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Multi-Horizon Forecast Comparison
Rogier QUAEDVLIEG

Department of Business Economics, Erasmus School of Economics, PO Box 1738, 3000 DR Rotterdam,
The Netherlands (quaedvlieg@ese.eur.nl)

We introduce tests for multi-horizon superior predictive ability (SPA). Rather than comparing forecasts of
different models at multiple horizons individually, we propose to jointly consider all horizons of a forecast
path. We define the concepts of uniform and average SPA. The former entails superior performance at
each individual horizon, while the latter allows inferior performance at some horizons to be compensated
by others. The article illustrates how the tests lead to more coherent conclusions, and how they are
better able to differentiate between models than the single-horizon tests. We provide an extension of
the previously introduced model confidence set to allow for multi-horizon comparison of more than two
models. Simulations demonstrate appropriate size and high power. An illustration of the tests on a large
set of macroeconomic variables demonstrates the empirical benefits of multi-horizon comparison.

KEY WORDS: Forecasting; Long-horizon; Multiple testing; Path forecasts; Superior predictive ability.

1. INTRODUCTION

Forecasts at multiple horizons should rarely be judged in
isolation. The full forecast path plays an important role in
many policy decisions. For instance, in the context of macro-
economic variables such as unemployment and inflation,
policymakers require forecasts at different horizons to make
informed decisions; the user does not only care about the
value many periods from now, but the full intermittent path
the variable takes between now and sometime in the future.
The importance of the path is not restricted to economics, as
evidenced by for instance the large literature on forecasting
climate data. As such, when comparing two or more different
models in terms of their ability to make path forecasts, it is
useful to compare the accuracy of the complete path.

The standard approach is to compare various models at
different horizons independently, potentially leading to inco-
herent conclusions. For example, in a given sample, we might
find that a first model is significantly better at predicting two
and five periods ahead, the second model has significantly
better predictions three periods ahead, while the difference in
forecasting performance is insignificant at all other horizons.
The fact that either model performed worse at a single horizon,
should not necessarily disqualify the model, and neither should
the fact that the difference between the two models is insignifi-
cant at some horizons. Indeed, when we compare performance
at multiple horizons, we implicitly face a multiple testing
problem. As such, in finite samples we are likely to find that a
mis-specified model will outperform even the population model
at one of the many horizons one could consider. Comparing all
horizons jointly guards us against this problem.

We therefore propose a test for multi-horizon superior pre-
dictive ability (SPA). There are at least three reasons why
one might be interested in such a test. First, it entails a more
robust definition of a model’s SPA. Second, jointly considering
multiple horizons allows us to construct a powerful test to
disentangle models. Finally, as stated before, it guards us
against spurious results induced by the multiple testing issues
arising from considering multiple horizons individually.

We introduce two bootstrap-based test statistics, which can
be used to test for two alternative definitions of multi-horizon
SPA. The first statistic considers uniform multi-horizon SPA,
which is defined as a model with lower loss at each individual
horizon. The second statistic is used to test for average multi-
horizon SPA, which allows poor performance at some horizons
to be compensated by superior performance at other horizons.
The first definition is clearly far more stringent, but by properly
controlling the family-wise error rate using bootstrap methods,
equality of the models’ forecast performance may still be
rejected, even if the resulting superior model’s empirical perfor-
mance is inferior at some horizons. Importantly, both uniform
and average multi-horizon SPA, as well as their respective tests,
are defined in such a way that they reduce to the standard
Diebold and Mariano (1995) test when only considering a
single horizon.

In addition to the pairwise tests, we propose a multi-horizon
version of the model confidence set (MCS) of Hansen et al.
(2011), which allows the comparison of more than two models
at once. The multi-horizon MCS contains the set of models
that have the best joint performance across horizons with given
probability. Other multiple-model comparison techniques, such
as those of White (2000) and Hansen (2005) can also easily be
adapted to the multi-horizon framework.

The tests proposed in this article fall into the framework
implicitly defined in Diebold and Mariano (1995), and explic-
itly set out in, among others, Hansen (2005) and Giacomini
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and White (2006). We test for finite-sample multi-horizon
predictive ability; the accuracy of forecasts at estimated values
of parameters. This is in contrast to the literature set out by West
(1996), and greatly expanded on by amongst others Clark and
McCracken (2005, 2012) and Clark and West (2007), whose
aim is to use the forecasts to learn something about population-
level predictive ability; accuracy of forecasts at the population
value of the parameters. Clark and McCracken (2013) provided
an excellent overview of the literature. The asymptotic theory
in this finite-sample setting requires non-vanishing estimation
error, and as such a limitation of our tests is that they do
not accommodate forecasts derived from models with recur-
sively estimated parameters. We do permit the common rolling-
window forecasting scheme, and a situation where parameters
are estimated once at the beginning of the forecasting period.

In practice, the proposed tests should be viewed as applica-
ble to a spectrum of potential hypotheses. On the one extreme,
a potential user may be interested in just a single horizon, in
which case the proposed tests reduce to the standard Diebold
and Mariano (1995) test. On the other extreme, the test can
be used to show that a model has uniform SPA across all
horizons that can reasonably be forecasted, which is strong
evidence in favor of a specification. However, in many cases,
users may have different models for different ranges, that is,
short-, mid-, and long-term forecasts. In such a scenario the
tests may equally be applied to subsets of horizons.

There is a large empirical literature that reports forecasts at
multiple horizons. Typically, these forecasts are evaluated and
compared based on tests applied to each horizon separately.
Exceptions are the work of Patton and Timmermann (2012),
who propose a test for multi-horizon forecast optimality, and
Jordà and Marcellino (2010), who call it path forecast evalua-
tion. Their tests regard internal consistency of a single model,
rather than comparing the performance of multiple models
across horizons. In the context of model comparison, Capistrán
(2006) introduces an unweighted version of the average SPA
test. Subsequent research by Martinez (2017) provides a gen-
eralization of the unweighted average SPA test in a GFESM
context (Clements and Hendry 1993), explicitly allowing for
differences in covariance dynamics of the various models, while
we target the loss-differential directly as a primitive. Finally,
the literature on vector forecasts, concerning multiple variables
rather than multiple horizons, faces the similar problem of fore-
cast comparison in the presence of correlated forecast errors
(e.g., Clements and Hendry 1993; Komunjer and Owyang
2012).

We analyze the finite sample properties of the tests in
simulation studies. We consider the two pairwise tests and
the multi-horizon MCS. We demonstrate that the tests have
appropriate size and good power, even in moderately sized
samples. In addition, the simulations are used to investigate
the conditions under which the multi-horizon comparisons will
lead to more frequent rejection than a test applied to a subset
of the same paths. Naturally, this is determined by the relative
increases in average loss differentials and the variance of the
loss differential as a function of horizon.

As an empirical illustration, we revisit Marcellino, Stock,
and Watson (2006), who investigate the relative merits of
iterated and direct long-horizon forecasts. We test for both

uniform and average SPA using 2–24 month horizon forecasts
on their dataset of 170 macroeconomic time-series. By jointly
considering all horizons, we find stronger evidence of iterated
forecasts outperforming direct forecasts. When looking at indi-
vidual series, we find that many of the incoherent results across
horizons can be attributed to the multiple testing issues and lack
of power.

We proceed as follows. Section 2 sets out our theoretical
framework and introduces the tests. Section 3 provides simula-
tion evidence of size and power of the tests. Section 4 provides
the empirical illustration, and finally Section 5 concludes.

2. SETUP

In this section, we discuss the general setup. We consider
the problem of comparing forecasts for potentially multivariate
time series yt over the time-period t = 1, . . . , T . We are
interested in point forecasts ŷh

i,t at multiple horizons, h =
1, . . . , H. The forecasts may come from econometric models,
professional forecasters, or any other alternative. Whenever the

forecasts are derived from models, the forecasts ŷh
i,t = ŷh

i,t(θ̂
h
i,t)

are based on estimated parameters θ̂ . We have two or more
competing sets of forecasts, which may be based on different
information sets and they may be based on nested or non-nested
models. We will use the term “model” loosely to refer to all
potential sources of forecasts.

