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THERMAL AND LOW OXYGEN TOLERANCE OF A SOUTHERN POPULATION OF 

STRIPED BASS (MORONE SAXATILIS) 
by 

DANIEL LLERAS 

(Under the Direction of Johanne Lewis) 

ABSTRACT 

Climate change projections estimate a 2-3°C increase in water temperatures by the end of the 

century. The amount of habitat with suitable temperature and oxygen concentration for aquatic 

organisms will also be reduced. Striped bass (Morone saxatilis) inhabiting the rivers in 

Southeastern Georgia make an interesting study system as they do not participate in summer 

coastal migrations typical of their northern conspecifics. Instead, fish in this southern population 

remain in freshwater environments that experience warming and associated decreases in 

dissolved oxygen. The present study aims to determine the thermal and low oxygen tolerance of 

juvenile striped bass collected from southeast Georgia through the measurement of aerobic 

metabolic scope (AMS), loss of equilibrium (LOEcrit), and critical oxygen tension (Pcrit). Fish 

were acclimated to one of four experimental temperatures (20, 25, 30, and 33°C), representing 

the range of temperatures typical of the natural environment in the summer as well as the 

anticipated increase in temperature due to climate change (33°C). Additionally, plasma samples 

were analyzed for lactate levels to assess the metabolic state of the fish. Results indicate fish 

acclimated to 30 and 33°C have reduced performance (lower AMS) and low oxygen tolerance 

(LOEcrit).  The findings of this study determined that southern striped bass are susceptible to 

projected increases in temperature where an increase of 3°C will push them close to the thermal 

lethal limit and lower their ability to survive in hypoxic environments.  

INDEX WORDS: Metabolism, Thermal tolerance, Hypoxia, Aerobic scope, Striped bass, 

Climate change, Savannah River 
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CHAPTER ONE: GENERAL INTRODUCTION 

Climate change projections estimate a 2-3°C increase in aquatic temperatures by the end 

of the century. The degree of susceptibility to thermal stress depends on the thermal tolerance of 

an organism such that temperatures above the thermal tolerance range are correlated with 

reduced performance of various biological activities such as growth and foraging (Storey and 

Tanino 2012; Rummer et al. 2013). Organisms must occupy temperatures within their thermal 

range for optimal performance, therefore climate change is expected to affect the distribution of 

species where those that are less tolerant to changes in temperature are expected to shift 

northward with increasing temperatures while those with a wider thermal tolerance are expected 

to expand their range (Woodward et al. 2010; Storey and Tanino 2012). Increases in temperature 

do not act in isolation and interact with other abiotic factors such as oxygen in complex ways. 

For example, nutrient run-off from fertilizers used in agriculture results in algal blooms that 

deplete dissolved oxygen (DO) in freshwater systems (Kernan et al. 2011). DO is depleted even 

further as oxygen consumption of microbes increases with temperature and results in low oxygen 

conditions that pose a severe threat to native fauna (Kernan et al. 2011; Storey and Tanino 2012).  

Temperature also affects the physical properties of water resulting in reduced oxygen 

solubility at higher temperatures which can cause thermal stratification of oxygen that further 

limits the available suitable habitat for freshwater organisms. High temperature and low oxygen 

can synergistically interact and negatively impact performance of freshwater organisms through 

a reduction in the ability to tolerate thermal stress as shown by the oxygen and capacity limited 

thermal tolerance (OCLTT) hypothesis (Pörtner et. al 2017). Lower oxygen availability along 

with increased oxygen demand at higher temperatures limits the available oxygen for the 
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performance of biological processes and results in a reduction in performance and survival of 

freshwater organisms (Pörtner et. al 2017).  

Effects of Increased Temperature on Aquatic Poikilotherms 

Most freshwater organisms are poikilothermic, meaning that they have no physiological 

control over their internal temperature, instead their core body temperature matches that of the 

environment. Similarly, most freshwater organisms are also ectothermic meaning that heat is 

gained mainly from the environment rather than from internal heat production as observed in 

homeotherms. Due to this, the rate of most biochemical reactions used to fuel biological 

processes are directly affected by temperature where reaction rates increase with rising 

temperatures. Therefore, more oxygen is required to provide energy for basal metabolic reactions 

required for survival and maintenance of an organism. 

Metabolic rate, defined as energy consumption per unit time and accounts for the sum of 

all the chemical reactions that occur within an organism, represents the energetic cost of 

sustaining life in an organism and provides valuable information on the effect of temperature on 

the organism as a whole (Ferreira et al. 2014; Rosewarne et al. 2016). Standard metabolic rate 

(SMR) is defined as the oxygen consumption (MO2) of a resting, undisturbed, and fasted 

organism allowed to acclimate to experimental conditions. This rate represents the metabolic 

oxygen demand required for basal cellular processes such as respiration (Rosewarne et al. 2016; 

Rummer et al 2013; Ferreira et al. 2014). Routine metabolic rate (RMR) is also the oxygen 

consumption of a post-absorptive undisturbed fish but differs from SMR by accounting for 

minimal activity such as maintaining posture and minimal swimming activity (Rosewarne et al. 

2016; Ferreira et al. 2014). Both SMR and RMR are good measures of the basic cost of living in 

an organism but RMR is more easily measured and likely to be observed in nature than SMR 
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(Wood 2018). As with most biochemical reactions, SMR and RMR increase by 1.5-2 times per 

10°C increases in temperature as shown by the temperature coefficient (Q10) of various teleost 

species signifying a higher cost of life in ectothermic poikilotherms (Figure 1.1.) (McBryan et al. 

2013).  

Oxygen consumption must be elevated above SMR in order to obtain energy for non-

basal biological processes (i.e. feeding, digestion, activity, growth, etc.) but oxygen consumption 

is limited by an upper boundary referred to as maximum metabolic rate (MMR) which signifies 

the maximum aerobic capability of an organism (Rosewarne et al. 2016; Ferreira et al. 2014; 

McBryan et al. 2013). MMR also increases at Q10=1.5-2 until it is limited by oxygen delivery 

mechanisms at temperatures above peak MMR, so elevations in SMR with increasing 

temperature brings oxygen consumption closer to its MMR limit (Figure 1.1.) (Farrell 2015; 

Rosewarne et al. 2016; Verberk et al. 2016; McBryan et al. 2013). At the temperature where 

SMR is equal to MMR, aerobic metabolism cannot be maintained, and organisms are forced to 

switch to anaerobic respiration (lactic acid fermentation) to meet energetic needs.  Anaerobic 

respiration is less efficient than aerobic respiration and survival is time limited due to a limitation 

on fuel stores and the accumulation of a toxic end product – lactic acid.  

The difference between MMR and SMR (or RMR) represents the amount of oxygen 

available for biological activities beyond the basal oxygen needs and is defined as aerobic 

metabolic scope (AMS) (Rosewarne et al. 2016; Farrell 2015; Verberk et al. 2016). AMS is used 

to understand how changes in temperature affect the ability to perform various biological 

functions essential for survival (McBryan et al. 2013). Therefore, AMS is commonly used to 

determine how climate change will affect performance in organisms (McBryan et al. 2013; 

Rosewarne et al. 2016; Farrell 2015; Verberk et al. 2016; Rummer et al. 2014). 
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Thermal performance curves (Figure 1.1) for AMS provide thermal tolerance values that 

can be used to determine how temperature change will affect the performance of an organism. At 

the peak of the curve, aerobic capability for biological processes is maximum. The width of the 

tolerance curve is representative of the extent of thermal tolerance.  Eurythermal organisms, with 

a wide range of thermal tolerance have wide curves and can occupy a wider variety of habitats.  

Whereas stenothermal organisms would have a much narrower curve due to their limited thermal 

tolerance range. As such, stenothermal organisms are more affected by warming events (Storey 

and Tanino 2012).  

The susceptibility of freshwater poikilotherms to changes in temperature also depends on 

the current temperature they experience in their habitat and the effect that these changes will 

cause can be observed in several points along a thermal performance curves (Figure 1.1). 

