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SPATIAL AND TEMPORAL IMMUNE RESPONSE IN HOUSE FLIES IN 

RESPONSE TO INGESTION OF BACILLUS CEREUS AND ESCHERICHIA COLI 

O157:H7 

 

by 

 

ADAM FLEMING  

 

(Under the direction of DANA NAYDUCH) 

ABSTRACT 

House flies (Musca domestica L.) feed and breed on septic substrates, putting 

them in direct contact with a multitude of disease causing agents and can act as a bridge 

for those agents to humans. The house fly has previously been shown to carry many 

different species of bacteria that are pathogenic. Escherichia coli O157:H7 is a 

pathogenic enterohemorrhagic serotype of E. coli that can be vectored by the house fly. 

Bacillus cereus is a foodborne pathogen that has also been isolated from the house fly in 

previous studies. To examine vector potential for these pathogens, house flies were fed 

green fluorescent protein (GFP)-expressing E. coli O157:H7 or B. cereus and then 

bacterial fate and localization of fly defensive responses were analyzed at various hours 

post-ingestion (h PI). Bacterial fate was assessed qualitatively by localizing bacteria via 

microscopy and quantitatively by culturing whole fly homogenate. House fly defensive 

responses, including three antimicrobial peptides (AMPs; Defensin, Diptericin, and 

Cecropin) and the peptidoglycan cleaving enzyme Lysozyme, were analyzed using 

immunofluorescent localization. Localization of B. cereus and E. coli O157:H7 at various 

time points correlated with evidence of lysed bacteria in microscopy, a decrease in 

recovered bacteria, and observed expression of AMPs and Lysozyme. Bacterial recovery 

showed that B. cereus decreased steadily up to 24 h PI and E. coli O157:H7 decreased 
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steadily up to 12 h PI. Flies fed B. cereus induced Defensin, Diptericin, and Lysozyme 

expression that peaked in the midgut at 6 h PI. In contrast, flies fed E. coli O157:H7 

showed noticeable expression of only Lysozyme and Diptericin at 2 and 6 h PI in the 

midgut and proventriculus. This study shows that B. cereus elicits a strong immune 

response from the house fly and can persist in the gut until 24 h PI, while E. coli 

O157:H7 elicits little immune response and can persist up to 12 h PI. These findings help 

to define whether or not pathogenic bacteria can survive at infectious levels within the 

fly, how the house fly responds to ingestion of these pathogens, and finally how long the 

bacteria can persist within the fly. 

 

 

INDEX WORDS: Musca domestica, Bacteria, Pathogens, Immunity, Disease, 

Antimicrobial, Humoral Immunity, Alimentary Canal, Proliferation, Expression 
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INTRODUCTION 

 

House Flies as Vectors 

House flies (Musca domestica L.) have long been implicated as agents in the 

spread of disease (Hawley, 1951; West, 1951; Greenberg, 1959). Adults feed and breed 

on septic substrates, putting them in direct contact with a multitude of pathogenic 

microorganisms. Being synanthropic, flies are constantly found in contact with humans in 

a variety of scenarios, both rural and metropolitan. House flies provide a bridge for 

pathogens between septic environments, such as waste reservoirs and refuse, and human 

hosts. The World Health Organization (WHO) has reported that as many as 1.5 million 

children die each year as a result of diarrheal illness (WHO, 2009), which can be caused 

by many of the different bacterial species that have been found associated with the house 

fly (Cohen et al., 1991; Grübel and Cave, 1998; Fotedar, 2001; Nichols, 2005; Förster et 

al., 2007).  

Although house flies have been identified as a factor in the epidemiology of a 

wide variety of infectious diseases affecting humans (Graczyk et al., 2001), relatively 

little research has been done to assess the role of the house fly as a vector beyond simple 

mechanical transmission. First Hawley (1951), then Greenberg (1964; 1970) examined 

the possibility of multiplication of various types of bacteria within the house fly by 

feeding them suspensions of known quantities of bacteria, immobilizing them using 

paraffin and collecting their feces. Among the bacteria examined were Escherichia coli, 

Salmonella spp., and Shigella spp. These studies showed that bacteria were not only 

being passed in the feces of the house fly, but were in some cases multiplying within the 
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fly. Greenberg et al. (1970) showed that gnotobiotic house flies fed as few as 20 cells of 

S. typhimurium were able to excrete the pathogen at a rate of about 1.4 × 10
7 

cells per 4 

hours 3 days after ingesting the initial dose.   

In terms of the practical ability of the house fly to transmit bacteria, Moriya et al. 

(1997) showed that a 1996 outbreak of enterohemorrhagic E. coli in a nursery in Japan 

was likely caused by house fly transmission from a nearby cattle farm on to the food, 

plates, and utensils used in the nursery dining room.  This outbreak led to a series of 

studies examining the ability of the house fly to transmit E. coli O157:H7, and further 

reinforced the need to more thoroughly examine its role in spreading human and animal 

pathogens. Grübel and Cave (1998) examined the potential of house flies to carry H. 

pylori both externally and internally, and this pathogen was able to persist at higher 

numbers within the house fly than it would in ambient air. Zurek et al. (2001) examined 

the potential of the house fly to transmit Yersinia pseudotuberculosis, an important 

animal pathogen in turkey farming. They found that the house fly was capable of 

harboring this pathogen for up to 36 hours after exposure, although they noticed a gradual 

decline in viable cells recovered from whole fly homogenate over time. In 2002, 

Nayduch et al. demonstrated the capacity of the house fly to harbor the enteropathogen 

Aeromonas caviae up to 8 days after feeding on an infectious dose, with the bacteria 

recovered increasing in numbers for up to 2 days after infection. McGaughey and 

Nayduch (2009) found that Aeromonas hydrophila was able to survive in the house fly 

crop and recovered viable bacteria from vomit specks. However, they found that no 

viable bacterial cells were excreted in feces. 
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Escherichia coli O157:H7 

Escherichia coli O157:H7 is a pathogenic strain of E. coli that produces 

verotoxin, a shiga-like toxin named for its similarity to a toxin produced by Shigella 

dysenteriae (Calderwood et al., 1987). The O157:H7 strain of E. coli can cause bloody 

diarrhea and is therefore classified as being an enterohemorrhagic E. coli (EHEC). In 

addition, this strain can cause hemolytic uremic syndrome, which can lead to kidney 

failure in humans, with children and the elderly at a greater risk (Griffin et al., 1988). 