The main contribution of this paper is to not “only” consider
the one-step ahead, or the h-step ahead forecast in isolation,
but to jointly compare the quality of the full path of 1 to H-
step ahead forecasts. That is, for model i = 1, . . . , M, we have
forecasts ŷi,t = [ŷ1

i,t, . . . , ŷH
i,t]′, where ŷh

i,t is model i’s forecast of
yt based on the information set Ft−h. We define a general loss
function Li,t = L(yt, ŷi,t), which maps the forecast errors into

an H-dimensional vector, with elements Lh
i,t = L(yt, ŷh

i,t).
For any loss function, and any two sets of forecasts, we

compare models in terms of their loss differential

dij,t ≡ Li,t − Lj,t, (1)

which is an H-dimensional vector, with elements dh
ij,t. Our

hypotheses are defined in terms of the expected loss differen-
tials, E(dij,t) and as such we focus on the properties of dij,t. In
particular, we make the following assumption.

Assumption 1. The vector of loss differences dij,t is L2+δ

near epoch dependent (NED) on {Vt} with NED coefficients
vk of size −2(r − 1)/(r − 2), where {Vt} is α-mixing of size
−(2 + δ)(r + δ)/(r − 2), for some r > 2 and 0 < δ ≤ 2, and
var(dh

ij,t) > 0 for all h = 1, . . . , H.

The assumption allows for considerable heterogeneity in
the mean E(dij,t) = μij,t, as well as dependence. However,

our object of interest remains μij ≡ limT→∞ 1
T

∑T
t=1 μij,t,

although conditional tests in the spirit of Giacomini and White
(2006) could be developed. We make the following assumption
on the amount of time-variation, where � = o(T1/2) is the
block-length parameter of the bootstrap, defined below in
Section 2.1.2.
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Assumption 2. 1
T

∑T
t=1 |μh

ij,t − μh
ij|2+δ = o(�−1−δ/2) for

some 0 < δ ≤ 2 and all h = 1, . . . , H.

Assumption 2 limits the potential degree of heterogeneity,
but still allows for, for instance, a case with a finite number of
properly behaved breaks in the mean. See Gonçalves and White
(2002) for details.

The assumptions are needed to ensure that population
moments of dij,t are well defined, and to justify the bootstrap
techniques introduced in Section 2.1.2. Under the stated
assumption a central limit theorem applies (e.g., De Jong 1997;
Gonçalves and White 2002), such that

√
T(d̄ij − μij) →d N(0, �ij), (2)

where �ij ≡ avar(
√

T(d̄ij − μij)).
Note that μij,t is implicitly defined as a function of estimated

parameters. Indeed, our focus is on finite-sample predictive
ability. This contrasts with the population-level framework, first
analyzed by West (1996), where the hypotheses are defined in
terms of expected loss at the population values of the parame-
ters. Construction of such tests requires a different asymptotic
framework, extensively discussed in West (2006).

While the finite-sample predictive ability hypothesis is prac-
tically appealing, seeing as we typically only have the estimated
parameters, it does come with some restrictions. In particular,
the framework permits parameters that are estimated on a
(bounded) rolling window, or just once (fixed scheme), but it
prohibits the use of forecasts generated by recursive parame-
ter estimates, or (asymptotically) expanding windows. It can
however handle both nested and nonnested models, as non-
vanishing estimation error prevents the singularity that may
occur in nested models when parameters are at their probability
limits. See Giacomini and White (2006) for a broad discussion
of this framework.

The assumption on dij,t is sufficient for validity of one of
the most common tests for comparing two models’ forecasting
performance at a single horizon h, the Diebold and Mariano
(1995) test. They test the null hypothesis that

HDM : μh
ij = 0, (3)

using a standard t-test:

thDM,ij =
√

Td̄h
ij

ω̂h
ij

, (4)

where d̄h
ij = 1

T

∑
dh

ij,t, and ωh
ij = �

1/2
ij,hh, the square root of the

diagonal element corresponding to the hth horizon. In such a
setting, taking into account the heterogeneity, the variance can
be estimated using a HAC-type estimator, as in for instance
Giacomini and White (2006) or, following Hansen et al. (2011),
it may be obtained using bootstrap methods.

2.1. Multi-Horizon Hypotheses

The Diebold and Mariano (1995) test can be used to com-
pare model performance at each horizon individually. This
can lead to a number of different conclusions. In an ideal
situation this procedure finds significant evidence that a single

Figure 1. Diebold–Mariano tests at different horizons for earnings
of production workers.

model performs best at each horizon, or at the very least, not
significantly worse than the other model. Another potential
outcome that tells a consistent story, is that one model works
well for short horizons, while the other model performs better at
longer horizons. However, we may also come across situations
in which the individual tests do not lead to coherent results.
For instance, we may encounter a situation in which model i
performs better than model j at most horizons, except for two or
three nonconsecutive horizons. This lack of coherency is most
likely due to simple sampling error, which may cause even the
population model to be beaten by a mis-specified model at some
horizons.

To illustrate such a situation, consider Figure 1, which
presents a preview of the empirical analysis in Section 4.
We plot the Diebold–Mariano statistics over horizons 2–24
of the mean square forecast error comparison between direct
and iterated autoregressive forecasts for a series of earnings of
production workers. The statistic at the majority of horizons is
negative indicating that direct forecasts outperform the iterated
ones. However, all but six of the statistics are individually
insignificant, and out of the insignificant ones, six have a
positive statistic. Similar results can be found all throughout
the forecasting literature.

The question arises whether this picture may provide joint
evidence to conclude that either model significantly outper-
forms across all horizons. The negative point estimates may
simply be due to sampling error, and the insignificance of the
remaining horizons may potentially be attributed to lack of
power. Alternatively, perhaps we can at least find statistical
evidence for the claim that the average loss across horizons is
either positive or negative.

We therefore propose the notion of multi-horizon SPA. The
most natural, and strongest, notion is that a superior model
should have better forecasts at each individual horizon. To that
effect, define

μ
(Unif)
ij = min

h
μh

ij. (5)

We refer to a situation with μ
(Unif)
ij > 0 as uniform superior

predictive ability (uSPA) of model j.
The definition of uSPA is strict, and we may often fail

to find evidence for such relative forecasting performance. A
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milder definition of multi-horizon SPA is average superior
predictive ability (aSPA). Here, we compare models based on
their weighted average loss difference

μ
(Avg)
ij = w′μij =

H∑
h=1

whμ
h
ij, (6)

with weights w = [w1, . . . , wH]′ summing to one. Obvious
candidates for w are equal-weighted or weights decaying in
horizon. Note that we take the average loss, which is distinct
from the loss of the average, which is just one aspect of the
forecast path.

The concepts of uniform and average SPA have clear links
to the concepts of first- and second-order forecast dominance,
respectively, and the tests in the next section also bear resem-
blance to tests for stochastic dominance (e.g., Linton, Maa-
soumi, and Whang 2005; Linton, Song, and Whang 2010). Sim-
ilar to those concepts, uSPA implies aSPA, while the reverse is
not necessarily true. We may be able to determine a ranking
based on aSPA, even if uSPA fails to do so. However, aSPA
requires the user to take a stand on the relative importance of
under-performance at one horizon against out-performance at
another. More generally, the tests are closely related to work on
multivariate inequality tests (e.g., Bartholomew 1961; Wolak
1987). In particular, Patton and Timmermann (2010) proposed
a solution similar to our uSPA test in the context of testing for
monotonicity in asset pricing relationships.

A couple of remarks need to be made regarding testing mul-
tiple horizons jointly. First, increasing the number of horizons
will not always increase our ability to differentiate models. The
variance of loss differences typically increases with horizon,
and as such adding an additional horizon may actually decrease
power. Moreover, forecasts beyond a certain limiting horizon
may become uninformative (Breitung and Knüppel 2017).
Figure 1 shows, however, that the single-horizon statistics
are hardly affected by increasing variance, as the mean loss
differential also tends to increase in horizon. The relative speed
of accumulation across horizons will play an important role in
the power of multi-horizon tests, which will be studied in the
simulations.