Temperatures within the thermal optimum (Topt) represent the temperature range where AMS is 

maximized (McBryan et al. 2013; Schulte et al. 2011). If temperatures increase above Topt into 

the pejus range (Tpejus), then significant reductions in AMS occur (McBryan et al. 2013). If 

temperatures increase above Tpejus to Tcrit, AMS reaches zero and the organisms must rely on 

anaerobic respiration to meet its metabolic demands (Farrell 2015). Temperatures above Tcrit  are 

fatal to the organism. Increases of 3°C from climate change may benefit organisms in habitats 

with temperatures below Topt by causing a right shift in the temperature performance curve from 

Tpej (at temperatures below Topt) to Topt. However, organisms already inhabiting temperatures 

that occur at or above Topt can shift the organism towards Tpejus or Tcrit, respectively, resulting in 

reduced AMS and an overall reduction in performance (Storey and Tanino; Rummer et al. 2013; 

Rosewarne et al. 2016; McBryan et al. 2013).  These reductions in performance can have 

significant negative effects on the survival of the population.  
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 Reductions in AMS have shown subsequent reductions in performance of important 

biological processes including growth, digestion, and activity since more oxygen is required for 

SMR and less can be attributed to these traits at higher temperatures (Hartman and Brandt 1995; 

Cox and Coutant 1981; Cook and Bradford 2006).  Studies on equatorial fish including blackfin 

chromis (Chromis actripectoralis), lemon damsel (Pomacentrus moluccensis), and several others 

showed significant reductions in AMS and overall performance in fish acclimated to a 3°C 

increase in summer temperatures resulting from climate change (Rummer et al. 2013). Similarly, 

African cichlids (Pseudocrenilabrus multicolor victoridae) exhibited increased AMS at the 

highest acclimation with subsequent reductions in critical swimming speed signifying that more 

energy was attributed to regulating SMR at the cost of reduced activity (McDonnell 2016). 
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Figure 1.1. The effect of temperature on standard metabolic rate and maximum metabolic rate 
(MMR). The difference between MMR and SMR signifies aerobic metabolic scope (AMS) (Top 
panel). Thermal performance curve for AMS where the thermal optimum (Topt) signifies 

temperature where AMS is maximized, pejus range (Tpejus) signifies the temperatures where 
AMS declines, and critical temperature (Tcrit) signifies the temperatures where AMS=0. Graph 

obtained from Verberk et al. (2016). 

 

Effect of Decreased Oxygen on Aquatic Poikilotherms 

Hypoxia, or oxygen depletion, is an environmental phenomenon where concentrations of 

dissolved oxygen (DO) in the water decrease to a level that can no longer support aerobic 

metabolism in organisms (<2-3 mg/L O2). Hypoxic conditions can be caused by low DO 

solubility from high temperatures, excess nutrient loads resulting in eutrophication, and other 
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factors which makes it more likely for aquatic poikilotherm to be exposed to fluctuations in 

environmental oxygen than terrestrial organisms. Prolonged exposure to hypoxia, and 

subsequently time spent relying on anaerobic means of producing energy, results in tissue 

damage to organs and is also correlated with reduced performance in organisms.  

An organism’s ability to withstand hypoxic environments depends on its hypoxia 

tolerance or ability to extract oxygen from the environment and efficiently supply it to the tissues 

(Nelson and Lipkey 2015). Fish will typically exhibit various responses to hypoxia. At the 

behavioral level, fish will exhibit avoidance of hypoxic zones and move towards higher oxygen 

concentrations (Wannamaker and Rice 2000). At the physiological level, fish may exhibit higher 

respiration and circulation rates to increase delivery of oxygen to tissues within minutes or hours 

of exposure to hypoxia (Chen et al. 2015). At the cellular level, fish may exhibit gill remodeling 

to increase lamellar surface and increase oxygen uptake when exposed to chronic hypoxia (Wu et 

al.2017). If the above measures are not sufficient to meet oxygen demand during hypoxia, then 

the fish will shift from aerobic to anaerobic respiration. Anaerobic respiration sets an important 

biochemical breakpoint used to commonly estimate the hypoxia tolerance of an organism. 

  Three common parameters used to measure hypoxia tolerance include determining the 

point of loss of equilibrium (LOE), critical oxygen tension (Pcrit), and the point at which 

organisms switch to anaerobic metabolism (most commonly assessed by increased lactate 

production). LOE is the PO2 (partial pressure of oxygen which signifies the oxygen 

concentrations of water) where the fish  fails to maintain an upright position in the water column.  

This loss of equilibrium is due to a shortage of oxygen delivery to the body tissues and if the 

environment is not rapidly reoxygenated this level of environmental oxygen will be fatal to the 

organism (He et al. 2015). The most commonly observed measures for LOE in literature are 
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LOEcrit and LOE50 (Wood 2018). Both measurements of LOE involve gradual reductions in DO 

either through nitrogen gas or closed loop respirometry. LOE50 measures the PO2 or total time 

until 50% of the fish sampled lose equilibrium (Babikian et al. 2017) while LOEcrit measures the 

PO2 or total time until loss of equilibrium occurs in each individual fish (He et al. 2015). 

Regardless of the methodology, as the tolerance of the organism to hypoxia increases, the value 

for LOEcrit or LOE50 will decrease. 

Determination of hypoxia tolerance via estimation of Pcrit relies on estimating the PO2 at 

which fish can no longer regulate their oxygen consumption (oxy-regulation) and oxygen 

consumption decreases with water PO2 below this point (oxy-conformation) (He et. al 2015; 

Rogers et al. 2016). To estimate Pcrit the oxygen consumption or metabolic rate of the organism 

is plotted against the oxygen availability in the environment (Figure 1.2). Higher Pcrit is 

associated with lower hypoxia tolerance and there are several physiological and ecological points 

along a MO2 vs. PO2 curve used to determine Pcrit  that are also relevant to AMS (Figure 1.2.). At 

Pcrit-max, MMR is limited by availability of ambient DO and begins decreasing proportionally 

with PO2 which represents the PO2 where AMS is initially compromised by hypoxia (Rosewarne 

et al. 2016; Rogers et al. 2016). At Pcrit-RMR, RMR begins decreasing proportionally with PO2 and 

resembles the point where fish switch from oxy-regulation to oxy-conformation (Rogers et al. 

2016). At Pcrit-SMR, AMS reaches zero and fish are unable to regulate SMR resulting in a shift to 

anaerobic respiration (Rogers et al. 2016 and Rosewarne et al. 2016).  

Additional methods to estimate hypoxia tolerance use biochemical markers to indicate 

the level of ambient DO at which the fish is forced to switch to anaerobic means of energy 

production. Lactate accumulation following hypoxia exposure can be used to determine 

efficiency in regulating SMR before shifting to anaerobic respiration (Speers-Roesch et al 2013; 
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Wood 2018). Another common tissue biomarker measured is tissue glycogen.  As carbohydrates 

are the sole fuel source under anaerobic conditions, a decrease in glycogen indicates an increased 

reliance upon glycolysis coupled with lactic acid fermentation for ATP production. As such, 

organisms with larger glycogen stores are typically more hypoxia tolerant since higher rates of 

lactic acid fermentation occur towards ATP production during anaerobic respiration (Speers-

Roesch et al. 2013).  Typically, two or more of the above methods of analysis are combined to 

provide a detailed description of the physiological and ecological effects of hypoxia on an 

organism. 

 

 

Figure 1.2. Plot of oxygen consumption (MO2) vs. water partial pressure of oxygen (PO2) during 
hypoxia exposure in relation to aerobic scope (AS) determined as the difference between 

maximum metabolic rate (MMR) and standard metabolic rate (SMR). Maximum critical oxygen 
tension of oxygen (Pcmax) represents the PO2 where AS is initially limited by hypoxia through 

reductions in MMR. Critical oxygen tension (Pcrit) resembles the PO2 where routine metabolic 
rate cannot be maintained and oxy-conformation occurs. PO2 below Pcrit signifies the transition 

from aerobic to anaerobic respiration. Figure obtained from Rogers et. al (2016). 
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Combined Effects of Increased Temperature and Decreased Oxygen on Aquatic Poikilotherms. 

