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GMM Estimation of Non-Gaussian Structural
Vector Autoregression
MARKKU LANNE

Faculty of Social Sciences, University of Helsinki, Helsinki, Finland (markku.lanne@helsinki.fi)

JANI LUOTO
Faculty of Social Sciences, University of Helsinki, Helsinki, Finland (jani.luoto@helsinki.fi)

We consider estimation of the structural vector autoregression (SVAR) by the generalized method of
moments (GMM). Given non-Gaussian errors and a suitable set of moment conditions, the GMM
estimator is shown to achieve local identification of the structural shocks. The optimal set of moment
conditions can be found by well-known moment selection criteria. Compared to recent alternatives,
our approach has the advantage that the structural shocks need not be mutually independent, but only
orthogonal, provided they satisfy a number of co-kurtosis conditions that prevail under independence.
According to simulation results, the finite-sample performance of our estimation method is comparable,
or even superior to that of the recently proposed pseudo maximum likelihood estimators. The two-step
estimator is found to outperform the alternative GMM estimators. An empirical application to a small
macroeconomic model estimated on postwar United States data illustrates the use of the methods.

KEY WORDS: Generalized method of moments; Non-Gaussian time series; Structural vector autore-
gression.

1. INTRODUCTION

In the recent literature, a number of approaches to statisti-
cally identifying the structural vector autoregressive (SVAR)
model have been introduced. Typically, they make use of non-
Gaussianity of the errors that may show up as structural breaks
in their covariance matrix, their conditional heteroscedasticity,
or their following a parametric non-Gaussian distribution (for
a survey of the relevant literature, see Kilian and Lütkepohl
2017, chap. 14). Because of non-Gaussianity, the parameters of
the SVAR model are statistically identified, but identification
rarely provides any economic interpretation. However, in the
identified model, testing and contrasting alternative identifica-
tion schemes becomes possible. The economic restrictions that
are not rejected, can then convincingly be used in the empirical
analysis. Statistical identification may also be combined with
economic information, such as the signs of the impact effects
of economic shocks implied by an economic model, to facil-
itate interpretation (see, e.g., Lanne and Luoto 2016 and the
references therein).

In this article, we propose a generalized method of moments
(GMM) estimator of the parameters of the SVAR model, with
moment conditions that are informative when the error term
of the model is non-Gaussian. It bears resemblance to the
estimation procedures in the independent component analysis
(ICA) based on the use of fourth moments. However, this
literature is confined to independent and identically distributed
data. Moreover, the procedures are typically seen as algorithms
rather than estimators, and their statistical properties are not
necessarily known (see Miettinen et al. 2015) for a statistical
analysis of several of these procedures). The closest counterpart
of our GMM estimator in the econometric literature is the
maximum likelihood (ML) estimator of Lanne, Meitz, and
Saikkonen (2017) that Gouriéroux, Monfort, and Renne (2017)

have recently extended to pseudo ML (PML) estimators. It is
also related to Herwartz’s (2015) estimator based on finding
the rotation of orthogonalized errors maximizing the p-value of
a test of independence.

Our estimator has a number of advantages compared to its
close counterparts in the previous literature. First and fore-
most, unlike the ICA literature, Lanne, Meitz, and Saikkonen
(2017), Gouriéroux, Monfort, and Renne (2017), and Herwartz
(2015), we do not assume the structural errors to be mutually
independent. As pointed out by Kilian and Lütkepohl (2017,
chap. 14.5), the independence assumption may be problematic
because there is not necessarily any linear transformation that
makes the errors of the reduced-form VAR model independent.
Instead, we only assume the shocks to be mutually orthogonal
with a number of additional co-kurtosis restrictions derived
from the independence assumption (the co-kurtosis properties
of economic shocks have recently been utilized in examining
the effects of macro risks in a different econometric setup by
Bekaert, Engstrom, and Ermolov [2017]). In other words, we
do not impose independence but only its implications on se-
lected moments. Due to relaxing independence of the structural
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errors, various forms of joint conditional heteroscedasticity
often found in economic data are allowed for. These include
stochastic volatility, exemplified in Section 2.2.

In addition to relaxing independence, there is also no need to
specify explicit non-Gaussian error distributions, in contrast to
the ML estimator of Lanne, Meitz, and Saikkonen (2017). The
PML estimators of Gouriéroux, Monfort, and Renne (2017)
are, to some extent, robust with respect to misspecification of
the error distributions, but our approach is more generic in
that the selection of optimal moment conditions can always
be based on conventional moment selection criteria combined
with a test of over-identifying restrictions. Moreover, as an
additional limitation, to show consistency and asymptotic nor-
mality Gouriéroux, Monfort, and Renne (2017) need to assume
that each of the structural errors follows a different asymmetric
distribution (see their Proposition 3). Nevertheless, according to
our simulation results, the performance of the GMM estimator
seems comparable to their PML estimator and superior to their
recursive PML estimator.

