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ABSTRACT

Of the twomost widely estimated univariate asymmetric conditional volatility
models, the exponential GARCH (or EGARCH) speci�cation is said to be able to
capture asymmetry, which refers to the di�erent e�ects on conditional volatil-
ity of positive and negative e�ects of equal magnitude, and leverage, which
refers to the negative correlation between the returns shocks and subsequent
shocks to volatility. However, the statistical properties of the (quasi-)maximum
likelihood estimator (QMLE) of the EGARCH(p, q) parameters are not available
undergeneral conditions, butonly for special casesunderhighly restrictive and
unveri�able su�cient conditions, such as EGARCH(1,0) or EGARCH(1,1), and
possibly only under simulation. A limitation in the development of asymptotic
properties of theQMLE for the EGARCH(p, q)model is the lack of an invertibility
condition for the returns shocks underlying the model. It is shown in this
article that the EGARCH(p, q) model can be derived from a stochastic process,
for which su�cient invertibility conditions can be stated simply and explicitly

when the parameters respect a simple condition.1 This will be useful in reinter-
preting the existing properties of the QMLE of the EGARCH(p, q) parameters.
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1. Introduction

In addition to modeling and forecasting volatility, and capturing clustering, two key characteristics
of univariate time-varying conditional volatility models in the GARCH class of Engle (1982) and
Bollerslev (1986) are asymmetry and (possible) leverage. Asymmetry refers to the di�erent impacts
on volatility of positive and negative shocks of equal magnitude, whereas leverage, as a special case
of asymmetry, captures the negative correlation between the returns shocks and subsequent shocks to
volatility. Black (1976) de�ned leverage in terms of the debt-to-equity ratio, with increases in volatility
arising from negative shocks to returns and decreases in volatility arising from positive shocks to
returns.

The two most widely estimated asymmetric univariate models of conditional volatility are the
exponential GARCH (or EGARCH) model of Nelson (1990, 1991), and the Glosten, Jagannathan and
Runkle (GJR) (alternatively, asymmetric, or threshold) model of Glosten et al. (1992). As EGARCH
is a discrete-time approximation to a continuous-time stochastic volatility process, and is expressed in
logarithms, conditional volatility is guaranteed to be positive without any restrictions on the parameters.
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Management, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
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1Using the notation introduced in part 2, this refers to the cases where α ≥ |γ | or α ≤ − |γ |. The �rst inequality is generally
assumed in the literature related to the invertibility of EGARCH. This article provides (in the Appendix) an argument for the
possible lack of invertibility when these conditions are not met.
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In order to capture (possible) leverage, the EGARCH model requires parametric restrictions to be
satis�ed. Leverage is not possible for GJR, unless the short run persistence parameter is negative, which
is not consistent with the standard su�cient condition for conditional volatility to be positive, or for the
process to be consistent with a random coe�cient autoregressive model (see McAleer, 2014; McAleer
and Hafner, 2014).

As GARCH can be obtained from random coe�cient autoregressive models (see Tsay, 1987),
and similarly for GJR (see McAleer et al., 2007; McAleer, 2014), the statistical properties for the
(quasi-)maximum likelihood estimator (QMLE) of theGARCHandGJR parameters are straightforward
to establish. However, the statistical properties for the QMLE of the EGARCH parameters are not
available under general conditions. A limitation in the development of asymptotic properties of the
QMLE for EGARCH is the lack of an invertibility condition for the returns shocks underlying themodel.

McAleer and Hafner (2014) showed that EGARCH(1,1) could be derived from a random coe�cient
complex nonlinear moving average (RCCNMA) process. The reason for the lack of statistical properties
of the QMLE of EGARCH(p, q) under general conditions is that the stationarity and invertibility
conditions for the RCCNMA process are not known, except possibly under simulation, in part because
the RCCNMAprocess is not in the class of random coe�cient linearmoving averagemodels (for further
details, see Marek (2005).

The recent literature on the asymptotic properties of the QMLE of EGARCH shows that such
properties are available only for some special cases, and typically under highly restrictive and unver-
i�able conditions. For example, Straumann and Mikosch (2006) derive some asymptotic results for
the simple EGARCH(1,1) model, but their regularity conditions are di�cult to interpret or verify.
Wintenberger (2013) proves consistency and asymptotic normality for the QMLE of EGARCH(1,1)
under the nonveri�able assumption of invertibility of themodel. Francq et al. (2013) show that theQMLE
of the EGARCH(1,1) model is strongly consistent and asymptotically normal under strong assumptions.
Demos and Kyriakopoulou (2014) present su�cient conditions for asymptotic normality under highly
restrictive conditions that are di�cult to verify. Anyfantaki and Demos (2016) derive exact likelihood-
based estimators for the theoretical properties of the time-varying parameter EGARCH(1,1)-in-Mean
model. However, as the expression for the likelihood function is unknown, they resort to simulation
methods to estimate the parameters.

This article considers the more general EGARCH(p, q) model. It is shown that the EGARCH(p, q)
model can be derived from a stochastic process, for which su�cient invertibility conditions can be stated
simply and explicitly when the parameters respect a simple condition (α ≥ |γ | or α ≤ − |γ |), so
that veri�cation is possible rather than assumed, as is typical in the literature. This will be useful in
reinterpreting the existing properties of the QMLE of the EGARCH(p, q) parameters.

The remainder of the article is organized as follows. In Section 2, the EARCH(∞) model is
discussed, together with notation and lemmas. Section 3 develops a key result for invertibility of
the EARCH(∞) model. Section 4 analyzes the EGARCH(p, q) speci�cation, while Section 5 develops
regularity conditions for the invertibility of EGARCH(p, q). Section 6 considers the special case of
the N(0,1) distribution. Some concluding comments are given in Section 7. Proofs of the lemmas and
propositions are given in the Appendix.

2. EARCH(∞), notation, and lemmas

Instead of using a recursive equation for conditional volatility, which would require proofs of existence
and uniqueness, we will work with a direct de�nition of the stochastic process that drives the so-called
innovations, εt . The new process will de�ne uniquely the stochastic process that drives the innovation,
as follows:

εt = ηt . exp

(
ω

2
+

+∞∑

i=1

βi

(α

2
|ηt−i| +

γ

2
ηt−i

))
, (0)

where ω ∈ �, (α, γ ) ∈ �2,
∑

i |βi| < ∞,(ηt) is independently and identically distributed (i.i.d.), with
E [ηt] = 0 and E

[
η2t

]
= 1, so that ηt ∈ L2. Thus, we have the EARCH(∞) model, as introduced by
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Nelson (1990, 1991):




log(σ 2
t ) ≡ ω +

∞∑

i=1

βi (α |ηt−i| + γ ηt−i)

εt = ηtσt .

The primary purpose of this article is to establish invertibility of the model, where invertibility refers to
the fact that the normalized shocks, ηt , may be written in terms of the previous observed values, that
is, ηt is σ (εt , εt−1, . . .)-adapted. Note that this de�nition is equivalent to that used by Wintenberger
(2013), namely, that σt is σ (εt−1, εt−2, . . .)-adapted. This is also equivalent, for instance, to invertibility,
as de�ned in Tong (1990), and referred to as “global invertibility” in Sorokin (2011).

In a similar manner to proving invertibility for the Moving Average (MA) case, we will approximate
recursively all the i.i.d. shocks in terms of the past observed shocks (that is, εt) and some arbitrary �xed
initial values, and then prove that this backward recursion converges almost surely to the real value of ηt .

Consider the following notation:

δt ≡
α

2
+

γ

2
sign (ηt) ,

so that

εt = ηt . exp

(
ω

2
+

∞∑

i=1

βiδt−i |ηt−i|
)
. (1)

As sign(ηt) = sign(εt), δt is indeed σ (εt)-adapted. Therefore, by proving that |ηt| is σ (εt , εt−1, . . .)-
adapted, it will follow automatically that the model is invertible.

By assuming that the distribution of ηt does not admit a probabilitymass at 0, we can take the absolute
value and then the logarithm of εt . In order to be rigorous in the development below, we assume that
ηt �= 0,2 almost surely. By rewriting the equation, we have

log |ηt| = log |εt| −
ω

2
−

∞∑

i=1

βiδt−i |ηt−i| . (2)

De�ne the following function:

gα,γ
(
x, y

)
≡ −

α + sign(y).γ

2
exp(x),

so that we have

log |ηt| = log |εt| −
ω

2
+

∞∑

i=1

βi.gα,γ
(
log |ηt−i| , εt−i

)
.

This function is not Lipschitzian, so that we need to �nd some results about its variability. Lemma 1.1
gives a solution,3 which will be used in several proofs that are given in what follows.

Lemma 1.1.

(1)
∣∣gα,γ

(
x1, y

)
− gα,γ

(
x2, y

)∣∣ ≤
∣∣∣α+sign(y).γ

2

∣∣∣ exp (max(x1, x2)) |x1 − x2|.

(2)
∣∣gα,γ

(
x1, y

)
− gα,γ

(
x2, y

)∣∣ ≥
∣∣∣α+sign(y).γ

2

∣∣∣ exp
(
x1+x2

2

)
|x1 − x2|.

The proof of Lemma 1.1 is given in the Appendix, part 1.

2This assumption is unnecessary, and is here only for rigor in the �rst few equations. We will discuss below the possibility of
avoiding this assumption while retaining invertibility.