Second, since forecast errors tend to be correlated across
both horizon and time, the increase of information from con-
sidering, say, two horizons rather than one, does not necessarily
provide a similar increase in information as doubling the out-
of-sample period length. The tests introduced below should
therefore mostly be interpreted as a guard against the implicit
multiple testing issue, with the increase of power through H
times as many loss observations being a secondary benefit.

2.1.1. Choice of Test Statistic. First, we consider a test
on the minimum loss differential μ

(Unif)
ij . If model j is better

than model i, the minimum loss difference over all h should be
greater than zero. Here we test the null hypothesis

H0,uSPA : μ
(Unif)
ij ≤ 0, (7)

against the alternative that μ
(Unif)
ij > 0. We consider one-sided

hypotheses, as models i and j can easily be switched. To test
this hypothesis, we simply consider the minimum over all the
individual Diebold–Mariano statistics thDM

tuSPA,ij = min
h

√
Td̄h

ij

ω̂h
ij

. (8)

For validity of our procedures ω̂h
ij can be estimated using any

consistent HAC-type estimator. We use the quadratic spectral
kernel (Andrews 1991) for reasons elaborated on below, but the
more standard Bartlett kernel of Newey and West (1987) is also
consistent.

Note that we take the minimum of the studentized test statis-
tic, rather than studentizing the minimum. The main advantage
of this is that we only require estimates of the diagonal of
the covariance matrix of d̄ij rather than the full matrix. This
is of particular importance when H grows too large to obtain
a sensible estimate of the covariance matrix. The downside
is that the statistic will be nonpivotal, as its distribution does
depend on the full covariance matrix, which makes �ij a nui-
sance parameter. As discussed before, this nuisance parameter
problem is handled by the bootstrap methods, which implicitly
deal with these problems. This feature has previously been
used by White (2000), Hansen (2005), Clark and McCracken
(2005), and Hansen et al. (2011). For a related discussion on
the relative merits of nonquadratic statistics, see Hansen (2005)
in the context of loss differences between a benchmark model
and many alternative competing models.

Next, we consider a simple test for average SPA, based on
the weighted-average loss differential. The associated null is

H0,aSPA : μ
(Avg)
ij ≤ 0, (9)

with alternative μ
(Avg)
ij > 0. A simple studentized statistic takes

the form

taSPA,ij =
√

Td̄ij

ζ̂ij
, (10)

where d̄ij = w′d̄ij. Similar to the uSPA statistic, we avoid
estimating the full covariance matrix �ij, and choose to esti-
mate ζij ≡ √

w′�ijw directly based on w′dij,t using the HAC
estimator.

Throughout the article we will simply use an equal weighted
average with wh = 1/H, for all h. Different weights would
correspond to different utility functions of the forecaster. Alter-
natively, one could use “efficient” weights to minimize ζij by
setting the weights for each horizon inversely proportional
to their variance (ωh

ij)
2, or more generally the inverse of an

estimate of the full covariance matrix of dij,t, �ij. Weighting
may be of particular importance in the scenario where one
makes aggregate h-period ahead forecasts, that is,

∑H
h=1 Yt+h,

which results in clear scale differences that should be inversely
weighted.

Note that the aSPA test is simply a Diebold–Mariano test on
the weighted average loss-series, w′dij,t. Moreover, the test for
uSPA is in fact a special case of aSPA, with wh = 1 for h equal
to the “minimum” horizon, and zero otherwise. Typically, the
weighted averages will converge to a standard normal distri-
bution, such that standard critical values may be used. Special
choices of weights, such as those amounting to quantiles of the
distribution will require nonstandard critical values. Moreover,
critical values obtained via bootstrap techniques may lead to
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better finite sample properties in the equal-weighted case as
well, and as a result we suggest obtaining bootstrapped critical
values regardless of the choice of weights.

2.1.2. Bootstrap Implementation. The minimum over
multiple t-statistics will not follow a student distribution, and
is dependent on the number of statistics H. Rather than the
standard 95% one-sided critical value of 1.645, the appropriate
critical value will be lower and may actually be negative for
large H. As a result, depending on the degree of sampling
variation, observing a negative statistic at any of the horizons
may not be sufficient evidence to stop us from rejecting the null
in favor of uSPA, and shows the need for appropriate multiple
testing techniques.

We obtain the distribution of the statistics under the null
using bootstrap techniques. The chosen method needs to take
into account the dependence across horizons and the likely
serial correlation in forecast errors. Throughout the paper we
will use the moving block bootstrap of Künsch (1989) and
Liu and Singh (1992). In the moving block bootstrap (MBB),
a pseudo time-series of length T is generated by means of
randomly drawn blocks of length � from the original data.
Assume for simplicity that T = �K. Let I1, . . . , IK be iid
random variables uniformly distributed on {1, . . . , T − � + 1},
and define the array τt ≡ {I1+1, . . . , I1+�, . . . , IK +1, . . . , IK +
�}. The pseudo time-series is therefore db

ij,t = dij,τt , with

elements dhb
ij,t.

By computing either of the test statistics on many MBB
resamples, we approximate the distribution of the original
statistics under the null. Validity of the bootstrap for studentized
statistics requires careful choice of the variance estimators
of both the original statistic and the bootstrapped statistics.
Regarding the original statistic, for first-order validity, the
variance estimator merely needs to be consistent, which is true
for most HAC-type estimators. But as Götze and Künsch (1996)
noted, for asymptotic refinements the kernel weights need to be
chosen more carefully. In particular, triangular weights should
be avoided in favor of rectangular or quadratic weights, which
motivates our choice of the quadratic spectral kernel.

For the bootstrapped statistics, the appropriate estimator
differs from both the HAC-estimator above and the closed-
form expression, which is known for the MBB (Künsch 1989).
Instead, Götze and Künsch (1996) and Gonçalves and White
(2004) demonstrate the validity of the block bootstrap for
studentized statistics using the “natural” estimator, which uses
the fact that each block’s means are conditionally iid

(ω̂hb
ij )2 ≡ 1

K

K∑
k=1

⎡⎣1

�

(
�∑

t=1

dhb
ij,(k−1)�+t − d̄hb

ij

)2⎤⎦ , (11)

where d̄hb
ij = 1

T

∑T
t=1 dhb

ij,t.
Based on the above, we summarize how to obtain the critical

values of the test for uSPA and aSPA under the null:

Algorithm 1 (Multi-horizon SPA bootstrap).
For b = 1, . . . , B:

1. Resample dij,t using a MBB with block length �, to obtain
db

ij,t, with elements dhb
ij,t.

2. uSPA: Compute d̄hb
ij = 1

T

∑T
t=1 dhb

ij,t for each h.

uSPA: Compute ω̂hb
ij using (11) applied to dhb

ij,t for each h.
uSPA: Compute the uSPA statistic:

tbuSPA,ij = minh[
√

T(d̄hb
ij − d̄h

ij)/ω̂
hb
ij ]

aSPA: Compute d̄b
ij = 1

T

∑T
t=1 w′db

ij,t.

aSPA: Compute ζ̂ b
ij using (11) applied to w′db

ij,t.
aSPA: Compute the aSPA statistic:

tbaSPA,ij = √
T(d̄b

ij − d̄ij)/ζ̂
b
ij .

Finally, obtain an appropriate critical value cα
•SPA,ij as the α-

quantile of the bootstrap distribution of either of the two tb•SPA,ij.
Rejection occurs if t•SPA,ij > cα

•SPA,ij. Alternatively, a p-value

may be computed as p ≡ 1
B

∑B
b=1 I{t•SPA,ij<tb•SPA,ij}.

The following theorem provides the foundation for the
validity of the bootstrap algorithm for both the test for uSPA
and aSPA.

