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CELLULAR COPING MECHANISMS TO HYPOXIA IN THE LONGHORN SCULPIN 

(MYOXOCEPHALUS OCTODECEMSPINOSUS) BRAIN 

by 

KELLY F. HEINO 

(Under the Direction of Johanne M. Lewis and Karin Scarpinato) 

ABSTRACT 

The loss of neurological function due to hypoxia remains to be a challenge in many species due 

to the lack of knowledge and understanding of cellular responses.  To investigate cellular 

responses and survival strategies of the brain during hypoxia and post-hypoxia recovery in a 

moderate hypoxia-tolerant species, with the hopes of identifying possible therapeutic remedies, 

thirty Longhorn sculpin, Myoxocephalus octodecimspinosus, were challenged with acute hypoxia 

(40% O2 saturation for 1 h) and twelve additional sculpin were used as controls (~90% O2 

saturation).  Fish were sampled at each of the following time points: control/normoxic conditions 

(T=0 h); hypoxic conditions (T=3 h); early (T=7 h total; 4 hours post-hypoxia), and late (T=11 h 

total; 8 hours post-hypoxia) normoxic recovery.  The importance of hypoxia-induced apoptotic 

pathways has been suggested in other species; therefore, they were the focus of the present study 

of the Longhorn sculpin to explore their cellular coping mechanisms to hypoxia.  The expression 

levels of hypoxia-response elements HIF-2α and Hsp70 were examined at the transcriptome 

level at each time point using RT-QPCR, and HIF-1α, active caspase 3, and survivin, were 

explored at the protein level using immunohistochemistry and fluorescence microscopy.  HIF-2α 

mRNA levels decreased significantly after hypoxic exposure, compared to normoxic levels, 

while Hsp70 levels remained unchanged.  Using immunohistochemistry, we also ascertained that 

HIF-1α, active caspase 3, and survivin proteins are present in Longhorn sculpin brain tissue, 
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however, acute hypoxic exposure did not alter protein levels significantly in this study between 

treatment groups or between regions of the brain.  The Longhorn sculpin’s moderate hypoxia 

tolerance may be due to a lack of apoptotic cell death, however, more testing of apoptotic factors 

on both the transcriptome and protein level is required to fully elucidate the hypoxia survival 

strategies of the Longhorn sculpin.  Investigating the survival strategies of hypoxia-tolerant 

species could provide for an effective treatment against hypoxia-induced neurological damage in 

other, more sensitive species by assisting in the identification of target genes and pathways for 

therapeutic intervention.  
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INTRODUCTION 

Diverse internal conditions such as stroke, embryonic development, tumor development, 

and neurodegenerative disease, as well as external conditions, such as high altitude, traumatic 

brain injury, blood loss, near-choking, near-drowning, and near-strangulation, amongst several 

others, expose neural cells to significantly lowered oxygen levels or “hypoxia” (Gopalani et al., 

2012).  Neural hypoxia can lead to brain damage, neurological deficits, coma, and death; 

however, the treatment and prevention of hypoxic cell death remain a challenge due to the quick 

onset and currently irreversible effects of neural damage.   Thus, emphasis should be focused on 

investigating the physiological and cellular processes involved in the destruction of neural tissue 

following hypoxic exposure in the hopes of therapeutic advancement.   

Apoptosis, a complex mechanism of cell death, has been well documented as a major 

contributor to the brain damage of many hypoxia-sensitive species after oxygen deprivation.  For 

example, extrinsic and intrinsic apoptotic pathways were suggested to contribute to cell death 

following traumatic brain injury (TBI) (using a parasagittal fluid-percussion brain insult) in 

Sprague-Dawley rats, as indicated by the immunohistochemical staining that displayed the 

upregulation of active caspase 8 and 9 proteins by 6 hours post-insult, followed by an 

upregulation of active caspase 3protein by 3 days post-insult (Keane et al., 2001).  Apoptotic cell 

death has also been confirmed in the hypoxia-sensitive sturgeon, Acipenser shrenckii, following 

30 minutes of hypoxia (15% oxygen) and 6 or 30 hours of reoxygenation, as suggested by 

significantly elevated active caspase 3 protein expression examined by western blotting ( Lu et 

al., 2005).  Not only has apoptosis been strongly associated with hypoxic cell death in literature, 

but research has also implied that apoptotic cell death, as opposed to other modes of cell death, 

such as necrosis and necroptosis, may be more amenable for medicinal options following 
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hypoxia due to its longer duration and larger window of opportunity for preventional treatment 

(Turkyilmaz et al., 2010). 

Apoptosis is a crucial biological process of programmed cell suicide that plays an 

essential role in regulating development, homeostasis, and immune defense by clearing 

redundant or abnormal cells in organisms (Wei et al., 2008).  This genetically controlled program 

is associated with specific morphological changes, including cell rounding and shrinkage, 

chromatin condensation, nuclear and DNA fragmentation, plasma membrane blebbing, and the 

eventual formation of apoptotic bodies, which are engulfed by phagocytes (Malhotra et al., 2001; 

Tzifi et al., 2012).  Unfavorable conditions, such as hypoxia, can also trigger apoptotic cell 

death, and thus lead to brain damage and detrimental health risks in hypoxia-sensitive species, 

such as humans.  Hypoxia-induced apoptosis can occur through several pathways, such as the 

hypoxia-induced inhibition of the electron transport chain at the inner membrane of the 

mitochondria, which causes membrane hyperpermeability, leads to the release of cytochrome c, 

and causes eventual apoptotic cell death via caspase 3 (Greijer et al., 2004).  Apoptosis can also 

be triggered when death receptors on the cell surface are activated by extracellular ligands, for 

example, the Fas-ligand (FasL) commonly expressed on activated T-cells, can bind to the Fas 

receptor on a compromised cell’s surface upon encounter, and recruit the adapter protein Fas-

associated death domain (FADD).  FADD activates caspase 8 upon oligomerization, which can 

in turn lead to cell death by the direct activation of caspase 3 or by the indirect activation of 

downstream effector caspases by cytochrome c release from mitochondria (Maher, et al., 2002).  

There are several other possible pathways involved in the complicated process of apoptosis, and 

a few of the common pathways associated with our particular genes of interest are further 

discussed in Figure 1.  
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Figure 1: Schematic illustrating suggested apoptotic pathways that focus on genes of 

interest of the present study (Labeled in blue).  Extrinsic pathway: Death receptors on the cell 

surface are triggered by extracellular ligands, and in turn activate caspase 8 intracellularly, which 

in turn activates caspase 3, and leads to apoptosis.  Intrinsic pathway: The hypoxia stimulus is 

received, then multiple pathway options lead to either mitochondrial damage towards apoptotic 

cell death, including an HIF-1 pathway, or to cell survival, which can also include routes via 

HIF-1.  Mitochondrial damage can then lead to the release of cytochrome c, which next can join 

Apoptosis protease activating factor-1 (Apaf-1) and activate capase 9, which then can activate 

caspase 3, and lead to apoptotic cell death.  Note that both survivin and Hsp70 can inhibit 

apoptosis in several locations along the cascade, and lead to cell survival.  In Normoxic 

conditions: HIF-1α is hydroxylated by prolyl hydroxylase enzymes (PHD), ubiquitinated by the 

von Hippel Lindau tumor suppressor gene (VHL), and degraded.  (Bleackley et al., 2001; Greijer 

et al., 2004; Harris et al., 2002; Ischia et al., 2013; Klettner et al., 2004; Lee, J-J et al., 2011; 

Maher et al., 2002; Peng et al., 2005; Rerole et al., 2010; Tilly et al., 2001). 
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Apoptosis has not only been studied for its role in cell death, but the lack of hypoxia-

induced apoptosis has also been explored as part of survival strategies to hypoxic environments 

in more hypoxia-tolerant species (Malik et al., 2012) by several mechanisms.  For example, in 

the anoxia-tolerant turtle brain (Trachemys scripta), cell survival has been attributed to both the 

enhancement of pro-survival factors, such as elevated heat shock proteins 72, 60, and 27, as well 

as the suppression of pro-apoptotic pathways, such as the decreased expression of Bax protein 

(factor that encourages cytochrome c release from mitochondria in the apoptotic pathway) 

examined by western blot analyses following early (1 hour) and long-term (4, 24 hours) anoxia 

(Kesaraju et al., 2009).  The lack of apoptotic cell death in several other hypoxia-tolerant species 

such as the mole rat (Spalax ehrenbergi), has been suggested to be contributed to a large 

conglomerate of factors and pathways that may reflect a fine balance between inducers and 

suppressors of apoptotic pathways in brain and muscle tissue subjected to acute (3% or 6% O2 

for 6 hours) and chronic (10% O2 for 44 hours) hypoxia, as measured at the transcriptome level 

using QPCR and microarray analysis (Malik et al., 2012).  There is a growing interest in 

understanding the factors that govern the interplay between cell death and proliferation under 

various conditions (Mashanov et al. 2010), such as hypoxia, with emphasis placed heavily on 

ways to potentially exploit these mechanisms for human health benefits.  Therefore, exploring 

genes of apoptotic interest in hypoxia-tolerant species that possess a natural solution to such 

problems as hypoxia-induced cell death, could be a reasonable approach to identifying ways to 

prevent cell death in others during hypoxic exposures.  The objective of the present study was to 

explore this fertile area of research and assist in the identification of target genes and pathways 

for therapeutic intervention by investigating the expression of apoptotic factors following 

hypoxia and post-hypoxic recovery in the brain tissue of a moderately hypoxia-tolerant species. 
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Oxygen, an essential element for all aerobic organisms, varies dramatically in aquatic 

environments.  Water contains only 1/30
th

 of the oxygen concentration compared with the same 

volume of air at the same partial pressure, and the rate of oxygen diffusion in water is only 

1/10,000
th

 of that in air (Rytkonen et al., 2007).  Thus, changes in oxygen consumption or 

availability can dramatically decrease the oxygen tension in aquatic environments, and fish that 

live in these environments have developed various physiological mechanisms for surviving 

aquatic hypoxia (Rimoldi et al., 2012).  For comparative studies of oxygen-dependent systems, 

fish are therefore the primary choice among vertebrates. 

