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ABSTRACT 

Cancer remains one of the largest public health concerns of our day, particularly in developed countries 

where technological advances have allowed populations to live well into their eighth decade. In America, 

those in their 80’s have a 1 in 2 chance of developing cancer in their lifetime. Prostate cancer, specifically 

is the second leading cause of cancer deaths in males. Traditional cancer therapies cause high levels of 

toxicity to the patient due to mechanisms of action that often attack cancer cells and healthy cells alike. The 

holy grail of cancer research is to find a treatment that targets the cancer cell directly while leaving healthy 

cells unharmed. The introduction of monoclonal antibodies as a way to target antigens that are highly 

expressed on cancer cells may be one way to reach this goal. Coupling antibodies with nanomaterials has 

also shown promising results which is the subject of this study. Multi-walled carbon nanotubes (MWCNT) 

possess the unique ability to be rapidly heated under microwave irradiation. Furthermore, the sidewalls can 

be modified to attach various molecules and proteins to its surface. This study evaluated MWCNTs 

conjugated with an antibody directed against prostate specific membrane antigen (PSMA) in combination 

with microwave irradiation as a potential ablative therapy. This study demonstrates hyperthermic ablation 

of the muscle cells surrounding antibody-conjugated MWCNTs after microwave irradiation. Additionally, 

it showed that these nanotubes remain localized at the sight of injection with no evidence of distribution 

amongst other tissue. Time-lapse confocal microscopy using transgenic zebrafish larvae demonstrated that 

macrophages and neutrophils are the first immune responders with phagocytosis. These findings support 

further efficacy studies in a human prostate tumor xenograft mouse model. 

INDEX WORDS: Nanomedicine, Hyperthermic necrosis, Innate immunity, Mice, Zebrafish, Prostate 

specific membrane antigen, Neutrophil, Macrophage, Histopathology 
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CHAPTER 1 

INTRODUCTION 

I. Cancer Background

Cancer remains one of the largest public health concerns of the 21st century. In 2018, more 

than 8 million people lost their lives to cancer worldwide. While cancer is certainly associated with certain 

risk factors such as carcinogen exposure, viruses, and genetics, it is largely associated with the aging 

process. Technological advances over the last century allow populations in the developed world to survive 

well into their eighth decade and beyond. Therefore, as the risk of death due to injury or acute infection 

decreases, the likelihood that one will succumb to diseases of aging increases. Essentially, if one lives long 

enough, they will likely encounter a neoplasm simply as a function of age. In fact in America, those who 

live into their 80’s have a 1 in 2 chance of developing cancer in their lifetime. For adult males, this often 

comes in the form of prostate cancer 1. As the aging population grows alongside increased exposure to 

carcinogens, it is projected that the global economic burden of cancer will continue to rise along with the 

annual number of cancer deaths from 8.2 million to 13 million over the next 20 years 2. The U.S. federal 

funding alone for cancer research was $305 million in 2018 3. The race is on to build upon the scientific 

understanding of what causes cancer and develop new therapies to combat this growing epidemic. 

II. Current Therapies

From the beginning, researchers have been on a quest to find drugs that are potent enough 

to kill tumor cells while sparing the life of the patient. This has been a delicate balancing act, as many of 

the first line anti-cancer regimens available today are still highly toxic to the patient. Side effects commonly 

associated with current therapies range from benign hair loss to acute myelosuppression, which put patients 

at risk of succumbing to life-threatening infections. Investigations into the etiology of cancer in the last 

seventy years have translated into therapies that have drastically decreased the mortality of cancer patients 
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2. The research that has led to breakthroughs in developing new treatments has also illuminated the scope

of the problem. Much like the Greek mythology of Heracles and Hydra, the more science learns about the 

mechanisms of cancer, the more it becomes clear that this tiny killer is a monster of complexity and single 

therapies alone only slay a small fraction of the beast. A multi-pronged approach that severs many heads is 

required to eradicate cancer. Today, clinical treatment of cancer often involves a combination of several of 

the following anti-cancer elements:  

Chemotherapy 

The use of nitrogen mustard for the treatment of lymphoma in 1949 emerged following 

World War II when physicians noted a marked decrease in blood cell development in soldiers returning 

from the war. It was discovered that the use also halted cell proliferation in lymphoma patients. It is now 

known that this drug and its derivatives kill cancer cells through DNA alkylation. During cell replication, 

DNA is exposed and damaged by these agents. Cancer cell populations rapidly divide and proliferate, thus 

making them particularly vulnerable to this agent. However, treatment with this chemotherapy alone results 

in only short-lived remission. A class of drugs called antifols emerged in the 1950’s with the leading drug, 

methotrexate, still in use today. This class also targets DNA synthesis, but by interfering with folate, a 

necessary co-factor in the process 4.  However, these two classes of drugs have serious drawbacks. They 

exhibit a low therapeutic index when used alone as they do not distinguish between cancerous and healthy 

dividing cells. Therefore, they must be used near their maximum tolerated dose to achieve an effect which 

can result in morbidity and mortality associated with the therapies themselves 5. Furthermore, alkylating 

agents boast a higher rate of causing subsequent neoplasms; as one tumor is cured, another may develop 

later as a direct result of the therapy 6. 

Second generation drugs evolved alongside progress in the field of molecular genomics. 

These allow for a more tailored approach by targeting specific cell signaling events that result due to 

specific gene mutations. For example, the BCR/ABL fusion gene results during a chromosomal 

recombination that leads to Chronic Myelogenous Leukemia (CML). The resulting fusion gene then 
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increases the activity of tyrosine kinase in the affected cells, leading to a net increase in proliferative 

activity. Tyrosine kinase inhibitors have been very effective at treating CML positive for this fusion gene 

and prolonging life. Unfortunately, the heterogenic nature of malignancy often means that not all cancerous 

cells contain the targeted mutation, making them insusceptible to targeted treatments which can result in 

drug resistance 4. 

Radiation Based Therapies 

The first therapy to use radioactivity traces back to the late 1800's when X-rays were 

first used to treat forms of skin cancer. The discovery of radioactive elements and the description 

of its physiological effects by Marie and Pierre Curie led to its use as an anti-cancer therapy.  Similarly 

to first generation chemotherapies, the mode of action targets the DNA replicating machinery of the cell 

and limits its ability to divide. Unsurprisingly, this often leads to considerable injury to healthy 

tissue as well. Technological advances have eventually led to the development of X-rays capable of 

penetrating deeper tissues and dose administration schedules that have decreased the toxicity to healthy 

cells 7. 

Hyperthermic Ablation 

Hyperthermic ablation, or the use of heat to achieve cell death, is another approach 

to treating cancer 8. This may be the oldest therapy, with Hippocrates being said to have cauterized 

the superficial tumors of his patients. Modern applications did not emerge until the 1970's. These 

techniques involve the application of energy through a probe which is then absorbed by the tissue in the 

form of heat. This energy can be delivered across various wavelengths in the form of radiofrequency 

(RF), microwave, and light lasers.  Light lasers are by far the most commonly used mode of 

hyperthermic ablation for superficial tumors, though insertion of optical probes has been used for 

bladder and uterine cancers. It consists of the delivery of a wide range of light wavelengths depending 

on the target tissue that is delivered through a medium. Many factors are taken into consideration when 

applying this therapy, but altering the wavelength and the diameter of the medium allows for 

penetration at different depths, making this a 
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versatile tool that can be tailored to different cancers. For example, infrared light is absorbed best when 

deeper penetration is required, whereas superficial malignancies require a higher wavelength. 

Radiofrequency ablation induces hyperthermia through a different mechanism. Radio waves transmit 

electricity through the tissue between two probes. The electrical energy is absorbed as heat. It is used more 

commonly to treat deeper cancers, particularly hepatic colorectal malignancies. One drawback has been its 

tendency to produce asymmetric ablation patterns. This is because the energy tends to move through areas 

of the tumor with less resistance. Microwave ablation, however, heats through an entirely different 

mechanism known as the Joule effect, where the energy from microwaves causes rapid oscillation of water 

molecules resulting in friction which is then transferred as heat. This allows a deeper penetration 

superior to both light and radiofrequency application 9. Microwaves are currently being used 

clinically as part of a combination therapy to shrink tumors in the lungs and liver 10-13. 

Immunotherapy 

The advent of monoclonal antibodies in the 1970’s allowed for the possibility of making 

current therapies more targeted to the cancer cell. Monoclonal antibodies are produced using hybridoma 

technology and are tailored to bind to specific antigenic epitopes with high affinity and can be designed to 

target specific antigens that are highly expressed on cancer cells. The antibody-antigen interaction then 

serves to either block or activate cell signaling events that eventually result in the cancer cell’s demise. 

They also serve to opsonize the targeted cell, making them a target for the patient’s own immune system to 

attack 14. It has become standard to use monoclonal antibodies in combination with chemotherapeutic agents 

in the treatment of certain breast cancers, colorectal cancers, and non-Hodgkin’s lymphoma 4. More 

recently, these antibodies have been used as a way to target chemotherapy directly to cancer cells by directly 

attaching the drug to the antibody. These antibody-drug conjugates (ADC) can then shuttle the payload to 

the tumor and facilitate uptake into the cell by harnessing receptor mediated endocytosis. Brentuximab 

Vedotin, is an ADC that has demonstrated success in the treatment of anaplastic large-cell lymphoma. The 

existing chemotherapeutic agent MMAE is conjugated with an antibody targeted against CD30, which is 
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upregulated in lymphoma cells. This ADC showed superior efficacy in clinical trials when compared to 

traditional combination chemotherapy with an objective response rate of 86% versus 30%, respectively. 

Furthermore, the incidence of myelosuppression was less (14% versus 51%). There are currently four FDA 

approved ADCs and more in trial 14.  

Nanomedicine 

The most recent therapies developed to target malignancies lie at the crossroads where 

materials engineering and medicine meet. Nanomedicine is defined as the use of synthetic materials 

between 1 and 100 nm in length to facilitate or enhance the delivery of therapeutic elements. They are 

composed of a variety of materials, including lipids, carbon, metals, and synthetic polymers. Their small 

size and biocompatible chemistry allow them to be preferentially absorbed within tumors passively due to 

a phenomenon known as the enhanced permeability and retention effect (EPR) of cancer. EPR is a function 

of tumor angiogenesis, in which many new blood vessels are formed throughout the tumor. These blood 

vessels also exhibit increased “leakiness” as compared to healthy tissue 15.  Furthermore, conjugation 

with molecules showing preferential uptake by cancer cells allow for nanomaterials to target these cells 

directly. 

