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ABSTRACT

Multivariate Logit models are convenient to describe multivariate correlated
binary choices as they provide closed-form likelihood functions. However, the
computation time required for calculating choice probabilities increases expo-
nentiallywith the number of choices, whichmakesmaximum likelihood-based
estimation infeasible when many choices are considered. To solve this, we
propose three novel estimation methods: (i) strati�ed importance sampling,
(ii) composite conditional likelihood (CCL), and (iii) generalized method of
moments, which yield consistent estimates and still have similar small-sample
bias to maximum likelihood. Our simulation study shows that computation
times for CCL are much smaller and that its e�ciency loss is small.
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1. Introduction

Multivariate choice models are widely used to describe correlated binary decision data in di�erent �elds
of applied research. For example, grocery product choices by consumers are likely to be correlated across
di�erent brands or product categories (Chib et al., 2002). Choices for di�erent types of insurances are
correlated (Donkers et al., 2007), and e�ects of a medicine treatment on two or more physiological
systems are also related (Ashford and Sowden, 1970). As a �nal example, Feddag (2013) investigates
several “health-related quality of life” questions in a survey among cancer patients, and the answers to
these questions are likely to be correlated. Hence, simultaneous binary decisions occur inmany di�erent
�elds of research.

The number of choices to bemade inmultivariate decision problems can be rather large. The number
of products in a supermarket is large; individuals have to decide upon life, car, house insurances, and so
forth; and the number of questions in a survey might also be large. There is therefore a need for a model
that is applicable in these settings. In principle such models are available. However, current econometric
estimation methods for multivariate choice models su�er from a computational burden if the number
of choices grows large.

The standard econometricmodel to describe correlatedmultivariate binary choices is theMultivariate
Probit model (Ashford and Sowden, 1970; Edwards and Allenby, 2003). The main disadvantage of this
model is that the computation of the choice probabilities involves high-dimensional integrals which
cannot be solved analytically. Numerical integration methods are not very accurate and slow in high
dimensions, and simulation-based estimation methods are o�en used instead (Cappellari and Jenkins,
2006). However, the computational e�orts to perform simulation-based estimation become excessive
when a large number of correlated choices is considered. To avoid the evaluation of integrals, one may
opt for multivariate binary decision models based on correlated logistic regressions. These models are
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nonetheless di�cult to generalize to higher dimensions (Carey et al., 1993; Glonek and McCullagh,
1995).

To avoid these di�culties we opt for the Multivariate Logit (MVL) model (Cox, 1972). Russell
and Petersen (2000) show that this model can be written as a restricted Multinomial Logit (MNL)
speci�cation over all possible outcomes of the multivariate binary choices. The multivariate choice
problem over K choices is reformulated as amultinomial choice model over 2K alternatives.

The problem of this MVL speci�cation is that the outcome space of the multivariate binary random
variable, and thereby the computation time, increases exponentially with the number of choices.
From a practical point of view, standard Maximum Likelihood (ML) parameter estimation becomes
computationally infeasible even for a moderate number of choices. Further, numerical problems can
occur as probabilities get too small for practical use. Russell and Petersen (2000) apply the model to four
binary choices only and state that “as the number of categories becomes large, the approach taken in our
research will clearly become infeasible” (p. 387). Guimarães et al. (2003) propose to use a more feasible
approach based on Poisson regression. Unfortunately, this method only holds for the conditional logit
speci�cationwhere explanatory variables di�er across choices. It therefore does not solve the infeasibility
for all MVL speci�cations.

In this article, we propose three novel estimation methods for the MVL model which provide
parameter estimates in an acceptable amount of time even if the number of binary choices is large.
In the �rst proposed method, we use a sampling method to reduce the number of alternatives in the
estimation routine. Using the method proposed by Ben-Akiva and Lerman (1985) we can still obtain
consistent estimators for the model parameters. In the second method, we take advantage of the fact
that the MVL model has simple conditional probabilities. We use these conditional probabilities in
a Composite Conditional Likelihood (CCL) approach (Lindsay, 1988). In case of K binary choices,
only K conditional probabilities have to be evaluated instead of 2K joint probabilities, which reduces
computing time. Furthermore, this method solves the problem of very small joint probabilities as these
probabilities are not used within the estimation routine. Finally, we consider a Generalized Method of
Moments (GMM) estimator based on the conditional probabilities, and hence this approach has the same
advantages as the CCL approach. Monte Carlo results show that the three novel estimation methods
are much faster, have similar small-sample biases as the standard ML approach of Russell and Petersen
(2000), and that the loss in e�ciency is very limited.

The remainder of this article is organized as follows. In Section 2 we describe the MVL model as
discussed by Russell and Petersen (2000). Parameter inference is considered in Section 3.We �rst present
standard ML parameter estimation followed by our three alternative methods. Section 4 describes the
results of the Monte Carlo study which compares the estimation methods with respect to computation
time, small-sample bias, and e�ciency. Section 5 gives an illustration of the MVL model for a case with
10 binary choices for store choices of households in a shopping mall. Finally, Section 6 concludes.

2. Model speci�cation

In this section, we discuss the model speci�cation for the MVL model. We use the speci�cation as
introduced by Cox (1972) and further implemented by Russell and Petersen (2000).

