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SCALING AND ECOLOGICAL RELATIONSHIPS IN THE VISUAL ECOLOGY OF 

SHARKS 

by 

BRIANNA E. HALL 

(Under the Direction of Christine N. Bedore) 

ABSTRACT 

Adaptations of visual systems, such as acuity, sensitivity, and eye size can be used to infer the 

relative importance of vision to an organism. The high metabolic cost of visual system 

development and maintenance suggests that large relative eye size (as it relates to body length) 

may have a significant ecological or evolutionary role. Elasmobranchs are morphologically 

diverse and inhabit a wide range of marine and freshwater niches. As energetic and ecological 

demands shift over time, several species occupy different predatory niches across their lifetime, 

yielding a large array of visual habitats. Additionally, eye size changes with body length 

allometrically, thus elasmobranchs represent an ideal group for examining scaling relationships 

(i.e., eye growth rate and eye size at a given body length) with respect to specific ecological 

lifestyle traits. Here I quantified the relationship of eye size and body length in 19 shark species 

and, after accounting for phylogeny, compared this scaling across species that differ in 

ecological traits (i.e., activity level, habitat type, habitat complexity, and diet). Relative eye size 

at a given size varied across species and habitat type, but not activity level, habitat complexity, 

or diet, all of which had a strong phylogenetic signal (λ = >0.9). Deep-sea species had the largest 

relative eye size, followed by oceanic and coastal species which did not differ from each other. 

In contrast, the rate at which eye size scaled with body length was the same across all species 

and did not differ with ecological lifestyle trait. These results suggest that habitat type may 



influence relative eye size and not the rate at which eye size scales with body length. As habitat 

type had the greatest influence on relative eye size, future investigations should focus on 

ecological lifestyle traits involving visual habitat characteristics such as light level, turbidity, 

and migratory patterns. 

INDEX WORDS: Allometry, Visual ecology, Elasmobranchs, Eye size, Visual adaptations
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CHAPTER 1  

BACKGROUND 

An animal’s umwelt, described by Jakob von Uexküll (1909), is the sum of all the 

information being received and transmitted by that organism’s central nervous system. The 

umwelt is dependent upon the sensory modalities that an individual possesses and creates a 

unique sensory world that leads to differences in the way each organism interacts with its 

environment (Dangles et al. 2009). Interpreting environmental information is critically linked 

to an organism’s ability to survive (i.e., locate food and suitable habitat and aid in predator 

avoidance) and reproduce. Understanding how sensory modalities are utilized by different 

species can give valuable insight into their behavior, ecology, and physiology (Phelps 2007). 

Vision is a sensory modality present in nearly all animal taxa. Image forming eyes 

evolved from primitive eye spots and they utilize receptor cells to capture light and resolve it 

into images (Frentiu & Briscoe 2008). Of the ten different optical eye types found throughout 

the animal kingdom, vertebrates possess only one, the camera eye (Cronin et al. 2014). The 

modern vertebrate eye (Figure 1) contains optical components such as a lens, cornea, iris, and 

a mobile pupil, which collectively allow it to function in a camera-like fashion, therefore, 

enabling light and depth perception, image formation, and color discrimination (Lamb et al. 

2007). 

Visual capabilities have been of interest to scientists for decades. Well established 

reviews of the structure and function of eyes are found throughout the literature. One of the 

earliest works is on the evolution and radiation of the vertebrate eye (Walls 1942). This was 

the first work to describe specialized cone photoreceptors in the vertebrate eye as well as 

discuss the similarities of photoreceptors in vertebrate eyes. Another book compares the 
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structure and function of all eye types found in the animal kingdom with a focus on evolution 

and taxonomic distribution, and the role eye type plays in behavior and ecology (Land & 

Nilsson 2002). Finally, a more recent comprehensive review on vision and visual ecology 

comes from Cronin et al. (2014) focusing on the way eyes and photoreceptors become 

specialized for a variety of visual tasks such as communication, predator avoidance, mate 

selection, and navigation. Through these works and subsequent research, it has become 

widely accepted that eyes are adapted to an organism’s environment and ecological lifestyle 

(Land & Nilsson 2002; Cronin et al. 2014). 

Eye size varies considerably throughout the animal kingdom, from the 10-inch eyes of 

the giant squid (Architeuthis and Mesonychoteuthis spp.) (Nilsson et al. 2012), to the 

degenerate eyes of the blind cavefish (Amblyopsis spp.) (Krishnan & Rohner 2017). Eye size, 

both relative (as it relates to body size) and absolute, can be indicative of the importance of 

vision to an organism because they are metabolically costly. Therefore, an organism is not 

likely to waste energy developing large eyes if vision does not play a key role in the fitness of 

the organism (Cronin et al. 2014). Additionally, both acuity (the ability of an organism to 

discern spatial detail in objects) and sensitivity (the amount of light necessary for image 

formation) are positively correlated with eye size (Land & Nilsson 2002; Cronin et al. 2014), 

thus a larger eye means possibly greater sensitivity or greater acuity. 

Sensitivity increases with increasing eye size because they possess a larger retina, 

which increases the area for photoreceptors, allowing for the production of larger images, and 

a larger pupil aperture, which increases the number of photons able to enter the eye (Walls 

1942; Hughes 1977; Land and Nilsson 2002; Howland et al. 2004). Acuity differs greatly 

across species; varying by over four orders of magnitude (Land & Nilsson 2002). One factor 
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that dictates this variation is the angular width of the region that is viewed by each 

photoreceptor and is largely dictated by focal length, or the distance from the geometric center 

of the lens to the retina (Hueter 1980) (Figure 2). The angular width is equal to the diameter of 

the photoreceptor divided by the focal length of the eye (Lisney & Collin 2008). Therefore, a 

longer focal length, achieved with a larger eye, yields a smaller angular resolution resulting in 

sharper acuity (Land & Fernald 1992) (Figure 2). However, there are limitations to larger 

eyes. For centuries it has been understood that brain to body size allometry is considerably 

varied across vertebrates and is typically explained by physiological scaling and 

developmental constraints as it is amongst the costliest tissues in the vertebrate body (Niven 

& Laughlin 2008; Tsuboi et al. 2018). The retina, formed by an outpouching of the brain 

(Kuzawa et al. 2014), is an extension of the brain, thus eye size should also be energetically 

costly and follow these similar constraints (Corral-Lopez et al. 2017). 