The Longhorn sculpin, Myoxocephalus octodecemspinosus, is a teleost fish commonly 

found both inshore and offshore in northwest Atlantic waters. To our knowledge, hypoxia-

induced apoptotic factors have not previously been investigated in the Longhorn sculpin; 

however, Longhorn sculpins have previously been determined to have a moderate hypoxia 

tolerance as they can withstand exposure to oxygen levels as low as 40% for one hour without 

mortality and still fully recover after reoxygenation (Wilbur et al., 2012).  The teleost fish brain, 

as shown in Figure 2, also demonstrates functional similarities to the human brain, and therefore, 

was a good model system of study for this project.  We hypothesized that the survival 

mechanisms against hypoxia of the Longhorn scuplin may involve a lack of apoptotic cell death, 

and to investigate this hypothesis, we aimed to examine the expression levels of common 

apoptotic factors at both the transcriptome and protein level in response to acute hypoxia and 

hypoxia/reoxygenation in the Longhorn sculpin brain. 
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Figure 2: Diagram of a typical teleost fish brain with functional similarities to a human 

brain. Regions: Cerebellum: controls motor conditioning, memory, and learning; Cerebrum: is 

primarily responsible for the fish's sense of smell; Medula: controls the operations of the inner 

organs such as heart rate, blood pressure, digestion and waste disposal.  The black arrow 

indicates the direction of horizontal sectioning.  The blue arrows denote superior versus inferior 

brain regions.  Original Image from: http://www.fishtanksandponds.co.uk/fish-

physiology/nervous-system.html.    

 

 

 

A delicate balance between pro-apoptotic and anti-apoptotic mechanisms determines 

whether a cell death signal can execute apoptosis (Wei et al., 2008); therefore, both pro- and 

anti-apoptotic genes were examined in the present study to investigate the Longhorn sculpin’s 

natural survival strategies against hypoxia-induced apoptosis.  Our selected genes to study were a 

hypoxia-induced transcription factor, HIF-1α, which has been suggested to induce the 

transcription of both pro- and anti-apoptotic genes; a protective and anti-apoptotic heat shock 

protein, Hsp70; an inhibitor of apoptosis, survivin; and a pro-apoptotic effector, caspase 3.  

These genes of interest have been suggested in involvement of several different apoptotic 
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pathways, as previously illustrated in Figure 1, and will be further discussed in the sections that 

follow. 

Hypoxia-inducible factors (HIF) are a family of heterodimeric transcriptional factors 

consisting of two subunits: a hypoxia-regulated α subunit, (HIF-1α, -2α, -3α), and a 

constitutively expressed β subunit (Shen et al., 2010).  Both HIF-α and HIF-β belong to the basic 

helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family of transcription factors, and are crucially 

involved in maintaining oxygen homeostasis (Chen et al., 2012). The main role of HIF is to 

regulate responses to fluctuating oxygen levels, and HIF-1α specifically has been suggested as an 

important transcriptional factor for coordinating adaptive responses to hypoxia in both mammals 

and fish (Giusi et al., 2012); thus HIF-1α was an important factor to explore in the present 

hypoxia study of the Longhorn sculpin.  For example, HIF-1α has been reported as a key 

regulator of apoptosis induced by hypoxia/reoxygenation (H/R) (cultured cells subjected to 5 

hours of 5% CO2 and 95% N2 hypoxia followed by 2, 6, or 12 hours of reoxygenation) in 

primary neonatal rat cardiomyocytes, as suggested by an increase in both mRNA and protein 

expression of HIF-1α following H/R, with a subsequent significant decrease in apoptosis shown 

by Annexin V-FITC apoptosis assay after HIF-1α inhibition by siRNA; thus leading them to 

conclude that HIF-1α may be a possible therapeutic target to limit injury after infarction (Wang 

et al., 2012).  HIF-1α has also been suggested to be involved in controlling gene responses to 

oxygen in hypoxia-tolerant crucian carp, as indicated by the upregulation of HIF-1α protein on 

immunoblot and immunoprecipitation analyses following hypoxia (6, 24, or 48 hours of 6-8% 

O2) at every temperature tested (Rissanen et al., 2006).   

 In normoxic conditions, HIF-1α typically is rapidly degraded by prolyl hydroxylases 

(PHD), however, in hypoxic conditions, HIF-1α stabilization and accumulation occurs.  HIF-1α 
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then translocates to the nucleus and dimerizes with HIF-1β, forming the active transcription 

factor, HIF-1 (Rimoldi et al., 2012).   HIF-1 may then lead to cell death by activating different 

target, proapoptotic genes such as: BNIP3, Nix, and the caspases (Chen et al., 2009), or lead to 

cell survival through recruitment of other neuroprotective factors such as HSPs (Giusi et al., 

2012) and survivin (Wu et al., 2010); thus, HIF-1α has been considered as a regulator of both 

pro-death and pro-survival pathways (Chen et al., 2008).  For example, in the cortical neurons of 

rats, mild hypoxia (cultured cells exposed to 3% O2 for 3, 6, 18, 24, or 48 hours) with Lentivirus-

mediated HIF-1α knockdown was reported to markedly increase neuronal death involving free 

radical production, mitochondrial depolarization, cytochrome c release, and caspase-3 activation 

in comparison to cell death minus HIF-1α inhibition, thereby suggesting a neuroprotective role 

of HIF-1α in hypoxia-mediated neuronal death (Lopez-Hernandez et al., 2012).  In contrast, HIF-

1α  mRNA and protein inhibition due to HIF-1α siRNA in rat brains following ischemic damage 

by middle cerebral artery occlusion/reperfusion has been shown to decrease mortality by 

suppressing HIF-1α, VEGF, p53, and caspase 3, thus suggesting a pro-apoptotic role for HIF-1α 

(Chen, C. et al., 2009).  This complex activity of HIF in any species is suggested to overall be 

dependent on the cell type, duration of hypoxic exposure, and severity of experimental 

conditions (Piret et al., 2002).  This dual role and specificity of apoptotic regulation by HIF-1α, 

as well as its suggested association with our other genes of interest, Hsp 70, caspase 3, and 

survivin is another reason for HIF-1α selection into our study to assist in identifying sculpin 

survival strategies against apoptosis, and was expected to be upregulated following hypoxic 

exposure, given its known role in hypoxia response.  

An anti-apoptotic, or cellular protective factor, Heat shock protein 70 (Hsp70), was also 

measured in the present study following hypoxia and post-hypoxic recovery.  Heat shock 
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proteins are highly conserved molecular chaperones that respond to stressful conditions, such as 

heat shock, hypoxia, osmotic stress, and metabolic abnormalities (Giusi et al., 2012).  These 

“conformational repair agents” (Giusi et al., 2012) play critical roles in the folding and unfolding 

of proteins, protein assembly, and cell cycle control and signaling (Li et al., 2004).  Their 

protective role in response to hypoxia and ischemia has also been well documented; for example, 

in a study of mice subjected to focal ischemia for 120 minutes by middle cerebral artery 

occlusion, significantly greater DNA fragmentation was indicated by TUNEL staining in Hsp70 

knockout mice as compared to wildtypes, additionally, western blotting and 

immunohistochemistry indicated enhanced cytochrome c release into the cytoplasm, as well as a 

significantly enhanced active capase 3 protein expression in Hsp70 knockout mice as compared 

to wildtypes (Lee et al., 2004).  HSPs in the hypoxia-tolerant lungfish have also been proposed 

as determining elements for the physiological success of hypoxic aestivations by executing a 

precise balance between cell death and neurogenesis, as indicated by high Hsp70 mRNA levels 

(measured by qPCR and in situ hybridization analyses) overlapping apoptotic events (measured 

by TUNEL analyses) following exposure to varying aestivation methods and durations (Giusi et 

al., 2012).  This surprising abundance of apoptotic positive cells following lungfish aestivation, 

despite overall fish survival, was proposed to promote the recruitment of HSPs and protective 

factors to prevent neuronal damage against subsequent insults in a similar manner to that 

reported after preconditioning in hypoxia-sensitive species (Giusi et al., 2012).  Therefore, 

Hsp70 expression was also of some interest in our hypoxia study of a moderately tolerant 

species, and was expected to be upregulated after hypoxic exposure and post-hypoxic recovery.  

