 

(Figures 8 and 9) and stream sites (Figures 10 and 11).   

For the wetland-pond system, although there is a slight indication that 

nitrate decreased moving down-gradient (Figure 6A), the nitrate levels did not 

differ significantly between ponds (Table 4, Figure 8A).  However nitrate 

increased in all ponds during rain events compared to non-events (Table 4, 

Figures 8A and 8B).  By contrast, phosphate levels decreased significantly 

moving down-gradient from W1 into W2 and W3 (Figure 6B, Figure 9A, Table 4), 

and was more pronounced during the event samples in July and August (Figures 

6B and 9B). 

The impact of rain events on nutrient concentrations was pronounced for 

stream sites (Figure 7).  Nitrate concentrations decreased moving downstream 

during non-events (Figure 7A, Figure 10A, Table 5). However, nitrated levels 

were significantly lower during events compared to non-events for all sites 

(Figure 10A and 10B).  By contrast, phosphate concentrations decreased moving 
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from upstream to downstream during rain events (Figure 11A), and were higher 

for the upstream sites during events compared to downstream sites (Figure 11B, 

Table 5) 

 

Ecotoxicological Bioassays 

Ostracod toxicity measures of relative mortality and growth inhibition and 

RapiTox values for feeding inhibition are presented in Figure 12 and Figure 13 

for wetland-pond and stream sites. Ostracod growth inhibition did not differ 

significantly among wetland-ponds, but was higher in October 2011 compared to 

March and June 2012 (Figure 12A, Table 6).  Ostracod relative mortality did not 

vary significantly across sites or dates (Table 6), but variation was much greater 

in the samples collected in 2012 compared to 2011 (Figure 12B).  Rapidtox 

feeding inhibition did not differ among sites, but did vary among seasons (Figure 

12C, Table 6).  For stream sites, feeding inhibition was measured for only one 

sampling date (Figure 13).  Although there was visual trend of increasing 

inhibition moving downstream, the effect was not statistically significant (Table 6). 

Phytotox™ toxicity test measures for root and shoot growth inhibition are 

presented in Figure 14 and Figure 15 where toxic effects are indicated by 

positive inhibition values and lack of toxic effects (conversely facilitation) are 

indicated by negative inhibition values.  Lepidium exhibited no toxic effects for 

stems, but significant toxic effects on roots (Figure 14). Root inhibition differed by 

sampling date (season) with a significant interaction with site and season (Table 

7). For example, W1 exhibited higher toxic effects on 2 dates compared to the 
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other sites (Figure 14B). A similar upstream-downstream pattern for Lepidium 

was observed for the stream sites but was not statistically significant (Figure 15, 

Table 7). 

Growth inhibition in Sinapsis, exhibited a qualitatively similar pattern to 

Lepidium (Figures 14 and 15).  Growth inhibition in Sorghum was highest 

compared to the other plant species, indicating the greatest toxic response for 

both wetland-ponds (Figure 14) and stream sites (Figure 15).  A difference 

among sites was detected for stem inhibition for wetland-pond and streams sites 

(Table 7). Stem inhibition increased moving from the up-gradient to down-

gradient in the wetland ponds on 3 of 4 dates (Figure 14A), but decreased 

moving from upstream to downstream in the stream sites for both root and stems 

(Figure 15). 

 

Wetland-Pond Plankton and Vegetation 

 Zooplankton species richness was similar among ponds, however 

Shannon-Weiner Diversity Index increased moving from W1-W3 (Table 1B). By 

contrast, plant species richness was lower in the down-gradient wetlands 

compared to the up-gradient wetlands and vegetation diversity in wetlands 

decreased from W1-W3 respectively (Table 1). A full listing of species present is 

included in the Appendix H. 
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DISCUSSION 

          The goal of the study was to characterize the how an interconnected 

system of wetlands can improve water quality, including of physical parameters, 

nutrients concentration along with ecotoxicological measures.   

 Although nutrients are essential for living organisms, excesses can cause 

phenomenon like eutrophication. Excessively high or low pH levels are often 

associated with nutrient deficiencies, metal toxicities, or other problems for 

aquatic life (Kadlec and Wallace 2009). Specific conductance is highly dependent 

on the amount of dissolved solids in the water. High specific conductance 

indicates high dissolved-solids concentration; dissolved solids can affect the 

suitability of water for domestic, industrial, and agricultural uses. (USGS 2012). 