As previously mentioned, these adaptations are driven by the environment and 

ecological lifestyle of an organism (Cronin et al. 2014). Ecological factors that influence eye 

size include habitat type, where organisms that live in well illuminated environments (i.e. 

shallow clear water or terrestrial environments) display the evolutionary trend of possessing 

large eyes, both relatively and absolutely, and have higher acuity (Land & Nilsson, 2002; 

Warrant 2004, Caves et al. 2017). Alternatively, in light limited environments, visually 

oriented organisms will sacrifice acuity to increase sensitivity by either increasing the number 

of photoreceptors or having larger photoreceptors to capture as many photons as possible 

(Land & Nilsson 2002; Stöckl et al. 2017). Think of a picture with large spread out pixels 

(high sensitivity) versus many small, densely packed pixels in a crisp picture (high acuity). In 

addition to light availability, spatially complex habitats require the ability to navigate and 
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identify objects (Hughes 1977; Caves et al. 2017), therefore, it is thought that habitat 

complexity may also drive visual adaptations. One study found that African cichlids in rocky 

(more complex) substrates have greater visual acuity than cichlids living in sandy (less 

complex) substrates (Dobberfuhl et al. 2005). Additionally, teleosts (bony fishes) in complex 

environments have significantly greater acuity and eye size than those in horizon dominated 

habitats (Caves et al. 2017). 

Activity level can also influence visual adaptations. Leukart’s law states that faster 

animals require larger eyes and consequently better visual acuity to avoid colliding with 

obstacles in their trajectory and track prey (Walls 1942; Hughes 1977; Brooke et al. 1999; 

Heard-Booth & Kirk 2012). Studies have found that avian eye size scaled positively with 

flight speed (Brooke et al. 1999) and that faster moving mammals have larger eyes than 

their smaller counterparts (Heard-Booth & Kirk 2012). Similarly, diet may affect eye size 

because predatory species may need higher acuity to localize swiftly moving prey such as 

those living in pelagic environments (Caves et al. 2017). Whereby active mammalian 

predators have significantly higher visual acuity than herbivores (Veilleux & Kirk 2014). 

Most studies investigating eye size and ecological correlates focus primarily on 

mammals and birds, and to a lesser and more recent extent, reptiles and teleosts (Brooke et al. 

1999; Howland et al. 2004; de Busserolles et al. 2013; Caves et al. 2017). Raptors and owls 

with larger bodies and eyes can resolve images from a farther distance than small bodied birds 

(Brooke et al. 1999). Primates and birds have the largest eyes of all vertebrates, followed by 

other mammals (such as rodents) and reptiles (Howland et al. 2004), however, eye size is 

widely variable in fishes presumably because of their variation in body morphology such as 

body elongation found in eels (Howland et al. 2004). However, when the eye size of species 
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within the Myctophidae family was investigated, all of which have a similar body shape, this 

variability in eye size was still present suggesting other factors of morphology or ecology are 

at play and more research into this variability needs to be done (de Busserolles et al. 2013). 

One such group that may help fill this gap are the elasmobranchs. 
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Figure 1. A schematic of a horizontal section through the vertebrate eye as viewed from 

above. Light passes through the cornea and enters the eye via the pupil which is expanded or 

contracted to regulate the number of photons entering. The light is focused by the lens, travels 

through the vitreous humor, and the image is received by the photoreceptors on the retina 

(Walls, 1942.) 
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Figure 2. A partial schematic of the eye to demonstrate focal length (A). The focal length 

(F) is the distance from the geometric center of the lens to the retina (Hueter, 1980). 

Depicted in figure B, the longer the focal length, the smaller the angle of resolution; thus, 

producing a sharper image. 
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CHAPTER 2  

INTRODUCTION 

Elasmobranchs are a group of fishes with a long (>400 million year) evolutionary history 

that exhibits diverse ecological adaptations, including niche adaptations in habitats that differ 

widely in light level and spatial complexity (Ebert et al. 2013). To successfully occupy these 

diverse habitats, elasmobranchs require adaptations in eye morphology consistent with the visual 

parameters that define the habitat. For example, some elasmobranchs encompass the light limited 

deep sea, the monochromatic open ocean (pelagic) where light penetrates all around creating an 

‘extended scene,’ and coastal habitats that serve as an intermediate between scotopic (dark) and 

photopic (bright) habitats due to light being readily available, but limited in brightness due to 

turbidity (suspended particles) from the close proximity to land that cause light to scatter 

(Warrant 2000). The aquatic environment offers unique challenges that has created a need for 

diversity in ecology and physiology within this group of organisms. 

For example, pelagic species like the blue shark, Prionace glauca, live in a 

monochromatic and featureless habitat, and chase large, fast prey (Compagno 1999; Ebert et al. 

2013). Alternatively, some benthic species, like the blacktip reef shark, Carcharhinus 

melanopterus, live in a colorful and complex reef habitat (Compagno 1999; Ebert et al. 2013). 

Therefore, an optical system adapted for detecting quick, silvery fish in the open ocean will be 

insufficient for visually discriminating conspecifics in a large school on a coral reef. 

No matter what the specific habitat features are, all species are challenged by optimizing visual 

physiologies that have opposing morphologies (Land 1981). For example, a large eye can 

increase both sensitivity and acuity, however physiological limitations of the photoreceptors 

prohibit increasing both sensitivity and acuity (Warrant 2004). For example, to increase acuity 
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the retina requires a greater density of photoreceptors to discern detail. However, a greater 

density of smaller detectors means fewer photons are absorbed by each photoreceptor. If fewer 

photoreceptors are receiving photons, then fewer changes in the level of light intensity can be 

detected; resulting in poorer contrast discrimination (i.e. less sensitivity) (Warrant 2004).  