Following Russell and Petersen (2000), we let Yi denote the K-dimensional random variable describ-
ing the joint set of choices for individual i = 1, . . . ,N, de�ned as Yi = {Yi1, . . . ,YiK}, where Yik denotes
the kth binary choice for individual i, for k = 1, . . . ,K. The set of possible realizations of Yi is called S
which contains 2K elements. It can immediately be seen that the number of possible realizations grows
exponentially with the number of binary choices K.

The choices in Yi may be correlated. To describe these dependencies, Russell and Petersen (2000)
specify the conditional probabilities of the kth random variable Yik given all other choices, that is, yil
for l 6= k. These conditional probabilities are a Logit function of individual characteristics Xi, model
parameters α, β , and ψ , and yil, that is,

Pr[Yik = 1|yi1, . . . , yik−1, yik+1, . . . , yiK ,Xi] =
exp (Zik)

1 + exp (Zik)
(1)
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with

Zik = αk + Xiβk +
∑

l 6=k

yilψkl, (2)

where yil is the realization ofYil,αk are alternative-speci�c intercepts,Xi is a (1×p)-vector of explanatory
variables with corresponding parameter vector βk, and where ψkl are association parameters. The
association parameters capture the correlation between Yik and Yil for l 6= k. Positive association implies
that options k and l tend to have similar values, and negative association implies that they tend to
be di�erent. Conditional independence between Yik and Yil occurs when ψkl = 0. As we can only
consider correlations and no causal impacts, we have to impose ψkl = ψlk for symmetry, see also
Russell and Petersen (2000). The model can be extended by including explanatory variables that di�er
across individuals and the di�erent binary choices. Such an extension is straightforward, but to simplify
notation we do not include such variables here.

Using the results in Besag (1974), the joint distribution of Yi follows directly from the full set of
conditional distributions. Russell and Petersen (2000) show that the conditional distributions in (1)
imply an MNL speci�cation for the joint distribution of Yi, that is,

Pr[Yi = yi|Xi] =
exp

(

µyi

)

∑

si∈S
exp

(

µsi

) , (3)

where yi is a possible realization from the outcome space S and where µyi is de�ned as

µyi =

K
∑

k=1

yik(αk + Xiβk)+
∑

l>k

yikyilψkl. (4)

Hence, the parameters αk and βk only occur in the numerator of the probability function for Yik = 1.
Further, the association parameterψkl only occurs in the numerator when both yik = 1 and yil = 1. Note
that this implies that all pairs should occur in the available data to be able to estimate these association
parameters.

The interpretation of the impact of the intercept parameters and Xi follows from the log odds ratio

log

(

Pr[Yi = yi|Xi]

Pr[Yi = (0, . . . , 0)|Xi]

)

=

K
∑

k=1

yik(αk + Xiβk)+
∑

l>k

yikyilψkl, (5)

where we use that µ(0,...,0) = 0 for identi�cation. Clearly, the odds ratio equals µyi as de�ned in (4) and
provides the probability to observe yi relative to the base set of choices where all choices are 0.

The association parameter ψkl is in theory an unbounded parameter and thus does not directly
represent a correlation. However, log odds ratios give a direct interpretation of these association
parameters. That is, it is easy to show that

log

(

Pr[Yi = (0, . . . , 0, yk = 1, 0, . . . , 0, yl = 1, 0, . . . , 0)|Xi]Pr[Yi = (0, . . . , 0)|Xi]

Pr[Yi = (0, . . . , 0, yk = 1, 0, . . . , 0)|Xi]Pr[Yi = (0, . . . , 0, yl = 1, 0, . . . , 0)|Xi]

)

= ψkl. (6)

A positive ψkl thus implies that choices k and lmore o�en move together than apart.
The MVL model can be used to �nd dependencies in multivariate choices. In the next section,

we discuss several estimation methods to uncover these dependencies. We discuss why standard ML
estimation using the joint probabilities in (3) is not computationally feasible in case K is large. New
feasible methods are therefore introduced.

3. Parameter inference

This section proposes four estimation methods for the MVL model speci�cation de�ned in Section 2.
The �rst approach is a standard ML estimation procedure. This approach, however, is computationally
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infeasible when the number of choicesK is large.We therefore propose three alternative novel estimation
methods.

StandardML

The �rst estimation method directly follows Russell and Petersen (2000). To estimate the model
parameters, they suggest to use the joint probabilities in (3). That is, Russell and Petersen (2000) use
the MNL speci�cation on the full outcome space S which results in the log-likelihood function

ℓr(θ ; y) =

N
∑

i=1

log Pr[Yi = yi|Xi], (7)

where the joint probabilities Pr[Yi = yi|Xi] are given in (3). Further, θ summarizes all model parameters.
To distinguish between the severalmethods, we add the superscript r to the likelihood function. Standard
errors of the estimator can be obtained in the same way as for standard MNL models, see, for example
Amemiya (1985).

This estimation approach is very suitable when the number of choices K is small. However, the
number of alternatives S increases exponentially with K. For example, 10 binary choices already lead to
210 = 1024 potential outcomes ofYi. This leads to very small probabilities in (3) and a sumofmany terms
in the denominator, which may both lead to computational problems. Furthermore, the computation
time of the probabilities and hence the log-likelihood function will increase rapidly with the number
of choices. The dominating factor in the time spent computing the log likelihood function for a single
observation in (7) is the sum over the exponents, which has order of complexity 2K . We next propose
three alternative novel estimation methods which avoid the computation of all joint probabilities.

