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INDUCIBLE CHEMICAL DEFENSES IN TEMPERATE REEF SPONGES OF THE 

SOUTH ATLANTIC BIGHT, U.S.A 

by 

LESLIE VANESA SARMIENTO 

(Under the Direction of Daniel F. Gleason) 

ABSTRACT 

Sessile organisms employing inducible defenses may receive protection from 

consumers while simultaneously minimizing the metabolic costs of maintaining these 

defenses. To investigate if reef sponges in the South Atlantic Bight employ inducible 

chemical defenses, I tested two predictions with Ircinia campana, I. felix, and Aplysina 

fulva. First, concentrations of antipredator compounds should covary with the abundance 

of sponge predators. Second, higher compound concentrations should be more effective 

at deterring predators. Secondary metabolite concentrations in two (I. campana and I. 

felix) of the sponge species showed temporal variation, which is consistent with the 

inducible defense hypothesis. Interestingly, higher concentrations of these compounds 

did not deter feeding by fish or urchins. In contrast, A. fulva, showed no significant 

temporal variation in the concentration of secondary metabolites, but had deterrent effects 

on fish predators even at low concentrations. Combined, these results do not support an 

antipredator strategy based on inducible chemical defenses.  

INDEX WORDS: Temperate Reefs, Sponge, Inducible Chemical Defenses, South 

Atlantic Bight, Secondary Metabolites 
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INDUCIBLE CHEMICAL DEFENSES IN TEMPERATE REEF SPONGES OF 

THE SOUTH ATLANTIC BIGHT, U.S.A 

Introduction 

Anti-predator and anti-herbivore defenses that are maintained in a constant shape, 

size, or concentration are termed constitutive; whereas, defenses that are newly formed or 

synthesized, or change in size or concentration following attack by consumers are known 

as inducible (Karban and Myers 1989, Harvell 1990). Most theoretical models addressing 

constitutive and inducible defenses in terrestrial plants assume that defenses are 

metabolically costly, and that organisms evolve defensive strategies that maximize 

survival while minimizing energy expenditure (Feeny 1976, McKey 1979, Rhoades 1979, 

Coley et al. 1985, Fagerstrom et al.1987). Inducible defenses may be favored when attack 

by consumers varies over spatial or temporal scales, and when this variation in attack 

rates is a reliable predictor of future tissue damage (Harvell 1990, Hay 1996, Karban and 

Adler 1996). For example, some terrestrial plants exposed to temporally variable levels of 

herbivory increase production of herbivore-deterrent compounds following tissue damage 

by grazers in preparation for the predictable increase in attack incidence (reviewed in 

Harbone 1986 and Havel 1987). 

While inducible defenses do exact some cost, manifested as a reduction in fitness 

components such as growth rate or reproductive output, this cost is lower than for 

constitutive defenses because they are produced only when needed (Feeny 1976, McKey 

1979, Karban 1993b). In addition to lower fitness costs, benefits thought to be associated 

with induced defenses include the following: (1) diminished auto-toxicity, because 

maintaining an elevated and constant store of toxic compounds is not necessary (Baldwin 
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and Callahan 1993), (2) specificity, because it allows prey to modify defenses according 

to the nature of the stimulus (i.e. predator type) allowing the organism to respond to 

environmental variability (Harvell 1990, Iyengar and Harvell 2002), and (3) 

amplification, which allows defenses to increase as predation becomes more intense 

(Harvell 1992, Karban et al. 1997).  

The ubiquity and diversity of herbivore-induced chemical defenses in terrestrial 

plants (reviewed in Rhoades 1983) has led researchers to investigate the relevance of 

these mechanisms in marine species (Tugwell and Branch 1989, Cronin and Hay 1996, 

Pavia and Toth 2000, Toth et al. 2005). Marine algae produce a diversity of secondary 

metabolites that deter feeding by herbivores (Norris and Fenical 1982, Faulkner 1984). 

Herbivore-induced secondary metabolites in marine algae have been demonstrated 

mainly in the phylum Phaeophyta (Van Alstyne 1988, Cronin and Hay 1996, Pavia and 

Toth 2000). Among marine animals, inducible defenses are predicted to be most common 

in colonial invertebrates because, like plants, they are modular, sessile as adults, and 

often subject to partial predation (Harvell 1999). In particular, the modular design of both 

plants and colonial marine invertebrates often allows one or more repeated units to be lost 

to consumers without mortality of the entire individual or colony (Harvell 1999). Thus, 

grazing can provide a reliable and non-lethal cue that enables mobilization of defenses 

that can effectively protect undamaged tissue (Harvell 1986).  

Based on the above background we might expect to detect inducible defenses in 

colonial marine invertebrates exposed to distinct spatial and temporal variation in 

consumer activity (Harvell 1990, Hay 1996, Karban and Adler 1996). Accordingly, I 

conducted an initial investigation of the potential for inducible chemical defenses in 



 

13 

temperate reef sponges that occur in the South Atlantic Bight (SAB). The SAB 

encompasses a region from Cape Hatteras, NC to Cape Canaveral, FL with 

approximately 30% of this area consisting of temperate reefs composed of lithified 

limestone or sandstone embedded with fossilized scallop shells (Harding and Henry 

1994, Erv Garrison pers. comm.). These reefs support a diversity of sessile and mobile 

invertebrates that include representatives from sponges, corals, bryozoans, tunicates, 

echinoderms, and crustaceans as well as a number of tropical and subtropical fishes 

(Struhsaker 1969, Miller and Richards 1980, Freeman et al. 2007).  

A key feature of these SAB reefs that would favor inducible defenses in sessile 

benthic invertebrates is the observed seasonal variation in predatory fishes. Specifically, 

the distinct seasonal changes in water temperature (ranging from 13ºC in winter to 28ºC 

in summer) that occur on these reefs result in predator assemblages differing throughout 

the year with higher fish densities occurring during the warmer months, particularly 

August through September (Sedberry and Van Dolah 1984). Among colonial marine 

invertebrates occurring on these reefs, sponges appear to be good candidates for inducible 

defenses. The use of secondary metabolites to deter predators has been well-documented 

in sponges (Bakus et al. 1986, Mc Clintock 1987, Schulte and Bakus 1992, Pawlik et al. 

1995, Uriz et al. 1996, Wilson et al. 1999, Assmann et al. 2000, Burns et al. 2003, and 

others), including species occurring on SAB reefs (Ruzicka 2005, Freeman 2007, 

Ruzicka and Gleason 2008). In addition, there is evidence of qualitative and quantitative 

changes in sponge secondary metabolites following tissue wounding (Walker et al. 1985, 

Zea et al. 1999, Thoms et al. 2006) that enhance deterrence of feeding by predators (Ebel 

et al. 1997, Richelle-Maurer et al. 2003). To my knowledge, however, there has been 
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only one study addressing explicitly the potential for inducible chemical defenses in 

sponges and this possibility was dismissed because mechanical injury did not enhance 

predator deterrence over time (Swearingen and Pawlik 1998).   

The goal of my study was to obtain an initial assessment of whether temperate 

reef sponges in the SAB employ inducible chemical defenses to deter predation. Based on 

the working hypothesis that sponges occupying SAB reefs employ inducible chemical 

defenses, I tested two predictions of this hypothesis. First, if inducible chemical defenses 

against predators are common in these sponges, then higher concentrations of secondary 

metabolites should be observed when potential sponge consumers (i.e., fishes) are most 

abundant. Second, for induction of chemical defenses to be favored, higher secondary 

metabolite concentrations should be more effective at deterring potential predators. To 

address these predictions, I quantified the concentrations of secondary metabolites from 

tissues of Ircinia campana, I. felix, and Aplysina fulva collected at different times during 

the year and conducted palatability assays with artificial food cubes containing different 

concentrations of sponge crude extracts fed to fish and sea urchins. Results from these 

two assays were then viewed within the framework of published fish abundance surveys 

conducted by other investigators in the SAB.  

Methods 

Study site 

This study was conducted at J-Reef (31° 36.0 N, 80° 47.4 W), a temperate hard-

bottom reef located approximately 35 km off the state of Georgia coast in North America. 

Unlike tropical coral reefs that are built by living hard corals, J-Reef consists of a tertiary 

bedrock outcropping, lined with a matrix of smooth sand and fossil scallop shell 
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inclusions that projects 2 m above the continental shelf at a water depth of 18-20 m 

(Garrison et al., in press).  