3Ourmethod is similar to those in the literature, which are based on, for instance, �nding a bound for the so-called Lyapunov
exponents or Lipschitz coe�cients.
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Themodel is invertible as long as |ηt| isσ (εt , εt−1, . . .)-adapted.Obviously, we can equivalently prove
invertibility by also showing that log |ηt| is σ (εt , εt−1, . . .)-adapted. Lemma 1.1 will be very useful in
the proof as the previous equation de�nes clearly a recursive relation among the log |ηt|, where gα,γ
plays a crucial role. Knowing the variability of this function will help us in the next part to control
the convergence of the recursion. Before doing so, we need to introduce some other simple conditions
relating to the parameters.

By ensuring positivity, the EGARCH model allows the possibility of leverage, namely, that positive
shocks lead to a decrease in volatility and negative shocks lead to an increase in volatility. Therefore,
leverage occurs when |α| < |γ | and γ < 0.4 There are also the two other cases where shocks lead to
either an increase in volatility (α ≥ |γ |) or a decrease in volatility (α ≤ − |γ |). The fourth possibility
is symmetric to the leverage case and hence need not be considered in detail. All of these cases allow
asymmetry as there are still two coe�cients. The three cases are summarized in the graphs given below,
where f (x) = α |x| + γ x:

Unfortunately the invertibility is di�cult to prove in the case of leverage. Therefore, when it comes to
invertibility of EGARCH, it is generally assumed that α ≥ |γ |. This article will, of course, consider the
case α ≥ |γ |, and will also extend invertibility to α ≤ − |γ |, but not to the case of leverage.5

There is a drawback in the case α ≤ − |γ |: in order to prove invertibility, we need to assume the
initial values to be equal to 0 for the independent shocks, ηt , before a certain range.6 This obviously
has no impact on the invertibility of the model as we only require the independent shocks to be
σ (εt , εt−1, . . .)-adapted, but this is an important point to consider in deriving the quasi-log likelihood
function of the model. Indeed, in such a situation, one might attribute initial values for the unobserved
ηt (or equivalently, σt) before a certain range, hoping that such values will not have a persistent
impact on the recursively estimated ηt , and hence on their supposed consistency toward the “real” ηt
values. Consequently, one has to be cautious in the case where α ≤ − |γ |, and must take null initial
values. In the �rst part of the Appendix, we provide a simple counterexample with non-null initial
values as a proof of the above statement. This also has an interesting implication on the analysis of
invertibility (or, more precisely, on the possible lack of invertibility of the model) when leverage is
assumed.

We have already introduced two �rst technical conditions, as follows:

(i) ηt �= 0 almost surely; (3)

(ii) α ≥ |γ | or α ≤ − |γ | .

4This de�nition of leverage may not be precisely the one given in Black (1976), as this may also depend on the value of ω.
Nelson divides the in�uence of each independent shock on the volatilities into two parts: one driven by its absolute value
and the factor α, and one driven by its sign and the factor γ . Therefore, it is often stated that leverage is achieved when
γ < 0. However, we use the above de�nition to ease the understanding of the article.

5When leverage is assumed, the recursions used in our invertibility proofs can be so erratic that the model might be
considered as not invertible (see the counterexample in the Appendix, part 1).

6On the contrary, when α ≥ |γ |, the chosen initial values do not have any in�uence on the convergence of the recursions
(andhence on the proof of invertibility). Therefore, the invertibility as de�ned in the sense of Straumann andMikosch (2006)
(di�erent fromours) is also derived here, while forα ≤ − |γ |, EGARCH is not invertible in this sense as the recursion depends
on the initial values.
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Although the �rst condition is assumed only to ensure a minimum of rigor in the early proofs (as will be
discussed later, this condition is not necessary), the second condition cannot be ignored. Indeed,α ≥ |γ |
is generally assumed in the literature and seems to be respected empirically in �nance (for example, see
Nelson’s, 1990, study on stock index returns data, and Ball and Torous (1999), in the case of short-term
interest rates).7 Moreover, we will also analyze the case α ≤ − |γ | which, to the best of our knowledge,
has not yet been done in the literature.

3. Key result for the invertibility of EARCH(∞)

In this section, we derive an upper bound for the absolute di�erence between the true value of an
independent shock and a σ (εt , εt−1, . . .)-adapted series. As discussed above, this series is de�ned from
a recurrence where proper initial and constant values are taken, which will be made explicit in what
follows.

The main use of such an upper bound is to control invertibility of any EARCH(∞) model, as the
convergence of this bound toward zero is a su�cient condition for invertibility to hold. This is actually
one of the most important theoretical results of the article. Indeed, any EGARCH(p, q) model with
proper speci�cation may be written as an EARCH(∞) model, so that the upper bound will be useful
for deriving invertibility conditions for a more general range of EGARCHmodels than has been proved
in the literature. Furthermore, the shape of this bound also has the substantial advantage to reduce
the analysis of any EGARCH(p, q) model to the simpler case of an EGARCH(1,1) model. The proper
EGARCH speci�cation and parameter transformation to choose to bene�t from this advantage will be
discussed in Section 4. In Section 5, we will use these results, together with those from Section 4 to
derive two di�erent invertibility conditions. In fact, both Sections 4 and 5 describe a way to use the upper
bound to deduce invertibility conditions for EGARCH(p, q). Therefore, as will be discussed below, less
restrictive conditions might subsequently be established. In any event, the interesting result, namely the
possibility of reducing an analysis of invertibility of any EGARCH(p, q) model to that of an appropriate
EGARCH(1,1) model, will be very useful.

From here on, we treat jointly the cases α ≥ |γ | and α ≤ − |γ |, and all the βi coe�cients are also
assumed to be non-negative.8 Recall the following equation, whichwas derived fromEq. (2) in Section 2:

log |ηt| = log |εt| −
ω

2
+

∞∑

i=1

βi.gα,γ
(
log |ηt−i| , εt−i

)
, (4)

which clearly de�nes a recursion among the log |ηt|. That is, for a �xed t and independent shock ηt , we
can, for instance, �nd its exact value from the observed shocks, εt , when (ηs)s≤t−n are known, for any
positive integer n. Therefore, extending n steps backward this “exact” recursion gives the de�nition of

the following u
(n)
k series:





u
(n)
1 = log |εt−n+1| −

ω

2
+

∞∑

i=0

βi+1gα,γ
(
log |ηt−n−i| , εt−n−i

)

u
(n)
k+1 = log

∣∣εt−n+k+1

∣∣ −
ω

2
+

k∑

j=1

βjgα,γ

(
u

(n)
k+1−j, εt−n+k+1−j

)
+

∞∑

i=0

βi+1+kgα,γ

(
log |ηt−n−i| , εt−n−i

)
.

(5)

As it may not be entirely straightforward for these series to represent an “exact” recursion, we provide
the following lemma.

7In this article, for some time series, the distribution of the independent shocks are estimated to follow a Student’s t

distribution, with degrees of freedom (df) very close to 2. If df= 2 or< 2, the assumption E
[
η2t

]
= 1would not be possible.

8Otherwise, we would have the same issues as in the case of leverage, or in the counter-example in Appendix, part 1.
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Lemma 2.1.

u
(n)
k = log

∣∣ηt−n+k

∣∣ , ∀n ∈ N∗,∀k ∈ N∗.

The proof of Lemma 2.1 is given in the Appendix, part 2.
As the lag n increases, more observed shocks, εt , and relatively less independent shocks, (ηs)s≤t−n,

are needed to infer the value of ηt . Hence, if we want invertibility of the model, when n is large enough,
the past values (ηs)s≤t−n should not have much in¨uence on ηt through the above “exact” recursion.
We could set all these past values equal to 09 and examine if, when n goes to in�nity, only the knowledge
of the observed shocks is needed to infer the value of ηt . This will obviously prove invertibility. According

to this point, consider the following v
(n)
k series for any n:





v
(n)
1 = log |εt−n+1| −

ω

2

v
(n)
k+1 = log

∣∣εt−n+k+1

∣∣ −
ω

2
+

k∑

j=1

βjgα,γ

(
v
(n)
k+1−j, εt−n+k+1−j

)
.

(6)

These series are σ (εt , εt−1, . . .)-adapted and are identical to the u
(n)
k , where all the past independent

shocks (ηs)s≤t−n are set to zero. From Lemma 2.1, and following the previous discussion, in order to
prove invertibility, we need to show that

∣∣∣v(n)
n − log |ηt|

∣∣∣ =
∣∣∣v(n)

n − u(n)
n

∣∣∣ a.s.→
n→+∞

0.

One way to show this condition is to �nd an upper bound to
∣∣∣v(n)

n − u
(n)
n

∣∣∣ and then show that this

bound converges to 0 as n goes to in�nity. This part is dedicated to �nding such an upper bound;
convergence toward zero is deferred to Section 5, when the speci�c case of EGARCH(p, q) invertibility
will be examined.

Applying inequality (1) of Lemma 1.1, we have

∣∣∣v(n)
n − u(n)

n

∣∣∣ ≤
+∞∑

i=0

βi+n |δt−n−i| |ηt−n−i| +
n−1∑

j=1

βjδt−j exp
(
max

(
v
(n)
n−j, u

(n)
n−j

)) ∣∣∣v(n)
n−j − u

(n)
n−j

∣∣∣ .