Nanomaterials used in medicine are designed to solve two problems. First, they serve 

to increase the biocompatibility of certain drugs. Amphiphilic lipid-based spheres that are 

capable of interacting with biological fluids and the membranes of cells can help deliver bio-

incompatible drugs to the targeted cell, for example. Second, they allow for increased cytotoxicity of 

the payload by shuttling the drugs to cancer cells while shielding the healthy tissue. Their high aspect 

ratio allows them to carry a large payload that remain inert until they reach the cell. This results in less 

overall toxicity to the patient. A classic example is Abraxane, a combination of paclitaxel bound to 

albumin nanoparticles. Abraxane was approved for the treatment of breast cancer in 2005 after 

clinical studies demonstrated increased tolerance at substantially higher doses than when administered 

in its traditional form 16. As of 2017, thirteen anti-cancer nanomedicine therapies were FDA approved with 

another thirty-six in clinical trials 17. Below is a summary of the current types of nanomedicine being 

studies for cancer therapy. 
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Liposomes 

Liposomes were the first nanomaterial drug delivery platform to be approved by the FDA 

and are the most representative nanomaterial currently on the market 18. Lipid bi-layer spheres form when 

amphiphilic lipids are added to an aqueous solution that contains the drug. In this way, the drug is 

incorporated within the sphere. This technology is especially useful for delivering large quantities of water 

soluble drugs directly to the tumor, avoiding collateral damage to tissue during circulation or rapid 

clearance through the kidneys 19. Current approved drugs have shown increased delivery to the tumor site 

and decreased systemic toxicity 16. Liposomal nanoparticles have also successfully incorporated two 

chemotherapeutic drugs into one platform. For example, Vyxeos is a treatment for acute myelogenous 

leukemia (AML) which co-encapsulates daunorubicin and cytarabine within a single liposome. The results 

of the phase III trials demonstrated increased efficacy and decreased toxicity when compared with standard 

treatment 20. This example highlights the feasibility of using a single nanomaterial platform to combine 

therapies. 

Polymeric Nanoparticles 

Similar to liposomes, polymeric nanoparticles also create spheres which encapsulate a 

drug, however they are made out of a variety of synthetic polymers that can be customized to meet specific 

needs based on the drug being delivered and the target tissue. This platform is especially useful in the 

delivery of hydrophobic drugs, which can be incorporated into the solvent used during synthesis of the 

material 15. A prostate cancer therapy is currently available using this platform. Elligard uses the Atrigel® 

polymer delivery platform in combination with leuprolide acetate which have demonstrated suppressed 

testosterone concentrations comparable to castration, thus providing a viable alternative to surgery 21. 

Metallic Nanoparticles 

Metallic nanoparticles that incorporate metal ions such as gold, silica, silver, and iron are 

being studied for their use as drug delivery vehicles that also have thermal properties. This allows them to 

be incorporated into ablation therapies using various forms of heating 16. NanoTherm® uses the injection 

of iron oxide nanoparticles into glioblastoma tumors followed by the application of MRI. The magnetic 
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field induces local heating of the nanoparticle, heating the tumor microenvironment to 40-45ºC and 

inducing cell death16. It was approved by the FDA for the treatment of glioblastoma after clinical trials 

demonstrated increase in median overall survival of 12 months 22. A press release announced in February 

that MagForce was issued a license to begin clinical trials evaluating this therapy in prostate cancer patients 

as an alternative to surgery 23.  

Carbon Nanotubes 

Carbon nanotubes 

(CNTs) are a nanomaterial with unique 

physiochemical properties that are 

currently in the pre-clinical phase of 

testing as a potential anti-cancer 

therapeutic. First popularized by 

Sumio Iijima in 1991, CNTs became an 

important composite engineering 

material due to light weight and tensile 

strength, which are a direct result of 

their structure. The material begins as graphite, or sheets of carbon rings arranged in a honeycomb pattern, 

which is then rolled into a cylindrical shape. These sheets can be assembled as a single layer or nested 

within multiple layers (Figure 1) 24. The hexagonal structure of the carbon coupled with the cylinder shape 

confers incredible strength to the material. The hollow core within the cylinder makes the material 

lightweight. However, medicine became interested in CNTs because of their unique physio-chemical 

properties. First, when the hexagonal carbon rings are arranged in a chiral pattern, they yield semi-metal or 

semi-conductor properties, which confer optical and thermal properties similar to metallic nanoparticles. 

This makes them a promising option for hyperthermic ablative therapies 24. Second, much like their 

liposome and polymeric nanoparticle cousins, their surface walls can be modified for the covalent addition 

of functional groups. This allows for covalent conjugation with other organic compounds, such as cytotoxic 

Figure 1. Physical representation of carbon nanotubes. The image illustrates 

the length and width dimensions. The walls are composed of hexagonal 

carbon rings in a honeycomb pattern that are rolled into a tube and left singly 

as a single-walled carbon nanotube (a) or nested as a multi-walled carbon 

nanotube (b) 24. 
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drugs or antibodies. However, CNTs are not naturally amphiphilic like other nanomaterial platforms, but 

rather are highly hydrophobic in pristine form. This is an undesirable property in the field of nanomedicine 

where biocompatibility within biological fluids is essential. This challenge can be overcome through 

functionalization with hydrophilic side groups, making CNTs more dispersible in aqueous solutions 25 26-28. 

Oxidation reactions are one means of covalent functionalization in which oxidizing agents add carboxyl 

groups to the ends of CNTS and to defects along the wall. Another form of covalent functionalization is 

achieved through cycloaddition, which adds nitrogen rich groups along sidewalls. Covalent forms of 

functionalization can be further modified through the addition of polyethylene glycol to increase solubility 

in biological fluids. While covalent functionalization yields stronger conjugates, the breaking of bonds 

that exist within the hexagonal carbon rings can weaken the thermal-optical properties intrinsic to CNTs. 

Non-covalent coating with an amphiphilic molecule which interacts favorably with the hydrophobic 

surface of CNTs can increase the solubility of the CNT and also serve as scaffolding for conjugation 

with other compounds, while maintaining the overall optical and semiconductor properties of the 

material. However, the bond between those molecules is weaker than with covalent functionalization 27.  

Carbon Nanotube Toxicity: 

As the use of CNTs grew in the 1990's, concerns over potential toxicity began to 

emerge. Early toxicity studies largely centered around the environmental impact of pristine CNTs 

used in manufacturing which have a fiber-like structure similar to asbestos, a well-known 

causative agent of mesothelioma. The results of these studies were particularly unfavorable.  In vivo 

studies with mice found asbestos-like toxicity when intraperitoneal (IP) injections were administered 

into abdominal cavities 29. Further studies attributed the bio-incompatibility of pristine forms to their 

high aspect ratios and the hydrophobic nature of the hydrocarbon rings. This leads to a tendency to 

agglomerate 27. Additional in vivo studies found that injection with pristine CNTs leads to activation of 

the innate immune system 30, readily initiates the complement cascade 31 and induces the release of 

radical oxygen species 32; 33.   

However, much of these undesirable toxic effects can be overcome through 

functionalization of the outer walls. Most acute toxicity observed in initial studies was only attributed 

to 
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nanotubes in pristine form29; 30; 32. As previously discussed, functionalization plays a large role in the 

biocompatibility of CNTs. Evaluation of functionalized variations of CNTs demonstrate that the mode of 

exposure, the length of the nanotube and even the number of walls can influence toxicity. Evidence suggests 

that the number of nested walls could affect cytotoxicity, with multi-walled exhibiting less toxicity than 

their double and single-walled counterparts 26; 34.  

Understanding the distribution of CNTs throughout the body and modes of clearance is an 

important factor when exploring its potential use as a therapy. The route of injection seems to be an 

important variable. Evidence of deposits have been found in the lungs, liver, spleen, heart, kidneys and 

lymph nodes following intravenous (IV) injection 35-43. Whereas subcutaneous (SubQ) injection leads to 

concentration in the lymph nodes 44. Interestingly, studies that have used intra-tumor injection have not 

reported any significant organ biodistribution 45; 46.  

It is also necessary to explore how CNTs will eventually be cleared from the body. Ideally, 

a drug should be allowed to remain in circulation long enough to exert the desired therapeutic effect, but 

also eventually be excreted. It appears that clearance of CNTs is largely related to their the solubility within 

biological fluids and the ability of the host’s immune system to clear the material through the reticular 

endothelial system (RES) 47 . The RES system consists of mononuclear cells of the innate immune system, 

primarily macrophages and neutrophils and the organs of the liver, spleen, and lungs. These cells retrieve 

foreign material or cellular debris via phagocytosis and then channel them primarily back to the liver, 

where they are eventually cleared through the biliary tract. In vivo studies in mice have demonstrated 

successful clearance of CNTs through RES uptake with varying degrees of efficiency 42; 48-50. One factor 

that effects the rate of clearance is functionalization with polyethylene glycol (PEG). Two separate 

studies tested different formulations of PEG conjugated to SWCNTs 42 and MWCNTs 48 and both 

concluded that the longer PEG side chains reduced RES clearance.    Length also appears to play a 

role in RES clearance because extremely long CNTs tend to induce frustrated phagocytosis and 

thereby impede immune cell clearance of the material. Increased length induced frustrated 

phagocytosis in vitro in a macrophage cell 
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line 30, and was also shown to decrease clearance in mice 42. In vivo studies testing radio-labeled CNTs have 

shown that IV injected CNTs that are hydrophilic can also be cleared through the urinary tract 49; 50.  

Table 1 summarizes the current body of knowledge surrounding CNT biodistribution, 

clearance, and immune activation based on route of injection and CNT composition. The varying results 

seen in the degree of toxicity noted and biodistribution between studies can be largely attributed to the wide 

range in length, number of walls and modes of functionalization of the CNTs employed in these 

experiments. This makes direct comparisons between constructs difficult and highlights the importance of 

exploring biodistribution and toxicity with any novel system being evaluated. 
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Table 1. Biodistribution of CNTs. 