Strati�ed Importance Sampling

The �rst alternative method reduces the number of elements in the denominator and thereby avoids
large summations and the evaluation of small probabilities. To achieve this, we use a strati�ed subset of
the full outcome space for parameter estimation, where the selection probabilities for outcomes di�er.
Straightforwardly, using such a selection may however result in an inconsistent ML estimator. We use
the correction term of Ben-Akiva and Lerman (1985, Section 9.3) to correct for the strati�cation. This
correction term is related to the sampling probability of the subset.

Formally, let Di be a subset of the full outcome space S. We know from McFadden (1978) that
maximization of the conditional log-likelihood

ℓs(θ ; y) =

N
∑

i=1

log Pr[Yi = yi|Di,Xi] (8)

yields consistent parameter estimates if yi ∈ Di. From Bayes’ theorem, we can write

Pr[Yi = yi|Di,Xi] =
Pr[Yi = yi|Xi]Pr[Di|Yi = yi,Xi]

∑

di∈Di
Pr[Yi = di|Xi]Pr[Di|Yi = di,Xi]

=
exp

(

µyi + log
(

Pr[Di|Yi = yi,Xi]
))

∑

di∈Di
exp

(

µdi + log (Pr[Di|Yi = di,Xi])
) , (9)

where we use that Pr[Yi = yi|Xi] for all yi in S follows from (3). Hence, the correction term in the MNL
speci�cation for using a subsample Di instead of the full outcome space S is log

(

Pr[D|Yi = yi,Xi]
)

.
To select an appropriate subsample Di, we follow Ben-Akiva and Lerman (1985). They propose to

use Strati�ed Importance Sampling (SIS) for the creation of the subset Di and to �nd the values for
the correction term. This selection method creates disjoint strata containing comparable alternatives.
One randomly selects (with equal probabilities) a �xed number of alternatives within each stratum. For
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stratum r, we select nr alternatives. For the stratum that contains yi, we make sure that yi is contained in
the selected set.

Speci�cally, we create strata of singles, pairs, triplets, etc., in the multivariate binary choice data. Even
though there may be many triplets, SIS allows us to limit the number of triplets we actually need to
consider.

Formally, let R be the number of disjoint strata, and let qr be the stratum-speci�c probability to
be in subset Di based on the �xed amount of alternatives to be drawn. This probability equals nr
divided by the number of alternatives in stratum r. Then, referring to Ben-Akiva and Lerman (1985),
Pr[Di|Yi = yi,Xi] ∝ 1/qr(yi), where r(yi) is the stratum containing the joint set of binary choices under
consideration.

Hence, the correction term equals the negative logarithm of the stratum-speci�c selection probabili-
ties. The joint probabilities in (9) are then given by

Pr[Yi = yi|Di,Xi] =
exp

(

µyi − log
(

qr(yi)
))

∑

di∈Di
exp

(

µdi − log
(

qr(di)
)) . (10)

Replacing the joint probabilities in (7) by (10) provides a strati�ed log-likelihood. The strati�ed
importance sampling ML estimator is consistent, but there is loss in e�ciency compared to full ML
due to the sampling.

It is easy to see the advantages of this approach over the standardML approach of Russell and Petersen
(2000). Using only a subset Di in SIS reduces the dimension in the MVL model and thereby avoids
the large summation in the denominator of (3). The order of complexity of a likelihood contribution
calculation reduces from 2K to the size of Di, which can be chosen considerably smaller than 2K .
Furthermore, an optimal choice of strata R and sampling probabilities qr will not imply large e�ciency
losses. Nonetheless, small sampling probabilities qr decreases computation time but increases e�ciency
loss. A Monte Carlo study has to shed light on the e�ect of the size of Di on e�ciency losses. In the
remainder of this section, we introduce two alternative novel estimation methods.

Composite Conditional Likelihood

Given the structure of theMVLmodel, it is possible to useCCL (Lindsay, 1988) for parameter estimation.
Where both the method by Russell and Petersen (2000) and the method proposed in the previous
paragraph write the MVL model as a Multinomial Logit speci�cation on a large outcome space, the
CCL representation uses the conditional probabilities in (1) as separate, nonetheless correlated, choices.
Hence, CCL avoids summation over the complete outcome space. It can be shown that the CCL approach
provides consistent estimators at the cost of a loss in e�ciency (Varin et al., 2011).

Following Molenberghs and Verbeke (2005, Chapter 12), the conditional probabilities in (1) lead to
the composite log-likelihood function for the MVL model, that is,

ℓc(θ ; y) =

N
∑

i=1

ℓc(θ ; yi) =

N
∑

i=1

K
∑

k=1

ℓc(θ ; yik)

=

N
∑

i=1

K
∑

k=1

log Pr[Yik = yik|yil for l 6= k,Xi], (11)

where the superscript c stands for CCL. The estimator θ̂ which follows from maximizing (11) is
consistent as N → ∞ (Varin et al., 2011).