Sponge species 

The concentration of anti-predator compounds was quantified from tissues of the 

stinker vase sponge, I. campana, the stinker amorphous sponge, I. felix, and the rope 

sponge, A. fulva (Figure 1). These species were chosen because secondary metabolites of 

sponges belonging to these genera have been identified and have been shown to be 

predator-deterrent in previous studies (Pawlik et al 1995, Ebel et al. 1997, Tsoukatou et 

al. 2002, Freeman 2007, Ruzicka and Gleason 2008). In addition, these sponges were 

abundant and large enough to provide adequate sample sizes.  

Tissues from sponges of the genus Ircinia lack spicules, are compressible, tough 

in texture, difficult to cut or tear, and emanate a sulfur-garlic odor when handled (Kelly-

Borges and Pomponi 1992, Duque et al., 2001). These sponges produce several linear 

furanosesterterpene tetronic acids (FTAs) (Cimino et al 1972c, Cimino et al. 1975, 

Lumsdon et al. 1992, Capon et al 1994, Martinez et al. 1997) that exhibit antibiotic, 

antifouling, and predator-deterrent properties (Faulkner 1973, Pawlik et al.1995, Epifanio 

et al.1999, Tsoukatou et al. 2002). FTAs from I. campana and I. felix at J-reef were 

isolated and identified previously by Freeman (2007) as a mixture of the compounds: 

variabilin, felixinin, and strobilinin (Faulkner 1973, Martinez et al. 1995, Martinez et al. 

1997).   

Likewise, tissues from sponges of the genus Aplysina lack spicules, but are soft, 

fleshy, firmer, and easy to cut or tear. Defensive mechanisms in these sponges are 

thought to derive from the presence of brominated-tyrosine derivatives (Ebel et al. 1997, 
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Thoms et al. 2004, 2006) which, in addition to predator-deterrence, also have shown 

antimicrobial and cytotoxic activity (Teeyapant et al. 1993, Betancourt-Lozano et al. 

1998). Freeman (2007) also isolated brominated-tyrosine derivatives from A. fulva at      

J-reef and identified a mixture of 9 different compounds. Of these 9 compounds, 8 have 

been previously classified as high molecular weight precursor compounds: aerophobin-1, 

aerophobin-2, aplysinamisin-1, hydroxyaerothionin, hydroxy-oxo-aerothionin, 

homoaerothionin, aerothionin, and fistularin-3 (Walker et al. 1985, Teepayant and 

Proksch 1993, Ciminiello et al. 1994, Ebel et al. 1997, Thoms et al. 2004, 2006). These 

compounds are known as precursors because they serve as starting molecules for the 

synthesis of the low molecular “activated” compound aeroplysinin-1 (Thoms et al. 2006). 

Sponge tissue collection 

Ten individuals from each species were haphazardly selected and marked by 

attaching a combination of metal tags and plastic construction tape to the adjacent 

substrata with masonry nails. Tissue samples were collected from these tagged 

individuals on 21 April, and again on 7 June, 25 August, and 6 October of 2006       

(Table 1). An equal number of haphazardly selected individuals from the surrounding 

community also were sampled at each time period to serve as controls for any changes in 

chemical composition induced by repeated wounding of tagged individuals. These 

individuals were marked to keep them from being sampled more than once. To minimize 

the impacts of variability in chemical concentrations that might be present within 

individuals, 5 tissue samples (approximately 5 ml each) were removed from different 

regions (i.e., top, sides, and base) of each sponge using a dive knife. This protocol 

resulted in some regions of a sponge being sampled more than once. For example, in       
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I. campana and I. felix a typical sample set consisted of 1 tissue sample from the top, 2 

from the same side, and 2 from the base on opposite sides, or 2 from the top on opposite 

sides, 1 from the side, and 2 from the bottom on the same side. This sampling regimen 

was feasible on both I. campana and I. felix because of their large surface areas as well as 

their vase and amorphous growth forms, respectively (as defined by Freeman et al. 2007). 

In contrast, A. fulva is a branching sponge, so I sampled tops, sides, and bases from 

different branches of the same individual. Once I collected the 5 tissue samples from each 

individual, these were combined and stored as a single sample set in a plastic bag. Upon 

surfacing, tissue samples were wrapped in aluminum foil and stored in liquid nitrogen  

(-196° C) for transport to the laboratory (transit time approximately 8 hours). In the 

laboratory, samples were transferred to an ultracold freezer (-70° C) and stored there until 

further processing. 

Secondary metabolite extraction and quantification 

Frozen sponge samples were lyophilized and homogenized using a mortar and 

pestle for A. fulva, and chopped into fine pieces with a razor blade for I. campana and I. 

felix. Lyophilized samples were weighed to the nearest 0.1 mg on an analytical balance 

(APX-60, Denver Instruments, Denver, CO). Approximately 1 g of each lyophilized 

sample was extracted 3 times in a 10 ml mixture of 1:1 dichloromethane (DCM) and 

methanol (MeOH) at 4° C for 24 hours. The 3 crude extract solutions were pooled, 

filtered (P8 coarse filter paper, Fisher Scientific Company L.L.C., Pittsburg, PA) and    

10 ml portions decanted into 3 pre-weighed 30-ml scintillation vials. Excess solvent from 

crude extracts was removed by rotary evaporation (model SC210A-115, Thermo Electron 

Corporation, Somerset, NJ) and resulting material was stored at -70º C. One vial of the 3 
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obtained from each sponge sample was used for quantification of secondary metabolites 

via high performance liquid chromatography (HPLC) and the other 2 vials were used for 

food preparation for field and laboratory feeding assays.   

The concentration of FTAs in I. campana and I. felix was quantified via HPLC 

following established techniques (Martinez et al. 1997, Freeman 2007). Vials containing 

I. campana and I. felix crude extract were lyophilized for approximately 12 hours to 

ensure anhydrous conditions before being acetylated, and reweighed to obtain the mass of 

crude extract. Immediately after freeze drying, 2 ml of pyridine were added and the vials 

were sonicated (FS20 Fisher Scientific Ultrasonic Cleaner) until complete dissolution 

was achieved. Once the sample was dissolved, I added 1 ml of acetic anhydride and 

stirred this solution with a magnetic stir bar for 6 hours. After stirring, the mixture was 

poured into a 50 ml beaker containing 30 ml of cold (9º C) deionized and filtered water, 

and stirred for 5 minutes. This mixture was extracted twice with 20 ml of ethyl acetate 

resulting in 2 distinguishable organic layers. The clear upper organic layer from each 

extraction was removed using a 5 ml pipette, combined, and dried by rotary evaporation 

(Brinkmann/Buchi Rotavapor® Collegiate, Eppendorf, Germany) at 55º-60º C until a 

thick yellow-brownish residue was all that remained. This residue was re-suspended in 1 

ml of 100% MeOH per 20 mg of crude extract and sonicated to complete dissolution. To 

remove any particulates, samples were filtered through a PTFE 45 µm syringe filter 

directly into an auto-sampler vial for HPLC quantification. A volume of 9 µl was injected 

into a Shimadzu HPLC system fitted with a Phenomenex Gemini C-18 analytical column 

(4.6 x 250 mm). The mobile phase consisted of a 93:7 mixture of MeOH and H2O at a 

flow rate of 1 ml min-1. Detection of FTAs was at 270 nm.  
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Brominated-tyrosine derivatives in A. fulva were quantified via HPLC following 

techniques of Puyana et al. (2003) and Freeman (2007). Vials containing A. fulva crude 

extracts were lyophilized for at least 12 hours to ensure removal of water, and reweighed 

to obtain the mass of crude extract. Lyophilized samples were resuspended in 1 ml of 

100% MeOH per 10 mg of crude extract, sonicated to complete dissolution, and filtered 

through a PTFE 45 µm syringe filter directly into an auto-sampler vial for HPLC 

quantification. A volume of 7 µl was injected into the HPLC system described above. 

Compounds were eluted with a solvent gradient of acetonitrile (CNCH3) and H2O 

buffered in 0.1% formic acid delivering 90% H2O for the first 3 minutes with a gradual 

increase to 100% CNCH3 over 28 minutes. The solvent flow rate was 1 ml min-1 with 

compound detection of brominated-tyrosine derivatives at 254 and 280 nm. 

Quantification of anti-predator compounds from both species was determined by 

comparing peak areas to corresponding standards of known concentrations. 