Route of Injection    Type of CNT Organ system 

Biodistribution 

IV purified SWCNT with Tween® liver, lung, and spleen 35 

IV DTPA- and NH3-MWCNTs liver and lung 36 

IV PEGylated-SWCNT liver and splenic macrophages 37 

IV MWCNT heart, lung, spleen, and kidney 39 

IV HCPT-MWCNT* liver, spleen, lung and kidney38 

IV CAHA-SWCNT-Dox** liver and spleen 40 

IV HA-MWCNT-Dox liver, spleen, and lungs 41 

IV PEGylated SWCNT-RGD*** liver and spleen 42 

IV DOTA-SWCNT-Rituximab kidney, liver, spleen, and bone 43 

SubQ MWCNTs Lymph nodes44 

Intra-tumor MWCNT suspended in Pluronic F127 No evidence 45 

Intra-tumor NH3-MWCNT-siRNA No evidence 46 

Clearance 

IV PEGylated SWCNT RES uptake 42 

IV hydroxyl-PEGylated MWCNT RES uptake 48 

IV DTPA-MWCNT kidney and biliary Tract 49 

IV dye-conjugated SWCNT Intestines 51 

IP MWCNT kidney and biliary Tract 50 

Immune Response 

SubQ oxidized MWCNT macrophage phagocytosis, 

complement activation 33 

IP pristine MWCNT frustrated phagocytosis, 

granulomas29 

macrophage cell 

culture 

pristine MWCNT frustrated phagocytosis 30; 32 

* HCPT: 10-hydroxycamptothecin
** CAHA: cholanic acid-derivatized hyaluronic acid; DOX: doxorubicin
*** RGD: arginine-glycine-aspartic acid
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Carbon Nanotube Conjugates: 

Another benefit of functionalization is that it provides chemical side groups that can bind 

other molecules. Conjugation with a number of molecules to enhance cancer cell uptake have been explored 

which increase tumor absorption both passively and directly. Suspension in biological surfactants 45; 52  and 

nucleic acids 53; 54 increase CNT dispersion, and allow the tiny materials to exploit the EPR seen in many 

cancers, allowing for increased passive uptake into cancer cells. Targeted uptake has been achieved through 

conjugation with monoclonal antibodies. Further conjugation with existing cytotoxic drugs, such as 

doxorubicin  41; 55; 56, 10-hydroxycamptothecin 38, and interfering nucleotides 28; 46 have demonstrated 

enhanced cytotoxicity to the malignant cells while showing decreased toxicity to healthy cells. 

Carbon nanotubes as Electric-thermal Conductors:  

CNTs also exhibit useful photo-thermal properties which can be exploited to detect and 

treat cancer. Semi-conducting SWCNTs exhibit photoluminescence in the near infrared region (NIR) of the 

light spectrum, with an emission range of 800-2000 nm, well within the biological transparency window 57. 

Because of this property, SWCNTs have been successfully used as biosensors and optical probes 58-60. 

Conversely, MWCNTs possess electrical antenna properties that allow for the absorbance of approximately 

three times the amount of light as SWCNTs, generating heat with a high degree of efficiency 52. Intra-tumor 

injections with SWCNTs in combination with NIR laser irradiation have demonstrated selective ablation 

of tumor cells with minimal damage to healthy tissue and increased host survival 45; 53. Another study 

coupled an infrared fluorescent cyanin with a PEGylated SWCNT to complete image guided ablation via 

intravenous injection and NIR 51. Jeyamohan et al. demonstrated the usefulness of CNTs as a platform for 

combination therapy by conjugating CNTs with the chemotherapeutic doxorubicin and then applying NIR, 

where they achieved 95% tumor cytotoxicity in vitro 61.   

Carbon Nanotubes and Microwaves:  

NIR only allows gradual, non-uniform heating of cells which necessitates a lengthy 

irradiation time even with the acceleration of hyperthermia facilitated by CNTs. Electromagnetic 

microwaves on the other hand, rapidly generate heat within CNTs through the Joule effect. This form of 
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heating, which transfers the kinetic energy of excited molecules into heat through friction, exhibits superior 

penetration depth and lower absorbance by biological tissues as opposed to NIR. One promising physical 

characteristic of MWCNTs, is that relatively low levels of microwave energy are capable of causing CNTs 

to reach temperatures capable of causing cell ablation 62. In fact, application of microwaves to dry CNTs 

have demonstrated heating rates of 236 ºC/min and temperatures as high as 1000 ºC 63. Earlier experiments 

performed by this lab were the first to evaluate microwave-induced hyperthermia in vitro and in vivo. In 

these studies, researchers demonstrated selective cytotoxicity to cancer cells through treatment of antibody-

conjugated carbon nanotubes in combination with microwave irradiation 62.  

Combination Therapies 

Combining these different approaches to treating cancer has become the cornerstone of 

modern oncology and led to the concept of a cure. In the 1960s when physician scientists began combining 

aggressive treatment regimens of four different chemotherapeutic agents for childhood acute lymphoblastic 

leukemia (ALL) and Hodgkin’s lymphoma, the remission rate for ALL rose from 25% to 60% and the 

complete remission rate rose from nearly zero to 80% for Hodgkin’s lymphoma. Similar treatment 

schedules are still in place today for these cancers 4. Once researchers established that cytotoxic therapies 

could successfully cause remission and even cures in patients, they began investigating approaches that 

would target the cancers more effectively and decrease toxicity. One approach is to use a combination of 

different anti-cancer modalities such as surgery, laser treatment, radiation and chemotherapy. This allows 

a decrease in the dose of individual cytotoxic drugs, and has resulted in less overall incidence of adverse 

effects in patients. Furthermore, attacking cancer cells from many different angles may help decrease drug 

resistance due to the heterogeneity of tumors. Innovations in materials and immuno-engineering have 

allowed unique opportunities to address many of the challenges in making cancer therapy targeted to the 

malignant cells. Incorporating these newer methods along with traditional approaches are a promising new 

direction in increasing survival rates of cancer patients.  
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III. Purpose of this Study

The purpose of this study is to continue to evaluate the effects of ab-MWCNTs in 

combination with microwave irradiation as a potential anti-cancer ablation therapy. This construct is being 

evaluated as a potential tool to combat prostate cancer. Prostate cancer is the leading cause of cancer and 

the second leading cause of cancer deaths in males in the U.S. 1 Surgery for prostate cancer can be curative, 

but metastatic cancer requires a combination of hormone therapy, chemotherapy, immunotherapy, and/or 

irradiation 64. This proposed treatment could be incorporated into a combination therapy alongside those 

currently approved to improve outcomes in these patients. The proposed treatment involves intra-tumor 

injection with ab-MWCNTs conjugated with an antibody specific to an antigen overexpressed on prostate 

cancer cells. This confers specificity and targets the nanomaterial to the tumor and away from healthy tissue. 

Following the injection, low levels of microwave irradiation are administered. The physio-chemical nature 

of CNTs described above allows this material to reach cell-death inducing temperatures at levels low 

enough to avoid damage to healthy cells.  

Previous work performed by Beckler et al. first demonstrated proof of concept for this 

treatment. In vitro cell culture studies were performed in which PC3 prostate cancer cells were treated with 

varying concentrations of ab-MWCNTs conjugated with anti-CD44, an antibody targeting a protein that is 

highly expressed on prostate cancer cells, and then exposed to varying settings of microwave irradiation. 

Several key discoveries were made from this seminal work. Most notably, researchers proved for the first 

time that ab-MWCNTs in combination with microwave irradiation exert significant cell death in PC3 tumor 

cells when compared to HPEC control cells (61% vs. 22%), highlighting the critical role that antibody-

conjugation plays in delivery of hyperthermic agents. Second, these studies showed that concentrations of 

ab-MWCNTs exceeding 0.25 mg/mL induce cell death to the PC3 and control cells even without 

microwave irradiation in cell culture. This suggests that high concentrations of ab-MWCNTs alone may 

play a role in inducing cell death. Furthermore, they established that concentrations of at least 0.1 mg/mL 

of MWCNTs are necessary to exert a significant hyperthermic affect when combined with microwave 

irradiation. These two concentrations suggest a therapeutic window of 0.1 mg/mL to 0.25 mg/mL as optimal 
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when designing future studies. Finally, experiments that optimized the microwave settings found that 

shorter bursts of higher wattages (900W for 7 seconds) were tolerated by both PC3 cells and HPEC cells 

when compared to equal energy dispersed as lower wattages over a longer period of time 40W for 205 

seconds).  While both of these settings administer roughly the same overall amount of energy, 6300 and 

8200 Joules (J)  respectively, the delivery of this energy can have implications on the cellular level and are 

therefore an important factor when considering collateral damage to surrounding healthy tissue 63.  

These researchers also demonstrated efficacy in vivo using live zebrafish-PC3 xenograft 

embryos. In these experiments, PC3 cells previously treated with 0.1 mg/mL ab-MWCNTs were injected 

into the zebrafish embryos. These embryos, along with control groups were then subjected to 900W of 

microwave for 7 seconds. The results revealed that only the xenograft embryos that received treated cells 

showed significant cell death following microwave irradiation, whereas zebrafish xenograft embryos that 

were not treated with ab-MWCNTs exhibited virtually no cell death. Furthermore, the embryos 

were unharmed and continued to develop normally. This proved that the combination therapy 

demonstrated in cell culture was feasible in a living model 63. 

The physiology between zebrafish embryos and humans is obviously quite different, 

therefore the next step is to show that hyperthermic ablation can be achieved in a higher mammalian model. 

