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Parameter estimation in multivariate logit models with many binary
choices

Koen Bel, Dennis Fok, and Richard Paap

Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, The Netherlands

ABSTRACT KEYWORDS
Multivariate Logit models are convenient to describe multivariate correlated Composite likelihood;
binary choices as they provide closed-form likelihood functions. However, the ~ generalized method of
computation time required for calculating choice probabilities increases expo- ~ Moments; multivariate logit
nentially with the number of choices, which makes maximum likelihood-based model; stratified importance
estimation infeasible when many choices are considered. To solve this, we sampling

propose three novel estimation methods: (i) stratified importance sampling, JEL CLASSIFICATION

(ii) composite conditional likelihood (CCL), and (iii) generalized method of C13;C31; C35; C51
moments, which yield consistent estimates and still have similar small-sample

bias to maximum likelihood. Our simulation study shows that computation

times for CCL are much smaller and that its efficiency loss is small.

1. Introduction

Multivariate choice models are widely used to describe correlated binary decision data in different fields
of applied research. For example, grocery product choices by consumers are likely to be correlated across
different brands or product categories (Chib et al., 2002). Choices for different types of insurances are
correlated (Donkers et al., 2007), and effects of a medicine treatment on two or more physiological
systems are also related (Ashford and Sowden, 1970). As a final example, Feddag (2013) investigates
several “health-related quality of life” questions in a survey among cancer patients, and the answers to
these questions are likely to be correlated. Hence, simultaneous binary decisions occur in many different
fields of research.

The number of choices to be made in multivariate decision problems can be rather large. The number
of products in a supermarket is large; individuals have to decide upon life, car, house insurances, and so
forth; and the number of questions in a survey might also be large. There is therefore a need for a model
that is applicable in these settings. In principle such models are available. However, current econometric
estimation methods for multivariate choice models suffer from a computational burden if the number
of choices grows large.

The standard econometric model to describe correlated multivariate binary choices is the Multivariate
Probit model (Ashford and Sowden, 1970; Edwards and Allenby, 2003). The main disadvantage of this
model is that the computation of the choice probabilities involves high-dimensional integrals which
cannot be solved analytically. Numerical integration methods are not very accurate and slow in high
dimensions, and simulation-based estimation methods are often used instead (Cappellari and Jenkins,
2006). However, the computational efforts to perform simulation-based estimation become excessive
when a large number of correlated choices is considered. To avoid the evaluation of integrals, one may
opt for multivariate binary decision models based on correlated logistic regressions. These models are
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nonetheless difficult to generalize to higher dimensions (Carey et al., 1993; Glonek and McCullagh,
1995).

To avoid these difficulties we opt for the Multivariate Logit (MVL) model (Cox, 1972). Russell
and Petersen (2000) show that this model can be written as a restricted Multinomial Logit (MNL)
specification over all possible outcomes of the multivariate binary choices. The multivariate choice
problem over K choices is reformulated as a multinomial choice model over 2K alternatives.

The problem of this MVL specification is that the outcome space of the multivariate binary random
variable, and thereby the computation time, increases exponentially with the number of choices.
From a practical point of view, standard Maximum Likelihood (ML) parameter estimation becomes
computationally infeasible even for a moderate number of choices. Further, numerical problems can
occur as probabilities get too small for practical use. Russell and Petersen (2000) apply the model to four
binary choices only and state that “as the number of categories becomes large, the approach taken in our
research will clearly become infeasible” (p. 387). Guimardes et al. (2003) propose to use a more feasible
approach based on Poisson regression. Unfortunately, this method only holds for the conditional logit
specification where explanatory variables differ across choices. It therefore does not solve the infeasibility
for all MVL specifications.

In this article, we propose three novel estimation methods for the MVL model which provide
parameter estimates in an acceptable amount of time even if the number of binary choices is large.
In the first proposed method, we use a sampling method to reduce the number of alternatives in the
estimation routine. Using the method proposed by Ben-Akiva and Lerman (1985) we can still obtain
consistent estimators for the model parameters. In the second method, we take advantage of the fact
that the MVL model has simple conditional probabilities. We use these conditional probabilities in
a Composite Conditional Likelihood (CCL) approach (Lindsay, 1988). In case of K binary choices,
only K conditional probabilities have to be evaluated instead of 2X joint probabilities, which reduces
computing time. Furthermore, this method solves the problem of very small joint probabilities as these
probabilities are not used within the estimation routine. Finally, we consider a Generalized Method of
Moments (GMM) estimator based on the conditional probabilities, and hence this approach has the same
advantages as the CCL approach. Monte Carlo results show that the three novel estimation methods
are much faster, have similar small-sample biases as the standard ML approach of Russell and Petersen
(2000), and that the loss in efficiency is very limited.

The remainder of this article is organized as follows. In Section 2 we describe the MVL model as
discussed by Russell and Petersen (2000). Parameter inference is considered in Section 3. We first present
standard ML parameter estimation followed by our three alternative methods. Section 4 describes the
results of the Monte Carlo study which compares the estimation methods with respect to computation
time, small-sample bias, and efficiency. Section 5 gives an illustration of the MVL model for a case with
10 binary choices for store choices of households in a shopping mall. Finally, Section 6 concludes.