Although elasmobranchs have historically been considered to have poor vision and to 

rely on other senses, such as electroreception and olfaction, the discovery of a duplex retina in 

the lemon shark Negaprion brevirostris that contains both rod and cone photoreceptors suggests 

that vision may be more important than previously believed (Gruber et al. 1963).  

However, little is known about the extent of which this sensory system is utilized by 

different species (Hart et al. 2006; Lisney et al. 2012). Due to their evolutionary history and 

diversity, elasmobranchs offer an opportunity to evaluate the pattern of eye size to body size 

relationship previously identified in other vertebrate phyla, such as larger eyes are found in 

predatory species that need to track fast moving prey or navigate complex environments (Hughes 

1977; Brooke et al. 1999; Howland et al. 2004; Burton 2008). However, visual capabilities in an 

aquatic context are considerably lacking, primarily for large bodied predatory species such as 

elasmobranchs (Lisney et al. 2012). 

 While studies into the visual capabilities of elasmobranchs have increased in number over 

time, only one study thus far has attempted to compare relative eye size across elasmobranchs 

(Lisney & Collin 2007). In this study, larger eyes were attributed to habit and habitat such that 

active predators in oceanic environments tend to have the greatest relative eye size (Lisney & 

Collin 2007). However, these ecological correlates statistically considered. Therefore, the 

literature needs a more rigorous comparison of the relationship between eye size and body size in 

cartilaginous fishes and how it might be attributed to ecology or phylogeny under a quantitative 
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and statistical context. To investigate this allometric relationship, the rate at which the eye size 

scales with total length (slope) as well as eye size at a given total length (intercept) will be 

compared across species of elasmobranch. If differences are found, these coefficients will be 

statistically analyzed according to ecological variables. 

This study seeks to quantitatively assess how the relationship of eye diameter to total 

body length varies across species of elasmobranchs and with respect to specific ecological traits. 

To address my objectives, I measured eye size in 19 species of shark. Then, using a Bayesian 

linear model, I quantified the diversity in the allometric parameters of eye size. This allowed me 

to determine if the rate at which eye diameter scales with body length (slope) and the eye size at 

a given body length (intercept) differs across species. I then used a phylogenetic Bayesian mixed 

effects models to investigate the relationship between the differences in slopes and intercepts 

among species in the context of their visual ecology and phylogeny. Specifically, do activity 

level, habitat type, habitat complexity, or diet explain the variation in eye size?  

Historically slopes of allometric equations have been conserved throughout vertebrate 

species for many physiological traits such as eye size (Howland et al. 2004) and metabolic rate 

(Bigman et al. 2018). Therefore, it is hypothesized that the rate at which eye size scales with 

body size will be consistent across species. Conversely, because relative eye size is widely 

variable across teleosts (Howland et al. 2004; de Busserolles et al. 2013; Caves et al. 2017) and 

elasmobranchs (Lisney & Collin 2007), there will be differences in eye size at a given total 

length across species. These differences will be attributed to either activity level, habitat type, 

habitat complexity, or diet. Specifically, in accordance with previous studies, it is predicted that 

highly active species in oceanic or deepwater habitats (Brooke et al. 1999; Lisney & Collin 

2007) with high mobility and cryptic prey (Veilleux & Kirk 2014), or species in spatially 

complex environments (Caves et al. 2017), will have the greatest relative eye size, but the rate at 
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which eye diameter scales with body length will be the same across species (Howland et al. 

2004). It was found that slopes are consistent, but intercepts varied across species and that 

habitat type best explains this variation. This study is the first quantitative analysis comparing 

the allometric relationship to ecological traits within this group of species. 
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CHAPTER 3 

METHODS 

Data collection 

Specimens were either acquired through museum collections (alcohol-fixed) or 

opportunistic sampling from bottom trawl, gillnet, longline, and drumline fishing (fresh or 

frozen). Total length (cm) and eye diameter (cm) measurements were recorded for all specimens. 

As little shrinkage is associated with storage of specimens in alcohol, both eye diameter and 

body length measurements can be taken from either fresh, frozen, or fixed specimens (Hueter 

1980; Lisney & Collin 2007). To measure eye diameter, photographs were taken of one eye of 

each specimen following the protocol from Shütz and Shulze (2014). A portrait photograph in 

lateral view was taken for each specimen. For calibration, a ruler was used as a scale overlay. To 

ensure the overlay was fixed on a firm surface and in the same plane as the eye, the ruler was 

placed flat against the specimen’s head directly adjacent to the eye. Photographs were accepted 

for analysis if all areas of the exposed eye (skin to skin) were free from obstruction and the 

photograph and scale overlay were at the appropriate angle (parallel to the eye). The maximum 

diameter of the eye along the horizontal axis (Figure 3) was measured in each photograph in 

ImageJ (NIH Institute, Bethesda, Maryland, USA). 

Estimation and comparison of species-specific regression coefficients 

Slopes and intercepts were estimated from Bayesian linear models on log-transformed 

data. Traditional allometric regressions on a logarithmic scale estimate the intercept at 1 cm total 

length, which falls well outside the size range of specimens measured in this study. To estimate a 

more meaningful intercept, the total length data was centered on the median body length for all 

specimens in the study (100 cm total length) therefore, the log10(100) cm was subtracted from all 
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individual total lengths for each species (Quinn & Keough 2002; Bigman et al. 2018). Data can 

be centered on any value, and thus the intercept represents the eye diameter at a given body 

length and will be referred to as the relative eye size or ‘standardized intercept.’ While slopes 

represent the rate at which eye diameter scales with total body length. Slopes and intercepts were 

compared across species using 95% Bayesian Credible Intervals. 