This bacterium occurs naturally in the intestines of dairy cows and can be recovered from 

manure (Moriya et al., 1999). Keen et al. (2003) reported that 11.4% of agricultural fair 

livestock tested positive for E. coli O157:H7 and cattle that shed E. coli O157:H7 can be 

expected to shed at least 1 × 10
6
 CFU/g of feces (Callaway et al., 2009). 

A 1996 outbreak of E. coli O157:H7 in a Japanese nursery underscored the need 

for research the role of the house fly in spreading this bacteria. Analysis of the etiology of 

this outbreak implicated that house flies were brought the E. coli from the cattle farm to 

the nearby school, creating a bridge between the two sites (Moriya et al., 1997).  Iwasa et 

al. (1999) sampled 4 different farm locations in Japan and confirmed that the house fly 

was capable of harboring E. coli O157:H7 under natural conditions by isolating the 

pathogen from wild caught flies.  Kobayashi et al. (1999) and Sasaki et al. (2000) 

specifically examined the potential of the house fly to be more than just a mechanical 

vector of E. coli O157:H7. Sasaki et al. (2000) showed that flies fed approximately 10
9 

colony forming units (CFU) of bacteria harbored cells in their intestinal tract and also 

continued to excrete viable bacteria up to 3 days post ingestion. Kobayashi et al. (1999) 
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reported a decline of bacterial load in the house flies over four days, from 10
6
 CFU/fly to 

10
3 

CFU/fly. 

Bacillus cereus 

 Bacillus cereus is a Gram-positive facultatively-anaerobic spore-forming rod, 

which is ubiquitous in the environment and able to survive in conditions ranging from 3 

˚C - 75 ˚C in its vegetative form (Drobniewski, 1993). This pathogen can cause 

abdominal cramps and diarrhea in humans. Symptoms are usually caused by ingestion of 

a secreted enterotoxin that can be preformed in food or produced in the small intestine 

(Drobniewski, 1993). An emetic syndrome due to B. cereus results in fever and vomiting 

(CDC, 1994), and is caused by a highly stable peptide produced by the bacterium during 

the late exponential to stationary growth phase (Drobniewski, 1993). Food contamination 

frequently occurs when B. cereus contaminates dishes that are cooled to room 

temperature and then reheated at a later time, such as fried rice. In addition to food borne 

illnesses, this organism has been associated with localized necrotic cutaneous infections, 

ocular infections, and in some cases even systemic infections (Drobniewski, 1993).  

 Early studies by Ledingham (1911) examined the potential persistence of Bacillus 

species in the house fly and through its life stages. His studies were inconclusive though 

they did point to the decline of bacterial load over time. There was persistence of a 

bacterium designated "Bacillus A", indicating the possibility of some Bacillus species to 

persist in the house fly. Banjo et al. (2005) demonstrated that B. cereus could be isolated 

from both the interior gut as well as the exterior of house fly maggots. Adult house flies 

have also been shown to harbor different species of Bacillus, including B. cereus and B. 
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megaterium (Hawley et al., 1951). Unlike with E. coli O157:H7, the vector potential of 

the house fly in regards to the spread of B. cereus after ingestion has yet to be examined. 

House Fly Alimentary Defenses 

Although they are constantly exposed to any number of human and animal 

pathogens, house flies manage to rarely become diseased themselves, showing 

remarkable resilience and what must be a very efficient immune response in conjunction 

with multiple physical barriers against bacteria. To completely understand the role that 

house flies play in disease transmission, it is necessary to understand how the house fly 

responds to an ingested bacterial challenge, and the resulting impact of fly defenses on 

bacterial fate and persistence. 

After ingestion, bacteria are either directed into the crop or to the midgut by the 

fly. If food is stored in the crop, it can be regurgitated and possibly re-consumed at a later 

time and directed through the proventriculus to the midgut. The midgut epithelium is 

protected by a type II peritrophic matrix, an acellular double layer secreted at the cardia 

(a section of the proventriculus), which consists of proteins, glycoproteins, and chitin 

microfibrils and runs the length of the midgut (Lehane, 1997). In addition to this physical 

barrier there also are drastic pH shifts at different areas of the midgut, from pH 3.5 to pH 

8.5 which facilitate the function of various digestive enzymes (Terra, 1988). Peristalsis 

moves ingested materials through the midgut and food is compressed into fecal pellets or 

food boluses, which pass through the hindgut and out the rectum (Nayduch et al., 2005). 

The peritrophic matrix pore size allows for the passage of molecules and digestive 

enzymes, but physically excludes bacteria thereby rendering them unable to contact the 
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midgut epithelium. This allows the house fly to excrete digestive and immune response 

proteins into the gut while separating bacteria from the epithelium. 

All of the physical defenses described above contribute to the house fly’s gut 

defenses, however, there are additional means by which the house fly can protect itself 

from ingested bacteria. Expression of antimicrobial peptides (AMPs) and their 

corresponding signal transduction pathways have been thoroughly studied in Drosophila 

melanogaster (Lemaitre and Hoffmann, 2007).  The two major immune response 

pathways seen in D. melanogaster are the Toll pathway, which is activated in response to 

fungi and the Lysine-type peptidoglycan found in most Gram-positive bacteria, and the 

Imd pathway, activated by DAP-type peptidoglycan found mostly in Gram negative 

bacteria. Peptidoglycan molecules, referred to as microbe-associated molecular patterns 

or MAMPs, bind receptors and induce signaling pathways resulting in expression of 

effector molecules such as AMPs. In D. melanogaster, AMPs show target specificity in 

induction and activity: for Gram-negative bacteria, Diptericin, Attacin, Drosocin, and 

Cecropin; for Gram-positive bacteria, Defensin; for fungi, Drosomycin and 

Metchnikowin. Studies in D. melanogaster have provided us with a helpful basis for 

examining immune responses in the house fly since both species are higher dipterans. 

