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ABSTRACT KEYWORDS

This paper develops tests of the null hypothesis of linearity in the context Exact inference; Markov
of autoregressive models with Markov-switching means and variances.  chains; Monte Carlo tests;
These tests are robust to the identification failures that plague conventional mixture distributions;

parametric bootstrap; regime

likelihood-based inference methods. The approach exploits the moments of switching

normal mixtures implied by the regime-switching process and uses Monte
Carlo test techniques to deal with the presence of an autoregressive com- JEL CLASSIFICATION
ponent in the model specification. The proposed tests have very respectable C12;C15; C22; C52
power in comparison with the optimal tests for Markov-switching parameters

of Carrasco et al. (2014), and they are also quite attractive owing to their

computational simplicity. The new tests are illustrated with an empirical

application to an autoregressive model of USA output growth.

1. Introduction

The extension of the linear autoregressive model proposed by Hamilton (1989) allows the mean and
variance of a time series to depend on the outcome of a latent process, assumed to follow a Markov
chain. The evolution over time of the latent state variable gives rise to an autoregressive process with a
mean and variance that switch according to the transition probabilities of the Markov chain. Hamilton
(1989) applies the Markov-switching model to USA output growth rates and argues that it encompasses
the linear specification. This class of models has also been used to model potential regime shifts in
foreign exchange rates (Engel and Hamilton, 1990), stock market volatility (Hamilton and Susmel,
1994), real interest rates (Garcia and Perron, 1996) , corporate dividends (Timmermann, 2001), the term
structure of interest rates (Ang and Bekaert, 2002b), portfolio allocation (Ang and Bekaert, 2002a), and
government policy (Davig, 2004). A comprehensive treatment of Markov-switching models and many
references are found in Kim and Nelson (1999), and more recent surveys of this class of models are
provided by Guidolin (2011) and Hamilton (2016).

A fundamental question in the application of such models is whether the data-generating process
(DGP) is indeed characterized by regime changes in its mean or variance. Statistical testing of this
hypothesis poses serious difficulties for conventional likelihood-based methods because two important
assumptions underlying standard asymptotic theory are violated under the null hypothesis of no regime
change. Indeed, if a two-regime model is fitted to a single-regime linear process, the parameters which
describe the second regime are unidentified. Moreover, the derivatives of the likelihood function with
respect to the mean and variance are identically zero when evaluated at the constrained maximum under
both the null and alternative hypotheses. These difficulties combine features of the statistical problems
discussed in Davies (1977, 1987), Watson and Engle (1985), and Lee and Chesher (1986). The end
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result is that the information matrix is singular under the null hypothesis, and the usual likelihood-ratio
test does not have an asymptotic chi-squared distribution in this case. Conventional likelihood-based
inference in the context of Markov-switching models can thus be very misleading in practice. Indeed, the
simulation results reported by Psaradakis and Sola (1998) reveal just how poor the first-order asymptotic
approximations to the finite-sample distribution of the maximum-likelihood (ML) estimates can be.

Hansen (1992, 1996) and Garcia (1998) proposed likelihood-ratio tests specifically tailored to deal
with the kind of violations of the regularity conditions which arise in Markov-switching models. Their
methods differ in terms of which parameters are considered of interest and those taken as nuisance
parameters. Both methods require a search over the intervening nuisance parameter space with an
evaluation of the Markov-switching likelihood function at each considered grid point, which makes
them computationally expensive. Carrasco et al. (2014) derive asymptotically optimal tests for Markov-
switching parameters. These information matrix-type tests only require estimating the model under the
null hypothesis, which is a clear advantage over Hansen (1992, 1996) and Garcia (1998). However, the
asymptotic distribution of the optimal tests is not free of nuisance parameters, so Carrasco et al. (2014)
suggest a parametric bootstrap procedure to find the critical values.

In this paper, we propose new tests for the Markov-switching models which, just like the Carrasco
et al. (2014) tests, circumvent the statistical problems and computational costs of likelihood-based
methods. Specifically, we first propose computationally simple test statistics—based on least-squares
residual moments—for the hypothesis of no Markov switching (or linearity) in autoregressive models.
The residual moment statistics considered include statistics focusing on the mean, variance, skewness,
and excess kurtosis of estimated least-squares residuals. The different statistics are combined through
the minimum or the product of approximate marginal p-values.

Second, we exploit the computational simplicity of the test statistics to obtain exact and asymptotically
valid test procedures, which do not require deriving the asymptotic distribution of the test statistics
and automatically deal with the identification difficulties associated with such models. Even if the
distributions of these combined statistics may be difficult to establish analytically, the level of the
corresponding test is perfectly controlled. This is made possible through the use of Monte Carlo (MC)
test methods. When no new nuisance parameter appears in the null distribution of the test statistic,
such methods allow one to control perfectly the level of a test, irrespective of the distribution of the
test statistic, as long as the latter can be simulated under the null hypothesis; see Dwass (1957), Barnard
(1963), Birnbaum (1974), and Dufour (2006). This feature holds for a fixed number of replications, which
can be quite small. For example, 19 replications of the test statistic are sufficient to obtain a test with
exact level 0.05. A larger number of replications decreases the sensitivity of the test to the underlying
randomization and typically leads to power gains. Dufour et al. (2004), however, find that increasing the
number of replications beyond 100 has only a small effect on power.