Comparison of coefficients across ecological traits 

Slopes and standardized intercepts of eye diameter allometries were compared across 

four ecological traits (activity level, habitat type, habitat complexity, and diet). These traits were 

assessed based on previous research focusing on differences in eye size based on ecological 

factors in various species as well as data availability. Categorical ecological traits were divided 

into three categories that were chosen based on well-established criteria in the literature and for 

their repeatability for future studies. Full descriptions of the ecological categories can be found 

in Table 1. Habitat type was categorized into coastal, oceanic, or deepwater using distribution 

maps and habitat characteristics from the IUCN red list, in concert with methods by Dulvy et al. 

(2014) and Bigman et al (2018). Habitat complexity was categorized into three broad spatial 

complexity categories: featureless, horizon-dominated, and complex habitats using habitat 

characteristics from the IUCN red list and defined following Caves et al. (2017). Diet of all 

recorded food items for each species was mined from Sharks of the World (Ebert et al. 2013) and 

Cortés (1999). Species were then allocated to diet categories modified from Raschi (1986) based 

on prey mobility and if prey exhibited crypsis, a means of camouflage. These categories were: 

(1) sessile or slightly motile, no cryptic prey; (2) Moderately motile, no cryptic prey; and (3) 

High motility, cryptic prey species. Species-specific assignments of ecological traits are found in 

Table 2. 
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Phylogeny: 

Using a modeling framework that accounts for the shared evolutionary history between 

species is a common way to avoid the inflated Type I error rates and biased regression 

coefficient estimates that would occur if evolutionary history went unaccounted for (Freckleton 

2009, Revell 2010). To incorporate evolutionary history when assessing if slopes and 

standardized intercepts differ with respect to ecological lifestyle traits, a phylogenetic random 

effect was included in all ecological and life history trait models. 

Statistical analysis: 

To estimate species-specific slopes and intercepts for the relationship of eye diameter as a 

function of total length, a single linear model was fit in a Bayesian framework following the R- 

language pseudo-code, “log10(eye diameter) ~ log10(total length) * species”. The response 

variable was the log10-transformed eye diameter and the explanatory variables were the log10- 

transformed and centered total length (i.e., centered around 100 cm), species identity, and the 

interaction term of log10-transformed and centered total length and species. Including this 

interaction allowed for an estimation of standardized intercepts and slopes for each species. This 

model was fit in R v..3.5.1 using the brm function in the brms package (Burkner 2017, 2018; R 

Core Team 2019). The assumption that errors are independent and normally distributed with a 

mean of zero and constant variance was met. A Bayesian framework was used in favor of a 

traditional frequentist approach to allow for the estimation of the entire posterior distribution of 

each slope and intercept, which facilitates accurate comparison across species. Following 

recommendations for Bayesian linear models using the brms package, (https://github.com/stan- 

dev/stan/wiki/Prior-Choice-Recommendations), weakly informative regularizing priors were 

used. The get_prior function in brms was used to identify the best priors for the model (Burkner 
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2017, 2018). The prior for all species-specific slopes, standardized intercepts, and the residual 

error of the model, was set to a “student-t” distribution, with three degrees of freedom, a location 

(i.e., mean) of zero, and a scale of ten. Finally, the species-specific coefficients were considered 

significantly different if the 95% Bayesian Credible Intervals (BCI) did not overlap. 

To assess whether slopes and standardized intercepts differed with respect to ecological 

lifestyle traits, Bayesian mixed-effects models were performed using the brm function in the 

brms package (Burkner 2017, 2018). Separate models for each trait were performed using R 

language pseudo-code, “log10 (eye diameter) ~ log10 (total length) * ecological lifestyle trait + 

(total length | species) + (1|phylo), where the response variable was the log10-transformed eye 

diameter and the explanatory variables were the fixed effects of log10-transformed, centered total 

length, the ecological lifestyle trait, and the interaction between the two (termed, ‘ecological trait 

models’). The random effect of “(total length | species)” allowed for a separate slope and 

standardized intercept to be estimated for each species. Additionally, a random effect of 

phylogeny, “(1|phylo),” was included to account for the shared evolutionary history between 

species. A phylogeny was created by pruning a larger 610 species molecular tree (Stein et al. 

2018) to the desired taxon set (Figure 4). The inclusion of the phylogenetic random effect allows 

for the estimation of the phylogenetic signal, Pagel’s lambda, which is a measure of the 

correlation in traits due to their shared phylogenetic history under a Brownian model of evolution 

(Pagel 1999). The value of Pagel’s lambda is between zero and one, with zero meaning no 

phylogenetic signal in the residuals of the response variable (in this case, eye diameter), and one 

meaning that the residuals of the response variable perfectly match the correlation expected 

under Brownian motion (Pagel 1999; Freckleton et al. 2002; Caves et al. 2017). Pagel’s lambda 

was chosen, as opposed to other metrics to measure and test phylogenetic signal such as 
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Blomberg et al.’s K, because studies have shown the strong robustness of Pagel’s lambda when 

used in studies involving either incompletely resolved phylogenies or suboptimal branch-length 

information. Whereas Blomberg et al.’s K led to inflated estimates of phylogenetic signal 

(Molina-Venegas & Rodriguez 2017). Additionally, Brownian motion was used in favor of other 

models, such as the Ornstein Uhlenbeck model, because studies have shown that phylogenies 

containing more than 200 tips are necessary to obtain acceptable Type I error rates, which this 

data set does not possess (Cooper et al. 2016). Coefficients of each trait were significantly 

different from each other if their 95% BCI did not cross zero. 
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  Table 1. Description of ecological categories used in analyses. 