The overarching goal of this project is to continue evaluating the proposed treatment in mice. The antibody 

that is conjugated to the MWCNTs in this study is targeted against the prostate specific membrane antigen 

(PSMA). This is a transmembrane protein that is found in low levels on normal prostate cells, but is highly 

upregulated in tumor cells, and expression increases with severity of clinical disease 64. The previous 

work described by Beckler et al. used an antibody against CD44, which is a cell surface marker found 

to be upregulated in cancer stem cells. Cancer stem cells are often difficult to kill and are thought to be a 

leading cause of tumor drug-resistance, making them an ideal target for precision therapies. However, 

CD44 is expressed on a variety of other healthy tissues as well and has demonstrated toxicity related 

to its cross reactivity with those tissues 65.  It is important to note that isotypes of PSMA have also been 

found in other tissues.  Histochemical staining has shown the protein to be present in the renal tubules, the 

brush lining of 
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the jejunum and in nervous system glia 66, however prostate tumor expression levels are 1000-fold greater 

than the minimal expression patterns seen in these tissue 67. While concern for causing collateral damage 

to healthy tissues expressing PSMA is valid, the clinical trials using anti-PSMA to deliver 

radioisotopes and cytotoxic drugs are underway and demonstrated toxicity attributed to the payload 

rather than cross-reactivity 68. For these reasons, monoclonal anti-PSMA is a superior antibody in 

which to target prostate cancer cells.  

In continuation of the previously described work, this study tested three hypotheses. The 

first hypothesis is that injected antibody-conjugated MWCNTs (ab-MWCNT) followed by microwave 

irradiation can cause hyperthermic ablation in mice. Successful ablation of tumor cells in zebrafish embryos 

have already been demonstrated. Before testing efficacy in a tumor model, it is prudent to attempt a proof 

of concept in a healthy mouse model. No one has ever published a study examining these effects in mice. 

It is unclear whether mice will even tolerate the proposed treatment. For that reason, this hypothesis is 

tested in normal healthy mice via IM injection and evaluation of muscle cell necrosis is evaluated. It is 

predicted that histological examination of the muscle at the site of injection will demonstrate cell death in 

the form of necrotic ablation of the muscle. Should the hypothesis be accepted, this will lend support for 

testing this regimen for efficacy as an anti-cancer therapy in a tumor mouse model. 

The second hypothesis is that the injected ab-MWCNTs will remain localized at the site of 

injection. This is evaluated through histological examinations of tissue over time. It is predicted that the ab-

MWCNTs will be present in muscles sectioned at 24 hours, 1 week, and 2 weeks post injection. Sections 

of the vital organs processed at the same time points are not expected to demonstrate evidence of ab-

MWCNT migration. This is largely expected based on review of the literature. There are no studies that 

have examined IM injections of CNTs. The most similar route of administration is intra-tumor and those 

studies have not shown evidence of significant biodistribution to other organs.  

The third hypothesis is that the innate immune system will mount an inflammatory 

response to the injection of ab-MWCNTs. Previous studies have demonstrated that the phagocytic white 

blood cells (WBC) of the innate immune system, namely neutrophils and macrophages, recognize CNTs as 
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a foreign substance 32. Incorporating a monoclonal antibody to the surface of the MWCNTS can 

enhance this effect, especially if areas of the Fc portion are not anchored within the complex. 

Macrophages and neutrophils have receptors that specifically recognize this region of antibodies as part 

of the fundamental process whereby antibodies coat, or opsonize, foreign materials for recognition 

and clearance by the phagocytic cells of the innate immune system69. While it is desirable for the ab-

MWCNTs to eventually be cleared through the RES system, rapid clearance before application of the 

microwave would impact the effectiveness of the proposed treatment. Comparing the level of 

inflammation between the groups that are injected with ab-MWCNTs and those that receive plain 

MWCNTs may serve as a quality indicator for the antibody conjugation method employed during 

synthesis. Given the previous studies that have demonstrated RES clearance of a variety of CNTs, 

it is expected that neutrophilic infiltration of the muscle at the site of injection will occur to some degree 

in groups that receive both the ab- and plain MWCNTs. If extensive ablation occurs as a result of 

microwaved induced hyperthermia of the MWCNTs, it is expected that treatment groups which receive 

the combination therapy will demonstrate increased infiltration, as these cells attempt to also clear the 

debris from the necrotic muscle cells.  

Finally, this study will further analyze the neutrophil and macrophage response to 

ab-MWCNT using transgenic zebrafish embryo models that express green fluorescent proteins 

(GFP) in neutrophils and macrophages. These embryos will be injected with ab-MWCNTs that 

incorporate a fluorochrome and the WBC response will be evaluated using fluorescent confocal 

microscopy with time-lapse software. This type of imaging allows evaluation of these cells’ 

interaction with the injected ab-MWCNTs in real-time. It is predicted that they will infiltrate the areas of 

the embryos that are concentrated with ab-MWCNTs and that they will attempt to clear the ab-MWCNTs 

via phagocytosis. 
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CHAPTER 2 

MATERIALS AND METHODS 

I. Preparation of Antibody-Conjugated MWCNTs

Dr. Quirino’s lab in the Chemistry Department at Georgia Southern University (Statesboro, GA) 

prepared the carbon nanotubes used in the experiments. Figure 2 provides a schematic for the chemical 

modifications made during preparation 63. MWCNTs were purchased from Cheaptubes (Grafton, VT) and 

oxidized with a 2 hour incubation in an ozonator. This step further served to sterilize the MWCNTs. The 

oxidized MWCNTs were then sonicated, followed by the addition of sterile NHS, EDAC, and 0.5M MES 

buffer. The mixture was spun on a hot plate for one hour, vacuum filtered, and then placed in a 70º C 

vacuum oven overnight to dry. This process creates the functional groups necessary to form a peptide bond 

with the N-terminus regions of the antibody. The esterified-MWCNTs were then sonicated with 0.5M MES 

buffer. The antibody was added to the solution and allowed to stir with a siliconized stir-bar on a hot plate 

for 1 hour. The solution was centrifuged for 5 minutes at 5000 rpm. 0.5M MES buffer was added to reach 

the appropriate concentration. Antibody conjugation was verified through fluorescent microscopy.  Anti-

PSMA AlexaFluor488® (BioLegend, San Diego CA) was used for the mouse studies. This is a murine IgG 

antibody that emits green fluorescence when excited by 488nm wavelengths of light. Its specificity is to 

human PSMA. This specificity was chosen because future experiments will include mice with human 

prostate tumor xenografts. Anti-PSMA AlexaFluor488® could not be used for the zebrafish embryo studies 

because it fluoresces at the same wavelength as the GFP that are expressed by the cells of interest in the 

embryos. In order to contrast, an antibody was chosen that fluoresces red when excited by 647nm 

wavelengths of light. Anti-human AlexaFluor647® (BioLegend, San Diego CA) was used for these studies. 

This is also a murine IgG antibody with specificity to human cells.  
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II. Microwave Irradiation Optimization 

 As part of the experiment, mice were 

anesthetized and treated with full body 

microwave irradiation with the Milestone Ethos 

Synth 1600 URM microwave labstation 

(Sorisole, Italy). This source delivers 2450 

MHz microwaves at powers and durations 

selected by the user.  A microwave 

optimization schedule was developed to find 

the highest tolerable dose for the mouse model. 

Establishing an optimal irradiation schedule 

must take into account the total energy 

delivered, as well as the power and duration by 

which it is delivered. Total microwave energy is calculated using the following formula:  

 Energy (Joules) = Power (Watts) x Time (sec) 

Figure 2. Preparation of antibody-conjugated MWCNTs. Illustrations of the chemical 

functionalization of the MWCNTs and the conjugation of an antibody 63. 

Figure 3. Milestone Ethos Synth 1600 URM Microwave Labstation 

with control unit. 
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The original design was based on results obtained from the previously described in vitro and in vivo studies 

that determined that shorter bursts of higher wattages were best tolerated 63. The optimum schedule in these 

studies was 6300 J delivered as 900 W for 7 seconds. The concern was that the physiology of the mice 

would make it more difficult for the microwaves to penetrate the tissue and it was believed that this amount 

of irradiation would not be sufficient. The initial design was to treat 2 mice to each of the following settings: 

900 W for 7 seconds (6300 J), 10 seconds (9000 J), and 15 seconds (13,500 J). The lowest proposed setting 

was lethal to the first mouse, so the design was revised. Two mice were treated with 100W for 5 seconds 

(500 J), one mouse with 150 W for 5 seconds (750 J), 1 mouse with 200W for 5 seconds (1000 J), and 1 

mouse with 450 W for 3 seconds (1350 J). They were monitored for 48 hours for tolerance. Tolerance was 

determined based on emergence of symptoms within 48 hours post treatment. Symptoms are defined as 

fatality, elevated respiration rate, visible lesions and burns or abnormal behavior. The highest dose tolerated 

was chosen for the experiments. 

 Table 2. Microwave optimization schedule. 

Wattage and Duration Total Energy (Joules) 

100 W for 5 seconds 500 J 

150 W for 5 seconds 750 J 

200 W for 5 seconds 1000 J 

450 W for 3 seconds 1350 J 

900 W for 7 seconds 6300 J 

III. Mice

All research was conducted at Georgia Southern University in Statesboro Georgia in 

accordance with Institutional Animal Care and Use Committee approval. 4-5 week old male C57BL/6 mice 

were acquired from Jackson Lab (Bar Harbor, ME) and housed at the Georgia Southern University 

fieldhouse (Statesboro, GA). C57BL/6 mice are an inbred strain originally developed by Jackson Labs in 

the 1920’s for cancer and immunology studies 70. This strain of mice is the most widely used model for 
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toxicology studies, cited by more than 25,000 papers. They were chosen for this study because of their 

reliable track record as a dependable model with a generic genetic background and robust innate immune 

system 71. Upon receipt, they were given a unique ear punch identifier, weighed, and randomly assigned to 

an experimental group. Mice were kept 3/cage, had free choice of food and water, and were maintained on 

a 12 hour light/dark schedule. Cages were monitored daily for food and water and cleaned at least twice per 

week. 