When α ≤ − |γ |, using the fact that in this case gα,γ is a positive (δt−j−i ≤ 0) and increasing function

with respect to its �rst parameter, we can show recursively that v
(n)
n−j ≤ log

∣∣ηt−j

∣∣ ,∀j ∈ [0, n[,10 as

v
(n)
n−j = log

∣∣ηt−j

∣∣ +
∑+∞

i=1 βiδt−j−i

∣∣ηt−j−i

∣∣ +
∑n−j−1

i=1 βigα,γ

(
v
(n)
n−j−i, εt−j−i

)
.

When α ≥ |γ |, using the above equality for v(n)
n−j, as gα,γ ≤ 0, δt−j−i ≥ 0, and max

(
u

(n)
n−j, v

(n)
n−j

)
=

log
∣∣ηt−j

∣∣ +
(
v
(n)
n−j − log

∣∣ηt−j

∣∣
)+

, we have v
(n)
n−j ≤ log

∣∣ηt−j

∣∣ +
∑+∞

i=1 βiδt−j−i

∣∣ηt−j−i

∣∣.
Overall, we may introduce a new notation, ξt−j, such that

max
(
u

(n)
n−j, v

(n)
n−j

)
≤ ξt−j ≡





log
∣∣ηt−j

∣∣ , when α ≤ − |γ |

log
∣∣ηt−j

∣∣ +
∞∑

i=1

βiδt−j−i

∣∣ηt−j−i

∣∣ , when α ≥ |γ |.

9As stated in the previous part and in the counterexample given in the Appendix, when α ≤ − |γ |, we must take such null
initial values. However, when α ≥ |γ |, we can choose any initial values in �, and we will still be able to prove invertibility.

10As explained in the counterexample, the reason why we should have null initial values is that it leads to such inequalities.

Otherwise, the behavior of the v
(n)
n−j may be explosive!
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Therefore, it follows that

∣∣∣u(n)
n − v(n)

n

∣∣∣ ≤
∞∑

i=0

βi+n |δt−n−i| |ηt−n−i| +
n−1∑

j=1

βj

∣∣δt−j

∣∣ exp
(
ξt−j

) ∣∣∣u(n)
n−j − v

(n)
n−j

∣∣∣ .

For both the cases of α ≥ |γ | and α ≤ − |γ |, we apply the same inequality to the
∣∣∣u(n)

n−j − v
(n)
n−j

∣∣∣ and
reiterate the process several times, as follows:

De�ne

ak ≡
+∞∑

i=0

|δt−n−i| |ηt−n−i|


βi+n +

k−1∑

p=1

∑

i1,...,ip∈A(n)
p

�̂pD̂p exp




p∑

j=1

ξt−̂Sj


 × βi+n−̂Sp




+
∑

i1,...,ik∈A
(n)
k

�̂kD̂k exp

(
k∑

i=1

ξt−̂Sj

) ∣∣∣u(n)

n−̂Sk
− v

(n)

n−̂Sk

∣∣∣

Where we have as follows:
• Ŝl =

∑l
j=1 ij

• A
(n)
p =

{
i1 ≥ 1, . . . , ip ≥ 1 : Ŝp ≤ n − 1

}

• �̂l =
∏l

j=1 βij

• D̂l =
∏l

j=1

∣∣∣δt−̂Sj

∣∣∣.
The above calculations lead to the following lemma.

Lemma 2.2. ∣∣∣v(n)
n − u(n)

n

∣∣∣ ≤ ak, ∀k ∈ [1, n[ .

The proof of Lemma 2.2 is given in the Appendix, part 2.

By taking k = n − 1, and using the inequality
∣∣∣u(n)

1 − v
(n)
1

∣∣∣ ≤
∑∞

i=0 βi+1 |δt−n−i| |ηt−n−i|, we have
the following general result for EARCH(∞), which is the appropriate upper bound:

Proposition 2.1. If α ≥ |γ | or α ≤ − |γ |, and βi ≥ 0,∀i, then we have the following inequality for the
de�ned series, u and v, for EARCH(∞):

∣∣∣u(n)
n − v(n)

n

∣∣∣ ≤
+∞∑

i=0

|δt−n−i| |ηt−n−i|


βi+n +

n−1∑

p=1

∑

i1,...,ip∈A(n)
p

�̂pD̂p exp




p∑

j=1

ξt−̂Sj


 × βi+n−̂Sp


 .

An examination of invertibility for a general EARCH(∞) would use this upper bound. In our case, as
it could be di�cult if we do not assume a minimum on the shape of the βi coe�cients, we will examine
the case of EGARCH(p, q).
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4. EGARCH(p,q) speci­cation

An EGARCH(p, q) model admitting a canonical representation11 also has an EARCH(∞) representa-
tion, so invertibility can be analyzed according to the upper bound found in Section 3. However, two
conditions on the parameters of the EARCH(∞) representation were established as

(α ≥ |γ | or α ≤ − |γ |) and βi ≥ 0,∀i ≥ 1.

If the condition (α ≥ |γ | or α ≤ − |γ |) can be easily veri�ed, it is not automatic that the EARCH(∞)
representation would have non-negative βi coe�cients. Lemma 3.1 presents two su�cient conditions
on the EGARCH(p, q) speci�cation to tackle this issue.

Finally, when an EGARCHmodel admits an EARCH(∞) representation, we can guess intuitively that
itsβi coe�cients will decay exponentially toward 0when i goes to in�nity. Hence, when these coe�cients
are non-negative, we might want to �nd for them an upper bound of the following kind: βi ≤ C.β i−1,
where C > 0 and β ∈ ]0, 1[. Directly substituting the C.β i−1 in the upper bound12 of Section 3 will
ease considerably the derivation of the invertibility conditions. Moreover, one can easily check that the
new upper bound will be identical to what can be derived for the EARCH(∞) representation of an
EGARCH(1,1) model for parameters subject to the following transformations:

α ← C × α

γ ← C × γ (7)

βi ← β i−1.

This hypothetical EGARCH(1,1) would clearly have the following speci�cation:

log σt =
ω

2
+ β log σt−1 + δt−1 |ηt−1| .

Before deriving the invertibility conditions for EGARCH(p, q) in Section 5, we should provide su�cient
conditions on the speci�cation in order to have the following situations:
(i) Existence of an EARCH(∞) representation;
(ii) Non-negativity of the βi coe�cients;
(iii) C > 0 and β ∈ ]0, 1[, such that βi ≤ C.β i−1,∀i ≥ 1.
De�ne the general EGARCH(p, q) model speci�cation, as follows:

log σt =
ω

2
+

p∑

i=1

ai log σt−i +
q∑

i=1

biδt−i |ηt−i| , ai ∈ �, bi ∈ �.

By using the backward lag operator L, this model can be rewritten as
(
1 −

p∑

i=1

aiL
i

)
log σt =

ω

2
+

q∑

i=1

biδt−i |ηt−i| , ai ∈ �, bi ∈ �. (8)

If we factorize the polynomial
(
1 −

∑p
i=1 aiL

i
)
, we obtain (θi ∈ C, i.e., it is a complex number)

(1 − θ1L) ....
(
1 − θpL

)
log σt =

ω

2
+

q∑

i=1

biδt−i |ηt−i| , |θi| ∈ [0, 1[ , bi ∈ �. (9)

For the �rst point (i), the non-anticipative EARCH(∞) representation is obtained if we have ∀i ∈[
1, p

]
, |θi| < 1. For the second point (ii), appropriate su�cient conditions are given in the following

lemma.

11Without roots inside or on the border of the unit circle for the “AR”part, as we will make it explicit.
12The positivity of all the elements in the upper bound allows the substitution.
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Lemma 3.1. Assuming θi ∈ C, |θi| < 1,∀i as in (9), if one of the following conditions is veri�ed, the
EARCH(∞) representation of the EGARCH(p,q) model admits non-negative βi coe�cients:
(1) All the coe�cients ai and bi as de�ned in (8) are non-negative;
(2) All the coe�cients θi and bi as de�ned in (9) are non-negative.

The proof of Lemma 3.1 is given in the Appendix, part 3.

Remark. As the above conditions are only su�cient, it would be possible to have the non-negativity of
the βi coe�cients under less restrictive assumptions. For instance, one can easily see that a “mix” of the
two conditions could also be used. Indeed, if we can rewrite the model as

(1 − θ1L) ....
(
1 − θp1L

)
(
1 −

p2∑

i=1

aiL
i

)
log σt =

ω

2
+

q∑

i=1

biδt−i |ηt−i| ,

with p1 + p2 = p and ai, bi, θi non-negative, we would also have βi ≥ 0,∀i. Furthermore, even though
the empirical speci�cation in Nelson (1990) does not satisfy the conditions, straightforward algebra can
still lead to non-negative βi.

From here on, the “updated” coe�cients, as described in Eq. (7), will be given as α∗, γ ∗, β∗ below.
The third point (iii) is addressed in the following lemma.

Lemma 3.2. We reorder the θi from (9) such as |θ1| ≥ · · · ≥
∣∣θp

∣∣, and take β∗ ∈ ]0, 1[ such that
β∗ > maxi |θi|. We assume from the EARCH(∞) representation that βi ≥ 0,∀i. Then

βi ≤ C.β∗i−1,

with

C ≡
max1≤m≤q

∣∣∣
∑m

i=1 biθ
1−i
1

∣∣∣
∏

p≥i≥2

(
1 − |θi|

β∗

) .