Varin et al. (2011) furthermore show that standard errors in CCL can be computed using the
Godambe (1960) information matrix, which has a sandwich form and equals

Gc
θ̂

= Hc
θ̂

(

Jc
θ̂

)−1
Hc
θ̂

(12)
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with

Hc
θ̂

=
1

N

N
∑

i=1

K
∑

k=1

∇ℓc(θ̂ ; yik)∇ℓ
c′(θ̂ ; yik) and Jc

θ̂
=

1

N

N
∑

i=1

∇ℓc(θ̂ ; yi)∇ℓ
c′(θ̂ ; yi), (13)

where ∇ℓc(θ̂ ; yik) and ∇ℓc(θ̂ ; yi) denote the �rst derivatives of the corresponding log-likelihood contri-
butions in (11). The covariance matrix of the parameter estimates then follows from (−Gc

θ̂
)−1.

Although the CCL does not correspond to the correct likelihood function, it still takes dependencies
in the MVL model into account. The advantage over the full multinomial representation in (3) is
that CCL avoids the large summation in the denominator. The order of complexity for a likelihood
contribution is further reduced to K because of the separation of conditional choices. It is therefore
possible to compute CCL even when there is a large number of choices. Nonetheless, since the composite
instead of the true likelihood function is used, the estimator is not e�cient. A Monte Carlo study in
Section 4 will however show a rather small and acceptable e�ciency loss.

GeneralizedMethod ofMoments

The �nal estimation method, we consider for the MVL model is GMM (Hansen, 1982). To reduce the
computation time, we base the moment conditions only on the conditional probabilities. Assuming
exogeneity of the explanatory variables, the moment conditions

E(Yik − Pr[Yik = 1|yil for l 6= k,Xi]) = 0 ∀ k = 1, . . . ,K,

E((Yik − Pr[Yik = 1|yil for l 6= k,Xi])Xi) = 0 ∀ k = 1, . . . ,K, (14)

E((Yik − Pr[Yik = 1|yil for l 6= k,Xi])Yil) = 0 ∀ l 6= k

are valid to estimate the parameters in θ . We denote the sample analogue of these moment conditions
for observation i bymi(θ), which is a (p + K)× K-dimensional vector.

The number of moment conditions equals (p + K) × K. When K > 1, the number of moment
conditions exceeds the number of parameters in the model, and we use a two-step GMM approach
(Cameron and Trivedi, 2005, Chapter 6). First, we estimate the parameters assigning equal weight to
all moment conditions. In the second step, we optimally weigh the moment conditions according to
the covariance matrix of the moment conditions to obtain the �nal parameter estimates. That is, in the
second step we solve

min
θ

M(θ)′WM(θ), (15)

whereM(θ)= 1
N

∑N
i=1mi(θ). TheweightingmatrixW is estimated as thematrix

(

1
N

∑N
i=1mi(θ)mi(θ)

′
)−1

evaluated at the �rst round estimate of θ , see, for example, Cameron and Trivedi (2005, Chapter 6.3).
The covariance matrix of the parameter estimates from GMM follows from

(

H
g′

θ̂

(

J
g

θ̂

)−1
H

g

θ̂

)−1

(16)

with H
g

θ̂
=

∑N
i=1 ∇mi(θ̂) and J

g

θ̂
=

∑N
i=1mi(θ̂)m

′
i(θ̂) where the superscript g stands for GMM.

The GMM approach uses conditional probabilities (1) instead of joint probabilities (3), and hence
the large summation in the denominator of (3) is avoided. GMM therefore has the same computational
advantages as the CCL approach. The order of complexity for a single observation equals the number
of moment conditions. Hence, this is lower than 2K if K > 4 and p reasonably small. As the suggested
GMM approach has more moment conditions than parameters, it is possible to use a standard test for
overidentifying restrictions to test for the validity of the MVL model speci�cation.

In sum, in this section we have proposed four parameter estimation methods for the MVL model.
Since the standard ML method is computationally infeasible when the number of choices is large, we
have proposed three novel estimation methods. In the next section, we compare these new estimation
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methods with the standardML approach in a Monte Carlo study. We focus on small-sample bias, loss in
e�ciency and computation time for several numbers of correlated binary choices K and sample sizesN.

4. Monte Carlo study

In this section, we conduct a Monte Carlo study to investigate the properties of the four estimation
methods described in the previous sections. First, we compare computation times of the four methods.
Second,we examine small-sample bias and e�ciency losses by looking at the average parameter estimates
and the root mean squared error (RMSE) over the replications. Since the standard ML method uses
the full information likelihood function, this method is expected to be most e�cient. We compare the
three alternative novel estimation methods to this method to analyze loss in e�ciency. Finally, we check
whether standard errors provided by the methods allow for valid inference in small samples.

For our Monte Carlo study, we consider the MVL speci�cation in (3) and (4). The number of choices
is either small (K = 4), medium (K = 8), or large (K = 12). We consider a relatively small sample
size (N = 500) and a large sample (N = 5,000). As explanatory variables Xi we take two positively
correlated random variables, one continuous and one discrete. Both variables are drawn from a bivariate
normal distribution with variances 0.25 and correlation 0.75, and the second variable is made discrete
based on a zero threshold. To avoid the need to consider many di�erent Data Generating Processes
(DGPs), the DGP parameters are chosen in such a way that di�erent types of correlation structures
occur within our set of K binary variables, see Tables 1–3 for the values of the DGP-parameters. For all
K, positive and negative as well as large and small association parameters are used. Note that the size of
the association parameters depends onK and thus di�ers overK. TheGMMapproach uses the discussed
two-step estimator. For the strati�ed sampling approach we have to choose R and qr . Since the sets of
binary choices within a stratum should be comparable, we create strata of singles, pairs, triplets, etc. An
intuitive choice for qr is the relative fraction of stratum r in the data. We consider two alternatives: one
where the size of subset Di is 2