Furthermore, when nuisance parameters are present—as in the case of linearity tests studied here—
the procedure can be extended through the use of maximized Monte Carlo (MMC) tests (Dufour,
2006). Two variants of this procedure are described: a fully exact version which requires maximizing a
p-value function over the nuisance parameter space under the null hypothesis (here, the autoregressive
coeflicients), and an approximate one based on a (potentially much smaller) consistent set estimator of
the autoregressive parameters. Both procedures are valid (in finite samples or asymptotically) without
any need to establish the asymptotic distribution of the fundamental test statistics (here, residual
moment-based statistics) or the convergence of the empirical distribution of the simulated test statistics
toward the asymptotic distribution of the fundamental test statistic used (as in bootstrapping).

When the nuisance-parameter set on which the p-values are computed is reduced to a single point—
a consistent estimator of the nuisance parameters under the null hypothesis—the MC test can be
interpreted as a parametric bootstrap. The implementation of this type of procedure is also considerably
simplified through the use of our moment-based test statistics. It is important to emphasize that
evaluating the p-value function is far simpler to do than computing the likelihood function of the
Markov-switching model, as required by the methods of Hansen (1992, 1996) and Garcia (1998). The
MC tests are also far simpler to compute than the information matrix-type tests of Carrasco et al. (2014),
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which require a grid search for a supremum-type statistic (or numerical integration for an exponential-
type statistic) over a priori measures of the distance between potentially regime-switching parameters
and another parameter characterizing the serial correlation of the Markov chain under the alternative.

Third, we conduct simulation experiments to examine the performance of the proposed tests using the
optimal tests of Carrasco et al. (2014) as the benchmark for comparisons. The new moment-based tests
are found to perform remarkably well when compared with the asymptotically optimal ones, especially
when the variance is subject to regime changes. Finally, the proposed methods are illustrated by revisiting
the question of whether USA real GNP growth can be described as an autoregressive model with Markov-
switching means and variances using the original Hamilton (1989) data set from 1952 to 1984, as well as
an extended data set from 1952 to 2010. We find that the empirical evidence does not justify a rejection of
the linear model over the period 1952-1984. However, the linear autoregressive model is firmly rejected
over the extended time period.

The paper is organized as follows. Section 2 describes the autoregressive model with Markov-
switching means and variances. Section 3 presents the moments of normal mixtures implied by the
regime-switching process and the test statistics we propose to combine for capturing those moments.
Section 3 also explains how the MC test techniques can be used to deal with the presence of an
autoregressive component in the model specification. Section 4 examines the performance of the
developed MC tests in simulation experiments using the optimal tests for Markov-switching parameters
of Carrasco et al. (2014) as the benchmark for comparison purposes. Section 5 then presents the results
of the empirical application to USA output growth and Section 6 concludes.

2. Markov-switching model

We consider an autoregressive model with Markov-switching means and variances defined by

r
Vo=t + ) oKk — Hs) + 0ot (1)
k=1

where the innovation terms {¢;} are independently and identically distributed (i.i.d.) according to the
N(0,1) distribution. The time-varying mean and variance parameters of the observed variable y; are
functions of a latent first-order Markov chain process {S;}. The unobserved random variable S; takes
integer values in the set {1,2} such that Pr(S; = j) = Zlep,-j Pr(S;—1 = i), with p;j = Pr(S; =
7| 8t—1 = i). The one-step transition probabilities are collected in the matrix:

b1 P12
P=
P21 P2
where ij=1 pij = 1, for i = 1,2. Furthermore, S; and &, are assumed independent for all ¢, 7.
The model in (1) can also be conveniently expressed as

2 r 2 2
ye= willSe =i+ Y k(i — Y willSi—x = il) + ) oillS; = iles )
i=1 k=1 i=1 i=1

where [[A] is the indicator function of event A, which is equal to 1 when A occurs and 0 otherwise. Here,
piand o are the conditional mean and variance given the regime S; = i.

The model parameters are collected in the vector @ = (u1,2,01,02,01,..., &, p11,p22) The
sample (log) likelihood, conditional on the first » observations of y;, is then given by

T
Lr(0) =logf(y] 15°,,1:0) = > logf( |7, 1:0) (3)
t=1
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where y' .1 = {y_r41,..., y¢} denotes the sample of observations up to time ¢, and

2 2 2
Oy =) > o Y [0S =suSo1 =510 Sep = s |95} 150).

st=1s_1=1 st—r=1

Hamilton (1989) proposes an algorithm for making inferences about the unobserved state variable S;
given observations on y;. His algorithm also yields an evaluation of the sample likelihood in (3), which
is needed to find the maximum likelihood estimates of 6.

The sample likelihood L7(6) in (3) has several unusual features that make it notoriously difficult
for standard optimizers to explore. In particular, the likelihood function has several modes of equal
height. These modes correspond to the different ways of reordering the state labels. There is no difference
between the likelihood for 1 = ui, w2 = u3, 01 = o, and 0, = o and the likelihood for ; = 3,
w2 = 1,01 = 0;5,and oy = 0. Rossi (2014, Chapter 1) provides a nice discussion of these issues in the
context of normal mixtures, which is a special case implied by (2) when the ¢s are zero. He shows that the
likelihood has numerous points where the function is not defined with an infinite limit. Furthermore, the
likelihood function also has saddle points containing local maxima. This means that standard numerical
optimizers are likely to converge to a local maximum and will therefore need to be started from several
points in a constrained parameter space to find the ML estimates.