Because DO decreases as temperature increases projected increases in temperature from 

climate change will inevitably lead to subsequent reductions in DO in aquatic environments. The 

interaction between low DO solubility and high temperatures poses the risk of a reduction in 

suitable aquatic habitats where cooler, deeper waters hold less oxygen than the warmer and more 

oxygenated surface limiting fish to an intermediate area with suitable oxygen and temperature. 

Therefore, it is proposed that fish are forced in thermal refuges during the summer where they 

will typically aggregate around cool thermal refuges when exposed to hypoxia, and the limitation 

in suitable habitat makes the fish more susceptible to disease, predation, and other crowding 

events (Coutant 1985).  

 Furthermore, MMR is limited by reductions in DO (Figure 1.2.) and SMR increases with 

supra-optimal temperature as metabolic reactions increase (Figure 1.1.) so a combination of 

hypoxia and high thermal stress exhibits a significant reduction in AMS and overall thermal 

tolerance as described by the oxygen and capacity limited thermal tolerance (OCLTT) hypothesis 

(McBryan et al. 2013; Rosewarne et al. 2016; Cook et al. 2006; Rogers et al. 2016; Farrell 2015). 

Similarly, regulating SMR becomes more costly at elevated temperatures leading to earlier onset 

of anaerobic respiration and lower hypoxia tolerance (Cook et al. 2006). However, some fish that 

are acclimated to warmer environments may show increased hypoxia tolerance since acclimation 

will give allow changes at the cellular level to increase oxygen uptake, delivery, and reduce 

energy demand (McBryan et al. 2016; Raby et al. 2016; Healy and Schulte 2012). The effect of 

temperature acclimation and hypoxia tolerance typically depends on the species, but less tolerant 
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species exhibit elevated RMR, LOEcrit and Pcrit along with reduced MMR at high thermal and 

hypoxic conditions (Yang Yang et al. 2015; He et al. 2015; Del-Toro Silva et al. 2008).  

 Projected increases of 3°C in aquatic environments pose possibilities of high thermal and 

subsequent hypoxic stress on aquatic poikilotherms (IPCC 2007; Rummer et al. 2013; 

Rosewarne et al. 2016). Rising temperatures will have many negative impacts on overall 

performance through reductions in AMS which will be synergistically exacerbated by hypoxia 

resulting in both reduced thermal and hypoxia tolerance as shown by the OCLTT hypothesis 

(Rosewarne et al. 2016; Cook et al. 2006; Rogers et al. 2016; Farrell 2015). Fish acclimated to 

higher temperatures are therefore expected to exhibit lower AMS along with higher Pcrit and 

LOEcrit. Freshwater fish will most likely rely primarily on avoidance behavior which may be 

limited by a reduction in suitable habitat through a temperature and oxygen squeeze (Coutant 

1985). Limitations in habitat further pose a threat of crowding events which can have 

significantly negative implications on fish populations. Therefore, it is important to understand 

how climate change will impact the survivability of fish species in future generations to better 

guide conservation efforts.  
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CHAPTER TWO: CLIMATE CHANGE EFFECT ON A SOUTHERN POPULATION OF 

STRIPED BASS (MORONE SAXATILIS) 

 Striped bass (Morone saxatilis) are a species of piscivorous fish whose geographic range 

extends along the North American Atlantic coast from the St. Lawrence River and the Bay of 

Fundy in the north to the St. John’s River and the Gulf of Mexico in the south (COSEWIC 2012; 

Coutant 1985). Along this range striped bass are traditionally divided into two populations, 

northern and southern, where the dividing line occurs in Cape Hatteras, North Carolina (Coutant 

1985; Dudley et al. 1977). The northern population includes all the groups present northward of 

Cape Hatteras to the St. Lawrence River in Canada and are mainly characterized by anadromous 

behavior and northerly coastal migrations during the summer to avoid high thermal stress in 

freshwater ecosystems (Coutant 1985; Dudley et al. 1977). The southern population which 

includes all the populations present from Cape Hatteras to the St. John’s River and Gulf of 

Mexico do not exhibit anadromous behavior but mainly remain in estuaries and freshwater 

ecosystems.  The differences in migratory behavior in southern populations may be attributed to 

higher ocean temperatures relative to estuary and river temperatures which limit survival of 

striped bass during the summer (U.S. and Wildlife Service 1983; Bjorgo et al. 2000; Dudley et 

al. 1977). 

Together, temperature and DO play a significant role in habitat selection and survival of 

striped bass (Coutant 1985 and Kraus et al. 2015). Coutant’s temperature-oxygen squeeze 

hypothesis states that temperature and oxygen synergistically confine striped bass into limited 

areas of habitat with suitable temperature and DO during the summer (Coutant 1985). As water 

temperatures increase, surface water temperatures reach supra-optimal temperatures and DO in 
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the surface (where DO is highest) becomes inaccessible to striped bass. Similarly, DO is lower in 

deeper waters and may be insufficient for optimal aerobic respiration to occur.  

Confinement into smaller thermal refuges makes the striped bass more susceptible to 

mortality events associated with crowding such as rapid spread of disease, predation, 

overfishing, etc. (Coutant 1985; Kraus et al. 2015; Lapointe 2014; Bettoli 2013; Herdrick et al. 

1987). For example, thermal and hypoxic stress are correlated with higher prevalence of 

mycobacteriosis in adult striped bass which results in observed reductions in AMS and Pcrit 

(Lapointe 2014). Crowding can further intensify transmission of the infection and put the fish at 

higher risk of contracting the bacteria (Lapointe et al. 2014; Hedrick et al 1987). Similarly, 

anthropogenic effects that damage these thermal refuges pose a severe threat to striped bass 

restricted to limited refuges as has been observed in past mortality cases where reductions in DO 

below 2 mg/L along a thermal refuge in Lake Norman caused significant mortalities in the 

summer (Coutant 1985; Thompson and Rice 2013;Bettoli 2013).  

Climate change is projected to influence striped bass habitat and distribution where the 

effect it will have depends on latitude and whether the population is anadromous or not (Coutant 

1990). An overall increase from one to three months of unsuitable conditions during the summer 

months with supra-optimal temperatures and hypoxic conditions is projected to occur along 

habitats occupied by non-anadromous southeastern populations (Coutant 1990). Fresh water 

habitats of these populations are already restricted by high temperatures and low oxygen 

availability during the summer so rising temperatures and longer summers pose a significant 

threat to these ecosystems (Coutant 1990). The southeastern populations are therefore the most 

susceptible to climate change and understanding their abiotic requirements is essential in their 

future conservation in the inevitable reality of climate change (Coutant 1990).   
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The current study focuses on a non-anadromous population of striped bass found along 

the Savannah River in Southeastern Georgia, USA which are stocked from a population naturally 

found along the Coosa River in Alabama. The Back River, which occurs closest to the mouth of 

the Savannah River, serves as the main spawning site for adults and is an important nursery site 

for young of the year and juvenile striped bass (Reinhert 2004; Dudley et al. 1977). During the 

summer, temperatures in the Back River exhibit daily average minimum and maximum 

temperatures of 25 and 30°C, respectively, with mean temperatures of 29°C (U.S. GEOL 

Survey). Concentrations of DO range from 4.3-7 mg/L with an average DO of 5.4 mg/L but can 

drop as low as 2.0 mg/L during the summer (Figure 2.1) (U.S. GEOL Survey). Research on 

various populations of striped bass shows that they prefer temperatures ≤ 25°C and DO 

concentrations ≥ 3 mg/L (Coutant 1985; Kraus et al. 2015; Mohan et al. 2014). Maximum 

summer temperatures in the Back River exceed the optimal range of juveniles (24-28°C) 

observed in northern populations of striped bass (Duston et al. 2004; Cox and Coutant 1981; U.S. 

and Wildlife Service 1983) posing the question whether temperature is limiting the success of 

juveniles along the Savannah River, and whether projected increases of 3°C resulting from 

climate change will threaten the future success of this population. 