Theorem 1 (Bootstrap validity studentized statistics). Let

Dij ≡ diag(ω1
ij, . . . , ωH

ij ) and D̂ij, D̂
b
ij analogously defined using

ω̂h
ij and ω̂hb

ij . Let Assumption 1 hold, and moreover, assume that

�T ≡ �, �T → ∞ and �T = o(T1/2), then

sup
x∈RH

∣∣∣Pb
[√

T(D̂
b
ij)

−1(d̄
b
ij − d̄ij) ≤ x

]
−P

[√
TD̂

−1
ij (d̄ij − μij) ≤ x

]∣∣∣ →p 0, (12)

where Pb denotes the bootstrap probability measure.

The proof is provided in Appendix A and mostly follows from
the results of Gonçalves and White (2004), who prove validity
of the MBB for Wald statistics under similar assumptions. From
Theorem 1 we obtain the following corollary.

Corollary 1. Let the assumptions from Theorem 1 hold.
Then,

sup
z∈R

∣∣∣∣∣Pb

[
min

h

√
T

d̄hb
ij − d̄h

ij

ω̂hb
ij

≤ z

]

−P

[
min

h

√
T

d̄h
ij − μij

ω̂h
ij

≤ z

]∣∣∣∣∣ →p 0, (13)

and

sup
z∈R

∣∣∣∣∣∣Pb

⎡⎣√
T

w′d̄b
ij − w′d̄ij

ζ̂ b
ij

≤ z

⎤⎦
−P

[√
T

w′d̄ij − w′μij

ζ̂ij
≤ z

]∣∣∣∣∣ →p 0. (14)

The corollary demonstrates that the bootstrap may be used
to obtain the critical values for both the uSPA and aSPA, test
statistics. It follows directly from Theorem 1 and the continuous
mapping theorem combined with the fact that the average and
minimum are smooth functions of the elements of the vector
dij,t. Weighted averages are obviously smooth functions and, as
shown in Proposition 2.2 of White (2000), the minimum of a
vector of differences is a continuous function of the elements
of the vector.
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2.2. The Multi-Horizon Model Confidence Set

The two tests introduced in the previous section can only
be used for a pairwise comparison of models. In this section,
we extend this to a general M-dimensional set of models M,
by adapting the MCS approach of Hansen, Lunde, and Nason
(2011) to allow for joint multi-horizon testing. They propose
an algorithm that selects a subset of M that contains the set
of best models with a given probability, which we denote α̃.
The standard MCS can broadly be interpreted as a sequential
Diebold–Mariano test, and as such, it readily extends to the case
with either the tuSPA,ij or taSPA,ij statistics.

For the multi-horizon MCS, analogous to Hansen et al.
(2011), we define the MCS as the subset of models for which
we find no statistical support to differentiate them

M∗
uSPA ≡ {i ∈ M0 : min

h
μh

ij ≤ 0, ∀j ∈ M0}, (15)

M∗
aSPA ≡ {i ∈ M0 : w′d̄ij ≤ 0, ∀j ∈ M0}. (16)

The associated null hypotheses are

HM,uSPA : min
h

μh
ij ≤ 0, for all i, j ∈ M, (17)

HM,aSPA : w′d̄ij ≤ 0, for all i, j ∈ M (18)

with M ⊆ M0.
The multi-horizon MCS, based on either uSPA or aSPA, is

obtained sequentially as

1. Set M = M0.
2. Test HM,•SPA using an equivalence test at level α̃.
3. If HM,•SPA is not rejected, define M̂•SPA,1−α̃ = M.

If the null is rejected, use the elimination rule to remove a
model from M, and go back to Step 2.

The equivalence test has to be adapted to the multi-horizon
setting. Hansen et al. (2011) proposed the maximum of all
pairwise tDM,ij statistics to test for equivalence, but since the
critical value of the t•SPA,ij statistics are not necessarily the
same for all pairs {i, j}, we cannot simply consider the maxi-
mum of the t•SPA,ij. Due to the fact that the critical values can be
both positive and negative, we instead consider the maximum
of the centered statistics maxi,j∈M[t•SPA,ij − cα

•SPA,ij]. To obtain
the distribution of this maximum statistic, we require the use
of a double bootstrap. The computational cost is therefore
relatively high, but the multi-horizon MCS remains feasible as
it merely involves bootstrapping studentized means, without re-
estimation of models.

Algorithm 2 (Multi-horizon MCS bootstrap).

1. For each pair {i, j} ∈ M, compute the statistic t•SPA,ij. Apply
Algorithm 1, with a common set of indices, τt, for all pairs,
to obtain estimates of the associated critical values cα

•SPA,ij.

2. Define tMax,•SPA ≡ maxi,j∈M
[
t•SPA,ij − cα

•SPA,ij

]
, that is, the

test statistic furthest from its critical value.
3. For each of the bootstrap samples db

ij,t, b = 1, . . . , B,
obtained in Step 1:

(a) For each pair {i, j} ∈ M, apply Algorithm 1 to the
bootstrap sample db

ij,t directly, to obtain cαb
•SPA,ij.

(b) Compute the bootstrapped

tbMax,•SPA ≡ maxi,j∈M
[
tb•SPA,ij − cαb

•SPA,ij

]
.

4. Obtain the appropriate critical value as the α̃-quantile of
the bootstrap distribution tbMax,•SPA, or define the p-value as

p ≡ 1
B

∑B
b=1 I{tMax,•SPA<tbMax,•SPA}.

The combination of equivalence test and elimination rule
adhere to the definition of coherency of Hansen et al. (2011).
Algorithm 2 is a standard application of the double bootstrap,
and therefore we conjecture validity follows by extension of
Theorem 1 and validity of the bootstrap in the original MCS of
Hansen et al. (2011, Appendix 1.1).

To obtain reasonable p-values we follow Hansen et al.
(2011) in imposing that a p-value for a model cannot be
lower than any previously eliminated model, and follow the
convention that the last remaining model obtains a p-value
of one. Also, note that the level of the critical values of the
pairwise tests, α, and the one for the MCS α̃, may differ.
In large samples, the choice of α is of little importance as
all t•SPA,ij are approximately normally distributed with unit
variance. However, in small samples, the choice of α may
impact the ordering of the different models.

3. SIMULATIONS

In this section, we report the results of Monte Carlo exper-
iments to demonstrate appropriate size and good power of
the single tests, as well as desirable properties of the multi-
horizon MCS. Throughout the remainder of the paper, we set
the block length to � = 3, and we use B = 999 bootstrap
resamples. All results reported in this paper are based on
programs written in Ox version 7.0 (Doornik 2012). Ox and
Matlab code detailing the implementation of the various tests,
simulations and empirical results, is available on Quaedvlieg’s
website.

3.1. Data-Generating Process

First, we describe how we generate “losses” of a given
model i. Our design closely resembles that of the simulations
in Hansen et al. (2011), where losses are simulated directly,
rather than obtained indirectly through the forecasting perfor-
mance of various models on generated data. This allows us to
easily increase the number of models, to control their relative
performance directly, and to impose the notions of uniform and
average SPA. However, in contrast to Hansen et al. (2011), who
simulate one-step-ahead losses, we need to simulate forecast-
path losses, which requires a certain dependence structure. We
calibrate this dependence to that of the loss differential between
an AR(1) and AR(2) when the true model is the latter.

We consider simulation set-ups with two and ten models.
For the 10-model setup, the average loss of each model is
parameterized by an H-dimensional vector θ , which governs
the loss differentials. We will consider two different definitions
pertaining to the uSPA and aSPA below. Each model i has
average loss equal to θ i = (i−1)

9 θ , with i = 1, . . . , 10, and
therefore μij = θ i − θ j. For the two-model setting we will only
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consider θ1 and θ2, such that the population difference between
the models equals μ12 = θ/9.

The elements of θ = [θ1, . . . , θh]′, determine how loss
varies across horizons. A misspecified model is expected to
lead to greater divergence at longer horizons, and as such, we
assume loss is increasing in horizon. We consider two different
definitions to highlight the tests for uSPA and aSPA. First, we
set

θh(Unif) = (1 + φ
√

h − 1)λ/
√

T . (19)

The loss differential is nonnegative at all horizons, implying
that the superior model has both uniform and average superior
predictive ability. λ governs the size of the loss-differential,
while φ governs how fast the average loss increases as a
function of horizon. When φ = 0 the loss is equal at all
horizons, while for φ > 0 loss is increasing in horizon.