K/2 and one where it is 2K/3.
All estimation methods are implemented in Matlab R2013a on a quad-core Intel Xeon 2.67Ghz

processor with 8GB RAM. Before we discuss the results of the Monte Carlo study, we �rst focus on
computation time. Table 4 displays the average computation time over 100 replications and N = 1,000
observations for di�erent values ofK, where we use theDGP fromTables 1–3. Since large summations in
the denominator of (3) and small joint probabilities do not occur for small K, standard ML estimation
is still computationally feasible. However, for larger K, di�erences in computation time grow rapidly.
For instance, the computation time for standard ML when K = 12 is on average 25.6 minutes and

Table 1. Average parameter estimates and RMSE in a simulation study with 4 binary choices (5,000 replications)a.

DGP ML SIS2K/2 SIS2K/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 −0.35 −0.358 0.230 −0.354 0.257 −0.365 0.298 −0.358 0.230 −0.381 0.239
β2 −1 −1.018 0.277 −1.027 0.320 −1.037 0.364 −1.018 0.277 −0.990 0.274

−0.5 −0.503 0.251 −0.508 0.286 −0.508 0.315 −0.504 0.252 −0.498 0.252
ψ1,4 0.35 0.354 0.220 0.357 0.259 0.361 0.277 0.354 0.220 0.355 0.236
ψ2,4 −0.9 −0.912 0.231 −0.926 0.260 −0.930 0.277 −0.913 0.231 −0.851 0.239
ψ3,4 0.55 0.559 0.212 0.562 0.248 0.567 0.279 0.559 0.212 0.562 0.230

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 −0.35 −0.350 0.071 −0.349 0.079 −0.351 0.091 −0.350 0.071 −0.353 0.071
β2 −1 −1.003 0.085 −1.003 0.098 −1.003 0.108 −1.003 0.086 −0.998 0.085

−0.5 −0.499 0.077 −0.500 0.088 −0.501 0.095 −0.499 0.077 −0.499 0.076
ψ1,4 0.35 0.351 0.068 0.352 0.079 0.353 0.085 0.351 0.068 0.352 0.069
ψ2,4 −0.9 −0.902 0.071 −0.904 0.081 −0.903 0.084 −0.902 0.071 −0.894 0.070
ψ3,4 0.55 0.551 0.067 0.552 0.078 0.553 0.086 0.551 0.067 0.551 0.069

aTo save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.
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Table 2. Average parameter estimates and RMSE in a simulation study with 8 binary choices (5,000 replications)a.

DGP ML SIS2K/2 SIS2K/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 −0.95 −0.972 0.269 −0.974 0.286 −0.973 0.316 −0.972 0.270 −1.014 0.287
β3 −1 −1.024 0.330 −1.032 0.352 −1.050 0.393 −1.026 0.333 −0.986 0.331

−0.5 −0.511 0.295 −0.517 0.310 −0.521 0.345 −0.512 0.296 −0.504 0.299
ψ1,8 0 −0.009 0.262 −0.008 0.275 −0.011 0.299 −0.009 0.263 0.003 0.271
ψ2,7 0.15 0.146 0.257 0.148 0.269 0.151 0.294 0.146 0.257 0.152 0.266
ψ3,5 −0.9 −0.928 0.296 −0.936 0.309 −0.959 0.331 −0.931 0.297 −0.824 0.302

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 −0.95 −0.949 0.082 −0.949 0.087 −0.949 0.096 −0.949 0.082 −0.954 0.084
β3 −1 −1.003 0.099 −1.004 0.105 −1.005 0.115 −1.003 0.099 −0.994 0.100

−0.5 −0.501 0.090 −0.502 0.093 −0.503 0.103 −0.501 0.090 −0.499 0.090
ψ1,8 0 −0.001 0.080 −0.001 0.084 −0.001 0.090 −0.001 0.080 0.002 0.082
ψ2,7 0.15 0.149 0.079 0.149 0.082 0.148 0.087 0.149 0.079 0.150 0.080
ψ3,5 −0.9 −0.905 0.092 −0.906 0.094 −0.908 0.101 −0.905 0.092 −0.875 0.097

aTo save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.

Table 3. Average parameter estimates and RMSE in a simulation study with 12 binary choices (5,000 replications)a .

DGP ML
b

SIS2K/2
b

SIS2K/3 CCL GMM

N = 500 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 −1.55 – – – – −1.602 0.368 −1.591 0.314 −1.645 0.347
β4 −1 – – – – −1.074 0.451 −1.040 0.386 −0.995 0.390

−0.5 – – – – −0.525 0.401 −0.508 0.340 −0.518 0.352
ψ3,12 −0.35 – – – – −0.405 0.432 −0.390 0.397 −0.346 0.395
ψ5,10 0.15 – – – – 0.136 0.398 0.133 0.368 0.114 0.371
ψ7,8 0.55 – – – – 0.570 0.390 0.554 0.349 0.486 0.374

N = 5000 θ θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse θ̂ rmse

α1 −1.55 – – – – −1.558 0.106 −1.555 0.094 −1.561 0.097
β4 −1 – – – – −1.007 0.128 −1.005 0.116 −0.993 0.115

−0.5 – – – – −0.503 0.117 −0.502 0.103 −0.505 0.103
ψ1,4 −0.35 – – – – −0.355 0.121 −0.352 0.116 −0.341 0.116
ψ2,4 0.15 – – – – 0.151 0.113 0.150 0.107 0.139 0.109
ψ3,4 0.55 – – – – 0.548 0.111 0.547 0.103 0.519 0.110

aTo save space we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.

bAs estimation forML and SIS2K/2 take too long (see Table 4), we do not include them in the 5,000 replications simulation.