 

 

 

 
 
 

Category Details 

Habitat Type 
 

 

Coastal and Continental Shelf Benthic, benthopelagic, or pelagic, found along the continental shelf from the intertidal zone to 200 m depth 

 

Oceanic Pelagic species that are found generally in depth less than 200 m above continental slope and plain 

 

Deepwater Benthic and benthopelagic species found along the continental slope at depths typically greater than 200 m 

Habitat Complexity 
 

 
Featureless Pelagic habitats, or any species living in the below the photic zone (> 200m depth) 

 

Horizon-dominated Benthic or benthopelagic within the photic zone (< 200m depth) 

 
Complex Reef-associated, mangroves, rocky shorelines, and crevices 

Diet Mobility 
 

 
(1) Sessile or slightly motile Small, low activity teleosts, crustaceans, mollusks, and bottom dwelling invertebrates 

 
(2) Moderately motile Active, large teleosts, rays and other small elasmobranchs 

  (3)  Highly motile Pelagic fish, cryptic cephalopods, and marine mammals 
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Table 2. Species-specific ecological trait categories for 19 shark species. Habitat type was categorized using distribution maps and 

habitat characteristics from the IUCN red list, in concert with methods by Dulvy et al. (2014) and Bigman et al (2018). Habitat 

complexity was categorized into three broad spatial complexity categories using habitat characteristics from the IUCN red list and 

defined following Caves et al. (2017). Diet of all recorded food items for each species was mined from Sharks of the World (Ebert et 

al. 2013) and Cortés (1999). Diet categories were modified from Raschi (1986) based on prey mobility and if prey exhibited crypsis. 

 

Order Family Species Activity 
Level 

Habitat 
Type 

Habitat 
Complexity Diet Maximum Total 

Length (cm) 
Carcharhiniformes Carcharhinidae Carcharhinus acronotus 1.56 coastal horizon dominated 2 137.0 

  Carcharhinus brevipinna 3.00 coastal featureless 3 278.0 

  Carcharhinus isodon 2.53 coastal complex 1 194.5 

  Carcharhinus leucas 1.31 coastal featureless 3 340.0 

  Carcharhinus limbatus 1.38 coastal featureless 3 255.0 

  Carcharhinus plumbeus 3.19 coastal featureless 1 240.0 

  Galeocerdo cuvier 2.05 coastal featureless 3 550.0 

  Rhizoprionodon terraenovae 1.79 coastal featureless 2 110.0 

 Scyliorhinidae Atelomycterus marmoratus 0.32 coastal complex 1 70.0 

 Sphyrnidae Sphyrna lewini 4.58 oceanic complex 3 395.0 

  Sphyrna mokarran 1.52 oceanic featureless 3 580.0 

  Sphyrna tiburo 1.96 coastal horizon dominated 2 150.0 
Hexanchiformes Hexanchidae Heptranchias perlo 0.86 deepwater featureless 3 139.0 

  Hexanchus nakamurai 0.84 deepwater featureless 2 180.0 
Lamniformes Lamnidae Carcharodon carcharias 3.68 oceanic featureless 3 600.0 

  Isurus oxyrinchus 4.06 oceanic featureless 3 400.0 

 Odontaspididae Carcharias taurus 1.14 coastal complex 2 320.0 
Orectolobiformes Ginglymostomatidae Ginglymostoma cirratum 0.89 coastal complex 2 300.0 
Squaliformes Squalidae Squalus cubensis 1.87 deepwater featureless 3 92.5 
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Figure 3. An example photograph used for analysis. The eye is clearly visible, and the ruler is 

directly against the specimen vertical and adjacent to the eye. Images will be uploaded to ImageJ 

where eye horizontal diameter will be measured. 
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Figure 4. A phylogenetic tree of 19 shark species spanning five orders and eight families and a distribution of (H) habitat type, (C) habitat 

complexity, (D) diet, (A) activity, and (TL) total length (cm). The tree was pruned from a molecular tree of 610 Chondrichthyes (Stein et al. 2017). 
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CHAPTER 4 

RESULTS 

Data collection 

Morphometrics, including body total length and eye diameter (cm), were collected from 

approximately 570 individuals. Of these, 478 individuals spanning five orders, eight families, 

and 19 species of shark met the minimum a priori requirements and were included in analyses.   

Estimation and comparison of species-specific regression coefficients 

The relationship of eye diameter (cm) to total body length (cm) varied significantly 

across species (Figure 5). The standardized intercepts (eye size at 100 cm total length) varied 

significantly and ranged from 1.008 cm in the nurse shark Ginglymostoma cirratum to 4.029 cm 

in the Cuban dogfish Squalus cubensis, with a mean and standard error of 1.976 ± 0.2 cm (Table 

3, Figure 6).  

Slopes were mostly conserved across species. The slopes of eye diameter allometries 

ranged from 0.41 in the tiger shark Galeocerdo cuvier to 1.01 in the bigeye sixgill shark 

Hexanchus nakamurai with a mean and standard error of 0.62 ± 0.03 (Table 3, Figure 6). Most 

species only differed from the two species with the shallowest and steepest slope. Consequently, 

these two species are the only species that have slopes that are significantly different from more 

than 5 other species at 13 and 14 species respectively.  

Comparison of coefficients across ecological traits 

 Slopes and standardized intercepts did not vary with respect to activity level (Table 4), 

habitat complexity (Table 6), or diet (Table 7). For habitat type, the slopes did not differ 

significantly, however, the standardized intercepts of deepwater species significantly differed 

from coastal and oceanic species, which were not different from each other. Specifically, 
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deepwater species had significantly larger eyes at 100 cm total length (0.42) than oceanic and 

coastal species at 100 cm total length (Table 5).  
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Table 3. Estimates of intercept (a) and slope (b) of eye diameter allometric regressions for 19 shark species. The 95% Bayesian 

Credible Interval (BCI) is reported for intercepts (BCI a) and slopes (BCI b). Coefficients were re-estimated from log 10-transformed 

eye diameter and log10-transformed and centered total length data. Intercepts are back-transformed and represent eye diameter (cm) at  

100 cm total length. 