3. Tests of linearity

The Markov-switching model in (2) nests the following linear autoregressive specification as a special
case:

,
yi=c+ Y ok +oes 4
k=1

where ¢ = p1(1—>"}_; ¢%)- Here, i11 and 0'12 refer to the single-regime mean and variance parameters.
It is well known that the conditional ML estimates of the linear model can be obtained from an ordinary
least-squares (OLS) regression (Hamilton, 1994, Chapter 5). A problem with the ML approach is that the
likelihood function will always increase when moving from the linear model in (4) to the two-regime
model in (2) as any increase in flexibility is always rewarded. To avoid overfitting, it is therefore desirable
to test whether the linear specification provides an adequate description of the data.

Given model (2), the null hypothesis of linearity can be expressed as (1 = 2,01 = 02),0r (p11 = 1,
p21 = 1), 0r (p12 = 1, pao = 1). It is easy to see that if (u; = w2, 61 = 02), then the transition
probabilities are unidentified. On the contrary, if (p1; = 1, p21 = 1), then it is 1, and o, which become
unidentified, whereas if (p12 = 1, p2» = 1) then u; and o7 become unidentified. One of the regularity
conditions underlying the usual asymptotic distributional theory of ML estimates is that the information
matrix be nonsingular; see, for example, Gouriéroux and Monfort (1995, Chapter 7). Under the null
hypothesis of linearity, this condition is violated because the likelihood function in (3) is flat with respect
to the unidentified parameters at the optimum. A singular information matrix results also from another,
less obvious, problem: the derivatives of the likelihood function with respect to the mean and variance
are identically zero when evaluated at the constrained maximum; see Hansen (1992) and Garcia (1998).

3.1. Mixture model
We begin by considering the mean-variance switching model:
ye = mllSy = 11+ wal[S; = 2] + (o11[S¢ = 1] + 0 I[S = 2])es, (5)

where &; ~1i.d. N(0, 1). The Markov chain governing S; is assumed ergodic, and we denote the ergodic
probability associated with state i by ;. Note that a two-state Markov chain is ergodic provided that
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p11 < 1,pan < land p11 + p22 > 0 (Hamilton, 1994, p. 683). As we already mentioned, the null
hypothesis of linearity (no regime changes) can be expressed as

Ho(u,0) : u1 = p2 and 01 = 02,

and a relevant alternative hypothesis states that the mean and/or variance is subject to the first-order
Markov switching. The tests of Hyp(u, o) we develop exploit the fact that the marginal distribution of
¥t is a mixture of two normal distributions. Indeed, under the maintained assumption of an ergodic
Markov chain we have

ye ~ miN(u1,07) + 12N (w2, 035), (6)

where 71 = (1 — p22)/(2 — p11 — p22) and w3 = 1 — my. In the spirit of Cho and White (2007) and
Carter and Steigerwald (2012, 2013), the suggested approach ignores the Markov property of S;.

The marginal distribution of y; given in (6) is a weighted average of two normal distributions.
Timmermann (2000) shows that the mean (1), unconditional variance (o2), skewness coefficient (+/51),
and excess kurtosis coefficient (b;) associated with (6) are given by

W= Ty + T2 2, @)

0 = mof + moy + mma(pa — )4 8)

Vb = ma(r — ) {3(0f —03) + (1 — 2m1) (2 — ui)?} )
1 = >
(m10f + m205 + mima (s — M1)2)3/2
a

where

a=3mm(oy — o) +6(uy — u1)*mmQmy — 1)(03 — of)

+ mma(p — p)*(1 — 6mym2),

b= (mof +mo3 + mm(us — Ml)z)z-

When compared with a bell-shaped normal distribution, the expressions in (7)-(10) imply that a
mixture distribution can be characterized by any of the following features: the presence of two peaks,
right or left skewness, or excess kurtosis. The extent to which these characteristics will be manifest
depends on the relative values of 71 and m, by which the component distributions in (6) are weighted
and on the distance between the component distributions. This distance can be characterized by either
the separation between the respective means, Ay = pp— i1, or by the separation between the respective
standard deviations, Ao = 0, — o1, where we adopt the convention that u, > @ and o, > oy. For
example, if Ao = 0, then the skewness and relative difference between the two peaks of the mixture
distribution depends on Au and the weights 7; and 7. When m; = m,, the mixture distribution is
symmetric with two modes becoming more distinct as Au increases. On the contrary, if Au = 0,
then the mixture distribution will have heavy tails depending on the difference between the component
standard deviations and their relative weights. See Hamilton (1994, Chapter 22), Timmermann (2000),
and Rossi (2014, Chapter 1) for more on these effects.