Another anti-apoptotic gene was also desired for the present study to further investigate 

the possibility that sculpin brains may be preventing cell death by inhibiting the completion of 



Heino 20 

 

the apoptotic process in response to hypoxia.  Survivin, the smallest member of the “Inhibitor of 

apoptosis protein” (IAP) family is associated with cell death, cell proliferation, neurogenesis, 

angiogenesis, and hematopoiesis (Mashanov et al. 2010).  Studies have shown that IAPs can 

inhibit the activity of caspases, as shown in Figure 2, by interaction of their conserved BIR 

domain with the active sites of caspases, and promoting the degradation of active caspases, or by 

sequestering the caspases away from their substrates (Wei et al. 2008).  Survivin has been 

reported to inhibit both the Bax and Fas-induced apoptosis pathways and to bind specifically 

with caspases 3 and 7, inhibiting activation of these two caspases (Li et al., 2012).  In addition to 

being associated with caspase 3 during apoptosis, the expression of survivin has also been 

correlated in numerous studies with HIF-1α under both normoxic and hypoxic conditions.  For 

example, Chen, Y-Q et al. 2009 indicated a correlation between HIF-1α and survivin protein 

expression by immunohistochemical staining in non-small cell lung cancer (NSCLC), 

additionally reported a significant increase in both mRNA and protein expression of both genes 

in lung adenocarcinoma cell lines under hypoxic conditions (1% O2/5% CO2/94% N2 for 24 

hours), and finally concluded, after a decrease of survivin expression following HIF-1α 

inhibition by RNAi, that the binding of HIF-1α to the survivin promoter increases the 

transcription of the survivin gene.  Similar findings have also been discovered in colon 

adenocarcinoma cells (Wu et al., 2010), and this HIF-1α and survivin correlation enhanced our 

interest to include survivin in the present study. 

Survivin has been demonstrated in a wide range of species, from being abundantly 

expressed and involved in the regulation of neural cell proliferative responses in brain tissues of 

adult rats subjected to traumatic brain injury (Johnson et al. 2004), to being suggested as 

involved in angiogenesis during hypoxia-tolerant zebrafish development (Ma et al. 2007).  These 
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proliferative and pro-mitotic roles of survivin have been well established in addition to its known 

function of inhibiting apoptosis (Li et al., 2012), and its significant response to hypoxia (Chen et 

al., 2009); however, the anti-apoptotic/pro-survival role of survivin after hypoxic exposure in the 

brain tissue of tolerant species has not been well documented to our knowledge.  Thus, the 

present study explored the protein’s possible role in sculpin neural cell survival, and expected to 

see an upregulation of survivin following hypoxia if this IAP member is involved in sculpin 

neural cell survival.  A possible additional increase in expression post hypoxia recovery was also 

expected due to the protein’s proliferative functions and involvement in the 

compensatory/reparative process (Johnson et al., 2004).  Although permanent cell damage 

following hypoxic exposure was not expected given the Longhorn sculpin’s tolerance, some 

repair and cell proliferation may take place to combat any possible injury acquired from the 

stress. 

A pro-apoptotic gene was also required for the present study to fully investigate apoptosis 

in the Longhorn sculpin brain, and caspase 3, a known effector of apoptosis was chosen for this 

role.  The caspases are a family of cysteine proteases that are grouped by structure and function, 

and act in a tissue-specific manner (Kim et al., 2010).  Caspases fall into two categories: 

inflammatory caspases and apoptotic caspases (Elvitigala et al., 2012), the latter of which is 

subdivided into initiator caspases, which act upstream to initiate and regulate apoptosis, and 

downstream to activate effector caspases; and effector caspases, which function downstream in 

the apoptosis cascade (Martin et al., 2005).  In general, caspase-mediated apoptosis occurs by 

either extrinsic (involving death receptors) or intrinsic (mitochondria-mediated) pathways, and 

these pathways usually converge on a common effector caspase, such as caspase 3 (Kim et al., 

2010).  Caspase 3 has been suggested numerous times to execute the final morphologic and 
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biochemical alterations of apoptosis (Kim et al., 2010; Martin et al. 2005).  For example, caspase 

3 has been proposed as a main effector of hypoxia-induced apoptosis in cultured neurons and 

astrocytes from embryonic rat forebrains, based on immunohistochemical and western blot 

analyses indicating both the increase of active caspase 3 protein and apoptotic cells following 6 

hours of hypoxia (95% N2/5% O2), and the contrasting reduced number of apoptotic cells 

following hypoxia with caspase 3 inhibition by the peptide inhibitor, DEVD-CHO 

(Bossenmeyer-Pourie et al., 1999).  One study has also suggested that during progression of 

apoptosis, the immunostaining pattern of caspase 3 translocates from the cytosol to the nucleus, 

paralleling the appearance of apoptotic bodies (Rajendran et al., 2008).   

Caspase 3 has been so frequently documented as a key player in late apoptosis, that 

performing immunochemistry and western blotting against caspase 3 protein provides a means to 

confirm the presence of apoptosis (Lu et al., 2005; Rajendran et al., 2008).  Hence, the inclusion 

of this important apoptotic marker in the present study was to signify if an upregulation of 

apoptosis is present in response to hypoxia and hypoxia/reoxygenation in the sculpin brain.  

Given the hypoxia tolerance of the Longhorn sculpin (Wilbur et al., 2012), a rapid increase in 

active capase 3 expression after hypoxic treatment was not expected if the sculpin’s neural cell 

survival is in fact due to a lack of hypoxia-induced apoptosis. 

Due to the severity of health risks associated with brain damage due to hypoxia, and the 

lack of preventional treatment and therapeutic remedy for such problems, the present study set 

out to aid in filling this gap in knowledge.  Given that apoptosis is one of the main processes that 

destroys tissue after hypoxic exposure in mammals and hypoxia-sensitive species (Meller et al., 

2013), exploring these genes linked to apoptosis in hypoxia-tolerant species, such as the 

Longhorn sculpin, could be a step towards identifying ways to prevent cell death in the brains of 
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hypoxia sensitive species. We hypothesized that the Longhorn sculpin, since they show some 

hypoxia tolerance, has developed some cellular or physiological mechanisms for survival.  If so, 

these mechanisms should be explored and potentially exploited for the treatment of unintended 

hypoxic brain damage in sensitive species such as humans. 

   

METHODS AND MATERIALS 

To investigate cellular responses to hypoxia and post-hypoxia recovery, thirty Longhorn 

sculpin, Myoxocephalus octodecemspinosus, which were previously determined to have a 

moderate hypoxia tolerance (Wilbur et al., 2012) were challenged with acute water hypoxia 

(40% O2 saturation for 1 h) and twelve additional sculpin were used as controls (~90% O2 

saturation).  The fish were collected during the summer seasons in both 2011 (24 sculpin total, 6 

in each of 4 sampling groups: control, hypoxic, early recovery, and late recovery) and 2012 (18 

sculpin total, 6 in each of only 3 sampling groups: control, hypoxic, and early recovery), with 

only gene expression analysis completed on the 2011samples, and immunohistochemical 

analysis completed on the 2012 samples.  Both seasons, the Longhorn sculpin used for 

experimentation were mature fish (mean weight = 201.8g ± 8.2) collected from Frenchman’s 

Bay, ME and housed at the Mount Desert Island Biological Lab (MDIBL) where the use of 

experimental animals was approved under MDIBL IACUC protocol #12-07.   The sculpin were 

housed in 1m
2
 flow-through seawater tanks with exposure to ambient seawater conditions (10-

12°C) and natural photoperiods.  The fish were fed a diet of chopped squid and herring ad 

libitum twice a week, and were transferred to individual 3L boxes with flow-through seawater 

access for acclimation over-night prior to experimentation.  During experimental exposure, their 

dissolved oxygen concentration was gradually reduced over a two hour time period (Figure 3) by 
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a combination of the addition of nitrogen gas and the removal of the natural seawater flow-

through system, to a 40% oxygen saturation. All sculpin, with the exception of the control fish, 

were held at the 40% dissolved oxygen saturation for one hour with continuous monitoring with 

a YSI Pro2030 handheld dissolved oxygen probe, and reoxygenation for the recovery samples 

was achieved by the immediate replacement of the seawater flow-through access. 

 

 

 

Figure 3: Graph illustrating our experimental oxygen exposure (% Saturation) over time 

(Hours). 
Note: Red diamonds indicate time points when fish were sampled: Control/Normoxic conditions 

(T=0 h), Hypoxic conditions (T=3 h), Early Normoxic Recovery (T=7 h), and Late Normoxic 

recovery (T=11 h). 

 

 

In both study years, six fish were sampled at each of the following time points (Figure 3): 

control/normoxic conditions (T=0 h), hypoxic conditions (T=3 h), and early normoxic recovery 

conditions (T=7 h total; 4 h post-hypoxia); however, in 2011, there was an additional sampling at 

a late normoxic recovery time point (T=11 h total; 8 h post-hypoxia).  In all cases, fish were 
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anesthetized at sampling points with a 1:9 part clove oil/ethanol solution (80mg/L of water), and 

their spinal cords were immediately severed.  Brain tissues were harvested, weighed, and 

preserved in either liquid nitrogen for gene expression studies, or fixed in 2mL of 4% 

paraformaldehyde for 48 hours at 4° C, and then transferred to a 10 mL PBS/0.01% sodium 

azide solution at 4°C for approximately 2 months until they were embedded in paraffin for 

immunohistochemical analysis. 

 

Real Time-QPCR  
 

The sculpin brains harvested in 2011 were preserved in liquid nitrogen and stored at         

-80°C until analysis.  Individual brains were homogenized and total RNA was isolated using 

RNAzol RT (Life Technologies, cat# RN 190), following the manufacturer’s instructions.  