For aquatic species, adequate dissolved oxygen is of prime importance to their 

continued survival. Turbidity is the measurement of water clarity. 

Suspended sediments, such as particles of clay, soil and silt, frequently enter 

the water from disturbed sites and affect water quality. Suspended 

sediments can contain pollutants such as phosphorus, pesticides, or heavy 

metals. Suspended particles cut down on the depth of light penetration through 

the water, hence they increase the turbidity -- or "murkiness" or "cloudiness" -- of 

the water. High turbidity affects the type of vegetation that grows in water. Higher 

turbidity increases water temperatures because suspended particles absorb 

more heat.  

           Selected bioassays were used to assess the level of total toxicity in 

sediments and pore waters through the observation and interpretation of both 
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lethal (i.e. relative mortality) and sub-lethal (i.e. feeding inhibition, growth 

inhibition) responses in organisms exposed to samples collected from wetland 

and stream sites. Hydrologic inputs like precipitation and water discharge from 

connected water bodies largely influences all these physiological parameters 

directly or indirectly (Mitsch and Gosselink 1993). These physiological 

parameters along with the hydrologic inputs can also impact the toxic character 

of the wetland sediments.  

The pH of wetland-pond W1 was lower compared to the other wetlands, 

during most of the study period. This trend observed during most of the study 

duration, indicates the possibility of W1 having some acidic input from the nearby 

residential area (Figure 4A). Specific Conductance was observed to be high in 

the most up-gradient wetland-pond W1 that decreased towards the down-

gradient indicating the improvement in water quality (Figure 4B).  Low dissolved 

oxygen and high turbidity during portions of the study period in the up-gradient 

sites indicates that W1 is most polluted compared to the other sites and water 

quality improves towards the down-gradient wetlands (Figure 4C and D).  This 

may be the result of the larger volume of W1 and its longer retention capacity 

(Table 1). But there were some exceptions to this, in W1 high DO was observed 

even when turbidity was highest in portions of the study. This opposite 

phenomenon may have resulted because W1 is highly abundant with algae and 

emergent macrophyte producing a lot more oxygen from photosynthesis than 

required. The prolonged drought (June to middle of July 2012) also influenced 

this due to availability of more sun energy (Figure 4C).  The decrease of these 
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water quality parameters like specific conductance, turbidity from up-gradient to 

down-gradient and increase in dissolved oxygen from up-gradient to down-

gradient wetlands with a strong site effect indeed indicates the potentiality of the 

wetlands in purifying water (Table2).  

The effect of rain was evidently observed on these water quality 

parameters. The rain events in July (Figure3) resulted in increased pH, dissolved 

oxygen and turbidity values in all of the wetlands and a decrease in specific 

conductance (Figure 4).  Hence after these rain-events the amounts of dissolved 

solids were reduced due to dilution of the water but the amounts of suspended 

solids were not really affected (Table 2), although the effect of site combined with 

precipitation was not significant in the wetland sites.  

The stream sites also showed similar trends during the study period. The 

pH and dissolved oxygen were low in the upstream sites whereas the specific 

conductivity was higher. Although Turbidity was higher in the downstream site 

indicating the probability of increased runoff in the downstream (Figure 5). The 

site effect again had a strong significance for the stream sites as well (Table 3), 

indicating the improvement of water quality towards the downstream as well. The 

effect of precipitation was also evident on pH, specific Conductivity and dissolved 

oxygen in these stream sites (Table3). 

