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PREDATORS AND ANTI-PREDATOR BEHAVIOR OF WILSON’S PLOVER 

(CHARADRIUS WILSONIA) ON CUMBERLAND ISLAND, GEORGIA 

by 

MARY STRICKLAND 

(Under the direction of C. Ray Chandler) 

ABSTRACT 

Predation, the major cause of nest failure in birds, is an important factor when 

considering management and conservation plans. The predator assemblage in an ecosystem 

changes each year and can cause profound differences in bird nest survival rates. Shorebirds such 

as Wilson’s Plovers (Charadrius wilsonia) are ideal study species because they are declining and 

predator control is often a recommended component of management plans. Therefore the 

objectives of my research were to determine the predator assemblage of the southern end of the 

beach on Cumberland Island National Seashore, Georgia, and to determine how three variables 

affected the display rate and intensity of different anti-predator behaviors of Wilson’s Plover. I 
quantified the predator assemblage of the beach using three methods, transect surveys, nest-site 

surveys, and game cameras, and compared those methods to determine the relative accuracy of 

each method. I also tested how the sex of the incubating adult, the age of the clutch, and the type 

of predator approaching the nest affected the display rate and intensity of different anti-predator 

responses of Wilson’s Plovers. To do this I analyzed plover behavior captured by game cameras. 

Through this project, I was able to determine the predator assemblage on Cumberland Island, and 

how the relative abundance of predators affected the survival rates of Wilson’s Plover nests. I 

determined Wilson’s Plovers change their anti-predator behavior based on the sex of the 

incubating adult and the type of predator approaching the nest. Wilson’s Plovers are declining; 
they rely on undeveloped beaches such as Cumberland Island as breeding sites for a sizable 

portion of their total population. Determining their predator assemblage provides valuable 

information when considering management plans for this and other species. Furthermore, 

understanding their anti-predator behavior shows insight as to which predators are higher risk for 

the adults or higher risk for the eggs.  
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INTRODUCTION 

Nest predation is a major cause of nest failure in birds; nearly 80 percent of all nests will 

fail each year (Ricklefs 1969, Cohen et al. 2009, Hardy and Colwell 2012). Nest predators can 

include mammals, other birds, crustaceans, reptiles, insects, and rarely amphibians. The number 

of species of potential nest predators varies on a latitudinal gradient, with the breeding sites 

closest to the equator having the largest number of possible predators (Ricklefs 1969). The 

abundance of nest predators in the tropics have been hypothesized to affect clutch size (Ricklefs 

1969).  

 Predation risk varies widely among different potential predators. Carnivores such as 

raptors, coyotes (Canis latrans) and bobcats (Lynx rufus) consume eggs or chicks and pose a risk 

to the incubating adults (Cepek 2004). Because of the decline in apex predators across the United 

States, there has been an increase in the presence of medium-sized omnivores (Rogers and Caro 

1998). These omnivores, also called mesopredators, will typically consume the eggs in the nests 

or chicks, but pose a lower risk to the adults (Johnson 1970). Scavengers such as Turkey 

Vultures (Cathartes aura) will consume the eggs, but are not typically risks to the incubating 

adults. Yet other species (such as large mammals) can cause a nest failure not by predation, but 

by trampling or other forms of physical disturbance (Paine et al. 1996, Sanders and Maloney 

2002).  

Because of the high levels of nest failure caused by nest predators, management and 

conservation plans sometimes implement predator controls to increase nest survival of some bird 

species, particularly those with declining populations. These controls can be lethal, that is 

permanently removing the predator from the population by killing, or non-lethal, using barriers 

such as electric fencing or chemicals to induce taste aversion (Conover 1990, Mayer and Ryan 
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1991). For example, canids killed as a form of predator reduction in multiple studies led to the 

overall increase in the hatching success of some bird populations (Côté and Sutherland 1997). 

Predator exclosures have been used in management of Piping Plover (Charadrius melodus, 

Melvin et al. 1992) and Snowy Plover (Charadrius nivosus, Pearson et al. 2014) and, in both 

cases, nest survival increased. Studies have also tested the effects of taste aversion on predators. 

In some cases, the aversion technique successfully reduced nest predation by avian and 

mammalian predators (Conover 1990, Dimmick and Nicolaus 1990). 

But is predator control routinely necessary? There are two important considerations when 

answering this question. First, the decision to control predators should be based on data 

suggesting controls are effective in the short and long term. This will not be the case if predation 

is compensatory (Errington 1946). Changes in the populations of one predator species could also 

lead to mesopredator release, which could substitute one predator for another (Goodrich and 

Buskirk 1995, Crooks and Soule 1999). In some ecosystems, native apex predators have 

decreased in numbers, with some populations needing reintroduction or supplementation with 

individuals from other regions (Fritts et al. 1997). In these cases, the apex predators may need to 

be added to the ecosystem in an effort to control the populations of the mesopredator species 

(Rayner et al. 2007). Ultimately, to be an effective control of predators, it must reduce an 

additive source of mortality and/or not give rise to new sources of additive mortality.   

A second consideration is the fact that birds evolve with their predators. Natural selection 

favors life history traits and behaviors to cope with predation. These adaptations vary among 

species depending on the habitat, the size of the species, and other factors. For example, to better 

protect their nests, ground-nesters evolved camouflaged eggs and use ground vegetation to hide 

the nest (Oniki 1985, Amat et al. 2012). These adaptations do not always succeed in protecting 
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the nest from every predator, so birds also employ anti-predator behavior. Anti-predator behavior 

can be defined as any behavior used in response to the presence of a perceived threat, 

particularly predation threats (Curio 1975, Caro 2005). These responses are typically described 

as the behavior incubating adults use to protect the nest, but can also include responses of the 

adult to protect its own life if threatened. Species such as Sabine’s Gulls (Xema sabini) show a 

variety of intensity levels for their anti-predator responses ranging from distraction techniques to 

lure the predator away from the nest to physical attacks on the predator (Stenhouse et al. 2005).  

The risk posed by predators, and the potential value of control, is especially important in 

areas where humans have impacted the habitat (Vitousek et al. 1997). A decrease in habitat 

quality means that the relative importance of predation as a source of mortality may increase. For 

example, edge-effects caused by the fragmentation of ecosystems may increase exposure to nest 

predators and increase rates of nest predation (Andrén 1992, Crooks and Soulé 1999). These 

compounding effects can lead to population impacts such as the declines seen in forest-living 

corvids as their native habitats were converted to agriculture (Andrén 1992). For birds, habitat 

loss is the source of extinction risk for nearly 70 percent of the species listed as threatened (over 

1,000 species); the next highest source of extinction risk was introduced predators and human 

persecution (Owens and Bennett 2000).  

Not only are humans degrading habitats, but as humans move into natural ecosystems 

they introduce or facilitate novel predators (Prange et al. 2003). Novel predators are species 

introduced into an ecosystem that prey species have no experience with. Adding novel predators 

into an ecosystem can result in levels of predation from which prey populations may not fully 

recover (Skutch 1967, Ricklefs 1969, Dowding and Murphy 2001). This could be because prey 

species have no evolutionary experience with the novel predators (Sih et al. 2010), or that novel 
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predators may reach high densities without another predator species to control their population 

growth. If a prey population can acclimatize or adapt to the presence of a novel predator, there 

could still be negative effects on the food web in that ecosystem, leading to problems in the 

native predator populations (Strauss et al. 2006).    

 Shorebirds are a good example of the key role predation may play in declining 

populations. Many species of shorebirds have been declining over the past few decades due to 

anthropogenic disturbances to breeding habitats and increased populations of both native and 

introduced predators (Corbat 1990, Brown and Brindock 2011). The predators encountered by 

shorebird species such as Piping Plover, Snowy Plover, and American Oystercatcher 

(Haematopus palliatus) could be prime targets for predator control (Sabine 2005, Cohen et al. 