Next, we set

θh(NonUnif) =
{

−λ/
√

T if h = 1,

c(1 + φ
√

h − 1)λ/
√

T if h > 1,
(20)

with c = 1+2/
∑H

h=2(1+φ
√

h − 1), such that
∑H

h=1θ
h(NonUnif)

= ∑H
h=1 θh(Unif). We impose nonuniformity through the

first horizon, to ensure that the single negative differential
is included in all multi-horizon tests. Note that under this
definition, the first model does have aSPA for H > 1, but no
uSPA at any horizon.

We generate the losses as follows

Li,t ≡ θ i + Yi,t

Yi,t = � ◦ Yi,t−1 + �1/2εt,
(21)

where εt ∼ iidN(0, I) and ◦ denotes the Hadamard product. The
losses are serially correlated through � and correlated across
horizons through �. While for h = 1, a case can be made that
forecast errors will be uncorrelated over time if the model is
well-specified, long horizon forecasts are likely to be strongly
autocorrelated, even for a perfectly specified model. We set the
first-order autocorrelation to �h = 0.2

√
h − 1, which ranges

between 0 for h = 1 and 0.87 for h = 20.
The forecast errors at different horizons are not independent.

First, we define the covariance structure across horizons, at a
single point in time. Since most models will converge to the
unconditional mean when h becomes large, the correlations
should be close to one for adjacent horizons when h is large,
and smaller for short-horizons. We define the correlation matrix
R, with elements ρg,h

ρg,h ={
1 if g = h,

exp(−0.4 + 0.025 max(g, h) − 0.125|g − h|) if g �= h.

(22)

Our simulations will use H = 20, so the corner points of
the correlation matrix are ρ1,2 = 0.60, ρ1,20 = 0.10, and
ρ19,20 = 0.95. Next, the variance should be increasing in
horizon. For simplicity, we set it to σh = 1 + ψ

√
h − 1.

The variance plays a crucial role in the multi-horizon tests.
If the variance is increasing too quickly, adding additional

horizons may actually decrease the power of the test, rather
than increasing it. We combine the variance and correlation to
� = diag(σ )R diag(σ ).

Note that in our simulation set-up cov(Lh
i,t, Lg

j,t) = 0, for all
models i and j and all horizons g and h. A positive correlation,
holding individual variances fixed, would decrease the variance
of the loss-difference and make it easier to differentiate models.
A negative correlation would conversely increase the variance
of the difference, but is unlikely to occur in this particular
setting. The results below can thus be interpreted as a lower
bound.

3.2. Pairwise Tests

In this section we investigate the properties of tests for the
comparison of two models. The main goals of this section are
to analyze the power and size of the newly introduced tests
based on tuSPA and taSPA. We report results over S = 10,000
simulations, and vary the parameters of the DGP. We take
three sample sizes T = 250, 500, 1000. To investigate the
trade-off of adding additional horizons, we analyze the effect
of the parameters that govern how average loss (φ) and its
variance (ψ) depend on horizon h. We set φ = 0, 1, 2 and
ψ = 0, 0.125, 0.25. The parameter that governs the magnitude
of the loss differential is set to λ = 0, 5, 10, 20, 40. Throughout,
we consider one-sided tests at the 5% level, that is, we test
whether model 1 outperforms model 2 at multiple individual
horizons, in uSPA, or in aSPA. We report results for different
horizons H = 1, 5, 10, and 20. The DM test uses that specific
horizon only, while the uniform and average SPA tests use all
horizons up to and including H.

We start by establishing appropriate size and good power of
the three tests in Table 1. We vary T and λ, and keep φ = 1 and
ψ = 0.125 fixed at their middle levels. We consider both loss
differentials θ (Unif) and θ (NonUnif), referred to as uniform and
nonuniform alternative, displayed in the top and bottom panel,
respectively.

First consider the top panel, which is based on θ (Unif). When
λ = 0, we are under the null, as the average loss of the two
models is identical. We see that all three tests have size close
to the nominal 5%, irrespective of horizon. When λ > 0, the
loss differential at each horizon is positive. For the standard
Diebold–Mariano test, we see that power is increasing in λ,
while the influence of the sample size T is minimal. It is evident
that the horizon also plays a significant role in the power of the
test. Given our choice of φ, the loss differential is increasing in
h, which leads to higher power. On the other hand, the variance
of the loss differential is also increasing in h, decreasing the
ability to differentiate models. In this case, this results in the
highest power at h = 5 for the single-horizon test, with slightly
lower power for longer horizons.

Under the alternative, in the top panel, model 1 has both
uniform and average superior predictive ability, and as such
all tests should reject. For H = 1, all three tests are identical,
and the slight differences in rejection frequencies are simulation
noise. For H = 5 and upward, all tests are different. The tests
for uSPA and aSPA use the loss-differentials of all horizons,
which results in increasing rejection frequencies in H. In line
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Table 1. Univariate simulation results: size and power

Diebold–Mariano Test Test for uSPA Test for aSPA

H 1 5 10 20 1 5 10 20 1 5 10 20

T λ Uniform alternative

250

0 0.054 0.052 0.053 0.054 0.053 0.054 0.054 0.054 0.053 0.050 0.051 0.052
5 0.118 0.199 0.185 0.164 0.115 0.198 0.221 0.239 0.113 0.217 0.251 0.258

10 0.203 0.478 0.440 0.356 0.199 0.425 0.504 0.548 0.199 0.526 0.612 0.616
20 0.478 0.933 0.900 0.804 0.468 0.808 0.890 0.929 0.467 0.961 0.984 0.988
40 0.934 1.000 1.000 1.000 0.930 0.994 0.998 0.999 0.929 1.000 1.000 1.000

500

0 0.051 0.051 0.053 0.051 0.049 0.052 0.052 0.052 0.050 0.051 0.050 0.052
5 0.110 0.203 0.180 0.162 0.109 0.191 0.221 0.241 0.109 0.224 0.254 0.259

10 0.197 0.486 0.441 0.355 0.195 0.422 0.500 0.546 0.195 0.535 0.617 0.619
20 0.478 0.941 0.909 0.804 0.476 0.814 0.891 0.933 0.474 0.966 0.989 0.989
40 0.936 1.000 1.000 1.000 0.934 0.994 0.997 0.999 0.933 1.000 1.000 1.000

1000

0 0.052 0.056 0.049 0.051 0.051 0.055 0.051 0.054 0.051 0.053 0.054 0.054
5 0.105 0.189 0.189 0.157 0.104 0.191 0.215 0.227 0.106 0.217 0.250 0.253

10 0.195 0.467 0.444 0.347 0.196 0.421 0.499 0.543 0.197 0.532 0.613 0.618
20 0.471 0.932 0.906 0.802 0.469 0.808 0.893 0.931 0.468 0.966 0.987 0.988
40 0.933 1.000 1.000 0.999 0.934 0.994 0.998 1.000 0.933 1.000 1.000 1.000

Nonuniform alternative

250

0 0.056 0.056 0.054 0.055 0.056 0.054 0.058 0.055 0.055 0.055 0.053 0.056
5 0.023 0.213 0.199 0.167 0.022 0.099 0.134 0.166 0.022 0.183 0.243 0.254

10 0.009 0.500 0.463 0.363 0.009 0.073 0.133 0.200 0.009 0.426 0.581 0.616
20 0.001 0.943 0.918 0.819 0.001 0.013 0.031 0.064 0.001 0.890 0.978 0.985
40 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 1.000 1.000 1.000

500

0 0.053 0.052 0.053 0.052 0.052 0.052 0.054 0.053 0.053 0.052 0.052 0.052
5 0.022 0.210 0.204 0.164 0.022 0.099 0.138 0.166 0.022 0.183 0.242 0.254

10 0.009 0.487 0.450 0.366 0.010 0.069 0.127 0.183 0.009 0.419 0.577 0.614
20 0.001 0.947 0.918 0.828 0.001 0.013 0.030 0.066 0.001 0.901 0.981 0.989
40 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 1.000 1.000 1.000

1000

0 0.049 0.051 0.053 0.053 0.048 0.053 0.054 0.056 0.050 0.051 0.052 0.054
5 0.022 0.211 0.198 0.159 0.021 0.095 0.134 0.159 0.021 0.184 0.242 0.253

10 0.008 0.494 0.459 0.354 0.008 0.071 0.130 0.193 0.008 0.429 0.585 0.618
20 0.001 0.942 0.922 0.820 0.001 0.015 0.036 0.071 0.001 0.895 0.981 0.988
40 0.000 1.000 1.000 1.000 0.000 0.000 0.001 0.001 0.000 1.000 1.000 1.000

NOTES: This table provides rejection frequencies over S = 10,000 simulations according to the DGP outlined in Section 3.1. The parameters φ and ψ are fixed at 1 and 0.125,
respectively, while the other parameters vary as indicated. In the panel denoted Uniform alternative, the losses are generated according to θ (Unif), while the nonuniform alternative panel
results are generated using θ (NonUnif).

with the results from the DM test, the largest increase in power
is between H = 1 and H = 5.