In the wetlands, Phosphate concentration decreased from up-gradient to 

down-gradient wetlands with few exceptions relating to the rain events (Figure 

6B). The site effect was found to be stronger in the phosphate than the nitrate 

(Table 4), due in great part to the effect of W1. The non-significant probability of 
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site effect suggests that nitrate levels are not affected significantly by the wetland 

series. This phenomenon suggests that each wetland site may have a high 

nitrate demand. Hence the nitrate is not significantly getting reduced in the down-

gradient wetlands because available nitrate may be produced or mobilize in the 

down-gradient wetlands by the nitrogen cycle to meet the demand. On the other 

hand nitrate is highly driven by the event type in these wetlands (Table 4). When 

precipitation is higher nitrate input is higher in the overall wetland system, but not 

equally in all of the individual sites (Table4).  However, the strong site effect on 

phosphate concentration suggests that the phosphate gets incorporated (or 

settled to the bottom) in the up-gradient wetland, producing clean water quality 

towards the down-gradient. Although event type do not affect have significant 

affect on phosphate concentration in the wetlands (Table 4). 

In streams, nitrate concentration decreased towards the downstream 

sites, especially during the non-events and also in each site the concentration of 

nitrate is higher at the non-events (Figure 10), suggesting a dilution effect may be 

occurring after events. But unlike the wetlands the stream sites have a significant 

site effect indicating the decrease of Nitrate from upstream to downstream be 

considerable and also each site is impacted by the type of events (Table 5).  

Phosphate levels decrease significantly towards the downstream with a 

significant site effect during events and non-events (Figure 11 and Table 5), 

suggesting that the phosphate in streams is driven by activity (uptake) at each 

site thereby reducing concentrations as water moves downstream. This 

phenomenon of nutrient uptake and release was likely detected in this study 
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because it was conducted during the growing season when there is a high rate of 

uptake of nutrients by emergent and submerged vegetation from the water and 

sediments. In temperate climates, retention of certain chemicals such as 

nutrients is greatest in the growing season primarily because of higher microbial 

activity in the water column and sediments and secondarily because of greater 

macrophyte productivity (Mitsch and Gosselink 1993). All these variations with 

relative to precipitation indicate how a wetland series can perform in water quality 

improvement. 

 Ecotoxicological approaches are of paramount importance for testing the 

potential effect of contaminants on some biota and have been considered the 

best tool in prospective risk assessment (Chapman 1995). As they are based on 

standardized protocols, the results are well reproducible which provides the 

advantage of allowing comparisons and facilitating interpretation of results 

(Calow and Forbes 2003). The effect test from ANOVA shows the level of 

significance of sites on different test parameters. The probabilities of site effects 

(Table 6) on the relative mortality, growth inhibition of Heterocypris, feeding 

inhibition of Thamnocephalus and probability levels of site on root growth 

inhibition and stem growth inhibition of Sinapis, Sorghum, Lepidium were not 

significant. Figure 12B suggests that the relative mortality of Heterocypris, was 

lower in the down-gradient wetlands, but Figure 12A and 12C suggest the growth 

inhibition of Heterocypris and feeding inhibition of Thamnocephalus have and 

increasing trend of toxicity towards the down-gradient wetlands. The results may 

not be statistically significant, but the spatial trends suggest variation in sediment 
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toxicity levels among the wetland sites that should be further explored. At the 

same time, seasonal effects were stronger in the wetland sites (Table 6 and 7), in 

part because samples for the ecotoxicological studies in wetlands were collected 

in different seasons.  Hence it can be concluded that seasonal effects, 

independent of rainfall may have impacted the study.  

 In the stream sites however significant levels for root and stem growth 

inhibition of Sorghum were detected (Table 7). Because the stream samples 

were collected on a single day, no temporal effects were examined.  

 In a recent similar study (Tixier et al., 2011) also demonstrated spatial and 

seasonal toxicity in a storm water management facility, by adapting an integrated 

sediment quality approach. The toxicity results, performed under controlled 

laboratory conditions, can be difficult to extrapolate to the ecosystem level for 

multiple reasons, and the results should be interpreted with caution. Indeed, it is 

now well established that important aspects of the ecosystem are not taken into 

consideration by traditional ecotoxicological approaches, i.e., laboratory toxicity 

tests (Calow and Forbes 2003, Jansen et al. 2008). With respect to this, it could 

be said that these tests also lack natural conditions, which may be highly related 

to the character of the sediment in the ecosystem itself.  