Park et al.  (2007) recently suggested that partial digestion of bacterial 

peptidoglycan with Lysozyme may be integral to triggering the Toll pathway in the 

hemolymph of D. melanogaster. Previous studies have suggested Lysozyme plays a role 

in defenses in the house fly gut (Terra et al., 1988). Lysozyme is a broad spectrum 

digestive enzyme that cleaves the glycosidic bond between N-acetylmuramic acid and N-

acetylglucosamine in the peptidoglycan of both Gram-positive and Gram-negative cell 
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walls (Ren et al., 2008). Highly cross-linked Lys-type peptidoglycan may be resistant to 

digestion by Lysozyme, as well as Gram negative peptidoglycan as it is covered by a 

layer of lipopolysaccharide (LPS) (Park et al., 2007). House fly Lysozyme is active at 

low pH (optimum pH 3.5), which makes it functional primarily in the mid-midgut region 

of the fly (Ren et al., 2009). Lysozyme is found in both larval and adult midgut of M. 

domestica (Terra et al., 1988). House fly larvae show high Lysozyme expression in 

midgut and low expression levels in the hemolymph as well as presence of mRNA 

transcripts for  Lysozyme in both the midgut tissues and the fat body  (Ren et al., 2009). 

Rationale and Significance 

 In order to examine the events that occur after a house fly ingests bacteria it is 

important to examine the expression of effector molecules proximal to the bacteria in the 

gut as well as the number and location of bacteria at various time points after ingestion. 

By knowing where the pathogens are, in what numbers they occur, and how the house fly 

responds to them after ingestion we will contribute to a model for how effectively the 

house fly can respond to ingestion of disease causing agents and provide insight into 

potential avenues and targets for fly control. With a better understanding of this process 

of pathogen ingestion, fly response, and bacterial fate, it may be possible to identify steps 

that can be modified by humans in order to reduce transmissibility of pathogens or cause 

mortality in the fly.  
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Hypotheses 

 Because of the resistance of B. cereus to many environmental and physiological 

stresses in both its vegetative form and through its ability to form endospores (Araki et 

al., 1972) and the demonstrated ability of E. coli O157:H7 to pass through the house fly 

gut and be excreted (Koybayashi et al., 1999). It is hypothesized that: 1) both B. cereus 

and E. coli O157:H7 will survive passage through the house fly gut and 2) the immune 

response to B. cereus and E. coli O157:H7 will be similar due to the fact that both species 

possess DAP-type peptidoglycan, even though E. coli O157:H7 peptidoglycan is 

protected by a layer of lipopolysaccharide.  

MATERIALS AND METHODS 

House fly rearing 

 House flies were reared at Georgia Southern University (Statesboro, Georgia) 

from a stable colony started in 2004. Flies were provided ad libitum water and fly food 

consisting of powdered egg yolk (20 ), powdered sugar (40 ), and powdered milk (40 

). The colony was maintained at 30 C with a 12L:12D photoperiod. Larval media 

consisting of wheat bran and vermiculite (3:1, w/w) was saturated with tap water and 

placed in the breeding cage to allow for oviposition. Puparia were collected from the 

larval rearing dish and stored in a separate container until eclosion.  

Bacterial infection of house flies 

 Newly emerged (2-3 days old), mixed-sex flies were used for all experiments. 

Eclosed flies were fed sterile 10  fly food solution ad libitum on a sanitized rectangular 

piece of Parafilm® (40 mm  40 mm; Fisher Scientific, Atlanta, GA, USA) for 24 h. 



   

19 

 

Then, flies were individually housed in sterile glass jars and fed 5 µl of sterile 5  

sucrose solution on a sanitized Parafilm® square (15 mm × 15 mm). Jars were covered 

with aluminum foil and flies were held at room temperature (22-25 C) for 12 h, after 

which they were again provided with 5 l of 5  sugar water. After 12 h, flies were 

immobilized by chilling them for 5 min at 0 C and transferred into new glass jars 

covered with foil. The flies were fasted for at least 12 h and then were placed in 30 C 

incubator for ~ 2 h and afterwards the 37 C incubator for ~1 hour to induce feeding. A 2 

l droplet of culture of either bacterial species (described below) was fed to each 

individually housed fly. Time of feeding for each fly was recorded, and all flies used for 

experiments fed within 1 hour. 

Culture of GFP-expressing Bacillus cereus and Escherichia coli O157:H7 

 A pathogenic GFP-expressing strain of B. cereus (GFP-BC) transformed with the 

plasmid pRS601 was obtained from Dr. Ray Schuch at Rockefeller University. Stock 

cultures of GFP-BC were maintained in Brain-Heart infusion (BHI) agar plates with 

spectinomycin and kanamycin (BHISK: 25 g/L (w/v) BHI agar powder, 250 µg/ml (w/v) 

of spectinomycin sodium, 20 µg/ml (w/v) kanamycin sulfate; Fisher Scientific, Atlanta, 

GA, USA). Bacteria were cultured in 50 ml of sterile BHISK broth (BHISK: 25 g/L (w/v) 

BHI broth powder, 250 µg/ml (w/v) of spectinomycin sodium, 20 µg/ml (w/v) kanamycin 

sulfate; Fisher Scientific, Atlanta, GA, USA) for 12 h while shaking at 30 °C after which 

1 ml of the culture was inoculated into 9 ml of sterile BHISK broth and incubated at 30 