2009, Hardy and Colwell 2012).  

Most shorebirds are ground-nesters in open and exposed habitat among dune systems, 

which is thought to allow for faster predator detection (Amat and Masero 2004). Although this 

allows the adults to escape much faster, this leaves the nest and eggs more vulnerable (Downs 

and Ward 1997). Thus, shorebirds have camouflaged eggs and use some vegetation and substrate 

to cover and camouflage their nests along with the use of anti-predator behavior. Without 

effective behaviors to discourage predators, nest predation might be even higher than the fairly 

high rate they currently show (Ricklefs 1969).  Incubating adults need the ability to distinguish 

what level of risk warrants each anti-predator tactic (Curio 1975). This assessment may be 

difficult in the case of novel predators (Strauss et al. 2006).   

  Wilson’s Plovers (Charadrius wilsonia) are an ideal species to address these issues. Like 

many shorebirds, they nest on open, exposed ground within beach habitat, and they are under 

threat from human development (Tomkins 1944, Bergstrom 1982). Predators, including novel 
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predator species and mesopredators, seem to be the primary source of nest failure (Corbat 1990, 

Sabine 2005), and there are suggestions from other studies that predator control may be needed 

to protect this species (Cox 2015). 

Little is known about how these plovers deploy anti-predator behavior in response to 

approaching predators (Bergstrom 1988b). The use of anti-predator behavior against predators 

approaching the nest presumably allows Wilson’s Plovers to protect their nests in some instances 

against certain predators. Variations in anti-predator responses among other species of shorebirds 

suggest that key variables include the age of the clutch being incubated, the sex of the incubating 

adult, and the species or type of predator approaching the nest (Brunton 1990). To understand the 

role of the predators of Wilson’s Plovers and make intelligent decisions about control, we need 

information on three areas: the predator community, the risks specific predators pose to nest 

survival, and how plovers respond to those predators.   

First, the composition of the predator community affects the type of predators Wilson’s 

Plovers will encounter at their nests. Wilson’s Plovers face a variety of predators within their 

breeding habitat. Presumably this assemblage will include species that are primarily a risk to 

adult birds or larger chicks (e.g., Accipiters), those that threaten both adults and eggs (e.g., 

coyote), and those that are primarily a threat to eggs and small chicks (e.g., ghost crabs [Ocypode 

quadrata], trampling by horses). Although nest predators of Wilson’s Plovers have been 

described (e.g., Sabine 2005, Cox 2015), there has been no attempt to describe the entire 

assemblage of nest predators and threats in the dune habitat used by these plovers.  

Second, the risks each predator species pose to Wilson’s Plover nest survival affect the 

type or amount of controls that might be implemented. Large mammals such feral horses (Equus 

caballus) and white-tailed deer (Odocoileus virginianus) may not threaten shorebird nests on a 
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regular basis, but can cause nest failures both by consuming the eggs or by trampling the nest 

(Sabine et al. 2006, Cox 2015). These species’ daily activities in the dune system can also have 

negative impacts on the reproductive success of Wilson’s Plovers and other shorebirds by 

initiating nest defense and attracting attention (Cox 2015). Feral pigs (Sus scrofa) are infrequent 

nest threats, but will eat eggs and alter the habit (Cox 2015). Apex predators such as coyotes and 

bobcats can be major causes of nest failures, but they also pose risk to the incubating adults. In 

particular, coyotes are an introduced novel predator in the southeast United States that thrive in 

human disturbed habitats (Hill et al. 1987). Evidence of coyote presence on Georgia’s barrier 

islands has occurred recently, with studies as recent as 2005 showing no evidence of coyote 

presence on barrier islands (Corbat 1990, Sabine 2005). Finally, an array of avian and 

mammalian mesopredators pose high risk to eggs and chicks, but little to adults. Avian predators 

such as crows (Corvus ossifragus and C. brachyrhynchos) and Laughing Gulls (Larus atricilla) 

pose risks during the day on plover nests and chicks, and pose only small risks to the adults 

(Corbat 1990, Santisteban et al. 2002). Mammalian mesopredators such as raccoons (Procyon 

lotor), Virginia opossums (Didelphis virginiana), and nine-banded armadillos (Dasypus 

novemcinctus) were the most frequent nest predators in previous studies (Corbat 1990, Sabine 

2005).  

The risk posted by some species is not agreed upon. A good example is the ghost crab, 

which is abundance on coastal beaches. Ghost crabs may or may not be major threats of 

shorebird nest success (Watts and Bradshaw 1995, Staus and Mayer 1999, Wolcott and Wolcott 

1999). Along the northeastern Atlantic coast, researchers found that few Piping Plover nests 

were directly depredated by ghost crabs (Wolcott and Wolcott 1999), whereas other studies 
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found higher levels of depredation by ghost crabs (Loegering et al. 1995, Watts and Bradshaw 

1995, Staus and Mayer 1999).  

Third, we need to understand how Wilson’s Plovers respond to nest predators and threats. 

One variable that could affect how Wilson’s Plovers react to an approaching predator is the age 

of the clutch being incubated (Sordahl 1986). Anti-predator response intensity might increase in 

incubating adults as the value of the nest changes (Kazama et al. 2011). If the clutch is close to 

its expected hatching date, we might expect the intensity of the anti-predator behavior to be 

higher than earlier responses to the same type of predator, suggesting that adults might be willing 

to take greater risks in defending the nest (Sordahl 1986, Brunton 1990). If Wilson’s Plovers 

increase their anti-predator behavior intensities as the clutch ages it would suggest that the 

plovers perceive a greater cost to losing a clutch near the hatching date than losing a recently laid 

clutch (Brunton 1990). Brunton (1990) found significant increases in the intensity of anti-

predator behavior as clutches aged in Killdeer (Charadrius vociferous). Cairns (1982) concluded 

that Piping Plovers displayed more frequently with broken-wing display as the clutch reached its 

hatching date. However, this could have been caused by the incubating adults becoming 

sensitized to the multiple approaches made by the researchers (Knight and Temple 1986). In 

another study, St. Clair et al. (2010a) found that the Two-banded Plover (Charadrius 

falklandicus) did not react differently to predators based on the age of the clutch, but the adults 

changed their reactions based on the size of the clutch.  

A second variable that could affect how Wilson’s Plovers react to an approaching 

predator is the sex of the incubating adult. Wilson’s Plovers have a sex-specific incubation 

pattern that could affect the anti-predator behavior displayed (Bergstrom 1986, Cox 2015). Males 

incubate at night, whereas the females incubate during the day (Bergstrom 1986). Behavior could 
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change between night and day because risk to the incubating adults is increased at night due to 

reduced visibility (Amat and Masero 2004). Sexes may evaluate risk differently as well. Other 

research has studied the differences in the reactions between sexes in species such as the Black-

tailed Gull (Larus crassirostris, Kazama et al. 2011), Barred Warbler (Sylvia nisoria, Polak 

2013), and Red-backed Shrike (Lanius collurio, Tryjanowski and Golawski 2004). Some of these 

studies suggest that males show higher intensity responses than females (Kazama, et al. 2011). 

However, Tomkins (1944) hypothesized that female Wilson’s Plovers responded more 

frequently with broken-wing displays to distract predators and lure them from her nest than 

males, suggesting that female Wilson’s Plovers show higher intensities of anti-predator behavior 

than males.  

The final variable that could change the anti-predator responses displayed is the type or 

species of predator approaching the nest. The type of predator approaching the nest could elicit 

different responses from incubating plovers depending on the risk that predator poses to the adult 

and its eggs (Brunton 1990, Walters 1990). Presumably adult plovers will evaluate the risk the 

threat poses to themselves and their eggs or chicks, as well as the probability that defense would 

be successful. A smaller predator that is a high risk to the nest but low risk to the adult might 

elicit intense attacks. A large predator that is dangerous to adults might elicit more circumspect 

distraction displays. All of these assumptions are based on the idea that plovers can discriminate 

different threats from predators and determine risk. Studies on Black-tailed Gulls (Kazama et al. 

