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by 

EMILY W.  KNIGHT 

(Under the Direction of John Scott Harrison) 

ABSTRACT 

The brown widow spider, Latrodectus geometricus (C. L. Koch 1841), has been found to 

harbor the maternally inherited bacterial endosymbiont Wolbachia pipientis (Hertig and Wolbach 

1924), but endosymbiont infection frequency varies widely among Southeastern US populations. 

Wolbachia is known to manipulate the reproduction of its hosts through male feminization, 

parthenogenesis, male killing, and cytoplasmic incompatibility. In brown widows, Wolbachia 

does not alter sex ratios, but any other effects the symbiont has on the spider are unknown. In my 

first chapter, I assess if there is linkage between Wolbachia infection and maternally inherited 

mitochondrial DNA (mtDNA) in three brown widow populations. I found no evidence of linkage 

between Wolbachia infection and mtDNA haplotypes, despite both being maternally inherited. 

This result is consistent with weak fitness manipulation by the endosymbiont on the host, and 

could explain the variable, and often low, population infection frequencies in brown widow 

populations.  Lack of linkage could also be the result of common leakage events, in which the 

bacteria is randomly lost from one generation to the next.  In my second chapter, I determine if 

Wolbachia can induce cytoplasmic incompatibility (CI) in the brown widow. I provide evidence 

that Wolbachia infection causes partial CI in the brown widow.  Weak host effects, such as 

partial CI, is consistent with the lack of linkage between Wolbachia and mtDNA described in 

Chapter 1, as well as the variable infection frequencies among populations. In my last chapter, I 



explore Wolbachia concentrations in brown widow body regions. I found that endosymbiont load 

did not differ among three body regions, indicating that any host effects are not tissue specific. 

Wolbachia load, however, does vary among maternal lineages. The observed variation in 

Wolbachia load among maternal lines should be tested as a possible cause of variation in CI 

levels among mating pairs.  This study may help us better understand the relationship between 

evolutionary genetics and the strength of host manipulation by endosymbionts. 

INDEX WORDS: Brown widow spider, Host-parasite interaction, Wolbachia pipientis, 
Latrodectus geometricus, Mitochondrial DNA, Life history, Population dynamics, Reproduction 
manipulation, Cytoplasmic incompatibility, Bacterial load 
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INTRODUCTION 
 

When studying the history of life, it is important to look at symbiosis, or the living 

together of unlike organisms (De Bary 1879, Douglas 2010). Intracellular endosymbionts reside 

within the cells of their hosts (Zug and Hammerstein 2015). In invertebrates, especially 

arthropods, bacterial endosymbionts are abundant across taxonomic groups (Zchori-Fein and 

Bourtzis 2011). Endosymbionts can have a variety of significant effects on host fitness through 

mutualistic and parasitic relationships (Zug and Hammerstein 2015). Wolbachia pipientis (Hertig 

and Wolbach 1924) is a well know bacterial endosymbiont that has been found to have a wide 

range of effects on its host. 

Wolbachia is a gram-negative intracellular alphaproteobacterium that infects nematodes 

and arthropods (Werren et al. 2008). Variants of this endosymbiont have been divided into eight 

supergroups (A-H), with super groups C and D being commonly found in filarial nematodes and 

the other six supergroups being found predominantly in arthropods. A study of 63 arthropod 

species showed that 76% harbored Wolbachia (Jeyaprakash and Hoy 2000). Both within and 

among supergroups, Wolbachia is known to have variants that induce different host effect, with 

related forms potentially producing different host compatibility types (O’Neill et al. 1992, 

Rousset et al. 1992). Supergroups A and B are the most common in arthropods (Werren et al., 

2008, Baldo et al. 2007). Supergroup F is a unique supergroup that has been found in termites 

(Lo and Evans 2007), filarial nematodes (Casiraghi et al. 2005), bed bugs (Hosokawa 2010), 

bush crickets (Panaram and Marshall 2007), lice (Covacin and Barker 2007), and Southern 

African scorpions (Baldo et al. 2007). The effects of supergroup F on their hosts unknown, 

except for Hosokawa (2010) finding that the Wolbachia aided in nutrient acquisition of vitamin 

B that promoted successful egg development in bed bugs. 
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Wolbachia has been found to have a wide range of host manipulations. This includes 

reproductive manipulations, such as turning haploid parasitic wasp eggs, which turn into males, 

into diploid eggs, which become females with no fertilization needed (Russell and Stouthamer 

2011). Nutritional acquisition has also been seen in bedbugs, in which Wolbachia supplies 

vitamins needed for development (Hosokawa 2010). Viral protection, such as in drosophila 

where infected flies are more resistant to RNA viruses has also been seen (Hedges et al. 2008).  

Wolbachia is maternally inherited through the cytoplasm of the egg in the same way that 

mitochondria are inherited (Shoemaker et al. 2000).  Several types of reproductive manipulations 

have evolved to increase the number of infected females in the host population (Werren 2008). 

Reproductive manipulations include: male feminization, parthenogenesis induction, male killing, 

and cytoplasmic incompatibility (CI) (Werren 2008). Male feminization is where genetic males 

develop as functional females (Werren 1997, 2008). Parthenogenesis results in the development 

of unfertilized eggs laid by virgin haplodiploid females (Russell and Stouthamer 2011, Werren 

2008). Male killing is where male embryos laid by an infected mother do not develop (Sakamoto 

2011, Werren 2008). Cytoplasmic incompatibility results in a lack of embryonic development 

when infected males mate with uninfected females or females infected by a different strain 

(Turelli 1994, Hoffman and Turelli 1997). Infected females can mate with either infected or 

uninfected males (Turelli 1994, Hoffman and Turelli 1997). Infected females have two mating 

options for viable offspring, while uninfected females can only mate with uninfected male to 

produce viable offspring. If CI is strong, the increased relative fitness of infected females will 

drive Wolbachia to spread rapidly and reach fixation within the population. With these potential 

manipulations, understanding the biology of the spider is limited until the relationship of the 

endosymbiont and spider is better understood or resolved. 



9  

Latrodectus geometricus (C. L. Koch 1841), or the brown widow spider, is a species of 

widow spider that is thought to be native to South Africa, but can now be found on every 

continent except Antarctica (Garb et al. 2004, Brown et al. 2008). Wolbachia pipientis was 

recently identified in the brown widow (Arrington 2014). Brown widows were first documented 

in South Florida in the 1930s and its distribution was limited to South Florida for around 50 

years, but the range expanded to north Florida in the 1980’s and further across the southeast in 

the late 1990’s and early 2000’s (Brown et al. 2008). The spiders can now be found in Georgia, 

Alabama, South Carolina, Mississippi, Louisiana, and Texas (Brown et al. 2008). It has also 

appeared in California (Garb et al. 2004) and Hawaii (Pinter 1980).  

Arrington (2014) sampled multiple areas in the Southeastern US and determined 

Wolbachia infection status in different introduced brown widow populations. It was concluded 

that infection is not fixed in any one population, as infection frequency ranged from 20% in 

Bulloch County, Georgia to 90% in Miami, FL (Arrington 2014). The range and distribution 

pattern of Wolbachia in Southeastern US brown widow populations provides an ideal situation to 

test influences on host interactions. This infection could be recent and we are just seeing the 

beginning of Wolbachia frequency increase. This infection could also be an old infection and is 

becoming lost over time. There could also be different selective pressures in novel areas that 

cause the bacteria to be selected against.  

The goal of my thesis was to bring insight into the host-endosymbiont relationship 

between brown widows and Wolbachia. To address this, I had three different objectives. First, I 

wanted to determine if there is a linkage between Wolbachia and the mitochondrial DNA of the 

spiders. Second, I wanted to determine if Wolbachia induces cytoplasmic incompatibility in the 
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brown widow. Lastly, I wanted to determine if there is a difference in bacterial load between 

body regions.  
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CHAPTER 1 

Defining the Relationship of Mitochondrial DNA and Wolbachia pipientis in Three Populations 

of Latrodectus geometricus 

 

ABSTRACT 

The brown widow spider, Latrodectus geometricus, was first documented in the United 

States in South Florida in 1935 and has recently expanded its range in the Southeastern US. The 

brown widow has recently been found to harbor the bacteria Wolbachia pipientis. This 

maternally inherited bacterium has been known to cause a selective sweep of maternally 

inherited mitochondrial DNA. This study describes temporal and spatial haplotype and 

Wolbachia frequency variation within non-native brown widow populations in the Southeastern 

US. Wolbachia frequency increased in Louisiana by 19.2% over a 7-year period, while Georgia 

populations showed an 8.1% decrease in frequency over three years. There was no correlation 

between any mitochondrial haplotype and Wolbachia infection. Measures of haplotype diversity 

did not differ between infected and uninfected populations and did not change over time within 

populations. These results are consistent weak effects of Wolbachia on the host and that the host-

symbiont association in this case is old and is being lost through the reduction of selective 

pressures. 

 

INTRODUCTION 

The brown widow spider, Latrodectus geometricus, is thought to have originated in South 

Africa, it can now be found on every continent except Antarctica (Brown et al. 2008). It has been 

rapidly expanding its range in the United States since the 1990’s, after being found in southern 
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Florida in 1935 (Vetter et al. 2012). The spider’s distribution has expanded up the Florida 

peninsula after introduction and can now be found in Georgia, Alabama, South Carolina, 

Mississippi, Louisiana, and Texas (Brown et al. 2008). The spider also appeared in California 

(Garb et al. 2004) and Hawaii (Pinter 1980).  