Food preparation and feeding assays 

Artificial food cubes containing sponge secondary metabolites were prepared for 

fish and sea urchin feeding assays following established techniques (Pawlik et al. 1995, 

Ruzicka 2005). Concentrated crude extracts were resuspended in 1 ml of MeOH and 

sonicated to complete dissolution. Artificial food cubes were prepared using a mixture of 

2.1 g of powdered squid mantle, 0.84 g type I carageenan, 0.14 g of agar, and 42 ml of 

distilled water. All ingredients were thoroughly mixed and heated in a microwave until 

boiling. The heated mixture was added to a 50 ml beaker containing sponge crude extract 

dissolved in 1 ml of MeOH. This concoction was mixed thoroughly and poured into 1 x 1 

x 1 cm cube molds and allowed to cool. Once cooled, the food cubes were carefully 
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removed and stored in plastic vials at -4º C. Control cubes were prepared in the same 

manner, but there was no sponge extract dissolved in the 1 ml of MeOH.  

Artificial food cubes for fish were initially prepared using 6 different secondary 

metabolite concentrations that spanned the range of compound concentrations that I 

quantified in the J-reef sponge population. These concentrations were as follows: 11.0, 

8.0, 5.0, 2.5, 0.6, 0.1 mgg-1 of sponge dry tissue for I. campana, 15.0, 10.0, 5.0, 2.0, 0.5, 

0.05 for I. felix, and 27.0, 19.0, 12.0, 7.0, 2.0, and 0.6 of dry sponge tissue for A. fulva. 

To verify that the food cubes retained the original anti-predator compound 

concentrations, spare food cubes from I. campana, I. felix, and A. fulva were processed 

for quantification of secondary metabolites via HPLC in the same manner as in sponge 

tissue samples. This process revealed predictable and consistent degradation of secondary 

metabolites in food cubes prepared with crude extracts from I. campana and A. fulva  

(Figure 2). In contrast, attempts to quantify secondary metabolites in food cubes prepared 

with crude extracts from I. felix were not successful suggesting that these compounds 

may have degraded to the point that concentrations were below the detection limits of my 

HPLC instrumentation.  

Even though the concentrations of secondary metabolites in food cubes made 

from I. campana and A. fulva were less than originally intended, they still spanned the 

range of mean concentrations that I detected in tissues of tagged sponges at J-reef. 

Ultimately, the ability of these secondary metabolites to deter feeding by fish was tested 

at the following concentrations: 3.0, 1.2, 0.7, 0.3, 0.1, 0.02 mgg-1 of dry sponge tissue for 

I. campana, and 18.0, 12.0, 7.0, 4.0, 1.5, and 0.4 mgg-1 of dry sponge tissue from           
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A. fulva. Concentrations of secondary metabolites in food cubes equaled that found in 

approximately 8 ml and 6 ml of sponge volume for I. campana and A. fulva respectively.    

Fish feeding assays were conducted at J-reef during May 2007. A total of 20 food 

cubes for each secondary metabolite concentration and a control were stored in 50 ml 

centrifuge tubes and hand carried to the bottom in a mesh dive bag. Feeding trials 

proceeded by reaching into the mesh bag, grabbing a centrifuge tube haphazardly, and 

dispensing 2 food cubes sequentially to fish. Once observation of fish feeding behavior 

was complete, this tube was placed in a second mesh bag and the process was repeated 

until all concentrations had been tested and all the tubes were in the second bag. This 

process of haphazardly selecting tubes, testing the food cubes against fish feeding, and 

storing the most recently tested tube in a new mesh bag continued until all cubes had 

been dispensed. To reduce the potential for bias, the concentration of secondary 

metabolites in the food cubes being dispensed was unknown to the observer. This was 

accomplished by having an independent party select the tubes via lottery and label them 

alphabetically. Thus, each letter corresponded to a specific compound concentration, but 

this quantity was unknown to the observer carrying out the feeding assay.  

Treatment and control cubes were dispensed haphazardly to generalist fish 

predators such as Centropristus striata (black seabass), Haemulon aurolineatum 

(tomtates), and Diplodus holbrooki (spottail pinfish). A food cube was considered 

unpalatable if it was rejected more than twice or if it sank to the bottom uneaten. Food 

cubes from a single sponge species were dispensed during one dive. Feeding assays with 

cubes containing extracts from I. campana and A. fulva were accomplished in a single 

day; whereas I. felix food cubes were tested 7 days later. Food cubes were generally 
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offered to groups of 10 or more fish initially, but as feeding assays progressed, more fish 

would congregate and participate. In an attempt to increase the number of naïve fish 

involved in these assays, 3 times during a dive I would swim a distance of approximately 

15 m across the reef and resume feeding assays. Centropristus striata was most 

commonly involved in these feeding assays, whereas feeding by H.  aurolineatum, and D.  

holbrooki was less frequent.  

Sea urchin feeding assays were conducted in the aquarium room of the biology 

building at Georgia Southern University. Twenty-three individuals of the common sea 

urchin, Arbacia punctulata, were collected at J-reef and kept in 75.7 L aquaria with 

artificial seawater at a salinity of 32 ‰. Sea urchins were starved for 48 hours prior to 

feeding assays. Each sea urchin was used for a single feeding trial in one of the two 

sponge species.  

Artificial food cubes for the sea urchin feeding assays were prepared in the same 

manner as for fish trials. However, only 3 secondary metabolite concentrations and a 

control were used because preliminary assays showed that sea urchins were able to 

sample this many treatments in a 32 hour period before decomposition of food cubes 

occurred. Degradation of secondary metabolites also occurred during food cube 

preparation and the mean percent degradation rates closely matched those from fish 

feeding assays (Table 2). The actual concentrations tested were: 3.0, 0.4, 0.02 mgg-1 of 

dry sponge tissue for I. campana and 17.0, 4.0, 0.4 mgg-1 of dry sponge tissue for A. 

fulva. Food cube design was similar to that used by Hay et al. (1994) and Freeman 

(2007), where a small piece (approximately 7 x7 mm) of fiberglass window screening    

(1 x 2 mm open area) was inserted into each 1.5 cm3 cube mold prior to the addition of 
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the heated food mixture. Once the artificial food mixture congealed, a small piece of 

monofilament line was threaded through the embedded screen for attachment to a larger 

support screen (approximately 140 x 130 mm). The purpose of this screen was to serve as 

a point of attachment to hold the food cube in place during the feeding assays.  

Congealed food cubes were removed from their mold, blotted dry, and weighed. 

One food cube per secondary metabolite concentration and one control (4 cubes total) 

were attached to the larger support screen and were placed equidistant in a square 

arrangement. This design allowed a sea urchin placed in the middle of all food cube 

choices to explore all food types with its tube feet. Prior to introducing urchins to the 

treatments, attachment bases were secured to the bottoms of Glad© plastic containers 

(3.07 L) that had holes drilled in their sides to facilitate sinking when placed inside the 

aquaria. These containers were large enough for sea urchins to move freely when the lid 

was sealed. Six plastic containers holding food cubes prepared with crude extracts from 

the same sponge species were stacked into a 75.7 L aquarium.  

Individual sea urchins were left to feed on all food cubes inside their feeding 

containers for approximately 32 hours. This amount of time was sufficient for sea urchins 

to sample all treatments before decomposition of food cubes occurred. Upon completion 

of the feeding assays, sea urchins were removed from their feeding containers and placed 

in a different aquarium. The support screens holding the food cubes were detached from 

every feeding container and individual food cubes were carefully removed from the 

screens, blotted dry, and weighed to determine the percent consumed. To ensure that loss 

of mass from food cubes was due entirely to consumption by sea urchins, additional food 

cube treatments were exposed to the same conditions but without sea urchins and 
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reweighed after 32 hours. In addition, I verified the concentration of secondary 

metabolites in these food cubes via HPLC in the same manner as in sponge tissue 

samples.  

Statistical analyses 
 
Differences in the concentration of FTAs from tissues of tagged individuals of I. 

campana and I. felix were compared across collection dates using a repeated-measures 

ANOVA. Sample sizes in tagged individuals decreased by 2 in I. campana after 25 

August and by 1 in I. felix on 6 October. To maintain equal sample sizes, only those 

individuals that were present on all 4 collection dates were used in the repeated-measures 

ANOVA. In order to detect significant differences between pairs of collection dates, I 

made pairwise comparisons between collection dates that seemed to be most different 

using a paired t-Test. This test was used as an alternative to a Tukey Kramer means 

pairwise comparison because tagged individuals were not independent.  