The proof of Lemma 3.2 is given in the Appendix, part 3.

Remark. In the EARCH(∞) representation, the above β∗ is greater than the maximum of the absolute
values of the θi. When all the |θi| are di�erent, we could choose β∗ as being the maximum value.

However, the polynomial
(
1 −

∑p
i=1 aiL

i
)
may have double roots, or at least, as it is a polynomial with

real coe�cients, may admit couples of complex roots and their conjugates, thereby having the same
absolute value. In these cases, we would not be able to �nd an upper bound like βi ≤ C.β∗i−1 if we used
β∗ = maxi |θi|. Therefore, in our “general” analysis, we consider a coe�cient such as β∗ > maxi |θi|.
This coe�cient can be chosen arbitrarily as long as it is strictly less than 1 and above the absolute values
of the θi.

If we consider the inequality in Proposition 2.1, we can also use the βi ≤ Cβ∗i−1 inequality from
Lemma 3.2 to obtain the new upper bound∣∣∣u(n)

n − v(n)
n

∣∣∣

≤
+∞∑

i=0

β∗i ∣∣δ∗
t−n−i

∣∣ |ηt−n−i|


β∗n−1 +

n−1∑

p=1

β∗n−1−p
∑

1≤s1<···<sp≤n−1

exp




p∑

j=1

log
(∣∣∣δ∗

t−sj

∣∣∣
)

+ ξ∗
t−sj







(10)

where the previous α and β parameters are replaced by the following coe�cients:

α∗ ≡ Cα, γ ∗ ≡ Cγ ,

so that δt and ξt are rede�ned accordingly into δ∗
t and ξ∗

t using α∗ and β∗.
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5. Invertibility of EGARCH(p,q)

This section is dedicated to the derivation of two invertibility conditions for EGARCH(p, q) from the
previous results. Therefore, we consider an EGARCH(p, q) model whose speci�cation can be described
by Eqs. (8) and (9), and we also assume the technical conditions from Eq. (3) to hold. Furthermore, we
assume that the roots of the AR part of EGARCH lie outside the unit circle, and that the parameters
satisfy conditions (1) or (2)13 from Lemma 3.1 such that, as stated in Section 4, the model admits an
EARCH(∞) representation with non-negative βi coe�cients. Finally, we use the upper bounds derived
in Lemma 3.2 for these coe�cients, combined with the upper bound found in part 3 of Lemma 2.1, to
obtain Eq. (10) in Section 4. Therefore, in order to prove invertibility of the EGARCH(p, q) model, we
provide two su�cient conditions such that the upper bound from (10) converges to zero.

The results from Section 4 and this section are su�cient to use the general upper bound from Section
3 to derive the invertibility conditions of EGARCH(p, q). Hence, further studies of the points addressed
in these sections may lead to more general invertibility conditions. In this section, we provide two
conditions derived from Eq. (10), which satisfy the following two requirements for the invertibility
set:14 (i) invertibility should be easily veri�able, and (ii) it should be asymptotically equivalent to that
in Straumann and Mikosch (2006).15 The two conditions are, of course, not identical, and one does
not imply the other. The �rst condition is easily veri�able, and leads to a general condition where
the distribution of ηt is not involved. However, this condition is asymptotically more restrictive than
that of Straumann and Mikosch (2006). The second condition is also easily veri�able and satis�es the
requirement of asymptotic equivalence but is more restrictive than the �rst condition for high values
of β∗.

We now introduce these conditions and examine how they have been derived. First, we rewrite the
inequality (10) to make the proof of invertibility more straightforward. For α ≥ |γ |, note that

p∑

j=1

ξ∗
t−sj

=
p∑

j=1

log
∣∣∣ηt−sj

∣∣∣ +
p∑

j=1

+∞∑

i=1

β∗i−1δ∗
t−sj−i

∣∣∣ηt−sj−i

∣∣∣

=
p∑

j=1

log
∣∣∣ηt−sj

∣∣∣ +
+∞∑

l=1

∑

1≤j≤p
i≥1

i+sj=l

β∗i−1δ∗
t−l

∣∣ηt−l

∣∣

=
p∑

j=1

log
∣∣∣ηt−sj

∣∣∣ +
n−1∑

l=1

∑

1≤j≤p
i≥1

i+sj=l

β∗i−1δ∗
t−l

∣∣ηt−l

∣∣ +
+∞∑

l=n

∑

1≤j≤p
i≥1

i+sj=l

β∗i−1δ∗
t−l

∣∣ηt−l

∣∣ .

As 1 ≤ s1 < · · · < sp ≤ n − 1,
∑

1≤j≤p
i≥1

i+sj=l

β∗i−1 ≤ 1
1−β∗ if l < n, and

∑
1≤j≤p
i≥1

i+sj=l

β∗i−1 ≤ β∗l−n

1−β∗ if l ≥ n,

it follows that

p∑

j=1

ξ∗
t−sj

≤
p∑

j=1

log
∣∣∣ηt−sj

∣∣∣ +
n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗ +

+∞∑

l=n

β∗l−n

1 − β∗ δ∗
t−l

∣∣ηt−l

∣∣ . (11)

For α ≤ − |γ |, we have
∑p

j=1 ξ∗
t−sj

=
∑p

j=1 log
∣∣∣ηt−sj

∣∣∣.

13Or a mix of the two (see the remark after Lemma 3.1).
14That is, the set of parameters of the model such that we know that invertibility holds.
15By asymptotically equivalent, we mean that the invertibility set for β = 0 is the same as in Straumann and Mikosch (2006).
Indeed, theypresent a su�cient invertibility condition for EGARCH(1,1)which is di�cult to verify asMonteCarlo simulations
are needed, so that a distribution for the independent shocks has to be assumed. However, an easily veri�able condition is
provided for EARCH(1) (that is, when β = 0). We derive an invertibility condition that is identical to that of Straumann and
Mikosch for EARCH(1) as a guarantee that our invertibility set is not too restrictive.
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It follows that

∣∣∣u(n)
n − v(n)

n

∣∣∣ ≤





Bn exp

(
n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗

)
β∗n−1 +

n−1∑

p=1

β∗n−1−p
∑

1≤s1<···<sp≤n−1

exp




p∑

j=1

log
(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)




 , when α ≥ |γ |

Bn


β∗n−1 +

n−1∑

p=1

β∗n−1−p
∑

1≤s1<···<sp≤n−1

exp




p∑

j=1

log
(∣∣∣δ∗

t−sj

∣∣∣
∣∣∣ηt−sj

∣∣∣
)




 ,

when α ≤ − |γ |
(12)

where

Bn =





+∞∑

i=0

β∗iδ∗
t−n−i |ηt−n−i| exp

(+∞∑

l=n

β∗l−n

1 − β∗ δ∗
t−l

∣∣ηt−l

∣∣
)
, when α ≥ |γ |

+∞∑

i=0

β∗i ∣∣δ∗
t−n−i

∣∣ |ηt−n−i| , when α ≤ − |γ |.

We now provide the �rst su�cient condition for invertibility of the EGARCH(p, q) speci�cation, the
proof of which is established through Lemma 4.1 and Proposition 4.1:

∣∣∣∣∣∣
E

[
δ∗
t |ηt|

1 − β∗

]
+ log

(
β∗ + E

[
δ∗
t |ηt|

])
< 0, when α ≥ |γ |

log
(
β∗ + E

[∣∣δ∗
t

∣∣ |ηt|
])

< 0, when α ≤ − |γ |.
(Condition 1)

Asymptotically, for α ≥ |γ |, that is, when β∗ = 0, we �nd the following condition for EARCH(1):

E
[
δ∗
t |ηt|

]
+ log

(
E

[
δ∗
t |ηt|

])
< 0.

This condition is more restrictive by concavity of the log(.) than the easily veri�able condition for
EARCH(1) from Straumann and Mikosch (2006), namely,

E
[
δ∗
t |ηt|

]
+ E

[
log

(
δ∗
t |ηt|

)]
< 0.

Fortunately, the second invertibility condition introduced below will satisfy this simple condition
asymptotically. However, a general condition involving only the parameters of the model can cbe
obtained using the fact that E [ηt] = 0 and E [|ηt|] ≤ 1 (as E

[
η2t

]
= 1) as follows:





α∗

2 (1 − β∗)
+ log

(
β∗ +

α∗

2

)
< 0, when α ≥ |γ |

log

(
β∗ +

−α∗

2

)
< 0, when α ≤ − |γ |.

(13)

We notice also that when we set β∗ toward 0 for α ≥ |γ |, the condition α∗ < 1 proposed by Straumann
and Mikosch (2006) in their Remark 3.10 is also obtained here.

Remark. We continue to assume that P (ηt = 0) = 0 in order to retain rigor in the proofs. However, as
can be seen from the above results, a distribution for the independent shocks admitting mass at 0 can
verify the invertibility conditions. Moreover, in the next condition, as the expectation16 will be outside
the log(.), invertibility will even be easier to verify for a distribution with a probability mass at zero.

16More precisely, it will be the expected shortfall.
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Generally, the existence of such a mass will not impede invertibility and may even be the contrary: in
the recursion, the appearance of a null shock will tend to cancel the in¨uence of the initial values.