To test Hy (i, o), we propose a combination of four test statistics based on the theoretical moments
in (7)-(10). The four individual statistics are computed from the residual vector & = (£1,85,..., &r)’
comprising the residuals & = y; — y, themselves computed as the deviations from the sample mean.
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Each statistic is meant to detect a specific characteristic of mixture distributions. The first of these
statistics is

M(é) = M) (11)
1/s% + s%
where
. Zthl &[&; > 0] 2 Zthl(ét — my)?1[&; > 0]
BN R Y TR
and

Zt 18t]I[8[ < 0] 52 _ Z;T l(ét ml)z]l[et < 0]
Z[ LIE < 0]’ ! Z, 1[& < 0]

The statistic in (11) is a standardized difference between the means of the observations situated above
the sample mean and those below the sam};le mean. The next statistic partitions the observations on the
basis of the sample variance 62 = T~! Y_,_, &2. Specifically, we consider

V() = M (12)
v1(8)
where
Zt létz]l[gt > 02] Zt 1 ZH[gt <6 ]
V) = 2 B v =
Ztl 8t>0] ZtlH[8t<O]

so that v, > v;. Note that we partition on the basis of average values because (6) is a two-component
mixture. The last two statistics are the absolute values of the coefficients of skewness and excess kurtosis:

T a3
5@ = % (13)
and
T ~4
K(&) = %— : (14)

which were also considered in Cho and White (2007). Observe that the statistics in (11)-(14) can only
be nonnegative and are each likely to be larger in value under the alternative hypothesis. Taken together,
they constitute a potentially useful battery of statistics to test Ho (i, o) by capturing characteristics of the
first four moments of normal mixtures. As one would expect, the power of the tests based on ( 11)-(14)
will generally be increasing with the frequency of regime changes.

It is easy to see that the statistics in (11)-(14) are exactly pivotal as they all involve ratios and can
each be computed from the vector of standardized residuals & /6, which are scale and location invariant
under the null of linearity. That is, the vector of statistics (M(&), V (&), S(¢),K(&))’ is distributed like
(M@), V@), S@)s K(ﬁ))/, where n ~ N(0,Ir) and # = 5 — 7. The null distribution of the proposed
test statistics can thus be simulated to any degree of precision, thereby paving the way for an MC test as
follows.

First, compute each of the statistics in (11)-(14) with the actual data to obtain
(M(&), V(€),S(8),K(&))’. Then generate N — 1 mutually independent T x 1 vectors ;,i = 1,..., N—1,
where n; ~ N(0,Ir). For each such vector, compute #; = (i1, 2. .-, njir)" with typical element
Nit = Nit — 7;» where 7; is the sample mean, and compute the statistics in (11)-(14) based on #; so as to
obtain N — 1 statistics vectors (M(#;), V(#,), S(;), K(§;))’,i = 1,..., N — 1. Let & denote any one of
the above four statistics, & its original data-based value, and &;,i = 1,..., N — 1, the corresponding
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simulated values. The individual MC p-values are then given by
N +1 — Re[&0; N
N

where Rg[£o; N1 is the rank of & when &y, &, ..., &v—1 are placed in increasing order. The associated
MC critical regions are defined as

Ge[&os N1 = , (15)

with
on(ag) = N — I[Neg] + 1,

where I[x] denotes the largest integer not exceeding x. These MC critical regions are exact for any given
sample size, T. Further discussion and applications of the MC test technique can be found in Dufour
and Khalaf (2001) and Dufour (2006).

Note that the MC p-values Gy [M(&); N], Gy[V(&); N], Gs[S(¢); N], and Gk[K(&); N] are not
statistically independent and may in fact have a complex dependence structure. Nevertheless, if we
choose the individual levels such that .y + oy + s + ax = « then, for TS = {M, V, §, K}, we have by
the Boole-Bonferroni inequality:

Pr UWZ(\?) <a,
EeTS

so the induced test, which consists in rejecting Hy(u, o) when any of the individual tests rejects, has level
. For example, if we set each individual test level at 2.5%, so that we reject if Gg¢[£o; N] < 2.5% for any
& € {M,V,§,K}, then the overall probability of committing a Type I error does not exceed 10%. Such
Bonferroni-type adjustments, however, can be quite conservative and lead to power losses; see Savin
(1984) for a survey of these issues.

To resolve these multiple comparison issues, we propose an MC test procedure based on combining
individual p-values. The idea is to treat the combination like any other (pivotal) test statistic for the
purpose of MC resampling. As with double bootstrap schemes (MacKinnon, 2009), this approach can
be computationally expensive because it requires a second layer of simulations to obtain the p-value
of the combined (first-level) p-values. Here, we can ease the computational burden using approximate
p-values in the first level. A remarkable feature of the MC test combination procedure is that it remains
exact even if the first-level p-values are only approximate. Indeed, the MC procedure implicitly accounts
for the fact that the p-value functions may not be individually exact and yields an overall p-value for the
combined statistics which itself is exact. For this procedure, we make use of approximate distribution
functions taking the simple logistic form:

Fx] = exp(Yo + 71%)

= 7 (16)
1+ exp(yo + v1x)

whose estimated coefficients are given in Table 1 for selected sample sizes. These coefficients were
obtained by the method of nonlinear least-squares (NLS) applied to simulated distribution functions
comprising a million draws for each sample size. The approximate p-value of, say, M (&) is then computed
as Gy[M(&)] = 1 — Ey[M(8)], where Fp[x] is given by (16) with associated y's from Table 1. The other
p-values GV, Gs, and GK are computed in a similar way.

We consider two methods for combining the individual p-values. The first one rejects the null when
at least one of the p-values is sufficiently small so that the decision rule is effectively based on the statistic

Fnin(8) = 1= min {GuIM@)1, Gy V@)1, GsIS@)1, GelK (@)1} (17)
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Table 1. Coefficients of approximate distribution functions.