FTA concentrations from samples of untagged individuals of I. campana and I. 

felix were compared across collection dates using a one-way ANOVA because different 

sets of sponges were sampled on each date. This analysis was followed with a Tukey 

Kramer test for multiple comparisons (α = 0.05). I also compared differences in FTA 

concentrations between tagged and untagged individuals of I. campana and I. felix with a 

two-way ANOVA using date of collection and sample type (tagged or untagged) as 

factors. Deviations from the assumptions of normality and equal variances were analyzed 

with a Shapiro-Wilk and a Levene test respectively. A log10 transformation was applied 

prior to all statistical analyses because FTA concentrations in I. campana and I. felix were 

not normally distributed (Shapiro-Wilk test: W= 0.82, p < 0.0001 and W= 0.75, p < 0.001 
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for tagged and untagged I. campana respectively, and W= 0.65, p < 0.0001 and W= 0.93, 

p < 0.04 for tagged and untagged I. felix respectively) (Sokal and Rohlf 1995).  

Non-parametric tests were used to evaluate differences in the concentration of 

sponge secondary metabolites from all A. fulva because data did not meet normality 

assumptions despite a log10 transformation (Shapiro-Wilk test: W= 0.93, p = 0.02 and 

W= 0.78, p < 0.0001 for tagged and untagged respectively). For tagged individuals of A. 

fulva the chemical concentrations from individual samples were ranked within their 

respective collection period and compared using a Friedman’s method for randomized 

blocks. Secondary metabolite concentrations from untagged individuals of A. fulva were 

ranked and compared across collection periods with a Kruskal-Wallis test (Sokal and 

Rohlf 1995).  

Statistical analyses for deterrence of fish feeding by food cubes prepared with I. 

campana extracts were not warranted because all food cubes, both controls and 

treatments, were consumed. The same consumption pattern was observed for I. felix food 

cubes but verification of FTA concentrations in these cubes via HPLC was not possible. 

Being unable to determine whether production of food cubes from I. felix extracts had 

caused significant degradation of the antipredator compounds, I excluded this species 

from statistical analyses evaluating feeding deterrence for both fish and sea urchins. To 

compare deterrence of fish feeding by food cubes prepared with A. fulva crude extracts, I 

used a 7 x 2 contingency table with a G-test of independence (Sokal and Rohlf 1995).  

Data from feeding by sea urchins on food cubes formulated with chemical 

extracts from I. campana, and A. fulva were expressed as % of weight loss from each 
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food cube, square root arcsin transformed, and analyzed using a repeated-measures 

ANOVA (Sokal and Rohlf 1995).  

Results 
 

Secondary metabolite concentrations in sponge tissues 
 

If temperate reef sponges of the SAB are using an antipredator strategy based on 

inducible defenses, then I would expect the concentration of secondary metabolites to 

vary over time. More specifically, if these changes in concentration represent a response 

to fish predators, I would expect to see the highest concentrations of secondary 

metabolites in August when fish densities have been reported to be at their peak in the 

SAB (Sedberry and Van Dolah 1980).  

Of all 4 sampling dates (21 April, 7 June, 25 August, and 6 October), tagged 

individuals of I. campana exhibited significantly higher concentrations of 

furanosesterterpene tetronic acids (FTAs) on 7 June only. In untagged individuals, FTAs 

were also significantly higher on 7 June when compared to 25 August and 6 October 

(Figure 3). Ircinia felix showed a similar pattern in terms of FTA concentrations. 

However, the values observed on 7 June were significantly higher only in tagged 

individuals and when compared to samples collected on 21 April and 6 October     

(Figure 4).  

Variances in mean FTA concentrations extracted from tagged sponges were 

greater on 7 June than at any other date in both I. campana and I. felix. In general, FTA 

concentrations in these two species did not exceed 1.6 and 0.9 mgg-1 for I. campana and 

I. felix, respectively. The large variances in FTA concentrations observed on 7 June in 

each sponge species (see Figures 3 and 4) were driven primarily by a single sample with 



 

27 

an FTA concentration of 11 mgg-1 in I. campana and 14 mgg-1 in I. felix. However, 

removing these outliers (Grubb’s test: z = 2.3, p < 0.05 for I. campana, and z = 2.6,         

p < 0.05 for I. felix) from statistical comparisons of mean FTA concentrations across 

collection dates did not affect the statistical outcomes reached for I. campana (Figure 5). 

In I. felix, FTA concentrations sampled on 7 June were significantly higher than 21 April 

and 6 October, and also 25 August (Figure 6). 

Although higher brominated-tyrosine derivatives were observed in A. fulva on 21 

April and 7 June for both tagged and untagged sponges, the large variance in secondary 

metabolite concentrations among individuals on these dates resulted in no significant 

differences among sample periods (Figure 7).  

In addition to temporal variation in secondary metabolite concentrations, I 

predicted that there would be significant differences in chemical concentration between 

tagged and untagged sponges if mechanical damage induces up-regulation of antipredator 

defenses. Counter to this prediction, mechanical damage of I. campana, as represented by 

repeated sampling of the same individuals, appeared to have no long term (i.e., several 

months) impacts on FTA concentrations. Specifically, a two-way ANOVA showed that 

there was no significant difference in FTA concentrations between tagged and untagged 

individuals and that differences observed were strictly a function of collection date (Table 

3). In I. felix, FTA concentrations differed significantly between tagged and untagged 

individuals (Table 4), but this result was a function of the differences in concentration 

observed on a single date, 7 June. FTA concentrations in tagged and untagged I. felix 

were similar on the other three sample dates with tagged individuals showing slightly 

lower, but non-significant mean concentrations on two of these dates (i.e., 21 April and   
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6 October). Again, these results are inconsistent with the prediction that mechanical 

damage causes increases in secondary metabolite concentrations for an extended period.  

Feeding assays  

If temperate reef sponges of the SAB are using an antipredator strategy based on 

inducible defenses, then I would also predict that higher concentrations of secondary 

metabolites should be more effective at deterring potential predators. Fishes that 

consumed food cubes prepared with crude extracts from all 3 sponge species were 

primarily Centropristus striata (black seabass), and occasionally Haemulon aurolineatum 

(tomtate), and Diplodus holbrooki (spottail pinfish). In C. striata, an entire food cube was 

sucked in and either consumed entirely or ejected all at once. In contrast, both                 

H. aurolineatum and D. holbrooki either ingested small portions until the entire food 

cube was gone, or avoided the cube after the first bite.  

Ircinia campana extracts did not deter feeding by fish and both control and 

treatment food cubes were consumed completely. The same result was observed with 

food cubes containing I. felix extracts. In I. felix, it is possible that compound degradation 

during food preparation resulted in these food cubes containing extremely low 

concentrations of FTAs. Evidence for this possibility is provided by the fact that I was 

unable to detect these compounds via HPLC after re-extracting them from the food cubes.   

Aplysina fulva extracts were more deterrent to fish than controls at every 

secondary metabolite concentration tested (Table 5). A regression analysis of the percent 

of feeding deterrence as a function of secondary metabolite concentration resulted in a 

power function showing that the net gain in terms of enhanced feeding deterrence 

decreases rapidly once brominated-tyrosine derivative concentrations are >8 mgg-1 
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(Figure 8). Interestingly, the highest mean concentration of brominated tyrosine 

derivatives measured in the population fell just below this value (see Figure 7).  

In the sea urchin feeding assays, control food cubes lost more weight than 

treatment food cubes in both I. campana and A. fulva, but this was only significant in     

A. fulva (Figure 9). No significant differences were observed in the percent weight loss 

between the 3 treatment food cubes in either sponge species when controls were excluded 

from the analysis (repeated-measures ANOVA: F = 0.10, df = 2, 33, p = 0.9 for                

I. campana, and F = 0.48, df = 2, 30, p = 0.62 for A. fulva). All I. campana food cubes 

were consumed in similar proportions as the control (Figure 9), including I. campana 

cubes containing secondary metabolite concentrations comparable to the highest FTA 

mean (2.7 mgg-1) found in the population (see Figure 3). By contrast, control food cubes 

from A. fulva feeding trials were significantly favored over treatment food cubes to 

include those containing the lowest secondary metabolite concentrations (0.4 mgg-1) 

found at J-reef (see Figure 7).  

Food cubes exposed to the same aquarium conditions but without sea urchins 

showed a mean weight loss of 0.03 g ± 0.002 S.E. (n = 32). This value was approximately 

13 times lower than the minimum amount of weight loss observed in food cubes exposed 

to sea urchins suggesting that the loss of weight from treatment food cubes was mostly 

due to consumption by sea urchins. 

Discussion 

Marine plants and sessile animals may employ one or more strategies when 

allocating limited resources to antipredator defenses (reviewed in Cronin 2001). 