Wolbachia is an alphaproteobacterium that infects a broad range of arthropods and 

filarial nematodes (Werren et al. 2008). It is maternally inherited (Zug and Hammerstein 2015) 

and spreads through reproductive manipulations that increase the reproductive fitness of infected 

females (Engelstädter and Hurst 2009). This is the result of one of four manipulations that have 

evolved: male feminization, parthenogenesis, male killing, and cytoplasmic incompatibility 

(Werren 2008). The most common of these reproductive manipulation strategies is cytoplasmic 

incompatibility (CI), which results in embryonic death between infected males and uninfected 

females, while the reciprocal cross is viable (Hoffmann and Turelli 1997).  Parthenogenesis 

occurs when unfertilized eggs laid by a virgin haplodiploid female develop into functional 

progeny, however this is unlikely, as brown widows are not a haplodiploid species (Russell and 

Stouthamer 2011, Werren et al. 2008).  Male feminization occurs when functional females 

develop from genetic males (Werren 1997, 2008). Male killing is when there is a loss of male 

embryos laid by an infected mother (Sakamoto 2011, Werren 2008). Male killing and 

feminization have not been observed in L. geometricus (Arrington 2014) 

 The brown widow spider has been found to harbor the bacterial endosymbiont Wolbachia 

pipientis (Arrington 2014). Wolbachia found in the brown widow is a member of supergroup F, 

which can also be found in filarial nematodes (Casiraghi et al. 2005), termites (Lo and Evans 

2007), bush crickets (Panaram and Marshall 2007), lice (Covacin and Barker 2007), South 

African scorpions (Baldo et al. 2007), and bedbugs (Hosokawa 2010). The strain of Wolbachia 
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that infects the brown widow is unique within supergroup F (J.S. Harrison unpublished data). 

Arrington (2014) found that Wolbachia infection ranged from 20% to 90% in tested populations 

in the Southeastern United States, showing that the infection is not fixed and varies among 

locations (Figure 1.) 

With heritable endosymbionts having the ability to manipulate the ecology and evolution 

of their hosts (McFall-Ngai et al. 2013), an understanding of brown widow life history and 

evolution is incomplete without incorporation of host-endosymbiont interactions. Wolbachia has 

been found to influence the genetic diversity of maternally inherited mitochondria, which could 

result in a difference in host fitness (Hurst and Jiggins 2005). As Wolbachia and mitochondria 

are both cytoplasmically inherited, there is an opportunity for linkage.  That is, in populations 

where infected individuals gain a fitness advantage, the mitochondrial genomes (mtDNA) of the 

infected individuals will hitchhike with the spreading Wolbachia. This hitchhiking will in turn 

will reduce mtDNA haplotype diversity (Narita et al. 2006, Charlat et al. 2009, Atyame et al. 

2011). With this replacing of haplotypes, populations that are infected with Wolbachia can 

display a different or fewer mitochondrial lineages than uninfected ones (Jiggins 2003, Hurst and 

Jiggins 2005). Wolbachia infected populations have been found to have lower amounts of 

mtDNA diversity than uninfected populations (Shoemaker et al. 2003). These changes can result 

in fitness differences between infected and uninfected individuals, which could be associated 

with fixation of slightly deleterious or beneficial mitochondria haplotypes (Ballard and Whitlock 

2004). If gene flow was common between populations both Wolbachia frequency and 

mitochondria haplotype frequency would be similar in the absence of selective forces (Dyer and 

Jaenike 2004, 2005).  Wolbachia infection frequency in brown widows ranged from 20% in 

Statesboro, GA to 90% in Miami-Dade, FL, suggesting little to no gene flow and that brown 
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widow populations have isolated distributions (Arrington 2014).  This wide range of Wolbachia 

frequency gives a unique experimental system to test the relationship between Wolbachia 

infection and mtDNA variation at different frequencies of infection. 

The aim of this study is to determine if there is linkage between Wolbachia infection and 

mtDNA in the brown widow. I ask the following questions: 1) Does mtDNA variation differ 

between Wolbachia infected individuals compared to uninfected individuals within and among 

non-native brown widow populations, 2) does mtDNA variation and Wolbachia infection 

frequency change over time during the establishment of non-native brown widow populations? I 

hypothesize that mtDNA variation will be lower among Wolbachia infected individuals than 

uninfected individuals within and among non-native brown widow populations. Wolbachia 

spreads via maternal cytoplasmic transmission, which allows mtDNA to hitchhike (Ballard and 

Whitlock 2004). This leads to increases in the frequency of a single mtDNA haplotype (Turelli 

and Hoffman 1995), which is considered a hitchhiking effect, or loss of variation, in the mtDNA 

(Xiao et al. 2011). I also hypothesize that mtDNA variation has decreased and Wolbachia 

infection frequency has increased over time during the establishment of non-native brown widow 

populations.  

 
METHODS 

 
Testing for Wolbachia 
 Brown widow spiders were collected from three populations on different years. Spiders 

from New Orleans, LA were collected during 2006 (n= 20), 2009 (n= 27), and 2013 (n= 31). 

Spiders were also collected from Miami, FL in 2013 (n=33) and Statesboro, GA during 2013 (n= 

67) and 2016 (n= 69). To avoid sampling related individuals, spiders were collected from various 

structures at each location.  Many of the samples collected prior to 2016 were previously 
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extracted and the DNA frozen (Arrington 2014). For the 2016 samples and prior to 2016 samples 

who did not have previously extracted DNA (specimens were labeled and stored in 95% 

ethanol), a whole leg was removed for DNA extraction (Arrington 2014). ZR Genomic DNAÔ- 

Tissue Microprep kit was used to perform the DNA extraction by following the manufacturers 

protocol (Zymo Research). Presence of Wolbachia was determined by Polymerase Chain 

Reaction (PCR) using the Wolbachia specific primer for the fructose-bisphosphate aldolase 

(FbpA) gene, which has been found to amplify in all known strains of Wolbachia (Vanthournout 

et al. 2001, Simões et al. 2011). The PCR protocol from Simões et al. (2011) for FbpA (F. 

GCTGCTCCRCTTGGYWTGAT) was used in PCR and the products were run on a 1% agarose 

gel. The presence or absence of PCR product for the FbpA gene determined Wolbachia infection 

status. 

 

Wolbachia frequency 

Wolbachia frequency was found for all three populations in each year. For the 

populations where temporal samples were taken and available, two statistical approaches were 

used to test for differences in Wolbachia infection frequency between years.  A Z-test was 

conducted to determine if there was a difference in Wolbachia infections among different 

populations and years.  A chi-square test of equal frequencies within time points for each 

population was also calculated using the statistical software JMP (SAS Institute Inc. 2009). 

Temporal variation was not assessed for the Florida samples, as samples were only collected for 

one year. 

 

mtDNA sequencing 
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 Mitochondrial DNA (mtDNA) was amplified in all the samples that were tested for 

Wolbachia. PCR was performed using a mtDNA specific primer that targets a 650 bp region of 

the cytochrome c oxidase I (COI) gene. The samples were tested for amplification by gel 

electrophoresis on a 1% agarose gel. The PCR products were then cleaned using Exonuclease I-

Shrimp Alkaline Phosphatase (ExoSAP) protocol (New England BioLabs). The cleaned samples 

were then sent to the University of Georgia’s Georgia Genomics Facility for sanger DNA 

sequencing using the forward COI primer.  

 

Haplotype differentiation 

The sequences were edited using Sequencher software and edited (Gene Codes 

Corporation).  Haplotypes were determined based on a 100% minimum match percentage. 

Haplotype diversity, nucleotide diversity, and QW were calculated for infected and uninfected 

groups for each sampling year using the program DNAsp v6 (Rozas et al. 2017). Haplotype 

diversity (also known as gene diversity, Hd) represents the probability that two randomly 

sampled alleles are different. Nucleotide diversity, or PI (π) is a measurement of the sequence 

diversity of the nucleotides (Nei and Li 1979).  This measurement is based on single nucleotide 

polymorphisms (SNPs) and is the probability that nucleotides from different sequences of the 

same gene are different. The Watterson estimator was used to calculate theta based on S (Θw), or 

a measure of population mutation rate, by looking at the number of segregation sites per 

sequence (Watterson 1975). 
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Phylogenetic Analysis 

Sequences were aligned using ClustalW (Larkin et al. 2014).  A gene tree was estimated 

using Bayesian analysis in the program MrBayes (Huelsenbeck and Ronquist 2001).  Parameters 

were set to HKY85+I+gamma.  Branch confidence was assessed using Markov chain Monte 

Carlo with 100000 generations, sampling trees every 100 generations, with a 500 tree burn-in. 

 

RESULTS 
 

The Louisiana population had a 19.2% increase in infection frequency over a 7-year 

period (Figure 2). There was no significant difference between the three years for infection 

frequency based on Z-tests [Z-test for equal proportions: Z (’06, ’09) = 0.756, P = 0.447; Z (’09, 

’13) = 0.720, P = 0.471; Z (’06, ’13) = 1.497, P = 0.133]. The northernmost population sampled 

(Georgia) had an 8.1% decrease in frequency over 3 years (Figure 2). Like the Louisiana 

samples, the Georgia population showed no significant difference between the years for 

Wolbachia infection [Z-test for equal proportions: Z (’13, ’16) = 1.457, P = 0.144].  The 2006 

Louisiana test for equal proportions of Wolbachia infected and uninfected individuals was 

significant, but the other two years (2009 and 2013) showed no significant difference between 

infected and uninfected (Table 1). Both years in Georgia (2013 and 2016) showed a significant 

difference from equal proportions of infected and uninfected individuals (Table 2). 