The current study aimed to determine the thermal tolerance of juvenile striped bass in 

relation to current thermal ranges experienced in the Savannah River, how projected increases of 

3°C from climate change will affect their thermal tolerance, and the effect of current and 

projected temperatures on hypoxia tolerance. I hypothesized that thermal and hypoxia tolerance 

will be negatively affected by acclimation to increased temperatures. I predicted that i) Topt 

occurs at temperatures ≤20°C, ii) AMS will be significantly reduced at elevated temperatures (30 

and 33°C), and iii) a decrease in hypoxia tolerance which is demonstrated by an increase in 
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LOEcrit and Pcrit  at higher acclimation temperatures.  These physiological indicators of decreased 

hypoxia tolerance will be supported by biochemical indicators of a switch to anaerobic 

metabolism at a higher PO2 (increased lactate production). 

 

Figure 2.1. Data and graph obtained from the U.S. Geological Survey from 2014 to 2018 where 

temperature is shown in red and DO in green. Temperatures for the summer are significant since 
they exceed the observed optimal thermal range (24-28°C) of juveniles striped bass (Morone 
saxatilis). Data was collected from the Back River section of the Savannah River in Savannah, 

Georgia from gauge number 0219897945. 

 

MATERIALS AND METHODS 

 

Animal Collection & Holding Conditions 

Juvenile striped bass (n=30) were acquired from the Richmond Hill Hatchery (Richmond 

Hill, Georgia, USA). The fish were held in aerated, 100-gallon aquariums in the aquatic animal 

facility at Georgia Southern University and allowed to acclimate to room temperature water 

(20°C) with a salinity of 6ppt for at least 2 weeks prior to experimentation.  Fish were exposed to 

a 12:12 light/dark photoperiod cycle. They were fed cichlid pellets daily (except 24 hours prior 

to experimentation) and a water change of 30-40% was conducted twice a week. Mean fish 

weight was 176.17±8.44g and ranged from 107.95-252.50g. All experimental protocols were 
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approved by the Georgia Southern University Animal Care Committee in accordance with 

policies by the Institutional Animal Care and Use Committee (IACUC protocol #I17011). 

Experimental Design 

a) Temperature Acclimation 

Overall sample size was determined by availability of subjects where a portion of the fish 

(26) were separated into four different treatment groups and each group was exposed to one of 

four different water temperatures (20, 25, 30, or 33°C). The first temperature (20˚C, n=6) was 

the typical room temperature of the aquatic facility and was the temperature at which the holding 

tank for the striped bass was maintained. The second (25°C, n=6) and third (30°C, n=6) 

temperatures were selected based on temperature ranges from the U.S. Geological Survey gauge 

collected on the Back River section of the Savannah River (gauge number 0219897945) over a 

three-year time span from 2014 to 2016 (US GEOL Survey). The second temperature (25°C) was 

the lowest mean daily temperature in the selected summer months (June, July, and August), and 

the third temperature (30˚C) was the highest mean daily temperature in the selected summer 

months. The fourth temperature (33˚C, n=8) was selected using anticipated increases in water 

temperature (3˚C) as a result of global warming.  During experimentation, there were 1 and 4 

mortalities in the 25 and 33°C acclimation temperature groups, respectively. The sample size for 

the data set was n=5 and n=4 for the 25 and 33°C, respectively. At the onset of each acclimation 

period, water was heated at a rate of 0.5˚C per day to the test temperature. Fish were held at the 

set temperature for 15-24 days (average 19 days) to allow them to acclimate to the temperature 

change.  
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b) Maximum and Routine Oxygen Consumption  

Intermittent-flow through respirometry was employed to measure dissolved oxygen 

(mg/L) in 10 second intervals using Pyro Oxygen Logger V3. 213. The respirometry set-up (total 

of 4.76 Liters in system) followed the design of Svendsen et al. 2015 and consisted of a chamber 

where the fish were placed, flush and recirculation pumps to circulate water through the system, 

a FireSting O2 sensor, and tubing to interconnect the system (Figure 2.2.). The flush pump 

allowed aerated water to enter and leave the system while the recirculating pump kept water 

circulating within a closed loop. When both pumps were running, water ran through the 

closed/recirculating system and the open/flush system. Turning off the flush pump allowed water 

to circulate within the closed loop without allowing aerated water from the tank to enter the 

system. This allowed the fish to naturally bring down DO to measure oxygen consumption. 

The intermittent-flow through respirometry followed three phases in the following order: 

flush, wait, and measurement (Figure 2.3.). In the flush phase (4 minutes), both pumps were 

connected, and oxygen levels balanced out with those from the tank. In the wait phase (2 

minutes), oxygen levels dropped slightly. In the measurement phase (4 minutes), oxygen levels 

linearly declined as they were consumed by the fish. The initial (prior to the fish being placed in 

the chamber) and final (after fish was removed from chamber following LOE) background 

respiration rates were measured (10 minutes) to compensate for oxygen consumption from 

microbial activity that may have accumulated during experimentation. Background respiration 

rate was determined under the assumption that background oxygen consumption accumulated 

linearly between the initial and final background measurements (Svendsen et al. 2015).  

 For each individual experimental trial, one fish was removed from its acclimation tank, 

moved to another 20-gallon tank (with aerated water at test temperature), and manually chased as 
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described in Figure 2.4. until exhaustion (~5 minutes) occurred. Fish were considered exhausted 

when they did not respond to touch or were unable to increase speed to escape touch. To ensure 

exhaustion, fish were exposed to 1 minute of air while they were weighted using a standard gram 

scale and were immediately transferred to the respirometry chamber to measure MMR for 4 

minutes following the respirometry protocol outlined above.  The flush pump was activated and 

the fish remained undisturbed in the chamber for at least 12 hours following the MMR 

measurement. The walls of the 40-gallon tank holding the respirometry chamber were covered in 

black plastic bags and noise levels were kept to a minimum to prevent the fish from being 

disturbed. All trials were initiated at approximately the same time of day (5:00 pm Eastern Time) 

to prevent any differences due to diurnal patterns in metabolic rate. After 12 hours, a 

measurement of RMR was obtained over a 4 minute measurement period following the 

respirometry protocol outlined above.  

Both RMR and MMR were calculated using the following formula: 

 

𝑦 =
[𝛽(𝐾1 ∗ (𝑉 −𝑀))− (𝐾2 ∗ 𝑉)]

𝑀
 

 

 

Where y is MO2 (kPa O2/h/kg) corrected for fish mass, background respiration, time between 

measurements, and volume of the chamber. β is the oxygen solubility coefficient (mg O 2/L/kPa), 

K1 is the rate of oxygen consumption (kPa/hour) during the 4 minute MMR or RMR 

measurement, V is the volume of the chamber (Liters), M is the mass of the fish (kg), and K2 is 

the estimated background consumption rate (kPa/hr). K2 was calculated as:   
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𝐾2 = (𝐾𝑖+𝐾𝑓) ∗ 𝑡  

 

Where Ki is the initial background respiration, Kf is the final background respiration and t is the 

time of oxygen consumption measurement since the initial background measurement. 

Temperature coefficients (Q10) were calculated using the following formula: 

 

𝑄10 = (
𝑅2

𝑅1

)
10

(𝑇2−𝑇1 ) 

 

Where R1 and R2 are the mean RMR at the lower and higher temperatures, respectively. T1 and 

T2 correspond to the lower and higher acclimation temperature, respectively. RMR at all 

temperatures were compared with each other. 

Aerobic scope (mg O2/h/kg) was calculated as the difference between maximum and routine 

metabolic rate. 
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Figure 2.2. Set-up of the intermittent-flow through respirometry chamber where arrows describe 
the movement of water. Water enters the system through the flush pump, leaves through the 
outlet, or recirculates within the system through the recirculation pump. Dissolved oxygen is 

measured as water flows through the oxygen sensor. Oxygen consumption is measured when the 
system is closed (flush “off’) and oxygen reductions are measured as the fish consumes oxygen 

in the water flowing through the closed system. Figure obtained from Rosewarne et al.(2016). 

 

 

 

Figure 2.3. Changes in O2  content at the different phases of intermittent flow respirometry. 

During the flush phase, water is entering the system from the tank through the flush pump and 

the respirometry system is open. During the wait phase, the system is closed (flush pump “off”) 

and oxygen levels are stabilized within the closed system. During the wait phase oxygen levels 

decrease as they are consumed by the fish within the chamber. Figure obtained from Rosewarne 

et al. (2016). 
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Figure 2.4. Tank where fish were manually chased to exhaustion. A large obstacle was placed in 

the middle to allow the fish to swim around in a circle (rather than randomly throughout the 

tank) while being chased by either a net or the researcher’s hand. The caudal fin of fish were 

lightly pressed between two fingers or the fish was softly touched with the net to stimulate 

movement in fish away from the stimuli.  