Constitutive defenses may be favored when predation rates are constant and predictable 
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(Harvell 1986, Adler and Harvell 1990). In contrast, inducible defenses occur when 

levels of predation are spatially or temporally variable and when cues emitted by 

predators are good predictors of future attacks (Harvell 1990). Accordingly, an inducible 

defense that is meant to confer protection against consumers should be maximized during 

periods of greater consumer abundance and activity (Rhoades 1979, Havel 1987, Harvell 

1990). Results presented here showed temporal variation in the concentration of 

antipredator secondary metabolites in two (I. campana and I. felix) out of three species of 

sponges from the SAB; a result consistent with a strategy based on inducible defenses. 

Interestingly, however, variation in the concentration of these compounds appears to have 

no measurable impact on feeding by generalist fish or urchin predators. In contrast, the 

third sponge species investigated, A. fulva, showed no significant temporal variation in 

the concentration of secondary metabolites, but had deterrent effects on generalist fish 

predators even at low concentrations. These results are supportive of a constitutive 

chemical defense in A. fulva.  

Chemical defenses in I. campana and I. felix 

To further investigate the relationship between chemical defenses in I. campana 

and I. felix and the abundance of potential spongivorous fishes, I compared the temporal 

variation in sponge secondary metabolite concentrations I observed with temporal 

patterns of reef fish abundances reported in the literature. The most comprehensive 

assessment of seasonal trends in fish abundances in the SAB comes from Sedberry and 

Van Dolah (1984). These investigators surveyed fish populations from 9 different hard 

bottom reefs scattered throughout the SAB during winter (January through March) and 

summer (August through September) months of 1980. The data used in this study 
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includes surveys from Grays Reef National Marine Sanctuary (31º 23.6 N, 80º 53.1 W), a 

hard bottom reef that is 23 km from J-Reef (31° 36.0 N, 80° 47.4 W). Both reefs have 

similar topographical features, depth and temperature profiles, as well as sponge and fish 

species (Ruzicka and Gleason 2008). Fishes surveyed by Sedberry and Van Dolah (1984) 

included representatives from both generalist (i.e., C. striata and H. aurolineatum) and 

spongivorous species, such as angelfishes and trunkfishes (i.e., Holacanthus 

bermudensis, and Acanthostracion quadricornis). These investigators found fish densities 

to be substantially higher during summer compared to winter (Figure 10). These higher 

fish abundances during summer, specifically during the month of August, correspond 

with lower concentrations of secondary metabolites in I. campana and I. felix found in 

this study. Acknowledging that there are significant limitations in comparing data on fish 

abundances and sponge secondary metabolite concentrations that are from single and 

different years, this analysis suggests that I. felix and I. campana from the SAB do not 

possess defenses induced by fish predation.  

Further evidence supporting the contention that the temporal changes in 

secondary metabolites observed in I. campana do not represent an inducible defense 

against predators comes from the in situ and laboratory feeding assays with fish and 

urchins, respectively. Results from feeding trials with generalist fish predators showed 

that FTAs in I. campana were unable to deter feeding by fish at the highest mean FTA 

concentrations (3.0 mgg-1) found in the J-reef population (Figure 3). These results 

contrast with similar studies conducted at J-reef where approximately 35% of food cubes 

prepared with I. campana extracts were rejected by the same fish species (Ruzicka 2005, 

Freeman 2007). It should be noted that the concentrations of FTAs contained within food 
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cubes in these earlier studies were not determined and there was no attempt by these 

investigators to mimic the secondary metabolite levels occurring in sponge tissues. 

Rather, secondary metabolites were extracted in bulk using large volumes of sponge 

tissue and may have resulted in unnaturally high concentrations of chemicals within food 

cubes. In contrast, the concentration of secondary metabolites in my food cubes was 

manipulated to match that found in 1 g of dry sponge tissue (approximately 8 ml). 

Though the FTA levels in I. campana food cubes were much lower than originally 

intended because of some degradation during processing, I was able to test deterrence at 

concentrations that were representative of those found in the J-reef population. Clearly, 

these differences in concentration could account for the disparate results among studies.  

Further investigation is needed to determine if natural concentrations of secondary 

metabolites deter feeding by generalist and spongivorous fish species. 

In tropical regions, predation on sponges is restricted to a few specialized groups 

of consumers, notably angelfishes, trunkfishes, filefishes, and parrotfishes, as well as 

hawksbill turtles, starfish, sea urchins, and nudibranch molluscs (Randall and Hartman 

1968, Vance 1979, Meylan 1988, Paul 1992, Birenheide et al. 1993, Wulff 1994, Wulff 

1995, Dunlap and Pawlik 1998, Leon and Bjorndal 2002). Gut content analyses on 

angelfishes of the genera Pomacanthus, Holocanthus, and filefishes of the genus 

Cantherines have shown that these sponge predators consume Ircinia sp. (Randall and 

Hartman 1968). Ruzicka and Gleason (2008), using a combination of data they collected 

on SAB reefs and published information from Florida/Caribbean sites, investigated 

latitudinal variation in spongivorous fish densities and feeding deterrence of conspecific 

sponge crude extracts from temperate and subtropical localities. They concluded that, in 
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general, sponges in the SAB are less deterrent to fishes and are exposed to lower 

predation pressure than their subtropical conspecifics. The results of my feeding assays 

with I. campana extracts, showing lack of deterrence of fishes, are consistent with the 

prediction that predation pressure is low enough to allow minimal investment into 

chemical defenses.  

The laboratory feeding trials conducted here corroborate previous findings (i.e. 

Freeman 2007) that the sea urchin, A. punctulata, is able to tolerate food cubes containing 

chemical extracts from I. campana that are equivalent to the highest mean levels 

observed in the J-reef population (Figure 9). While laboratory feeding assays do provide 

useful information, how these results relate to the field is uncertain. For example, it is 

unknown currently whether mobile invertebrates at J-reef represent a significant threat to 

sponge fitness. At any rate, it does not appear that at least one common invertebrate 

predator, A. punctulata, is driving the temporal differences in secondary metabolite 

concentrations observed for I. campana on J-reef.  

Given that I. felix and I. campana do not possess inducible chemical defenses 

against predators, what might explain the temporal fluctuations in secondary metabolite 

concentrations observed in this study? One possibility is that temporal patterns of 

production in sponges represent a response to other biotic factors that co-vary with water 

temperature (Green et al. 1985, Turon et al. 1996, Duckworth et al. 2004, Page et al. 

2005, Abdo et al. 2007). In particular, seasonal increases in secondary metabolites may 

be an inducible defensive strategy against biofouling agents (i.e., bacteria, fungi, algae, 

and invertebrate larvae of non-sponge species) that become more abundant as water 

temperature rises (Green et al. 1985, Wahl 1989, Duckworth and Battershill 2001). At    
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J-reef, however, there does not appear to be a strong positive relationship between 

temperature and secondary metabolite concentrations in I. felix and I. campana. 

Temperatures measured hourly during 2006 were highest in late July and August and 

corresponded with low secondary metabolite concentrations (Figure 11). Thus, it is 

unlikely that the high concentrations I observed in June in I. felix and I . campana 

represent either direct or indirect effects of temperature fluctuations.  

While not addressed in this study, it should be noted that two other factors have 

been hypothesized to contribute to seasonal differences in the concentration of secondary 

metabolites in the tissues of sessile, benthic invertebrates such as sponges: food 

availability and reproductive state. Most taxa of sessile, benthic invertebrates (including 

Porifera) that have been investigated in cold temperate seas show annual cycles in 

secondary metabolite production with highest concentrations in tissues during spring and 

summer when nutrient levels are highest (Hughes 1989, Coma et al. 2000). On SAB 

reefs, seasonal differences between warm, low-density surface waters and cold, high-

density waters peak during the month of June (Blanton et al. 2003). This water column 

stratification is thought to promote particle sinking and may enhance nutrient 

concentrations towards the bottom (Nybakken 2001) where sponges occur. Thus, these 

excess nutrients may provide I. campana and I. felix with additional energetic resources 

for the production of expensive secondary metabolites.   

Layered upon these cycles of food availability are differences in sponge 

reproductive state. Gametogenesis, an energetically costly process in itself, results in a 

partial loss of feeding activities of the choanocyte chambers in sponges and may lead to 

reduced energy reserves (Fromont and Bergquist 1994, Ilan 1995).  All species of Ircinia 
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are brooders with breeding cycles lasting up to 8 months (Hoppe 1988). For example, the 

Caribbean sponge, I. strobilina, bears reproductive structures (i.e. spermatic cysts and 

oocytes) and developing larvae from September through April (Hoppe 1988). While not 

yet investigated, if I. campana and I. felix in the SAB exhibit similar reproductive 

periodicity then the higher levels of FTAs observed in June may reflect reallocation of 

energy reserves in the interval between reproductive cycles (see Turon et al. 1996).  