°C while shaking until an OD600 of 1.00-1.20 ( 0.05) was reached, which equated to a 

mean of 2.4 ± 0.9 × 10
4
 CFU/2 µl.  
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 Escherichia coli O157:H7 EDL 933 (EC-O157) was transformed with the plasmid 

pGFPuv (Clontech, Mountain View, CA, USA) which contained additional kanamycin 

resistance (gift from Dr. Brian Weiss, Yale University, CT, USA) to allow for dual 

antibiotic selection as previously described (McGaughey and Nayduch, 2009). Stock 

cultures of GFP-ECO157 were maintained in Luria-Bertani agar plates with ampicillin 

and kanamycin (LBAK: 25 g/l (w/v) LB agar powder, 100 µg/ml (w/v) of ampicillin 

sodium, 50 µg/ml (w/v) kanamycin sulfate; Fisher Scientific, Atlanta, GA, USA). 

Bacteria were cultured in 50 ml of sterile LBAK broth (LBAK: 25 g/l (w/v) LB powder, 

100 µg/ml (w/v) of ampicillin sodium, 50 µg/ml (w/v) kanamycin sulfate; Fisher 

Scientific, Atlanta, GA, USA for 8-9 h while shaking at 37 °C after which 1 ml of the 

culture was inoculated into 25 ml sterile LBAK broth and incubated at 37 °C while 

shaking until an OD600 of 1.00-1.20 ( 0.05) was reached, which equated to a mean of 1.8 

  2.6 x 10
6 

CFU/2 µl.  

Culture recovery and enumeration of bacteria from house flies 

  For bacterial enumeration, flies (n=20) that were fed bacteria were immobilized at 

2, 4, 6, 12 and 24 h post-ingestion (h PI) by chilling at 0º C (n=5 per time point), and 

homogenized in 500 µl sterile 1  PBS (per L: 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 

0.24 g KH2PO4). The homogenate was serially diluted in sterile 1  PBS, vortexed and 

plated, in duplicate, on BHISK or LBAK agar for GFP-BC or GFP-ECO157 recovery, 

respectively. Culture plates were incubated at 30 C for 24 h for GFP-BC and 37 C for 

24 h for GFP-ECO157, after which the CFU were enumerated. The above fly treatment 

procedure was replicated three times for GFP-BC and four times for GFP-ECO157. The 
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initial culture was serially diluted and plated on BHISK or LBAK plates to enumerate the 

CFU of bacteria fed to the flies. The plates were incubated at 30 C for 24 h for GFP-BC 

and 37 C for GFP-ECO157. A group of control flies (n=5 per replicate) were 

individually fed 5 μl of sterile 5% sucrose and plated as a negative control. 

Microscopic localization of bacteria in the house fly alimentary canal 

 Flies (n=20 per replicate for GFP-BC; n=12 per replicate for GFP-ECO157) that 

fed on a 2 l droplet of bacteria (1.8   2.6 x 10
6 
CFU/2 µl for GFP-ECO157 and 2.4 ± 

0.9 x 10
4
 CFU/2 µl for GFP-BC) were immobilized by chilling them at 0 ºC. Time post 

ingestion for dissection was 2, 6, 12 and 24 h PI for GFP-BC (n=5 per time point) and 2, 

4 and 6 h PI for GFP-ECO157 (n=4 per time point). The entire alimentary canal 

(proventriculus, crop, midgut, hindgut and rectum) was removed by dissection and 

viewed with an epiflourescent microscope to localize GFP-expressing bacteria (Leitz 

Laborlux 12 epiflourescence microscope; Wetzlar, Germany). Images of bacteria in the 

alimentary canal were captured using a Leica DFC 420 digital camera (Leica 

Microsystems Ltd., Germany) mounted on the microscope. The location, motility and 

cellular integrity of bacteria were observed and recorded. This procedure was repeated 

three times for GFP-ECO157 and twice for GFP-BC. A group of control flies (n=5 per 

replicate) were individually fed 5 μl of sterile 5% sucrose, dissected, and examined via 

microscopy as a negative control. 

Dissections and immunofluorescence microscopy 

 Flies were fed GFP-BC or GFP-ECO157 according to the above protocol (8.85 ± 

6.4 × 10
4 

for GFP-BC; 2.36 ± 1.7 × 10
5 

for GFP-ECO157; n=20 per replicate, 2 replicates 

per bacteria). At 2, 4, 6, 12, and 24 h PI, 5 flies were killed and dissected to remove the 
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entire alimentary canal as described above. Whole fly guts were fixed in 4% 

paraformaldehyde for two hours, taken through a graded series of alcohols (50%-100%), 

cleared in Citrisolv
TM

  (Fisher Scientific, Atlanta, GA), were pooled by time point and 

embedded in Paraplast® plus Tissue Embedding Medium (Fisher Scientific; n=5 per time 

point). Serial sections 5 m thick were sliced from each block and affixed to slides 

(Superfrost®, Fisher Scientific). Tissue sections were then rehydrated and blocked with 

StartingBlock
TM

 T20 Blocking Buffer (Thermo Scientific) for one hour. Polyclonal 

antibodies (Genscript, Piscataway, New Jersey) were applied overnight at room 

temperature: rabbit anti-Cecropin (20 µg/ml), rat anti-Lysozyme (43.2 µg/ml), chicken 

anti-Defensin (5 µg/ml), or mouse anti-Diptericin (6.69 µg/ml). Slides were washed in 1× 

PBS  (pH 7.4) for five minutes at room temperature and incubated with Alexa Fluor® 

(Invitrogen, Grand Island, New York) fluorescent secondary antibodies (2 µg/ml) 

overnight at room temperature: Alexa Fluor® 568 goat anti-rabbit, Alexa Fluor® 568 

goat anti-rat, Alexa Fluor® 488 goat anti-chicken, or Alexa Fluor® 488 goat anti-mouse. 

Slides were visualized and images captured using a Leica DFC420 microscope camera. 