 

c) Hypoxia Tolerance 

i) LOEcrit 

After measuring RMR, the flush pump remained off to allow oxygen levels to drop below 

normoxic conditions. DO was reduced by the fish in the closed loop chamber, continuously 

recorded at 10 second intervals, and the fish was visually monitored until loss of equilibrium 

occurred. Loss of equilibrium was confirmed when the fish failed to maintain upright position 

for 10 seconds and was unable to gain equilibrium when touched within the chamber. If the fish 

gained equilibrium, it was kept in the chamber. When it did not regain equilibrium, the fish was 

removed from the chamber, the PO2 (kPa) where LOE occurred was recorded, and the fish was 

terminally sampled for blood (procedure described below)..  



28 
 

ii) Critical Oxygen Tension (Pcrit-RMR) 

MO2 was calculated in 4-minute intervals using the formula described above. Mass 

corrected MO2 values were plotted against their corresponding initial PO2 values (Figure 1.2) 

and analyzed using the rMR-package which utilizes the BASIC program designed by Yeager and 

Ultsch (1989) to determine the inflection point signifying Pcrit.  

 

iii) Biochemical Analysis 

Blood was drawn from the caudal artery of the fish and centrifuged at 1500 rpm for 10 

minutes to separate the blood and plasma (stored at -80°C for biochemical analysis). The fish 

were then killed with a blunt trauma to the head followed by cervical displacement.  

Plasma was deproteinated by adding 5X volume of 6% perchloric acid, vortexed and 

chilled on ice for five minutes and centrifuged at 1500 rpm for 10 minutes at 4°C. Additionally, a 

serial 6-point, two times serial dilution using 6% PCA as the solvent was performed to create a 

set of L-(+)-Lactic Acid (Sigma-Aldrich, L1750) standards ranging from 1.65 to 0 mM. Lactate 

was measured in each sample or standard (in triplicate) by adding 25 µl of the resulting sampling 

supernatant or standard to 200 µl assay buffer containing glycine buffer (Sigma-Aldrich, G5418) 

and 2.5 mM NAD+ in each well of a 96-well microplate and incubated (while shaking) for 15 

minutes at room temperature.  The reduction of NAD+ to NADH was initiated by adding 10 

units/ml of L-Lacatic Dehydrogenase from rabbit muscle (Sigma L-2500) to each well.  Samples 

were incubated (while shaking) for an additional 30 minutes at room temperature.  Assay buffer 

without NAD+ and 25 µL of the LDH-assay buffer solution were loaded in each well. The 

microplate was left on the shaker for an additional 30 minutes and the samples were then assayed 

on a SpectraMax Plus 384 Spectrophotometer at a wavelength of 340 nm using SoftMax Pro 
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software. Lactate accumulation rate was calculated as lactate concentration divided by the total 

time spent in the closed respirometry chamber following the RMR measurement until LOE 

occurred. Initial lactate concentration was assumed to be negligible for all fish.  

Statistical Analysis 

The statistical program JMP PRO13 was used to analyze among group variation in 

aerobic scope, MMR, RMR, LOE, and lactate accumulation rates across temperature acclimation 

groups using a one-way ANOVA. RMR, LOEcrit (PO2 and total time), and lactate accumulation 

rates were converted to natural logs to fit the normal distribution and equal variance assumptions 

of ANOVAs. Lactate concentrations did not fit the equal variance assumption of ANOVAs so a 

Welch’s test was used to determine among group variation across temperature acclimation 

groups. A Tukey-Kramer test was used to determine within group variation across treatments. 

The Shapiro-Wilk W Test was used to test for normality and a Levene Test was used to test for 

equal variances for all analyses. P values below 0.05 were considered statistically significant.  
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RESULTS 

Thermal Tolerance:  

a) Routine and Maximum Oxygen Consumption: 

Mean mass corrected RMR was 122.23 ± 13.62, 153.19 ± 21.85, 181.69 ± 28.80, and 

214.30 ± 21.35 mg O2/h/kg for acclimation treatment groups 20, 25, 30, and 33°C, respectively. 

Acclimation temperature had a significant effect on RMR where RMR significantly increased by 

75.32% from 20 to 33°C (Figure 2.5. and Figure 2.6.).  Q10 was highest between 30 and 33°C 

(1.7) and all Q10 values were above 1 (Table 2.1.). Mean mass corrected MMR was 317.94 ± 

25.33, 246.51 ± 7.27, 315.37 ± 9.80, and 295.60 ± 24.45 mg O2/h/kg for acclimation temperature 

groups 20, 25, 30, and 33°C, respectively. Acclimation temperate had a significant effect on 

MMR but post hoc tests were not significant. When the 25°C group was removed, acclimation 

temperature did not have a significant effect on MMR (Figure 2.6.). 
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Figure 2.5. Mean oxygen consumption (mg O2/h/kg) in juvenile Morone saxatilis acclimated to 
20, 25, 30, or 33°C). Acclimation temperature had a significant effect on RMR (one-way ANOVA, 
F=3.4156, P=0.0413) and MMR (one-way ANOVA, F=3.2441, P=0.0480). RMR values were 

converted to natural logs to fit the normal distribution assumption of ANOVAs. Different letters 
indicate a significant difference (P<0.05) between temperature groups (Tukey post hoc test). All 

data are means ± SEM n=6 for 20°C, n=5 for 25°C, n=6 for 30°C, and n=4 for 33°C.  

 

 

Figure 2.6. Mean oxygen consumption (mg O2/h/kg) in juvenile Morone saxatilis acclimated to 
20, 30, or 33°C. Acclimation temperature had a significant effect on RMR (one-way ANOVA, 

F=5.5802, P=0.0178). RMR values were converted to natural logs to fit the normal distribution 
assumption of ANOVAs.  Acclimation temperature did not have a significant effect on MMR 

(one-way ANOVA, P>0.05). Different letters indicate a significant difference between 
temperature groups (Tukey post hoc test). All data are means ± SEM n=6 for 20°C, n=5 for 

25°C, n=6 for 30°C, and n=4 for 33°C. 

a
ab

ab
b

0

50

100

150

200

250

300

350

400

15 20 25 30 35

M
O

2
 (

m
g 

O
2

/h
/k

g)

Temperature (°C)

MMR RMR

a

ab
b

0

50

100

150

200

250

300

350

400

15 20 25 30 35

M
O

2
(m

g 
O

2
/h

/k
g)

Temperature (°C)

MMR RMR



32 
 

 

Table 2.1. Temperature coefficients in juvenile Morone saxatilis calculated for changes in RMR 

between acclimation temperatures.  

Temperatures (°C) Q10  

20-25 1.6 

20-30 1.5 

20-33 1.5 

25-30 1.4 

25-33 1.5 

 30-33 1.7 

 

 

 

b) Aerobic Scope 

 

Mean mass corrected AMS was 195.70 ± 31.57, 93.33 ± 26.65, 133.69 ± 22.97, and 

81.30 ± 26.60 mg O2/h/kg for acclimation treatment groups 20, 25, 30, and 33°C, respectively. 

Acclimation temperature had a significant effect on AMS but post hoc tests were not significant 

(Figure 2.7.) When the 25°C temperature acclimation group was removed, acclimation 

temperature had a significant effect on AMS where AMS significantly decreased by 74.4% 

between the 20 and 33°C acclimation groups (Figure 2.8.). 
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Figure 2.7. Mean AMS (mg O2/h/kg) in juvenile Morone saxatilis acclimated to 20, 25, 30, or 
33°C). Acclimation temperature had a significant effect on AMS (one-way ANOVA, F=3.4882, 
P=0.338). There was no significant difference in AMS between acclimation temperature groups 

(Tukey post hoc test). All data are means ± SEM n=6 for 20°C, n=5 for 25°C, n=6 for 30°C, and 

n=4 for 33°C.  