2011), Cardinals (Cardinalis cardinalis, Gottfried et al. 1979) and American Robins (Turdus 

migratorius, Gottfried et al. 1979) have shown variations in responses based on different types of 

predators. Others, such as Two-banded Plovers (St. Clair et al. 2010a) and Sabine’s Gulls 

(Stenhouse et al. 2005) have not shown variations in responses based on the type of predator.  
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 The objective of this study is to quantify the predators and anti-predator behavior of 

Wilson’s Plovers on Cumberland Island, Georgia. I addressed three specific questions. First, 

what is the assemblage of predators that may threaten breeding Wilson’s Plovers? Although 

many studies quantify predators at bird nests, few try to estimate the relative abundance of the 

overall predator community. I used three different methods, transect surveys, nest-site surveys, 

and game cameras, to determine the relative abundance of the different predators that may 

threaten plover nests. Second, which predators or threats pose the greatest risk of nest loss? Even 

though predators are present, not all may be constant nest threats. I located and monitored 

Wilson’s Plover nests, and determined causes of failure by evidence at the nests.  

Third, how do different variables affect the intensity and anti-predator behavior of Wilson’s 

Plovers? I used photos captured by game cameras to analyze how the anti-predator behavior  of 

Wilson’s Plovers were affected by the sex of the adult, the age of the eggs, and the type of 

predator or threat approaching the nest.   
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METHODS 

Study Site 

This study was conducted from March-August, 2014 and 2015, on Cumberland Island 

National Seashore (CINS), a minimally developed barrier island with limited public access. It is 

the southern-most barrier island on the Georgia coast. A majority of the island is owned by the 

National Park Service, while small parts of the island are privately owned. The 29 km of 

undeveloped beach are a breeding site for shorebirds such as Wilson’s Plovers, American 

Oystercatchers, Least Terns (Sternula antillarum), and Willets (Tringa semipalmata) (Sabine et 

al. 2006). The dune system on CINS varies in width from 30 – 300 m along the entire length of 

the island (Sabine 2005, Cox 2015). However, a majority of the shorebirds nest in the southern-

most 7 km and northern-most 7 km of CINS (Sabine 2005, Cox 2015). CINS is home to a 

diverse assemblage of potential shorebird predators and nest predators such as coyotes, raccoons, 

crows, Virginia opossums, feral pigs, ghost crabs, and many other species. CINS is also home to 

a population of approximately 150 feral horses that roam the entire island.  

My study site included approximately 7 km of beach along the southern end of the island 

(Figure 1). I divided the study site into four different areas ranging from 1.5 – 1.9 km in length 

depending on the relative amount of human activity in the areas and the density of Wilson’s 

Plover breeding pairs in those areas (Figure 2). Within this study site, the dune system ranged 

from 30 – 170 m wide, and Wilson’s Plovers used a large portion as possible nesting habitat 

(Cox 2015, personal observation). Approximately 30 – 50 pairs of Wilson’s Plovers nest within 

the study site each year (Cox 2015, personal observation).  
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Population Survey 

 I surveyed the length of the study site throughout the peak of the breeding season (May 

and June) of 2015 to map the distribution of Wilson’s Plover breeding pairs. Wilson’s Plovers 

are territorial and maintain well-defined boundaries during the breeding season. Observations 

were conducted from a National Park Service vehicle between 7 and 10 am for approximately 

5.7 km. The final 1.3 km of beach were surveyed by foot. Each breeding pair seen was recorded 

in each area of the study site.  

Nest Success 

 To locate Wilson’s Plover nests, I repeated followed a line transect parallel to the beach 

(Bergstrom 1988a). Once the tracks of adult plovers were located, I followed the tracks until a 

nest was located (Brown and Brindock 2011, Cox 2015). This was an efficient way of locating 

nests because plovers walk to nests more often than they fly to the nest (Bergstrom 1988a). Once 

a nest was located, I recorded a global positioning system (GPS) point and described the nest 

location within the dune system.  

 Once found, I counted the eggs in the nest and then floated them to determine the 

approximate date the clutch was initiated (Liebezeit et al. 2007, St. Clair et al. 2010a).  I used 

clutch initiation date to predict the nest hatching date. Each nest was checked every 4 – 9 days so 

that nest fate could be determined as accurately as possible without attracting too much attention 

to the nest from repeated visits (Brown and Brindock 2011, Hardy and Colwell 2012). The 

distance I approached the nest to check depended on the location of the nest. Some nests could 

be checked from a distance of 5 m, others had to be approached to within 1 m.  Daily checks 

were made once the chicks were heard peeping or the eggs were pipped, typically within two 

days of their hatching date (Hardy and Colwell 2012).  
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 If nests failed, I analyzed the evidence around the nest site to determine the cause of the 

failure. Evidence could consist of the damage caused to an eggshell that was left behind, the 

predator tracks within 1 m of the destroyed scrape, or if the tide clearly washed over the area 

where the nest had been previously. In some cases, the cause of failure could be attributed to a 

predator, but not any particular species. For these nests, their cause of failure was predation, but 

the predator was listed as unknown.  

  The Mayfield Nest Survival analysis in Program MARK was used to determine the daily 

nest survival rates in 2014 and 2015. I used chi-square analyses to determine the differences in 

the amount of nest failures attributed to each predator or threat species between 2014 and 2015. I 

also used chi-square analyses to determine the relative importance of each predator or threat 

species in the survival rates of Wilson’s Plover nests.  

Relative Abundance of Predators 

 I estimated the predator community within the study site using three methods. Each gave 

an estimate of the relative abundance of potential predators in the habitat used by nesting 

Wilson’s Plovers. Wilson's Plover nests can be destroyed by predators (who benefit from the 

interaction by eating plover eggs or chicks) or by species that damage or destroy the nest 

incidentally (e.g., horses that trample eggs but don't eat them).  I will often refer to all of these 

nest threats as "predators" although all species do not meet the ecological definition of a 

predator. 

First, I used transects placed throughout the study site to estimate the relative abundance 

of potential predators based on the frequency of tracks left in the sand. In the sandy habitat used 

by Wilson’s Plovers, predators routinely leave tracks that can be readily identified (Figure 3). 

Transect surveys were designed to estimate the predator community that might threaten plovers 
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or their nests. I used stratified random sampling to place 32 transects within the study site that 

extended from the edge of the plover breeding habitat (scrub on the landward side) to the high-

tide line, each perpendicular to the shoreline (Figure 4). These transects were surveyed three 

times during the 2015 season. The first survey was completed April 3 – 4, 2015, during plover 

territory establishment and nest preparation. The second survey was completed May 12 – 14, 

2015, prior to the peak of nesting. The final survey was completed June 19 – 21, 2015, after the 

peak of the breeding season.  

On each transect, I counted the number of times a set of tracks of any predator or threat 

crossed the line (Pulliainen 1981). I was able to identify tracks for the following species: 

coyotes, bobcats, feral horses, white-tailed deer, feral pigs, raccoons, crows, and nine-banded 

armadillos (Figure 3). Tracks found were assumed to be recent (within 24 hours) because wind, 

rain, and shifting sand obliterated tracks quickly. Thus, my transects sampled predator activity 

over a short snapshot of time. If a crow flew over the transect during the survey, it was also 

included.  In the cases when a single individual crossed a single transect multiple times, only one 

crossing was tallied (Pulliainen 1981). The predator abundance estimates were standardized to 

the number of crossings per 100 m of transect. 