Fu Fv Fs Fx
Yo 7 Yo 1] 70 7 %) 4]
T=50 —16.178 8.380 —7.700 0.879 —1.944 8423 —2.191 5.106
T =100 —23.041 12.125 —10.923 1.253 —1.975 11.614 —2.101 6.538
T=150 —28.289 14.961 —13.394 1.539 —1.995 14.128 —2.068 7.690
T =200 —32719 17.348 —15.484 1.781 —2.012 16311 —2.051 8.680
T =250 —36.653 19.463 —17.312 1.992 —2.021 18.197 —2.046 9.597

Note: The entries are the coefficients of the approximate distribution functions in (16) used to compute the first-level p-values in the
test combination procedure. The coefficients are obtained by NLS with one million simulated samples for each sample size, T.

The criterion in (17) was suggested by Tippett (1931) and Wilkinson (1951) for combining inferences
obtained from independent studies. The second method, suggested by Fisher (1932) and Pearson (1933),
again for independent test statistics, is based on the product (rather than the minimum) of the p-values:

Fx(8) = 1~ Gu[M(&)] x Gv[V(@)] x Gs[S(®)] x Gk[K()]. (18)
The MC p-value of the combined statistic in (17), for example, is then given by

G [Fain(8); N1 = 211 RFmIi;[Fm‘“(e)’N], (19)
where Rg_. [Fmin(8); N] is the rank of Fpin (6) when Fuin(€), Fimin(#11)> - - - » Fmin(ly—;) are placed in
ascending order. Although the statistics which enter into the computation of (17) and ( 18) may have
a rather complex dependence structure, the MC p-values computed as in (19) are provably exact. See
Dufour et al. (2004) and Dufour et al. (2014) for further discussion and applications of these test
combination methods.

3.2. Autoregressive dynamics

In this section, we extend the proposed MC tests to Markov-switching models with state-independent
autoregressive dynamics. To keep the presentation simple, we describe in detail the test procedure in the
case of models with a first-order autoregressive component. Models with higher-order autoregressive
components are dealt with by a straightforward extension of the AR(1) case. For convenience, the
Markov-switching model with AR(1) component that we treat is given here as

Vi = s, + Q-1 — W) + 05,6t (20)
where

ps, = pallSy = 11 + p2I[Sy = 2],

o5, = o11[S¢ = 1] + 02I[S; = 2].
The tests exploit the fact that, given the true value of ¢, the simulation-based procedures of the previous
section can be validly applied to a transformed model. The idea is that if ¢ in (20) were known we could
test whether z;(¢) = y; — ¢y;—1, defined for t = 2,. .., T, follows a mixture of at least two normals.

Indeed, when @y # s (1, ua # 0), the random variable z;(¢) follows a mixture of two normals

(when ¢ = 0), three normals (when |¢| = 1), or four normals otherwise. That is, when ¢y, is

subtracted on both sides of (20), the result is a model with a mean that switches between four states
according to

ze(¢) = WiIIS; = 11+ p3IIS; = 21 + i3ISy = 31+ wiIlS; = 41+ (al]I[St = 1]+ 0,I[S; = 2])8t
where

Wi =pi(l—@), pu3 = pa— 1, ws = pm1 — dua, ui = ua(l —¢) (21)
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and S7 is a first-order, four-state Markov chain with transition probability matrix

pu pr2 0 O
0 0 pa pxn

pu pr2z 0 0
0 0 pa p2n

If 11 # w2, the quantities in (21) admit either two distinct values (when ¢ = 0), three distinct values
(when ¢ = 1 or —1), or four distinct values otherwise. Under Hy(u, o), the filtered observations z;(¢),
t=2,..., T,areiid. when evaluated at the true value of the autoregressive parameter.

To deal with the fact that ¢ in unknown, we use the extension of the MC test technique proposed
in Dufour (2006) to deal with the presence of nuisance parameters. Treating ¢ as a nuisance parameter
means that the proposed test statistics become functions of £:(¢), where &;(¢) = z:(¢) — z(¢). Let Qy
denote the set of admissible values for ¢ which are compatible with the null hypothesis. Depending on
the context, the set 24 may be R itself, the open interval (—1, 1), the closed interval [—1, 1], or any other
appropriate subset of R. In light of a minimax argument (Savin, 1984), the null hypothesis may then be
viewed as a union of point null hypotheses, where each point hypothesis specifies an admissible value
for ¢. In this case, the statistic in (19) yields a test of Ho(u, o) with level « if and only if

GFpin[Fmin(6); Nl <, Vo € Qg

P =

or, equivalently,

Sup Gy, [Fmin(6); N] < .
PEQy
In words, the null is rejected whenever for all admissible values of ¢ under the null, the corresponding
point null hypothesis is rejected. Therefore, if N is an integer, we have under Hy(p,0),

Pr [sup { Gr, [Fmin(@);N] : ¢ € 24} <] <@,

i.e., the critical region sup{Gr,;,[Fmin(€); N1 : ¢ € Qg} < « has level a. This procedure is called
an MMC test. It should be noted that the optimization is done over €24 holding fixed the values of the
simulated T x 1 vectors 5;,i = 1,..., N — 1, with y; ~ N(0, I'T) - from which the simulated statistics
are obtained.