For the Louisiana samples, the 2009 Wolbachia negative samples had the least amount of 

gene diversity in the population, while the 2006 positive population had the highest gene 

diversity (Table 3). There is a decrease in Hd over time, though this decrease is not significant 

(Table 3). In the Georgia samples, the 2013 positive samples have the lowest amount of gene 

diversity (Table 3). However, gene diversity increased in the 2016 positive samples (Table 3). 
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For the Florida population, there is only one time point available, however, there is no difference 

in Hd between the positive and negative samples for this population (Table 3). There was no 

indication of differences in haplotype diversity estimates among locations sampled despite 

differences in Wolbachia frequency (Figure 2).   

The π value for Louisiana indicated that there is little heterogeneity between infection 

status, as well as years for this population (Table 3). The largest variance can be seen in the 2006 

Wolbachia positive samples, while the 2013 positive samples were the least variable (Table 3). 

There is also no difference in nucleotide diversity for the Georgia and the Florida populations 

(Tables 3). Both populations have low π values for all years, as well as infection status, meaning 

that there is no difference in nucleotide diversity based on these two factors (Tables 3). 

For the Louisiana samples, the 2006 positive samples had the highest amount of variation 

in that it has a higher mutation rate per sequence (Θw = 13.113), while all other Louisiana 

samples were relatively similar regardless of time point and infection status (Θw =6.828-3.616) 

showing no difference in mutation rate (Table 3). Θw for Georgia ranged from 3.535 to 7.883, 

with the 2016 positive sample having the highest mutation rate and the 2013 positive samples 

having the lowest (Table 3). The Florida samples showed a large difference between infected and 

uninfected in mutation rate, with the uninfected samples having a larger rate (Table 3).  

The total population consists of primarily four main haplotypes: H01 (11%), H02 (21%), 

H03 (26%), and H04 (17%) (Figure 4). No single haplotype was associated with Wolbachia 

infection. The four main haplotypes had the following Wolbachia infection frequencies: H01 

(19%), H02 (37%), H03 (48%), and H04 (37%).  A Bayesian analysis suggests that there are four 

main clades of haplotypes in the gene tree. Each of the four main haplotypes are distributed in 
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different clades (Figure 3).  Wolbachia infection and absence was also distributed through all 

clades (Figure 3). 

 

DISCUSSION 

Latrodectus geometricus is a recently introduced species that has been found to harbor 

Wolbachia (Arrington 2014). The distribution of Wolbachia infection frequency among 

Southeastern brown widows ranged from 9.2% to 90%, which is consistent with frequencies 

described by Arrington (2014).  There is also a potential geographic pattern on higher Wolbachia 

infection frequency with a decreasing latitude as the northern populations tend to have a lower 

Wolbachia infection frequency relative to the more southern samples This range of infection 

frequency in different populations allows for a unique opportunity to investigate the potential 

relationship between Wolbachia and mitochondrial haplotype diversity.  

With the wide range in Wolbachia frequency across different populations (9% to 90%), it 

is clear that the host-endosymbiont relationship in this case is not obligate. An obligate 

relationship between Wolbachia and host has been described in several species, including 

infected parasitic wasps where infection is necessary for oogenesis (Dedeine et al. 2001, Stahlhut 

et al. 2006), in filarial nematodes where infection is needed for development (McGarry et al. 

2004), and in bed-bugs where infection is essential for growth and reproduction (Hosokawa 

2010).  Fixation of Wolbachia in a population can also be driven by strong reproductive 

manipulations of the host by the bacteria (Zug and Hammerstein 2015 

Mitochondrial DNA variation does not differ between Wolbachia infected individuals 

when compared to uninfected individuals within and among brown widow populations. Strong 

linkage between mtDNA and Wolbachia can be established when Wolbachia causes strong 
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fitness effects on the host (Müller et al. 2012).  This linkage would result in selective 

sweeps/hitchhiking resulting in lower mtDNA variation in Wolbachia infected populations 

compared to Wolbachia uninfected populations (Shoemaker et al. 2000). Wolbachia associated 

selective sweeps of mitochondria have been seen in fig wasp species (Sun et al. 2011), blow flies 

(Baudry et al. 2003), mosquitos (Kambhampati et al. 1992), and Drosophila (Ballard et al. 

2006). In brown widow populations, mtDNA variation data does not indicate a recent selective 

sweep suggesting a lack of linkage between the bacterium and mitochondria in brown widow 

populations. The absence of a hitchhiking effect between the endosymbiont and mitochondria 

can be explained by a Wolbachia infection that has weak or no effect on host fitness (Müller et 

al. 2012). This absence of an association between Wolbachia and mtDNA has also been seen in 

Drosophila willistoni, Drosophila yakuba, and Solenopsis invicta (Müller et al. 2012).  This 

weak association can be due to several factors including: the infection being recent where the full 

selective sweep has not yet occurred, the infection being lost in the populations, reproductive 

parasitism occurring at low levels or is absent, or paternal leakage of mitochondria (Müller et al. 

2012). A recent infection seems unlikely, as high levels of horizontal transfer would be necessary 

to result in the haplotype-Wolbachia pattern seen in the gene tree. (Figure 3). While a paternal 

leakage is plausible, there was no indication of individuals having heteroplasmy in the 

sequencing results, which would appear as two competing peaks when sequencing (Müller et al. 

2012).  However, our system tends to point to mtDNA variation and Wolbachia in brown widow 

population are most consistent with some level of Wolbachia loss over time often associated with 

weak or low levels of reproductive parasitism. 

 The absence of association between mtDNA variation and Wolbachia infection in 

introduced brown widow populations is unlikely to be the consequence of a recent infection 
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where a selective sweep has not yet occurred. If the Wolbachia infection in brown widows is a 

recent event, a single mtDNA haplotype or a small number of related haplotypes would be 

predicted to be associated with Wolbachia, while a diversity of haplotypes would be found 

among uninfected individuals (Müller et al. 2012). Wolbachia infection was present with an 

equal diversity of haplotypes in infected and uninfected individuals, (Figure 3). A correlated 

change in mtDNA diversity with changes in Wolbachia frequency in a population over time 

would also be expected if this was a recent infection and strong fitness consequences for the 

host.   The frequency of infection did increase by 19.2% in the Louisiana samples over a 7-year 

period, while the Georgia samples showed an 8.1% decrease over 3 years, yet neither of these 

were significant changes (Figure 2; Tables 1 and 2). In both cases, there was no indication of a 

correlated change in mtDNA diversity or a strong association with a single haplotype.   

Populations with variable Wolbachia infection frequency lacking correlation with 

mtDNA variation can be explained by recent infection if horizontal transmission occurs.  Charlat 

et al. (2004) referred to this as the never infected hypothesis, where there may be cytoplasmic 

lineages that have never been infected (Charlat et al. 2004). Under the never infected hypothesis, 

there can be two scenarios that would result in the low infection frequency (Charlat et al. 2004). 

One scenario involves recent horizontal transmissions of a non-CI inducing Wolbachia behaving 

like a neutral trait.  Low infection frequencies occur because horizontal transfer and drift are in 

temporary equilibrium, and fixation of the infection is never reached (Charlat et al. 2004). The 

second scenario also includes horizontal transmission and drift, where CI expression was 

secondarily lost. Some of the populations had a fixed infection, while others were never infected, 

and interbreeding of the two followed (Charlat et al. 2004). 
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A second explanation of variable Wolbachia infection frequency lacking correlation with 

mtDNA variation is the once infected hypothesis. In this hypothesis, the association is old 

between host and symbiont and transmission has become imperfect from originally infected 

frequencies (Charlat et al. 2004).  The once infected hypothesis suggests that the host-symbiont 

relationship is ancestral and maternal transmission has become imperfect, resulting in loss of 

infection (Charlat et al. 2004). Ancestral expression of cytoplasmic incompatibility (CI) 

followed by secondary loss or reduction in CI can also be inferred from this hypothesis (Charlat 

et al. 2004). This hypothesis cannot be ruled out in brown widow-Wolbachia interaction (this 

hypothesis is partially assessed in chapter 2). Wolbachia infection being ancestral with 

subsequent loss is consistent with the mapping of Wolbachia infection frequency onto the 

mtDNA gene tree (Figure 3). Most of the population (83%) carries one of four haplotypes: H01, 

H02, H03, and H04, with these four haplotype strains being associated with Wolbachia at 

various infection frequencies less than 1 (Figure 3). These four major haplotypes are not closely 

related and fall into the four major clades with less recurrent haplotypes within each clade.  

Many of the less common haplotypes also occur with Wolbachia infection and many do not. This 

pattern is consistent with a scenario where, historically, Wolbachia may have been fixed or at 

high frequency in the population, but over time selection for the infection weakened. This 

weakening could then have allowed for random losses of mtDNA haplotypes associated with 

infection and allowing for newer haplotypes to begin arise.  If the mtDNA phylogeny had shown 

several haplotypes with high infection frequency related in a single lineage, a new infection or 

ongoing selective sweep would have been inferred. This pattern is seen in fig wasps where 

infected and uninfected mtDNA haplotypes separate into two major clades (Xiao 2011). Over 

generations, Wolbachia associated haplotypes increase in frequency in the population and 
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haplotypes that are not associated with the bacteria eventually become less common if 

reproductive manipulations are strong.  Strong cytoplasmic incompatibility for example would 

drive rapid increase in infection frequency, as infected females have twice the chance that 

uninfected females do at finding a mate to produce viable offspring (Charlat et al. 2004). The 

pattern of one related lineage associated with infection was not see in the brown widow 

populations studied here.  This suggests that that the infection could be becoming lost through 

the weakening of strong selective pressures, such as CI and incomplete transmission. 