Now consider the bottom panel, which is based on
θ (NonUnif). Under this alternative, model 2 has lower loss than
model 1 at h = 1, but higher loss for all other horizons. As a
result, model 1 has average SPA for horizons h > 1, but never
uniform SPA.

For the Diebold–Mariano test, when h = 1, the number of
rejections when λ = 0 shows appropriate size, but when λ > 0,
the number of rejections of our one-sided test appropriately
converge to 0, as the second model is actually superior to
the first. Recall that θ (NonUnif) is chosen such that over the
20 horizons, the average θ (NonUnif) is equal to θ (Unif). As a
result, compared to the top panel, for h > 1 we see that the
univariate tests typically have higher power in the bottom panel,

as the loss differential is slightly larger to compensate for the
negative differential at h = 1. We observe similar results for
the aSPA test, which converges to zero rejections at H = 1
when λ > 0. For H = 5 and H = 10 it has slightly lower
power than under the uniform alternative, as indeed the average
loss differential is only equal at H = 20, at which point they
coincide.

The test for uSPA however shows very different results,
as under this alternative no model has uSPA. This is clearly
reflected in the rejection frequencies, as the results show that
the test indeed does not reject the null in most cases. For small
λ, the single negative loss differential is sometimes deemed
within the range of random variation, and we see rejections of
up to 20% when λ = 10. However, when λ increases the test
rightfully fails to reject in almost all iterations.
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Table 2. Univariate simulation results: varying loss properties at different horizons

ψ = 0 ψ = 0.125 ψ = 0.25

H 1 5 10 20 1 5 10 20 1 5 10 20

λ Uniform alternative

φ = 0

0 0.054 0.054 0.053 0.052 0.056 0.053 0.055 0.054 0.047 0.048 0.049 0.049
5 0.109 0.123 0.128 0.138 0.103 0.103 0.092 0.086 0.107 0.101 0.085 0.082

10 0.200 0.238 0.252 0.274 0.197 0.183 0.162 0.149 0.198 0.156 0.132 0.114
20 0.470 0.567 0.616 0.671 0.476 0.425 0.355 0.300 0.473 0.336 0.256 0.198
40 0.930 0.971 0.982 0.991 0.926 0.869 0.756 0.618 0.932 0.738 0.551 0.400

φ = 1

0 0.49 0.052 0.052 0.052 0.053 0.050 0.052 0.052 0.053 0.053 0.052 0.049
5 0.101 0.233 0.338 0.475 0.109 0.191 0.221 0.241 0.107 0.164 0.166 0.155

10 0.199 0.501 0.655 0.780 0.195 0.422 0.500 0.546 0.204 0.359 0.374 0.359
20 0.472 0.820 0.900 0.950 0.476 0.814 0.891 0.933 0.473 0.772 0.805 0.774
40 0.932 0.994 0.998 0.999 0.934 0.994 0.997 0.999 0.926 0.992 0.996 0.996

φ = 2

0 0.048 0.051 0.050 0.050 0.050 0.050 0.052 0.057 0.050 0.049 0.049 0.047
5 0.103 0.330 0.480 0.627 0.105 0.274 0.355 0.413 0.109 0.231 0.261 0.273

10 0.201 0.539 0.689 0.808 0.195 0.537 0.677 0.775 0.203 0.505 0.592 0.624
20 0.464 0.816 0.903 0.951 0.471 0.817 0.904 0.953 0.481 0.815 0.899 0.941
40 0.928 0.995 0.998 0.999 0.929 0.993 0.997 0.999 0.936 0.994 0.998 0.999

NOTES: This table provides rejection frequencies for the test for uniform superior predictive ability over S = 10,000 simulations according to the DGP outlined in Section 3.1. The
losses are generated according to θ (Unif), and the sample size T = 500 for all results.

In Table 1 we analyzed the properties of the tests keeping
φ and ψ fixed. Next, Table 2 reports on the performance of
the test for uSPA, under the uniform alternative, while varying
φ and ψ , keeping T = 500 fixed. The aim of this simulation
is to demonstrate that the test may not always become more
powerful as the number of horizons increases. In particular,
their properties depend on the degree to which the average loss
differential and its variance evolve as a function of horizon.

The middle quadrant is equivalent to the set-up in Table 1,
and for this table we mainly discuss the four extreme quadrants.
When φ = ψ = 0, the average and variance of the loss
differentials are constant across horizons. Here we see that
without exception, power is slightly increasing in h, which is
due to the fact that our sample size increases. When φ = 0
but ψ = 0.25, the average loss differential remains fixed, but
its variance is increasing. As a result, adding more horizons
decreases power drastically, such that the number of rejections
at H = 20 is less than half those at H = 1. When φ = 2
and ψ = 0, the mean loss differential is increasing, while the
variance is fixed, and power is large. Even with λ = 5, the test
using all 20 horizons rejects in over 60% of samples. Finally,
when φ = 2 and ψ = 0.25, for h > 1, the power of the test is
only marginally increasing across horizons. As such, it presents
a setting in which adding more or fewer horizons mainly adds
in terms of interpretation and robustness of conclusions.

3.3. Model Confidence Sets

In this section, we evaluate the ability of the multi-horizon
MCS to distinguish between models. We base our conclusions
on the ten-model scenario. We use θ (Unif) to generate the loss
differentials. Recall that this means that the average loss of
model i equals θi = (i−1)

9 θ . As such, there is a single superior

model, and the loss differential between the first and the ith
model increases linearly for the remaining nine models.

As in Table 1, we investigate the effect of T and λ, and use
the middle scenarios, φ = 1 and ψ = 0.125 throughout the
analysis. The effects of changing φ and ψ on the ability of
the Multi-Horizon MCS to differentiate models is similar to the
pairwise setting.

We summarize the multi-horizon MCS performance by two
simple measures, potency and gauge. These concepts were used
by Hendry and Doornik (2014) in the setting of model selection.
The notions are similar, but distinct from the usual size and
power. Potency is defined as the fraction of appropriately
selected models in the MCS. For λ = 0, all models are equal,
and therefore defined as average fraction of models in the MCS.
For λ > 0, model 1 is the single best model, and hence the
reported number is the fraction of times this model is in the
MCS. The MCS is defined in such a way that the potency
should, at least, equal one minus the level of the MCS, which
we set at α̃ = 0.20. Gauge is the number of inferior models
wrongly included in the MCS. For obvious reasons, we only
report the gauge for λ > 0. Ideally, the MCS should remove the
remaining nine models, and identify model 1 as the unique best
model. Of course, potency and gauge are strongly interlinked,
through the level of the MCS. A higher level will make the
procedure more potent, but will worsen the gauge.