The maximization involved in the MMC test can be numerically challenging for Newton-type
methods because the simulated p-value function is discontinuous. Search methods for nonsmooth objec-
tives which do not rely on gradients are therefore necessary. A computationally simplified procedure can
be based on a consistent set estimator Ct of ¢; i.e., one for which limr_, o, Pr[¢p € Cr] = 1. For example,
if ¢ is a consistent point estimate of ¢ and c is any positive number, then the set

Cr={¢eQ : l¢r— ¢l <}

is a consistent set estimator of ¢; i.e., lim7_, o Pr[||qA5T — ¢l < c] = 1,Vc > 0. Under Hy(u, o), the
critical region based on (19) satisfies

Tlim Pr (sup { Gr,y, [Fmin(8);N] : ¢ € Cr} <) <a.
— 00

The procedure may even be based on the singleton set Cr = {¢r}, which yields a local MC (LMC) test
based on a consistent point estimate. See Dufour (2006) for additional details.

4. Simulation evidence

This section presents simulation evidence on the performance of the proposed MC tests using model (20)
as the DGP. As a benchmark for comparison purposes, we take the optimal tests for Markov-switching
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parameters developed by Carrasco et al. (2014) (CHP). To describe these tests, let £; = €,(o) denote
the log of the predictive density of the tth observation under the null hypothesis of a linear model. For
model (20), the parameter vector under the null hypothesis becomes 8y = (¢, ¢, o)’ and we have

e c—¢y)’

1 2
b = -3 log(2mo®) 52

Let éo denote the conditional maximum likelihood estimates under the null hypothesis (which can be
obtained by OLS) and define

oD = % and ¢? = 0%
! 90 lo=d, t 9006’

The CHP information matrix-type tests are calculated with

P =T3hp) =) 3, (hp)/VT
t

0=0o

where

1w (h, p) = %h/ [E?) +ee 423 pf—%?)eﬁ“/} h.
s<t

Here, the elements of vector h are a priori measures of the distance between the corresponding switching
parameters under the alternative hypothesis, and the scalar p characterizes the serial correlation of the
Markov chain. To ensure identification, the vector h needs to be normalized such that ||h| = 1. For
given values of h and p, let 8* = &"(h, p) denote the residuals of an OLS regression of ©3(h, p) on E;l).

Following the suggestion in CHP, h in the case of model (20) is a three-dimensional vector whose first
and third elements (corresponding to a switching mean and variance) are generated uniformly over the
unit sphere, and p takes values in the interval [p, o] = [—0.7,0.7]. The nuisance parameters in h and p
can be dealt with in two ways. The first is with a supremum-type test statistic:

1 s \\’
supTS = sup —|{max |0, ——=
) -~ _ 2 Ak Ak
{h.p:|lhlI=Lp<p<p} € &

and the second is with an exponential-type statistic (based on an exponential prior):
expTS = / W (h, p)dhdp
{llkl=1p<p<p}

where

N 1/ TI% : I
2mexp | = -1 P —— —1 ife¥e* £0,
vim-] T3 (1) o () wees

1 otherwise.

Here, ®(-) stands for the standard normal cumulative distribution. CHP suggests using a parametric
bootstrap to assess the statistical significance of these statistics because their asymptotic distributions
are not free of nuisance parameters. This is done by generating data from the linear AR model with 0o
and calculating supTS and expTS with each artificial sample. We implemented this procedure using 500
bootstrap replications.

In the following tables, LMC and MMC stand for the local and MMC procedures, respectively. The
first-level p-values are computed from the estimated distribution functions in Table 1, and the subscript
“min" is used to indicate that the first-level p-values are combined via their minimum, whereas the
subscript “x” indicates that they are combined via their product. The MC tests were implemented with
N = 100, and the MMC test was performed by maximizing the MC p-value by grid search over an
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Table 2. Empirical size of tests for Markov-switching.

¢ =01 ¢ =09

Test T =100 T =200 T =100 T =200
LMCpnin 53 46 49 44
LMC 5.2 49 47 44
MMCin 0.6 0.6 0.8 1.0
MMCx 0.2 05 0.9 12
supTs 48 5.1 6.0 45
expTS 6.8 6.2 5.4 6.9

Note: The DGP is an AR(1) model and the nominal level is 5%. LMC and MMC stand for the local and maximized MC procedures,
respectively. The subscript “min" means that the first-level p-values are combined via their minimum, while the subscript “x" means
that they are combined via their product. The supTS and expTS tests refer to the supremum-type and exponential-type tests of Carrasco

etal. (2014).

Table 3. Empirical power of tests for Markov-switching with ¢ = 0.1.

(P11.p22) = (0.9,0.9) (P11.p22) = (0.9,0.5) (p11.p22) = (0.9,0.1)
Test T =100 T =200 T =100 T =200 T =100 T =200
Ap=2,Ac =0
LMCrnin 5.8 47 14.4 26.7 20.1 392
LMCx 6.8 4.6 125 234 19.0 36.6
MMCin 0.4 03 19 7.6 28 155
MMC 0.6 0.3 23 7.1 3.1 139
supTS 24.3 499 238 47.0 244 456
expTS 15.6 254 24.6 47.1 289 52.3
Ap=0A0 =1
LMCppin 394 62.0 484 726 40.0 55.7
LMCx 42.6 64.3 49.4 73.2 413 555
MMCnin 15.5 39.0 28.1 55.2 212 407
MMC 17.1 432 27.3 52.8 19.9 39.8
supTS 324 58.0 29.9 46.4 22.8 304
expTS 40.1 62.6 439 68.3 34.4 52.4
Apn=2A0 =1
LMCinin 523 84.0 82.1 98.8 78.5 96.3
LMCx 46.6 75.4 82.8 98.9 80.0 96.3
MMCnin 217 519 57.0 925 57.1 89.5
MMCx 23.0 49.0 61.3 93.5 59.6 90.2
supTS 727 96.2 80.8 96.9 65.5 89.7
expTS 75.6 97.0 86.6 99.4 78.2 96.2

Note: The DGP is model (20) with ¢ = 0.1 and the nominal level is 5%. LMC and MMC stand for the local and maximized MC procedures,

umn

respectively. The subscript “min" means that the first-level p-values are combined via their minimum, while the subscript “x" means
that they are combined via their product. The supTS and expTS tests refer to the supremum-type and exponential-type tests of Carrasco
etal. (2014).

interval defined by taking two standard errors on each side of ¢, the OLS estimate of ¢. The simulation
experiments are based on 1000 replications of each DGP configuration.