Order Family Species N Range 
TL (cm) a b BCI a (95%) BCI b 

(95%) 
Carcharhiniformes Carcharhinidae Carcharhinus acronotus 23 39.1 - 130.8 1.6926 0.58 1.6164 - 1.7710 0.48 - 0.67 

  Carcharhinus brevipinna 6 51.6 - 222 1.5007 0.47 1.3962 - 1.6117 0.35 - 0.58 
  Carcharhinus isodon 45 52.8 - 143.2 1.4169 0.61 1.3681 - 1.4673 0.53 - 0.70 
  Carcharhinus leucas 12 69.4 - 280 1.1976 0.42 1.1377 - 1.2598 0.30 - 0.54 
  Carcharhinus limbatus 56 55.3 - 163 1.5014 0.61 1.4574 - 1.5462 0.53 - 0.69 
  Carcharhinus plumbeus 31 53.2 - 212.5 1.6492 0.51 1.5897 - 1.7110 0.43 - 0.60 
  Galeocerdo cuvier 24 63.4 - 384 2.3391 0.41 2.2261 - 2.4564 0.35 - 0.46 
  Rhizoprionodon terraenovae 72 24.9 - 98.4 1.9013 0.67 1.8002 - 2.0054 0.61 - 0.73 
 Scyliorhinidae Atelomycterus marmoratus 14 16.5 - 48.5 2.0895 0.77 1.7528 - 2.4681 0.64 - 0.90 
 Sphyrnidae Sphyrna lewini 41 24 - 308 1.8440 0.61 1.7832 - 1.9066 0.57 - 0.65 
  Sphyrna mokarran 9 47.5 - 305 1.7628 0.62 1.6533 - 1.8775 0.53 - 0.71 
  Sphyrna tiburo 49 25 - 113 1.4845 0.61 1.4356 - 1.5345 0.55 - 0.66 

Hexanchiformes Hexanchidae Heptranchias perlo 16 56.5 - 123.2 3.4564 0.68 3.2697 - 3.6520 0.47 - 0.90 
  Hexanchus nakamurai 7 62 - 141.8 3.7205 1.01 3.4380 - 4.0195 0.75 - 1.27 

Lamniformes Lamnidae Carcharodon carcharias 27 157 - 472.4 1.6397 0.59 1.4984 - 1.7903 0.51 - 0.67 
  Isurus oxyrinchus 9 71.8 - 350.5 2.0916 0.53 1.9507 - 2.2395 0.40 - 0.66 
 Odontaspididae Carcharias taurus 19 43.2 - 248 1.2102 0.60 1.1614 - 1.2604 0.49 - 0.71 

Orectolobiformes Ginglymostomatidae Ginglymostoma cirratum 8 47.1 - 182 1.0083 0.73 0.9470 - 1.0724 0.62 - 0.84 

Squaliformes Squalidae Squalus cubensis 10 40 - 62 4.0287 0.78 3.0805 - 5.1801 0.41 - 1.15 
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Table 4. Mean coefficients and 95% Bayesian Credible Intervals (BCI) of the Bayesian mixed-

effects model that assessed if the slopes or intercepts of the allometry of eye size (eye diameter) 

and body size (total length) differed with respect to activity level (as measured by caudal fin 

aspect ratio. 

 

Coefficient Estimates (95% BCI) 

intercept 0.31 (0.13 – 0.50) 

slope 0.71 (0.54 – 0.88) 

effect of activity level on intercept 0.02 (-0.02 – 0.06) 

effect of activity level on slope -0.01 (-0.05 – 0.03) 

Pagel’s lambda                0.96 (0.92 - 0.98) 
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Table 5. Mean coefficients and 95% Bayesian Credible Intervals (BCI) of the Bayesian mixed-

effects model that assessed if the slopes or intercepts of the allometry of eye size (eye diameter) 

and body size (total length) differed with respect to habitat type. 

Coefficient Estimates (95% BCI) 

coastal intercept 0.15 (-0.03 – 0.34) 

coastal slope 0.63 (0.44 – 0.82) 

intercept difference for deepwater 0.42 (0.14 – 0.70) 

intercept difference for oceanic 0.08 (-0.03 – 0.19) 

slope difference for deepwater 0.18 (-0.14 – 0.50) 

slope difference for oceanic 0.01 (-0.11 – 0.13) 

Pagel’s lambda              0.93 (0.88 – 0.97) 
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Table 6. Mean coefficients and 95% Bayesian Credible Intervals (BCI) of the Bayesian mixed-

effects model that assessed if the slopes or intercepts of the allometry of eye size (eye diameter) 

and body size (total length) differed with respect to habitat complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficient Estimates (95% BCI) 

complex intercept 0.30 (0.11 – 0.50) 

complex slope 0.73 (0.56 – 0.91) 

intercept difference for featureless 0.06 (-0.06 – 0.17) 

intercept difference for horizon-dominated 0.04 (-0.09 – 0.16) 

slope difference for featureless -0.07 (-0.18 – 0.03) 

slope difference for horizon-dominated -0.02 (-0.14 – 0.10) 

Pagel’s lambda            0.96 (0.92 – 0.98) 
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Table 7. Mean coefficients and 95% Bayesian Credible Intervals (BCI) of the Bayesian mixed-

effects model that assessed if the slopes or intercepts of the allometry of eye size (eye diameter) 

and body size (total length) differed with respect to diet. 

Coefficient Estimates (95% BCI) 

diet 1 intercept 0.33 (0.12 – 0.54) 

diet 1 slope 0.72 (0.55 – 0.91) 

intercept difference for diet 2 0.01 (-0.13 – 0.13) 

intercept difference for diet 3 0.02 (-0.10 – 0.15) 

slope difference for diet 2 0.00 (-0.12 – 0.12) 

slope difference for diet 3 -0.08 (-0.20 – 0.04) 

Pagel’s lambda             0.96 (0.93 – 0.98) 
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Figure 5. The relationship of eye diameter (cm) and total body length (cm) for 19 species of shark. The fitted regression lines are from 

a linear model of log10-transformed eye diameter as a function of log10-transformed total body length for each species. The shaded 

grey region indicates the 95% confidence interval. 