2. Model specification

In this section, we discuss the model specification for the MVL model. We use the specification as
introduced by Cox (1972) and further implemented by Russell and Petersen (2000).

Following Russell and Petersen (2000), we let Y; denote the K-dimensional random variable describ-
ing the joint set of choices for individual i = 1,..., N, defined as Y; = {Yj1, ..., Yix}, where Y denotes
the kth binary choice for individual 4, for k = 1,..., K. The set of possible realizations of Y; is called S
which contains 2K elements. It can immediately be seen that the number of possible realizations grows
exponentially with the number of binary choices K.

The choices in Y; may be correlated. To describe these dependencies, Russell and Petersen (2000)
specify the conditional probabilities of the kth random variable Yy given all other choices, that is, y;
for | # k. These conditional probabilities are a Logit function of individual characteristics X;, model
parameters o, 8, and v, and yj, that is,

exp (Zik)

PriYic = 1|¥its -« o5 Vike1s Vike1s - - - > ViKs Xj] = —————————— 1
r[Yik lyin YVik—15Yik+1 yiKk> Xil T+ exp (Zi) (D
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with

Zip = ar+ XiBe + Y yirvws )
Ik

where y;; is the realization of Yj;, oy are alternative-specific intercepts, X; isa (1 x p)-vector of explanatory
variables with corresponding parameter vector B, and where 1y are association parameters. The
association parameters capture the correlation between Yj and Yj; for [ # k. Positive association implies
that options k and [ tend to have similar values, and negative association implies that they tend to
be different. Conditional independence between Yj and Yy occurs when ¥y = 0. As we can only
consider correlations and no causal impacts, we have to impose Yy = v for symmetry, see also
Russell and Petersen (2000). The model can be extended by including explanatory variables that differ
across individuals and the different binary choices. Such an extension is straightforward, but to simplify
notation we do not include such variables here.

Using the results in Besag (1974), the joint distribution of Y; follows directly from the full set of
conditional distributions. Russell and Petersen (2000) show that the conditional distributions in (1)
imply an MNL specification for the joint distribution of Y;, that is,

Py = it = 22 Un) 3
Y qes exp (1s)
where y; is a possible realization from the outcome space S and where u,, is defined as
K
iy, =Yyl +XiB) + D yiyiavu- 4)

k=1 I>k

Hence, the parameters ax and Bk only occur in the numerator of the probability function for Yj = 1.
Further, the association parameter 14 only occurs in the numerator when both y;x = 1 and y; = 1. Note
that this implies that all pairs should occur in the available data to be able to estimate these association
parameters.

The interpretation of the impact of the intercept parameters and X; follows from the log odds ratio

1 ( PI’[Y,‘ = y1|X,]
Pr[Yi = (0, e ,0)|Xl']

K
) = yiklax+XiB) + Y yiyadus )
k=1 I>k

where we use that 14(g,...0) = 0 for identification. Clearly, the odds ratio equals 1, as defined in (4) and
provides the probability to observe y; relative to the base set of choices where all choices are 0.

The association parameter vy is in theory an unbounded parameter and thus does not directly
represent a correlation. However, log odds ratios give a direct interpretation of these association
parameters. That is, it is easy to show that

g (PHLYi= (0,03 =1,0,..,0,=1,0,...,0)Xi] PrlY; = (0,...,0)|Xi]
PrY; = (0,...,0,yx = 1,0,...,0)[X;] Pr[Y; = (0,...,0,y = 1,0,...,0)|X;]

) =Y. (6)

A positive 1y thus implies that choices k and [ more often move together than apart.

The MVL model can be used to find dependencies in multivariate choices. In the next section,
we discuss several estimation methods to uncover these dependencies. We discuss why standard ML
estimation using the joint probabilities in (3) is not computationally feasible in case K is large. New
feasible methods are therefore introduced.

3. Parameter inference

This section proposes four estimation methods for the MVL model specification defined in Section 2.
The first approach is a standard ML estimation procedure. This approach, however, is computationally
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infeasible when the number of choices K is large. We therefore propose three alternative novel estimation
methods.

Standard ML

The first estimation method directly follows Russell and Petersen (2000). To estimate the model
parameters, they suggest to use the joint probabilities in (3). That is, Russell and Petersen (2000) use
the MNL specification on the full outcome space S which results in the log-likelihood function

N
U(0;y) =Y _logPrlY; = yilXil, (7)
i=1
where the joint probabilities Pr[Y; = y;|X;] are given in (3). Further, 6 summarizes all model parameters.
To distinguish between the several methods, we add the superscript r to the likelihood function. Standard
errors of the estimator can be obtained in the same way as for standard MNL models, see, for example
Amemiya (1985).

This estimation approach is very suitable when the number of choices K is small. However, the
number of alternatives S increases exponentially with K. For example, 10 binary choices already lead to
210 = 1024 potential outcomes of Y;. This leads to very small probabilities in (3) and a sum of many terms
in the denominator, which may both lead to computational problems. Furthermore, the computation
time of the probabilities and hence the log-likelihood function will increase rapidly with the number
of choices. The dominating factor in the time spent computing the log likelihood function for a single
observation in (7) is the sum over the exponents, which has order of complexity 2K. We next propose
three alternative novel estimation methods which avoid the computation of all joint probabilities.