 

 

Figure 2.8. Mean AMS (mg O2/h/kg) in juvenile Morone saxatilis acclimated to 20, 30, or 33°C. 

Acclimation temperature had a significant effect on AMS (one-way ANOVA, F=3.8837, 
P=0.0476). Different letters indicate a significant difference between temperature acclimation 

groups (Tukey post hoc test). All data are means ± SEM n=6 for 20°C, n=5 for 25°C, n=6 for 

30°C, and n=4 for 33°C. 
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Hypoxia Tolerance: 

a) LOEcrit 

Mean LOEcrit was 1.74 ± 0.23, 1.82 ± 0.13, 2.18 ± 0.29, and 3.22 ± 0.43 kPa at 

acclimation temperatures 20, 25, 30, and 33°C, respectively. Acclimation temperature had a 

significant effect on LOEcrit where LOEcrit significantly increased at temperatures above 25°C 

with a significant effect occurring at 33°C (Figure 2.9.). Mean total time until LOEcrit was 250.92 

± 41.97, 399.87 ± 79.52, 94.72 ± 15.56, and 66.75 ± 17.25 minutes at acclimation temperatures 

20, 25, 30, and 33°C, respectively. Acclimation temperature had a significant effect on total time 

until LOEcrit occurred where time until LOE decreased significantly at acclimation temperatures 

above 25°C (Figure 2.10.). Both measures of PO2 and time where LOEcrit  occurred show the 

same trend that hypoxia tolerance decreases at temperatures above 25°C with the most 

significant effect occurring at 33°C. 
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Figure 2.9. PO2 (kPa) where LOEcrit occurred in juvenile Morone saxatilis acclimated to 20, 25, 
30, or 33°C. Temperature had a significant effect on LOEcrit (one-way ANOVA, F=4.5523, 
P=0.0185). kPa values were converted to natural logs to fit normal distribution assumptions of 

ANOVAs. Different letters indicate a significant difference between temperature groups (Tukey 
post hoc test). All data are means ± SEM n=4 for 20°C, n=5 for 25°C, n=6 for 30°C, and n=4 for 

33°C.  

 

Figure 2.10. Mean total time (minutes), following measurement of RMR where chamber 

remained closed allowing juvenile Morone saxatilis to bring down DO until LOE occurred, in 
juveniles acclimated to 20, 25, 30, or 33°C. Temperature had a significant effect on time until 

LOE occurred (one-way ANOVA, F=14.4944, P=0.0001). Time values were converted to 
natural logs to fit normal distribution assumptions of ANOVAs. Different letters indicate a 
significant difference between temperature groups (Tukey post hoc test). All data are means ± 

SEM n=4 for 20°C, n=5 for 25°C, n=6 for 30°C, and n=4 for 33°C. 
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b) Pcrit 

Due to the large amount of interindividual variability we were not able to confidently 

obtain mean values for Pcrit data for each acclimation temperature. Instead, three individuals from 

each acclimation temperature, whose curves most closely exhibited a theoretical relationship 

(Figure 1.2) between external PO2 and RMR were selected to present the trends in the data set 

(Figure 2.11.) Only fish #17 (Figure 2.11G.) and fish #12 (Figure 2.11J.) acclimated to 30 and 

33°C, respectively, exhibited curves that fit the stereotypical plot for Pcrit analysis. Pcrit was 

higher (8.51 kPa) in the individual acclimated to 33°C relative to the individual (7.50 kPa) 

acclimated to 30°C. Pcrit was determined at the x-intercept between the two linear regression 

lines for Fish #12 but Pcrit in fish #17 was determined as the mid-point between the two linear 

regression lines since the continuity assumption of the model was violated (Yeager and Ultsch 

1989) and the intercept between the lines was skewed right. 
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Figure 2.11. Oxygen consumption (mg O2/h/kg) at specified PO2 (kPa) in individual juvenile 
Morone saxatilis. Figures A-C, D-F, G-I, and J-L correspond to individuals acclimated to 20, 25, 
30, and 33°C, respectively. The three curves that most closely resemble the theoretical MO2 vs. 

PO2 (Figure 2.) relationship were selected for 3 fish from each temperature acclimation group.   
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c) Lactate 

Mean plasma lactic acid concentration was 12.65 ± 0.80, 12.75 ± 1.71, 14.45 ± 0.91, and 

12.06 ± 2.71 mM at acclimation temperatures 20, 25, 30, and 33°C, respectively. Temperature 

did not have a significant effect on lactic acid concentration (Figure 2.12.). However, 

acclimation temperature had a significant effect on lactate produced over the time when fish 

were in the closed respirometry system which increased significantly at acclimation temperatures 

above 25°C. Lactate accumulation rate was 0.07 ± 0.013, 0.042 ± 0.015, 0.18 ± 0.04, and 0.19 ± 

0.03 mM/minute at acclimation temperatures 20, 25, 30, and 33°C, respectively (Figure 2.13.). 

Lactate levels were assumed to be negligible or at baseline levels when fish were in an open 

respirometry set-up as they had access to fully aerated water and fish were at rest under 

normoxic conditions for at least 12 hours prior to measurement.  
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Figure 2.12. Mean plasma lactate concentrations (mM) following LOE in juvenile Morone 
saxatilis acclimated to 20, 25, 30, or 33°C. Temperature did not have a significant effect on 
plasma lactate concentrations (one-way ANOVA, P>0.05). All data are means ± SEM N=6 for 

20°C, N=5 for 25°C, N=6 for 30°C, and N=4 for 33°C.  

 

Figure 2.13. Mean plasma lactate production (mM after LOEcrit /Total time until LOE) following 
LOE in juvenile Morone saxatilis acclimated to 20, 25, 30, or 33°C. Temperature had a 

significant effect on plasma lactate production (one-way ANOVA, F=12.7804, P=0.0002). 
Lactate accumulation rate values converted to natural logs to fit normal distribution assumption 

of ANOVAs. Different letters indicate a significant difference between temperature groups 
(Tukey post hoc test). All data are means ± SEM N=6 for 20°C, N=5 for 25°C, N=6 for 30°C, 

and N=4 for 33°C.  
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DISCUSSION 

 The data obtained from this study demonstrated that chronic exposure to temperatures in 

the upper summer range result in an overall decrease in performance and low oxygen tolerance 

in southern juvenile striped bass. The significant reduction in aerobic scope paired with the 50% 

mortality that occurred in fish acclimated to 3°C above current-day summer high temperatures 

indicates the southern populations of striped bass may be at risk due to a reduction in energy 

being available for vital life history processes such as growth, reproduction and predatory-prey 

interactions during a substantial portion of the year. Furthermore, these supra-optimal 

temperatures occur at a section of the Savannah River that serves as the main nursery for 

juveniles during the summer posing a threat to the success of future populations. 

Thermal Tolerance 

As expected, the routine metabolic rate of striped bass was directly affected by 

acclimation temperature. RMR steadily increased with acclimation temperature, with the highest 

rate occurring in the 33°C acclimation group (Figure 2.5.). Most biological reactions, including 

metabolic rate, exhibit a predictable response to changes in environmental temperature, with 

rates doubling or tripling for every 10°C increase in temperature (Q10 = 2-3) (Clarke and Johnson 

1999). The Q10 for routine metabolic rate for the striped bass was 1.4 – 1.7 across the acclimation 

temperatures, with the highest Q10 between 30 and 33°C (Table 2.1.). Although these Q10 values 

were slightly lower than the standard 2-3 range for metabolic reactions, they are consistent with 

the typical range (Q10 = 1.5 – 2) observed for teleost fish (White et al. 2006).  Also, it has been 

shown that a reduction in Q10 can result from partial compensation following thermal 

acclimation through changes at the cellular level that increase efficiency of cellular respiration 

(Lurman et al. 2013; Kruger and Brocksen 1978; George and Hochachka 1971).   
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As RMR increases with temperature, so does the minimum energy required for basic life 

sustaining processes within the organism and as a result less energy can be used for foraging, 

digestion, and growth resulting in reduced performance of these traits (Farrell 2015; Rosewarne 

et al. 2016). Hartman and Brandt (1995) demonstrated this tradeoff in the scope for growth of 

Northern juvenile striped bass from Chesapeake Bay. Scope for growth measures the amount of 

energy used for growth relative to basal metabolism under maximum food consumption at 

variable temperatures and was determined using a bioenergetics model based on Winberg’s 

balanced energy equation where energy for growth is calculated as consumed energy minus the 

energy utilized for RMR, egestion, and lost during excretion. Juveniles acclimated to 29°C (the 

average summer temperature of the water in their habitat) exhibited elevated RMR and reduced 

growth relative to those in other temperatures. Similarly, food consumption decreased with 

increased RMR at higher temperatures in Chesapeake juveniles signifying reduced foraging 

activity (Cox and Coutant 1981). Comparison between previous studies and the results from our 

study suggest that RMR, and therefore the basic costs of sustaining life, may be similar 

throughout striped bass populations.  