I also estimated the relative abundance of ghost crabs by counting ghost crab burrows 

within 5 m of the same transect lines. The burrow activity (active vs. inactive) and burrow width, 

which is correlated with the size of the carapace of the ghost crab, were estimated for each 

burrow (Turra et al. 2005). An active burrow was defined as a burrow with tracks leading 

directly into the burrow, whereas an inactive burrow was any burrow with no tracks (Hobbs et al. 

2008). Lizard burrows, though similar in size, but not in shape, were not included in the census. 



23 
 

   

If lizard tracks, most likely six-lined racerunner (Aspidoscelis sexlineata), were seen entering a 

ghost crab-shaped burrow, that burrow was not counted.  

Wolcott and Wolcott (1999) used ghost crabs with carapace widths of approximately 43 

mm as predators in their experimental study due to the assumption that ghost crabs need to be a 

certain size to manipulate shorebird eggs. However, their data suggested that ghost crabs only 

attack eggs that are already cracked or rotting and, thus, easier to manipulate and crack (Wolcott 

and Wolcott 1999). The number of burrows within each transect was standardized to the number 

of burrows per 100 m.  

The second approach I used to quantify the relative abundance of predators was to 

estimate the proportion of nest sites with each species present. To do this, I quantified tracks or 

sign of potential predators within the vicinity of Wilson’s Plover nests (defined as within 10 m of 

a nest site). The presence and absence of predators found within a plover nest site was 

determined by the evidence left by predators during each nest check which included tracks, 

rooting, burrows, or fresh scat. Tracks could be identified for the following species: feral horses, 

white-tailed deer, coyotes, feral pigs, bobcat, Virginia opossum, raccoon, crows, nine-banded 

armadillos, and human tracks other than my own. Other species that were noted but not 

considered threats to the nest included Willets, Mourning Doves (Zenaida macroura), Wild 

Turkey (Meleagris gallopavo), Least Terns, gopher tortoises (Gopherus polyphemus), and 

diamondback terrapins (Malaclemys terrapin). 

 I also counted ghost crab burrows within 10 m of the nest when the nest was first located 

regardless of stage of incubation at that time. The burrow count was then repeated once the fate 

of the nest, either success or failure, was determined. The number of burrows around each nest 

site was standardized to the number of burrows per 1 m2. To compare the number of burrows 



24 
 

   

around nest sites to those found within transects, I standardized the number of burrows within the 

transects to burrows per 1 m2.  

 Finally, actual encounters with potential predators or threats were captured on game 

cameras placed at randomly selected nests. An encounter was tallied each time a predator was 

present in the field of view (St. Clair et al. 2010b). The encounters were recorded using Reconyx 

PC900 and PC800 Hyperfire cameras secured onto stakes approximately 1 – 3 m from the nest 

(Sabine et al. 2005, Cox 2015). The close proximity increased the cameras’ accuracy with which 

the total number of predation events at each nest was estimated. Multiple studies have shown that 

the close proximity to the nest has no effect on nest survival (Brown et al. 1998, Pietz and 

Granfors 2000, Sanders and Maloney 2002, Renfrew and Ribic 2003). I set the cameras on 

motion-sensing photo capture during the day and infrared-sensing photo capture at night 

(RECONYX 2012). Once the camera was triggered, it would continue to photograph the 

movement, up to two frames per second, until no more movement was sensed (RECONYX 

2012). The rate of photo capture did not change between day and night settings (RECONYX 

2012).  

Game cameras captured encounters involving potential predators or threats such as 

coyotes, feral horses, white-tailed deer, nine-banded armadillos, humans (other than myself or 

my assistants), ghost crabs, crows, feral pigs, Virginia opossums, and Turkey Vultures.  Other 

species seen on the game cameras that were not considered a risk to the nest or the incubating 

adult included Willets, Mourning Doves, Wild Turkeys, and Savannah Sparrows (Passerculus 

sandwichensis). An encounter was considered complete when the game camera no longer 

captured consecutive photos with the same individual. For each event, I recorded the survival or 

loss of the nest and the survival or death of the incubating adults.  
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Plover Response to Predators 

I interpreted the anti-predator behavior of the incubating plovers from the game camera 

photos when the type of response could be determined. The response of the plover to the other 

species in the photos was placed into one of three categories: no response, fleeing, or nest 

defense. I recorded no response when the plover showed little to no change in behavior and 

continued its incubation of the nest, and further described the behavior as either no change in 

incubation behavior or crouching closer to the nest. Fleeing was recorded when the plover 

disappeared from the field of view and did not return to the nest, and I noted whether the birds 

ran from the nest on foot or flew away. Nest defense was recorded when the plover showed some 

form of defensive behavior. In the nest defense category, I identified six behaviors, flushing from 

the nest, broken-wing display, flying after the predator, charging at the predator on foot, a 

spread-wing display, and swooping or diving at the predator. The stage of incubation was 

determined for each predator encounter with the use of the date and time stamp on the photos.  

Analysis 

Transects, nest searches, and game cameras provide three different estimates of the 

predator community impacting Wilson’s Plover. Thus, a comparison of techniques is of interest. 

To do this, I used a paired test to compare the relative abundance estimates of each potential 

predator from the three methods. I then ranked the estimates and used a Spearman’s rank 

correlation to compare the methods’ relative abundance estimates of potential predator species to 

the other potential predator species.  

The frequency of each species present on transects was compared to every other predator 

species to determine the most common predators within the study site. These frequencies were 

compared to the frequency of predators found in the nest-site surveys. The comparison of these 
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two surveys would highlight predator species that do not randomly encounter plover nests, but 

rather those predator species that actively search for plover nests. If the game cameras affected 

the presence of a particular predator, I would expect to see a significant difference between the 

number of predator encounters at nests with the game cameras and the number of predators 

present at all of the plover nests.   

I used the nest-site surveys and nest survival rates from the game cameras to determine 

the relative risk of each predator species to plover nest survival. This quantified risk as a function 

of the predators found in the nest sites multiplied by the odds of those predators causing a nest 

failure.  

I then used a bivariate fit regression to compare the number of days captured by game 

cameras at each nest to the number of predation events captured. I used contingency tables and 

chi-square analyses to test if the species of predator that came within the field of view of the 

game cameras affected the outcome of the nest.  

Contingency tables and likelihood ratio chi-square analyses were used to test the anti-

predator behavior shown in relation to the sex of the incubating adult, the nest fate, the predator 

approaching the nest, the proximity of particular predators to the nests, and the time of day.  
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RESULTS 

Population Survey 

Approximately 42 breeding pairs of Wilson’s Plovers were sighted within the study site 

during the peak of the breeding season (between May and June 2015). Within the study site, the 

mean number of breeding pairs was 6.07 ± 1.16 SE pairs per km (range 3 – 12 pairs).  

Nest Success 

I located a total of 136 nests during the summers of 2014 and 2015, 63 in 2014 and 73 in 

2015 (Figure 5). Of these, 39 hatched at least one egg (29%) and 95 failed (70%) (Figure 6). For 

two nests (1%), the outcomes could not be determined, so those were removed from the nest 

survival analyses. Failures in 2014 and 2015 were due to depredation or trampling (84%), 

washing out (3%), abandonment by the adults (5%), or failure for an unknown reason (5%) 

(Figure 7). Nests were significantly more successful in 2014 (37%) than in 2015 (16%) 

(Mayfield nest survival estimates, p <0.01).  

Of the 80 nest failures attributed to predators, I was able to determine the predator for 42 

(52%) of the nests (Table 1, Figure 8). Six species depredated 23 of the 61 nests in 2014 (38%) 

and three species depredated 57 of the 73 nests in 2015 (78%).  In both years, predation was 

unequal across predators, with coyotes and crows accounting for a majority of the nest failures. 