Stratified Importance Sampling
The first alternative method reduces the number of elements in the denominator and thereby avoids
large summations and the evaluation of small probabilities. To achieve this, we use a stratified subset of
the full outcome space for parameter estimation, where the selection probabilities for outcomes differ.
Straightforwardly, using such a selection may however result in an inconsistent ML estimator. We use
the correction term of Ben-Akiva and Lerman (1985, Section 9.3) to correct for the stratification. This
correction term is related to the sampling probability of the subset.

Formally, let D; be a subset of the full outcome space S. We know from McFadden (1978) that
maximization of the conditional log-likelihood

N
503y) = Y _log Pr[Y; = yi|D;, Xi] (8)

i=1
yields consistent parameter estimates if y; € D;. From Bayes’ theorem, we can write
Pr[Y; = yilXi] Pr[Di|Y; = y;, Xi]
>_diep; PrlYi = dilXi] Pr[Dy|Y; = d;, X

_ exp (iy, + log (Pr[D;]Y; = yi, Xi1))
> aep, €xp (1d, +log (Pr[DiY; = d;, Xi]))’

where we use that Pr[Y; = y;|X;] for all y; in S follows from (3). Hence, the correction term in the MNL
specification for using a subsample D; instead of the full outcome space S is log (Pr[D| Yi = yi, X,-]).

To select an appropriate subsample D;, we follow Ben-Akiva and Lerman (1985). They propose to
use Stratified Importance Sampling (SIS) for the creation of the subset D; and to find the values for
the correction term. This selection method creates disjoint strata containing comparable alternatives.
One randomly selects (with equal probabilities) a fixed number of alternatives within each stratum. For

Pr[Y; = yi|D;, Xi] =

)
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stratum 7, we select n, alternatives. For the stratum that contains y;, we make sure that y; is contained in
the selected set.

Specifically, we create strata of singles, pairs, triplets, etc., in the multivariate binary choice data. Even
though there may be many triplets, SIS allows us to limit the number of triplets we actually need to
consider.

Formally, let R be the number of disjoint strata, and let g, be the stratum-specific probability to
be in subset D; based on the fixed amount of alternatives to be drawn. This probability equals n,
divided by the number of alternatives in stratum r. Then, referring to Ben-Akiva and Lerman (1985),
Pr[Di|Y; = yi, Xi] < 1/qr(yy)> where r(y;) is the stratum containing the joint set of binary choices under
consideration.

Hence, the correction term equals the negative logarithm of the stratum-specific selection probabili-
ties. The joint probabilities in (9) are then given by

exp (tty, — log (gryp))
> dep, P (1, — 1og (qray))

Replacing the joint probabilities in (7) by (10) provides a stratified log-likelihood. The stratified
importance sampling ML estimator is consistent, but there is loss in efficiency compared to full ML
due to the sampling.

It is easy to see the advantages of this approach over the standard ML approach of Russell and Petersen
(2000). Using only a subset D; in SIS reduces the dimension in the MVL model and thereby avoids
the large summation in the denominator of (3). The order of complexity of a likelihood contribution
calculation reduces from 2K to the size of D;, which can be chosen considerably smaller than 2K,
Furthermore, an optimal choice of strata R and sampling probabilities g, will not imply large efficiency
losses. Nonetheless, small sampling probabilities g, decreases computation time but increases efficiency
loss. A Monte Carlo study has to shed light on the effect of the size of D; on efficiency losses. In the
remainder of this section, we introduce two alternative novel estimation methods.

Pr[Y; = yi|D;, Xi] = (10)

Composite Conditional Likelihood
Given the structure of the MVL model, it is possible to use CCL (Lindsay, 1988) for parameter estimation.
Where both the method by Russell and Petersen (2000) and the method proposed in the previous
paragraph write the MVL model as a Multinomial Logit specification on a large outcome space, the
CCL representation uses the conditional probabilities in (1) as separate, nonetheless correlated, choices.
Hence, CCL avoids summation over the complete outcome space. It can be shown that the CCL approach
provides consistent estimators at the cost of a loss in efficiency (Varin et al., 2011).

Following Molenberghs and Verbeke (2005, Chapter 12), the conditional probabilities in (1) lead to
the composite log-likelihood function for the MVL model, that is,

N N K
@) =Y E@:p) =Y > LGy
i=1

i=1 k=1

M=

-y

i=1

log Pr[Yik = yiklyi for I # k, X;], (11)

x-
Il

1

where the superscript ¢ stands for CCL. The estimator 6 which follows from maximizing (11) is
consistent as N — oo (Varin et al., 2011).

Varin et al. (2011) furthermore show that standard errors in CCL can be computed using the
Godambe (1960) information matrix, which has a sandwich form and equals

Gy =H; (15) (12
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with

N K N
1 . . 1 . .
H = N § k§ VLG5 yi) VL 03 yir) and  J§= N E VLB y)VET G5y,  (13)
i=1 k=1 i=1

where V£¢(8; yir) and V< (h; yi) denote the first derivatives of the corresponding log-likelihood contri-
butions in (11). The covariance matrix of the parameter estimates then follows from (—G%) 1.