For a nominal 5% level, Table 2 reports the empirical size (in percentage) of the LMC, MMC, supTS$,
and expTS tests for ¢ = 0.1, 0.9 and T = 100, 200. The MMC tests are seen to perform according to the
developed theory with empirical rejection rates < 5% under the null hypothesis. The LMC tests based
on ¢y perform remarkably well, revealing an empirical size close to the nominal 5% level in each case.
The same can be said about the bootstrap supTS and expTS tests even though they seem to be less stable
than the LMC tests.

Tables 3 and 4 report the empirical power (in percentage) of the tests for ¢ = 0.1 and ¢ = 0.9,
respectively. The DGP configurations vary the separation between the means Ay = p, — u; and
standard deviations Ao = o3 — 01 as (A, Ao) = (2,0), (0,1), (2,2); the sample size as T = 100,
200; and the transition probabilities as (p11, p22) = (0.9,0.9), (0.9,0.5), (0.9,0.1).

As expected, the power of the proposed tests increases with Ay and Ao, and the sample size.
For given values of A, and A,, test power tends to increase with the frequency of regime switches.
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Table 4. Empirical power of tests for Markov-switching with ¢ = 0.9.

(P11,p22) = (0.9,0.9) (P11,p22) = (0.9,0.5) (P11,p22) = (0.9,0.1)
Test T =100 T =200 T =100 T =200 T =100 T =200
Ap=2,Ac =0
LMCrnin 15.5 218 145 222 14.8 245
LMC« 15.2 23.0 14.4 20.9 14.9 259
MMCrnin 38 79 37 6.9 33 79
MMCx 3.6 74 38 9.1 3.2 9.7
supTS 84 125 1.9 18.2 20.7 45.6
expTS 21.7 326 221 335 25.6 43.2
Apn=0A0 =1
LMCinin 37.8 64.7 48.1 70.9 38.9 61.7
LMCyx 40.9 68.1 485 728 40.1 62.7
MMCrnin 17.1 422 2738 555 226 473
MMCx 19.9 43.8 28.1 55.4 222 45.2
supTS 322 67.4 30.0 503 20.0 341
expTS 54.1 84.7 52.8 78.6 419 65.3
Apn=2Ac =1
LMCryin 409 64.4 65.7 88.8 70.9 89.0
LMCyx 421 65.8 67.6 91.2 720 90.6
MMCrin 16.8 375 41.8 76.6 50.2 773
MMC 19.3 441 46.4 83.2 533 82.1
supTS 34.6 62.9 53.2 79.8 58.6 823
expTS 539 779 751 94.7 774 94.2

Note: The DGP is model (20) with ¢ = 0.9 and the nominal level is 5%. LMC and MMC stand for the local and maximized MC procedures,

respectively. The subscript “min" means that the first-level p-values are combined via their minimum, while the subscript “x" means
that they are combined via their product. The supTS and expTS tests refer to the supremum-type and exponential-type tests of Carrasco
etal. (2014).

For example, when A = 2 and Ao = 1, the power of the MC tests increases when p;; decreases
(increase) from 0.9 (0.1) to 0.5. Comparing the LMCpin and MMChin to LMCy and MMCy, respec-
tively, reveals that there is a power gain in most cases from using the product rule to combine the
first-level p-values in the MC procedure. Not surprisingly, the LMC procedures (based on the point
estimate ¢ ) have better power than the MMC procedures, which maximize the MC p-value over a range
of admissible values for ¢ to hedge the risk of committing a Type I error.

The supTS and expTS generally tend to be more powerful than the MC tests, particularly when there
are regimes only in the mean (e.g., A = 2, Ao = 0). Nevertheless, it is quite remarkable that the
LMC tests have power approaching that of the supTS and expTS tests as soon as the variance is also
subject to regime changes. In some cases, the LMC tests even appear to outperform the optimal CHP
tests. For instance, this can be observed in the middle portion of Table 3, where Ay = 0 and Ao = 1.
Another important remark is that the proposed moment-based MC tests are far easier to compute than
the information matrix-type bootstrap tests.

5. Empirical illustration

In this section, we present an application of our test procedures to the study by Hamilton (1989)
who suggested modeling USA output growth with a Markov-switching specification as in (2) with
r = 4 and where only the mean is subject to regime changes. With this model specification, business
cycle expansions and contractions can be interpreted as a process of switching between states of high
and low growth rates. Hamilton estimated his model by the method of maximum likelihood with
quarterly data ranging from 1952Q2 to 1984Q4. Probabilistic inferences on the state of the economy
were then calculated and compared with the business-cycle dates as established by the National Bureau
of Economic Research. On the basis of simulated residual autocorrelations, Hamilton argued that his
Markov-switching model encompasses the linear AR(4) specification.
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Table 5. MC test results: USA real GNP growth.