The northern populations of striped bass appear to rely upon the coastal migrat ion to keep 

themselves within their optimal temperature range, but this behavioral response is not observed 

in the southern populations.  Instead, adults migrate upstream towards thermal refuge and the 

juveniles remain within the estuary where they are chronically exposed to supra-optimal 

temperatures and to prolonged periods of elevated costs of life (Dudley et. al 1977). Prolonged 

exposure to current temperatures poses a threat to the performance of the population since less 

energy can be devoted to essential biological processes, and future projections pose a more 

significant risk since the basic cost of life accounted for most of the consumed oxygen in fish 
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acclimated to these temperatures.  Therefore, striped bass in the Savannah River could be more 

vulnerable to climate change since they experience higher temperatures relative to northern 

populations during the summer that already result in reduced performance.  

MMR remained relatively constant with increasing acclimation temperature (Figure 2.5. 

and Figure 2.6.). Typically, reductions in MMR are associated with DO limitations (Rosewarne 

et al. 2016; Rogers et al. 2016) so the reduction in MMR at 25°C is unexpected. There were 

unexpected elevated ammonia levels in the acclimation tank that could have placed fish under 

additional stress resulting in a slight, but non-significant decrease in MMR at 25°C. Although it 

did not result in a significant decrease in MMR, it did result in a decrease in AMS at this 

temperature. Otherwise, MMR exhibited expected results across all temperature treatment groups 

since MMR exponentially increases with temperature until a peak temperature is reached and 

then remains relatively constant as observed in the data from our study (McBryan et al. 2013). 

The results from this study are consistent with observations made in adult striped bass from 

Chesapeake Bay where MMR did not exhibit significant changes between fish acclimated to 20 

and 28°C (Lapointe et al. 2014).  

Most notably, projected increases of 3°C had a large negative effect on fish survival. 

Mortalities were significantly high in the 33°C group where 50% of the the fish died in the 

respirometry chamber following measurements of MMR signifying that half of the fish were not 

even able to perform activities requiring spurts of activity above RMR. This poses serious 

consequences for survival where the fish will be unable to escape predators, forage, or exhibit 

avoidance behavior towards areas with suitable temperatures for extended periods of time in 

future summers.  
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The reduction in AMS is attributed to the increase in RMR with relatively constant MMR 

as acclimation temperature increases (Figure 2.8.). The increasing cost of life at higher 

temperatures brings RMR closer to its upper boundary of aerobic metabolism resulting in less 

oxygen for non-basal biological processes (Rosewarne et al. 2016; Ferreira et al 2015). The 

observed results suggest that the Topt for AMS occurs at temperatures ≤20°C where available 

energy for non-basal biological processes is maximized. Tpejus appears to occur at temperatures 

above 20°C as was observed in a reduction in AMS at 30°C signifying that AMS is already 

negatively impacted by current maximum summer temperatures. To our knowledge, Tcrit for 

juvenile striped bass exposed to chronic increases in temperature have not been determined, but 

the high mortality rate of 50% coupled with a significant reduction of 74.4% in AMS between 20 

and 33°C suggests Tcrit may be around 33°C. Therefore, projected temperatures of 33°C result in 

failure to maintain aerobic metabolism along with the basic mechanisms of life so the fish must 

rely on anaerobic respiration for its energetic demands.  

Temperatures in the Savannah River range from 25-30°C in the summer and are ~29°C 

on average (US GEOL Survey; Will et al. 2001; Dudley et al. 1977). Based on the performance 

curves generated from our data, these mean and maximum summer temperatures are already high 

enough to result in reductions in AMS and overall performance for these juveniles. Temperatures 

above 30°C severely limit AMS where the cost of life is so high that short spurts of activity are 

highly costly and can result in fatality from energetic limitations. If current climate change 

projections persist, populations of southern striped bass face significant challenges from 

metabolically limited performance and may have to rely on avoidance or migratory behavior to 

find thermal refuge.  
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Adult striped bass in the Savannah exhibit upstream migrations towards cooler waters 

upstream and are even hypothesized to cross towards neighboring rivers like the Ogeechee River 

allowing them to temporarily escape stressful thermal conditions (Dudley et al. 1977; Roberts 

personal communication). However, juveniles are less likely to undertake such migrations due to 

the increased threats of predation, exhaustion, and starvation that are possible during migration 

(Coutant 1985). Juveniles in the Savannah River may currently rely on behavioral avoidance of 

supra-optimal temperatures towards cooler refuges such as near dams, shores, or sandbars as has 

been observed in juveniles along an estuary of the Chesapeake Bay during the summer (Kraus et 

al. 2015). 

 The future survival of juveniles in the Back River relies on the preservation of thermal 

refugia, and  studies on spatial variation in juveniles along the Back River in relation to 

temperature should be conducted to observe the variation in temperature between thermal 

refuges and calculated parameters (such as range and mean) of the overall system. This 

information can be used to provide a better understanding of their current thermal tolerance in 

relation to temperatures in thermal refuges, the impact climate change will have on these thermal 

refuges, and preservation of these thermal refuges. It would also be important to further study 

thermal and hypoxia tolerance in larger individuals to establish whether the potential impacts of 

climate change will be primarily on younger fish or the entire population.  
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Hypoxia Tolerance: 

As predicted, there was a significant reduction in hypoxia tolerance in fish at the highest 

acclimation temperatures (30 and 33°C) representing the current summer high and projected 3°C 

above the current summer high. This was exemplified by a 32% increase in PO2 where LOEcrit 

occurred between 30 and 33°C (Figure 2.9.), and a 76% decrease in total time until LOEcrit 

occurred between 25 and 30°C (Figure 2.10.). This high temperature related reduction in hypoxia 

tolerance is likely a result of the fish acclimated to warmer temperatures requiring a higher 

minimum level of environmental oxygen to sustain elevated rates of oxygen consumption due to 

a temperature induced increase of up to 43% in RMR.    

Hypoxia tolerance in acclimated juvenile striped bass at rest depends on the ability to 

depress RMR through reduction of oxygen-demanding activities such as digestion, locomotion, 

and growth (Nelson and Lipkey 2015; Matthews and McMahon 1999). Therefore, elevated RMR 

with temperature may offset their ability to depress RMR resulting in reduced hypoxia tolerance 

(Nelson and Lipkey 2015; Kruger and Brocksen 1978; McBryan et al., 2016).) which likely 

explains why LOEcrit significantly increased with temperature. Reduction in hypoxia tolerance at 

higher acclimation temperatures through measures of LOEcrit were also observed in Chinese 

crucian carp, cardinal fish, lemon damsel fish, and blunt snout bream (Yang Yang et al. 2015; 

Nillson et al. 2010; Wu et al. 2017).  

However, PO2 where LOEcrit  occurs decreases with temperature in killifish when exposed 

to hypoxic conditions following thermal acclimation (McBryan et al. 2016). Differences between 

acute increases in temperature and acclimation to temperature affect hypoxia tolerance. Acute 

increases in temperature directly affect hypoxia tolerance since higher SMR from elevated 

temperatures is more costly to maintain requiring higher DO in the environment. However, high 
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thermal acclimation can sometimes result in compensatory mechanisms that make the fish more 

efficient in obtaining oxygen form the environment, as observed in killifish whose increase gill 

surface area increased at higher acclimation temperatures, resulting in increased hypoxia tolerance 

(McBryan et al. 2016). Our data suggests that southern striped bass are likely not capable of 

making major compensatory changes such as the gill remodeling seen in southern populations of 

killifish that allow them to become more efficient at obtaining oxygen from the environment at 

higher temperatures. 