Of specific interest were the regions of the proventriculus, crop, midgut, hindgut, and 

rectum. Two biological replicates were done for each species of bacteria. 

 As negative technical controls each group of treated slides also included two 

slides that were treated without primary antibody. This was in order to ensure that there 

was no non-specific binding of the secondary antibody when applied to the slides. As a 

negative biological control, a group (n=10) of adult flies were individually fed 2 μl of 

sterile BHISK broth and dissected at 5 h PI. Guts were then fixed, sectioned and treated 

with antibodies as described above.  
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Data analysis 

 Bacterial plate counts above 300 CFU and below 30 CFU were not included in 

these analyses because samples above 300 CFU may not be distinguishable from one 

another on a plate count, and samples below 30 CFU may not be representative of the 

sample (Madigan, 2009). The total number of GFP-BC recovered from each fly at each h 

PI was log transformed, tested for normality and homogeneity of variance, and analyzed 

using an ANOVA test (P<0.05). To further understand the differences in change in 

survival of GFP-BC between time points the means of each time point were compared 

using the Tukey-Kramer test (P<0.05). The total number of GFP-ECO157 recovered 

from each fly at each h PI was log transformed and found to not be normally distributed. 

As a result, the GFP-ECO157 data was analyzed using the Kruskal-Wallis test (P<0.05). 

To further understand the differences in survival of EC-O157 between time points the 

means of each time point were compared using the Dunn's test (P<0.05). All analyses 

were performed using JMP  9 (SAS Institute Inc., Cary, NC, USA, 2009).    
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RESULTS 

Bacterial Survivability in House Flies 

 GFP-BC culture recovery showed that viable bacteria within the fly decreased 

significantly from a mean of 2.47 ± 0.98 × 10
4
  CFU fed to 1.27 ± 0.6 × 10

3 
CFU, a 

decrease of 95% over 24 h (Fig. 1).  At 2 h PI, bacterial load had decreased to a mean of 

8.58 ± 5.4 × 10
3
, representing 34% of the dose fed, although this did not represent a 

significant change from the initial dose (P=0.17), possibly due to high variability across 

individual flies. By 6 h PI, mean bacterial load in the fly had decreased significantly to 

3.91 ± 2.37 × 10
3
, representing only 15% of the initial dose (P=0.0054). No significant 

difference was seen in the average amount of bacteria recovered between 6 and 12 h PI 

(P=0.90). The bacteria present at 12 h PI represented 12% of the original fed dose, a 

decrease of 3% from what was found at 6 h PI.  Only 5% of the fed amount of bacteria 

persisted at 24 h PI, but there was no significant difference between the amount of 

bacteria recovered between 12 and 24 h PI (P=0.53). No CFU of the GFP-BC were 

recovered from control flies fed sterile 5% sucrose. 
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Figure 1: Recovery of GFP-expressing Bacillus cereus from the house fly. Flies were 

fed an average of 2.47 ± 0.98 × 10
4
 CFU. Mean recoveries are shown for 3 replicate 

experiments (n=15 per time point). Different letters denote significant difference between 

pairs (P<0.05). Error bars represent standard error. 
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 Culture recovery of GFP-ECO157 revealed a continuous decrease in bacterial 

load over 12 h from 2.65 ± 1.8 × 10
6
 to 9.83 ± 10.9 × 10

4 
, an overall decrease of 96.3% 

with the final CFU recovered representing 3.7% of the initial dose fed (Fig. 2).  At 2 h PI 

mean CFUs recovered were 1.38 ± 1.2 × 10
6 

(56% of initial dose), at 4 h PI 9.53 ± 9.8 × 

10
5
 (35% of initial dose), and at 6 h PI 4.9 ± 4.17 × 10

5 
(18% of initial dose). The mean 

CFUs recovered at these time points did not differ significantly from one another 

(P>0.05). Finally, at 12 h PI, mean CFU recovered was 9.8 ± 10.9 × 10
4
, which differed 

significantly from the amount fed, and recoveries at 2 and 4 h PI  (P≤ 0.0097). No CFU 

of the GFP-ECO157 were recovered from control flies fed sterile 5% sucrose. 
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Figure 2: Recovery of GFP-expressing Escherichia coli O157:H7 from the house fly. 

Flies were fed an average of 2.65 ± 1.8 × 10
6
 CFU. Mean recoveries are shown for 4 

replicate experiments (n=12-16 per time point). Different letters denote significant 

difference between pairs (P<0.05). Error bars represent standard error. 
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Localization of GFP-expressing bacteria 

 GFP-BC cells were visible in the alimentary canal throughout all time points 

analyzed, and in all tissues analyzed. At 2 h PI, large groups of free viable cells were 

visible in the crop of 3/10 flies (Fig. 3B) and in the midgut of 6/10 flies (Fig. 3A). Cells 

were also visible in the rectum of 1/10 flies at this time point (data not shown). At 6 h PI 

viable cells were visible in the crop and midgut in 6/10 flies (Fig. 3C, 3D); a large 

amount of free GFP was present in the midgut and rectum of three of the remaining flies, 

with one fly showing no presence of bacteria or free GFP. Interestingly, 5/10 flies 

observed at 6 h PI showed viable GFP-BC in the rectum. At 12 h PI cells were visible in 

fewer numbers as compared to earlier time points, cells were present in the crop and 

rectum of  4/10 flies with 6/10 flies showing free GFP in the midgut and rectum (not 

shown). At 24 h PI,  4/10 flies showed cells present in the crop at comparable levels as 

observed at 12 h PI, with free GFP in the rectum of 5/10 flies. At this time point 2/10 

flies showed no signs of bacteria or free GFP in their alimentary canal.  Localization of 