Lemma 4.1. For any ν > 1/2, we have with probability 1

Bn = exp
(
o
(
nν

))
.

The proof of Lemma 4.1 is given in the Appendix, part 4.
The following proposition uses Lemma 4.1 to prove that Condition 1 leads to invertibility. We will

explain below how this proposition is derived. Inside the larger brackets in inequality (12), we have sums
of independent variables, 1 ≤ s1 < · · · < sp ≤ n − 1, which are more di�cult to control than a sum
from 1 to p, for instance. So we cannot simply use the Law of Large Number (LLN), as in the case of
the EARCH(1) model. Therefore, we will simply take the expectation in the proof to return to a sum
over consecutive indexes (we also take expectations in order to use Lemma 1.2 in the Appendix with the

Markov inequality to obtain convergence toward zero of
∣∣∣v(n)

n − u
(n)
n

∣∣∣). This operation may explain why

the curves drawn in Section 6 are convex, while those in Wintenberger (2013) look more concave. The
operation of taking expectations might make the invertibility set implied by (10) look more restrictive
than it really is. However, we have not yet found any clearer conditions than Condition 1 or Condition 2
to show invertibility.

Proposition 4.1. If α ≥ |γ | or α ≤ − |γ |, if the roots of
(
1 −

∑p
i=1 aiL

i
)
lie outside the unit circle and

if the EARCH(∞) representation has its βi coe�cients non-negative, then when Condition 1 is veri�ed,
EGARCH(p,q) is invertible as

∣∣∣v(n)
n − u(n)

n

∣∣∣ =
∣∣∣v(n)

n − log |ηt|
∣∣∣ a.s.→
n→∞

0.

The proof of Proposition 4.1 is given in the Appendix, part 4.
Another invertibility condition can also be deduced from inequality (12). This condition has the

advantage of being “asymptotically” equivalent (for β∗ = 0) to that introduced by Straumann and
Mikosch (2006), despite being more restrictive than Condition 1 elsewhere (namely, for most β∗ �= 0),
as will be seen in the plots of Section 6 in the case of standard normal shocks. This condition is stated as
follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

When α ≥ |γ | :

max
k∈[0,1]

(
E

[
δ∗
t |ηt|

1 − β∗

]
+ k

(
ESk

[
log

(
δ∗
t |ηt|

)]
− log (k)

)
+ (1 − k)

(
log

(
β∗) − log (1 − k)

))
< 0

When α ≤ − |γ | :

max
k∈[0,1]

(
k
(
ESk

[
log

(∣∣δ∗
t

∣∣ |ηt|
)]

− log (k)
)
+ (1 − k)

(
log

(
β∗) − log (1 − k)

))
< 0,

(Condition 2)

where, for any random variable X, ESk [X] is the so-called Expected Shortfall or Conditional Value-

at-Risk (CVaR) of X at the k level. In other words, ESk [X] = 1
k

∫ 1
1−k VaRu (X) du, where VaRu (X)

is the so-called Value-at-Risk of X, or the u-quantile of its distribution, de�ned as VaRu (X) ≡
inf {s ∈ � : P (X ≥ s) ≤ 1 − u}.

Proposition 4.2. If α ≥ |γ | or α ≤ − |γ |, if the roots of
(
1 −

∑p
i=1 aiL

i
)
lie outside the unit circle

and if the EARCH(∞) representation has its βi coe�cients non-negative, then when Condition 2 holds,



836 G. G. MARTINET ANDM. MCALEER

EGARCH(p,q) is invertible, as
∣∣∣v(n)

n − u(n)
n

∣∣∣ =
∣∣∣v(n)

n − log |ηt|
∣∣∣ a.s.→
n→∞

0.

The proof of Proposition 4.2 is given in the Appendix, part 4.

Remark. Value-at-Risk and Expected Shortfall can easily be estimated empirically. For instance, if we
have a sample of n independent observations of variable X, namely, X1 . . .Xn, and they are reordered

as X(1) . . .X(n), then the empirical Value-at-Risk values should be
∧

VaR
u

(X) = X(�u∗n
), and Expected

Shortfall should be

∧
ES
k
[X] =

1

k

∫ 1

1−k

∧
VaR
u

(X) du.

However, for p ∈ {1, 2, . . . , n},
∧
ES
p
n

[X] = 1
p

∑p
i=1 X(i).

Moreover,17 the function f (k) ≡ E
[

δ∗
t |ηt |
1−β∗

]
+ k

(
ESk

[
log

(
δ∗
t |ηt|

)]
− log (k)

)
+ (1 − k)

(
log (β∗)

− log (1 − k)
)
is di�erentiable and concave, so that it admits the maximum for kmax that

satis�es

f ′(kmax) = VaRkmax(log (δt |ηt|)) − log(kmax) + log(1 − kmax) − log(β∗) = 0.

Otherwise, if f were not continuously di�erentiable it would be kmax, such as f ′
(
k−
max

)
≥ 0 ≥ f ′

(
k+
max

)
.

In our simulations in Section 6, we actually �nd p such that f ′
(

p
n−1

)
≥ 0 ≥ f ′

(
p+1
n−1

)
and check the

maximum of f for these two values, and reach a conclusion on invertibility if it is negative.

It is worth noting as follows:
(i) When β∗ = 0, we �nd the same condition as the one in Straumann and Mikosch (2006) (in their

Remark 3.10).
(ii) As ηt ∈ L2, we have E

[
log (|ηt|)

]
∈ �

⋃
{−∞}, so even if log (|ηt|) /∈ L1, we can replace

E
[
log (|ηt|)

]
in the above conditions by −∞, taken as a limit case. We can also use this form

if P (ηt = 0) �= 0 without changing the conditions. A comparable remark can be made also for
the expected shortfall (when k is big enough).

(iii) In order to deduce the invertibility condition, we did not take expectations, as in the previous
condition, but used a direct upper bound. However, this new upper bound might be too
conservative, againmaking the invertibility set fromCondition 2more restrictive than the “global”
invertibility set implied by (10).

6. Special case of the N(0,1) distribution

In the case of the Gaussian distribution, Condition 1 can be rewritten as





α∗
√
2π (1 − β∗)

+ log

(
β∗ +

α∗
√
2π

)
< 0, when α ≥ |γ |

log

(
β∗ +

−α∗
√
2π

)
< 0, when α ≤ − |γ | .

17For α ≥ |γ |, but this remark is also valid for α ≤ − |γ |, at the cost of a very slight change in the f function.
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If we display the maximum β for several values of α and γ such invertibility holds, we have as follows:
For α ≥ |γ |:

For α ≤ − |γ |:

For Condition 2, we do not have an analytical formula but, as explained in part 5, the invertibility
condition can be easily calculated. Some graphs for Condition 2 are the following ones:
For α ≥ |γ |:
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For α ≤ − |γ |:

7. Concluding remarks

The graphs in part 6 display invertibility sets that seem to be more restrictive than that from Straumann
and Mikosch (2006) in the case of EGARCH(1,1) with N(0,1) independent shocks. But it is important
to note that these invertibility sets are only those implied by Condition 1 and Condition 2, which are
more restrictive than that implied by (10). Indeed, inequality (10) gives the de�nition of the full set
of invertibility found in this article, which is equivalently the set of parameters such that the right-
hand side of the inequality converges toward zero. By applying the expectation in part 5, or by using a
conservative upper bound,we derivedCondition 1 andCondition 2, which are only su�cient conditions,
such that the right-hand side of (10) converges to zero. These conditions might be improved such that
they lead to a larger invertibility set by following the main arguments of the article and the “main”
inequality found in part 3, and restated in part 4 under Eq. (10). In any case, we can at least consider
the union of the two plotted invertibility sets (from the two conditions) as a larger set of parame-
ters, such that invertibility can be easily veri�ed through either one of the conditions introduced in
part 5.

The present article followed an approach based on considering a stochastic process uniquely de�ned
such that the EGARCH model can be easily derived following the de�nition of EGARCH given in
Nelson (1991). This approach does not yet seem to have been used in the literature on the invertibility
of EGARCH. By following this approach, and despite some inconveniences discussed in the previous
paragraph, we are able to derive general and veri�able invertibility conditions. Moreover, an invertibility
condition equivalent to that of Straumann and Mikosch was shown when it is easily veri�able (that is,
asymptotically for β = 0).

Finally, the invertibility of any EGARCH(p, q) model can be studied simply through an examina-
tion of the invertibility of an EGARCH(1,1) model. While only some degenerate cases of EGARCH
have been examined previously, the extension of invertibility to the general case of EGARCH(p, q)
is the main contribution of the article. As shown in some other articles in the literature, such as
Wintenberger (2013), invertibility is particularly helpful in the derivation of asymptotic properties
of the QMLE of the parameters. Therefore, further research would be the derivation of the asymp-
totic properties of the QMLE of the EGARCH(p, q) speci�cation based on the results established
here.
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Appendix

Part 1: Proofs of lemma 1.1 and counterexample for EARCH(1)

Proof of Lemma 1.1. The case x1 = x2 is obvious, so assume x1 �= x2. We have

∣∣gα,γ
(
x1, y

)
− gα,γ

(
x2, y

)∣∣ =
∣∣∣∣
α + sign(y).γ

2

∣∣∣∣ .
∣∣∣∣
exp(x1) − exp(x2)

x1 − x2

∣∣∣∣ . |x1 − x2| .