Results are reported in Table 3. First consider λ = 0 for the
various T . Recall that when λ = 0, all models are identical.
In this case, the MCS procedure should not remove any model.
This is a very stringent test, especially for the multi-horizon
MCS. However, the table shows that potency is always close
to the expected 80% for all T and H, which means that for
around 80% of our simulations, not a single model was removed
from the set. When λ > 0, there is a single superior model,
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Table 3. Multivariate simulation results: potency and gauge

Potency Gauge

H 1 5 10 20 1 5 10 20

T λ

250

0 0.787 0.793 0.797 0.807
5 0.966 0.939 0.922 0.916 4.481 1.941 1.448 1.166

10 0.937 0.970 0.979 0.973 1.554 0.379 0.214 0.120
20 0.950 0.998 1.000 1.000 0.165 0.012 0.002 0.000
40 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000

500

0 0.781 0.790 0.792 0.797
5 0.960 0.946 0.929 0.921 4.441 2.038 1.494 1.238

10 0.934 0.959 0.967 0.981 1.533 0.412 0.208 0.080
20 0.953 1.000 1.000 1.000 0.183 0.008 0.002 0.000
40 0.998 1.000 1.000 1.000 0.002 0.000 0.000 0.000

1000

0 0.787 0.799 0.806 0.802
5 0.953 0.938 0.926 0.923 4.346 1.952 1.468 1.166

10 0.909 0.955 0.975 0.979 1.472 0.447 0.195 0.114
20 0.960 0.998 0.999 1.000 0.166 0.010 0.003 0.000
40 0.999 1.000 1.000 1.000 0.001 0.000 0.000 0.000

NOTES: This table provides the potency and gauge of the multi-horizon MCS over S = 10,000 simulations according to the DGP outlined in Section 3.1. The potency is defined as
the fraction of correct superior models in the MCS. The gauge is defined as the number of models incorrectly included in the MCS. The parameters φ and ψ are fixed at 1 and 0.125,
respectively, while the other parameters vary as indicated. The losses are generated based on the uniform alternative θ(Unif).

which is easier to select, and potency is close to 100% for all
combinations of T and H.

The gauge is decreasing in all parameters H, T , and λ. That
is, the MCS is better able to remove inferior models the more
horizons we consider, the more time-series observations we
have, and the greater the loss differentials between the models.
Note that the effect of the number of horizons is large. The
decrease in gauge of going from H = 1 to H = 5 is of
an entirely different magnitude than increasing the number of
observations from T = 250 to T = 1000. As such, when a
model truly has multi-horizon SPA, using multiple horizons is
a powerful, and almost always feasible, way to differentiate the
models.

4. MULTI-HORIZON COMPARISON OF DIRECT AND
ITERATED FORECASTS

In this section, we revisit the results of Marcellino, Stock,
and Watson (2006), who investigated the performance of iter-
ated versus direct forecasts using 170 monthly U.S. macroeco-
nomic time series spanning 1959–2002. They find that iterated
forecasts tend to outperform direct forecasts, and the relative
performance improves with the forecast of horizon. In their
empirical analysis, they only consider four different horizons,
h = 3, 6, 12, and 24. Based on the example in Figure 1, it is
clear that picking just four out of all possible horizons may
lead to unrepresentative, and potentially wrong, conclusions.
Therefore, we test for multi-horizon superior predictive ability
across horizons h = 2, . . . , 24 using the two tests developed in
this paper. We exclude the first horizon since iterated and direct
forecasts are equivalent for h = 1. For the sake of comparison,
we also report the single-horizon Diebold–Mariano results.

We use the data provided on Mark Watson’s website. The
data consist of 170 series divided up into five different cate-
gories. We apply their suggested data transformation to deal
with the nonstationary nature of some of the series, such that
models are estimated in levels, log-levels, differences, or log-
differences. Forecasts are similarly evaluated on the trans-
formed series. The number of observations per series varies
between 412 and 528, with an average of 510 observations. For
more details, we refer to Marcellino, Stock, and Watson (2006).

We mostly follow the forecasting methodology of
Marcellino, Stock, and Watson (2006), with one exception;
our parameter estimates are based on a rolling window of
120 observations, rather than an expanding window, which is
required for validity of our tests. We perform direct and iterated
AR(p) forecasts, with four different choices of lag orders. First,
we set p equal to either 4 or 12. Second, every period, we
choose the optimal lag-length between 1 and 12, based on
either AIC or BIC using the estimation sample. Note that it
is entirely possible that in any given period the lag selection
based on AIC or BIC results in different lag-lengths for the
direct and iterated models. We then compare the direct and
iterated forecasts per lag selection procedure.

For the iterated forecasts, we estimate the parameters of the
following model using OLS.

yt+1 = θ0 +
p∑

i=1

θiyt+1−i + εt+1. (23)

The iterated h-step ahead forecasts are constructed recursively
as

ŷIt
t+h|t = θ̂0 +

p∑
i=1

θ̂iyt+h−i|t. (24)
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Figure 2. Rejection frequencies equal forecasting performance across horizons.

For the direct forecasts, we estimate a model on the h-step
ahead observation,

yt+h = φ0 +
p∑

i=1

φiyt+1−i + εt+h. (25)

To remain strictly out-of-sample, we only use data from the 120
observations of our rolling window, that is, the last observation
on the left-hand side is part of those 120 observations. Note
that this does reduce the actual number of observations used for
parameter estimation.
We then obtain direct h-step ahead forecasts as

ŷDir
t+h|t = φ̂0 +

p∑
i=1

φ̂iyt+1−i. (26)

The forecasts are evaluated using the mean square forecasting
error (MSFE)

LMSFE(ŷt+h|t, yt+h) = (ŷt+h|t − yt+h)
2. (27)

4.1. Aggregate Results

Throughout this section we will report results of the
multi-horizon tests for the range of maximum horizons
H = 2, . . . , 24. This should be interpreted as an illustration of
the tests, while in practice it is recommended to choose a single
long-term horizon H, which includes all relevant horizons h.

We formally test for superior predictive ability using the
Diebold–Mariano, uSPA, and aSPA tests on each of the 170
series and each of the 23 horizons. Figure 2 summarizes the
rejection frequencies for one-sided tests in either direction at
2.5% level. Each of the four panels corresponds to one of the lag

selections. The positive solid lines are the rejection frequencies
in favor of iterated forecasts, while the negative dotted lines
are the negative of the rejection frequencies in favor of direct
forecasts.

The results are mostly in line white those of Marcellino,
Stock, and Watson (2006). Across the three tests, we find
convincing evidence in favor of iterated forecasts. Rejection
frequencies in favor of direct forecasts are typically at, or
below, the level of the test, suggesting that iterated forecasts
are no worse than direct forecasts. Only for lag-selection based
on BIC, which tends to select the smallest models, we find
rejection frequencies higher than the level of the tests for
small H. Especially for the single-horizon and uSPA tests, the
rejection frequencies in favor of direct forecasts decrease when
H grows.

Of course, none of the three tests are directly comparable,
but the rejection frequencies at different horizons serve to
highlight the merits of joint multi-horizon tests. The Diebold–
Mariano test hardly ever rejects for short horizons, which rises
to about 30% for the two-year ahead forecast. Based on the
AR(12) model, the number of rejections is significantly higher
at about 60%. Importantly, the number of rejections is unstable
across horizons. For instance, based on AR(4), looking at just
horizon h = 19 we would reject for almost 50% of the series,
while for horizon h = 20 the percentage would be closer to
30%.

Naturally, we typically find fewer rejections based on the
test for uSPA, settling at about 20% of the series for H = 24.
The total amount of rejections is however nearly monotonically
increasing in the number of horizons under consideration H,
suggesting coherent conclusions irrespective of number of the
actual chosen horizon. In contrast to the DM-test, the rejection
rates are also mostly stable across the four panels.
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Figure 3. Results for individual series.

Of course, even if the test for uSPA fails to differenti-
ate models, the test for aSPA still may, as it is the weaker
hypothesis. We find that the rejection rates of the test for aSPA
are indeed higher than those for uSPA, but also consistently
higher than those for the single-horizon Diebold–Mariano tests.
Similar to the test for uSPA, the rejection frequencies are almost
monotonically increasing in the horizon H. We find that across
the 23 horizons, iterated forecasts provide average superior
predictive ability relative to direct forecasts for between 50%
and 70% of the series. The contrast with the DM test is easy to
understand. Mechanically, a small loss differential at a single
horizon results in a failure to reject for the univariate test, while
the multi-horizon test may find that the evidence at shorter
horizons is sufficient to compensate.