GFP-BC showed that viable cells were able to persist in the crop up to 24 h PI, although 

only in small numbers. Control slides of flies fed sterile 5% sucrose showed no presence 

of GFP-expressing bacteria. 
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Figure 3. Viable GFP-Bacillus cereus cells observed in the house fly alimentary 

canal. GFP-expressing B. cereus cells (green) were visualized at 2 h PI (A, midgut; B, 

crop) and 6 hours post-ingestion (C,midgut; D,crop). Arrows indicate viable cells. PM 

refers to the peritrophic matrix. Scale bar is 10 µm. 
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Viable GFP-ECO157 cells persisted in the alimentary canal up to 12 h PI, 

although at early time points the cells were clumped and immobilized in the PM. At 2 h 

PI, clumps of cells were visible in the crop of 5/8 flies and immobilized in the midgut of 

7/8 flies (Fig. 4A). Viable cells were present in the rectum of 1/8 flies. At 4 h PI, food 

boluses containing a mixture of free GFP and immotile cells were observed in all flies, 

and 3/8 flies still had large numbers of cells in the crop, although they were also not 

motile. Immobilized cells were present in the midgut of 8/8 flies, although there was also 

a large amount of free GFP present (Fig. 4B). At 6 h PI, less cells were visible as 

compared to earlier time points, and 4/8 flies showed a range of a few cells to large 

numbers of cells in the crop. Bacteria were still visible throughout the midgut in all flies, 

and in the hindgut area of 4/8 flies (Fig. 4C). One replicate was extended to 12 h PI with 

no flies having cells present in the midgut and 2/4 flies showed individual cells in the 

hindgut at this time point. Immotile cells were visible in the crop of 2/4 flies (Fig. 4D). 

No GFP-ECO157 were seen in control flies fed sterile 5% sucrose. 
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Figure 4. Viable GFP-Escherichia coli O157:H7 cells observed in the midgut and 

crop of the house fly. GFP-expressing E. coli O157:H7 cells (green rods) were visible in 

the midgut at (A) 2 h PI, (B) 4 h PI, and (C) 6 h PI. Clumps of viable cells are visible in 

the crop at 12 h PI (D). PM  indicates the peritrophic matrix. Scale bar is 10 µm. 
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Local Immune Response 

 Immunofluorescent staining of alimentary tissues from two replicates of flies fed 

GFP-BC (n=20 per replicate) was conducted and analyzed at 2, 6, 12, and 24 h PI. Five 

fly guts were pooled in a single block for each time point within each replicate. Analysis 

showed no upregulation of Cecropin and varied presence of Lysozyme, Diptericin, and 

Defensin across 24 h. Lysozyme was detected in the apical portion of the cells of the 

proventriculus as at 2 h PI in one pooled replicate. At 6 h PI, defensin and lysozyme were 

highly expressed in both the midgut and foregut regions of the proventriculus. Diptericin 

also was detected in the proventriculus at 6 h PI and was mainly expressed in the apical 

portion of the foregut cells in one pooled replicate.  The tissue that showed the most 

AMP expression in both replicates across all time points was the midgut. At 6 h PI, in 

both replicates, Defensin was observed in basal vesicles in the midgut (Fig. 5A), and 

Lysozyme and Diptericin were expressed in apical vesicles (Fig. 5C, 5D). No 

upregulation of Cecropin was observed (Fig. 5B). At 12 h PI Defensin and Diptericin 

were present at lower levels than previously observed in midgut cells. Finally, at 24 h PI, 

Lysozyme and Defensin were observed in the midgut of both replicates with expression 

levels lower than had been previously observed.  Only once were AMPs or Lysozyme 

observed in the crop, with one replicate showing Lysozyme at 6 h PI. 

Immunofluorescence analysis of alimentary tissues of flies fed GFP-ECO157 was 

conducted in two replicates, each analyzed at 2, 4, 6, and 12 h PI. Five fly guts were 

pooled in a single block for each time point within each replicate. There was little 

detection of AMPs or Lysozyme in either replicate with exceptions at 2 and 4 h PI. 

Diptericin and Lysozyme were both expressed in small amounts on the apical portion of 
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midgut cells at 2 h PI in one replicate (Fig. 6A, 6B). Lysozyme was present in the midgut 

and proventriculus at 6 h PI in both the apical and basal portion of cells in one replicate 

(Fig. 6C, 6D). The Lysozyme observed in the proventriculus at 6 h PI appeared mostly in 

the midgut cells of the proventriculus. 

No AMP or Lysozyme expression was detected in technical or biological controls, 

which indicates absence of secondary antibody non-specific binding as well as absence of 

protein level expression of these effectors in broth-fed control flies.  
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Figure 5. AMP and Lysozyme expression in the midgut of house flies after ingestion 

of GFP-expressing Bacillus cereus.  House fly immune effectors Defensin (A; Alexa 

Fluor® 488 goat anti-chicken; green), Cecropin (B; Alexa Fluor® 568 goat anti-rabbit; 

red), Lysozyme (C; Alexa Fluor® 568 goat anti-Rat; red), and Diptericin (D; Alexa 

Fluor® 488 goat anti-chicken; green) were detected at 6 h PI using immunofluorescence 

(arrows). Nuclei are stained with DAPI (blue). L indicates gut lumen. Scale bars = 10 

μm. 
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Figure 6.  Diptericin and Lysozyme expression in the midgut and proventriculus of 

house flies after ingestion of GFP-expressing Escherichia coli O157:H7. Immune 

effectors (AMPs and Lysozyme) were detected in the alimentary canal. Diptericin (A; 

Alexa Fluor® 488 goat anti-chicken; green) and Lysozyme (B; Alexa Fluor® 568 goat 

anti-Rat; red) were detected in the midgut at 2 h PI. At 6 h PI, Lysozyme was also 

expressed in the midgut (C) and proventriculus (D). Cell nuclei stained with DAPI (blue). 

L indicates gut lumen. Scale bar = 10 μm. 