Test p-Value ¢ $ #3 4 i
1952Q2 - 1984Q4

LMCrmin 0.57 031 0.13 —0.12 —0.09 1.50

LMC 0.57 031 0.13 —0.12 —0.09 1.50

MMCrmin 1.00 0.48 0.20 —023 —0.16 1.23

MMC 1.00 038 030 —0.28 —0.09 132
1952Q2 - 2010Q4

LMCrnin 0.01 034 0.12 —0.08 —0.07 1.59

LMC 001 034 0.12 —0.08 —0.07 1.59

MMCpmin 0.05 043 0.09 0.05 0.05 133

MMC 0.06 0.46 0.08 0.05 0.02 141

Note: LMC and MMC stand for the local and maximized MC procedures, respectively. The subscript “min" means that the first-level p-

u

values are combined via their minimum, while the subscript “x" means that they are combined via their product. Entries under |z| are
the smallest moduli of the roots of the autoregressive polynomial for the corresponding line.

We applied our proposed MC procedures to formally test the linear AR(4) specification. In this
context, the LMC and MMC procedures are based on the filtered observations:

z(P) = yr — P1yi—1 — P2yi—2 — P3Y1—3 — PaYi—4,

where y; is 100 times the change in the logarithm of USA real GNP. Following Carrasco et al. (2014),
we considered Hamilton’s original data set (135 observations of y;) and an extended data set including
observations from 1952Q2 to 2010Q4 (239 observations of y;). The ¢ values used in z;(¢p) for the LMC
procedure are obtained by an OLS regression of y; on a constant and four of its lags. The MMC test
procedure maximizes the MC p-value by grid search over a four-dimensional box defined by taking two
standard errors on each side of the OLS parameter estimates. To ensure stationarity of the solutions, we
only considered grid points for which the roots of the autoregressive polynomial 1 — ¢;z — ¢,z* — 32> —
¢4z* = 0 lie outside the unit circle. The number of MC replications was set as N = 100.

Table 5 shows the test results for the LMC and MMC procedures based on the minimum and product
combination rules. For the MMC statistics, the table reports the maximal MC p-value, the ¢ values that
maximized the p-value function, and the smallest modulus of the roots of 1 —¢1z—¢r2> — 32> — Ppyz* =
0. These points on the grid with the highest MMC p-values can be interpreted as the Hodges-Lehmann-
stye estimates of the autoregressive parameters (Hodges and Lehmann, 1963). In the case of the LMC
statistics, the reported ¢ values are simply the OLS point estimates.

For Hamilton’s data, the results clearly show that the null hypothesis of linearity cannot be rejected
at usual levels of significance. Furthermore, the retained values of the autoregressive component yield
covariance-stationary representations of output growth. This shows that the GNP data from 1952 to
1984 are entirely compatible with a linear and stationary autoregressive model. It is interesting to note
from Table 5 that the MMCpyi, and MMCy procedures find ¢ values yielding p-values = 1 for the
period 1952Q2-1984Q4. Our MC tests, however, reject the stationary linear AR(4) model with p-values
< 0.06 over the extended sample period from 1952 to 2010, which agrees with the findings of Carrasco
et al. (2014). The results presented here are also consistent with the evidence in Kim and Nelson (1999)
and McConnell and Perez-Quiros (2000) about a structural decline in the volatility of business cycle
fluctuations starting in the mid-1980s—the so-called Great Moderation.

6. Conclusion

We have shown how the MC test technique can be used to obtain provably exact and useful tests of
linearity in the context of autoregressive models with Markov-switching means and variances. The
developed procedure is robust to the identification issues that plague conventional likelihood-based
inference methods, because all the required computations are done under the null hypothesis. Another
advantage of our MC test procedure is that it is easy to implement and computationally inexpensive.
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The suggested test statistics exploit the fact that, under the Markov-switching alternative, the obser-
vations unconditionally follow a mixture of at least two normal distributions once the autoregressive
component is properly filtered out. Four statistics, each ones meant to detect a specific feature of
normal mixtures, are combined together either through the minimum or the product of their individual
p-values. Of course, one may combine any subset of the proposed test statistics or even include others not
considered here. As long as the individual statistics are pivotal under the null of linearity, the proposed
MC test procedure will control the overall size of the combined test.

The provably exact MMC tests require the maximization of a p-value function over the space
of admissible values for the autoregressive parameters. A simplified version (LMC test) limits the
maximization to a consistent set estimator. Strictly speaking, the LMC tests are no longer exact in finite
samples. Nevertheless, the level constraint will be satisfied asymptotically under much weaker conditions
than those typically required for the bootstrap. In terms of both the size and power, the LMC tests based
on a consistent point estimate of the autoregressive parameters were found to perform remarkably well
in comparison with the bootstrap tests of Carrasco et al. (2014).

The developed approach can also be extended to allow for nonnormal mixtures. Indeed, it is easy to
see that the standardized residuals & /6 remain pivotal under the null of linearity as long as &; in (5) has
a completely specified distribution. As in Beaulieu et al. (2007), the MMC test technique can be used
to further allow the distribution of &; to depend on unknown nuisance parameters. Such extensions go
beyond the scope of the present paper and are left for future work.
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