Although the CCL does not correspond to the correct likelihood function, it still takes dependencies
in the MVL model into account. The advantage over the full multinomial representation in (3) is
that CCL avoids the large summation in the denominator. The order of complexity for a likelihood
contribution is further reduced to K because of the separation of conditional choices. It is therefore
possible to compute CCL even when there is a large number of choices. Nonetheless, since the composite
instead of the true likelihood function is used, the estimator is not efficient. A Monte Carlo study in
Section 4 will however show a rather small and acceptable efficiency loss.

Generalized Method of Moments

The final estimation method, we consider for the MVL model is GMM (Hansen, 1982). To reduce the
computation time, we base the moment conditions only on the conditional probabilities. Assuming
exogeneity of the explanatory variables, the moment conditions

E(Yy —Pr[Yg =1lyy  forl #kX])=0 Vk=1,...,K,
E((Yik — Pl‘[Y,’k = 1|yil for [ 75 k,X,'])X,‘) =0 Vk= 1,...,K, (14)
E((Yig = Pr[Yy = 1lyy  forl#kLXiDYy) =0  VI#k

are valid to estimate the parameters in 6. We denote the sample analogue of these moment conditions
for observation i by m;(0), which is a (p + K) x K-dimensional vector.

The number of moment conditions equals (p + K) x K. When K > 1, the number of moment
conditions exceeds the number of parameters in the model, and we use a two-step GMM approach
(Cameron and Trivedi, 2005, Chapter 6). First, we estimate the parameters assigning equal weight to
all moment conditions. In the second step, we optimally weigh the moment conditions according to
the covariance matrix of the moment conditions to obtain the final parameter estimates. That is, in the
second step we solve

mgin M(©O) WM(0), (15)

where M(0) = % Zfil m;(0). The weighting matrix W is estimated as the matrix (# Zfil m;(0) m,-(@)’) !
evaluated at the first round estimate of 9, see, for example, Cameron and Trivedi (2005, Chapter 6.3).
The covariance matrix of the parameter estimates from GMM follows from

g (18) " 8 B
(Hé %) Hé) (16)
with Hé = Zfi 1 Vm;(6) and ]g = Zi | mi(é)mg(é) where the superscript g stands for GMM.

The GMM approach uses conditional probabilities (1) instead of joint probabilities (3), and hence
the large summation in the denominator of (3) is avoided. GMM therefore has the same computational
advantages as the CCL approach. The order of complexity for a single observation equals the number
of moment conditions. Hence, this is lower than 2X if K > 4 and p reasonably small. As the suggested
GMM approach has more moment conditions than parameters, it is possible to use a standard test for
overidentifying restrictions to test for the validity of the MVL model specification.

In sum, in this section we have proposed four parameter estimation methods for the MVL model.
Since the standard ML method is computationally infeasible when the number of choices is large, we
have proposed three novel estimation methods. In the next section, we compare these new estimation
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methods with the standard ML approach in a Monte Carlo study. We focus on small-sample bias, loss in
efficiency and computation time for several numbers of correlated binary choices K and sample sizes N.

4. Monte Carlo study

In this section, we conduct a Monte Carlo study to investigate the properties of the four estimation
methods described in the previous sections. First, we compare computation times of the four methods.
Second, we examine small-sample bias and efficiency losses by looking at the average parameter estimates
and the root mean squared error (RMSE) over the replications. Since the standard ML method uses
the full information likelihood function, this method is expected to be most efficient. We compare the
three alternative novel estimation methods to this method to analyze loss in efficiency. Finally, we check
whether standard errors provided by the methods allow for valid inference in small samples.

For our Monte Carlo study, we consider the MVL specification in (3) and (4). The number of choices
is either small (K = 4), medium (K = 8), or large (K = 12). We consider a relatively small sample
size (N = 500) and a large sample (N = 5,000). As explanatory variables X; we take two positively
correlated random variables, one continuous and one discrete. Both variables are drawn from a bivariate
normal distribution with variances 0.25 and correlation 0.75, and the second variable is made discrete
based on a zero threshold. To avoid the need to consider many different Data Generating Processes
(DGPs), the DGP parameters are chosen in such a way that different types of correlation structures
occur within our set of K binary variables, see Tables 1-3 for the values of the DGP-parameters. For all
K, positive and negative as well as large and small association parameters are used. Note that the size of
the association parameters depends on K and thus differs over K. The GMM approach uses the discussed
two-step estimator. For the stratified sampling approach we have to choose R and g. Since the sets of
binary choices within a stratum should be comparable, we create strata of singles, pairs, triplets, etc. An
intuitive choice for g, is the relative fraction of stratum r in the data. We consider two alternatives: one
where the size of subset D; is 2X/2 and one where it is 2X/3.