 

 

 



   

36 

 

 

 

DISCUSSION 

 

 The goals of this study were to examine the fate of either GFP-E. coli O157:H7 or 

GFP-B. cereus after ingestion by the house fly, and concurrently examine the house fly 

immune response. Fate was examined by analyzing the location of bacteria within the fly 

alimentary canal microscopically and assessing viability using culture-recovery methods.  

Immunofluorescent microscopy was used to localize temporal expression of three 

antimicrobial peptides (Defensin, Diptericin, and Cecropin) and the digestive enzyme 

Lysozyme in the alimentary canal after bacterial ingestion. Examining where and when 

bacteria are located in the gut after ingestion, in what numbers, and how the fly responds 

to the bacteria provides  insight into what happens within the fly after ingestion of a 

pathogenic bacteria. 

 The fate of GFP-BC and GFP-ECO157 shared similar aspects after ingestion by 

the house fly, with some notable exceptions. No bacterial propagation was observed, and 

both species were immobilized within the PM of the midgut and eliminated from the gut 

during the observation period. Overall, both species persisted in the gut for the entire time 

period assayed: 24 h for GFP-BC and 12 h for GFP-ECO157. However, GFP-BC showed 

a significant decrease from CFU fed at 6 h PI, while GFP-ECO157 did not show a 

significant decrease until 12 h PI. One possible reason for this observed difference in 

survival pattern between the two different species may be attributable to the different 

natural environments of Bacillus cereus and E. coli O157:H7. Bacillus cereus is a more 

ubiquitous bacterium, found widely in the environment (Drobniewski, 1993) and not 

specific to any area or animal. Despite its many resilient characteristics, such as 
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resistance to Lysozyme (Araki et al., 1972) and the capacity to form endospores 

(Drobniewski, 1993), free GFP was visible in GFP-BC microscopy as early as 2 h PI. 

Bacillus cereus is not naturally found in animal alimentary canals, so it is likely not as 

resistant to the combined actions of immune secretion, drastic pH shifts, and digestive 

enzymes that occur in the house fly gut (Drobniewski, 1993;Terra, 1988). In contrast E. 

coli O157:H7 originates from the intestine of the cow (Moriya et al., 1999), and therefore 

it may be well adapted to the types of physio-chemical stresses that are encountered in 

the fly gut. This adaptability is reflected in the observed high survivability of GFP-

ECO157 in culture recovery experiments over 12 h. 

 Localization observations for both bacteria were similar across all time points 

observed. Both species of bacteria were seen in the fly rectum as soon as 2 h PI in at least 

one fly from each experiment, which suggests that fecal excretion of viable bacteria is 

possible at this time. Free GFP was visible in the midgut of two flies fed GFP-BC at 2 h 

PI, indicating the cell lysis was occurring even at that early time point. By 6 h PI flies fed 

GFP-BC and GFP-ECO157 had free GFP in the midgut, hindgut, and rectum. This 

widespread evidence of cell lysis in the alimentary canal at 6 h PI corresponds to the 

decline in numbers seen in the recovery data, as well as previously observed decline in 

recoverable numbers of other pathogens in the house fly after ingestion (McGaughey and 

Nayduch, 2009). This cell lysis could be attributed to an effective immune response, 

which indicates it may take up to 6 h for the fly to mount an immune response to ingested 

bacteria at the numbers fed here. Loss of bacteria before 6 h PI (as indicated by culture 

recovery) may be due to excretion of the bacteria from the alimentary canal in feces or 
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regurgitation from the crop. Experiments that collect excreta with concurrent culture 

recovery could be designed to determine loss by this mechanism.   

Whether or not the flies stored consumed bacteria in the crop for later 

consumption or immediately directed the meal to the midgut varied from fly to fly. 

However, for both species at least one fly harbored bacteria within the crop at all time 

points. Variation in the nutritional state of the flies as they were fed the bacteria could be 

the cause of this, those flies that had consumed a meal immediately before isolation may 

have stored the bacteria in the crop. In all experiments, bacteria in the midgut were 

contained within the peritrophic matrix across all time points, which corresponds to 

observations from previous studies with other bacteria (Nayduch et al., 2005), showing 

the effective activity of this aspect of the physical immune response on both species by 

preventing bacterial colonization. 

  Loss of bacteria via lysis, as evidenced by free GFP and declining recovery 

numbers, may be have been at least partially mediated by the epithelial immune response. 

Antimicrobial peptides were expressed from the midgut epithelium in flies fed either 

bacterial species, and peak expression seemed to correlate with a subsequent decrease in 

recoverable CFUs and observed lysis. For example, immunofluorescence in flies fed 

GFP-BC showed the presence of Lysozyme, Diptericin, and Defensin in the midgut, with 

these three AMPs observed at 6 h PI (Fig. 3), the same time point with the first 

significant decrease in recovered CFUs (Fig. 1). Flies fed GFP-ECO157 elicited an 

immune response at 2 and 6 h PI, in only two tissues, the midgut and proventriculus (Fig. 

4). GFP-ECO157 appears to either partially evade the immune response or the localized 

immune response is not sensitive to the presence of E. coli, as evidenced by the lack of 
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detected AMPs and the gradual decline of recovered bacteria from the fly over 12 h. 

Lysozyme is expressed after ingestion of a meal for digestion of bacteria (Terra and 

Ferreira, 1994) and may be responsible, along with aspects of the physical immune 

response, for the lysis of bacteria observed at early time points. Defensin and Diptericin 

are products of different known systemic immune pathways in D. melanogaster, Toll and 

Imd, respectively (Lemaitre and Hoffmann, 2007). The Toll pathway is dependent upon 

circulating PGRPs for activation, which would be swept away or denatured in the gut 

environment. The Imd pathway relies on PGRPs bound to the cell membrane, and thus is 

activated by MAMPs released in the gut, by cell lysis or cell division, that cross the PM. 