4.2. Results for Individual Series

To better illustrate the relative merits of the various hypothe-
ses and tests, we zoom in on a number of individual series in
Figure 3. Each column corresponds to one of the three tests,
Diebold–Mariano, uSPA and aSPA. The crosses denote the test-
statistics at, or up to, horizon h. The lines provide the one-
sided critical value at 5%. For the DM-test this is based on the
Gaussian quantiles, while for the multi-horizon tests we report
c5%
•SPA,ij based on Bootstrap Algorithm 1. Each row corresponds

to a different time-series, chosen to highlight various facets of
the tests.

We observe a number of different patterns. For instance,
IVSRRQ has a positive Diebold–Mariano test-statistic at each
horizons, except h = 24. The single-horizon test is only

significant at a small number of horizons and insignificant at
all others. The test for aSPA however, aggregates the infor-
mation over multiple horizons, which are all positive, and
finds sufficient evidence at all horizons to conclude that the
iterated forecasts outperform the direct forecasts. The statistics
are actually increasing in horizon, due to reduced variance ζij.
The single negative loss differential at h = 24 clearly does
not provide sufficient evidence to reject aSPA. Moreover, it
does not even provide sufficient evidence to reject uSPA of the
iterated forecasts. As the bootstrapped critical values clearly
illustrate, when we consider more than a single horizon, we
might reasonably expect to observe a negative differential, even
if the true loss differential μh

ij is positive for all h. As a result, we
conclude that iterated forecasts provide both uSPA and aSPA,
despite only finding significant evidence of superior predictive
ability at four horizons using the Diebold–Mariano test.

FYGM6 shows a similar picture, but with more consistent
relative performance. The iterated forecasts perform better at
every horizon, and the single-horizon test find significant evi-
dence for most horizons. Again, we find evidence for aSPA at
all horizons, although this time the test statistics hardly increase
for longer horizons H. More interesting is that we are now in a
situation where limited variability in loss-differentials results in
a case where the critical value of uSPA remains positive, even
at H = 24.

The third series, LHNAG, has no clear winner at short hori-
zons, but iterated forecasts appear to dominate direct forecasts
at longer horizons. The single-horizon statistic picks up on this,
with significant differentials at thirteen consecutive horizons
starting at h = 10. The test for aSPA combines the joint
evidence and rejects the null from H ≥ 12. The test for uSPA is
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severely impacted by the negative statistic at h = 2. However,
this negative statistic was small, and is not surpassed at higher
horizons. As a result, starting from H = 11 and up, we conclude
that the negative short-horizon statistic was likely sampling
error, and find support for uSPA of iterated forecasts.

The final example, FYAAAC is a series where the direct
forecasts appear to mostly outperform the iterated ones. All
forecast differentials are negative but small. Their level results
in a situation in which the univariate and average statistic
are insignificant at all horizons, but h = 24. However, its
consistently negative values results in the fact that the uniform
statistic does reject at all horizons H ≥ 3. Hence, we find
evidence for uSPA, but not for aSPA until we consider all 24
horizons. While the definition of uSPA implies aSPA in any
given sample, the tests may of course not reach this conclusion.
A result like this occurs rarely though. Across the 170 series
we perform both these tests, we only find evidence for uSPA
and not for aSPA a negligible three times, while the reverse is
pervasive throughout.

Overall, Figure 3 makes it clear that comparing forecast path
accuracy by looking at individual horizons is often insufficient
to understand whether a model has superior predictive ability
or not. The joint performance over multiple horizons provides
a clearer and more coherent picture then the single-horizon
statistics.

5. CONCLUSION

We introduce the notion of multi-horizon forecast compar-
ison. We propose to jointly evaluate multiple horizons when
testing for superior predictive ability, rather than considering
multiple horizons individually. We argue that this has three
advantages. First, multi-horizon superior predictive ability pro-
vides a more complete definition of a model’s superior perfor-
mance. Second, by using multiple horizons we can construct a
powerful test, allowing us to disentangle models more easily.
Finally, it guards us against the implicit multiple testing issue
arising from picking and choosing (potentially multiple) indi-
vidual horizons.

We propose two bootstrap-based tests that evaluate different
hypotheses of multi-horizon forecasting performance. The first
tests for uniform superior predictive ability, which is defined as
superior forecasts at each individual horizon. The second tests
the weaker hypothesis that the (weighted) average loss across
horizons is lower. Both tests reduce to the standard Diebold–
Mariano test when only considering a single horizon. We
demonstrate that the ability to differentiate models empirically
increases with the number of horizons under consideration.
While forecast error variance increases in horizon, model mis-
specification also tends to increase the average forecast loss as
a function of horizon, which is the main driver of the increased
power.

The basic tests allow the statistical comparison of two mod-
els. In addition, to compare a larger number of models directly,
we extend the MCS methodology to allow for multi-horizon
comparison. The procedure allows us to find the set of models
that contains the model with multi-horizon superior predictive
ability with a certain confidence level. Both the pairwise tests

and the MCS are shown to be properly sized and powerful in
simulations.

The pairwise comparison is illustrated by means of a
comparison between direct and iterated forecasts of macro-
economic variables, based on the data in Marcellino, Stock,
and Watson (2006). We find that despite conflicting evidence
when looking at individual horizons, we are often able to find
statistical evidence for either average SPA or uniform SPA,
or both, when considering multiple horizons jointly. This
suggests that the incoherence is typically the result of the
implicit multiple-testing issue of picking and choosing a few
horizons.

APPENDIX A: BOOTSTRAP VALIDITY

Proof Theorem 1. Under either null hypothesis
√

TD−1
ij d̄ij →d

N(0, Rij), where Rij = D−1
ij �ijD

−1
ij , and →d denotes convergence

in distribution. By standard arguments, the quadratic spectral HAC
estimator (Andrews 1991) is consistent for Dij and therefore,√

TD̂
−1
ij d̄ij →d N(0, Rij).

Next, we show that the bootstrap consistently estimates the distri-

bution of
√

TD̂
−1
ij d̄ij. Under the stated assumptions, it follows from

Theorem 2.2 of Gonçalves and White (2002) that

sup
x∈RH

|Pb[√T(d̄
b
ij − d̄ij) ≤ x] − P[√T(d̄ij − μij) ≤ x]| →p 0, (A.1)

where Pb denotes the bootstrap distribution. While this demonstrates
that the bootstrap distribution can be used to approximate the distribu-
tion of

√
T(d̄ij −μij), it does not immediately justify the validity of the

bootstrap for the studentized statistics, just valid bootstrap confidence
intervals. Theorem 3.1 of Gonçalves and White (2004) applied to
studentized statistics shows that under the null, the studentized statistic
is approximated by the bootstrap

sup
x∈RH

|Pb[√T(D̂
b
ij)

−1(d̄
b
ij − d̄ij) ≤ x]

− P[√TD̂
−1
ij (d̄ij − μij) ≤ x]| →p 0, (A.2)

provided that for any ε > 0, Pb[|D̂b
ij −Dij| > ε] →p 0. This condition

is established for the estimator in Equation (11) under Assumptions
1 and 2 of this article for the MBB in Lemma B.1 of Gonçalves and
White (2004).
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Götze, F., and Künsch, H. R. (1996), “Second-Order Correctness of the
Blockwise Bootstrap for Stationary Observations,” The Annals of Statistics,
24, 1914–1933. [44]

Hansen, P. R. (2005), “A Test for Superior Predictive Ability,” Journal of
Business & Economic Statistics, 23, 365–380. [40,43]

Hansen, P. R., Lunde, A., and Nason, J. M. (2011), “The Model Confidence
Set,” Econometrica, 79, 453–497. [40,42,43,45]

Hendry, D. F., and Doornik, J. A. (2014), Empirical Model Discovery and The-
ory Evaluation: Automatic Selection Methods in Econometrics, Cambridge,
MA: MIT Press. [48]
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