Briefly, the DNA/protein was precipitated by adding DEPC water to the RNAzol RT tissue 

sample to stand at room temperature for 15 minutes, and then centrifuged at 12,000g for 15 

minutes.  The RNA was precipitated by adding ethanol to the supernatant at room temperature 

for 5 minutes, and then centrifuged at 12,000g for 8 minutes.  Next, to wash the RNA, ethanol 

was added to the pellet twice and centrifuged at 4,000g for 3 minutes each time.  Finally, RNA 

solubilization was achieved by dissolving the pellet in DEPC water for 5 minutes before 

vortexing and storing the samples at -80°C until further analysis.    

The RNA was later quantified on a Nanodrop ND-1000 spectrophotometer, and cDNA 

was synthesized using a protocol for real time PCR.  Briefly, the RNA samples were diluted with 

DEPC water for a total volume of 5µl and 2µg of RNA.  5µl of a master mix including 10x 

buffer, DEPC water, and DNase (amplification grade, Invitrogen, cat #18068-015) was added to 

each sample and they were incubated at room temperature for 12 minutes.  The reaction was 
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terminated by the addition of 1µl of 25mM EDTA and incubating at 65°C for 10 minutes in a 

thermal cycler.  Next, the samples were chilled at 4°C for 60 minutes before the addition of a 

random hexamer (Invitrogen, cat# 48190-011) and heating at 65°C for 5 minutes.  The samples 

were then briefly held at 4°C until adding 7.5µl of a master mix consisting of 5x 1
st
 strand buffer, 

10 nM dNTP mix (Invitrogen, cat#18427-013), RNase out (Invitrogen, cat#1-0777-019), and 

DEPC water.  0.5µl of RevertAid H-MuLV Reverse Transcriptase was then added at room 

temperature for 10 minutes before incubating at 42°C for 60 minutes.  The reaction was finally 

terminated by heating the samples at 70°C for 10 minutes, and then they were stored at -20°C.   

 

 

Table 1: RT-QPCR Primer Sequences. * sequences obtained from Giusi et al., 2012; ◦ 

sequences obtained from Mladineo et al., 2009; + sequences manually designed from alignments 

of known sequences in the NCBI nucleotide database: L. crocea  Accession #GU584189.1, D. 

labrax   Accession #AJ537421.1, D. rerio   Accession#AF057040.1. 

 

Gene of Interest Primer Sequence Efficiency % Amplicon Size 

HIF-1α  Fwd* 

HIF-1α  Rvs* 

5’-CGC ACC GTC AAT ATC AAG TCT G-3’ 

5’-GCT GAG GAA GGT CTT GCT GTC-3’ 

 

100.9 

 

199 

Hsp70   Fwd◦ 

Hsp70   Rvs◦ 

5’-GAC ATG AAG CAC TGG C-3’ 

5’-AGG ACC ATG GAG GAG-3’ 

 

93.4 

 

117 

B-Actin   Fwd+ 

B-Actin   Rvs+ 

5’-GTG CAA AGC CGG ATT CGC-3’ 

5’-CAA TAC CGT GCT CAA TGG G-3’ 

 

108.7 

 

180 

 

 

Primer sets (Table 1) for each gene of interest were tested using a protocol for PCR of 

real time primers.  Briefly, a master mix consisting of 20.3ul DEPC water, 2.5ul 10X Buffer, 

0.5ul dNTP mix, 0.5ul 10uM Forward Primer, 0.5ul 10uM Reverse Primer, 0.2ul Taq, and 0.5ul 
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of a template random cDNA pool was made for each primer set.  25ul of each master mix were 

placed in PCR tubes and run on a Bio-RAD T100 thermal cycler.  The PCR running conditions 

were 94°C for 3 minutes; 38 cycles of 94°C for 30 seconds, 58°C for 30 seconds, and 72°C for 

30 seconds; followed by 72°C for 15 minutes and indefinitely holding at 4°C.  

Agarose gel electrophoresis was next performed to size separate the products using a 1% 

agarose/TAE solution and ethidium bromide staining to view the PCR products.  The products of 

expected size were then excised from the gel and gel extracted using a QIAquick Gel Extraction 

kit and following the instructions of the manufacturer.  The PCR products were then cloned 

using Escherichia coli and blue/white screening.  The cloned plasmid DNA product was then 

purified using a QIAprep miniprep kit and following the instructions of the manufacturer.  The 

products (See Appendix for sequences) were sent to the CUGI sequencing facility at Clemson 

University for sequencing, and the results were BLASTed using the NCBI Nucleotide megablast 

program to compare the products against known sequences for each gene of interest (Table 2). 

 

 

Table 2: Nucleotide BLAST Results of PCR Products. 

Gene of Interest BLAST Result Accession # of Result 

HIF-1α Micropogonias undulatus hypoxia-inducible factor 2 

alpha mRNA, complete cds  

DQ363932.1 

Hsp70 Oligocottus maculosus heat shock protein 70 

(Hsp70) mRNA, partial cds 

 

DQ013309.1 

B-Actin Gasterosteus aculeatus Beta-actin mRNA, partial 

cds. 

DQ018719.1 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/66731677?report=genbank&log$=nucltop&blast_rank=2&RID=V1NEBDFX014
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Real time-Quantitative Polymerase Chain Reaction (RT-QPCR) with SYBR green was 

conducted next for each sculpin brain using an Eppendorf realplex2 mastercycler to examine the 

expression levels of HIF at each time point sampled.  β-actin, a commonly used housekeeping 

gene (Invitrogen 2008), was chosen as a reference gene for normalization for this study due to its 

constitutive and expected consistent expression, as it functions as a structural constituent of the 

cytoskeleton (Tan et al., 2012; Sandvik et al., 2012).  Briefly, standard curves were generated for 

all three genes using a 1:5 serial dilution of a cDNA pool of the samples as the template.  2 ul of 

the template were pipetted with 10.5 ul of a master mix into each well.  The master mix consisted 

of 0.5 ul of 2.5uM forward primer, 0.5 ul of 2.5 uM reverse primer, 6.25 ul of SYBR Green mix, 

and 3.25 ul of DEPC water.  All five dilutions, as well as, two negative controls, a negative 

control reverse transcriptase (NRT) and a no-template control (NTC), were run in duplicates with 

the gene of interest (GOI) and normalizer gene on the same plate. The running conditions for the 

reactions consisted of heating to 95°C for 10 minutes, followed by 40 cycles of denaturation at 

95°C for 30 seconds, annealment at 58°C for 1 minute, and extension at 72°C for 1 minute.  

Once the cycles were completed, the samples were heated again to 95°C for 1 minute, lowered to 

55°C for 30 seconds, and lastly heated to 95°C for 30 seconds.  A melting curve step was added 

to the protocol for 20 minutes during the ramp time between the 55°C step and the last 95°C 

step.  The melting curves were used to assess the number of products accomplished in each 

reaction, and the linear statistics (slope and R
2
 values) of the standard curves were used to assess 

the efficiency of each reaction.  The standard curves were generated by plotting the log of each 

concentration in the dilution series (x-axis) against the threshold cycle values (Ct values) for that 

concentration (y-axis).  Once the standard curves were completed, analysis of mRNA expression 

with QRT-PCR was conducted for sculpin brain samples from each time point in 2011. 
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The threshold cycle values (Ct values) for each gene of interest were compared with the 

Ct values of the reference gene, β-actin, to calculate the relative expression ratios used for 

statistical analysis.  The specific equation (Relative Values = Etarget^
ΔCt

target
(control – sample)

 / 

Eref
^ΔCt

ref
(control – sample)

) used for the calculation of the relative expression values comes from the 

Pfaffl Method of mathematical models for relative quantification in real-time RT-PCR (Pfaffl 

2001).  The ratio of the target gene is expressed in samples versus a control in comparison to the 

reference gene β-actin.   
 

 

Immunohistochemistry 

Eighteen of the harvested sculpin brains from 2012 were immediately fixed in 4% 

paraformaldehyde for 48 hours at 4°C.  After fixation, the samples were transferred to a 1x PBS/ 

0.01% sodium azide solution and stored at 4°C for approximately two months.  The brains were 

then dehydrated and embedded in paraffin for preservation.  Briefly, the dehydration protocol 

consisted of a 70% ethanol bath for 30 minutes, two 95% ethanol baths for 30 minutes each, two 

100% ethanol baths for 30 minutes each, two xylene baths for 30 minutes each, and lastly two 

65°C paraffin baths for 30 minutes each.  The brains were then embedded in paraffin blocks, and 

stored at room temperature.  The samples were next cut into 25 um horizontal sections (Figure 2) 

on a Leica microtome (Model-RM 2235), fixed on slides, deparaffinized, rehydrated, and stained 

for immunohistochemistry and florescent microscopy to view the protein expression of HIF-1α, 

active caspase 3, and survivin at each time point sampled in 2012.   