If we note xmin and xmax, respectively, the min and the max among x1 and x2, we know that ∃c ∈
]xmin, xmax[ such that

∣∣∣∣
exp(x1) − exp(x2)

x1 − x2

∣∣∣∣ = exp(c).

The �rst inequality is obtained by the fact that exp is an increasing function. For the second inequality,
some straightforward algebra leads to

c =
xmax + xmin

2
+ log

(
exp(x) − exp(−x)

2x

)
,

where x = xmax−xmin
2 . By using the Taylor expansion of the function exp(.), as x > 0, we have the terms

in the log(.) function are greater than 1, and therefore, c is greater than x1+x2
2 . This proves the second

inequality.

Twowell-known lemmas to be used in the proofs

The Borel–Cantelli Lemma. Consider the probabilized space, (�,A,P), and An ∈ A,∀n ≥ 0.
(1) If

∑
n≥0 P (An) < +∞, then P

(
lim supn An

)
= 0.

(2) If (An)n is independent and if
∑

n≥0 P (An) = +∞, then P
(
lim supn An

)
= 1.

Lemma 1.2. If ∀ε > 0 and
∑

n P (|Xn − X| > ε) < +∞, then Xn
P.a.s.→
n→∞

X.

A counterexample with non-null initial value for EARCH(1) when α ≤ − |γ |

We give a counterexample where invertibility cannot be achieved using the usual method of proof
for EARCH(1) when α ≤ − |γ |18 and some non-null initial value is taken in recursions below. We
assume the normality of the shocks, that is, ηt ∼ N (0, 1), which is not too restrictive an assumption
(distributions with larger tails will surely lead to the same result). Now we introduce the following
recursive series for a �xed n ∈ N∗:





u
(n)
1 = log |εt−n+1| −

ω

2
+ gα,γ

(
log |ηt−n| , εt−n

)

u
(n)
k+1 = log

∣∣εt−n+k+1

∣∣ −
ω

2
+ gα,γ

(
u

(n)
k , εt−n+k

)
.

We can easily check by recursion that u
(n)
k = log

∣∣ηt−n+k

∣∣ ,∀n ∈ N∗,∀k ∈ N∗.
Also de�ne, for any c0 ∈ � (where c0 is the initial value for log |ηt−n| and, by assumption, c0 �= −∞)





v
(n)
1 = log |εt−n+1| −

ω

2
+ gα,γ (c0, εt−n)

v
(n)
k+1 = log

∣∣εt−n+k+1

∣∣ −
ω

2
+ gα,γ

(
v
(n)
k , εt−n+k

)
.

18We assume, without loss of generality, that −α − γ > 0.
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These series are the EARCH(1) versions of those used for EARCH(∞). In proving invertibility of the

model, our method is based on proving that
∣∣∣v(n)

n − u
(n)
n

∣∣∣ converges toward zero almost surely. In the

counterexample, we will prove that it is not converging.

Lemma 1.3. If we consider the extracted series, u
(4n)
k and v

(4n)
k , we have

P
(
∀k ∈ N, ∃n ≥ k : v

(4n)
4 ≥ log |ηt−4n+4| + n3/2

)
= 1.

Proof. De�ne

An ≡
{
0 ≤ ηt−4n ≤

exp(c0)

2
; ηt−4n+1 ≥

√
log(n7/4) − 1; ηt−4n+2 ≥

4

−α − γ
; ηt−4n+3 ≥

2

−α − γ

}
.

Under independence, we have

P (An) = P

(
0 ≤ ηt−4n ≤

exp(c0)

2

)
× P

(
ηt−4n+1 ≥

√
log(n7/4) − 1

)
× P

(
ηt−4n+2 ≥

4

−α − γ

)

× P

(
ηt−4n+3 ≥

2

−α − γ

)
.

As all terms except for the second do not depend on n, and therefore are constant, we can rewrite
the above equality as follows, where �(.) is the cumulative density function (CDF) of the normal
distribution:

P (An) = Cα,γ × �

(
1 −

√
log(n7/4)

)
,

where

Cα,γ ≡ P

(
0 ≤ ηt−4n ≤

exp(c0)

2

)
× P

(
ηt−4n+2 ≥

4

−α − γ

)
× P

(
ηt−4n+3 ≥

2

−α − γ

)
�= 0.

It follows that

�

(
1 −

√
log(n7/4)

)
=

∫ +∞
√

log(n7/4)−1

1
√
2π

e−
x2

2 dx ≥
∫ √

log(n7/4)

√
log(n7/4)−1

1
√
2π

e−
x2

2 dx ≥
1

√
2π

e−
log(n7/4)

2

≥
1

√
2π

1

n7/8

and, by direct comparison to a Bertrand sum, it follows that
∑

n P (An) diverges. Therefore, as theAn are
independent, we can apply line (2) of the Borel–Cantelli Lemma, as stated previously, and ∀k ∈ N, ∃n ≥
k : An will occur with probability one.

Consider taking n su�ciently large such that the event An occurs. By straightforward calculus and a
Taylor expansion, it follows that

v
(4n)
1 ≥ log |ηt−4n+1| +

−α − γ

4
exp(c0),

v
(4n)
2 ≥ log (ηt−4n+2) +

√
log(n3/2 + 1),

v
(4n)
3 ≥ log (ηt−4n+3) + log(n3/2 + 1),

v
(4n)
4 ≥ log |ηt−4n+4| + n3/2.

Lemma 1.3 allows us to prove Proposition 1.1.
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Proposition 1.1. If ηt
i.i.d.∼ N (0, 1) and α < − |γ |, then we cannot prove invertibility using our method, as∣∣∣v(n)

n − u
(n)
n

∣∣∣ does not converge to 0, and even almost surely admits an extracted series that diverges toward

in�nity.

Proof. In order to show that
∣∣∣v(n)

n − u
(n)
n

∣∣∣ diverges, we have to show that one of its extracting series

diverges. Consider
∣∣∣v(4n)

4n − u
(4n)
4n

∣∣∣. By applying (2) of Lemma 1.2 recursively, by taking v
(4n)
0 ≡ c0, and

as gα,γ (., .) > 0, and using Eq. (2), we obtain

∣∣∣v(4n)
4n − u

(4n)
4n

∣∣∣ ≥ exp


4n log

∣∣∣∣
|α| − |γ |

2

∣∣∣∣ +
4n−1∑

i=1
i�=4n−4

(
log |ηt−i| +

δt−i−1 |ηt−i−1|
2

)

+
log |ηt−4n+4| + v

(4n)
4

2




∣∣|ηt−4n| − exp(c0)
∣∣ .

By the assumption on the distribution, and by using LLN, it follows that

4n log

∣∣∣∣
|α| − |γ |

2

∣∣∣∣ +
4n−1∑

i=1
i�=4n−4

(
log |ηt−i| +

δt−i−1 |ηt−i−1|
2

)
+ log |ηt−4n+4| = O (n) .

Using Lemma 1.3, it follows that (almost surely)

∀N ∈ N, ∃n ≥ N :
∣∣∣v(4n)

4n − u
(4n)
4n

∣∣∣ ≥ exp

(
O (n) +

n3/2

2

) ∣∣|ηt−4n| − exp(c0)
∣∣

≥ exp

(
O (n) +

n3/2

2

)
exp(c0)

2
.

The above result shows that if we want to have
∣∣∣v(n)

n − u
(n)
n

∣∣∣ =
∣∣∣v(n)

n − log |ηt|
∣∣∣ a.s.→
n→∞

0, one should

take c0 = −∞ (in this case, we can prove invertibility of the model). When this equality does
not hold, the recursion above is divergent. Such divergence is obtained only because, for an in�nite

number of n, there exists k such that v
(n)
k > log

∣∣ηt−n+k

∣∣. If we had, for instance, v(n)
1 ≤ log

∣∣ηt−n+k

∣∣
for all n (as in the case when the initial value is null), a simple recursion would lead to the same

inequality for all k: v
(n)
k ≤ log

∣∣ηt−n+k

∣∣,19 so that we would not be able to derive the divergence.
This leads us to the case of leverage, as introduced in Section 2. In this case, if we modify properly
the de�nition of the events An, as introduced in the above proofs by having a negative value20 for

ηt−4n, the other inequalities being unchanged, we would have v
(n)
k > log

∣∣ηt−n+k

∣∣ for k = 1 and

therefore a sequence of v
(n)
k leading to a O(n3/2) term. If this is, however, not enough to prove the

divergence using inequality (2) of Lemma 1.1, as further negative values for the independent shocksmay
cancel out this O(n3/2) term, the property we have found with this counterexample can be considered
as a theoretical (and partial) explanation of the erratic behavior of the recursion used for deriving
invertibility in the case of leverage, a phenomenon which has only been derived empirically, as in
Wintenberger (2013). Therefore, in the case of leverage, we can assume the lack of invertibility to be
highly likely.

19We are using actually this property in Section 3 for the proof of invertibility.
20Su�ciently large in absolute value, depending on the chosen initial value.
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Part 2: Proofs of lemmas and propositions for invertibility of EARCH(∞)

Proof of Lemma 2.1. We prove the result recursively for any n ∈ N∗. Fix n > 0 and de�ne
(
Hp

)
≡ “∀k ∈

[
1, p

]
, u

(n)
k = log

∣∣ηt−n+k

∣∣′′ .