Table 4. Average computation time over 100 replications (1,000 observations)a .

Estimation method

Number of choices K ML SIS2K/2 SIS2K/3 CCL GMM

4 0.79 1.02 0.89 0.25 1.22
8 37.33 15.89 8.17 1.66 7.25
12 1538.94 200.76 70.94 5.57 33.73

aIn seconds in Matlab R2013a on a Quad-Core Intel Xeon 2.67Ghz processor (8GB RAM) running Windows 7 64 bits.

the other three methods have a clear advantage. The computation time of CCL is more than 275 times
faster (only 5.6 seconds). These computation times are in line with the (objective) order of complexity
presented in Section 3. If the small-sample bias and losses in e�ciency are both small, the alternative
estimationmethods are sound alternatives for parameter estimation in the largeMNL speci�cation with
largeK. Note that the di�erence in computation timewill further increase if we includemore explanatory
variables in the model or consider even larger K.



542 K. BEL ET AL.

Table 5. Empirical size of the distribution of the four estimators of the MVL model with 4 binary choices (5,000 observations, 5,000
replications)a .

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

ML α1 0.026 0.052 0.099 0.896 0.949 0.977
β2 0.025 0.048 0.098 0.894 0.947 0.972

0.024 0.048 0.097 0.902 0.950 0.975
ψ1,4 0.024 0.050 0.099 0.901 0.949 0.976
ψ2,4 0.023 0.047 0.097 0.896 0.946 0.972
ψ3,4 0.026 0.052 0.099 0.898 0.949 0.977

SIS2K/2 α1 0.028 0.051 0.100 0.897 0.949 0.975
β2 0.024 0.049 0.096 0.898 0.947 0.972

0.024 0.049 0.098 0.898 0.949 0.975
ψ1,4 0.027 0.051 0.103 0.900 0.953 0.975
ψ2,4 0.023 0.046 0.096 0.892 0.944 0.972
ψ3,4 0.025 0.050 0.100 0.900 0.949 0.976

SIS2K/3 α1 0.026 0.051 0.098 0.896 0.948 0.974
β2 0.022 0.049 0.099 0.899 0.948 0.975

0.025 0.047 0.096 0.906 0.952 0.977
ψ1,4 0.024 0.049 0.097 0.899 0.949 0.975
ψ2,4 0.025 0.050 0.101 0.898 0.948 0.973
ψ3,4 0.027 0.049 0.101 0.895 0.946 0.975

CCL α1 0.027 0.052 0.099 0.896 0.948 0.977
β2 0.025 0.049 0.098 0.893 0.946 0.972

0.025 0.048 0.098 0.903 0.950 0.975
ψ1,4 0.025 0.050 0.099 0.900 0.949 0.974
ψ2,4 0.023 0.048 0.099 0.895 0.945 0.972
ψ3,4 0.025 0.053 0.099 0.898 0.949 0.977

GMM α1 0.029 0.057 0.106 0.888 0.943 0.972
β2 0.027 0.053 0.105 0.889 0.942 0.970

0.027 0.050 0.100 0.903 0.950 0.973
ψ1,4 0.032 0.062 0.111 0.888 0.940 0.969
ψ2,4 0.033 0.063 0.116 0.881 0.933 0.965
ψ3,4 0.032 0.061 0.111 0.885 0.940 0.970

aTo save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.

Tables 1–3 display the average and RMSE of the estimators over 5,000 replications. Since results are
highly comparable and to save space, a diverse selection of parameters from the DGPs is displayed.1 The
DGPwithN = 5,000 shows that the bias is quite small for all estimationmethods. For small sample sizes,
the deviation of the parameter estimates from the DGP values is larger. Nonetheless, all methods �nd
comparably accurate estimates. Our newly introduced estimation methods thus are capable of �nding
estimates comparable to the regular likelihood approach.

To further analyze the loss in e�ciency between the three novel estimation methods and standard
ML, we consider best and worst cases of the RMSEs across all parameters. As expected, standard ML is
most e�cient. The subset approach used in SIS causes a loss of information and thereby an increase in
RMSE. Obviously, the smaller the subset, the larger the loss in e�ciency. In the best and worst case, the
RMSE of ML and SIS with a subset D of size 2K/2 di�er 3.7% and 7.0%, respectively. The smaller subset
of size 2K/3 yields e�ciency losses between 12.0% and 20.4%. For CCL and GMM, only small e�ciency
losses occur. The di�erences of GMM with ML in terms of RMSE are between 0.02% and 7.3%. These
di�erences are smallest for the parameters of the covariates. For CCL, the minimum and maximum
di�erences are only 0.1% and 0.9%, respectively.