 Briefly, the steps for deparaffinization and rehydration included: two xylene baths for 5 

minutes each, two 100% ethanol baths for 2 minutes each, a 95% ethanol bath for 2 minutes, a 

70% ethanol bath for 2 minutes, a 50% ethanol bath for 2 minutes, a 35% ethanol bath for 2 



Heino 30 

 

minutes, and two deionized water baths for 1 minutes each.  The slides were then marked with a 

pap pen, and placed into a sealed plastic container that was lined with wet paper (0.1% sodium 

azide/deionized water solution) to provide a chamber that would prevent the slides from drying 

out.  For staining, the slides were washed twice for 1 minute each in 100 ul of a PBS/0.1% 

sodium azide buffer.  After washing, tissues were blocked for 30 minutes at room temperature in 

100 ul of a Fetal Bovine serum/PBS/0.1% sodium azide solution.  Next, 100 ul of primary 

antibody (HIF-1α: 1/50 Novus Biologicals mouse monoclonal anti-HIF-1α antibody 

Catalog#NB100-105, caspase 3: 1/100 abcam rabbit polyclonal anti-active caspase 3 antibody 

#Ab13847, survivin: 1/500 abcam rabbit polyclonal anti-survivin antibody #Ab24479) was 

applied for 45 minutes at room temperature.  The slides were then washed three more times for 1 

minutes each, and 100 ul of secondary antibody (HIF-1α: 1/5000 Alexa Fluor 594 donkey anti-

mouse IgG, caspase 3: 1/7500 Alexa Fluor 647 goat anti-rabbit IgG, survivin: 1/4000 Alexa 

Fluor 647 goat anti-rabbit IgG) was applied for 30 minutes at room temperature.  The slides 

remained in the dark for the duration of the staining procedure to avoid tissue bleaching from the 

fluorescent markers.  Finally, the tissues were washed for five more cycles of 1 minute each 

before applying Invitrogen Prolong Gold antifade reagent and cover slips, and sealing the edges 

of the slides with clear fingernail polish.  Sections immunostained without exposure to primary 

antibodies were used as negative controls.  After staining, the tissues were viewed and analyzed 

on a Zeiss 710 LSM Confocal microscope. 

Quantification was performed retroactively in this study, and the immunohistochemical 

data deviated from traditional quantification methods due to a lack of clearly defined cells.  The 

quantitative data presented was instead based solely on simple intensity measurements from a 

randomly selected region, chosen from a visually ubiquitous expression in each sample that 



Heino 31 

 

made this type of quantification possible using optimal saturation conditions for standardization.  

The tissues were assessed for both treatment affect and comparison of protein expression 

differences between superior, middle, and inferior brain regions sampled (Figure 2).   

 

Statistical Analysis 

All statistical analyses were conducted using a JMP Pro10-X64 program with values 

considered significant at p ≤ 0.05.    The relative RT-QPCR values were tested for assumptions 

of parametric testing, and both HIF-α and Hsp70 data sets failed to fit a normal distribution 

according to Shapiro-Wilk Goodness-of-Fit Tests with p-values < 0.0001.  Logarithmic, square 

root, and arcsine transformations were performed in an attempt to have the data fit a normal 

distribution, however, none were successful, and the data was finally analyzed using non-

parametric testing, such as Kruskal-Wallis and Wilcoxon Mann-Whitney U-Tests.  The 

experiment-wise error rates for the Wilcoxon Mann-Whitnet U-Tests were adjusted using the 

Bonferroni method to account for non-independent sampling (Sokal et al., 2012). 

The protein data, according to Shapiro-Wilk Goodness-of-Fit tests with significant p-

values < 0.0001, and equal to 0.0089, also failed to fit a normal distribution.  Square root 

transformation of values for all three proteins did, however, fit a normal distribution on 

Goodness-of-Fit tests with p-values of 0.1026, 0.8055, and 0.2221.  The square root transformed 

values for HIF-1α by both treatment group and brain region with p-values of 0.5487 and 0.7558 

on Levene tests, and caspase 3 by both treatment group and brain region with p-values of  0.8579 

and 0.3379 (see Appendix I for all critical values), also met the assumption of equal variances; 

therefore, Model I two-way ANOVA testing was performed for statistical analysis of each HIF-

1α and caspase 3 protein expression.  A Levene test with a p-value of 0.9486, indicated that the 
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mean intensity values for survivin protein expression by brain region also met the assumption of 

equal variances; therefore, a Model I one-way ANOVA test was conducted for statistical 

analysis.  A Levene test on survivin intensity values by treatment group with a significant p-

value of 0.0052, failed to meet the assumption of equal variances for parametric testing; 

therefore, a Welch’s ANOVA test was performed on this data.   

 

RESULTS 

RT-QPCR 

RT-QPCR analysis was planned in the present study to examine the mRNA expression 

levels of our apoptotic genes of interest following hypoxic exposure and post-hypoxic recovery 

in the Longhorn sculpin brain.  HIF-α and Hsp70 were successfully analyzed in our examination; 

however, both caspase 3 and survivin mRNA proved difficult to detect in the Longhorn sculpin 

brain in our experimental conditions.  Although a considerable amount of effort was put into the 

testing of primers and cloning for caspase 3 and survivin, we were not able to successfully find 

primers for these two genes.  Our trouble began during the cloning process, and whether this is 

due to undetectable levels expressed in the Longhorn sculpin brain, problematic primer 

sequences, or experimenter error has yet to be determined, and would need to be better addressed 

in future work in order to draw conclusions about caspase 3 and survivin at the transcriptome 

level. 

It is also important to note that the HIF product sequenced for mRNA expression in this 

study actually displayed a higher similarity to known sequences for HIF-2α in the NCBI 

database during verification.  Despite our plan to explore HIF-1α at both the transcriptome and 
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protein level, this surprise during product verification led us to only be able to draw conclusions 

about HIF-2α and Hsp70 at the transcriptome level. 

A Kruskal-Wallis analysis of the raw Ct values for the reference gene β-actin (Table 3) 

did not show a statistically significant difference in expression level between treatment groups in 

this study (p-value of 0.277, see Appendix for all critical values), providing validation for its use 

as a reference gene for the quantitative PCR analysis of Hsp70 and HIF-2α.  A significant down-

regulation of HIF-2α mRNA expression (Table 4) after hypoxic exposure was observed 

compared to normoxic values (p-value of 0.0367); however, there was no significant change in 

the mRNA expression levels of Hsp70 (p-value of 0.3511) (Table 5) in response to hypoxia or 

during post-hypoxic recovery in our study.  

 

 

Table 3: Gene expression of β-actin from RT-QPCR analysis on Longhorn sculpin (M. 

octodecemspinosus) brain tissue sampled at normoxia, immediately post hypoxia and post-

hypoxia recovery in normoxic conditions (early and late recovery).  Data is presented as means 

±SE.  Significant differences (p ≤ 0.05) from normoxic levels indicated with *. 

 

Treatment Group β-actin Mean Ct-values Standard Error (±SE) 

Control 15.216 0.201 

Hypoxia 17.113 0.130 

Early Hypoxic Recovery 20.286 0.837 

Late Hypoxic Recovery 16.589 0.295 

 

 

 

Table 4: Relative Gene expression of HIF-2α from RT-QPCR analysis on Longhorn sculpin 

(M. octodecemspinosus) brain tissue sampled at normoxia, immediately post hypoxia and post-

hypoxia recovery in normoxic conditions (early and late recovery).  Data is presented as means 

±SE.  Significant differences (p ≤ 0.05) from normoxic levels indicated with *. 

 

Treatment Group Mean Relative HIF-2α Gene 

Expression 

Standard Error (±SE) 

Control 0.00086 0.00078 

Hypoxia 0.00002* 0.00001 

Early Hypoxic Recovery 0.00003 0.00001 

Late Hypoxic Recovery 0.01720 0.01688 
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Table 5: Relative Gene expression of Hsp70 from RT-QPCR analysis on Longhorn sculpin (M. 

octodecemspinosus) brain tissue sampled at normoxia, immediately post hypoxia and post-

hypoxia recovery in normoxic conditions (early and late recovery).  Data is presented as means 

±SE.  Significant differences (p ≤ 0.05) from normoxic levels indicated with *. 

 

Treatment Group Mean Relative Hsp70 Gene 

Expression 

Standard Error (±SE) 

Control 0.00094 0.00090 

Hypoxia 0.00003 0.00002 

Early Hypoxic Recovery 0.00006 0.00005 

Late Hypoxic Recovery 0.00514 0.00311 

 

 

 

 

Immunohistochemistry (IHC) 

 The Longhorn sculpin brains collected in 2012 were stained for fluorescent microscopy, 

and the tissues were viewed (Figures 4, 5, and 6) and quantitated for analysis by a Zeiss 710 

LSM Confocal microscope.  The intensity values for HIF-1α (Figure 7), survivin (Figure 8), and 

active caspase 3 (Figure 9) protein expression were then analyzed for statistical significance and 

no significant differences were found between treatment groups (p-values: HIF-1α = 0.1184, 

survivin = 0.2950, caspase 3 = 0.2812) or brain regions analyzed (p-values: HIF-1α = 0.1468, 

survivin = 0.6948, caspase 3 = 0.6860).    
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         Left: Control Tissue            Middle: Hypoxia Tissue            Right: Recovery Tissue  

 

Figure 4: Identification of HIF-1α protein expression (Green fluorescence) in Longhorn 

sculpin brain tissue. Boxes indicate the random region used per section for simple intensity 

measurement quantification by analysis on a Zeiss 710 LSM Confocal Microscope. 

Magnification: 40X. All scale bars are 1mm. 
 

 

 

        

Left: Control Tissue           Middle: Hypoxia Tissue             Right: Recovery Tissue 

 

Figure 5: Identification of active caspase 3 protein expression (Red fluorescence) in 

Longhorn sculpin brain tissue. Boxes indicate the random region used per section for simple 

intensity measurement quantification by analysis on a Zeiss 710 LSM Confocal Microscope. 