Species 
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Figure 6. The posterior distribution of standardized intercepts and slopes for the allometry of eye diameter (cm) 

to total body length (cm) for 19 species of shark. Coefficients were considered variable and significantly 

different if the 95% Bayesian Credible Intervals did not overlap with other species. The dashed lines represent 

the minimum, median, and maximum standardized intercepts and slopes. 
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CHAPTER 5 

DISCUSSION  

Scaling of eye size 

The quantitative assessment of how eye size varies across species and with respect to 

ecological and life history traits requires a thorough understanding of how eye size scales 

ontogenetically with body growth, or the allometry of eye diameter (Hughes 1977; Howland et 

al. 2004). For many species, eye size has not been examined for a broad enough size range of 

individuals to use an ontogentic allometric approach (e.g. eye size at many size ranges within a 

species), therefore, a static allometric approach is taken (e.g. one value per species typically from 

the same life stage) (Lisney & Collin 2007; de Busserolles et al. 2013; Caves et al. 2017). This 

gives only an estimate of relative eye size compared to other species. However, for studies 

involving metabolic rate and gill surface area (both traits that also scale ontogenetically) that 

have a sufficient size range of individuals for those species, it is standard practice to estimate and 

report the regression equation for the ontogenetic scaling relationship (Bigman et al. 2018). As 

this study had a broad enough size range of individuals for each species, this ontogenetic 

allometric method was applied as opposed to static allometric methods. Thus, each species was 

plotted as their own linear regression and a species-specific intercept and slope was calculated 

for each species. This allows for both an understanding of the relative eye size, or eye size at a 

given total length, and the rate at which eye size scales with total body length. Thus, eye 

investment can be compared in not only traditional relative terms, but also in terms of investment 

of growth throughout the species’ lifetime (Gould 1966). 

For sharks in this study, relative eye size (e.g. eye diameter at 100 cm total length) was 

significantly different across species. As predicted, this variation in relative eye size was 
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explained by both ecology and phylogeny. Alternatively, the slopes of the allometric regressions, 

or the rate at which eye diameter scaled with total body length, were consistent across species 

and demonstrated hypoallometric scaling (<1) except for the bigeye sixgill Hexanchus 

nakamurai which was isometric (slope = 1). This means that the eye diameter of all species, 

except for the bigeye sixgill, grew at a slower rate than predicted or that the total length is 

growing at a rate faster than predicted. For the bigeye sixgill, a slope of one means that the eye 

diameter grew at the same rate as its total body length. However, this result should be interpreted 

with caution because of the low sample size (n=7) compared to other species that may have led 

to an overestimation of the slope and possibly intercept as can be seen in the wideness of the 

posterior distribution.  Physiological traits exhibiting isometric slopes are typically due to 

environmental stressors, such as a lack of oxygen that requires a higher gill surface area for 

oxygen uptake (Nilsson 2010; Bigman et al. 2018). However, all deepwater species experience 

similar environmental stressors with respect to vision. Additionally, despite differences in 

environmental conditions, slopes for physiological and morphological traits have been highly 

conserved throughout history (Howland et al. 2004; Bigman et al. 2018).  

Scaling of eye size with activity 

Here, species-specific standardized intercepts (relative eye size) and slopes were 

compared across activity level. Activity level was estimated using caudal fin aspect ratio, which 

has served as proxy for activity level in fishes because it has been linked to metabolic rate 

(Killen et al. 2016; Bigman et al. 2018), swimming speed (Sambilay 1990; Fisher & Hogan 

2007), and daily ration (Palomares & Pauly 1989)- all traits that are correlated with activity. 

While it is recognized that this method is not without faults (e.g., as sharks are indeterminate 

growers, there may be modest changes in tail shape with ontogeny), caudal fin aspect ratio is a 
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quantitative metric that allows for a more rigorous analysis as opposed to historically assigned 

categories such as ‘sluggish’ and ‘moderately active’ which were traditionally allocated based on 

a species’ perceived activity level and may not reflect the true range of activity for the species 

(Bigman et al. 2018). 

With respect to activity level, there were no significant differences between species-

specific standardized intercepts. This does not fit with the initial hypothesis and prediction that 

species with higher activity levels would have larger relative eye size, which was thought to be 

the case for species needing larger eyes for increased acuity to capture quickly moving prey or 

help with navigation (Brooke et al 1999; Veilleux & Kirk 2014). For example, species in the 

order Lamniformes tend to be high activity sharks like the white shark Carcharodon carcharias 

and the shortfin mako Isurus oxyrinchus of the family Lamnidae. These species had relative eye 

sizes of (mean 1.6 and 2.1cm, respectively), which were significantly larger than another 

Lamniform, the sand tiger shark Carcharias taurus in the family Odontaspididae (mean relative 

eye size 1.2cm). The sand tiger shark exhibits relatively low activity level and smaller eyes 

compared to both the white shark and shortfin mako. However, phylogeny explained most of the 

variation in eye size (Pagel’s lambda= 0.96). 

Scaling of eye size with habitat type 

Standardized intercepts were significantly different with respect to habitat whereby 

deepwater species had larger eyes at 100 cm total length than coastal and oceanic species which 

did not differ from each other. I found that deepwater species had on average, approximately 2.2 

times greater relative eye diameter than coastal and oceanic species. Upon closer inspection, it is 

not surprising that the only significant difference has been found to correlate with habitat. 
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Habitat, mostly associated with light availability, has often been correlated with eye morphology 

in many invertebrates and vertebrates (Land and Nilsson 2002; Cronin et al. 2014). 

The species in this study with the largest eyes were all deepwater species that occur in the 

mesopelagic zone and to a lesser extent, the bathypelagic zone. Proximity to land and depth are 

both factors that cause considerable variation in the spectral composition of aquatic 

environments (Jerlov 1976). While short and long wavelengths are rapidly absorbed with depth, 

oceanic environments past the continental shelf tend to have are some of the clearest aquatic 

habitats, allowing for light to penetrate to depths up to 1000 m (Jerlov 1976). Organisms in the 

mesopelagic zone typically have large eyes (Fritsches et al. 2003; Warrant and Locket, 2004; 

Lisney & Collin 2007), suggesting that vision is an important sense in this light-limited habitat. 