In a few cases, ghost crabs were a secondary predator that would eat eggs left in the nest after 

another predator ate an egg. The proportion of nests lost to each predator were similar between 

2014 and 2015, except for increases in depredations by coyotes, crows, and unknown predators 

(X2 = 12.75, df = 4, p = 0.01, Table 1).  
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Relative Abundance of Predators 

 Based on the transect surveys, Wilson’s Plovers are exposed to a diverse assemblage of 

potential predators (Figure 9). First, I determined predator abundance among the transects for all 

of the different predator species. There were three predator species present in over 50% of the 

transects (Table 2). Ghost crabs, found on 100% of the transects, had an average frequency of 

30.06 ± 2.14 SE ghost crab burrows per 100 m of transect. There was variation in the abundance 

of ghost crab burrows among the four sections of the study site, with the mean frequency ranging 

from 2.4 – 4.4 burrows per 100 m (Kruskal-Wallis, X2 = 31.81, df = 3, p <0.01). Coyotes and 

feral horses were found on a majority of the transects. The next three most common predator 

species found crossing the transects were nine-banded armadillos, white-tailed deer, and feral 

pigs. The crow and the raccoon were each present on one transect, and neither the bobcat or the 

Virginia opossum were detected on any of the transects.  

 I found that the nest-site surveys estimated a predator community similar to that of the 

transect surveys, with the most common predators being ghost crabs, feral horses, and coyotes 

(Table 3). The next three most common species were white-tailed deer, crows, and nine-banded 

armadillo. The mean number of ghost crab burrows found in nest-site surveys was 0.037 ± 0.004 

SE burrows per m2. There was significant variation in the density of ghost crab burrows among 

the four areas of the study site, with means ranging from 0.024 – 0.073 burrows per m2 (Kruskal-

Wallis, X2 = 8.63, df =3, p = 0.03). Because nests could be located during any of the three 

incubation stages, I tested whether the age of the clutch affected the number of burrows present 

around the nest. Regardless of the estimated age of the clutch in question, there was no 

significant change in the number of burrows present at the nest sites (Kruskal-Wallis, X2 = 14.85, 

df = 15, p = 0.46) (Figure 10, nest sites).  
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 The game cameras detected similar predators as the other techniques. Of the species 

captured by the game cameras, feral horses, coyotes, and ghost crabs made up the largest 

proportion of the actual predation events at 45 different nests (Table 4). Of those nests, 41 had 

one or more predator-encounter events. Among the 45 nests, I captured approximately 555 

camera days with an average of 12.3 camera days per nest. Across those 45 nests, a total of 177 

predator-encounter events occurred, averaging approximately 0.25 events per day (Figure 11, df 

=1, 44, F = 18.40, p <0.01). The presence of a game camera at a nest did not affect the outcome 

of the nest (X2 = 1.69, df =1, p = 0.43). However, I removed the game cameras before the end of 

the 2015 breeding season due to evidence of learning by crows. Despite the learning 

demonstrated at the end of the breeding season in 2015, the nests without game cameras were 

just as likely to fail to crows as those with game cameras (X2 = 2.01, df = 1, p = 0.16). 

The type of predator approaching the nest significantly influenced the nest survival of 

those 45 nests (Figure 12, X2 = 51.91, df = 5, p <0.01). Coyotes in the field of view depredated 

nests in 13 of the 26 coyote events (50%), crows depredated nests nine out of the 17 events 

(53%), and every other threat caused nest failures in less than 20 percent of their events. Nest 

survival was not affected by the incubating adult being the male (16 of 77 events, 21%) or the 

female (11 of 86 events, 13%) (X2 = 2.04, df = 1, p = 0.15), nor was it affected by the age of the 

clutch (Table 6, X2 = 7.81, df = 3, p = 0.05).  

Comparison of Techniques 

All three methods used to estimate the predator assemblage gave similar results. 

Transects estimated predator frequency similar to that of the nest-site surveys (Paired-t = 0.23, df 

= 9, p = 0.82, Table 5), and both methods ranked predator abundance similarly (rs = 0.89, p 

<0.01). Predator frequency estimates differed between nest-site surveys and the game cameras 
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(Paired-t = 2.30, p <0.05). However, the two methods still estimated similar rank abundance (rs = 

0.86, p < 0.01, Table 5). Thus, nest-site indices were associated with higher detection by 

cameras, but at a slope less than 1.0 (Figure 13). Finally, the transects and the game cameras 

showed similar predator frequencies (Paired-t = 1.42, p = 0.19) and similar rank orders (rs = 0.76, 

p = 0.01, Table 5).  

Transects and nest-site surveys gave similar estimates of ghost crab abundance. I found 

an average of 0.034 ± 0.003 SE burrows per m2 in the transects which was not significantly 

different from the burrows found in the nest sites (X2 = 1.34, df = 1, p = 0.25).  However, during 

the establishment period of the breeding season, the first five weeks of the breeding season, the 

nest sites showed an average of 0.05 ± 0.008 SE burrows per m2 in the nest sites whereas the 

transects showed 0.03 ± 0.003 SE burrows per m2 (Figure 10, df =1, 2, p = 0.04). 

Plover Response to Predators 

To determine if the age of the clutch affected anti-predator behavior, I divided the 

incubation period into three categories: early, mid, and late. The age of the clutch was considered 

early if the clutch was still being laid to 9 days old, mid if the clutch had been incubated for 10 – 

18 days, and late if the clutch had been incubated for 19 – 27 days. I found that the age of the 

clutch did not influence the reaction shown by the incubating adult, (Figure 14, X2 = 8.27, df = 4, 

p = 0.22). 

The sex of the incubating adult did affect the type of reaction shown (Figure 15, X2 = 

29.09, df = 2, p <0.01), with males displaying fleeing behavior most frequently (39 of 78 events, 

50%) and females most frequently displaying defense behavior (47 of 89, 52%). However, the 

incubation pattern of the plovers may have biased these data, because there was a significant 

difference in the frequency of the anti-predator behavior displayed between nighttime (when 
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primarily males incubate) and daytime (primarily when females incubate) (Figure 16, X2 = 

35.84, df = 2, p <0.01). Fleeing behaviors were displayed mostly at night (40 of the 74 events, 

54%), whereas defense behaviors were displayed mostly during the day (54 of the 93 events, 

58%).  

The differences between the anti-predator behaviors displayed during the day compared 

to those displayed at night could have also been attributed to the type of predator approaching the 

nest, which differed between night and day (Figure 17, X2 = 72.69, df = 5, p <0.01). Coyotes 

were mainly encountered at night, whereas crows were encountered during the day. Trample 

threat events, which include events with feral horses and white-tailed deer, and ghost crab events 

occurred during the day and at night. Finally, the no threat group, including species such as 

Willets, Mourning Doves, Wild Turkeys, and Savannah Sparrows were encountered during the 

day.  

The differences in the species events between day and night led to the two sexes 

encountering a different assemblage of predators (Figure 18, X2 = 44.82, df = 5, p <0.01). Most 

notably, encounters with coyotes (26 of the 27 total coyote occurrences, 96%) were almost 

exclusively by male plovers.  

The type of predator or threat from the predator approaching the nest influenced the type 

of anti-predator behavior displayed by the incubating adult (Figure 19, X2 = 175.56, df = 10, p 

<0.01). Coyotes caused plovers to flee in all coyote-encounter events, and crows and ghost crabs 

elicited defense anti-predator behavior from the incubating adults. Trample threats within 3 m of 

the nest elicited mostly defense behavior, whereas if trample threats were farther than 3 m from 

the nest, they did not elicit a response from the incubating adult (X2 = 30.22, df = 2, p <0.01).  

Incubating adult encounters with species in the no threat group elicited all three types of 
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responses. Any predator species that encountered nests less than five times were not included in 

the analyses. The calculated risks of each of the predator species resulted in coyotes having the 

highest level of risk relative to any of the other predator species, followed by crows, and ghost 

crabs (Table 6).  