Magnification: 40X.  All scale bars are 1mm. 
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Left: Control Tissue              Middle: Hypoxia Tissue            Right: Recovery Tissue  

 

Figure 6: Identification of survivin protein expression (Red fluorescence) in Longhorn 

sculpin brain tissue. Boxes indicate the random region used per section for simple intensity 

measurement quantification by analysis on a Zeiss 710 LSM Confocal microscope. 

Magnification: 40X. All scale bars are 1mm. 

 

 

 

 

 

 

     
 

Figure 7: HIF-1α Mean Protein Intensity Values from IHC analyses of Longhorn sculpin (M. 

octodecemspinosus) brain tissue sampled at normoxia, immediately post hypoxia and post-

hypoxia recovery in normoxic conditions (early  recovery).  Data is presented as means ±SE.  

Significant differences (p ≤ 0.05) from normoxic levels indicated with *. 
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Figure 8:  Survivin Mean Protein Intensity Values from IHC analyses of Longhorn sculpin 

(M. octodecemspinosus) brain tissue sampled at normoxia, immediately post hypoxia and post-

hypoxia recovery in normoxic conditions (early and late recovery).  Data is presented as means 

±SE.  Significant differences (p ≤ 0.05) from normoxic levels indicated with *. 

 

 

 

 

    

Figure 9:  Active Caspase 3 Mean Protein Intensity Values from IHC analyses of Longhorn 

sculpin (M. octodecemspinosus) brain tissue sampled at normoxia, immediately post hypoxia and 

post-hypoxia recovery in normoxic conditions (early and late recovery).  Data is presented as 

means ±SE.  Significant differences (p ≤ 0.05) from normoxic levels indicated with *. 
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DISCUSSION 

 

The present study investigated Hypoxia inducible factors (HIF), caspase 3, survivin, and 

Heat shock protein 70 (Hsp70) in Longhorn sculpin brains under normoxic, hypoxic, and post-

hypoxic recovery conditions, using RT-QPCR and immunohistochemistry.  Given that apoptosis 

is one of the main processes that destroys tissue after hypoxic exposure in mammals and 

hypoxia-sensitive species (Meller et al., 2013), exploring these genes linked to apoptosis in 

hypoxia-tolerant species, such as the Longhorn sculpin, which hold a natural solution to such 

problems could be a reasonable approach to identifying ways to prevent cell death in the brains 

of hypoxia sensitive species by assisting in the identification of target genes and pathways for 

therapeutic intervention.  The Longhorn sculpin’s hypoxia tolerance may be in part due to a lack 

of significant apoptotic cell death; however, our results are not conclusive, and more research is 

needed for full resolution.  Our semi-quantitated protein analyses were not strong enough in the 

present study to draw inferences from due to the inability to differentiate individual cells, and 

definite measurements of all apoptotic factors explored would need to be obtained at both the 

transcriptome and protein levels in the future to better interpret the Longhorn sculpin’s survival 

strategies against hypoxia.  

Although definitive conclusions about the Longhorn sculpin’s neural cell survival during 

hypoxic exposure could not be stated from our results, our RT-QPCR data did reveal a 

significant and interesting finding about HIF-2α expression in our study as discussed, in addition 

to our other findings, in the sections that follow. 
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HIF   

 Hypoxia inducible factors are crucially involved in regulating responses to fluctuating 

oxygen levels in order to maintain oxygen homeostasis (Chen et al., 2012), and HIF-1α 

specifically has been suggested as an important transcriptional factor for coordinating adaptive 

responses to hypoxia in both mammals and fish (Giusi et al., 2012); thus, initial expectations in 

our hypoxia study were to see an increase in HIF-1α expression immediately post hypoxic 

exposure.  Both HIF-1α and HIF-2α are regulated through oxygen-dependent proteolysis, and 

both transcription factors are suggested to mediate responses to environmental oxygen levels, as 

concluded in a study of rats in which marked upregulation of HIF-2α, at both the transcriptome 

and protein level, was found following hypoxia (8% O2 for 6 hours), in comparison to normoxic 

samples in the brain, heart, lung, kidney, liver, pancreas, and intestine, comparable to known 

HIF-1α responses (Wiesener et al., 2002).  Hence our expectation in our hypoxia study would 

also be to see an immediate upregulation of HIF-2α after hypoxic exposure.  Contrary to initial 

expectations, there was a significant decrease in HIF-2α at the transcriptome level (Table 4) in 

the brain of the sculpin in response to hypoxia.  A similar response has been found in HIF-α 

isoforms in human neuroblastoma and glioblastoma cells in which a consistent downregulation 

of HIF-1α mRNA expression was discovered, coupled with an upregulation of HIF-2α mRNA 

expression and strong protein inductions measured for both isoforms following hypoxic exposure 

(1% or 21% O2 for 24, 48, or 72 hours).  Further investigations indicated by luciferase reporter 

activities revealed that transcriptional activities of the HIF-1α promoter/enhancer fragments were 

also decreased under hypoxic conditions, in contrast to HIF-2α promoter/enhancer fragments 

which increased under hypoxia compared to normoxia.  These findings were further investigated 

to the level of histone acetylation in HIF-1α and HIF-2α promoter/enhancer regions using ChIP 
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analyses, and the results correlated with the other findings of downregulation and upregulation 

respectively; therefore, they concluded that the decrease in HIF-1α mRNA expression following 

hypoxia was most likely due to the decreased acetylation of histones that rendered the promoter 

of HIF-1α less accessible to transcription cofactors, and resulted in suppressed HIF-1α mRNA 

expression (Lin et al. in 2011).   

This significant decrease of HIF-1α mRNA expression after hypoxic exposure reported in 

Lin et al., 2011, and our significant decrease in HIF-2α mRNA expression in the present study 

could likely be due to a tightly controlled balance of HIF-α expression and may constitute a 

mechanism to fine-tune hypoxic response dependent on the intensity and/or duration of the 

hypoxic exposure (Kopp et al., 2011; Li et al., 2006; Li et al., 2011; Lin et al., 2011; Soitamo et 

al., 2001).  HIF-1α and HIF-2α are both regulated through oxygen-dependent proteolysis, and 

both mediate responses to environmental oxygen levels (Wiesener et al., 2002).  These two 

isoforms have also both been shown to be very similar in sequence, as discussed in a study on 

Rainbow trout where it was reported that HIF-1α and HIF-2α have a strong homology with 70-

90% similarity between them (Soitamo et al., 2001); however, these two HIF-α isoforms have 

also been reported to differ in their transactivation domains.  This implies that they have similar 

functions, but could have unique target genes, as investigated in a study of renal carcinoma cells, 

human umbilical vein endothelial cells, and human microvascular endothelial lung cells that used 

DNA microarray analysis to evaluate a large selection of hypoxic genes induced in cells 

expressing HIF-2α but not HIF-1α (gene knockout) and vise versa; concluding that HIF-1α and 

HIF-2α have both common and unique target genes.  In that study, both isoforms targeted 

hypoxia- inducible genes involved in respiration, immune response, and regulatory processes 

such as Glucose transporter 1, ADRP, NDRG-1, DMXL-I, IL-6, Carbonic anhydrase XII, 
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filaggrin, ADM, and VEGF; however, HIF-1α uniquely targeted most glycolytic genes such as 

Hexokinase 2, glucosephosphate isomerase, phosphofructokinase, aldolase A, aldolase C, 

triosephosphate isomerase, glyceraldehydes-3-phosphate dehydrogenase, PGK-1, PGM-1, 

enolase 1, and LDHA (Hu et al., 2003).  This idea of a difference in target gene could possibly 

explain the controlled balance of HIF-α expression, and why one isoform may be upregulated in 

one instance as opposed to the other isoform, and vise versa.  Specificity regarding hypoxic 

response gene upregulation could potentially save on energy expenditure from upregulating 

redundant or unnessesary response elements at the same time.  Thus our decrease in HIF-2α 

mRNA expression could have been to conserve energy for respiration during the upregulation of 

other hypoxia response isoforms.  

 Another theory for explaining decreases in HIF-α mRNA expression was discussed in a 

study of human alveolar epithelial cells, in which HIF-1α protein levels increased following 

acute hypoxia (4 hours at 0.5% O2), accompanied by a reduction in HIF-1α mRNA, and an 

increase in natural antisense HIF-1α (aHIF) mRNA expression.  These HIF-1α protein levels 

were suggested to negatively regulate HIF-1α mRNA expression after hypoxic exposure through 

the increase in aHIF and destabilization of HIF-1α mRNA.  These conclusions were supported 

by the HIF-1α mRNA decrease being ablated after the addition of cycloheximide, an inhibitor of 

protein synthesis; and through the transient transfection of cells with the dominant-negative HIF-

2α mutant, which also prevented the down-regulation of HIF-1α mRNA (Uchida et al., 2004).  

These ideas of an auto-negative feedback by HIF itself, could also possibly explain our results in 

the Longhorn sculpin brain; however, we cannot make any substantial inferences without more 

research.  Further analyses including both HIF-1 and -2α mRNA and protein explorations is 

needed to fully elucidate the complicated mechanisms of hypoxia inducible factors, as well as 
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research to further investigate the adaptive benefits of this feedback system.  Compared to 

mammals, the information available regarding fish HIF is very limited (Chen et al., 2012), and 

should be considered for future work.  