 Wetland soils or sediments can have different characters; it may be 

organic or mineral rich in type. Again continuous nutrient transformation affects 

this in nature. Hence, it can be predicted that natural conditions like sediment 

type may have influenced the responses from the ecotoxicological stresses 

tested on different species. So to understand this interaction of the stress factors 
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to different species, sediment characterization is extremely important which was 

not a part of this short span study. On the other hand the input materials in 

wetland are highly influenced by different hydrologic factors like precipitation and 

surface water inflows, which in turn influences the sediment character. For 

example, precipitation tends to contain contaminants at higher concentration 

when precipitation is infrequent (Mitsch and Gosselink 1993). Again, during wet 

periods and storm events, the water is contributed primarily by recent 

precipitation that enters the stream without coming in contact with soil and 

subsurface materials. During low flow, some or much of the streamflow originates 

as groundwater and has higher concentration of dissolved materials (Mitsch and 

Gosselink 1993).  

          The hypotheses of this study predicted that there would be improvement in 

water quality parameters from up-gradient and down-gradient in an 

interconnected wetland system. High specific conductivity and turbidity and low 

dissolved oxygen in the up-gradient W1, in addition to higher phosphorus 

reduction and variability in sediment toxicology between the wetland sites mostly 

during the study period, generally supports the hypotheses. But there are some 

definite exceptions that are situation-dependent. For example, high dissolved 

oxygen in the most up-gradient wetland and the fluctuations of specific 

conductivity and turbidity and non-significant site effect of nitrate. But there can 

several reasons for these exceptions to happen. The data collection period of the 

water quality parameters occurred during a prolonged drought, which may have 

promoted the dissolved oxygen to be higher in the up-gradient wetland due to 
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presence of higher amount of plants and algae resulting in high DO from 

photosynthesis. Nitrate is driven by rain events and the demand for nitrate in the 

ponds is supported by each site ecosystem itself.  

           It is important to recognize that these wetland-ponds were constructed in 

2002 and are only 10 years old. It is reasonable to assume that they will not 

necessarily perform as natural wetlands, but may improve over time. It is likely 

that these wetland-ponds have not yet developed their biological potential to the 

fullest.  Another important finding from this study was, that the stream system 

performed in a similar or comparable pattern to the wetland, indicating that 

stream systems function as a medium to improve water quality. 

 

CONCLUSION 

          Today’s environmental problems are complex and increasingly pressing. 

One of the most important problems world-wide is the quality of freshwater. 

Limited supply and distribution of freshwater leads to competition between 

consumers, cities, states and nations and the lack of freshwater retards the 

development of society. Anthropogenic activities are polluting and therefore 

heavily influence the quality of freshwater. Contributors to pollution include 

several point and non-point sources. The degrading quality of scarce freshwater 

is a major concern to general public health. 

         According to the hypotheses there was strong indication of water quality. 

Improvement in phosphate reduction towards the down-gradient wetland, high 

specific conductance, turbidity and Low dissolved oxygen in portions in the up-
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gradient wetland proves this improvement of water quality. Although there were 

some exceptions. 

           All these relationship explain the fact that how an interconnected wetland 

system, with widely varying important water quality parameters, nutrient 

concentration and sediment toxicity can ameliorate the water quality before it is 

discharged to the connected fresh water bodies rivers or lakes thus providing a 

safe, biologically rich environment.  
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FIGURES 

 

 

 

 

 

 
 