While most of the hypotheses outlined above assume that the production of 

secondary metabolites is costly, it should be recognized that this may not be the case.  It 

has been suggested that secondary metabolites that are ineffective predator deterrents 

may represent (1) accumulations of side products from synthetic pathways, (2) waste or 

detoxification products, or (3) vestigial products that played a role in the past against 

predators that have now gone extinct (Haslam 1986, Pawlik 1993, Hay and Steinberg 

1992). Additionally, the possibility exists that some of these metabolites may still be 

produced because they are tied to the synthesis of a functional metabolite or because 

costs are not sufficiently intense to discontinue production (Pawlik 1993).  

Chemical defenses in A. fulva 

Previous studies have shown that the bromotyrosine derivatives in Aplysina sp. 

are stored within tissues at relatively high concentrations and serve as precursors for 

rapid bioconversion into more potent “activated” compounds (Thoms et al. 2006). These 

activated compounds, rather than deterring predators, are thought to provide immediate 

protection against invading pathogens, such as bacteria, in wounded sponges (Thoms et 

al. 2006). In contrast, the precursor bromotyrosines are much more effective than the 

activated compounds at deterring predation by fish (Thoms et al. 2004, Thoms et al. 
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2006). Thus, these bromotyrosine derivatives appear to serve a dual function: first as a 

constitutive defense against predation and second as an inducible defense against 

infection.  

Aplysina fulva occurring on tropical reefs are consumed by angelfishes of the 

genus Pomacanthus, and at a disproportionately high rate by the trunkfish, 

Acanthostracion quadricornis (Wulff 1994), which is also found on SAB reefs (Sedberry 

and Van Dolah 1984, pers. obs.). Though predation rates on A. fulva inhabiting temperate 

reefs have not been investigated, specialization by A. quadricornis on A. fulva may 

extend to the temperates and exert the selective pressure necessary for the evolution of 

constitutive chemical defenses. This hypothesis is consistent with fish feeding assays 

conducted in both temperate and tropical regions, where bromotyrosine derivatives in    

A. fulva from both localities have been demonstrated to be highly deterrent (Pawlik et al. 

1995, Ruzicka 2005, Freeman 2007, Ruzicka and Gleason 2008).  

Ideally, a defensive compound should provide enough protection from predation 

to enhance significantly individual survival while simultaneously minimizing resource 

investment into maintenance of this compound (Schulte and Bakus 1992). Carrying out 

fish feeding assays with food cubes containing a range of A. fulva secondary metabolite 

concentrations allowed assessment of the relationship between quantities of 

bromotyrosine derivatives in sponge tissues and the effectiveness of deterrence. This 

analysis led to two important outcomes relevant to the evolution of antipredator 

secondary metabolites in this species (Figure 8). First, possessing bromotyrosine 

derivatives at any level within the tissues is better than none at all; as evidenced by the 

fact that even the lowest concentrations (1 mgg-1) deter feeding by fish approximately 
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20% of the time. Second, in terms of deterrence of fish predators, the added advantage of 

maintaining brominated-tyrosine derivatives drops precipitously at concentrations >8 

mgg-1. Given these outcomes, I would predict that the optimal concentrations of 

brominated-tyrosine derivatives in the A. fulva population at J-reef should be between 2 

and 8 mgg-1. In fact, on all 4 sample dates mean concentrations measured in the 

population were within or just below this range (Figure 7). Thus, I hypothesize that these 

brominated-tyrosine concentrations allow A. fulva to maintain a balance between fitness 

gains and cost of secondary metabolite production. 

Recommendations and conclusions  

My study, like most others in this area, conducted palatability assays using a 

flavored, heat-treated polysaccharide mixture that is added to sponge crude extracts 

(Epifanio et al. 1999). Several secondary metabolites, including FTAs, contain highly 

reactive compounds that may suffer decomposition when exposed to excessive heat 

treatment (Epifanio et al. 1999, Mark Hamann pers. comm.). Until this study, the 

magnitude of degradation in bioactive compounds from I. campana and A. fulva exposed 

to heat-treated artificial food recipes was unknown. I found that secondary metabolites 

exposed to high levels of heat may degrade up to 86% and 43% in I. campana and         

A. fulva respectively (Table 2a, b), and that the rate of degradation is predictable. These 

findings underscore the importance of quantifying compounds in prepared food 

treatments because decomposition or alteration of bioactive compounds during 

chemically-mediated processes used in artificial food recipes may impede realistic 

assessments of sponge defensive chemistry (see Epifanio et al. 1999). Furthermore, 

matching the chemical concentrations in food cubes with those found in the natural 
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population provides for a better understanding of the evolution of these chemicals, as 

shown in my analysis of A. fulva.    

Previous studies conducted on colonial marine invertebrates have suggested that 

induction of structural defenses, rather than chemical, is more common (reviewed in 

Harvell 1999). Examples include production of spines and stolons in bryozoans, changes 

in sclerite size and density in gorgonian corals, and alterations in polyp behavior and 

nematocyst density in scleractinian corals (Osborne 1984, Harvell 1984a, Gaulin et al.  

1986, Harvel 1990 and all references therein, Harvell 1992, Harvell 1999, West 1997, 

Iyengar and Harvell 2002, Gochfeld 2004). Some investigators have hypothesized that 

the lack of chemical induction in marine systems may be due to one or both of the 

following: 1) an actual rarity of this response (Hay and Steinberg 1992), and 2) 

insufficient appropriate and relevant experimental designs (Harvell 1999, Pavia and Toth 

2000). I specifically designed this study to obtain a preliminary assessment of the 

potential for inducible chemical defenses in 3 of the most abundant sponge species of the 

SAB (Ruzicka 2005).  

Although I identified temporal variability in the concentration of antipredator 

chemistry in two of the three species, the results do not provide strong support for 

induced chemical defenses against predators in these sponges. Specifically, the temporal 

shift in fish densities observed at SAB reefs does not appear to provide the appropriate 

selective pressure to favor the evolution of predator-induced chemical defenses in these 

sponges. Future studies should build on these findings by investigating the role played by 

other spongivorous predators, including small cryptic invertebrate forms that reside in 
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sponge tissues (Freeman 2007), in allocating resources to antipredator chemical defenses 

in temperate reef sponges.  
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                  Figure 1. The sponge species I. campana (A), I. felix (B) and A. fulva (C) from J-reef. 
Photographs courtesy of Greg McFall. 
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Table1. Dates and number of individuals sampled from each sponge species at J-reef. 
Two tagged I. campana individuals were missing from the reef during the last 2 
collection dates and 1 tagged I. felix individual was missing on the last collection date. 
All samples were collected during 2006. 
 
 

        Species            Date         Tagged        Untagged 

    

     I. campana           21 Apr 10 10 

 7 Jun 10 10 

           25 Aug  8 10 

 6 Oct  8 10 

    

         I. felix           21 Apr 10 10 

 7 Jun 10 10 

           25 Aug 10 10 

 6 Oct 9 10 

    

        A. fulva            21 Apr 10 10 

 7 Jun 10 10 

           25 Aug 10 10 

 6 Oct 10 10 
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Figure 2. Secondary metabolite concentrations of I. campana (a) and A. fulva (b) before 
and after preparation of food cubes used for fish feeding assays. Initial concentration 
refers to secondary metabolites from sponge tissues and final concentration refers to 
secondary metabolites from food cubes. 
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Table 2. Mean % (± S.E.) degradation of secondary metabolites (mgg-1 dry sponge tissue) 
following preparation of food cubes for fish (a, n = 4) and sea urchin (b, n = 3) feeding 
assays. Quantification of secondary metabolites in post-treated food cubes via HPLC 
showed that FTAs from I. campana used in fish and urchin feeding assays degraded an 
average of 80.9% and 78.2% respectively. Degradation of brominated-tyrosine derivates 
in A. fulva was lower at 34.9 % and 37.0 % for food cubes used in fish and urchin feeding 
assays respectively.  
 
 
                       I. campana                                                                A. fulva 

 
 
 

 

a 
Pre-treatment 

Post-treatment  
(mean %, ± s.e.) 

11.0 73.0 (± 4.2) 

8.0 85.2 (± 2.2) 

5.0 85.7 (± 2.7) 

2.5 86.2 (± 1.8) 

0.6 75.8 (± 2.2) 

 

0.1 79.5 (± 2.7) 

b 11.0 73.2 (± 1.9) 

2.5 84.7 (± 0.3) 
 

0.1 76.8 (± 1.4) 

 

a

. 