 

Hsp70 

Hsp 70 is a member of the heat shock protein family that are highly conserved molecular 

chaperones that respond to stressful conditions, such as heat shock, hypoxia, osmotic stress, and 

metabolic abnormalities (Giusi et al., 2012) by facilitating the synthesis and folding of proteins.  

In addition to a known role in repair mechanisms (Li et al., 2004), Hsp70 has also been 

suggested numerous times as an important anti-apoptotic factor in both fish and mammals (Kim 

et al., 2006).  For example, Hsp70 protein expression measured by immunoblotting was reported 

to be elevated in sea bream fibroblast cells following heat shock, coupled with stable 

mitochondrial membrane potential (as measured using a fluorescent probe, Mitotracker Red 

CMXRos), and a lack of significant caspase 3 protein upregulation (measured by a Sigma 

caspase 3 activity kit), whereas, cells treated with quercetin, an Hsp70 inhibitor, revealed a 

decrease in mitochondrial membrane potential, followed by an increase in caspase 3 protein 

activity; thus indicating an anti-apoptotic role of Hsp70 (Deane et al., 2012).  An increase in 

Hsp70 mRNA expression has also been reported significantly at both the transcriptone and 

protein level (measured using high density oligonucleotide array and western blot analyses) in rat 

gastric epithelial cells following 2 hours of hypoxia (95% N2/5% CO2) and 2 hours of 

reoxygenation, and was suggested to play a role in maintaining cell survival (Katada et al., 

2004).  Thus, our initial expectation in the present study was to see an upregulation of Hsp70 in 

response to hypoxia; however, our results revealed that Hsp70 mRNA levels (Table 5) did not 
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vary significantly in response to hypoxia or reoxygenation post hypoxia in the Longhorn sculpin 

brain.   

Though contrasting to the studies mentioned above, our results are consistent with a study 

of human myocardial tissue exposed to ischemic stress following surgery (cardiopulmonary 

bypass (CPBP) was established with a crystalloid cold cardioplegic solution, and cross-clamping 

(CC) time was 75 ± 26 minutes), which reported no significant change in Hsp70 or Hsp90 

mRNA expression (Storti et al., 2003).  The most likely possibility for this lack of significant 

change in Hsp70 mRNA expression following hypoxia is that other protective factors, instead of 

Hsp70, such as other heat shock proteins or other anti-apoptotic genes could be responsible for 

aiding in cell survival in these cases.  This idea is in line with the observations noted in a study 

of the slightly hypoxia-sensitive ruffe (Gymnocephalus cernua) and the hypoxia-tolerant 

flounder (Platichthys flesus) exposed to mild (52% oxygen), moderate (36% oxygen), and severe 

(15% oxygen) hypoxia for 48 hours, which also resulted with a lack of significant change in 

Hsp70 mRNA levels in brain tissue at all exposures, but did report a significant increase in 

Hsp27 and Ngb (Neuroglobin) mRNA levels following severe hypoxia in the ruffe, and a 

significant increase in GbX (Gastrulation Brain Homeobox) mRNA levels following mild 

hypoxic exposure in the flounder (Tiedke et al., 2014).    Overall, these results suggest that 

Hsp70 may not play a significant role in neural cell survival against hypoxia in all species, as is 

indicated with our results in the Longhorn sculpin brain. 

Another possibility for our lack of significant Hsp70 response following hypoxia and 

post-hypoxia recovery could be due to the regional vulnerability of the Central Nervous System 

(CNS).  For example, hypoxia-tolerant lungfish, as previously mentioned, showed significantly 

increased Hsp70 mRNA levels in brain tissue following exposure to 6 days or 6 months of 
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hypoxic mud aestivation (30% water content of mud).  These increased Hsp70 mRNA levels 

were, however, only found to be significant in the dorsal pallium (similar to the mammalian 

isocortex which functions for cognitive and emotional mental processes), optic tectum (neural 

processor for sensory information; controls eye, approach, and avoidance movements), and 

corpus cerebella (part of the cerebellum which controls motor conditioning, memory, and 

learning) following hypoxic aestivation, as compared to other brain regions which did not reveal 

a significant Hsp70 response (Giusi et al., 2012; Ikenaga 2013; Mueller et al., 2011).  These 

results suggest that some regions of the CNS may be more vulnerable to hypoxia than others; 

thus, our lack of significant Hsp70 response to hypoxia in the Longhorn sculpin brain could be 

dependent on the differential expression pattern.   Though our reported Hsp70 mRNA expression 

levels are based on RT-QPCR analyses using whole brain homogenization, it is possible that our 

results could be attributed to a watering-down effect of expression levels, and the regions that 

were not significantly affected by hypoxia could overall be masking the significant response 

from more susceptible regions.  Further investigations which clearly differentiate between 

sampling regions, would be required to eliminate this as a possibility. 

 

Survivin 

Another anti-apoptotic gene was also desired for the present study to better investigate 

the possibility that sculpin brains may be preventing cell death by inhibiting apoptotic pathways 

in response to hypoxia.  A member of the Inhibitor of Apoptosis Protein (IAP) family , survivin, 

was selected to fulfill this role in our hypoxia study of the moderately hypoxia-tolerant, 

Longhorn sculpin.  Our analyses confirmed the presence of survivin protein in the sculpin brain; 

however, there was no significant change in survivin protein expression after hypoxic or 
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hypoxic/reoxygenation treatments (Figure 8).  An obvious possibility for our survivin findings, 

could be again that this protein does not play an important protective role in the Longhorn 

sculpin’s hypoxia tolerance.  Cell death, repair, and survival mechanisms are complicated 

processes with many associated genes involved, and other genes, as opposed to survivin and 

Hsp70, such as Bcl-2 or Bcl-XL, may be the important players in sculpin neural cell survival. 

 

Caspase 3 

Caspase 3, a known effector of apoptosis, has been suggested numerous times to execute 

the final morphologic and biochemical alterations of apoptosis (Kim et al., 2010); hence, the 

inclusion of this important apoptotic marker in the present study was to signify if an upregulation 

of apoptosis is present in response to hypoxia and hypoxia/reoxygenation in the Longhorn 

sculpin brain.  Unfortunately, we were unsuccessful in our attempt to measure caspase 3 

expression at the transcriptome level in the Longhorn sculpin, and as a result, we will be limited 

to discussion of caspase 3 only at the protein level.  We were able to confirm the presence of 

active caspase 3 protein in the sculpin brain, however, our quantitative protein analysis was 

based solely on simple intensity measurements, and though discussed below, we must exercise 

caution in drawing absolute conclusions in reference to caspase 3 in the Longhorn sculpin 

without further investigation.   

Our results indicated that there was no significant change in the protein expression of 

active caspase 3 between treatment groups, or between brain regions analyzed (Figure 9).  The 

most likely possibility as to the reasoning behind the lack of significant protein expression 

change in our study, specifically in active caspase 3, a known effector in late apoptosis (Martin et 

al., 2005), could be due simply to the lack of apoptosis occurring; hence the Longhorn sculpin’s 
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moderate tolerance to hypoxia.  This idea is consistent with several studies of hypoxia-tolerant 

species, for example, a study of the extremely hypoxia-tolerant mole rat subjected to acute 

hypoxia (3%), natural mole tunnel environmental hypoxia (6%), and mild long term hypoxia 

(10%) for up to 44 hours suggested the suppression of apoptosis for enhanced cell survival, as 

demonstrated by a highly significant overrepresentation of groups of genes involved in anti-

apoptotic pathways out of the outrageously large number of genes mapped, microarrayed, and 

measured using RT-QPCR (Malik et al., 2012).  These ideas are further supported by a 

previously mentioned study of anoxia-tolerant turtle brains that revealed a lack of significant 

change in active caspase 3 protein levels measured by western blot analyses following early (1 

hour) and long-term (4, 24 hours) anoxia.  This same study did, however, report an increase in 

procaspase 3 protein expression, which suggested that apoptosis may be initiated, but not 

executed (Kesaraju et al., 2009) in species which exhibit a tolerance to low oxygen 

environments.  

A study of the hypoxia-sensitive sturgeon exposed to hypoxia (15% O2 for 30 minutes) 

and reoxygenation (6 or 30 hours of recovery) also found no significant change in caspase 3 

protein expression measured by western blot analyses in the olfactory lobe, cerebellum, or 

pons/medulla; however, this same study did find a significant change in caspase 3 protein 

expression in the retina, optic tectum, pituitary, and spinal cord, which led them to conclude that 

apoptotic factor expression is not only dependent on the severity of hypoxic exposure, but that 

cell vulnerability to hypoxia also differs between brain regions (Lu et al., 2005).  Therefore, our 

findings of unaltered active caspase 3 protein expression, though both expected and beneficial to 

sculpin survival, could possibly be attributed to the particular brain regions sampled, and further 

research with enhanced specificity and measurement of brain regions, as opposed to our 
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generalized superior, middle, and inferior regions sampled, would be required to eliminate this as 

a possibility.    