The distribution of infection frequency in Southeastern US populations of brown widows 

shows a trend of decreasing infection rate with increasing latitude (Figure 1). This distribution 

could be the consequence of: multiple founder events during introduction (Arrington 2014), the 

loss of infection as the spider enters novel environments caused by differing selective pressures 

on infection status (Shoemaker et al. 2000, Tsutsui et al. 2003, Reuter et al. 2005), or 

environmental differences that can cause host benefits to be lost, thus removing the bacterium 

from the population as the infection becomes either neutral or costly to the host (Stouthamer et 

al. 1999, Charlat et al. 2004). The pattern of increase in the Louisiana population infection 

frequency by 19.2% over a 7-year period, while the Georgia populations decreased by 8.1% over 

3 years is consistent with the latitudinal gradient described by Arrington (2004). There is higher 

infection frequency in lower latitudes and a lower in infection frequency in higher latitudes. 

These two observations of south to north decrease in infection warrants the hypothesis that as the 

spider expands to novel environments, there is a loss of infection due to different selective 

pressures on infection status (Shoemaker et al. 2000, Tsutsui et al. 2003, Reuter et al. 2005). In 

populations found in lower latitudes, effects of infection may be beneficial for survival in a 

warmer environment, but as the spider expands towards the north and cooler climates, these 
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benefits might become neutral or even costly. Wolbachia has been found to provide a heat-

tolerance benefit in pea aphids when compared to uninfected samples. (Chen et al. 1997, 2000, 

Russell and Moran 2006). Infection was also found to increase fecundity when aphids were 

under heat-stress (Montllor et al. 2002). Temperature has also been found to affect maternal 

transmission, microbe replication rate, and influence microbe-density (Douglas 1994, Mouton 

2006), which could lead to a change in phenotype. Temperature effects on the host and 

endosymbiont relationship should be further investigated in brown widows. 

 In this study, I have determined that there is no linkage between Wolbachia infection and 

mitochondrial DNA variation in brown widows. The absence of linkage between mitochondrial 

haplotypes and Wolbachia supports the hypothesis that the infection is old and is being lost, 

suggesting that host fitness effects may be weak. Support for this hypothesis would be 

strengthened by testing the CI strength in this system. A trend of decreasing frequency in the 

North and increasing frequencies in the south suggests that the distribution is not random. 

Additional studies of symbiont and environmental fitness effects, including bacterial load 

differences, fitness, and temperature effects are needed.  
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Figure 1. Prevalence of Wolbachia in Brown Widow Spiders (Latrodectus geometricus) from 

five Southeastern populations (Arrington 2014) 
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Figure 2. Proportions of brown widow spiders infected with Wolbachia in Louisiana and Georgia 

over time.  
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Table 1. Chi-square test of equal frequencies by year, in Louisiana. 

 2006 2009 2013 

Infected 8 11 17 

Uninfected 18 16 17 

𝜒 2 5.31 0.93 0 

P-value 0.021* 0.33 1 
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Table 2. Chi-square test of equal frequencies by year, in Georgia. 

 2013 2016 

Infected 17 6 

Uninfected 81 59 

Chi2 45.43 50.089 

P-value <0.0001* <0.0001* 
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Table 3. Genetic diversity estimates of mitochondrial cytochrome oxidase I gene in brown 
widow populations 
 
Population	 Haplotype	(gene)	Diversity,	Hd	 Nucleotide	Diversity,	∏	 Θw	 n	

LA	‘06	Positive	 0.893	±	0.111	S.D.	 0.02338	 13.113	 8	
LA	‘06	Negative	 0.894	±	0.078	S.D.	 0.01265	 5.961	 12	
LA	‘09	Positive	 0.709	±	0.237	S.D.	 0.01163	 6.828	 11	
LA	‘09	Negative	 0.592	±	0.122	S.D.	 0.00956	 5.425	 16	
LA	‘13	Positive	 0.658	±	0.108	S.D.	 0.0082	 3.616	 16	
LA	‘13	Negative	 0.705	±	0.074	S.D.	 0.01058	 6.766	 15	
GA	‘13	Positive	 0.467	±	0.132	S.D.	 0	 3.535	 10	
GA	‘13	Negative	 0.786	±	0.028	S.D.	 0.0126	 6.722	 57	
GA	‘16	Positive	 0.733	±	0.155	S.D.	 0.01399	 7.883	 6	
GA	‘16	Negative	 0.794	±	0.031	S.D.	 0.01335	 5.093	 63	
FL	‘13	Positive	 0.708	±	0.031	S.D.	 0.01366	 3.786	 30	
FL	‘13	Negative	 0.667	±	0.314	S.D.	 0.01763	 10.667	 3	
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Figure 3.  Phylogenetic analysis of mitochondrial haplotypes. The phylogeny shows 

posterior probabilities from a Bayesian analysis. The charts illustrate the four 

predominant haplotypes, which are outlined in red: Haplotype 01, Haplotype 02, 

Haplotype 03, and Haplotype 04. The left pie charts shown in gray gives Wolbachia 

infection frequency for each haplotype, with dark gray representing the infected samples 

and the light gray representing uninfected samples. The right pie charts in green show 

the frequency of the specific haplotype within the population, with dark green 

representing that specific haplotype and light green representing the rest of the 

population not found with that haplotype. The haplotypes with asterisks denote 

haplotypes associated with infection. 
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CHAPTER 2 

Consequences of Wolbachia Infection on Cytoplasmic Incompatibility in Latrodectus 

geometricus 

 

ABSTRACT 

Wolbachia are maternally inherited bacteria that have been found to manipulate host 

reproduction through a variety of mechanisms including: feminization, parthenogenesis, 

male-killing, and cytoplasmic incompatibility. Cytoplasmic incompatibility (CI), when the 

sperm from an infected individual and the egg from an uninfected individual are unable to 

produce viable offspring, can be expressed at different intensities. Wolbachia was recently 

found in introduced populations of the brown widow spider, Latrodectus geometricus, in the 

Southeastern US. In this system, infection frequencies vary among introduced populations.  

With the potential manipulations, understanding the biology of the spider is limited until the 

relationship of the endosymbiont and spider is better understood or resolved. The goal of this 

study is to determine if Wolbachia induces CI in the brown widow through controlled 

breeding crosses. It was found that Wolbachia pipientis induced partial CI in the brown 

widow, as hatching frequency was reduced by 35.5% when infected males were mated with 

uninfected females, compared to that of mating of uninfected females and uninfected males.	

Partial CI indicates Wolbachia virulence may be reduced over time thus allowing for a 

decrease in selective pressure against uninfected spiders and maintenance of variable 

infection frequencies among introduced populations.  
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INTRODUCTION 

Invertebrates, particularly Arthropoda, have been found to harbor bacterial 

endosymbionts (Zchori-Fein and Bourtzis 2011). Host/endosymbiont interactions can include: 

mutualism, a symbiotic relationship where both benefit; commensalism, a symbiotic relationship 

where one benefits and the other is neither benefitted or harmed; or parasitism, a symbiotic 

relationship where one benefits at the expense of the other (Werren 2008). The bacterial 

endosymbiont, Wolbachia pipientis, can be a reproductive parasite of its arthropod hosts (Werren 

2008). Wolbachia has intrigued scientists as it fundamentally violates the view that heritable 

symbionts are mutualists (Zug and Hammerstein 2015). Wolbachia is maternally, vertically 

inherited and has been found in the cytoplasm of somatic and germ line cells within the host 

(Shoemaker et al. 2002, Zug and Hammerstein 2015). 

Wolbachia is extremely common in arthropods.  Estimates indicate that over 65% of 

insect species possess this endosymbiont (Werren et al. 1997, Werren and Windsor 2000, Jiggins 

et al. 2001, Hilgenboecker et al. 2008).   A taxonomically diverse survey of 63 arthropod species 

showed a 76% infection frequency (Jeyaprakash and Hoy 2000). Rowley et al. (2004) found 

Wolbachia infections in 7 of 10 spider families sampled.  

Wolbachia is predominantly transmitted vertically and can cause a decrease in host 

fitness by harmfully manipulating host reproduction for their own benefit (Zug and Hammerstein 

2015). This decrease in fitness may be offset by a potential giving of nutrients to the host to 

allow for retention of the bacteria (Hosokawa et al. 2009). Wolbachia has acquired four different 

mechanisms to induce these manipulations: male feminization, parthenogenesis induction, male 

killing, and cytoplasmic incompatibility (CI) (Werren 2008). Male feminization is when genetic 

males develop as functional females (Werren 1997, 2008). Parthenogenesis is the development 
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of unfertilized eggs laid by virgin haplodiploid females (Werren 2008, Russell and Stouthamer 

2011). Male killing is when male embryos laid by an infected mother do not develop (Werren 

2008, Sakamoto 2011). Cytoplasmic incompatibility results in a lack of embryonic development 

when infected males mate with uninfected females or females infected by a different strain of the 

symbiont (Turelli 1994, Hoffman and Turelli 1997). These reproductive manipulations allow the 

bacterium to increase their fitness by increasing the number of infected females in forthcoming 

generations and therefore increasing their frequency in host populations (Werren 2008, Zug and 

Hammerstein 2015).   