All estimation methods are implemented in Matlab R2013a on a quad-core Intel Xeon 2.67Ghz
processor with 8GB RAM. Before we discuss the results of the Monte Carlo study, we first focus on
computation time. Table 4 displays the average computation time over 100 replications and N = 1,000
observations for different values of K, where we use the DGP from Tables 1-3. Since large summations in
the denominator of (3) and small joint probabilities do not occur for small K, standard ML estimation
is still computationally feasible. However, for larger K, differences in computation time grow rapidly.
For instance, the computation time for standard ML when K = 12 is on average 25.6 minutes and

Table 1. Average parameter estimates and RMSE in a simulation study with 4 binary choices (5,000 replications)?.

DGP ML SIS,k /2 SIS,k /3 ccL GMM

N = 500 0 2 rmse 0 rmse o rmse 2 rmse 0 rmse
o —035 —0.358 0230 —0.354 0.257  —0.365 0.298 —0.358 0230 —0.381 0.239
B —1 —1.018 0277  —1.027 0320 —1.037 0364 —1.018 0.277  —0.990 0.274

—0.5 —0.503 0.251 —0.508 0.286  —0.508 0315 —0.504 0252  —0.498 0.252
Y1,4 0.35 0.354 0.220 0.357 0.259 0.361 0.277 0.354 0.220 0.355 0.236
Vo4 —0.9 —0.912 0.231 —0.926 0.260 —0.930 0277  —0.913 0.231 —0.851 0.239
V3,4 0.55 0.559 0.212 0.562 0.248 0.567 0.279 0.559 0.212 0.562 0.230
N = 5000 0 2 rmse 6 rmse o rmse 2 rmse o rmse
o —035 —0.350 0.071 —0.349 0.079  —0.351 0.091 —0.350 0.071 —0.353 0.071
B2 -1 —1.003 0.085 —1.003 0.098 —1.003 0.108  —1.003 0.086  —0.998 0.085

—0.5 —0.499 0.077  —0.500 0.088  —0.501 0.095 —0.499 0.077  —0.499 0.076
¥1,4 0.35 0.351 0.068 0.352 0.079 0.353 0.085 0.351 0.068 0.352 0.069
VY24 —-0.9 —0.902 0.071 —0.904 0.081 —0.903 0.084  —0.902 0.071 —0.894 0.070
V3,4 0.55 0.551 0.067 0.552 0.078 0.553 0.086 0.551 0.067 0.551 0.069

970 save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.
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Table 2. Average parameter estimates and RMSE in a simulation study with 8 binary choices (5,000 replications)?.

DGP ML SISyk/2 SIS,k/3 ccL GMM

N = 500 0 o rmse o rmse o rmse o rmse 0 rmse
o —095 —0.972 0269 —0.974 0.286 —0.973 0316  —0.972 0270 —-1.014 0.287
B3 —1 —1.024 0330 —1.032 0352  —1.050 0393 —1.026 0333 —0.986 0.331

—0.5 —0.511 0295 —0.517 0310 —0.521 0345 —0.512 0296  —0.504 0.299
1,8 0 —0.009 0262  —0.008 0275 —0.011 0299  —0.009 0.263 0.003 0.271
Y27 0.15 0.146 0.257 0.148 0.269 0.151 0.294 0.146 0.257 0.152 0.266
¥3,5 —0.9 —0.928 0296  —0.936 0309 —0.959 0.331 —0.931 0297 —0.824 0.302
N = 5000 0 2 rmse 2 rmse o rmse 3 rmse 2 rmse
o —095 —0.949 0.082  —0.949 0.087 —0.949 0.096 —0.949 0.082 —0.954 0.084
B3 —1 —1.003 0.099 —1.004 0.105  —1.005 0.115  —1.003 0.099  —0.994 0.100

—0.5 —0.501 0.090 —0.502 0.093 —0.503 0.103  —0.501 0.090 —0.499 0.090
1,8 0 —0.001 0.080  —0.001 0.084  —0.001 0.090 —0.001 0.080 0.002 0.082
v2,7 0.15 0.149 0.079 0.149 0.082 0.148 0.087 0.149 0.079 0.150 0.080
¥3,5 —-0.9 —0.905 0.092  —0.906 0.094  —0.908 0.101 —0.905 0.092 —0.875 0.097

9To save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.

Table 3. Average parameter estimates and RMSE in a simulation study with 12 binary choices (5,000 replications)?.

DGP mLb S1S,x/2° SIS,/ L GMM

N = 500 0 o rmse 2 rmse 0 rmse 2 rmse 6 rmse
aq —1.55 - - - - —1.602 0.368 —1.591 0314 —1.645 0.347
Ba -1 - - - - —1.074 0.451 —1.040 0.386 —0.995 0.390

—0.5 - - - - —0.525 0.401 —0.508 0.340 —0.518 0.352
V3,12 —035 - - - - —0.405 0.432 —0.390 0.397 —0.346 0.395
¥s,10 0.15 - - - - 0.136 0.398 0.133 0.368 0.114 0.371
Y78 0.55 - - - - 0.570 0.390 0.554 0.349 0.486 0.374
N = 5000 0 o rmse 2 rmse 0 rmse 0 rmse 2 rmse
o —1.55 - - - - —1.558 0.106 —1.555 0.094 —1.561 0.097
Ba -1 - - - - —1.007 0.128 —1.005 0.116 —0.993 0.115

—0.5 - - - - —0.503 0.117 —0.502 0.103 —0.505 0.103
Y1,4 —035 - - - - —0.355 0.121 —0.352 0.116 —0.341 0.116
V2,4 0.15 - - - - 0.151 0.113 0.150 0.107 0.139 0.109
V34 0.55 - - - - 0.548 0.111 0.547 0.103 0.519 0.110

9To save space we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.
b s estimation for ML and SISyk/2 take too long (see Table 4), we do not include them in the 5,000 replications simulation.