IV. Mice Experimental and Control Groups

Mice were assigned to three large groups based on the length of time they would be 

monitored post treatment before necropsy: 24 hours, 1 week, and 2 weeks. These groups were further 

stratified into subgroups that would serve as controls and the treatments which isolate three variables of 

interest: antibody, MWCNT concentration, and microwave. The lowest concentration chosen was based on 

in vitro studies previously described which indicated that concentrations between 0.1 and 0.25 mg/mL were 

optimal for causing hyperthermic cell death without toxicity from the MWCNTs themselves 63. The higher 

concentration chosen was 0.5 mg/mL. This is outside of the window established by the cell culture studies, 

however the route of injection limits the total volume administered to 0.02 mL. Therefore, mice in these 

groups would only be receiving a total of 10 μg of MWCNTs, comparable to other cited studies where the 

total administration of CNTs via intra-tumor injection was between 10-100 μg 45; 46. Note that an injection 

only control group was not chosen because studies have shown that injection of sterile solutions alone does 

not cause a localized immune response 72. Additional costs did not outweigh the benefits of adding more 

mice. Table 3 outlines these subgroups: A) No treatment, B) Microwave only, C) 0.125 mg/mL ab-

MWCNT only, D) 0.125 mg/mL plain MWCNT PLUS microwave, E) 0.125 mg/mL ab-MWCNT PLUS 

microwave, F) 0.5 mg/mL ab-MWCNT only, G) 0.5 mg/mL plain MWCNT PLUS microwave, H) 0.5 

mg/mL ab-MWCNT PLUS microwave.  
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  Table 3. Mice experimental and control groups. 

Group MWCNT Concentration 

(mg/mL) 

Antibody 

Conjugation 

Microwave 

Irradiation 

A 

B yes 

C 0.125 yes 

D 0.125 yes 

E 0.125 yes yes 

F 0.5 yes 

G 0.5 yes 

H 0.5 yes yes 

V. Anesthesia

Prior to treatment, animals were anesthetized using a ketamine (80 mg/kg)/xylazine (10 

mg/kg) (MWI Animal Health, Boise ID) cocktail which was mixed in-house. The solution was prepared by 

adding 0.2 mL ketamine (100mg/mL), 0.1 mL xylazine (20mg/mL), and 3.7 mL of sterile DI water to a 

sterile red top vacutainer tube. The solution was discarded after immediate use. Each mouse received 0.02 

mL/gram body weight via intraperitoneal injection (IP). The average 20 gram mouse received 0.4 mL and 

achieved a 40-50 minute sedation. Mice were tested for reflex using a toe pinch procedure to ensure sedation 

was achieved. Mice were continuously monitored post procedure for 2 hours to ensure that they were fully 

awake and capacitated. The site of injection was cleaned with 70% ethanol and each mouse received a fresh 

sterile syringe and needle. 
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VI. Injection of MWCNTs

After ensuring sedation was 

achieved, mice in the respective treatment groups 

received 0.02 mL IM injections to the right caudal 

thigh muscle of 0.125 mg/mL or 0.5 mg/mL ab-

MWCNTs or plain MWCNTs (Figure 4) 73. The 

solutions were vortexed before each syringe was 

prepared. The site of injection was cleaned with 

70% ethanol and each mouse received a fresh 

sterile needle and syringe.  

VII. Microwave Irradiation

Mice in the experimental groups that were to receive microwave irradiation were placed 

into the chamber on a Teflon surface in the prone position with their tails wrapped to the right to expose 

the right rear flank where the injections occurred. They were treated with a constant source of 150W 

microwave irradiation for 5 seconds. The plate spun at a constant rate to evenly distribute the rays. The 

period between MWCNT injection and microwave irradiation was 30-45 minutes. Mice were returned to 

their cages and monitored for any adverse events.  

VIII. Euthanasia

Mice were euthanized using a compressed CO2 gas chamber with a flow rate which 

displaced 10-30% of the air with CO2. Euthanasia was verified by decapitation using a guillotine. Blood 

was collected via the trunk for serum studies performed by a collaborating lab. Mice underwent a full 

necropsy. The injected muscle, brain, heart, lungs, liver, spleen, kidneys, and testes were placed in 10% 

neutral buffered formalin (Fisher Scientific, Hampton NH). Portions of the heart, liver and kidney were 

also frozen via liquid nitrogen bath for RNA expression analysis.  

Figure 4. Demonstration of intramuscular injection 73. 
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IX. Tissue Preparation

After fixing for at least 48 hours in formalin, organs from 3-4 mice per experimental group 

were packaged into histology cassettes (Fisher Scientific, Hampton NH). The heart, lungs, brain, and testes 

went into one cassette; the liver, spleen, and kidney went into another; and the injected leg went into a final 

cassette. The tissue was sent to University of Georgia Veterinary Pathological Services (Athens, GA) for 

paraffin embedding and tissue sectioning. Tissue was sectioned at a depth of 30 μm into sections 4 μm 

thick. The slides were then stained with Hematoxylin and Eosin (H&E), permanently cover-slipped and 

returned to Georgia Southern University (Statesboro, GA).  

X. Slide Analysis

All slides were examined under brightfield microscopy at 100x, 200x, and 400x total 

magnification. Evidence of MWCNTs, hyperthermic necrosis and neutrophil infiltration were evaluated at 

the site of the injection in the muscle. In muscles where the site of the injection was not evident, deeper 

cuts were made and slides prepared as described previously. The organs were scanned for evidence of 

morphological changes due to hyperthermic necrosis or inflammation and MWCNT presence. Necrosis and 

inflammation was graded as present or absent 

XI. Zebrafish Embryo

Zebrafish have become a favorable choice for in vivo imaging studies due to their 

translucent physiology, existence of many transgenic lines that express green fluorescent proteins in 

specific cells, and the fact that the genome remains largely conserved compared with humans 62. Two 

transgenic lines of Zebrafish (Danio rerio) were acquired. The Tg(mpeg1::gfp) fish express green 

fluorescent protein (GFP) in the macrophages and Tg(mpx1::gfp) fish express GFP in the neutrophils. 

Embryos were harvested and immediately treated with 50μL 1-phenyl 2-thiourea (PTU), a chemical which 

suppresses pigment production and yields clearer images. Zebrafish were maintained in a laboratory 
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breeding colony in the Georgia Southern University fieldhouse. Fish were kept on a 14/10h light/dark cycle. 

Embryos were incubated at 28.5°C.

XII. Confocal Fluorescent Microscopy and Time-Lapse Imaging

48 hours post-fertilization, zebrafish embryos from both transgenic lines were injected with 

1-2 μL of undiluted MWCNTs conjugated with anti-human AlexaFluor647®. Embryos were anesthetized 

with tricain and mounted in 5% low melting agarose then flooded with embryo medium into 4x4 wells. The 

entire embryo was examined under fluorescent microscopy. All time-lapse videos were performed on a Carl 

Zeiss LSM 710 confocal fluorescent microscope and processed using ZEN 2.1 SP3 FP3 software.  

Studies to examine neutrophil interaction with ab-MWCNTs were performed using 8 

Tg(mpx1::gfp)  embryos under 100x total magnification. Embryos were mounted immediately following 

injection. Z-stack depth was obtained based on the depth the fluorescence was presenting. Imaging was 

programmed to take Z-stack images every 10 minutes for 2 hours. Images on the remaining 4 embryos were 

then obtained at 24 hours post injection and again on the 2 remaining embryos 72 hour post injection. 

Studies to examine the macrophage interaction with ab-MWCNTs were performed using 4 

Tg(mpeg1::gfp) embryos mounted in the same manner. Imaging was programmed to take Z stack images 

every 3 minutes for 2 hours at 200x total magnification on embryos immediately following injection. The 

remaining embryo was imaged again after 24 hours post injection.  

XIII. Statistical Analysis

The frequency of hyperthermic necrosis at the site of injection in the mice studies was 

evaluated using the x2 frequency distribution analysis in using JMP® software to determine significant 

differences between treatment groups. Inflammation at the site of injection and other morphological 

changes in organ tissue was evaluated qualitatively. Zebrafish embryo experiments were also evaluated 

qualitatively.   
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CHAPTER 3 

RESULTS AND DISCUSSION 

I. Antibodies are Effectively Conjugated to MWCNTs

The antibody attached to the outer 

walls of the MWCNTs is what allows the 

compound to target cancer cells. Antibody 

conjugation is an essential part of the 

proposed treatment that will be tested in 

future prostate cancer xenograft mice. In 

order to verify the conjugation was 

successful, a sample from each batch was 

observed under fluorescent microscopy 

before injection. Fluorescence was 

observed on the surface of undiluted 

MWCNTs conjugated with anti-human 

Alexafluor647® (Figure 2-A) and anti-

PSMA Alexafluor488® (Figure 2-B) on the first day of synthesis and up until day 14 (Figure 2-C and D).  

This verifies that the covalent bond between the MWCNTs and the antibodies is stable for at least 2 weeks 

in vitro. This is a sufficient time window because all of the experiments testing this construct were 

performed within the two week timeframe. The integrity of the ab-MWCNTs may in fact be much longer, 

as the decrease in fluorescence may by a function of decay of the dye rather than an indicator of dissociation 

of the antibody. Biologically, it is only important that the antibody remain conjugated long enough to reach 

its target. However, knowing the half-life of the conjugation would help with the logistics of orchestrating 

the many components that are involved in these types of experiments. Future studies may look at a more 

Figure 5. Analysis of antibody conjugation. Images compare plain 

MWCNT without antibodies (A) as compared with MWCNTs conjugated 

with anti-human AlexaFluor647® (B) and anti-PSMA AlexaFluor488® 

on the first day of synthesis (C) and on day 14 (D). 400X Total 

Magnification. 
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quantitative way to measure the decay of antibody fluorescence over this time span. This is a challenge 

because it is impossible to view the same particle during each daily measurement. However, taking an 

average of multiple samples daily may provide a statistical way to overcome this barrier 

II. Microwave Irradiation Optimization

Mice were evaluated for tolerance of 

various levels of total microwave energy as 

expressed in Joules. The 4500J (900W for 5 

sec) and 1000J (200W for 5 sec) trials were 

fatal. The 1350J (450W for 3 sec) trial was 

not fatal, but the mouse experienced elevated 

respiratory rate, increased body temperature 

and surface burns on the tail and the exposed 

right hind foot. The 750J (150W for 5 sec) and 

500J (100 W for 5 sec) trials were tolerated 

well by the mice, therefore the highest energy of 750J was chosen as optimal for the subsequent experiments 

(Figure 6). The results of the trial are somewhat surprising given that studies evaluating this construct in 

zebrafish showed viability of the embryos with up to 9000J of energy63. It is likely that the aqueous medium 

they were suspended in acted to absorb a portion of the microwaves and served as a buffer.  