Figure 1. Land cover GIS map of the Pike River Watershed. All county, state, 
land cover, hydrology, and watershed shapefiles taken from the Wisconsin 
Department of Natural Resources (WDNR, 2005). The location of study area 
shown in Figure 2 is indicated by the black box. 
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Figure 2: Aerial Photograph (July 2011) of Pike River watershed from Google 
Earth, displayed with the wetland sampling stations (W1-3) and stream sampling 
station (S4-7) chosen for the study.  Flow direction is from left to right. 
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Figure 3: Variation of total precipitation (mm) and discharge rate (m3/s) across 
the sampling period and dates of different test parameters. 
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Figure 4: Variation of daily means of pH, specific conductivity, dissolved oxygen 
and turbidity across the wetland sampling sites (W1-3) sites during the data 
collection period of June 2012 to August 2012. Each error bar is constructed 
using 1 standard deviation from the mean. 
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Figure 5: Variation of daily mean of pH, specific conductivity, dissolved oxygen 
and turbidity across the stream sampling sites (S4-7) during the data collection 
period of June 2012 to August 2012.Due to malfunctioning of the sonde in site 
S5, the data was rejected. Each error bar is constructed using 1 standard 
deviation from the mean. 
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Figure 6:Variation of Nitrate and Phosphate Concentration across the wetland 
sampling sites (W1-3) sites during the data collection period of June 2012 to 
August 2012.Each error bar is constructed using 1 standard error from the mean. 
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Figure 7:Variation of Nitrate and Phosphate Concentration across the stream 
sampling sites (S4-7) sites during the data collection period of June 2012 to 
August 2012. Each error bar is constructed using 1 standard error from the 
mean. 
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Figure 8: Variation in least square means of Nitrate concentration from ANOVA 
with wetland sampling sites (W1-3) relative to precipitation events and with event 
across the wetland sampling sites. Each error bar is constructed using 1 
standard error from the mean. 
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Figure 9: Variation in least square means of Phosphate concentration from 
ANOVA with wetland sampling sites (W1-3) relative to precipitation events and 
with event across the wetland sampling sites. Each error bar is constructed using 
1 standard error from the mean. 
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Figure 10: Variation in least square means of Nitrate concentration from ANOVA 
with stream sampling sites (S4-7) relative to precipitation events and with event 
across the stream sampling sites. Each error bar is constructed using 1 standard 
error from the mean. 
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Figure 11: Variation in least square means of Phosphate concentration from 
ANOVA with stream sampling sites (S4-7) relative to precipitation events and 
with event across the stream sampling sites. Each error bar is constructed using 
1 standard error from the mean. 
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Figure 12: Variation of Growth Inhibition, Relative Mortality of Heterocypris 
(Ostracod) and Feeding Inhibition of Thamnocephalus (Rapidtox) with wetland 
sampling sites (W1-3) within the sampling date. Each error bar is constructed 
using 1 standard error from the mean. 
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Figure 13: Variation of Feeding Inhibition of Thamnocephalus (Rapidtox) with 
stream sampling sites (S4-7) within the sampling date. Each error bar is 
constructed using 1 standard error from the mean. 
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Figure 14:Variation of Stem and Root Growth Inhibition of Lepidium, Sinapis and 
Sorghum (Phytotox) with wetland sampling sites (W1-3) within the sampling date. 
Each error bar is constructed using 1 standard error from the mean. 
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Figure 15:Variation of Stem and Root Growth Inhibition of Lepidium, Sinapis and 
Sorghum (Phytotox) with stream sampling sites (S4 -7) within the sampling date.  
Each error bar is constructed using 1 standard error from the mean. 
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TABLES 

 
Table 1:Characteristics of the Wetland-pond systems (see Figure 2).  (A) 
Physical and hydrological parameters measured at Baseflow (6 June 2012) and 
event flow (20 July 2012).  (B) Biological parameters measured August 2012. 
 
      

A.  Physical Characteristics 

Wetland  

Surface 
Area 
(m2) 

Avg.Depth 
(m) 

Avg. Volume 
(m3) 

Base Flow 
Turnover (d) 

Event Flow 
Turnover 

(d) 

1 1050 3.1 3255.0 2.97 1.65 

2 1260 0.6 756.0 0.74 0.48 

3 1530 0.6 933.3 0.79 0.61 

      

      

      

B. Zooplankton Vegetation   

Wetland  
Species 
Richness  

Diversity 
Index 

Species 
Richness 

Diversity 
Index  

1 8 0.27 30 0.47  

2 10 0.63 18 0.38  

3 9 1.41 16 0.28  
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Table2: Effect test from ANOVA showing the significance of site, precipitation 
and combined effect of site and precipitation on pH, Specific conductivity, 
Dissolved oxygen and Turbidity across all wetland sites. 
 