In practice one usually opts for the most e�cient approach. However, the estimation method should
also be computationally feasible such that parameter estimates can be obtained in a reasonable amount
of time. The large summation over all possible alternatives in the standard ML method may lead

1The results for the other parameters are similar and available upon request.
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to numerical problems and long computation times for large K. CCL and GMM seem to be useful
alternatives for standard ML and produce useful parameter estimates in little time. The small-sample
bias is similar, and the loss in e�ciency is rather small. For SIS, there is a clear tradeo� between the size
of the subset and the loss in e�ciency.

Apart from bias and e�ciency, we also consider the validity of the standard errors with respect to
signi�cance testing of the model parameters. Tables 5–7 display the empirical size of the t-test for N =

5,000 for both tails of the t-statistic. The table shows that size distortions are rather small. The largest
size distortions are found for the GMM approach. For example, a theoretical 90% con�dence interval
for ψ3,12 in GMM turns out to have a coverage of 84.2%. This size distortion is still acceptable. For the
other approaches, the size distortions are smaller. The same coverage probability is 89.9% for the CCL
approach. Unreported results show that even for small N size distortions of ML, SIS and CCL are still
negligible. Hence, hypothesis tests can be carried out in the usual manner for these estimation methods.
In accordance with existing literature (Altonji and Segal, 1996), size distortion for the GMM approach
are larger in small samples.

In sum, theMonte Carlo study shows that the novel estimationmethods are sound alternatives for the
regular likelihood approach. Where computation times in standard ML increase exponentially over the
number of choices, the computation time stays limited using CCL, GMM, or SIS. Further, small-sample
biases are comparable to full ML, and e�ciency losses are rather small and acceptable. Given the win
in computation time, the avoidance of numerical problems, small small-sample biases, and negligible
losses in e�ciency, CCL is the most promising alternative estimation method.

Table 6. Empirical size of the distribution of the four estimators of the MVL model with 8 binary choices (5,000 observations, 5,000
replications)a .

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

ML α1 0.022 0.048 0.098 0.900 0.948 0.972
β3 0.021 0.044 0.099 0.899 0.949 0.978

0.026 0.051 0.101 0.899 0.954 0.977
ψ1,8 0.025 0.048 0.096 0.901 0.952 0.976
ψ2,7 0.025 0.052 0.104 0.891 0.947 0.975
ψ3,5 0.022 0.048 0.100 0.898 0.944 0.974

SIS2K/2 α1 0.027 0.052 0.102 0.900 0.949 0.975
β3 0.023 0.047 0.099 0.900 0.948 0.976

0.026 0.050 0.102 0.892 0.950 0.976
ψ1,8 0.027 0.053 0.096 0.899 0.952 0.978
ψ2,7 0.025 0.056 0.103 0.894 0.948 0.975
ψ3,5 0.025 0.047 0.093 0.893 0.945 0.974

SIS2K/3 α1 0.023 0.050 0.105 0.902 0.948 0.976
β3 0.022 0.045 0.098 0.897 0.948 0.973

0.027 0.050 0.100 0.900 0.954 0.979
ψ1,8 0.026 0.047 0.098 0.899 0.951 0.977
ψ2,7 0.023 0.049 0.099 0.898 0.947 0.975
ψ3,5 0.025 0.049 0.098 0.890 0.946 0.974

CCL α1 0.023 0.048 0.100 0.900 0.948 0.972
β3 0.022 0.044 0.100 0.898 0.949 0.976

0.026 0.051 0.103 0.899 0.952 0.977
ψ1,8 0.026 0.049 0.099 0.896 0.951 0.974
ψ2,7 0.027 0.054 0.105 0.888 0.945 0.975
ψ3,5 0.024 0.049 0.100 0.897 0.942 0.970

GMM α1 0.029 0.057 0.109 0.887 0.941 0.967
β3 0.028 0.054 0.107 0.886 0.941 0.970

0.029 0.055 0.105 0.892 0.949 0.976
ψ1,8 0.035 0.060 0.117 0.874 0.931 0.961
ψ2,7 0.039 0.069 0.119 0.868 0.931 0.963
ψ3,5 0.034 0.064 0.121 0.873 0.930 0.958

aTo save space we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.
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Table 7. Empirical size of the distribution of the four estimators of the MVL model with 12 binary choices (5,000 observations, 5,000
replications)a .

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975

SIS2K/3 α1 0.025 0.048 0.093 0.900 0.950 0.975
β4 0.023 0.051 0.098 0.903 0.957 0.977

0.023 0.044 0.095 0.898 0.949 0.975
ψ3,12 0.024 0.046 0.093 0.902 0.949 0.975
ψ5,10 0.021 0.046 0.094 0.901 0.953 0.977
ψ7,8 0.024 0.042 0.094 0.904 0.947 0.974

CCL α1 0.025 0.050 0.095 0.894 0.948 0.974
β4 0.024 0.051 0.106 0.894 0.946 0.975

0.024 0.048 0.097 0.902 0.949 0.971
ψ3,12 0.024 0.048 0.098 0.891 0.947 0.974
ψ5,10 0.023 0.049 0.101 0.895 0.948 0.974
ψ7,8 0.025 0.050 0.098 0.898 0.950 0.972

GMM α1 0.036 0.066 0.119 0.876 0.935 0.965
β4 0.030 0.065 0.120 0.882 0.938 0.967

0.028 0.055 0.102 0.892 0.943 0.968
ψ3,12 0.044 0.076 0.127 0.862 0.918 0.953
ψ5,10 0.043 0.069 0.129 0.862 0.920 0.954
ψ7,8 0.045 0.072 0.125 0.870 0.925 0.954

aTo save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.