.  
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DISCUSSION 

Wilson’s Plovers on Cumberland Island National Seashore face a diverse assemblage of 

predators and nest threats. Three different survey methods (transects, searches of nest sites, and 

game cameras) produced similar estimates of the relative abundance of predators (Table 5). Only 

a small proportion of the predator assemblage, mainly coyotes and crows, caused the majority of 

Wilson’s Plover nest failures. An increase in coyote predation may have caused a decrease in 

plover nest survival rates from 2014 to 2015. Abundance and distribution of the pervasive ghost 

crab had no detectable effect on the placement of plover nests or plover nest survival rates. 

Finally, male and female Wilson’s Plovers encounter somewhat different predation threats 

(Figure 18), and plovers display different anti-predator behaviors based on the predator or threat 

approaching the nest (Figure 19).  

As expected for a ground-nesting shorebird, I found that Wilson’s Plovers are exposed to 

a diverse assemblage of mammalian and avian predators. In other shorebird studies, mammals 

(such as raccoons, bobcats and Virginia opossums), ghost crabs, and avian predators have also 

been shown to be responsible for the majority of the nest failures (Table 7; Corbat 1990, Sabine 

2005, Ray 2011, Cox 2015). My results also agree well with other Wilson’s Plovers studies that 

show most nest failures are caused by apex mammalian predators, mid-sized mammalian 

predators, or avian predators (Bergstrom 1982, Corbat 1990, Ray 2011, Cox 2015). In at least 

two studies on Wilson’s Plovers, trampling by large mammals caused at least one nest failure 

(Bergstrom 1982, Corbat 1990), and two other studies noted that ghost crabs caused at least 

some nest failures (Ray 2011, Cox 2015). Of the studies conducted along the Georgia coast, only 

one other study identified coyotes as the major predator (Cox 2015).   
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One important finding of my study (and Cox’s [2015] recent study) is that the major 

predator of Wilson’s Plover nests seems to have changed over time (Table 7). Over the four 

consecutive years that predation was monitored at this study site, only seven out of 268 total 

nests, less than two percent of nests, were depredated by raccoons (Table 7, this study; Cox 

2015). This number is extremely low compared to studies in other areas that found raccoons to 

be one of the primary shorebird nest predators on the east coast (Corbat 1990, Ray 2011). Even a 

study conducted in 2005 on CINS found that raccoons were the primary cause of nest loss 

(Sabine 2005). Coyotes, though causing a large number of nest failures, may be reducing the 

effects of other predators on the plover population on CINS. The key question is whether coyotes 

are a novel and additive source of predation for Wilson’s Plovers, or coyote predation is 

compensatory because they reduce effects of other major predators such as raccoons.  

If coyote predation were additive, I would expect to see increased predation rates, but 

with raccoons still causing approximately 18 percent of the nest failures (Corbat 1990). 

However, raccoon caused approximately 8 percent of the nest failures in 2014, and none in 2015. 

Thus, coyote predation on Wilson’s Plover nests is most likely compensatory. If so, removal of 

coyotes could lead to mesopredator release (Goodrich and Buskirk 1995, Crooks and Soule 

1999), with raccoons again becoming a major source of nest loss. Nevertheless, due to the high 

levels of nest predation on both sea turtle and shorebird nests by coyotes, removal of coyotes was 

implemented on CINS in June 2015. Only two weeks of the plover breeding season were left, so 

the nest success of plovers in 2015 was not affected by the removal of coyotes. The results of my 

study lead to the prediction that continued removal of coyotes will lead to increased nest 

predation by raccoons. This prediction should be tested in subsequent years.  
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To precisely quantify the predator assemblage impacting Wilson’s Plovers would require 

extensive trapping and/or observation (Sanders and Maloney 2002). However, I found track 

surveys and game cameras to be viable methods to estimate the relative abundance of predators. 

The different techniques I used to determine predator presence generally described the same rank 

abundance of predators throughout my study site.  A similar activity index was accurate in 

describing relative abundance for coyotes, white-tailed deer, and bobcats in southern Texas 

(Engeman et al. 2000).Track-count indices have also been used to monitor the activity of dingoes 

and Ethiopian wolves (Allen et al. 1996, Evangelista et al. 2009).   

Because the different techniques described nearly the same assemblages of predators, I 

can compare the costs to get that information for each methodology. Using tracks as a means to 

identify predators is inexpensive (no equipment needed), but it requires a large effort in the field. 

Given the fleeting nature of tracks in a sandy environment, transect surveys or nest-site surveys 

need to occur on a regular basis (at least every 4-7 days). Game cameras need to be checked less 

frequently (every 6-9 days). Presumably the accuracy of track surveys would increase with even 

more frequent sampling. Regardless of the frequency of track surveys, they are simply an index 

of predator activity and they detect some species more readily than others (e.g., mammals vs. 

avian predators). Game cameras have higher precision and can be checked less frequently, but 

they are expensive (over $600 each), and they require stakes and mounts to secure them in sandy, 

coastal environments.  

Cameras have a cost and a benefit that are particularly important to consider. The cost is 

that predators can learn to associate cameras with a nest. In 2015, a pair of crows learned to 

associate of one of the game cameras with the presence of a plover nest. When I suspected this, I 

moved the game camera to a random location away from active plover nests. The crows were 
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photographed approaching the camera multiple times over the next few days, presumably 

searching for a nest. The pair consumed eggs from four nests before I recognized the problem. I 

then removed all game cameras from the study site to prevent further incidents. However, a 

major benefit of cameras is that they produce an actual record of the activity at the nest. Game 

cameras confirm which predators consume the eggs, but they can also confirm how often that 

species and any other species are present near the nest site.  

I found that predator encounters at a plover nest do not always result in nest failure. 

Coyotes and crows depredated nests in approximately 50% of their total encounters. This 

contrasts with Cox (2015), who found coyotes caused failures in 100% of the encounters. 

However, both studies agree that coyotes are a very high risk per encounter. This is not true of 

other predators or threats. For example, when trample threats such as horses approached within 3 

m, they cause nest failures in only 2% of encounters (Figure 12). Ultimately, Wilson’s Plovers 

experience a relative high number of encounters with potential predators at the nest (Figure 12), 

most which do not result in loss of the nest.  

Although I captured evidence that ghost crabs take plover eggs, I attributed only two nest 

failures to them as the primary predator (Figure 20). In other studies, ghost crabs are attributed 

approximately the same proportion of nest failures (Ray 2011, Cox 2015). Therefore, I could not 

classify them as a major nest predator of Wilson’s Plover. Piping Plover are similar, with 

frequent responses to ghost crabs but few nest failures attributed to ghost crabs (Wolcott and 

Wolcott 1999). Despite the fact that ghost crabs share habitat with Wilson’s Plovers and elicit 

defense behavior in plovers, their distribution along the beach did not affect the placement of 

nests by Wilson’s Plovers. In particular, during the first five weeks of the breeding season, there 

were more ghost crab burrows present in nest sites than in the randomly placed transects. This 
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supports the suggestion that plovers do not place their nests in areas with fewer ghost crabs. The 

only area of the study site with slightly higher ghost crab presence was also the section with the 

fewest breeding pairs of Wilson’s Plovers. However, the lower number of breeding pairs could 

be due to factors other than the higher abundance of ghost crabs (Wolcott and Wolcott 1999).  