Instrumental-variables methods have also previously been
employed in estimating time series models, but, to the best
of our knowledge, non-Gaussianity of the errors of the SVAR
model has not been used to facilitate identification in the GMM
framework before. However, during the revision process, we
learned about two closely related studies that had appeared
after the first version of this article. First, Guay and Nor-
mandin (2018) derive conditions for identification through the
third and fourth unconditional moments. Second, Lewis (2018)
considers identification based on the autocovariance structure
of the second moments of the errors implied by an arbitrary
stochastic process for the shock variances without parametric
assumptions. Both papers contain an empirical application, and
Lewis also compares a range of estimators, including the GMM
estimator, by simulations experiments, but they concentrate on
identification instead of statistical inference.

In the earlier related literature, Bernanke and Mihov (1995)
showed consistency and asymptotic normality of the GMM
estimator of the SVAR model over-identified by short-run
restrictions, while Shapiro and Watson (1988) considered es-
timation of a SVAR model by instrumental-variable methods
under long-run identification restrictions. Pagan and Robertson
(1998) showed how the SVAR model can be estimated by
instrumental-variable methods under both short-run and long-
run identification restrictions (see also Watson 1994). More
recently, the GMM has been employed in the literature on iden-
tification of SVAR models by external instruments (see, e.g.,
Montiel Olea, Stock, and Watson 2015). Wright’s (2017) rank-
based estimator can also be implemented as a GMM estimator;
while he showed that the estimator brings efficiency gains
under non-Gaussian errors, in his article, identification is based
on recursive ordering or external instruments. Finally, non-
Gaussianity has been utilized in GMM estimation of noninvert-
ible reduced-form moving average models by Gospodinov and
Ng (2015).

The rest of the article is organized as follows. In Section 2,
we introduce the SVAR model along with the central assump-
tions and discuss the specification of moment conditions to
be used in GMM estimation. In Section 3.1, we discuss the
implementation of the GMM estimator in the SVAR model,

while in Section 3.2, we introduce the regularity conditions
under which the GMM estimator is consistent and asymptoti-
cally normal. In Section 3.3, we describe our moment selection
procedure. Section 3.4 contains some finite-sample simulation
results. In Section 4, we illustrate the use of the GMM estimator
in an empirical application to a small United States macroeco-
nomic model. Finally, Section 5 concludes. The detailed dis-
cussion on the conditions for local identification as well as the
proof of the related proposition are deferred to the Appendix.

2. MODEL SETUP

2.1. Structural Vector Autoregression

We consider the structural VAR model of order p,

yt = ν + A1yt−1 + · · · + Apyt−p + Bεt, (1)

where yt is the n-dimensional time series of interest, ν (n × 1)
is an intercept term, A1, . . . , Ap and B (n × n) are parameter
matrices with B nonsingular, and εt (n × 1) is a serially
uncorrelated strictly stationary error term with zero mean and
identity covariance matrix. We further assume yt to be stable,
and hence weakly stationary, that is,

det A (z)
def= det

(
In − A1z − · · · − Apzp) �= 0, |z| ≤ 1. (2)

In the literature, model (1) is often referred to as the B-model
(see, e.g., Lütkepohl 2005, chap. 9). An alternative SVAR
formulation is obtained by left-multiplying (1) by the inverse
of B

A0yt = ν∗ + A∗
1yt−1 + · · · + A∗

pyt−p + εt, (3)

where A0 = B−1, ν∗ = B−1ν, and A∗
j = B−1Aj (j = 1, . . . , p).

Typically, in this so-called A-model (Lütkepohl 2005, chap. 9),
the diagonal elements of A0 are normalized to unity, and the
covariance matrix of εt is a diagonal matrix. Model (3) is useful
when the main interest is in quantifying the contemporaneous
relations between the variables included in yt.

Irrespective of the formulation, the central problem in SVAR
analysis is the identification of the matrix B (or its inverse
A0) embodying the contemporaneous simultaneities. Recently,
Lanne, Meitz, and Saikkonen (2017) showed that identification
of B (up top permutation and scaling of its columns) can be
reached when the error term εt is serially uncorrelated, and its
components are contemporaneously independent and at most
one of them is Gaussian. Similar results have been put forth in
the related literature by Hyvärinen et al. (2010), and Moneta et
al. (2013), inter alia, but they all assume εt to be an independent
and identically distributed process (instead of being just serially
uncorrelated).