Table 4. Average computation time over 100 replications (1,000 observations)?.

Estimation method

Number of choices K ML SISyk/2 SISyk/3 CcCcL GMM
4 0.79 1.02 0.89 0.25 1.22
8 37.33 15.89 8.17 1.66 7.25

12 1538.94 200.76 70.94 5.57 33.73

91n seconds in Matlab R2013a on a Quad-Core Intel Xeon 2.67Ghz processor (8GB RAM) running Windows 7 64 bits.

the other three methods have a clear advantage. The computation time of CCL is more than 275 times
faster (only 5.6 seconds). These computation times are in line with the (objective) order of complexity
presented in Section 3. If the small-sample bias and losses in efficiency are both small, the alternative
estimation methods are sound alternatives for parameter estimation in the large MNL specification with
large K. Note that the difference in computation time will further increase if we include more explanatory
variables in the model or consider even larger K.
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Table 5. Empirical size of the distribution of the four estimators of the MVL model with 4 binary choices (5,000 observations, 5,000
replications)?.

Percentiles

Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975
ML aq 0.026 0.052 0.099 0.896 0.949 0.977
B 0.025 0.048 0.098 0.894 0.947 0.972

0.024 0.048 0.097 0.902 0.950 0.975

V14 0.024 0.050 0.099 0.901 0.949 0.976

V2,4 0.023 0.047 0.097 0.896 0.946 0.972

VY34 0.026 0.052 0.099 0.898 0.949 0.977

SIS,k /2 aq 0.028 0.051 0.100 0.897 0.949 0.975
B2 0.024 0.049 0.096 0.898 0.947 0.972

0.024 0.049 0.098 0.898 0.949 0.975

V1,4 0.027 0.051 0.103 0.900 0.953 0.975

V24 0.023 0.046 0.096 0.892 0.944 0.972

VY34 0.025 0.050 0.100 0.900 0.949 0.976

SIS,k /3 aq 0.026 0.051 0.098 0.896 0.948 0.974
B 0.022 0.049 0.099 0.899 0.948 0.975

0.025 0.047 0.096 0.906 0.952 0.977

1,4 0.024 0.049 0.097 0.899 0.949 0.975

V24 0.025 0.050 0.101 0.898 0.948 0.973

V34 0.027 0.049 0.101 0.895 0.946 0.975

CCcL o 0.027 0.052 0.099 0.896 0.948 0.977
B2 0.025 0.049 0.098 0.893 0.946 0.972

0.025 0.048 0.098 0.903 0.950 0.975

V1,4 0.025 0.050 0.099 0.900 0.949 0.974

V24 0.023 0.048 0.099 0.895 0.945 0.972

VY34 0.025 0.053 0.099 0.898 0.949 0.977

GMM aq 0.029 0.057 0.106 0.888 0.943 0.972
B 0.027 0.053 0.105 0.889 0.942 0.970

0.027 0.050 0.100 0.903 0.950 0.973

V1,4 0.032 0.062 0.111 0.888 0.940 0.969

V2,4 0.033 0.063 0.116 0.881 0.933 0.965

VY34 0.032 0.061 0.111 0.885 0.940 0.970

970 save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.

Tables 1-3 display the average and RMSE of the estimators over 5,000 replications. Since results are
highly comparable and to save space, a diverse selection of parameters from the DGPs is displayed.! The
DGP with N = 5,000 shows that the bias is quite small for all estimation methods. For small sample sizes,
the deviation of the parameter estimates from the DGP values is larger. Nonetheless, all methods find
comparably accurate estimates. Our newly introduced estimation methods thus are capable of finding
estimates comparable to the regular likelihood approach.

To further analyze the loss in efliciency between the three novel estimation methods and standard
ML, we consider best and worst cases of the RMSEs across all parameters. As expected, standard ML is
most efficient. The subset approach used in SIS causes a loss of information and thereby an increase in
RMSE. Obviously, the smaller the subset, the larger the loss in efficiency. In the best and worst case, the
RMSE of ML and SIS with a subset D of size 2K/ differ 3.7% and 7.0%, respectively. The smaller subset
of size 2K/3 yields efficiency losses between 12.0% and 20.4%. For CCL and GMM, only small efficiency
losses occur. The differences of GMM with ML in terms of RMSE are between 0.02% and 7.3%. These
differences are smallest for the parameters of the covariates. For CCL, the minimum and maximum
differences are only 0.1% and 0.9%, respectively.

In practice one usually opts for the most efficient approach. However, the estimation method should
also be computationally feasible such that parameter estimates can be obtained in a reasonable amount
of time. The large summation over all possible alternatives in the standard ML method may lead

'The results for the other parameters are similar and available upon request.
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to numerical problems and long computation times for large K. CCL and GMM seem to be useful
alternatives for standard ML and produce useful parameter estimates in little time. The small-sample
bias is similar, and the loss in efficiency is rather small. For SIS, there is a clear tradeoft between the size
of the subset and the loss in efficiency.