The adaptation towards large eyes within the mesopelagic zone is largely to improve sensitivity 

(Warrant 2000; Land and Nilsson 2002). Mesopelagic teleost fishes often have large numbers of 

rod photoreceptors and a reflective tapetum lucidum to aid in vision under dim light conditions 

(Locket 1977). While elasmobranchs are considerably less studied than teleosts in this regard, 

these adaptations have also been reported in elasmobranch eyes (Hart et al. 2006). Thus, it is not 

unexpected for elasmobranchs within this environment to also have relatively large eyes. It is 

important to note that there was a very strong phylogenetic signal (lambda = 0.93) within the 

category as well, so some of the variation being shown is partially explained by phylogenetic 

relatedness. 

Scaling of eye size with habitat complexity 

 Species were categorized into one of three habitat complexities (Table 2) and it was 

hypothesized that species living in a complex environment would have larger relative eye size 

due to increased needs for higher acuity for navigation tasks and object recognition (Hughes 
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1977; Caves et al. 2017). However, relative eye size and slopes did not differ across species with 

respect to habitat complexity. This result could be stemming from another visual characteristic of 

the habitat such as light availability. Pelagic environments that have light penetrating from all 

directions, is monochromatic (Warrant 2004), and is within the same featureless category as the 

mesopelagic deepwater species that are in a light limited environment with a ‘semi-extended’ 

scene (Warrant 2004) where the primary source of light is from downwelling light. Additionally, 

the high lambda value of 0.96 (Table 6) suggests that this is due to the phylogenetic relatedness 

of species. Interestingly, and conversely to this study, Caves et al. (2017) found that teleost 

species with greater acuity (and larger relative eye size) inhabited either complex or pelagic 

environments. This was attributed to pelagic species having absolutely larger bodies and eyes 

while species in complex environments had smaller absolute body size but had eyes that were 

relatively large. However, species in complex environments had acuity higher than expected 

lending support to the ‘terrain theory’ (Hughes 1977) where species in complex environments 

require higher acuity for navigation purposes. Perhaps this trend was not seen within this study 

because most elasmobranchs are generally larger bodied than their bony fish counterparts living 

within the same habitat complexity. 

Scaling of eye size with diet 

 Species were placed in one of three diet categories based on diet mobility and to a lesser 

extent, prey exhibiting crypsis. It was hypothesized that species with highly active or cryptic 

prey would have relatively larger eyes than species with lower motility or sessile prey while 

slopes remain consistent. This prediction was based on previous studies that have found 

predators with motile prey to have finer acuity and relatively larger eyes in mammals (Veilleux 

& Kirk 2014), insects (Land & Nilsson 2002) and elasmobranchs (Lisney & Collin 2007; 
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Litherland & Collin 2008). However, much like Caves et al. (2017) there was no significant 

difference between relative eye size and slopes according to diet. A lambda value of 0.96, again 

leads to the conclusion that phylogenetic relatedness is the cause for no variation. Alternatively, 

this may be because the diet categories were too broad and need more refinement for accurate 

comparison. Elasmobranch diets consist of a wide variety of foods (Cortes 1999) and some 

species have been known to have ontogenetic dietary shifts not accounted for in this study (Ebert 

et al. 2013). Another consideration that could explain the difference between these two studies is 

the use of alternative sensory systems found within elasmobranchs that ray-finned fishes do not 

have. Electroreception, a sensory system used to detect electric fields produced by other 

organisms, is found within the elasmobranch lineage (Carrier et al. 2004). Perhaps these species 

that eat cryptic prey are utilizing this sensory system more than vision and thus have relatively 

smaller eyes. Additionally, it is difficult to account for generalist or opportunist predators when 

utilizing these broad categories. 

Conclusions 

This is the first examination to date that has studied the scaling relationship of eye size in 

elasmobranchs and that has quantitatively linked this relationship to ecological factors. There 

were significant differences among species for both relative eye size (the intercept of the 

allometry that represents the horizontal diameter of the exposed eye at 100 cm total length) and, 

to a lesser extent, allometric slopes (the rate at which the horizontal eye diameter increased with 

an increase in length). Furthermore, species with larger relative eye size were correlated with 

habitat in that deepwater species had eyes that were larger than oceanic or coastal species. This is 

unsurprising as previous work suggested that oceanic sharks that undergo diel vertical migrations 

and deep-sea sharks in the mesopelagic and, to a lesser extent, bathypelagic have relatively large 
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eyes (Lisney & Collin 2007) which partially aligns with the findings of this study. Additionally, 

this suggests that the slope of eye size to body size is conserved following the trend in previous 

studies of eye size to body size in vertebrates (Howland et al. 2004) and gill surface area and 

body size (Bigman et al. 2018). Variance for all other traits was better explained by phylogeny 

rather than ecology as most models were non-significant once phylogeny was corrected for.  

Elasmobranchs demonstrate considerable variation in the interspecific organization and 

function of visual systems including relative eye size (Lisney & Collin 2007), pupillary shape 

and movement (Hart et al. 2006; Kajiura 2010; Lisney et al. 2012), retinal ganglion cell 

distribution (Peterson & Rowe, 1980; Lisney & Collin 2008), and rod-to-cone photoreceptor 

ratios (Hart et al. 2006). Despite the variation noted in previous literature, this study concludes 

that less variation exists in eye size than previously reported (Lisney & Collin 2007). Previous 

studies did not compare these ecological traits in a statistical nature and simply made broad 

comparisons of ecological factors.  

Although many other ecological traits are associated with vision, like migratory pattern, 

turbidity, and light level (Cronin et al. 2014), they are not independent of each other, or the 

variables in this study, primarily habitat type and complexity. For example, deepwater species 

are light limited therefore ‘light availability’ is autocorrelated (Jerlov 1976). A future data set 

that has a larger sample size for each of these properties could look at which variables within the 

habitat best explain differences in eye size. 
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