According to Eqs. (4) and (5), (H1) is true. Assume
(
Hp

)
and prove

(
Hp+1

)

u
(n)
p+1 = log

∣∣εt−n+p+1

∣∣ −
ω

2
+

p∑

j=1

βjgα,γ

(
u

(n)
p+1−j, εt−n+p+1−j

)

+
∞∑

i=0

βi+1+pgα,γ
(
log |ηt−n−i| , εt−n−i

)

= log
∣∣εt−n+p+1

∣∣ −
ω

2
+

p∑

j=1

βjgα,γ
(
log

∣∣ηt−n+p+1−j

∣∣ , εt−n+p+1−j

)

+
∞∑

i=p+1

βigα,γ
(
log

∣∣ηt−n+p+1−i

∣∣ , εt−n+p+1−i

)
,

by using
(
Hp

)
; then we can conclude by matching the previous equality with (4), so that

(
Hp+1

)
is true.

Proof of Lemma 2.2. We will prove the lemma recursively:

(Hk) : “
∣∣∣u(n)

n − v(n)
n

∣∣∣ ≤ a′′
k .

We have
∣∣∣u(n)

n − v
(n)
n

∣∣∣ ≤
∑∞

i=0 βi+n |δt−n−i| |ηt−n−i|+
∑n−1

j=1 βj

∣∣δt−j

∣∣ exp
(
ξt−j

) ∣∣∣u(n)
n−j − v

(n)
n−j

∣∣∣ ≡ a1, and

also
∣∣∣u(n)

n−j − v
(n)
n−j

∣∣∣ ≤
∑∞

i=0 βi+n−j |δt−n−i| |ηt−n−i| +
∑n−j−1

l=1 βl

∣∣δt−j−l

∣∣ exp
(
ξt−j−l

) ∣∣∣u(n)
n−j−l − v

(n)
n−j−l

∣∣∣,
so that we can write

∣∣∣u(n)
n − v(n)

n

∣∣∣ ≤
∞∑

i=0

βi+n |δt−n−i| |ηt−n−i| +
n−1∑

j=1

+∞∑

i=0

βjβi+n−j

∣∣δt−j

∣∣ exp
(
ξt−j

)
δt−n−i |ηt−n−i|

+
n−2∑

j=1

n−j−1∑

l=1

βjβl

∣∣δt−j−l

∣∣ ∣∣δt−j

∣∣ exp
(
ξt−j−l + ξt−j

) ∣∣∣u(n)
n−j−l − v

(n)
n−j−l

∣∣∣ ≡ a2.

So we have (H1) and (H2), which are true. Assume (Hk) and prove (Hk+1)

ak =
+∞∑

i=0

|δt−n−i| |ηt−n−i|


βi+n +

k−1∑

p=1

∑

i1,...,ip∈A(n)
p

�̂pD̂p exp




p∑

j=1

ξt−̂Sj


 × βi+n−̂Sp




+
∑

i1,...,ik∈A
(n)
k

�̂kD̂k exp




k∑

j=1

ξt−̂Sj




∣∣∣u(n)

n−̂Sk
− v

(n)

n−̂Sk

∣∣∣ .

However,

∣∣∣u(n)

n−̂Sk
− v

(n)

n−̂Sk

∣∣∣ ≤
∞∑

i=0

βi+n−̂Sk
|δt−n−i| |ηt−n−i|+

n−̂Sk−1∑

l=1

βl

∣∣∣δt−̂Sk−l

∣∣∣ exp
(
ξt−̂Sk−l

) ∣∣∣u(n)

n−̂Sk−l
− v

(n)

n−̂Sk−l

∣∣∣ ,
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so that

∑

i1,...,ik∈A
(n)
k

�̂kD̂k exp




k∑

j=1

ξt−̂Sj




∣∣∣u(n)

n−̂Sk
− v

(n)

n−̂Sk

∣∣∣

≤
∑

i1,...,ik∈A(n)
k

Ŝk=n−1

D̂k�̂k exp




k∑

j=1

ξt−̂Sj




∣∣∣u(n)
1 − v

(n)
1

∣∣∣

+
∑

i1,...,ik∈A(n)
k

Ŝk<n−1

D̂k�̂k exp




k∑

j=1

ξt−̂Sj







n−̂Sk−1∑

ik+1=1

βl

∣∣∣δt−̂Sk−ik+1

∣∣∣

exp
(
ξt−̂Sk−ik+1

) ∣∣∣u(n)

n−̂Sk−ik+1
− v

(n)

n−̂Sk−ik+1

∣∣∣
)

+
∑

i1,...,ik∈A(n)
k

Ŝk<n−1

D̂k�̂k exp




k∑

j=1

ξt−̂Sj




( ∞∑

i=0

βi+n−̂Sk
|δt−n−i| |ηt−n−i|

)
.

By using the inequality
∣∣∣u(n)

1 − v
(n)
1

∣∣∣ ≤
∑∞

i=0 βi+1 |δt−n−i| |ηt−n−i|, and by recombining the sums above,

we can see that

∑

i1,...,ik∈A
(n)
k

�̂kD̂k exp




k∑

j=1

ξt−̂Sj




∣∣∣u(n)

n−̂Sk
− v

(n)

n−̂Sk

∣∣∣

≤
∑

i1,...,ik∈A(n)
k

Ŝk<n−1

D̂k�̂k exp




k∑

j=1

ξt−̂Sj







n−̂Sk−1∑

ik+1=1

βl

∣∣∣δt−̂Sk−ik+1

∣∣∣

exp
(
ξt−̂Sk−ik+1

) ∣∣∣u(n)

n−̂Sk−ik+1
− v

(n)

n−̂Sk−ik+1

∣∣∣
)

+
∑

i1,...,ik∈A
(n)
k

D̂k�̂k exp




k∑

j=1

ξt−̂Sj




( ∞∑

i=0

βi+n−̂Sk
|δt−n−i| |ηt−n−i|

)

≤
∑

i1,...,ik∈A(n)
k

Ŝk<n−1

n−̂Sk−1∑

ik+1=1

D̂k�̂kβl

∣∣∣δt−̂Sk−ik+1

∣∣∣ exp




k∑

j=1

ξt−̂Sj
+ ξt−̂Sk−ik+1




∣∣∣u(n)

n−̂Sk−ik+1
− v

(n)

n−̂Sk−ik+1

∣∣∣

+
∞∑

i=0

|δt−n−i| |ηt−n−i|




∑

i1,...,ik∈A
(n)
k

D̂k�̂k exp




k∑

j=1

ξt−̂Sj


 βi+n−̂Sk


 .
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By noticing that

{
i1, . . . , ik ∈ A

(n)
k , ik+1 ∈

[
1, n − Ŝk − 1

]
: Ŝk < n − 1

}
= A

(n)
k+1,

we �nally have the result

∣∣∣u(n)
n − v(n)

n

∣∣∣ ≤ ak ≤ ak+1 ⇒
(
Hk+1

)

is true.

Part 3: EGARCH(p,q) speci�cation

Proof of Lemma 3.1. (1) If we rename yi ≡ δt−i |ηt−i|, one can easily check recursively the positivity of
the βi coe�cients by taking the partial di�erential of log σt with respect to yt , as

log σt =
ω

2
+

∑

i≥1

βiyi ⇒ ∀i
∂ log σt

∂yi
= βi.

We can use this equation recursively

∂ log σt

∂yi
=

p∑

j=1

aj
∂ log σt−j

∂yi
+

q∑

k=1

bk1k=i,

where 1 represents the index function.
(2) A straightforward recursion leads to the βi as a mixture of sums and products of the θi and bi, so

they are non-negative.

Proof of Lemma 3.2. In order to prove this lemma, we present a recursion. Starting with (1 − θ1L)
−1 ×(∑q

i=1 biδt−i |ηt−i|
)
:

(1 − θ1L)
−1 ×

( q∑

i=1

biδt−i |ηt−i|
)

=
+∞∑

l=0

θ l1

q∑

i=1

biδt−l−i

∣∣ηt−l−i

∣∣

=
+∞∑

m=1

θm−1
1




min(q,m)∑

i=1

biθ
1−i
1


 δt−m |ηt−m| .

By takingm = i + l, we can introduce βsup:

+∞∑

m=1

θm−1
1




min(q,m)∑

i=1

biθ
1−i
1


 δt−m |ηt−m| =

+∞∑

m=1

βm−1
sup

(
θ1

βsup

)m−1



min(q,m)∑

i=1

biθ
1−i
1


 δt−m |ηt−m|

=
+∞∑

m=1

βm−1
sup Cmδt−m |ηt−m| ,

where

Cm ≡
(

θ1

βsup

)m−1



min(q,m)∑

i=1

biθ
1−i
1


 ,
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so that

|Cm| ≤ max
1≤m≤q

∣∣∣∣∣

m∑

i=1

biθ
1−i
1

∣∣∣∣∣ .