5. Application

In this section we illustrate the use of an MVL model with many choices. We consider survey data of
2,046 individuals on store visits in a particular Dutch specialized shoppingmall. Visits to di�erent stores
are likely to be correlated, and hence, it is convenient tomodel these simultaneous decisions using aMVL
speci�cation. In this application, we consider simultaneous choices for ten di�erent stores. All stores fall
under the general theme of home decoration and do-it-yourself. Table 8 details the types of stores. Our
dependent variable can take 210 = 1,024 di�erent values. As explanatory variables, we have Family size,
Age, Gender, Income, Number of visits, and Appreciation of the shopping mall.

The simulation study in Section 4 showed that for this size of the outcome space, large di�erences in
computation time occur. Hence, one may not be willing to use standard ML estimation. Based on the
simulation results, we consider the CCL approach (fast and accurate) to estimate themodel parameters2.
As benchmark, we will also consider the standardML approach. The standardML approach takes about
1.6 hours on a dual-core Intel 3.4Ghz processor with 4GB RAM, which shows that this method is not
very convenient if you want to investigate several model speci�cations. The CCL approach on the other
hand only takes 2.3 minutes.

First, we test for independence among the choices for store visits. The LR-statistic in theML approach
for the restriction that all ψ = 0 is 1,373.4 (45 degrees of freedom). This statistic clearly shows that
independence is rejected. Hence, we �nd evidence for correlations between visiting the di�erent store
types and the MVL model from Section 2 thus is applicable to the data. An adjusted LR-test for CCL
(Varin et al., 2011) yields the same conclusion.

Tables 8–11 display the parameter estimates and standard errors for the two estimation methods.
The parameter estimates are very similar and both methods �nd the same parameter estimates to be
signi�cantly di�erent from 0. The standard errors in the CCL approach are slightly smaller than in the
standard ML estimation approach, but this may be due to the relatively small sample size. Unreported
results show that the GMM and SIS approaches also provide similar results. The results of SIS indicate
that subset Di should be large to get results close to standard ML.

2The results of the other two approaches are available upon request.
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The negative estimates of the choice-speci�c intercepts in Tables 8 and 10 show that most stores are
visited only by aminority of the individuals. The order of the intercepts shows that stores selling kitchens
are visited least, where stores selling building materials are visited by the most individuals.

Several relations between the explanatory variables and store visits are found. For example, the more
frequent visitors of the mall visit more stores selling paint/wallpaper, building materials, and hardware.
These can be seen as the fanatic handymen. Furthermore, visitors who very much appreciate the mall
are more likely to also buy their furniture, lamps, and �oor and wall decorations at this shopping mall.

The association parameters in Table 11 show the relations between the visits to di�erent stores.
Clear interpretations can be given. For example, individuals who visit a store selling an odd jobs article
(paint/wallpaper, building materials, or hardware) are likely also to visit other odd jobs stores. The
same holds for stores selling lamps, curtains/carpets, and furniture since the corresponding association
parameters are positive. Negative and signi�cant association parameters are for instance found for the
combination hardware and curtains/carpets. Apparently, individuals seem to be unlikely to visit both
these store types in this shopping mall.

In sum, the MVL model gives understandable and interpretable parameter estimates for the data of
store visits in a Dutch shopping mall. Furthermore, the standard ML and CCL approaches yield very
similar estimation results and conclusions. The clear advantage of the CCL approach is the time it takes
to obtain consistent parameter estimates with small loss in e�ciency. The reduction in computation time
is large, and with the CCL method it becomes feasible to easily consider several model speci�cations. In
case the number of stores had been larger, ML estimation would have broken down, while CCL could
still be used.

6. Conclusion

The MVL model is used to model correlated simultaneous binary choices. In this article, we propose
three novel estimation methods for this model: estimation by (i) SIS; (ii) CCL; and by (iii) GMM. The
new estimation methods are especially of interest when the dimension of the choice problem is large.
Methods available in the literature go together with a large computational burden. The new methods in
this article circumvent this problem.

Results from a Monte Carlo study show that the new estimation methods yield comparable small-
sample biases as the standard (full information) ML approach as proposed by Russell and Petersen
(2000). Furthermore, e�ciency losses compared to the full likelihood approach are rather small. Because
of these �ndings, the decrease in computation time and avoidance of numerical problems are clear
advantages of our proposed estimation methods. The CCL approach turns out to have the largest
decrease in computation time, leads to a very small loss in e�ciency, and provides accurate standard
errors.

In an application, we applied the methods to store visits in a shopping mall. Multivariate binary
choice data occur widely in practice. Hence, other applications in di�erent �elds of research can be
given. Since the dimension of the choice problem will o�en be large, our methods are highly useful in
applied research.

Several extensions to the current research are possible. For instance, a Conditional Logit speci�cation
can easily be derived. Furthermore, the association parameters can also depend on exogenous variables
or be individual-speci�c (in panel data models). Finally, instead of binary choices, this model can be
extended to a multivariate multinomial speci�cation. The feasible estimation methods proposed in this
article can be used in all these cases. Especially CCL is applicable to extensions of the current model
speci�cation if a clear composition of the conditional probabilities can be given.
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