The predator approaching the nest influenced the anti-predator behavior displayed, 

suggesting that Wilson’s Plovers can recognize different species of predators or threats. Overall, 

a pattern emerged of plovers fleeing larger mammalian carnivores and defending against any 

other predator that posed some risk to the nest (Figure 21, Figure 22). The risk of the predator to 

the adult could be the key in whether the adult flees or defends the nest. For example, coyotes 

pose a high risk to the eggs per encounter, yet the incubating adults flee. This is probably 

because adult Wilson’s Plovers will renest. Therefore, defending the eggs from a dangerous 

coyote may not be worth the risk. Similar reasoning probably explains why age of clutch does 

not affect the responses displayed by incubating adults in my study and in Two-banded Plover 

(St. Clair et al. 2010a). Because Wilson’s Plovers will lay multiple clutches in a season, and nest 

for multiple years, lack of a fine-tuned response to investment in a single clutch is probably not 

surprising.  

One variable that should be tested in the future is the effect that the renesting potential 

has on the anti-predator behavior displayed by Wilson’s Plovers. Because relatively few 

breeding adults are banded at my study site, I could not confirm how many clutches each pair 

produced. Models suggest that the potential to renest will decrease the intensity of anti-predator 

displays shown by incubating adults (Montgomerie and Weatherhead 1988). The ability of 

Wilson’s Plovers to renest each season and each year could cause some of the currently 

unexplainable variation found in the behavior I observed. In some territories in my study site, I 
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estimated one pair could have renested up to four times in a single breeding season. If plovers 

regularly renest that often in a single breeding season, defense intensity could vary based on 

which nest attempt the incubating adults (e.g. first nest of the season or the fourth nest of the 

season). It could explain why I saw differences in my analyses such as some adults reacting 

strongly to species that posed low risk to the nest, or why other adults did not react to trample 

threats within 3 m of their nest. 

Males and females respond to predators differently (Figure 15). However, because the 

sexes incubate at different times of day, they also are exposed to different predators (Figure 18). 

Dangerous predators like coyotes are encountered almost exclusively by males, whereas avian 

predators like crows are encountered almost exclusively by females. Thus, it is difficult to assess 

whether male and female Wilson’s Plovers show inherent differences in response to predators. 

Two-banded Plovers (Charadrius falklandicus) show no sex-based differences in their anti-

predator behavior (St. Clair et al. 2010b). An experimental approach will probably be required to 

resolve this question in Wilson’s Plovers (see below). 

There was a slight decrease in the survival of nests with males incubating than with 

females incubating. However, this could be due to the different assemblage of predators each sex 

encounters. Because a higher proportion of males encountered coyotes than females, males lost a 

larger proportion of the nests to depredation by coyotes than females. Sabine (2005) found that a 

larger proportion of American Oystercatcher nests failed at night than during the day, which 

supports that the different assemblage of predators seen by adults at night could be the cause of 

the higher nest failure rate. Apex mammalian predators and mid-sized mammals, the major nest 

predators of shorebirds, are primarily nocturnal or crepuscular and cause nest failures more 

frequently at night (Sabine 2005).  
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To better understand how the sexes of Wilson’s Plovers respond to different predators, an 

experimental approach is called for (Altmann 1974). I did stage encounters with predator models 

with some success. However, most of the simulated predator encounters were unsuccessful. 

Simulated predator experiments failed for two reasons. First, many adult Wilson’s Plovers were 

extraordinarily sensitive to the blind. Despite prolonged waiting periods, adults would not return 

to normal activity. One solution was to leave the empty blind out overnight so that plovers could 

acclimate. However, its presence then attracted the attention of coyotes. A second problem was 

the inability to make the artificial predator approach the nest. Originally I used a remote-

controlled motorized vehicle hidden by canvas with the artificial predator attached, but the 

vehicle would not move in soft sand. I then used a rope system to simulate the artificial predator 

approaching the nest, but the soft sand was still a problem. I switched to an immobile predator 

hidden under canvas within 3 m of the nest, but the adults were too sensitive to the blind 

presence to fully test this method.  

In future studies, the blind should not be placed closer than 20 m from the nest and 

should be left overnight prior to running the experiment, if possible. The ability to move the 

artificial predator was an important part of this study that should be considered. Because there 

was a difference in the reactions in trample threat distances from the nests, there could be a 

difference in the reaction shown by incubating adults with the different distances of other 

predators as well. During the day, I was able to more easily determine in the game camera photos 

the predator distances from the nest. At night, the infrared photo capture on the game cameras 

was limited in the distance it could capture. Unfortunately, this made it more difficult to 

determine the distances of the predators to the nests at night.  Using artificial predators that can 

move through soft sand would help determine if the distance of the predator from the nest 
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changes how the plover reacts to the predator. It would also determine if there are differences in 

the display rates of males and females, or if the display rates are due to other factors such as the 

assemblage of predators that each sex encounter most frequently or the time of day that the 

encounter occurs. 
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Table 1. Frequency (and percent) of Wilson’s Plover nests destroyed by different species of 
predators or threats in 2014 and 2015. Species that caused no known failures are listed for 
comparison with relative abundance data.  

Predator Total 2014 2015 

Unknown 38 (47.50%) 8 (34.78%) 30 (52.63%) 

Coyote 25 (31.25%) 6 (26.08%) 19 (33.34%) 

Crow 10 (12.50%) 3 (13.04%) 7 (12.28%) 

Ghost Crab 2 (2.50%) 2 (8.70%) 0 (0%) 

Feral Horse 2 (2.50%) 1 (4.35%) 1 (1.75%) 

Raccoon 2 (2.50%) 2 (8.70%) 0 (0.00%) 

Bobcat 1 (1.25%) 1 (4.35%) 0 (0.00%) 

Nine-banded Armadillo 0 (0.00%) 0 (0.00%) 0 (0.00%) 

White-tailed Deer 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Feral Pig 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Virginia Opossum 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Total  80 23 57 
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Table 2. Number of transects on which each predator was detected in 2015. Relative abundance 
is the mean number of track crossings per 100 m of transects averaged by transect (N = 32).  

Predator 
Number of transects 

(percent) 
Relative abundance (per 100 m) ± SE 

Ghost Crab 32 (100%) 30.06 ± 2.14 

Coyote 31 (97%) 1.09 ± 0.13 

Feral Horse 18 (56%) 3.49 ± 0.40 

Nine-banded Armadillo 12 (38%) 1.27 ± 0.13 

White-tailed Deer 3 (9%) 0.41 ± 0.02 

Feral Pig 2 (6%) 0.99 ± 0.04 

Crow 1 (3%) 0.89 ± 0.03 

Raccoon 1 (3%) 0.37 ± 0.01 

Bobcat 0 (0%) 0.00 ± 0.00 

Virginia Opossum 0 (0%) 0.00 ± 0.00 
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Table 3. Number (and percent) of nest sites (10-m radius) in which each species of predator was 
detected. A total of 63 nests sites were sampled in 2014 and 73 in 2015.  

Predator Total 2014 2015 

Ghost Crab 134 (99%) 63 (100%) 71 (97%) 

Coyote 76 (56%) 26 (41%) 50 (68%) 

Feral Horse 101 (74%) 60 (95%) 38 (52%) 

Nine-banded Armadillo 19 (14%) 3 (5%) 16 (22%) 

White-tailed Deer 48 (35%) 16 (25%) 32 (44%) 

Feral Pig 9 (7%) 6 (10%) 3 (4%) 

Crow 34 (25%) 13 (21%) 21 (29%) 

Raccoon 18 (13%) 13 (21%) 5 (7%) 

Bobcat 4 (3%) 4 (6%) 0 (0%) 

Virginia Opossum 1 (1%) 1 (2%) 0 (0%) 
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Table 4. The number (and percent) of nests with game cameras that each species of predator or 
threat were present throughout the study site. In 2014, 19 nests had game cameras placed at them 
for all or a portion of their incubation. In 2015, 26 nests had game cameras placed at them for all 
or a portion of their incubation. (N = 45) 

 

 

 

 

  

Predator Total 2014 2015 

Ghost Crab 15 (33%) 9 (47%) 6 (23%) 

Coyote 16 (36%) 5 (26%) 11 (42%) 

Feral Horse 19 (42%) 7 (37%) 12 (46%) 

Nine-banded Armadillo 3 (7%) 1 (5%)  2 (8%) 

White-tailed Deer 10 (22%) 6 (32%) 4 (15%) 

Feral Pig 1 (2%) 1 (5%) 0 (0%) 

Crow 13 (29%) 7 (37%) 5 (19%) 

Raccoon 0 (0%) 0 (0%) 0 (0%) 

Bobcat 0 (0%) 0 (0%) 0 (0%) 

Virginia Opossum 2 (4%) 2 (10%) 0 (0%) 
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Table 5. Comparison of predators detected by the three survey methods. Numbers are the percent 
of transects, nest sites (10-m radius), and encounters at nest photographed by cameras at which a 
given species was detected. Rank of frequencies are given in parentheses.   