Consider

(1 − θiL)
−1 ×

(+∞∑

m=1

βm−1
sup Cmδt−m |ηt−m|

)
, and for any other θi, i ≥ 2,

so that

(1 − θiL)
−1 ×

(+∞∑

m=1

βm−1
sup Cmδt−m |ηt−m|

)
=

+∞∑

l=0

θ li

+∞∑

m=1

βm−1
sup Cmδt−l−m

∣∣ηt−l−m

∣∣

=
+∞∑

s=1

βs−1
sup

(
s−1∑

l=0

(
θi

βsup

)l

Cs−l

)
δt−s |ηt−s| .

It follows by assumption that |θi|
βsup

< 1, and by de�nition that |Cm| ≤ max1≤m≤q

∣∣∣
∑m

i=1 biθ
1−i
1

∣∣∣. If we
rede�ne recursively

Cs :=
s−1∑

l=0

(
|θi|
βsup

)l

Cs−l,

it follows that

|Cs| ≤
max1≤m≤q

∣∣∣
∑m

i=1 biθ
1−i
1

∣∣∣
(
1 − |θi|

βsup

) ,

from which it follows that

(1 − θiL)
−1 × (1 − θ1L)

−1 ×

( q∑

i=1

biδt−i |ηt−i|
)

=
+∞∑

s=1

βs−1
sup Csδt−s |ηt−s| .

Therefore, one can easily check from the above recursion that

(1 − θ1L)
−1 × · · · ×

(
1 − θpL

)−1 ×

( q∑

i=1

biδt−i |ηt−i|
)

=
+∞∑

u=1

βu−1
sup Cuδt−u |ηt−u| ,

where

|Cu| ≤
max1≤m≤q

∣∣∣
∑m

i=1 biθ
1−i
1

∣∣∣
∏

p≥i≥2

(
1 − |θi|

βsup

) ≡ C (where Cu is a positive number).

Part 4: Invertibility of EGARCH(p,q)

Proof of Lemma 4.1. We prove this lemma in the case where α ≥ |γ | (the proof is identical for the case
α ≤ − |γ |). We have

Bn =
+∞∑

i=0

β∗iδ∗
t−n−i |ηt−n−i| exp

(+∞∑

l=n

β∗l−n

1 − β∗ δ∗
t−l

∣∣ηt−l

∣∣
)
.
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We know that Xn ≡
∑+∞

l=n
β∗l−n

1−β∗ δ∗
t−l

∣∣ηt−l

∣∣ are L2-variables, as an absolutely convergent sum of L2-

variables (where it is assumed that E
[
η2t

]
= 1) as L2 is a Hilbert space). Furthermore, by using

Chebychev inequality, we obtain

P
(
|Xn| ≥ nν

)
≤

E
[
|Xn|2

]

n2ν
=

E
[
|X1|2

]

n2ν
,

as the Xn are identically distributed. Therefore,
∑

P (|Xn| ≥ nν) < ∞ and, by using the Borel–Cantelli
Lemma, we have with probability one that Xn = O (nν). As this is true ∀ν > 1/2, we also have Xn =
o (nν).

By using the same reasoning with Yn ≡
∑+∞

i=0 β∗iδ∗
t−n−i |ηt−n−i|, we obtain the result.

Proof of Proposition 4.1. As in the previous case, we show the proof forα ≥ |γ | (as the proof is essentially
identical for α ≤ − |γ |). According to condition 1 and by continuity, we know that ∃ε1, ε2 > 0, so that

E

[
δ∗
t |ηt|

1 − β∗

]
+ log

(
β∗ + E

[
δ∗
t |ηt|

])
+ ε1 < −ε2.

We also have inequality (18):

∣∣∣u(n)
n − v(n)

n

∣∣∣

≤ Bn exp

(
n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗

)
β∗n−1 +

n−1∑

p=1

β∗n−1−p
∑

1≤s1<···<sp≤n−1

exp




p∑

j=1

log
(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)




 .

If we note

Zn =

(
β∗n−1 +

∑n−1
p=1 β∗n−1−p

∑
1≤s1<···<sp≤n−1 exp

(∑p
j=1 log

(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)))

exp
(
(n − 1) log

(
β∗ + E

[
δ∗
t |ηt|

])
+ (n − 1)ε1

) ,

we have

∣∣∣u(n)
n − v(n)

n

∣∣∣ ≤ Bn exp

(
n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗ + (n − 1) log

(
β∗ + E

[
δ∗
t |ηt|

])
+ (n − 1)ε1

)
Zn.

It can be shown that Zn goes to zero almost surely, as follows. Let ε > 0 by the Markov inequality

P (Zn > ε) ≤
E

[
β∗n−1 +

∑n−1
p=1 β∗n−1−p

∑
1≤s1<···<sp≤n−1 exp

(∑p
j=1 log

(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
))]

exp
(
(n − 1) log

(
β∗ + E

[
δ∗
t |ηt|

])
+ (n − 1)ε1

)
× ε

.

However,

E


β∗n−1 +

n−1∑

p=1

β∗n−1−p
∑

1≤s1<···<sp≤n−1

exp




p∑

j=1

log
(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)






=
n−1∑

p=0

(
n − 1
p

)
β∗n−1−p

(
E

[
δ∗
t |ηt|

])p
,

where (
n − 1
p

)
=

(n − 1)!(
n − 1 − p

)
!p!

,
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as δ∗
t−sj

∣∣∣ηt−sj

∣∣∣ are L1 and i.i.d. Using Newton’s formula, it can be shown that

E


β∗n−1 +

n−1∑

p=1

β∗n−1−p
∑

1≤s1<···<sp≤n−1

exp




p∑

j=1

log
(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)




 =

(
β∗ + E

[
δ∗
t |ηt|

])n−1
.

Therefore,

P (Zn > ε) ≤
exp (−(n − 1)ε1)

ε
,

and, by using Lemma 1.2, we can show that

Zn
a.s.→

n→∞
0.

Moreover, by LLN,

n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗ = E

[
δ∗
t |ηt|

1 − β∗

]
× n + o (n) .

Therefore,

exp

(
n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗ + n log

(
β∗ + E

[
δ∗
t |ηt|

])
+ nε1

)
= exp (−nε2 + o (n)) .

According to Lemma 4.1, we have

Bn = exp (o(n)) .

Therefore,
∣∣∣u(n)

n − v(n)
n

∣∣∣ ≤ exp (−nε2 + o (n))Zn,
∣∣∣v(n)

n − u(n)
n

∣∣∣ =
∣∣∣v(n)

n − log |ηt|
∣∣∣ a.s.→
n→∞

0,

which proves invertibility of EGARCH(p, q).

Proof of Proposition 4.2. We show the proof for α ≥ |γ | (as the proof is almost identical for α ≤ − |γ |).
The proof of this proposition is also based on inequality (12):
∣∣∣u(n)

n − v(n)
n

∣∣∣

≤ Bn exp

(
n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗

) 
β∗n−1 +

n−1∑

p=1

β∗n−1−p
∑

1≤s1<···<sp≤n−1

exp




p∑

j=1

log
(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)




 .

Each sum,
∑p

j=1 log
(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)
, where 1 ≤ s1 < · · · < sp ≤ n − 1, can be bounded from above by

the sums of the p highest values from the log
(
δ∗
t−sj

∣∣∣ηt−sj

∣∣∣
)
for each realization of the process. Therefore,

using our notation, we can write

∣∣∣u(n)
n − v(n)

n

∣∣∣ ≤ Bn
∑

k∈
{
0, 1

n−1 ,
2

n−1 ,...,1
}

(
n − 1

k(n − 1)

)
exp

(
(n − 1)

(
k.

∧
ES
k

[
log

(
δ∗
t |ηt−|

)]

+
1

n − 1

n−1∑

l=1

δ∗
t−l

∣∣ηt−l

∣∣
1 − β∗ + (1 − k) log

(
β∗)

))
.
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Using Stirling’s formula, we have for k ∈ [0, 1]
(

n − 1
k(n − 1)

)
∼ exp

((
−k log (k) − (k − 1) log (k − 1)

)
(n − 1)

)
∗

1
√
2πk(1 − k)(n − 1)

,

which leads to Condition 2.
However, we also have to prove uniform convergence for all k ∈ [kmin, 1] in order to conclude as

follows:
(i) The convergence following convergence may not be uniform for all k ∈ [0, 1]:

(
n − 1

k(n − 1)

) /(
exp

((
−k log (k) − (k − 1) log (k − 1)

)
(n − 1)

)
∗

1
√
2πk(1 − k)(n − 1)

)
−→1.

However, it is uniform for all intervals of the form k ∈ [kmin, 1], where kmin > 0. Therefore, we can take
kmin > 0 small enough such that all the sum elements for k < kmin are negligible, and use the uniform
convergence for the remaining part.

(ii) k.
∧
ES
k

[
log

(
δ∗
t |ηt−|

)]
(that is, empirical estimation of the expected shortfall times k) should also

converge uniformly for all k ∈ [kmin, 1] toward k.ES
k

[
log

(
δ∗
t |ηt−|

)]
.

The uniform convergence is a consequence of the second theorem of Dini: by LLN, we have the simple

convergence of k.
∧
ES
k

[
log

(
δ∗
t |ηt−|

)]
toward k.ES

k

[
log

(
δ∗
t |ηt−|

)]
for all k ∈ [kmin, 1], k belongs to a

compact set, k �→ k.
∧
ES
k

[
log

(
δ∗
t |ηt−|

)]
are increasing functions for all n, and k �→ kESk [X] =

∫ 1
1−k VaRu (X) du is continuous.
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