Out of the reproductive manipulations induced by Wolbachia, cytoplasmic 

incompatibility (CI) is the most common (Werren 2008). Wolbachia can render sperm 

nonfunctional with the modification being rescued if the eggs are infected with the same strain. If 

the Wolbachia is not present in the egg, the sperm will remain modified and the embryo will not 

initiate development (Werren 1997).  Modification of the sperm most likely occurs at an early 

stage of spermatogenesis, as the bacteria is shed from the sperm into cytoplasmic waste (Bressac 

and Rousset 1993). Werren (1997) proposed a “modification and rescue model” where mod 

modifies the sperm and resc occurs in the egg where it restores the sperm functionality (Poinsot 

et al. 2003). Three models have been proposed to explain how mod resc occurs in a host: i) the 

“lock-and-key” model, where the mod is caused by a “lock” that is produced by the bacteria and 

binds to the paternal nucleus and must be unlocked by the “key” present in an infected egg to 

remove the lock and produce viable offspring (Poinsot et al. 2003); ii) the “sink” model, 

whereby Wolbachia in an infected male removes proteins associated with chromosomes (mod) 

and  gives them back (resc) after being fertilized by an infected female (Kose and Karr 1995, 

Werren 1997, Poinsot et al. 2003); and iii) and the “slow-motion” model, in which infected 
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paternal chromosomes are delayed entry into mitosis (mod) and resc is caused by a similar 

modification in infected mothers that allows a restoration of a synchronous cycle between the 

two (Reed and Werren 1995, Callaini et al. 1997, Poinsot et al. 2003). 

 CI can occur at different intensities, or percentages of embryos that do not develop, in 

crosses between infected males and uninfected females (Charlat et al. 2004, Frank 1998). The 

level of CI can play a large role on the rate of infection increase in a population. For example, if 

the CI is strong within the population, then the frequency of infection will increase in the 

population or stay at fixation (Frank 1998). However, if CI is very weak, the frequency of 

infection can decrease from 100% to a lower rate due to invading host factors, like the general 

health or nutritional state of the organism (Frank 1998). There are many factors that can 

influence the expression of CI, including the strain of bacteria, the host genotype, and the density 

of the bacteria (Werren 1997).  Wolbachia infected females can have lower fecundity than their 

uninfected counterparts, but the infected females achieve a reproductive advantage, as they 

generally produce viable offspring with both infected and uninfected males (Hoffmann et al. 

1990, Turelli 1994). If CI is strong, infected females have a higher relative fitness than 

uninfected females.  Wolbachia will consequently spread rapidly and increase to fixation within 

the population (Hurst 1991). However, Prout (1994) suggested that variants of Wolbachia may 

be able to increase the fecundity of infected females, even if they increase the compatibility of a 

cross between infected males and uninfected females, resulting in different CI intensities. CI has 

been found to have several variances in laboratory and natural populations. Hoffmann et al. 

(1990) found that the severity of CI is generally greater in a lab setting and that infected females 

may exhibit reduced fecundity in the lab when compared to natural populations. Some of the 

variation in CI levels may be controlled by host genes. Hoffmann (1988) found that Wolbachia 
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that caused high levels of CI in D. simulans produced low levels of CI when transferred to D. 

melanogaster. Dosage of Wolbachia, or bacterial loads, may also explain difference in CI levels 

(Breeuwer and Werren 1993). Boyle et al. (1993) noted that higher levels of CI were associated 

with higher levels of bacteria in the eggs.  

Wolbachia variants have been divided into eight supergroups (A-H), with super groups C 

and D commonly found in filarial nematodes and the other six supergroups found predominantly 

in arthropods. Wolbachia is known to have different variants in various supergroups that may 

affect CI levels, with related forms of Wolbachia producing different host compatibility types 

(O’Neill et al. 1992, Rousset et al. 1992). Supergroups A and B are the most common in 

arthropods (Baldo et al. 2007, Werren et al. 2008). Supergroup F is a unique supergroup having 

been found in termites (Lo and Evans 2007), filarial nematodes (Casiraghi et al. 2005), bed bugs 

(Hosakawa 2010), bush crickets (Panaram and Marshall 2007), lice (Covacin and Barker 2007), 

and Southern African scorpions (Baldo et al. 2007). The effects of supergroup F on their hosts 

are largely unknown, except Hosakawa (2010) found that Wolbachia aided in nutrient 

acquisition of vitamin B that promoted egg development in bed bugs. 

The brown widow spider (L. geometricus) is a non-native species that has been found to 

harbor Wolbachia (Arrington 2014). The brown widow is thought to have originated in South 

Africa and has now been introduced to all continents except Antarctica, through human 

introduction (Garb et al. 2004, Brown et al. 2008). In the 20th century, the brown widow was 

introduced into the southern peninsula of Florida and has rapidly expanded its range in the 

Southeastern US (Brown et al. 2008). The spider can now be found as far north as South 

Carolina and as far west as Texas (Brown et al. 2008) and has been introduced into Hawaii 

(Pinter 1980) and California (Garb et al. 2004). A unique strain of supergroup F was discovered 
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in the brown widow spider, Latrodectus geometricus, when compared to known strains, 

including the strain found in its relative L. mactans (J.S. Harrison unpublished data).  The 

relationship between Wolbachia and L. geometricus is not obligate as infection frequency ranged 

from 20% to 90% in tested populations (Arrington 2014). One explanation for Wolbachia not 

being fixed in populations is a facultative or neutral relationship between the symbiont and host 

(Arrington 2014). Wolbachia may have been previously fixed within the sampled populations, 

however, through the loss of strong CI, the bacteria frequency may be lost with associated 

neutral effects, such as drift or competition (Reuter et al. 2005). Another explanation to fit the 

distribution pattern are recent founder events from multiple source populations that differ in 

infection status and limited gene flow among Southeastern US locations (Arrington 2014). The 

current effect of Wolbachia on L. geometricus is unknown.  A recent study concluded that 

Wolbachia does not influence clutch sex ratio, egg number, egg size, egg mass, or development 

time in L. geometricus (Arrington 2014). These results eliminate the possibilities of male 

feminization, parthenogenesis, or male killing as possible reproductive manipulations of 

Wolbachia on the brown widow spider.  CI has not yet been tested in this species.  

The aim of this study is to determine if Wolbachia pipientis induces CI in the brown 

widow spider. I ask the following question: Does a cross between uninfected females and 

Wolbachia infected males induce complete embryonic death? I hypothesize that a cross between 

uninfected females and Wolbachia infected males will induce CI and result in embryo death. 

However, complete cytoplasmic incompatibility (100% embryo death) will not be seen, as the 

infection is not fixed within the brown widow populations (Chapter 1, Frank 1998, Arrington 

2014). 
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METHODS 

Testing for Wolbachia 

 Female brown widow spiders were collected from the greater Statesboro, GA area. 

Females were found with egg sacs or laid egg sacs once in the lab. A whole leg was taken from 

the mother for DNA extraction and Polymerase Chain Reaction (PCR). The DNA extraction was 

done using the ZR Genomic DNAÔ- Tissue Microprep kit (Zymo Research). The Wolbachia 

specific primer for the fructose-bisphosphate aldolase gene (FbpA) was chosen for PCR, as this 

primer has been found to amplify in all known strains of Wolbachia (Arrington 2014, Simões 

2011, Vanthournout et al. 2001). The PCR protocol for the FbpA primers followed Simões et al. 

(2011). The PCR products were run on a 1% agarose gel. Wolbachia infection status was 

determined by the presence of PCR product for the FbpA gene. 

Rearing spiders for breeding 

 All spider rearing was carried out in an incubator set at 27°C, 50-60% humidity, and a 

12-hour light-dark cycle. Spiders used for mating were raised from egg sacs laid in lab, so virgin 

females and males of known ancestry could be used to remove maternal effects other than 

Wolbachia presence/absence. The egg sacs were opened, upon arrival to lab or once they were 

laid, and the offspring were allowed to develop in a petri dish. After the first molt, spiderlings 

were placed into individual cages. The immature spiders were fed 3-4 wingless drosophila twice 

a week. Sex was determined in the 3rd and 4th instar by using differences in pedipalp size and 

looking for the swelling of the palps in males (Mahmoudi et al. 2008, Kaston 1970). Once sex 

was determined, the females were fed small mealworms, while the males were continued to be 

fed drosophila due to ensure that adequate nutrition was being given. Crosses were determined 

based on Wolbachia infection status of the mothers. Males used in the study were not able to be 
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tested for infection status without being sacrificed.  I assumed all males of infected mothers were 

infected based on a survey of infection of 96 offspring from each of four infected mothers. In 

each case, Wolbachia transmission rates from mother to offspring was 100% (J.S. Harrison 

unpublished data).  

Cytoplasmic Incompatibility Assay 

 Four crossing treatments were completed, with “w” meaning that an individual is positive 

for Wolbachia: ♀ x ♂, w♀ x ♂, w♀ x w♂, ♀ x w♂. A total of 15 lab- reared virgin females (4 

infected, 11 uninfected) were mated with unrelated lab reared virgin males (7 infected, 8 

uninfected). The control crosses of ♀ x ♂ had five breeding pair replicates, w♀ x ♂ had three 

breeding pairs, and w♀ x w♂ had only one breeding pair. The experimental cross of ♀ x w♂ had 

six breeding pairs. Once females were mature enough to breed, as determined by size and 

number of molts, they were fed a mealworm in hopes of increasing the survival of a male and a 

predetermined male was placed in the cage. The male was left in the cage for three days or until 

the male had been killed. The males who were removed were observed under a dissecting 

microscope to determine if their reproductive organs were intact. If they were not, there was a 

high probability that a successful mating had occurred. 