Apart from bias and efficiency, we also consider the validity of the standard errors with respect to
significance testing of the model parameters. Tables 5-7 display the empirical size of the t-test for N =
5,000 for both tails of the ¢-statistic. The table shows that size distortions are rather small. The largest
size distortions are found for the GMM approach. For example, a theoretical 90% confidence interval
for vr3,1, in GMM turns out to have a coverage of 84.2%. This size distortion is still acceptable. For the
other approaches, the size distortions are smaller. The same coverage probability is 89.9% for the CCL
approach. Unreported results show that even for small N size distortions of ML, SIS and CCL are still
negligible. Hence, hypothesis tests can be carried out in the usual manner for these estimation methods.
In accordance with existing literature (Altonji and Segal, 1996), size distortion for the GMM approach
are larger in small samples.

In sum, the Monte Carlo study shows that the novel estimation methods are sound alternatives for the
regular likelihood approach. Where computation times in standard ML increase exponentially over the
number of choices, the computation time stays limited using CCL, GMM, or SIS. Further, small-sample
biases are comparable to full ML, and efficiency losses are rather small and acceptable. Given the win
in computation time, the avoidance of numerical problems, small small-sample biases, and negligible
losses in efficiency, CCL is the most promising alternative estimation method.

Table 6. Empirical size of the distribution of the four estimators of the MVL model with 8 binary choices (5,000 observations, 5,000
replications)?.

Percentiles
Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975
ML o 0.022 0.048 0.098 0.900 0.948 0.972
B3 0.021 0.044 0.099 0.899 0.949 0.978
0.026 0.051 0.101 0.899 0.954 0.977
Y18 0.025 0.048 0.096 0.901 0.952 0.976
V27 0.025 0.052 0.104 0.891 0.947 0.975
Y35 0.022 0.048 0.100 0.898 0.944 0.974
SISZK/Z o 0.027 0.052 0.102 0.900 0.949 0.975
B3 0.023 0.047 0.099 0.900 0.948 0.976
0.026 0.050 0.102 0.892 0.950 0.976
1,8 0.027 0.053 0.096 0.899 0.952 0.978
Va7 0.025 0.056 0.103 0.894 0.948 0.975
V3,5 0.025 0.047 0.093 0.893 0.945 0.974
SISZK/g o 0.023 0.050 0.105 0.902 0.948 0.976
B3 0.022 0.045 0.098 0.897 0.948 0.973
0.027 0.050 0.100 0.900 0.954 0.979
Y18 0.026 0.047 0.098 0.899 0.951 0.977
Va7 0.023 0.049 0.099 0.898 0.947 0.975
Y35 0.025 0.049 0.098 0.890 0.946 0.974
CCL o 0.023 0.048 0.100 0.900 0.948 0.972
B3 0.022 0.044 0.100 0.898 0.949 0.976
0.026 0.051 0.103 0.899 0.952 0.977
1,8 0.026 0.049 0.099 0.896 0.951 0.974
Va7 0.027 0.054 0.105 0.888 0.945 0.975
3,5 0.024 0.049 0.100 0.897 0.942 0.970
GMM o 0.029 0.057 0.109 0.887 0.941 0.967
B3 0.028 0.054 0.107 0.886 0.941 0.970
0.029 0.055 0.105 0.892 0.949 0.976
Y18 0.035 0.060 0.117 0.874 0.931 0.961
V27 0.039 0.069 0.119 0.868 0.931 0.963
Y35 0.034 0.064 0.121 0.873 0.930 0.958

970 save space we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.
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Table 7. Empirical size of the distribution of the four estimators of the MVL model with 12 binary choices (5,000 observations, 5,000
replications)?.

Percentiles
Model Theoretical 0.025 0.05 0.1 0.9 0.95 0.975
SIS,k /3 aq 0.025 0.048 0.093 0.900 0.950 0.975
Ba 0.023 0.051 0.098 0.903 0.957 0.977
0.023 0.044 0.095 0.898 0.949 0.975
V3,12 0.024 0.046 0.093 0.902 0.949 0.975
¥s,10 0.021 0.046 0.094 0.901 0.953 0.977
V78 0.024 0.042 0.094 0.904 0.947 0.974
CCcL o 0.025 0.050 0.095 0.894 0.948 0.974
Ba 0.024 0.051 0.106 0.894 0.946 0.975
0.024 0.048 0.097 0.902 0.949 0.971
V3,12 0.024 0.048 0.098 0.891 0.947 0.974
¥s,10 0.023 0.049 0.101 0.895 0.948 0.974
Y738 0.025 0.050 0.098 0.898 0.950 0.972
GMM aq 0.036 0.066 0.119 0.876 0.935 0.965
Ba 0.030 0.065 0.120 0.882 0.938 0.967
0.028 0.055 0.102 0.892 0.943 0.968
V3,12 0.044 0.076 0.127 0.862 0918 0.953
¥s,10 0.043 0.069 0.129 0.862 0.920 0.954
Y738 0.045 0.072 0.125 0.870 0.925 0.954

970 save space, we only report results of six parameters selected from a wide range of the parameter space. The results for the other
parameters are similar and available upon request.