III. Necrosis was Observed at the Site of MWCNT Injection

H&E stained sections of the injected caudal thigh muscle were scanned for evidence of MWCNTs 

(Figure 7). The MWCNTs were clearly visible as dark, non-refractile carbon clumps (Figure 7, red arrows). 

Once the site was detected, deviations from normal muscle morphology were observed. Hyperthermal 

necrotic muscle cells are characterized by loss of clear cell membrane, deterioration of muscle fibers and 

pallor as compared with healthy cells (Figure 7 black arrows). Neutrophils were also observed infiltrating 
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Figure 6. Power optimization trials.  Individual microwave trials to 

determine the optimal dose for mice experiments. The trials pictured in 

red (1, 2, and 3) indicate total microwave energy that was not tolerated. 

Those expressed in pink indicate tolerated doses (4 and 5).   
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the muscle and surrounding the MWCNTs.  These cells are characterized by their deep purple staining 

clefted or kidney bean shaped nucleus (Fig. 7-A). This is another indication of cell necrosis as well as a 

sign of a primary immune response. Other immune cells were observed, such as eosinophils and 

macrophages, however the neutrophils predominate. These different changes in morphology are further 

discussed below. 

MWCNTs plus Microwave Induces Hyperthermic Necrosis 

              Slides were evaluated for the presence or absence of hyperthermic necrosis and compiled into 

frequency distribution tables based on experimental groups. Differences in frequency distributions between 

groups necropsied at each given time-point (i.e. 24 hours, 1 week, and 2 weeks post treatment) were 

compared with one another using x2 analysis (Table 4A-C, respectively) and evaluated for statistical 

significance (p < 0.05). Because any hyperthermic necrosis that occurred did so at the time of microwave 

treatment, individuals from each of the three time points were combined into the stratified experimental 

groups to increase statistical power (Table 4D).  

Figure 7. Histology demonstrating types of necrosis. H&E stained tissue section of muscle demonstrating a lesion found at the site 

of MWCNT injection at multiple powers. A) 100x total magnification demonstrates the width of the lesion compared to normal 

healthy muscle. B) 200X total magnification allows better visualization of MWCNTs surrounded by neutrophils (red arrow) and a 

necrotic cell characteristic of hyperthermic ablation (black arrow).  
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Table 6-A. x
2
 values comparing hyperthermic necrosis frequencies between groups sacrificed 24 hours post 

treatment. Values in bold represent a statistically significant difference between the frequency distributions of 

the two compared groups (p<0.05). All comparisons that yield a result share 1 degree of freedom. The x2 values 

of 0 indicate identical frequency distributions. 

Table 4-B. x
2
 values comparing hyperthermic necrosis frequencies between groups sacrificed 1 week post 

treatment. Values in bold represent a statistically significant difference between the frequency distributions of 

the two compared groups (p<0.05). All comparisons that yield a result share 1 degree of freedom. The x2 values 

of 0 indicate identical frequency distributions. 

Table 5-C. x
2
 values comparing hyperthermic necrosis frequencies between groups sacrificed 2 weeks post 

treatment. Values in bold represent a statistically significant difference between the frequency distributions of 

the two compared groups (p<0.05). All comparisons that yield a result share 1 degree of freedom. The x2 values 

of 0 indicate identical frequency distributions. 
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Figure 8. Histology demonstrating necrosis in treatment groups. H&E tissue slices of muscle from mice sacrificed 24 hours post 

treatment. Hyperthermic necrosis of the CNT plus microwave groups (black arrows: D, E, G, and H) is demonstrated as compared 

to the purely inflammatory necrosis in the groups that received no microwave (white arrows: C and F) and the controls (A and 

B). [A: no treatment, B: Microwave Only, C: 0.125 mg/mL CNT plus antibody, D: 0.125 mg/mL CNT plus microwave, E: 0.125 

mg/mL CNT plus antibody plus microwave,  

Table 7-D. x
2
 values comparing hyperthermic necrosis frequencies between groups sacrificed at all time-points 

combined. Values in bold represent a statistically significant difference between the frequency distributions of 

the two compared groups (p<0.05). All comparisons that yield a result share 1 degree of freedom. The x2 values 

of 0 indicate identical frequency distributions. 
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There was no incidence of hyperthermic necrosis in any of the slides from mice that 

received only MWCNTs without microwave (Figure 8D and F) or microwave alone (Figure 8B). Necrosis 

to muscle cells surrounding the MWCNTs was only seen in slides from mice that received both MWCNT 

injections in combination with microwave irradiation (Figure 8D, E, G, and H).  Comparisons of frequency 

distributions reveal a statistically significant increase in necrosis for all treatment groups that received this 

combination (Groups D, E, G, and H)  when compared to the control (Table 4. x2 = 6.097, df= 1, p=0.0135; 

x2 = 11.457, df= 1, p=0.0007; x2 = 9.276, df=1, p=0.0023; x2 = 11.457, df= 1, p=0.0007, respectively). 

Comparisons between groups that received ab-MWCNT and microwave (E and H) to the group that 

received only ab-MWCNTs without microwave (C and F) for their respective concentrations yield similar 

results as when compared to the controls (Table 4. x2 = 11.457, df= 1, p=0.0007 and x2 = 12.242, df=1, 

p=0.005, respectively). The results from comparing these frequency distributions suggest that induction of 

hyperthermic necrosis requires both MWCNTs and microwave irradiation.  

Analyses comparing the frequency distributions of necrosis in mice treated with the two 

different concentrations of ab-MWCNTs, 0.125 and 0.5 mg/mL, in combination with microwave showed 

no significant difference. In fact both of these groups (E and H, respectively) have identical frequency 

distributions. This indicates that the lowest concentration of 0.125 mg/mL was sufficient to produce enough 

heat to induce hyperthermic necrosis. Previous in vitro studies demonstrated that a concentration of at least 

0.1 mg/mL of ab-MWCNTs were necessary to exert cytotoxicity when combined with microwave. Results 

from that study also indicated that concentrations greater than 0.25 mg/mL of ab-MWCNTs alone induced 

cytotoxic effects to the cell culture, even without microwave. Thus, this study demonstrates that the lower 

concentration tested both is effective and also falls into the safe therapeutic window.  

No significant difference in the frequency distributions of necrosis was observed between 

the groups that were injected with ab-MWCNTs with microwave (E and H) and those that were injected 

with plain MWCNTs with microwave (D and G) at either concentration (x2 = 1.369, df= 1, p=0.2419 and 

x2 = 0.305, df=1, p=0.5808, respectively). The only difference between these two experimental groups is 
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the conjugation of anti-PSMA, therefore this comparison evaluates the influence antibody conjugation has 

on the frequency of necrosis. These results are not surprising, because this construct was not tested in a 

model bearing a tumor that expresses PSMA in this experiment. Future studies will test the effectiveness 

of the antibody at targeting the tumor cells.  

These data show that intramuscular injection of MWCNTs with concentrations as low as 

0.125 mg/mL followed by low levels of microwave irradiation generate enough heat within the tissue to 

induce muscle cell necrosis. The type of necrosis demonstrated is subtle, localized primarily to the muscle 

cells immediately adjacent to the MWCNTs. This could be attributed to the small volume of MWCNTs 

injected, as IM injections should not exceed 0.02 mL. Future studies in a tumor-bearing mouse model could 

accommodate far larger injection volumes. It is hypothesized that increasing the volume of the MWCNTs 

and injecting at multiple sites within the tumor will lead to more diffuse necrosis throughout the tissue.  

Neutrophilic Infiltration Occurs at the Site of MWCNT Injection 

Neutrophilic infiltration was observed surrounding the MWCNTs (Figure 7, red arrows) in 

all the experimental groups that received IM injections (C-H) and not observed in the control group (A) or 

the group which received microwave alone (B). The degree of infiltration was variable across all treatment 

groups with no group demonstrating any noticeable increase over the other. Neutrophilic infiltration can be 

an indication of cellular death at the site of injection, as these cells are largely responsible for clearing 

necrotic cellular debris. It can also indicate that the phagocytic cells of the RES system recognize the foreign 

material and may be attempting to clear the MWCNTs.  A notable difference in inflammation between the 

groups that received microwave in addition to MWCNT injections (D, E, G, and H) would support the 

hypothesis that these cells were clearing the debris resulting from ablation of the muscle cells, however this 

was not observed in this study.  

Furthermore, a noticeable increase in the groups that received ab-MWCNTs would have 

shown that the addition of an antibody enhanced RES uptake. This is a common challenge for researchers 
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incorporating monoclonal antibodies into a targeted therapy, as rapid clearance by the RES system before 

the application of microwave irradiation would be undesirable. These results did not show a noticeable 

difference between the experimental groups that included antibody conjugation (C, E, F, and H). These are 

affirmative results, as they indicate that the method of antibody conjugation does not leave significant 

portions of the Fc region exposed. Furthermore, neutrophilic infiltration can also indicate that the 

phagocytic cells of the RES system recognize the foreign material and may be attempting to clear the 

MWCNTs. 

Finally, comparison of the slides from mice sacrificed at 24 hours, 1 week, and 2 weeks 

seem to demonstrate a decrease in infiltration over time (Figure 9). However, the concentration of 

MWCNTs remaining in the muscle was consistent across all time points. The culmination of these results 

indicate that the innate immune system is activated in response to IM injection with MWCNTs. It appears 

that the phagocytic cells, primarily neutrophils infiltrate the muscle in response to the MWCNTs, and the 

addition of antibodies or application of microwave do not seem to alter the level of infiltration. While these 

cells may be affective at clearing cellular debris resulting from associated necrosis, they do not significantly 

clear the MWCNTs from the site of injection. 

IV. MWCNTs are not Evident in the Vital Organs

No evidence of MWCNT or any other pathologies (i.e. inflammation, necrosis, fibrosis, 

etc.) were observed in any of the H & E stained sections of the vital organs (Figure 10). It is believed that 

the lack of biodistribution to organs is a function of the route of injection. Numerous studies employing IV 

Figure 9. Histology demonstrating decreased inflammation over time. H&E tissue slices demonstrating decreased inflammation at 

the site of the injection over time as compared to the control in the group that received 0.5 mg/ML CNT plus antibody plus 

microwave. A) control B) Specimen obtained 24 hours post-treatment, C) 1 week post-treatment, and D) 2 weeks post treatment. 