Predator Transects Nest Sites Game Cameras 

Ghost Crab 100 (1) 99 (1) 33 (3) 

Coyote 97 (2) 56 (3) 36 (2) 

Feral Horse 56 (3) 74 (2) 42 (1) 

Nine-banded Armadillo 38 (4) 14 (6) 7 (6) 

White-tailed Deer 9 (5) 35 (4) 22 (5) 

Feral Pig 6 (6) 7 (8) 2 (8) 

Crow 3 (7) 25 (5) 29 (4) 

Raccoon 3 (7) 13 (7) 0 (9) 

Bobcat 0 (8) 3 (9) 0 (9) 

Virginia Opossum 0 (8) 1 (10) 4 (7) 
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Table 6. Relative risk to Wilson’s Plover nest survival as a function of the predators found in the 
nest sites multiplied by the odds of those predators causing a nest failure.  

Predator 
Frequency in 
the nest sites 

Frequency of species’ 
presence causing a nest failure 

Relative Risk 

Ghost Crab 
0.99 

0.11 0.11 

Coyote 0.56 0.50 0.28 

Feral Horse 0.74 0.02 0.01 

Nine-banded Armadillo 0.14 0.00 0.00 

White-tailed Deer 0.35 0.00 0.00 

Feral Pig 0.07 0.00 0.00 

Crow 0.25 0.53 0.13 

Raccoon 0.13 0.00 0.00 

Bobcat 0.03 0.00 0.00 

Virginia Opossum 0.01 0.00 0.00 
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Table 7. Comparison of the top predator in this study to top predator found in other studies of 

shorebird nest success. Predator classifications listed are those used in each of the studies. 

Percent of nest failure caused by each predator is the percent of all failed nests in each study.  

Reference Species Year(s) Location Major Predator 
Other 

predators 

Bergstrom 

1982 
Wilson's Plover 1980 Texas Coyote (19%) 

Jaguarundi 

(Puma 

yagouaroundi), 

Cattle 

 

Corbat 1990 
American 

Oystercatcher 

1986-

1987 
Georgia Raccoon (18%) 

Feral pig, 

Avian, Cattle 

 

Corbat 1990 Wilson's Plover 
1986-

1987 
Georgia Raccoon (18%) 

Avian, 

Mammal, Feral 

pig, Trampling 

 

Corbat 1990 Least Tern 
1986-

1987 
Georgia Raccoon (37%) Ghost crab 

Sabine 2005 
American 

Oystercatcher 

2003-

2004 
Georgia Raccoon (39%) 

Bobcat, Crow, 

Trampling, 

Humans 

      

Ray 2011 Wilson's Plover 
2008-

2009 

North 

Carolina 

Virginia Opossum 

(29%) 

Raccoons, 

Ghost crabs, 

Rodents 

 

Cox 2015 Wilson's Plover 
2012-

2013 
Georgia Coyote (16%) 

Raccoons, 

Ghost crabs, 

Deer, Feral 

pig, Crow 

 

Current Study Wilson's Plover 
2014-

2015 
Georgia Coyote (26%) 

Crow, 

Raccoons, 

Ghost crabs, 

Trampling, 

Bobcat 
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Figure 1. Cumberland Island National Seashore, Georgia, with the 7-km study site indicated by 
the gray bar.  
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Figure 2. The study site was divided into four distinct areas. Area 1 was an area with higher 
levels of human foot traffic and lower Wilson’s Plover densities. Area 2 had less human foot 
traffic and a higher density of Wilson’s Plovers. Area 3 had the least human foot traffic and the 
lowest density of Wilson’s Plovers. Area 4 was an area where boaters can beach their boats, so 
the human traffic was high, but the plover density was highest in this area.  
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Figure 3. Examples of predator tracks identified. (A) coyote, (B) bobcat, (C) feral horse,          
(D) white-tailed deer, (E) feral pig, (F) raccoon, (G) nine-banded armadillo, (H) Virginia 
opossum, (I) crow, (J) ghost crab burrow. 
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Figure 4. Locations of the 32 predator transects.  
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Figure 5. Nest locations throughout the study site for both the 2014 and 2015 breeding seasons.  I 
located 63 nests in 2014 and 73 nests in 2015. 
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Figure 6. Nest fate for all nests on the study site in 2014 and 2015. 



62 
 

   

 
Figure 7. Causes of failure for the 95 failed nests indicated in Figure 6.   



63 
 

   

 

Figure 8. Predators responsible for failures due to predation indicated in Figure 7.   
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Figure 9. Mean number of tracks (per 100 m) found on each transect for each predator detected. 
Transects are shown in order from the north to the south ends of the study site (see Figure 4).  
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Figure 10. The count of ghost crab burrows per m2 found in the nest sites and transects in the 
three periods of the breeding season. The establishment period consists of the first five weeks of 
the breeding season, the before peak period consisted of the next five weeks, and the after peak 
period consisted of every week after the before peak period until the end of the incubation of the 
final surviving nest. 
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Figure 11. Relationship of predation events at Wilson’s Plover nests to number of days camera 
was deployed.   
 

 

  



67 
 

   

 

Figure 12. The total number of encounters captured at plover nests by each predator species or 
threat group and the outcome of each of those encounters. Feral horses and white-tailed deer 
comprise the trample threat groups, and were classified as farther than 3 m from the nest (>3 m) 
or within 3 m of the nest (<3 m). The no threat group was comprised of species not considered 
threats to the incubating adults or the nests such as Mourning Doves, Willets, Wild Turkeys, and 
Savannah Sparrows. (N = 45; X2 = 51.91, df = 5, p <0.01).  
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Figure 13. Relationship between predator relative abundance indicted by cameras to that 
estimated by nest-site surveys. N = 136 nest-sites and 45 camera sites.    



69 
 

   

 

Figure 14. Response of adult plovers to potential predators as a function of clutch age.   
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Figure 15. Response of adult plovers to potential predators as a function of sex.  
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Figure 16. Response of adult plovers to potential predators as a function of time of day. 
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Figure 17. Proportion of predator encounters captured on game cameras by each predator species 
as a function of time of day.  
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Figure 18. Potential predators encountered by male and female Wilson’s Plovers.  
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Figure 19. Responses of adult plovers to different potential predators.    
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Figure 20. Evidence of a ghost crab removing and eating a Wilson’s Plover egg from a nest, July 
6, 2014, at 10:10 am on Cumberland Island National Seashore, GA.  
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Figure 21. A female Wilson’s Plover reacting in defense to a feral horse that had approached 
within 3 m of the nest she was incubating. The photo was taken on March 31, 2015, at 6:36 pm. 
This was the typical spread-wing display against a predator that poses risk to the nest, but poses 
little to no risk to the adult.  
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Figure 22. A female Wilson’s Plover responding to a ghost crab near the eggs she was 
incubating. The photo was taken on May 8, 2015, at 9:18 am. This was the typical spread-wing 
display against a predator that poses risk to the nest, but poses little to no risk to the adult. 
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