5. Application

In this section we illustrate the use of an MVL model with many choices. We consider survey data of
2,046 individuals on store visits in a particular Dutch specialized shopping mall. Visits to different stores
are likely to be correlated, and hence, it is convenient to model these simultaneous decisions usinga MVL
specification. In this application, we consider simultaneous choices for ten different stores. All stores fall
under the general theme of home decoration and do-it-yourself. Table 8 details the types of stores. Our
dependent variable can take 2!0 = 1,024 different values. As explanatory variables, we have Family size,
Age, Gender, Income, Number of visits, and Appreciation of the shopping mall.

The simulation study in Section 4 showed that for this size of the outcome space, large differences in
computation time occur. Hence, one may not be willing to use standard ML estimation. Based on the
simulation results, we consider the CCL approach (fast and accurate) to estimate the model parameters?.
As benchmark, we will also consider the standard ML approach. The standard ML approach takes about
1.6 hours on a dual-core Intel 3.4Ghz processor with 4GB RAM, which shows that this method is not
very convenient if you want to investigate several model specifications. The CCL approach on the other
hand only takes 2.3 minutes.

First, we test for independence among the choices for store visits. The LR-statistic in the ML approach
for the restriction that all v = 0 is 1,373.4 (45 degrees of freedom). This statistic clearly shows that
independence is rejected. Hence, we find evidence for correlations between visiting the different store
types and the MVL model from Section 2 thus is applicable to the data. An adjusted LR-test for CCL
(Varin et al., 2011) yields the same conclusion.

Tables 8-11 display the parameter estimates and standard errors for the two estimation methods.
The parameter estimates are very similar and both methods find the same parameter estimates to be
significantly different from 0. The standard errors in the CCL approach are slightly smaller than in the
standard ML estimation approach, but this may be due to the relatively small sample size. Unreported
results show that the GMM and SIS approaches also provide similar results. The results of SIS indicate
that subset D; should be large to get results close to standard ML.

2The results of the other two approaches are available upon request.
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The negative estimates of the choice-specific intercepts in Tables 8 and 10 show that most stores are
visited only by a minority of the individuals. The order of the intercepts shows that stores selling kitchens
are visited least, where stores selling building materials are visited by the most individuals.

Several relations between the explanatory variables and store visits are found. For example, the more
frequent visitors of the mall visit more stores selling paint/wallpaper, building materials, and hardware.
These can be seen as the fanatic handymen. Furthermore, visitors who very much appreciate the mall
are more likely to also buy their furniture, lamps, and floor and wall decorations at this shopping mall.

The association parameters in Table 11 show the relations between the visits to different stores.
Clear interpretations can be given. For example, individuals who visit a store selling an odd jobs article
(paint/wallpaper, building materials, or hardware) are likely also to visit other odd jobs stores. The
same holds for stores selling lamps, curtains/carpets, and furniture since the corresponding association
parameters are positive. Negative and significant association parameters are for instance found for the
combination hardware and curtains/carpets. Apparently, individuals seem to be unlikely to visit both
these store types in this shopping mall.

In sum, the MVL model gives understandable and interpretable parameter estimates for the data of
store visits in a Dutch shopping mall. Furthermore, the standard ML and CCL approaches yield very
similar estimation results and conclusions. The clear advantage of the CCL approach is the time it takes
to obtain consistent parameter estimates with small loss in efficiency. The reduction in computation time
is large, and with the CCL method it becomes feasible to easily consider several model specifications. In
case the number of stores had been larger, ML estimation would have broken down, while CCL could
still be used.

6. Conclusion

The MVL model is used to model correlated simultaneous binary choices. In this article, we propose
three novel estimation methods for this model: estimation by (i) SIS; (ii) CCL; and by (iii) GMM. The
new estimation methods are especially of interest when the dimension of the choice problem is large.
Methods available in the literature go together with a large computational burden. The new methods in
this article circumvent this problem.

Results from a Monte Carlo study show that the new estimation methods yield comparable small-
sample biases as the standard (full information) ML approach as proposed by Russell and Petersen
(2000). Furthermore, efficiency losses compared to the full likelihood approach are rather small. Because
of these findings, the decrease in computation time and avoidance of numerical problems are clear
advantages of our proposed estimation methods. The CCL approach turns out to have the largest
decrease in computation time, leads to a very small loss in efficiency, and provides accurate standard
errors.

In an application, we applied the methods to store visits in a shopping mall. Multivariate binary
choice data occur widely in practice. Hence, other applications in different fields of research can be
given. Since the dimension of the choice problem will often be large, our methods are highly useful in
applied research.

Several extensions to the current research are possible. For instance, a Conditional Logit specification
can easily be derived. Furthermore, the association parameters can also depend on exogenous variables
or be individual-specific (in panel data models). Finally, instead of binary choices, this model can be
extended to a multivariate multinomial specification. The feasible estimation methods proposed in this
article can be used in all these cases. Especially CCL is applicable to extensions of the current model
specification if a clear composition of the conditional probabilities can be given.
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