Collecting egg and hatching numbers 

 The day each female began to produce egg sacs was recorded, with the sac being 

removed from the cage after two days. The egg sac was placed in a petri dish, opened using 

forceps, and the total number of eggs counted. The number of unhatched eggs counted were 

counted every two days until the number of unhatched eggs did not change for a two-week 

period. Females are able to produce multiple egg sacs from a single mating; therefore, each time 

a female laid an egg sac, egg sac number, egg counts, hatching date, and the number of 
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unhatched eggs were recorded. Averages of all clutches from individual breeding pairs were 

calculated and the data was analyzed with a one-way ANOVA. The data was tested for normality 

with a Shapiro-Wilk test. The data was log-transformed to attain normality. A Tukey HSD post 

hoc test was conducted to determine if there was a statistical significance between groups. 

RESULTS 

The average hatching rate of egg clutches produced from Wolbachia uninfected females 

mated with infected males (♀ x w♂) was 55.1% ± 12.03%, which was a reduction of 35.5% 

when compared to the hatching rates of ♀ x ♂ crosses (90.6% ± 4.67% hatching rate) (Figure 4). 

Additionally, there was a 33.1% reduction when ♀ x w♂ was compared to the 88.2% ± 7.19% 

hatching rate of w ♀ x ♂ (Figure 4). There was a significant difference between the hatching 

numbers of the two control groups of ♀ x ♂ and w♀ x ♂ when compared to the experimental 

group of ♀ x w♂. (P= 0.059, DF= 13) after the data was log transformed and a Tukey test 

conducted (Table 4). The crosses of infected males with infected females were removed from the 

analysis due to the low sample size (n = 1).    Large variation can also be seen within clutches of 

the same breeding pairs (Figure 5). 

DISCUSSION 

 Wolbachia infection in L. geometricus appears to induce CI in crosses between non-

infected females and infected males. This CI is partial, as there is not complete embryotic death. 

Partial CI has also been seen in the planthopper, Sogatella furcifera (Noda et al. 2000). In S. 

furcifera, partial CI is correlated with a lower density of Wolbachia when compared to another 

planthopper, Laodelphax striatellus, which had high levels of CI (Noda et al. 2000). A certain 

threshold of bacterial density may be required for modification of paternal genetic material 

(Noda et al. 2000).  The level of CI seen in the brown widow may be a consequence of low or 
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variable Wolbachia densities compared to arthropod species with total CI.  There was 

considerable variation in hatching number among replicates of the ♀ x w♂ cross.  This may 

indicate that high levels of variation exist in Wolbachia density among infected individuals, 

which could be tested in future experiments.  

  Temperature and male age are known to influence CI levels (Clancy and Hoffman 1998, 

Singh et al. 1976). The spiders were kept in an incubator at 27°C, which allowed us to mimic 

natural conditions for the Southeastern United States (Arrington 2014). This natural condition 

mimicry appears to enhance the amount of eggs laid by a female (Arrington 2014). However, 

Clancy and Hoffmann (1998) found that in D. simulans, higher temperatures negatively impacted 

the intensity of CI, as Wolbachia density in embryos was reduced with exposure to 25 °C when 

compared with a 19 °C treatment. Arrington (2014) found a decrease in infection frequency as 

latitude increased. This latitudinal decline in infection frequency could indicate that there are 

different selective pressures on infection with one possibility being CI intensity (Shoemaker et 

al. 2000, Tsutsui et al. 2003, Reuter et al. 2005). In South Florida, the infection may be 

beneficial for temperature effects on CI, however, in novel higher latitude environments, the 

effects may be weakened (Chen et al. 1997, 2000, Russell and Moran 2006,). 

The male age for the experiment was not kept constant, due to the limited numbers of 

infected virgin males available to breed, but there is no indication of systematic bias as the ages 

were varied for both infected and uninfected males. The differences in CI within the 

experimental group of ♀ x w♂ (Figure 5) could be related to the differences in male age. Older 

males were found to have reduced amounts of CI in D. simulans (Hoffmann et al. 1986), due to a 

decrease in the amount of Wolbachia- infected sperm (Bressac and Rousset 1993). This decrease 

in Wolbachia results in a decrease in the modification of sperm (Noda et al. 2000), which could 
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allow for uninfected females to produce viable offspring with older infected males. The 

combined effects of temperature and male age may explain the partial CI seen in L. geometricus. 

 Partial CI can be a consequence of reduced virulence of Wolbachia on the host over time 

(Hoffmann and Turelli 1997).  This reduction in selective pressures often leads to reductions in 

Wolbachia frequency within the population. The variation in Wolbachia infection frequency in 

Southeastern US L. geometricus populations is consistent with low virulence and selective 

pressures (Arrington 2014).   The absence of = linkage between mitochondrial DNA and 

Wolbachia infection demonstrated in chapter 1 would also result from weak host manipulation.  

With low intensity of CI in L. geometricus, the selective forces driving increased frequency of 

Wolbachia in a population is greatly reduced (Hoffman and Turelli 1997).  Therefore, the 

frequency of Wolbachia would be driven primarily by drift after introduction into novel habitats 

(Reuter et al. 2005).  Wolbachia frequency can drop below a certain threshold, determined by the 

effect of infection on host fertility and the rate of vertical transmission, and the probability of 

bacterial loss increases (Caspari and Watson 1959, Hoffmann and Turelli 1997). Founder effects, 

in combination with weak CI, could have reduced the infection below the threshold and could 

have allowed the maintenance of low infection frequency (Charlat 2004, Reuter et al. 2005).  

 Finally, there may be a clutch affect occurring in the experimental crosses of ♀ x w♂. 

Hatching rate variation is high within the experimental breeding crosses (♀ x w♂) (Figure 5).  

There is also high variation in hatching number between successive clutches produced by each 

female in the ♀ x w♂ crosses. This could be due to the maternal effects such as the mother 

putting more energy into certain clutches, thus overriding the effects of Wolbachia. It could also 

be explained through another mechanism that would cause a dilution of Wolbachia, which could 

explain widespread Wolbachia throughout the body seen in chapter 3. The mechanisms driving 
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CI intensity variation between successive egg clutches need to be investigated in brown widows.  

More studies on clutch affect would need to be conducted to further understand CI in the brown 

widow, including determining if there is a difference in the dilution of bacteria in each egg sac or 

if different individuals in each clutch and what this mechanism consists of. 

This study provides evidence that Wolbachia infection in L. geometricus causes only 

weak CI. Bacterial density, temperature, and male age can affect the levels of CI expressed in 

this organism and should be tested as potential mechanisms. Clutch effects, in which the same 

breeding cross of ♀ x w♂ had variation in hatching number between egg sacs, suggest that 

maternal effects can influence the intensity of CI.  Partial CI in L. geometricus is likely a 

contributing factor to the variable frequency of Wolbachia infection among introduced 

Southeastern US populations rather than this being a new infection in introduced populations 

(Charlat 2004).     
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Table 4: Analysis of Variance of average hatching numbers (log transformed) for the crosses of ♀ x ♂, 

w♀ x ♂, and ♀ x w♂. 

 

 

 

 

 

 

 

 

 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio Prob > F 
Infection Status 2 0.5929570 0.296478 3.9578 0.051* 

Error 11 0.8240009 0.074909     
C. Total 13 1.4169579      
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 Figure 4: Average proportion of eggs hatched (± s.e.) for the crosses of ♀ x ♂, w♀ x ♂, and ♀ x w♂. 

Hatching numbers were lower in the cross of ♀ x w♂ when compared to those of ♀ x ♂ and w♀ x ♂ 

crosses. 
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Figure 5. Average proportion of eggs hatched (± s.e.); each bar represents a single female 

producing multiple clutches. Hatching numbers varied for each cross, with the negative female 

and positive male crosses ♀ x w♂ having the largest variability.  
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CHAPTER 3 

Wolbachia Infection Localization and Bacterial Load Among Three Body Regions of 

Latrodectus geometricus 

ABSTRACT 

The bacterial endosymbiont Wolbachia pipientis is a maternally inherited cytoplasmic 

parasite known to use reproductive manipulations on its host to increase its own fitness and 

frequency in host populations. Wolbachia has been found to infect the brown widow spider, yet 

its consequences on the spider are unknown. In this chapter, I compare relative Wolbachia 

density in the abdomen, cephalothorax, and legs of brown widows, to determine if there is a 

difference in bacterial load between body regions. Information on bacterial distribution within 

the host allows us to make inferences on the relationship between the bacteria and the spider. No 

significant difference in Wolbachia density was found between the different body regions. The 

broad distribution of the bacteria may allow for host benefits like protection from parasitoids or 

fungal infections, which has been described in several species. There is also some indication that 

bacterial load varies among individuals, may explaining CI intensity variation among individuals 

reported in chapter 2.  

 

INTRODUCTION 

The brown widow spider, Latrodectus geometricus, is a species that has been introduced 

to every continent except Antarctica through human introduction and is thought to have 

originated in Southern Africa (Garb et al. 2004, Brown et al. 2008). In the Southeastern United 

States, the brown widow has become well established in the past 15 years after being limited to 

the southern Florida peninsula since the first sighting in 1935 (Brown et al. 2008, Vetter et al. 
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2012).  Since 1990, the brown widow has expanded its range from southern Florida to Georgia, 

Alabama, South Carolina, Mississippi, Louisiana, Texas, and has also appeared in California and 

Hawaii (Pinter 1980, Garb et al. 2004, Brown et al. 2008). Brown widows were first seen in 

Georgia in the 1990’s, and in 2007 it could be found up into north Georgia (Brown et al. 2008).  