The moment conditions that we impose in GMM estimation
are inspired by the assumptions of Lanne, Meitz, and Saikkonen
(2017). In contrast to that article, we do not assume the
components of the error term to be independent, but only con-
temporaneously uncorrelated as is typically the case in SVAR
analysis. However, it is important to notice that orthogonality of
the errors is not sufficient for identification, but, in addition, a
number of fourth-moment restrictions implied by independence
must hold. Specifically, we make the following assumption on
model (1), under which B is shown to be locally identified up
to permutation and multiplication by −1 of its columns (see
Proposition 1 in Section 2.2):
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Assumption 1.

(i) The error process εt = (ε1t, . . . , εnt)
′ is a sequence of

(strictly) stationary random vectors with each component
εit, i = 1, . . . , n, having mean zero and variance unity.

(ii) The components εit, . . . , εnt are uncorrelated in time, that
is, cov

(
εit, εi,t+k

) = 0 for all k �= 0.
(iii) The components ε1t, . . . , εnt are (mutually) orthogonal and

at most one of them has a Gaussian marginal distribution.
(iv) E(ε3

itεjt) = 0, for at least n(n − 1)/2 combinations of i and
j (i �= j).

Because matrix A0 in Equation (3) is obtained by inverting
matrix B in Equation (1), it is identified up to permutation and
multiplication by −1 of its rows without further restrictions
under Assumption 1. If the diagonal elements of A0 are nor-
malized to unity, the variances of the components of εt are
left unrestricted. For ease of exposition, we will henceforth, for
the most part, explicitly only consider the B-model formulation
Equation (1), but it is to be understood that everything applies
to the A-model (3) as well, with obvious modifications.

2.2. Moment Conditions

The model can be consistently estimated by the GMM as
discussed in Section 3. In this section, we discuss the moment
conditions to be used in GMM estimation, and show that the
impact matrix B (its inverse A0) is identified up to permutation
and multiplication by −1 of its columns (rows) under Assump-
tion 1. It should be borne in mind that identification of the
parameters indeed depends on non-Gaussianity of (at least n−1
of) the components of the error term. Therefore, it is important
to start the empirical analysis by checking whether the residuals
of the reduced-form VAR model exhibit normality. If they turn
out to be Gaussian, the moment conditions discussed below
are not going to be sufficiently informative for identification.
However, non-Gaussianity of the reduced-form VAR residuals
does not guarantee non-Gaussianity of n − 1 of the structural
shocks, which has to be checked after the SVAR model has been
estimated.

Let us, for notational convenience, rewrite model (1) as

yt = �xt−1 + Bεt, (4)

where the ((np + 1) × 1) vector xt−1 = (1, y′
t−1, . . . , y′

t−p)
′ and

� = (ν, A1, . . . , Ap). From Assumption 1(i) and the lags of yt

being predetermined, we obtain the following 2n+pn2 moment
conditions:

E (εt ⊗ xt−1) = 0n(np+1)×1 (5a)

E
(
ε2

it

)
− 1 = 0, i = 1, . . . , n (5b)

where ⊗ denotes the Kronecker product. In the A-model (3)
with unrestricted error variances, condition (5b) is replaced by
restricting the diagonal elements of A0 equal to unity. It is
implicitly assumed that the lag length p is sufficient to make the
components of the error term εt serially uncorrelated as stated
in Assumption 1(ii). Furthermore, mutual orthogonality of the
components of εt in Assumption 1(iii) results in n(n − 1)/2
orthogonality conditions of the form

E(εitεjt) = 0, i �= j. (5c)

The 2n + pn2 + n(n − 1)/2 moment conditions in Equations
(5a)–(5c) are not yet sufficient to identify the n + (p + 1)n2

parameters of the SVAR model, but at least n(n − 1)/2 ad-
ditional conditions are necessarily needed. To that end, we
invoke co-kurtosis conditions implied by independence, that are
informative when (at least n−1 of) the components of the error
term εt are non-Gaussian in accordance with Assumption 1(iii).
It is well known that the co-kurtosis of two Gaussian random
variables is a function of their variances and the correlation
coefficient between them (see, e.g., Kendall and Stuart 1977,
p. 94), whereas this need not be the case if either (or both)
of the variables is non-Gaussian. Hence, co-kurtosis conditions
can be informative in the presence of non-Gaussianity, while in
the Gaussian case they provide no information over and above
conditions (5a)–(5c).