 

CONCLUSIONS 

 There is a growing interest in understanding the factors that govern the interplay between 

cell death and proliferation under various conditions, such as hypoxia (Mashanov et al. 2010), 

with emphasis placed heavily on ways to potentially exploit these mechanisms for human health 

benefits.  Neural hypoxia can lead to brain damage, neurological deficits, coma, and death, yet 

the treatment and prevention of hypoxic cell death remain a challenge due to the lack of 

knowledge and understanding of cellular responses.  Apoptosis has been suggested as one of the 

main processes that destroys tissue after hypoxic exposure in hypoxia-sensitive species (Meller 

et al., 2013); thus, exploring these genes of apoptotic interest in hypoxia-tolerant species that 

possess a natural solution to such problems as permanent tissue damage and mortality, could be a 

reasonable approach to identifying ways to prevent cell death in others following hypoxic 

exposures.  After the exploration of apoptotic factors such as hypoxia inducible factors, active 

caspase 3, survivin, and Hsp70 exposed to hypoxia and post hypoxia recovery in this study, we 

cannot definitively conclude whether or not the Longhorn sculpin’s moderate hypoxia tolerance 

is due to a lack of apoptotic cell death.  More testing of apoptotic factors on both the 

transcriptome and protein level is required to determine if apoptosis is being avoided in these 

brains.  Other physiological and biochemical adaptations, such as decreased metabolic rate, 

increased ventilation rate, increased hematocrit and haemoglobin O2 affinity, and increased 

anaerobic respiration, have also been reported in fish as part of their survival strategies to 

hypoxia (Chen et al., 2012), and should also be investigated in future studies of the Longhorn 
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sculpin.  As we gradually achieve a better understanding of the mechanisms that regulate cell 

death and cell survival processes, future medical advances, may become possible. 

 

FUTURE DIRECTIONS 

 Retrospectively speaking, several changes could have improved and added extra depth to 

this study, and should be considered for future work.  In a general sense, broadening the amount 

of factors explored (Examples are illustrated in Figure 10) at both the transcriptome and protein 

level, such as HIF-1, -2, and -3α; more pro-apoptotic factors such as cytochrome c, several 

procaspases (inactive precursors of caspases), and active caspases, such as 3, 7, 8, and 9; and 

more anti-apoptotic factors such as Bcl family members and more heat shock proteins would 

greatly enhance the knowledge gained from this type of study.  Increasing the specificity and 

identification of brain regions chosen to analyze, along with including more tissue types to study, 

as well as varying the durations of hypoxic exposure would intensify the results and inferences 

made possible.  Overall, these future directions and continued research of hypoxia tolerant 

species and their survival strategies against hypoxia-induced apoptosis could drastically advance 

therapeutic strategies against apoptotic cell death in more sensitive species.  For example, 

traumatic brain injury has been reported to be a leading cause of death and functional disability 

in western countries due to modes of both necrosis and apoptosis (Soustiel et al., 2005), and 

could possibly be prevented by enhancing anti-apoptotic factors following injury.  The acute 

neuronal degeneration in the ischemic core upon stroke has also been reported in a review to be 

followed by a second wave of cell demise by apoptosis in connected sites that often exceeds the 

initial damage of stroke and contributes pivotally to significant losses in neurological functions 

(Rami et al., 2008).  This same review also discussed the benefits of “patronizing the neuronal 
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endogenous anti-apoptotic machinery”, such as inhibitors of apoptosis (IAPs) (survivin is a 

member) against cell death following stroke (Rami et al., 2008).  A resounding conclusion and 

remark consistent in these and many other studies is that more knowledge is needed in this field 

to significantly make a difference. 
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Figure 10: Schematic illustrating apoptotic pathways that focus on our genes of interest in 

the present study (Labeled in blue), and examples of suggested genes for future directions of 

study (Labeled in green).  Extrinsic pathway: Death receptors on the cell surface are triggered by 

extracellular ligands, and in turn activate caspase 8 intracellularly, which in turn activates 

caspase 3, and leads to apoptosis.  Intrinsic pathway: The hypoxia stimulus is received, then 

multiple pathway options lead to either mitochondrial damage towards apoptotic cell death, 

including an HIF pathway, or to cell survival, which can also include routes via HIF.  

Mitochondrial damage can then lead to the release of cytochrome c, which next can join 

Apoptosis protease activating factor-1 (Apaf-1) and activate capase 9, which then can activate 

caspase 3, and lead to apoptotic cell death.  Note that Bcl-2, Bcl-xL, survivin, Hsp70, Hsp90, and 

etc. can inhibit apoptosis in several locations along the cascade, and lead to cell survival.  

(Bleackley et al., 2001; Greijer et al., 2004; Harris et al., 2002; Ischia et al., 2013; Klettner et al., 

2004; Lee, J-J et al., 2011; Maher et al., 2002; Peng et al., 2005; Rerole et al., 2010; Tilly et al., 

2001). 
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APPENDICES 

 

Table 1: Kruskal-Wallis Analysis of β-actin 

 

H-value 3.8571 

DF (Degree’s of Freedom) 3 

p-value 0.2773 

 

 

Table 2: Kruskal-Wallis Test for HIF-1α Relative Values 

 

H-value 8.0211 

DF 3 

p-value 0.0456 

 

 

 

Table 3: Wilcoxon Mann-Whitney U-Tests Comparing HIF-1α Treatment Groups 

In the figure below, Group 1 = control group, Group 2 = hypoxia group, Group 3 = early 

normoxic recovery group, and Group 4 = late normoxic recovery group. 

 
Groups Sample Size (N1) Sample Size (N2) U-Value p-Value 

1 vs 2 5 5 21 0.0367 

1 vs 3 5 4 18 0.1113 

1 vs 4 5 4 18 0.5403 

2 vs 3 5 4 18 0.7133 

2 vs 4 5 4 18 0.0662 

3 vs 4 4 4 15 0.1124 
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Table 4: Kruskal-Wallis Test for Hsp70 Relative Values 

 

 

H-value 3.2750 

DF 3 

p-value 0.3511 

 

 

 

 

Table 5: Levene Tests of HIF-1α Values to test for Equal Variances 

 

 Treatment Group Brain Region 

F-Ratio 0.6076 0.2816 

DF Num 2 2 

DF Den 49 49 

Prob > F 0.5487 0.7558 

 

 

 

 

Table 6: A Model I, two-way ANOVA of HIF-1α Square Root Transformed Mean Intensity 

Values 
 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean Square F Ratio 

Model 8 0.06388301 0.007985 1.4230 

Error 43 0.24130739 0.005612 Prob > F 

C. Total 51 0.30519040  0.2146 

 

Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > F   

Treatment 2 2 0.02517531 2.2431 0.1184  

Region 2 2 0.02252185 2.0067 0.1468  

Region*Treatment 4 4 0.01543654 0.6877 0.6044  
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Table 7:  Critical Values on Levene Tests on Caspase 3 Values to test for Equal Variances 

 

 Treatment Group Brain Region 

F-Ratio 0.1537 1.1094 

DF Num 2 2 

DF Den 49 49 

Prob > F 0.8579 0.3379 

 

 

 

 

Table 8: A Model I, two-way ANOVA of Caspase 3 Square Root Transformed Mean 

Intensity Values 

 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean Square F Ratio 

Model 8 0.05131403 0.006414 1.1235 

Error 43 0.24550033 0.005709 Prob > F 

C. Total 51 0.29681436  0.3672 

 

Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > F   

Treatment 2 2 0.01492073 1.3067 0.2812  

Region 2 2 0.00434190 0.3802 0.6860  

Region*Treatment 4 4 0.03122087 1.3671 0.2612  
 

 

 

 

Table 9:  Levene Tests on Survivin Intensity Values 
 

 Brain Region Treatment Group 

F-Ratio 0.0528 5.8564 

DF Num 2 2 

DF Den 49 49 

Prob > F 0.9486 0.0052 
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Table 10:  A Model I, one-way ANOVA for Survivin Values by Brain Region 

 

Oneway Analysis of Survivin Root Trans By Region 

Oneway Anova 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean Square F Ratio Prob > F 

Region 2 0.00383717 0.001919 0.3669 0.6948 

Error 49 0.25624967 0.005230   

C. Total 51 0.26008684    

 

 

 

 

 

Table 11:  Welch’s ANOVA Test for Survivin Values By Treatment Group 

Welch's Test 

Welch Anova testing Means Equal, allowing Std Devs Not Equal 

 

F Ratio DFNum DFDen Prob > F 

1.2732 2 29.312 0.2950 

 

 

 

Table 12: Partial Longhorn sculpin Gene Sequences  

Gene Partial mRNA sequence 

Β-actin GTGCAAAGCCGGATTCGCCGGAGACGACGCCCCTCGTGCTGTCTTTCCCTC

CATCGTCGGTCGCCCCAGACATCAGGGAGTGATGGTGGGTATGGGCCAGA

AGGACAGCTACGTTGGTGATGAAGCCCAGAGCAAGAGAGGTATCCTGACT

CTGAAGTACCCCATTGAGCACGGTATTGA 

HIF-α TCGCACCGTCAATATCAAGTCTGCCAGCTGGAAGGTGCTGCACTGCACCG

GACACCTGCAGATGTACAACAGCTGCCCGCCGCACGTGATGTGCGGCTTC

ACGGAGCCCCCGCTCACCTGCGCCATCCTGATGTGCGAACCCATCGCACAC

CCGTCCAACATCGACACGCCGCTGGACAGCAAGACCTTCCTCAGCAAT 

Hsp70 GACATGAAGCACTGGCCCTTCAAGCTGGTGGGAGACGGAGGGAAGCCCAA

GATTCAGGTGGAGCACAAAGGGGAGGACAAAACCTTCTCCCCCGAGGAGA

TCTCCTCCATGGTCCTA 
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