The reduction in hypoxia tolerance at higher temps was also supported by evidence at the 

biochemical level showing higher rates of lactic acid production at acclimation temperatures 

above 25°C with a significant increase of 77% between 25 and 30°C (Figure 2.13.). This 

signifies that anaerobic respiration occurred earlier and at higher rates in high temperature 

acclimation groups which shows that they were less able to regulate RMR at higher temperatures 

resulting in an earlier shift to anaerobic respiration, and higher temperatures elevated the rate of 

lactic acid fermentation which can result in lactic acidosis at high concentrations. Similarly, 

plasma lactate concentrations (Figure 2.12.) are ~7 and 1.5 times higher following hypoxia 

induced LOEcrit relative to juvenile striped bass at rest and following exhaustive exercise, 

respectively (Nickinmaa et al. 1984). When mean lactic acid concentrations for all four 

temperature treatment groups were calculated, they equaled 1169 mg/L which is consistent with 

lactic acid concentrations (1170 mg/L) obtained from adult striped bass along the Sacramento-

San Joaquin river system that were characterized as being in poor condition and subsequently 

experienced high mortality following tagging protocol (Chadwick 1968).  
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i) Pcrit 

The partial pressure of environmental oxygen at which supply no longer meets the resting 

demand for oxygen is termed the critical oxygen tension (Pcrit).  This vital point has been widely 

accepted, and used, as an indicator of the hypoxia tolerance level of a fish and it is generally 

observed that an increase in RMR due to acclimation to higher temperatures is accompanied by 

an elevation in Pcrit (He et. al 2015; Rogers et al. 2016; Rosewarne et al. 2016). Recent literature 

criticizes the use of Pcrit as a measure of hypoxia tolerance stating that it allows researchers to 

select their data, there are multiple way to determine it (MMR, RMR, and SMR), it is not 

biologically justifiable, and several other reasons that make it an unsuitable measure of hypoxia 

relative to other methods (Wood 2018). Wood (2018) suggests using other methods such as LOE 

and lactate analysis as measures of hypoxia tolerance. Similarly, Speers-Roesch et al. (2013) 

suggest coupling LOE and biochemical analyses with Pcrit studies to receive conclusive results 

for comparative studies on hypoxia tolerance.  

This study took into consideration the criticism of Pcrit and several precautions were taken 

to test the Pcrit of juvenile striped bass. When selecting the Pcrit data, we measured MO2 at each 

value of PO2 possible in incremental increases or decreases of 1 kPa, and in incremental 

increases of 2 kPa when there was overlap between initial DO values to calculate MO2 (Figure 

2.11). When selecting the appropriate initial DO value to calculate MO2 at a specific PO2, we 

converted DO from mg/L to kPa and chose the value that was at least within a hundredth of the 

selected kPa. Similarly, Pcrit was measured along with LOE and plasma lactate production to 

further strengthen the hypoxia tolerance results.  A high degree of interindividual variability, 

multiple transition points, and inability to establish a oxy-regulator line made determination of 



48 
 

Pcrit challenging so Pcrit  results were excluded from the interpretation of hypoxia tolerance (Figure 

2.11).  

We can conclude from this study that projected increases in temperature reduce hypoxia 

tolerance in juvenile striped bass through elevations in RMR that exceed compensation 

mechanisms to depress RMR resulting in earlier onset of anaerobic respiration coupled with 

elevated lactic acid fermentation. Temperature induced hypoxia conditions will likely increase in 

aquatic environments like the Savannah River and limit the ability of juvenile striped bass to 

uptake oxygen from their environment through limitations in MMR. Similarly, higher 

temperatures will limit the amount of suitable habitat and alternations in DO of thermal refuges 

will be less tolerated. Availability of areas with suitable temperature and DO may be a key factor 

in striped bass preservation and survival in the future. Future studies on the biochemical 

mechanisms involved in hypoxia tolerance in striped bass populations should be pursued to 

better understand their susceptibility to changes in temperature. 

Future Directions and Conclusions: 

Climate change is projected to influence striped bass habitat and distribution (Coutant 

1990). Riverine or semi-riverine populations are expected to become fully riverine and make 

further up-stream migrations during the summer months (Coutant 1990). An increase from one to 

three months of unsuitable conditions during the summer months characterized by supra-optimal 

temperatures followed by hypoxic conditions is projected to occur. Similarly, cool spring and 

water discharge that feed the rivers may diminish in the future due to reduced groundwater 

recharge and increased human groundwater withdrawals, resulting in higher water temperatures 

and fewer available cool water refuges with sufficient DO (Coutant 1990).   
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Thermal and hypoxia tolerance decreases with acclimation temperature in juvenile striped 

bass from the Savannah River. Daily mean maximum summer temperatures already exhibit 

reductions in AMS which result in reduced overall performance of non-basal biological 

processes like growth, activity, and foraging (Ferreira et al. 2014; Rosewarne et al. 2016; 

Rummer et al 2013).  Anticipated increases of 3°C resulting from climate change by the end of 

the century pose a significant threat to juvenile striped bass in the Savannah River where half of 

the subjects did not survive experimentation and the remaining exhibited significantly low AMS 

that severely limits performance and makes them very susceptible to predation, starvation, and 

entrapment in unsuitable habitats. Extended summer conditions could result in local extirpation 

of striped bass if the predicted changes in temperature occur. 

Hypoxia tolerance is low in current summer conditions and will decrease further with 

anticipated increases in temperature in these fish. Higher temperatures will further limit their 

performance indirectly through AMS or directly through limitations in RMR depression resulting 

in time limited survival through anaerobic respiration. Furthermore, inverse reductions in DO 

with temperature will further limit the striped bass habitat in the Savannah River and may 

increase the risk of mortalities due to crowding in thermal refuges along the Savannah 

River (Coutant 1985).  

Striped bass suffered significant declines in population following construction of the Tide 

Gate along the Back River section of the Savannah River which served as a major nursery for 

striped bass larvae and juveniles. Removal of the Tide Gate along with stocking efforts by the 

GA-DNR has resulted in an estimated survival of 35-45% in stocked juveniles exhibiting an 

overall population growth (Reinert 2004; Will et al. 2001). Although spawning is being 

observed, it is not sufficient for a self-sustaining population that can occur without active 
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stocking (Will et al. 2001). High temperatures in the Savannah River during spawning season 

may be playing a role through a reduction in reproductive performance.  

Similarly, growth may be limited in juveniles at high temperatures resulting in a longer 

time until sexual maturity is reached. Results from this study suggest that temperature may be a 

limiting factor in striped bass success along the Savannah River. As temperatures rise within the 

following century, striped bass may have to embark in longer migrations upstream or make 

migrations to other, and more suitable, bodies of water as has been hypothesized for Savannah 

River striped bass. The future of these striped bass relies on a more thorough understanding of 

their life history and how abiotic factors affect it. Results from this study provide evidence that 

temperature plays a significant effect on striped bass performance and should be taken into 

account when making conservation decisions. Thermal refuges for striped bass should be 

investigated in more detail so they can be protected from exploitation and degradation. 

Conservation efforts should also take into account the possibility of stocking juveniles towards 

more suitable habitats within the Savannah River.  

 Future investigation into differences in thermal tolerance between northern and southern 

populations using AMS at higher and lower temperatures would provide valuable information 

regarding whether thermal tolerance exhibits counter-gradient latitudinal variation as is seen in 

growth patterns in striped bass populations (Conover et al. 1985, Brown et al. 1998). Application 

of AMS to determine thermal tolerance should also be applied to determine differences in 

tolerance between different life stages of striped bass  and see if it plays a part in thermal niche 

selection differences between juveniles and adults (Coutant 1985).Furthermore, juvenile striped 

bass from this study exhibited high hypoxia tolerance as was similarly observed by Nelson and 

Lipkey (2015) in juveniles from Chesapeake Bay. Further studies should attempt to obtain 
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uniform hypoxia tolerance data for comparison between different populations and determine the 

physiological and biochemical mechanisms employed by striped bass to tolerate hypoxic 

conditions.  
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