Wolbachia pipientis is a maternally inherited (Zug and Hammerstein 2015) 

alphaproteobacterium and in the order of Rickettsiales (Werren et al. 2008). Wolbachia was 

found to use the brown widow as a host and populations in the Southeastern United States vary 

significantly in infection frequency (Arrington 2014). Wolbachia is an intracellular parasite that 

can be transferred to offspring via the mother’s egg cytoplasm (Shoemaker et al. 2000). Infected 

males are not capable of passing the bacteria to offspring due to sperm not donating cytoplasm 

during zygote formation (Werren 2008). Wolbachia can increase their fitness by acting as 

reproductive parasites within a host through four acquired mechanisms including male 

feminization, parthenogenesis, male killing, and cytoplasmic incompatibility (Werren 2008). 

Male feminization is when functional females develop from genetic males (Werren 1997, 2008). 

Parthenogenesis occurs when unfertilized eggs laid by a virgin haplodiploid female develop into 

functional progeny (Russell and Stouthamer 2011, Werren et al. 2008).  Male killing is when 

there is a loss of male embryos laid by an infected mother (Sakamoto 2011, Werren 2008). Male 

killing and feminization have not been observed in L. geometricus (Arrington 2014). 

Parthenogenesis is also unlikely, as brown widows are not a haplodiploid species. Cytoplasmic 

incompatibility occurs when an infected male is mated with a female who is not infected or who 

contains a different Wolbachia strain, resulting in complete or partial embryonic death. Through 

these reproductive manipulations, Wolbachia can increase fitness by increasing the number of 

infected females in their clutch, allowing for the bacteria to spread through a population, with 
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strong CI leading to fixation within a population (Zug and Hammerstein 2015, Werren et al. 

2008).   

Wolbachia variants have been divided into eight supergroups A-H, with supergroups C 

and D found in filarial nematodes, while the other six supergroups, with A and B being the most 

common, found primarily in arthropods (Baldo et al. 2007, Werren et al. 2008). In 10 tested 

spider families, several were infected with either the A or B strain, while the other three 

belonged to supergroup G (Rowley et al. 2004). The Wolbachia that infects brown widows is 

classified into supergroup F, and sequencing indicated that the strain is unique to any currently 

known strains (J.S. Harrison unpublished data). Strains in supergroup F have been found in bed 

bugs (Hosakawa 2012), South African scorpions (Baldo et al. 2007), filarial nematodes 

(Casiraghi et al. 2005), bush crickets (Panaram and Marshall 2007), termites (Lo and Evans 

2007), and lice (Covacin and Barker 2006). Even though this supergroup has been identified in 

several species, little is known about the host interactions of supergroup F strains. Hosakawa 

(2012) found that a supergroup F strain of Wolbachia endosymbiont aided in nutrient acquisition 

(vitamin B), promoting egg development in bed bugs.  When antibiotics were used to eliminate 

the Wolbachia, eggs were inviable, which indicates an obligate mutualistic relationship between 

host and bacterium (Hosakawa 2012). In addition to reproductive and nutrient manipulations, 

Wolbachia has also been found to induce resistance to viruses, specifically Dengue, in Aedes 

aegypti mosquitoes, however this is not specific to supergroup F (Bian et al. 2010). 

The relationship between brown widows and Wolbachia has not been fully described. 

However, partial CI has been found to occur (see chapter 2), indicating that there is some degree 

of reproductive manipulation associated with Wolbachia infection. Non-reproductive host 

interactions, including host nutritional enhancement like that seen in bed bugs, have yet to be 
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studied in the brown widow (Hosakawa 2012). Several studies have shown that reproductive 

manipulators are often concentrated in reproductive organs, whereas other studies have shown 

distribution throughout somatic tissue and reproductive tissue (Dobson et al. 1999, Veneti et al. 

2003, Zouache et al. 2009, Hosokawa et al. 2010, Landmann et al. 2010, Casper-Lindley et al. 

2011, Fischer et al. 2011,  Andersen et al. 2012, Albertson et al. 2013, Strunov et al. 2013, 

Toomey et al. 2013,  Roy et al. 2015).  The aim of this study is to describe the distribution of 

Wolbachia among L. geometricus body regions, to determine if regions differ in bacterial load. 

Three different regions were selected for sampling: abdomen, cephalothorax, and legs. I 

hypothesize that there will be a significant higher bacterial load in the abdomen compared to the 

cephalothorax and the legs, as the abdomen contains the reproductive and digestive organs, while 

the legs will contain the least amount due to their lack of organs.  

 

METHODS 

Testing for Wolbachia 

 Female brown widows were collected from Statesboro, Georgia during 2016. A whole 

leg was removed from the specimen for DNA extraction and Polymerase Chain Reaction (PCR). 

The Genomic DNAÔ- Tissue Microprep kit (Zymo Research) was used for DNA extractions. To 

determine infected females, primers designed for the fructose-bisphosphate aldolase gene (FbpA) 

were chosen for a Wolbachia specific primer, as this primer has been found to amplify in all 

known strains of Wolbachia (Simões 2011, Vanthournout et al. 2001). The PCR products were 

run on a 1% agarose gel. Females were determined to be infected by Wolbachia based on the 

presence of PCR product for the FbpA gene. These females were allowed to produce egg sacs 

from breeding prior to being captured. The progeny from these different mothers were allowed to 
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grow and reach maturity. We selected five females from the progeny, with 4 being from the same 

mother and 1 being from a different mother as biological replicates. 

 

Dissection, DNA Extraction, and Quantification of Extracted DNA 

Wolbachia infected females were preserved in 70% ethanol. They were removed and 

dried by allowing the ethanol to evaporate for dissection. The spiders were placed in a sanitized 

petri dish and the legs were pulled from the cephalothorax at the trochanter, leaving the coxa 

attached to the cephalothorax. The abdomen and cephalothorax were separated using a scalpel 

that was sanitized via bleach and a Bunsen burner before each cut. The DNA extractions for each 

body segment were done by using the Zymo Research Genomic DNAÔ- Tissue Microprep kit. 

The extracted DNA was quantified using a Nanodrop (Thermo Fisher). The samples were then 

diluted to 20 ng/µl aliquots to standardize the amount of DNA present in the initial reaction.  

Quantification of Wolbachia 

Quantitative Polymerase Chain Reaction (qPCR) was performed using the QuantStudio 6 

Flex Real-Time PCR machine (Life Technologies). Wolbachia specific qPCR primers were 

designed from hcpA gene sequences from Wolbachia found in the brown widow. hcpA is a 

conserved gene for an uncharacterized Wolbachia protein, and was used to quantify the amount 

of Wolbachia in specific body regions (Table 5). Spider specific primers were designed from 

NCBI GenBank sequences for the nuclear gene H3A (GenBank: FJ607605.1), a protein coding 

histone gene (Table 5). H3A was used as a reference gene control for DNA concentrations (Garb 

et al. 2004). These primers were tested for optimal annealing temperatures. SYBR-Green 

fluorescent dye (Qiagen), which binds double-stranded DNA molecules and fluoresces, was used 

for quantification. The recommended Qiagen protocol for a 20µl total volume was used. The 



63  

protocol includes 10 µL SYBR Green PCR Master Mix, 0.8 µL of 10 µM Forward and Reverse 

primers, 30 ng DNA template, and 7.5 µL RNase-free water for each reaction. The qPCR cycling 

program was adapted from Gay et al. (2015) including an initial denaturation step of 10 min at 

95°C; 40 cycles of 1 min at 94°C, 1 min at 64°C, 1 min at 72°C, and a 20s-fluorescence reading 

step at 82°C; and a final elongation step at 72°C. DCT (hcpA-H3A) was determined by 

subtracting the respective H3A from hcpA to standardize the relative amount of Wolbachia with 

the reference gene. Each cell should have the same amount of the histone genes, so by 

standardizing the samples with H3A, we can see differences in quantification of Wolbachia. 

Three technical replicates were conducted for each spider body region. The ΔCTs were averaged 

to acquire a mean ΔCT for each individual spider’s body region. The DCTs were analyzed with a 

one-way ANOVA.   

RESULTS 

There was variation among individuals, with individual 276.14 having a consistently 

higher DCT than the other individuals. This variation of 276.14 DCT compared to the other 

individuals is significantly higher for the abdomen and cephalothorax samples (Figure 6). An 

ANOVA was performed to determine if there was a significant difference in the pooled body 

region bacterial load  between the two maternal lineages represented in the samples (274 n=4 and 

276 n=1). A significant difference in maternal lineages was seen (F= 33.8909; P<0.0001*), 

however, more studies would need to be completed as the sample size for 276 was 1 (Figure 7). 

Sample 276 was removed as an outlier and the DCTs of the three different body regions from 

individuals of maternal line 274 were compared using an ANOVA and determined to not be 

significantly different, though the cephalothorax (average DCT= 5.352; standard deviation= 

1.082) showed an average DCT that was higher than the abdomen (average DCT= 3.389; 
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standard deviation= 0.748) or the legs (average DCT= 2.825; standard deviation= 2.621) (Figure 

8). 

 

DISCUSSION 

Despite the partial CI described in L. geometricus in Chapter 2 and the role of F-strain 

Wolbachia in nutrient acquisition in other species, Wolbachia is not at a higher density or limited 

to areas where reproductive or digestive tissues are located. The Wolbachia infecting brown 

widows are in the F-strain super group, this potentially novel mutualistic relationship could be 

like the mutualism that has been found in Cimex lectularius, a bedbug, with F-Strain Wolbachia 

(Arrington 2014, Hosokawa 2010). Wolbachia is essential for normal growth and reproduction in 

the bed bug through providing B vitamins (Hosokawa 2010).  