 

Test Parameter Source F Ratio Prob > F  

pH Site 9.1300 0.0001  

 Precipitation 0.2500 NS  

  Site * Precipitation 1.2100 NS  

     

Specific conductivity Site 5.0800 0.0069  

 Precipitation 20.8000 <.0001  

  Site * Precipitation 0.4400 NS  

     

Dissolved oxygen Site 4.3600 0.01  

 Precipitation 6.0500 0.01  

  Site * Precipitation 0.0400 NS  

     

Turbidity Site 8.9100 0.0002  

 Precipitation 0.8900 NS  

  Site * Precipitation 0.0800 NS  
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Table3: Effect test from ANOVA showing the significance of site, precipitation 
and combined effect of site and precipitation on pH, Specific conductivity, 
Dissolved oxygen and Turbidity across all stream sites. 

        

Test Parameter Source F Ratio Prob > F 

pH Site 15.6900 <.0001 

 Precipitation 11.9200 0.0007 

  
Site * 
Precipitation 2.0100 NS 

    

Specific conductivity Site 20.0200 <.0001 

 Precipitation 24.2200 <.0001 

  
Site * 
Precipitation 0.7900 NS 

    

Dissolved oxygen Site 72.6100 <.0001 

 Precipitation 8.9400 0.0033 

  
Site * 
Precipitation 1.9600 NS 

    

Turbidity Site 36.2900 <.0001 

 Precipitation 0.0019 NS 

  
Site * 
Precipitation 0.0127 NS 
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Table 4:Effect test from ANOVA showing the significance of site, event type, and 
combination of site and event type on Nitrate and Phosphate Concentration in 
the wetland sites. 

 

  

            

Test Parameters Source Nparm DF SS F Ratio Prob>F 

Nitrate Site 2 2 0.081676 0.2725 NS 

 Event Type 1 1 1.3010105 8.6819 0.0037 

  
Site * Event 
Type 2 2 0.0573485 0.1913 NS 

Phosphate Site 2 2 1.3959702 12.4624 <.0001 

 Event Type 1 1 0.045791 0.8176 NS 

  
Site * Event 
Type 2 2 0.1926462 1.7198 NS 
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Table 5:Effect test from ANOVA showing the significance of site, event type, and 
combination of site and event type on Nitrate and Phosphate Concentration in 
the stream sites. 

       

 

Test 
Parameters Source Nparm DF SS 

F 
Ratio Prob>F 

Nitrate Site 3 3 1.0108629 6.9812 0.0003 

 Event Type 1 1 0.0658729 1.3648 NS 

  
Site * Event 
Type 3 3 0.7471754 5.1602 0.0025 

Phosphate Site 3 3 1.1230907 3.6059 0.0166 

 Event Type 1 1 0.0027339 0.0263 NS 

  
Site * Event 
Type 3 3 0.7662974 2.4604 NS 
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Table 6: Effect test from ANOVA showing the significance of site, season and 
the combination of site and season on relative mortality, growth inhibition of 
Heterocypris (Ostracod) and Feeding inhibition of Thamnocephalus (Rapidtox) 
across the wetland and stream sites. 

         

       

Test Parameter 
Stream/ 
Wetland Source Nparm DF SS 

F 
Ratio Prob>F 

Heterocypris 
Relative 
Mortality Wetland Site 2 2 0.00 0.15 NS 

   Season 2 2 0.01 1.23 NS 

     Site*Season 4 4 0.02 1.59 NS 

 
Growth 
Inhibition Wetland Site 2 2 0.01 0.70 NS 

   Season 2 2 0.30 20.42 <.0001 

      Site*Season 4 4 0.07 2.27 NS 

Thamnocephalus 
Feeding 
Inhibition Wetland Site 2 2 0.00 0.04 NS 

   Season 3 3 0.15 6.17 0.0009 

     Site*Season 6 6 0.04 0.74 NS 

  
Feeding 
Inhibition Stream Site 2 2 0.02 2.31 NS 
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Table 7 Effect test from ANOVA showing the significance of site, season and the 
combination of site and season on Root and Stem growth inhibition of Lepidium, 
Sinapis and Sorghum (Phytotox) across all the wetland and stream site. 