Buchon et al. (2009) showed that immune responses in the gut of D. melanogaster are 

regulated by the Imd and JAK-STAT pathway, but not Toll. Midgut Defensin, a Toll 

product, has been observed in another Muscid, Stomoxys calcitrans (Hamilton et al., 

2002) after a blood meal. Similar upregulation of Defensin has been observed in the 

midgut of Glossina morsitans morsitans, the tsetse fly, after ingestion of E. coli (Hao et 

al., 2003).  In D. melanogaster, epithelial responses are entirely mediated by IMD 

pathway and membrane-bound PGRPs, and therefore no Toll-associated AMPs are 

upregulated in the midgut (Charroux and Royet, 2010). Thus, in higher Diptera such as 

flesh flies, tsetse flies, stable flies and now house flies (Hamilton et al., 2002; Hao et al., 

2003) the particular signal transduction pathway that leads to Defensin upregulation 

remains to be determined. Perhaps there may be cross regulation of Defensin expression 

via typical IMD transactivators. Alternatively another pathway activated molecules other 

than PGN may result in upregulation of AMPs in the gut of the higher Diptera (El Chamy 

et al., 2008). 
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 The lack of expression of all AMPs and Lysozyme at later time points 

corresponds to the loss of bacteria seen in culture recovery and microscopy. This 

indicates that there is likely a critical amount of bacteria, and thus a threshold amount of 

PGN, required to induce AMP and Lysozyme expression. As the bacterial PGN present is 

degraded by amidase PGRPs in the gut, the amount of PGN present declines below the 

threshold for induction of AMP expression (Lemaitre and Hoffman, 2007). We have 

recently identified regulatory PGRPs in an immune induced house fly transcriptome 

(Nayduch, unpublished) which may play a putative role in this type of feedback 

inhibition. The immune response to both species of pathogen is efficient, brief, and 

spatially regulated. House flies live and thrive in septic environments, so it is necessary to 

have such an efficient immune response to potential threats but also have a selective 

response in order to avoid constant immune stimulation. It seems that digestion, 

peristalsis, and the protection of the midgut by the PM is more than enough to ensure the 

elimination of the bacteria without the sustained activation of a variety of immune 

response genes, which may be activated as a 'backup' for the physical immune response 

in the event of high levels of bacteria or potential infection to the fly. The ability of the 

house fly to potentially 'ignore' a virulent pathogen after ingestion and simply excrete it 

via peristalsis through the alimentary canal with little or no immune upregulation or 

bacterial lysis can potentially lead to the fly transmitting that pathogen to humans via 

excretion. As the fly has differing responses to these two pathogens, which resulted in 

different fates for each, then each species of pathogen and the number of bacteria 

ingested of each pathogen may have a variable effect on fate of bacteria after ingestion, 

leading to different dissemination outcomes. 
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 One of the goals in examining the fate of pathogens after ingestion was to assess 

whether or not the pathogens could be maintained over time at infectious levels within 

the fly after ingestion. The initial dose fed for both pathogens (2.47 ± 0.98 × 10
4
   for 

GFP-BC; 2.65 ± 1.8 × 10
6
  for GFP-ECO157) was above the infectious dose to humans 

for each species (10
4
 CFU/g for B. cereus; Gaulin et. al., 2002; 10 cells for E. coli 

O157:H7; FDA, 2009).  Microscopy indicated that viable cells were present in the rectum 

as early as 2 h PI for both pathogens, with culture recovery from flies fed GFP-EC still 

showing well above the infectious dose (1.38 ± 1.2 × 10
6 

CFU/fly) and flies fed GFP-BC 

already below the infectious dose (8.58 ± 5.4 × 10
3
) at this time point. Previous studies 

have demonstrated the capacity of the house fly to excrete viable bacteria via vomitus 

within hours of ingestion (McGaughey and Nayduch, 2009) and the ability of the fly to 

excrete bacteria across the course of days (Greenberg et al., 1970; Kobayashi et al. 1999; 

Sasaki et al. 2000). At 6 h PI for GFP-BC the mean CFU carried (3.91 ± 2.37 × 10
3 

CFU) 
 

was below the infectious dose for this bacteria and significantly different from the fed 

dose (Fig. 1) indicating that the house fly may not be an important reservoir or vector in 

the epidemiology of this pathogen. Other studies have observed the capacity of the house 

fly to excrete viable E. coli O157:H7 in vomitus and feces (Kobayashi et al., 1999; 

Sasaki et al., 2000). Here, flies fed GFP-ECO157 maintained a level of 9.8 ± 10.9 × 10
4 

 

CFU (Fig. 2) recovered, which is still well above the infectious dose for this bacterium, 

so it seems very likely that a house fly ingesting this level of bacteria would be able to 

then excrete an infectious dose up the last time point observed, 12 h PI. Future studies 

should focus on the ability of the fly to excrete infectious doses of cells over time, as well 

as the effect of different fed doses on the fly immune response and fate of the pathogens. 
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 This study provides insight into how the house fly responds to the types of 

bacterial challenges it encounters as a result of a life strategy that involves close 

association with septic substrates. The induction of the house fly immune response to lyse 

bacteria after ingestion relates directly to its potential to vector those pathogens to 

humans. The species specific responses by the fly and the fate of B. cereus and E. coli 

O157:H7 indicate that the fly is unlikely to be a potential vector for B. cereus and likely 

able to vector E. coli O157:H7, as they may encounter up to 1 × 10
6
 CFU E. coli 

O157:H7/g of feces in the wild (Callaway et al., 2009). Sasaki et al. (2000) have 

demonstrated the capacity for the house fly to excrete viable E. coli O157:H7 cells, 

although the dose used (10
9
 CFU/ml) was much higher than the concentration of cells the 

fly would likely encounter in the wild, as is the dose fed here (2.65 ± 1.8 × 10
6
 CFU/fly).  

It is unlikely for a house fly to consume large amounts of just one bacteria in the wild, so 

multiple species infection should be analyzed to examine its effect on the persistence of 

pathogens to assess vector potential under more natural conditions. 
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