Pre-treatment 
Post-treatment 

 (mean %, ± s.e.) 

27.0 33.5 (± 0.8) 

19.0 37.8 (± 2.0) 

12.0 39.7 (± 3.0) 

7.0 37.9 (± 5.2) 

2.0 25.7 (± 3.5) 

 

0.6 34.9 (± 3.5) 

b 27.0 35.0 (± 1.4) 

 7.0 43.4 (± 2.7) 

 
0.6 32.8 (± 2.6) 
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Figure 3. Mean (± S.E.) FTA concentration in I. campana. Tagged samples analyzed by 
repeated measures ANOVA: F = 19.7, df = 3, 21 p < 0.0001, n = 8 for all dates. FTA 
concentrations from samples collected on 7 June were compared to remaining collection 
dates with a paired t-Test: t = 2.54, df = 14, p = 0.01 for 7 June vs. 21 April, t = 4.06, df = 
14, p < 0.001 for 7 June vs. 25 August, and t = 5.72, df = 14, p < 0.0001 for 7 June vs. 6 
October. Untagged samples analyzed by ANOVA: F = 10.6, df = 3, p < 0.0001, n = 10 
for all dates. A Tukey Kramer pairwise comparison (α = 0.05) showed significant 
differences in FTA concentrations between 7 June and 25 August, and 7 June and 6 
October..Each minor tick on the x-axis represents one week starting on a Monday 
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Figure 4. Mean (± S.E.) FTA concentration in I. felix. Tagged samples analyzed by 
Repeated Measures ANOVA: F = 4.7, df = 3, 24, p < 0.01, n = 9 for all dates. FTA 
concentrations from samples collected on 7 June were compared to remaining collection 
dates with a paired t-Test: t = 2.45, df = 16, p = 0.01 for 7 June vs. 21 April, t = 1.48, df = 
16, p = 0.07 for 7 June vs. 25 August, and t = 2.93, df = 16, p < 0.01 for 7 June vs. 6 
October. Untagged samples analyzed by ANOVA: F = 1.2, df = 3, p = 0.3, n = 10 for all 
dates. Each minor tick on the x-axis represents one week starting on a Monday. 
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Figure 5. Mean (± S.E.) FTA concentration in I. campana excluding highest FTA value. 
Sample size of tagged sponges in each collection date does not include the sample 
containing the highest concentration of FTAs (11 mgg-1) recorded on 7 June. Tagged 
sponges were analyzed by repeated-measures ANOVA: F = 18.00, df = 3, 18, p < 0.0001, 
n = 7 for all dates. FTA concentrations from samples collected on 7 June were compared 
to remaining collection dates with a paired t-Test: t = 2.04, df = 12, p = 0.03 for 7 June 
vs. 21 April, t = 4.75, df = 12, p < 0.001 for 7 June vs. 25 August, and t = 6.62, df = 12, p 
< 0.0001 for 7 June vs. 6 October. Analysis for untagged samples is the same as Figure 3. 
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Figure 6. Mean (± S.E.) FTA concentration in I. felix excluding highest FTA value.  
Sample size of tagged sponges in each collection date does not include the sample with 
the highest concentration of FTAs (14 mgg-1) recorded on 7 June. Tagged sponges were 
analyzed by repeated-measures ANOVA: F = 3.24, df = 3, 21, p = 0.04, n = 8 for all 
dates. FTA concentrations from samples collected on 7 June were compared to remaining 
collection dates with a paired t-Test: t = 2.17, df = 14, p = 0.02 for 7 June vs. 21 April, t = 
1.81, df = 14, p = 0.04 for 7 June vs. 25 August, and t = 3.15, df = 14, p < 0.003 for 7 
June vs. 6 October. Analysis for untagged samples is the same as Figure 4.  

 
 
 

Month

Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  

F
T

A
 c

on
ce

nt
ra

ti
on

 (
m

gg
-1

 sp
on

ge
 d

ry
 w

ei
gh

t)

0.0

0.2

0.4

0.6

0.8

Tagged
Untagged

 



 

47 

 
Figure 7. Mean (± S.E.) concentration of brominated-tyrosine derivatives in A. fulva. 
Tagged samples analyzed by Friedman’s test: χ2= 5.26, df= 3, p= 0.15, n = 10 for all 
dates. Untagged samples analyzed by Kruskal Wallis: H= 1.3, df= 3, p= 0.7, n = 10 for all 
dates. 
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Table 3. Two-way ANOVA for concentrations of FTAs in I. campana between sample 
type (tagged and untagged sponges) and among dates of collection. 
 
 

Source SS d.f. F P 

Sample type (St) 0.52 1 1.54 0.30 

Collection date (Cd) 13.04 3 12.90 0.03 

St x Cd 1.01 3 1.78 0.15 

Error 12.08 64   

Total 26.43 71   

 

Table 4. Two-way ANOVA for concentrations of FTAs in I. felix between sample type 
(tagged and untagged sponges) and among dates of collection. 

 
 

Source SS d.f. F P 

Sample type (St) 1.13 1 46.43 0.006 

Collection date (Cd) 2.53 3 34.60 0.007 

St x Cd 0.07 3 0.13 0.93 

Error 12.13 68   

Total 15.83 75   

 

Table 5. Food cubes prepared with crude extracts from tissues of A. fulva consisted of 6 
different secondary metabolite concentrations and a control that were offered to natural 
assemblages of fish in the field. Data were analyzed using a 7x2 contingency table (G = 
6.9, df = 6, p < 0.0001), n = 20 and ♦ n = 19. 
 

Concentration (mgg-1) Food cubes rejected 

  
18.0 16 

12.0    15 ♦ 

7.0 13 

4.0 11 

1.5   6 ♦ 

0.4 3 

Control 0 
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Figure 8. The relationship between A. fulva secondary metabolite concentrations in food 
cubes and deterrence of feeding by generalist fish predators. The regression equation for 
the functional relationship between the concentration of brominated-tyrosine derivatives 
and % of feeding deterrence was generated from data collected during fish feeding 
assays. ● Represents treatment food cubes used in the field 
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Figure 9. Mean (± S.E.) percent weight loss from food cubes prepared with crude extracts 
with different concentrations of secondary metabolites (mgg-1) from I. campana and A. 
fulva that were fed to the sea urchin A. punctulata. Control food cubes contained no 
sponge crude extracts. Data were analyzed using a repeated measures ANOVA: F = 6.79, 
df = 3, 40, *p <0.001, n.s.= not significant. 
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Figure 10. Mean (± S.E.) concentration of secondary metabolites from tissues of tagged 
individuals of I. campana, I. felix, and A. fulva collected during my study period and 
mean density of fish at Grays Reef National Marine Sanctuary surveyed by Sedberry 
and Van Dolah (1980). 
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Figure 11. Mean (± S.E.) concentration of secondary metabolites from tagged individuals 
of I. campana, I. felix, and A. fulva collected in April, June, August, and October 2006 
and monthly mean temperatures recorded at J-reef during the same time period. 
Temperatures recorded hourly with an Onset Stowaway Tidbit temperature logger.  
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APPENDICES 
 

APPENDIX A: EXPERIMENTAL ASSESSMENTS OF PREDATION PRESSURE 
 

To determine if the temporal increase in predator abundance observed during the 

summer at J-reef represented an increase in attack rates on sponges, and thus, an increase 

in the concentration of sponge chemical defenses, I attempted to measure predation 

pressure through manipulative experiments in the field. These experiments were carried 

out within a few days of sponge sampling intervals. I assessed predation intensity by 

recording changes in tissue volumes from transplanted sponge tissues that were either 

protected from (caged), or left exposed to (uncaged) predators for 1 week. These surveys 

however, were inconclusive.   

Field Experimental Design 

Ten reinforcement bars, which served as cage anchors, were pounded into the reef 

approximately 6 m apart and 1 m from the ledge border following the contour of the reef. 