Test 
Stream/ 
Wetland Parameter Source Nparm DF SS 

F 
Ratio Prob>F 

Lepidium Wetland Stem Site 2 2 0.59 1.37 NS 

   Season 3 3 1.38 2.13 NS 

    Site*Season 6 6 0.89 0.68 NS 

  Root Site 2 2 0.06 0.25 NS 

   Season 3 3 5.94 15.53 <.0001 

    Site*Season 6 6 1.62 2.12 0.05 

 Stream Stem Site 2 2 0.17 0.68 NS 

   Root Site 2 2 0.28 0.93 NS 

Sinapis Wetland Stem Site 2 2 0.02 0.05 NS 

   Season 3 3 2.75 5.60 0.0012 

    Site*Season 6 6 1.48 1.51 NS 

  Root Site 2 2 0.38 1.35 NS 

   Season 3 3 2.45 5.73 0.001 

    Site*Season 6 6 1.07 1.24 NS 

 Stream Stem Site 2 2 0.94 2.77 NS 

   Root Site 2 2 0.02 0.08 NS 

Sorghum Wetland Stem Site 2 2 0.80 1.94 NS 

   Season 3 3 0.54 0.87 NS 

    Site*Season 6 6 2.29 1.86 NS 

  Root Site 2 2 0.90 2.89 0.05 

   Season 3 3 0.68 1.44 NS 

    Site*Season 6 6 0.96 1.03 NS 

 Stream Stem Site 2 2 3.57 13.24 <.0001 

    Root Site 2 2 2.27 8.19 0.0017 
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APPENDICES 
 
 
 

Appendix A. RAPIDTOXTM photographs. The top picture (i) displays the 
hatching vessels during the incubation period, in which the T. platyurus 
were hatched, grown. The bottom picture (ii), taken from the 
MICROBIOTEST INC. website, illustrates an example of the organism 
with a digestive tract full of the colored microspheres (free from 
inhibition). This “red” area is found to be clear when sediment toxicity has 
increased to a point of affecting the feeding mechanism within the 
organism. 

 
           (i)  
 

 
 
 
           (ii) 
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Appendix B. OSTRACODTOXTM   photographs. Photograph that shows 
how   the organisms were measured using a micrometer under the 
dissecting microscope.  

 
 

 
 
 

Appendix C.  PHYTOTOXTM photograph showing an example of a test 
species (Sorghum saccharatum) in its dual-compartment test plate, after 
its 3-day incubation period.  
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        Appendix D.  The Plankton Net. 
 

 
 
 

 
 
Appendix E. Water Sampling. (i)The picture displays the role of Integrated     
Samplers in surface water sampling for nutrients level analysis. (ii) The 
integrated sampler. 

               
                
 
               (i)                                                                          (ii) 
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Appendix F. Wetland with Sondes installed.  
 

 
 

 

 

Appendix G. Vegetation Survey. The picture displays the role of meter 
quadrats in vegetation survey. 
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Appendix H. List of Zooplankton and plant species 
 
 
Zooplankton 

 
Bosmina sp. 

 
Calanida 

 
Ceriodaphnia sp. 
 
Coridalinae 
 
Culicoides sp. 

Cyclops sp. 
 

Daphnia pulex 
 
Daphnia sp. 
 

 Daphnia retrocurva 
 
Hydracarina sp. 
 
Heterocypris sp. 
 
Thamnocephalus sp. 
 
Zygoptera 
 

 
         Plant 

 

Bidens frondosa 

Carex sp. 

Cidos grama 

Cirsium discolor 

Cornus sp. 
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Dactylis sp. 

Daucus carota 

Elymus Canadensis 

Epilobium sp. 

Equisetum sp. 

Euthamia graminifolia 

Euthamia sp. 

Eutrochium maculatum 

Festuca sp. 

Grass 1 

Grass 2 

Helenium autumnale 

Juncus sp. 

Leersia oryzoides 

Melilotus albus 

Onoclea sensibilis 

Phalaris arundinacea 

Poa pratensis 

Schizachyrium scoparium 

Sonchus asper 

Sorghastrum nutans 

Solidago Canadensis 

Solidago sp. 

Symphyotrichum novae-angliae 

Symphyotrichum pilosum 

Symphyotrichum sp. 
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Symphyotrichum lateriflorum 

Symphyotrichum lanceolatum 

Schoenoplectus tabernaemontani 

Trifolium pratense  

Typha augustifolia 

Typha sp. 
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