PCR and fluorescent cytological approaches have allowed the distribution of Wolbachia 

within different body regions to be assayed and reveal that there is a broad distribution of the 

bacteria among somatic and germline tissues with region specific bacterial load varying among 

species (Pietri 2016). Some species of Tsetse fly have no infection in somatic tissue, but fruit 

flies, mosquitos, nematodes, bedbugs, ants, and termites, have been determined to have somatic 

tissue infection (Dobson et al. 1999, Veneti et al. 2003, Zouache et al. 2009, Hosokawa et al. 

2010, Landmann et al. 2010, Casper-Lindley et al. 2011, Fischer et al. 2011, Andersen et al. 

2012, Albertson et al. 2013, Strunov et al. 2013, Toomey et al. 2013, Roy et al. 2015). In 

bedbugs, Wolbachia densities in the bacteriome, a specialized organ that harbors bacterial 

endosymbionts, were found to be around 30 times higher than in the ovary and 2000-900000 

times higher than in other organs (Hosokawa et al. 2010). If the bacteria were found to be more 

dense in a specific body region, we could draw potential conclusions as to the effect it has on its 
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host, whereas having a broad distribution does not allow us to eliminate or conclude potential 

host effects.  

The broad distribution of Wolbachia within the brown widow indicates additional 

investigations of non-reproductive host interactions should be conducted. Protection from 

parasitoids (Oliver et al. 2003, 2005) and fungal infections through Wolbachia (Ferrari et al. 

2001, 2004) has been described in several species. Baerg (1954) described a fungal outbreak that 

caused a severe loss of black widow spiders, L. mactans, while L. geometricus survived. This 

survival suggests immunity to the fungus. Latrodectus geometricus has been reported to displace 

the native L. mactans for unknown reasons. As they inhibit similar niches (Vincent 2008), anti-

fungal properties could potentially be an advantage. Wolbachia has also been found to increase 

resistance to an arbovirus infection in a native Wolbachia-mosquito system (Glaser and Meola 

2010).  

Another non-reproductive host interaction that should be explored more is the impact of 

Wolbachia infection of temperature tolerance. In pea aphids found in South Florida, an 

endosymbiont provides benefits for heat tolerance, however, in novel northern environments, this 

benefit may become costly (Chen et al 1997, 2000, Russell and Moran 2006). In chapter 1, a 

trend if higher bacterial frequency with a decrease in latitude and a lower frequency with an 

increasing latitude is described.  This suggests the possibility of a Wolbachia by environment 

interaction. This could be due to a difference in temperature tolerance, in which there may be an 

associated cost of having Wolbachia at lower winter temperatures, or a benefit of Wolbachia 

infection in the warmer southern populations. 

An interesting outcome of this experiment was the significant differences in bacterial 

load between different maternal lineages (Figure 7). This difference in load could impact the 
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host/endosymbiont relationship through the severity of the reproductive manipulations that 

occur. Wolbachia density varies in wild-caught Drosophila, resulting in the efficiency of parasite 

transmission and intensity of male killing to fluctuate as well. (Unckless et al. 2009). This load 

difference may account for variation in levels of CI among crosses of ♀ x w♂ that occur in 

brown widows seen in Chapter 2. Variation in bacterial load among individual females could 

also result in generational dilution, a mechanism of symbiont loss, in some spider lineages 

(Shoemaker et al. 2000). Frequency of Wolbachia infection varies among Southeastern US L. 

geometricus populations (20% to 90%) (Arrington 2014). If the pattern of some maternal lines 

having a difference in the amount of Wolbachia is common, symbiont loss through generational 

dilution could cause the lack of association with mitochondrial haplotypes described in Chapter 1 

and the distribution of Wolbachia frequency in L. geometricus populations.  If there is a 

difference in individuals and populations with bacterial load, it would be expected for there to be 

an inconsistent amount of CI occurring and a loss of haplotype association, as some spiders may 

be getting a specific haplotype and very little bacteria and vice versa.  

Another outcome of this experiment is the validation of DNA extraction and Wolbachia 

testing methods in the brown widow. As there was no significant difference between body 

segments both with and without an outlier, the method of DNA extraction from the legs of L. 

geometricus is confirmed as a suitable sampling method. This is important because spiders can 

be kept alive for breeding experiments when only a leg is removed for testing Wolbachia 

infection status. 

Wolbachia has been shown to induce partial CI in the brown widow spider. It will be 

important for future experiments on L. geometricus/Wolbachia interaction to use quantitative 

PCR (qPCR) to estimate the variation in relative load of Wolbachia among individual spiders 
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and offspring clutches. This is important to determine if different clutches are receiving the same 

amount of Wolbachia or if there is a clutch or individual effect on the number of bacteria being 

passed to offspring. Future directions would include further dissection of spiders to isolate 

various organs and determine via qPCR if there is a difference in Wolbachia load. This would 

allow us to draw further conclusions about the potential mutualistic relationship between the 

bacteria and L. geometricus.  
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Table 5. qPCR Primers for Wolbachia Quantification 

Gene Forward Reverse 

H3A Histone CACCAAAGCTGCACGTAAAAG AGGGAAGTTTGCGGATGAG 

hcpA Wolbachia CAAATAACCGCAACCGAACTG GTGCCCTCTGCTTTATAGACG 
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Figure 6. Average ΔCTs of the technical replicates for each individual for different body 

regions to quantify Wolbachia.  (A) Average abdomen ΔCTs for spider samples ± s.e. 
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The 276.1 sample has a significantly larger ΔCT than the other samples (P = 0.0009*). 

(B) Average cephalothorax ΔCTs for spider samples ± Standard Error. The 276.1 sample 

has a significantly larger ΔCT than the other samples (P = 0.0241*). (C) Average leg 

ΔCTs for spider samples ± Standard Error. There is no difference between the spider 

samples (P = 0.1062). 
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Figure 7. Average ΔCTs of the two different maternal lineages. There is a significant difference in 

bacterial load between maternal lineages (F= 33.89; P<0.0001*). 
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Figure 8. Average ΔCTs of three different body regions with 276 samples removed. There is no 

significant difference in bacterial load between different body regions (F= 2.45; P= 0.14). 
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DISCUSSION 

 
Examining the potential for linkage between Wolbachia and mitochondrial haplotypes in 

the brown widow spider (Chapter 1) gives us insight into the interactions between host and 

symbiont, as well the evolutionary history of the relationship. Additionally, investigating the 

potential for cytoplasmic incompatibility to occur (Chapter 2) provides insight into the effects of 

reproductive manipulations Wolbachia has on brown widow life history and population 

dynamics. Finally, determining where Wolbachia is localized within the body of the spider 

(Chapter 3) delivers insight into the potential for fitness effects that are associated with infection. 

Combined, this research gives overall insight into the relationship between the brown widow and 

Wolbachia, furthering the knowledge of bacterial endosymbionts. 

In Chapter 1, there was no linkage seen between Wolbachia and mitochondrial 

haplotypes in the brown widow. When looking at Wolbachia frequency over time, there was no 

consistent pattern, as an increasing trend in frequency was seen in Louisiana, while Georgia 

showed a decrease. There was also no correlation between specific haplotypes or levels of 

haplotype variation with infection status of spiders. This lack of linkage could be explained by 

the infection being old resulting in a loss of selection for the infection and a weakening of the 

associated reproductive manipulations. It could also be explained by horizontal transfer, which 

has been shown in different systems, but is rare. 

In Chapter 2, partial CI was observed, as complete embryotic death was not observed in a 

cross between an infected male and uninfected female. This could be attributed to different 

bacterial densities, as a certain threshold of density may be required to modify the paternal 

genetic material.  Temperature has also been found to influence CI levels. With reduced 

virulence associated with partial CI, a decrease in selective pressures on the bacteria resulting in 
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a loss of fixation can occur. Low intensity of CI is likely a strong factor in the lack of linkage 

between Wolbachia and mitochondrial haplotype diversity, as well as the lack of patterns in the 

haplotype gene tree in Chapter 1. 

In Chapter 3, no significant difference in Wolbachia density was found between regions, 

however, there was slightly higher relative density in the cephalothorax. More experiments 

would need to be conducted to determine if that increase is correlated to a host interaction caused 

by the bacteria. The broad distribution of the bacteria among body regions may allow for host 

benefits like protection from parasitoids or fungal infections. One interesting outcome of the 

experiment was the difference in bacterial loads based on maternal line. This could account for 

the variation in CI levels seen in Chapter 2. Bacterial load variation could also result in 

generational dilution and a mechanism of symbiont loss in some lineages. This is consistent with 

the lack of correlation to mtDNA variation seen in the gene tree in Chapter 1 that could be 

explained by a loss of Wolbachia infection from the population. This experiment also validates 

our DNA extraction method to test for Wolbachia infection. Legs are taken for extraction and 

detection purposes so that the spider can live and be used in other experiments. 

 These experiments demonstrate that there is no linkage between Wolbachia and 

mitochondrial haplotypes in the brown widow, which could be due to a loss of infection due to 

decreasing selective pressures. Weak cytoplasmic incompatibility was seen, which could be due 

to temperature changes and cause a decrease of selective pressures resulting in a loss of fixation. 

There was also no difference in Wolbachia density in different body segments. No localization to 

the reproductive organs can aid in explaining weak CI, with a broad distributing potentially 

implying parasitoid and fungal protection. Differences in maternal load could also account for 

the variation in CI, as well as the loss of selective pressures resulting in a lack of linkage.  
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