100x total magnification. 
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injections have reported histological evidence of accumulation of CNTs in the liver, spleen, and lungs. This 

is the first study that has performed IM injections, therefore no other comparable reports exist in the 

literature evaluating this route of exposure. Intra-tumor injections are similar to IM injections, in that both 

of these routes involve injection into solid tissue, rather than the circulatory system (IV injection) or 

lymphatic system (SubQ injection). Therefore, it was hypothesized that the biodistribution profile of IM 

injections would be similar to that of intra-tumor injections reported in other studies, which also reported 

no evidence of CNTs in these organs. These results confirm that hypothesis. 

Additionally, the normal morphology that is observed at all time points demonstrates that 

the vital organs were not damaged at the tissue level by the whole body microwave irradiation that was 

administered. This is a cornerstone to the overall therapy that is being proposed: target the cancer cell, while 

leaving healthy tissue unharmed. The overarching goal for therapies being developed today is to decrease 

the toxicity to the patient. By demonstrating that the low levels of microwave administered did not cause 

damage to these organs, these results support continued investigation into this mode of delivering 

microwave irradiation as part of a combination therapy.  

The results from this study also support the hypothesis that IM-injected MWCNTs remain 

localized to the muscle for up to two weeks, in spite of the robust immune response observed over that 

time frame. There is no evidence that macrophages and neutrophils are ferrying the MWCNTs through the 

RES system.  This could be an indication that these immune cells are experiencing frustrated phagocytosis, 

which has been previously reported in the literature.  
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V. Neutrophils and Macrophages Experience Frustrated Phagocytosis in Zebrafish

The histological studies described above demonstrated neutrophilic infiltration to the 

muscle at the site of injection. The lack of noticeable biodistribution to the organs of the RES system (liver, 

spleen, and lungs) indicates that effective phagocytosis may not be occurring. This project thus employed 

Figure 10. Histology demonstrating organ biodistribution. H&E stained sections of the liver, spleen, kidney, heart, lungs, brain, 

and testes of the mice that received 0.5 mg/mL ab-MWCNT with microwave at 24 hours (C, H, M, R, W, and b), 1 week (D , I, 

N, S, X, c, and g), and 2 weeks (E, J, O, T, Y, d, and h) post treatment compared to mice that received no treatment (A, F, K, P, 

U, Z, and e) and microwave only (B, G, L, Q, V, A, f). 100X Total Magnification. 
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a study using zebrafish embryos injected with ab-MWCNTs to further understand the interaction occurring 

between neutrophils and macrophages and ab-MWCNTs.  

The neutrophils are the first cells to respond to foreign invaders. Through a process known 

as diapedesis, they migrate through the endothelial cell lining of the blood vessel from the circulatory 

system, into the tissue, and arrive at the site of inflammation within 2-4 hours after exposure. They are able 

to accomplish this rapid immigration because of a unique cellular structure that allows them to take on their 

characteristic amoeboid shape 69. To further understand the neutrophils response to ab-MWCNTs, 

Tg(mpx1::gfp) zebrafish embryos were injected with MWCNTs conjugated to anti-human 

AlexaFluor647®. Fluorescent confocal microscopy provided live imaging of mounted embryos in which 

the movement of green fluorescent neutrophils could be viewed in real-time. Because the ab-MWCNTs 

fluoresce red, this movement can be evaluated spatially in relation to the areas of the embryos concentrated 

with ab-MWCNTs. All of the embryos that were imaged demonstrated neutrophilic infiltration to areas of 

the embryo that were highly concentrated with ab-MWCNTs. These areas were variable between fish, but 

tended to be most frequently in the yolk sac, tail, and head. Figure 11 illustrates the ab-MWCNT specific 

migration of the neutrophils seen in the Tg(mpx1::gfp) embryos. The embryo on the left (Figure 11-A, white 

Figure 11. Tg(mpx1::gfp) zebrafish embryos demonstrating neutrophilic infiltration specific to ab-

MWCNT presence. (A) No ab-MWCNTs are present in the yolk sac along with an absence of 

neutrophils in this region, serving as a control. (B)A large quantity of ab-MWCNTs are 

concentrated in this same region of the yolk sac and is accompanied by significant neutrophilic 

infiltration. Total magnification 100x. 

42



arrow) has no ab-MWCNTs in the yolk, while the embryo on the right has a high concentration in the same 

region (Figure 11-B, white arrow). Only the embryo on the right demonstrates a large colony of neutrophils 

in this same area of the yolk sac. This validates that the yolk sac is not simply a region of the embryo were 

many neutrophils concentrate and suggests that the neutrophilic infiltration observed is in response to the 

presence of ab-MWCNTs.  

To test the hypothesis that neutrophils would immigrate to the site of ab-MWCNTs, images 

were taken consecutively over time and compiled into a time-lapse video. The first image was taken about 

an hour after the injection. In all of the embryos observed, neutrophils had already immigrated to the areas 

concentrated with ab-MWCNTs. It appears that the majority of neutrophilic infiltration occurred 

immediately post-injection, and thus the initial migration to the ab-MWCNTs was not captured during the 

time-lapse. However, the time-lapse did reveal recruitment of additional neutrophils and the interaction 

between these cells and ab-MWCNTs. Figure 12 shows specific time-points from a time-lapse analysis of 

an embryo with ab-MWCNTs concentrated in the yolk sac indicated by the white arrows. Between 10 (Fig. 

Figure 12. Time-lapse demonstrating neutrophil recruitment. Individual time-points from a time-lapse imaging 

of an Tg(mpx1::gfp) transgenic zebrafish embryo injected with MWCNT-AlexaFluor647® at 1 hpi. The white 

arrow points to a cluster of ab-MWCNTs (red fluorescence). The surrounding green fluorescent neutrophils 

are moving toward the ab-MWCNTs at 10 (A) and 40 minutes (B). At 70 minutes the neutrophils have reached 

the ab-MWCNTs and are initiating contact with the cluster (C) and continuing to surround it at 100 minutes 

(D). Total magnification 100x. 

43



10-A) and 40 minutes (Fig. 10-B), a group of neutrophils has encircled the cluster of ab-MWCNTs and is 

moving in closer. By 70 minutes (Fig. 10-C), the neutrophils have covered the cluster and appear to be 

attempting phagocytosis. At 100 minutes (Fig. 10-D), these same neutrophils are still engaged with the ab-

MWCNTs in continued attempt to phagocytize the material. Every embryo that was analyzed demonstrated 

this response by the neutrophils: Concentration of neutrophils to the region with ab-MWCNTs, 

maneuvering around a cluster, and eventually closing in with apparent attempted phagocytosis.  

The evaluation of the macrophage response to ab-MWCNTs yielded similar findings. To 

evaluate their response to ab-MWCNTs, Tg(mpeg1::gfp) embryos that have macrophages that express GFP 

were used and imaged in the same manner as described above. Generally, macrophages take longer to 

immigrate to the site of inflammation and are the last to leave, as their primary function is to clean up 

cellular debris that results from the inflammatory process 69.  It was hypothesized that because these cells 

Figure 13. Time-lapse demonstrating attempted macrophage phagocytosis. Individual time-points from a time-lapse 

imaging of an mpeg1gfp transgenic zebrafish embryo injected with MWCNT-AlexaFluor647 at 1 hpi. The white arrows 

indicate a single macrophage moving from the distal portion of the tail toward a cluster of ab-MWCNTS (red fluorescence) 

at 9 minutes (A). The macrophage wraps around the cluster after 25 minutes (B) then repeats this movement with the 

adjacent clusters at 40 minutes (C and D) and 65 minutes (E and F) as it moves along the tail. Total magnification 200X. 
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are slower to arrive, the time-lapse imaging would be able to capture their initial migration. However, 

similar to the neutrophil analyses, macrophages were already in proximity to the ab-MWCNTS within the 

hour it took to mount the embryos. The increased size and slower movement in comparison to neutrophils, 

did make visualization of the macrophage response to ab-MWCNTs more clear.   Figure 13 shows specific 

time-points from a time-lapse analysis of an embryo with ab-MWCNTs concentrated in the tail. The white 

arrow follows a single macrophage as it moves toward a single cluster of ab-MWCNTs at 9 minutes (Fig. 

13-A) and wraps itself around it at 25 minutes (Fig.13-B). This macrophage then leaves and moves on 

toward an adjacent cluster at 40 minutes (Fig. 13-C) and again wraps its amoeboid shape around it at 50 

minutes (Fig. 13-D). For a third time, it repeats this motion at 65 and 95 minutes (Fig. 13-E,F).  

 It remains unclear whether the neutrophils and macrophages were successful in clearing the 

material. It is challenging to visualize the ab-MWCNTs once they have been engulfed within the lysosomes 

of these phagocytic cells, as the enzymes within these compartments likely rapidly degrade the fluorescent 

dyes along with denaturation of the antibody. One indication that phagocytosis was successful would be to 

witness a decrease in the concentration of ab-MWCNT concentration to the original region of the embryo 

or redistribution to other areas, along with a receding of the WBCs that infiltrated. This was evaluated by 

repeating imaging surviving fish at 24 hours and 72 hours post injection. These images revealed that both 

the neutrophils and macrophages remained localized to the original areas of ab-MWCNT concentration for 

up to 72 hours. This suggests that these cells were, in fact, experiencing frustrated phagocytosis and were 

unable to clear the ab-MWCNTs.  

VI. Effects of Microwave on Mice

During the microwave power trials, all mice tolerated 500 J and 750 J of energy. They 

displayed normal behavior and exhibited no evidence of physical distress or injury related to treatment 
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during the 48 hour observation period. The decision to proceed with 

the experiments was based on these results. The 48 hour outcomes 

for mice in the experimental groups that received microwave 

irradiation were consistent with those in the power trial. However at 

3 days post treatment, some mice began to experience tail and right 

hind foot sores consistent with surface burns (Figure 11). Of the 

mice that were sacrificed at 2 weeks post treatment, 93% of those 

who experienced microwave irradiation developed sores by day 9. 