Ten cylindrical cages (20 cm diameter x 40 cm length), that served as exclusion cages, 

built from hard plastic netting (4 cm mesh size), cable ties, and monofilament nylon 

netting (1 cm mesh size) were secured onto the reinforced bars with cable ties. These 

exclusion cages were raised approximately 30 cm from the bottom of the reef to further 

inhibit accessibility to sponge samples by benthic predators. Ten smaller cylindrical 

cages (6 cm diameter x 40 cm length) were built with the same materials, and served to 

hold sponge samples that were exposed to predators. One small cage was placed in 

between each pair of reinforced bars and secured to the reef with cable ties and masonry 

nails (Figure A1).  
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Collection, measurement, and handling of sponge tissues 

I collected 2 large tissue samples from 10 haphazardly selected individuals of I. 

campana, I. felix and A. fulva. Paired tissue samples from the same sponge were stored 

together in plastic bags and immediately placed in coolers containing aerated seawater 

upon surfacing. The volume of each tissue sample was determined by displacement of 

water in a 100 ml graduated cylinder to the nearest 0.5 ml. Paired sponge samples were 

separated and individually selected for either caged or uncaged treatments. Tissue 

samples (1 from each species) were attached to a strip (8 cm width x 30 cm length) of 

hard plastic netting, consisting of the same material used to build the cages, with cable 

ties. Once the 3 sponge tissue samples were attached to the plastic strip they were 

immediately stored in coolers containing aerated seawater pending relocation to the 

caged and uncaged treatments underwater.  

To ensure that sponge volume loss in caged and uncaged tissue samples was not 

due to differences in water motion, I measured dissolution rates in pre-weighed clod 

cards made with plaster of Paris (calcium sulfate hemi-hydrate). These clod cards were 

designed following a similar technique by Dotty (1971). A 2:1 combination of Plaster of 

Paris (Kids Kreations by Creative Crafts, Inc.) and water were added into a large bowl 

and thoroughly mixed until the batter was smooth enough to pour into ice cube molds. 

The plaster cubes were left to dry for 24 hours after which they were removed from the 

molds and glued onto small pieces of plexiglass cards (approximately 6 x 4 cm). Finished 

clod cards were weighed and cable tied to every plastic netting strip containing sponge 

samples.  
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Plastic netting strips with attached sponges and clod cards were affixed to either 

the upper, outside surface of small cages (predator exposed treatments) or to the bottom, 

inside surface of large cages (predator exclusion treatments) (Figure A2). Once the 

plastic strips were secured inside the predator exclusion cages, these were sealed at the 

end by tying the monofilament mesh shut. All plastic netting strips were collected at the 

end of one week. Final sponge volumes were recorded by displacement of water, and 

clod cards were left to dry and then reweighed. 
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Figure A1. Predation pressure experiment set up on the ledge at J-reef. Ten reinforcement 
bars (A) placed at 6m intervals were used to secure exclusion cages (B). Smaller 
cylindrical cages (C) were placed in between reinforcement bars and were used as 
feeding platforms. Diagram adapted from Carol Johnson. 
 
 

 

Scarp 

 

B 

A 

 

 

 

Approximately 1 m from 

ledge border 

C 



 

65 

                
 

 

Figure A2. Strips of plastic netting with sponge samples exposed to predators (A) were 
attached to the top of the small cylindrical cages with cable ties. Exclusion cages (B) 
were pushed through the reinforcement bars, raised 30 cm from the bottom, and secured 
onto the reinforcement bars with cable ties. Both large and small cylindrical plastic 
netting cages were wrapped in a monofilament nylon netting (1 cm mesh size). The 
excess monofilament netting that protruded from one side of the exclusion cages (B) 
served as an opening that facilitated access to the inside of the cages. This netting was 
tightly shut with cable ties once samples were secured inside their cages.  
 
 
Predation pressure surveys  
 

During the first predation pressure experiment, carried out from 6 to 11 June 

2006, I found that I. campana and I. felix tissue samples used in caged and uncaged 

treatments exhibited pronounced degradation in < 5 days. Thus, accurate final volumetric 

measurements in these species were not possible.  All A. fulva tissue samples exhibited 

some localized necrosis, specifically, in tissue areas that were pressed against the cable 

ties used for attachment to the plastic netting strips. The next predation pressure 

experiments were conducted on 23 to 29 June 2006. During this survey, I replaced I. 

campana and I. felix with Desmapsamma anchorata, because this sponge was 

successfully used in previous sponge tissue transplantation experiments conducted at J-

reef (Ruzicka 2005). A third attempt to survey predation pressure was expected to take 

place during the early fall season, but was delayed until early December 2006 due to 

weather conditions. Although I was able to place another set of sponge samples from A. 

A B 
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fulva and D. anchorata on the reef in December, retrieval of these samples was not 

possible due to weather conditions and unavailable transportation from shore out to J-

reef. My predation pressure assay was designed primarily to evaluate intensity of 

predation within the same time frame in which sponge sampling was carried out and, 

because this was not possible, I chose to omit this assay from my research and continued 

on to address feeding deterrence. 

Results and discussion 
 

Water motion appeared to be the same in both caged and uncaged environments 

as no significant differences in the change in weight between caged and uncaged clod 

cards were observed (one-way ANOVA: F: 0.9, df = 1, p = 0.3, n = 10). Thus, any 

significant changes in sponge tissue volume were attributed to grazing by predators. 

Predation intensity measured as the percent loss in volume between caged and 

uncaged sponge tissues was only significant in D. anchorata (one way ANOVA: F = 6.4, 

df = 1, p = 0.02, n = 9). Intense predation on D. anchorata was further evidenced by the 

grazing scars observed on predator-exposed sponge tissues. In contrast, predation on A. 

fulva appeared to be consistently low (one-way ANOVA: F = 0.9, df = 1, p = 0.3, n =10 

for 6 June, and F = 2.5, df = 1, p = 0.1, n = 9 for 23 June). These results showed that 

tissue samples of A. fulva were significantly less palatable than those of D. anchorata 

(one-way ANOVA: F = 6.47, p = 0.02, df = 1). Though these results provided no 

information on the potential relationship between the temporal variation in predation 

pressure and induction of sponge chemical defenses, they did offer relevant support for 

the high feeding deterrence properties in A. fulva as these experiments were conducted 

under field conditions. 
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APPENDIX B: FEEDING ASSAYS AND FOOD CUBE PREPARATION 

TECHNIQUES 

Once my initial field feeding trials with crude extracts from Ircinia campana and 

I. felix failed to deter feeding by fish, I conducted a second set of trials with food cubes 

prepared in the same manner as my initial ones. These additional trials were conducted to 

confirm that the initial results were repeatable, and indeed they were. As indicated in the 

body of the thesis (pages 20 and 28), the inability of these food cubes to deter predators 

may have been a function of degradation in the concentration of secondary metabolites 

that resulted when food cubes were heated during the preparation process (see Figure 2). 

In an effort to produce food cubes without the incorporation of heat, I tried several 

iterations of the preparation technique. While these attempts were unsuccessful, I am 

outlining them below for the benefit of other researchers that may attempt such studies in 

the future.   

Food cube preparation techniques 

 One artificial food preparation technique that does not require heat has been 

described by Burns et al. (2003), where sponge crude extracts are incorporated into a 

calcium alginate-based food pellet. This food mixture consists of a combination of 0.3 g 

of alginic acid, 0.5 g of lyophilized squid mantle, and sponge crude extracts dissolved in 

10 ml of distilled water. This mixture is then vigorously mixed and loaded into a 10 ml 

syringe. The tip of the syringe is then submerged in a 0.25 M solution of calcium chloride 

and the mixture is slowly unloaded into the medium. Presumably, calcium chloride 

hardens this mixture relatively quickly to a consistency that allows it to be sliced into 

food pellets. However, I never observed this effect. I sought assistance from faculty in the 
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Department of Chemistry at Georgia Southern University (L. Shannon Davis Ph.D., and 

James M. LoBue Ph.D.), but their suggestions did not provide satisfactory results.  

Next, I formulated a recipe that consisted of the same carageenan-based food 

cube, but without the addition of agar or heat. Instead, the crude extract was incorporated 

into the soft carageenan mixture and poured into 1 x 1 x 1 cm plastic square mold. The 

mold containing the food mixture was stored in the freezer (- 70 ºC), and lyophilized. 

Lyophilized food cubes were removed from their molds and covered in a hot mixture of 

agar and distilled water, but this hot mixture did not penetrate the food cube. The end 

result was an enveloped crude extract mixture that was protected from water and direct 

exposure to heat.  While this last recipe seemed feasible, it did not produce satisfactory 

results in field experiments because fish seemed to reject the hardened exterior of the 

food cube. Treatment and control food cubes prepared with this technique were all 

rejected by fish during field feeding experiments. Perhaps one alternative to improving 

this technique is to envelop the lyophilized food cube with a less concentrated hot 

mixture of agar and distilled water that still conveys enough protection from water and is 

also more palatable to fish (i.e. thin and flavored outer shell).    
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