These mice were still active and displayed normal social behavior 

and biological functions (eating, drinking, defecating, etc.) 

comparable to the mice who received no treatment. They displayed 

no overt signs of pain or distress. 

This is most likely a limitation of the experimental 

design as opposed to a biological problem with the proposed 

treatment. First, it is hypothesized that the sores emerged on the tail 

and feet due to the low water content in these areas which are 

composed primarily of skin and bone and very little fat. Water 

efficiently absorbs microwaves due to its dipolar structure 74 . What 

little water was present in these regions likely evaporated rapidly. 

Additionally, positioning the mice in the microwave in the prone 

position with the tail wrapped around its body exposed the tail and 

right hind leg. This may have prevented the mice’s body from 

insulating the exposed regions (Figure 12). Finally, the application of whole body microwave did not 

provide a way to direct the waves away from these vulnerable areas. The microwave setup should be further 

optimized before any future studies are attempted. One alternative could be to use a microwave source 

which directs the waves to a target area making the energy concentration more localized. Another 

Figure 15. Mouse positioning for microwave 

irradiation. 

Figure 14. Microwave-induced lesions in 

mice. Examples show lesions on the tail (A) 

and foot (B). 

46



alternative is to develop a shield for the vulnerable areas out of a substance that reflects microwaves. 

Finally, tail-less rodent model could be chosen so long as one can ensure that the feet could be shielded by 

the body.  
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CHAPTER 4 

CONCLUSION 

I. A Novel Therapy

The proposed treatment that was evaluated in this study is entirely novel in several ways. 

First, the method of conjugating the antibody to the surface of the MWCNTs was developed by this lab. 

Second, while anti-PSMA has been used to successfully treat prostate cancer, it has never been conjugated 

to carbon nanotubes. Finally, possibly most notably, no one has ever evaluated microwave-induced heating 

of carbon nanotubes as a possible cancer ablation therapy in mice.  

The goal of this project was to evaluate this novel therapy by testing three hypotheses. The 

first was that IM injected ab-MWCNTs followed by microwave irradiation can cause hyperthermic ablation 

in mice. Histological examination demonstrated hyperthermic necrosis only in the groups that received both 

MWCNTs and microwave irradiation. Importantly, the level of microwave that successfully heated the 

MWCNTs was low enough as to not cause overt toxicity to the host. The second hypothesis was that ab-

MWCNTs would remain localized at the site of injection. Histological examination of the muscle at the site 

of injection and the vital organs of groups sacrificed at different time-points confirmed that the MWCNTs 

remained in the muscle for at least 2 weeks and did not redistribute to other organs during that time frame. 

Furthermore, the normal morphology observed in every specimen indicates that microwave alone did not 

cause obvious tissue damage. These results have been corroborated by a collaborating lab analyzing serum 

biomarkers that are indicators of organ-specific toxicity. The final hypothesis was that the innate immune 

system would mount an inflammatory response against the ab-MWCNTs. This was observed histologically 

by neutrophilic infiltration of the muscle at the site of injection and through florescent time-lapse images 

that showed macrophages and neutrophils attempting phagocytosis of the ab-MWCNTs. While these 
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experiments yielded valuable information, they also illuminated new challenges and further evaluations 

that could be endeavored. 

II. Further Evaluation of Results

Histopathology: While evidence of necrosis is present, the degree was very subtle. It is 

standard to perform an H&E stain to evaluate changes in morphology as the first course of action. The 

suspected necrosis could be further evaluated by taking additional section and applying a special stain more 

sensitive to detecting necrosis. A modified staining method to detect lactate dehydrogenase (LDH) has been 

described for the enhanced detection of thermally damaged tissue 75. Other histochemical stains could also 

be used to further evaluate the immune response demonstrated at the site of injection. It is unclear whether 

the phagocytic cells are capable of successfully performing phagocytosis of the MWCNTs. One hallmark 

of frustrated phagocytosis is the continued production of reactive oxidative species (ROS) 30. The released 

ROS then acts upon the surrounding cells causing lipid peroxidation and the formation of 4-

Hydroxynonenal (4HNE). Histochemical stains which detect 4HNE could yield more information about 

the inflammatory activities of the immune cells present at the site of inflammation 76.  

Biodistribution: Because the MWCNTs are by definition nanomaterials, it is plausible that 

they are in fact broken down and distributed to various organs at a level that is not detectable by light 

microscopy. A more sensitive approach to search for evidence of MWCNT migration to tissue is to also 

conjugate a radioactive isotope to the surface along with the antibody. The organs can then be homogenized 

at necropsy and analyzed via dosimetry for levels of radioactivity 43. Toxicity can also be measured using 

serum clinical assays. Another collaborator, is currently analyzing serum samples taken at the time of 

necropsy for the following biomarkers which are indicators of organ damage: Creatinine (kidney), AST and 

ALT (liver), albumin and total protein (inflammation). Preliminary results from these studies indicate no 

significant differences in levels of these analytes between the groups. This correlates with the 

histopathological results obtained by this study, further indicating that the experiments did not cause 
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toxicity to the mice and that the inflammation was not systemic. This lab is also performing RNA expression 

assays on the liver, kidney, and brain for the following proteins associated with inflammation: Interleukin 

1-β, Interleukin-6, nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), Prostaglandin-

endoperoxide synthase 2 (PTGS2), and tumor necrosis factor (TNF). These assays will shed more light on 

the inflammatory state of these organs at the time of necropsy 77. 

III. Further Modification of MWCNTs

Increase Biocompatibility: It should be explored whether further efforts should be made to 

improve the biocompatibility of the MWCNTs. A certain level of dispersability should be achieved if the 

ab-MWCNTs are to reach the target antigen. Ideally, the nanotubes would stay long enough to be heated 

and cause tumor necrosis and then be cleared through RES system and eventually excreted through the 

biliary or urinary tract. This study demonstrated that this compound in its current state remains localized at 

the site of injection. This seems to ultimately lead to less organ biodistribution and thus less toxicity than 

other more dispersible CNTs. However, it is possible that the current level of biocompatibility will inhibit 

the movement necessary for the nanomaterial to maneuver through the tumor microenvironment to reach 

its target. Also, it is unknown what the long-term damage is of leaving this type of nanomaterial in the body 

indefinitely. Methods to further functionalize the surface of the walls making them more hydrophilic have 

may improve the efficacy of this proposed treatment. Other methods include bathing the nanotubes in a 

strong acid to remove impurities 78, further functionalization with glucosamine50, and the covalent addition 

of polyethylene glycol (PEG)58.  

Alternative Antibody Conjugation: The Fc portion of antibodies are the effector regions of 

the molecule. Interaction with proteins and receptors are a point of initiation of a number of cascades 

involved the immune response, including macrophage clearance and complement activation. Whenever 

conjugating an antibody to a compound, the goal is to anchor the Fc portion to the wall to minimize these 

effects and to allow the Fab region to extend outward to enhance the likelihood it will bind to the target 

antigen. The current form of conjugation interacts with the N-terminus region of the antibody. Antibodies 
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are composed of multiple protein subunits, each with a C-terminus and an N-terminus. This means that the 

antibody can attach at multiple points throughout the protein. It may be worthwhile to explore forming a 

bond between the carbohydrate groups that are concentrated in the Fc portion and the carboxyl groups on 

the functionalized MWCNTs. Another option may be to coat the surface of the MWCNTs with biotin and 

use a commercially prepared antibody with streptavidin already on the Fc region. The biotin/streptavidin 

interaction forms a strong covalent bond 69.  

Localized Inflammation: It is important to note that localized inflammation at a tumor site 

can also be a benefit. Activation of complement from the antibody coated MWCNTs may in fact aid in the 

cytotoxic killing of the tumor cells. Furthermore, if the immune cells are in fact capable of performing 

complete phagocytosis, then this will help with clearing the cellular debris and wound healing post 

hyperthermic ablation. Neutrophils and macrophages also act as antigen presenting cells (APC), processing 

antigens that are engulfed and presenting them to lymphocytes for recruitment of the adaptive immune 

system. It is possible that the cleanup efforts by the APCs of the necrotic cancer cells may lead to antigen 

presentation of specific cancer antigens and a heightened adaptive immune response to the cancer. Too 

much inflammation can be detrimental, however. Over-activation of inflammatory cascades can lead to a 

cytokine storm and shock. This has been seen widely in current therapies aimed at using one’s own immune 

system to fight cancer. Additionally, inflammatory cells within tumors have been demonstrated to aid in 

cancer metastasis 79. The extent of immune involvement which aid or conversely is detrimental in 

combating cancer involves many mechanisms that have yet to be elucidated. 

IV. Conclusion

The promising results obtained are at the ground level of investigating this combination 

therapy as a possible treatment for cancer. The next step is to evaluate the role that antibody conjugation 

plays in making the proposed therapy more effective at targeting cancer cells directly. To evaluate the role 

that anti-PSMA plays in improving this tumor ablation therapy, experiments must be performed in a 
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prostate tumor-bearing model. Further functionalization to improve biocompatibility of the ab-MWCNTs 

and the microwave settings may require more optimization first.   

Cancer therapy research is focused on finding a treatment that selectively kills cancer cells 

while leaving healthy cells unharmed. The use of antibodies as a form of targeting cancers with drug 

payloads or for targeted ablative therapies has proven to be effective for a number of cancers. The 

incorporation of nanomaterials has also broadened the horizons for unique opportunities to address the fight 

against cancer. Carbon nanotubes are a promising candidate because their surface chemistry allows for the 

conjugation of antibodies and also has the capacity for super-heating under microwave irradiation. This is 

especially useful because microwaves penetrate deeper than traditional NIR and provide more uniform 

heating. These various elements make the proposed treatment evaluated by this study unique in its class. 

This study proves the concept that low levels of microwave irradiation can penetrate mammalian tissue and, 

when combined with MWCNTs, cause cell ablation. The use ab-MWCNTs and microwave to deliver 

targeted cancer cell ablation is a viable candidate for incorporation into existing combination therapies and 

is worth exploring further.  
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