Our idea is to base estimation on some co-kurtoses to
take values that would prevail if the structural errors were
independent. Hence, we obtain shocks that are close to being
independent without actually imposing independence, and thus
allowing for various forms of conditional heteroscedasticity, as
exemplified below, among other things. Our asymmetric and
symmetric co-kurtosis conditions are of the form

E(ε3
itεjt) = 0, i �= j, (6)

and

E(ε2
itε

2
jt) − 1 = 0, i �= j, (7)

respectively. It is easy to see that both kinds of conditions
are indeed implied by the mutual orthogonality conditions in
(5c) and are thus redundant under Gaussianity. In conditions
(6), the asymmetry manifests itself in that E(ε3

jtεit) need not

equal zero even if E(ε3
itεjt) = 0 is satisfied. While at least

n(n − 1)/2 asymmetric co-kurtosis conditions are required
for identification (see Proposition 1 below), symmetric co-
kurtosis conditions only provide additional information that
may increase the accuracy of the GMM estimator.

As an example of a SVAR model that can be estimated using
the moment conditions discussed above, suppose the data are
generated by model (1), with the error term εt following a one-
factor stochastic volatility process εt = σtzt, where E(σ 2

t ) =
1, zt is an n-dimensional normally independently distributed
vector with mean zero and identity covariance matrix, and σt

and zt are contemporaneously independent (we would like to
thank an anonymous referee for pointing out this example). The
components of the error term εt are obviously orthogonal, but
dependent, and non-Gaussian, and the asymmetric conditions
(6) hold as E(ε3

itεjt) = E(σ 4
t )E(z3

it)E(zjt) = 0 when i �= j.
This example also illustrates that one also has to be careful
with symmetric co-kurtosis conditions because they do not hold
under any type of non-Gaussianity. In the case of this particular
stochastic volatility process, the Cauchy-Schwarz inequality
implies that E(ε2

itε
2
jt) = E(σ 4

t )E(z2
it)E(z2

jt) = E(σ 4
t ) equals

unity only if σt is constant (almost surely), that is, there is no
stochastic volatility and the shocks are independent.

As a matter of fact, it may be hard to come by economically
relevant examples of error processes where the symmetric co-
kurtosis conditions hold, when the errors are mutually orthogo-
nal but not independent. Nevertheless, in case of independence
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of (some of) the components of the error term, they may provide
useful additional information for inference. In any case, as part
of the moment selection procedure, we recommend testing for
over-identifying restrictions, to ensure that the selected moment
conditions agree with the data (see Section 3.3).

If all the components of εt are non-Gaussian, the local
identification condition (10) is satisfied whenever the set of
moment conditions contains any n(n − 1)/2 asymmetric co-
kurtosis conditions in addition to conditions (5a)–(5c), as stated
in Proposition 1. However, if one of the components of εt

is Gaussian, the exactly locally identifying asymmetric co-
kurtosis conditions must be such that they do not involve its
third power. For instance, if ε1t is Gaussian in a trivariate
model, the set of moment conditions containing the asymmetric
co-kurtosis conditions E(ε3

1tε2t), E(ε3
2tε1t), and E(ε3

2tε3t) does
not yield local identification, whereas the set where E(ε3

1tε2t)

is replaced by, say, E(ε3
3tε2t), does. However, in case there

are more moment conditions than parameters to estimate, it is
possible to achieve local identification by a suitable selection of
asymmetric co-kurtosis conditions even if any one of the shocks
is Gaussian (for instance, by including all n(n − 1) asymmetric
co-kurtosis conditions).

Proposition 1. (Local identification) Suppose all n compo-
nents of εt are non-Gaussian with E(ε3

it) �= 0 and/or E(ε4
it) �= 3,

i = 1, . . . , n. Then moment conditions (5a)–(5c), and n(n −
1)/2 asymmetric co-kurtosis conditions of the form (6) exactly
locally identify the parameters of SVAR model (1) (SVAR
model (3)) characterized by a given permutation of the columns
of B and signs of its elements. If one of the components of
εt is Gaussian, the asymmetric co-kurtosis conditions must not
involve its third power.

Proof. See the Appendix.

It is important to realize that Proposition 1 only applies
to a given SVAR model characterized by a given ordering
of the columns of B and signs of its elements. In particu-
lar, asymptotically all the permutations of the columns of B
potentially satisfy the moment conditions. Thus, to facilitate
asymptotic inference, additional restrictions are needed to pin-
point a particular permutation of the columns of B and signs
of its elements. These restrictions are not restrictive, however,
because any permutation of the columns of B (asymptotically)
produces the same shocks (reordered) and impulse responses.
To this end, there are many alternative restrictions entertained
in the previous literature on statistical identification that could
be employed (see Lanne, Meitz, and Saikkonen 2017, and
the references therein). In this article, we use the permutation
convention of Pham and Garat (1997) which entails picking the
permutation that maximizes the absolute value of the product of
the diagonal elements of B, and restrict the diagonal elements
of B positive.

3. STATISTICAL INFERENCE

3.1. GMM Estimator

Models (1) and (3) can be estimated by minimizing

QT(θ) = T−1
T∑

t=1

f (vt, θ)′ WTT−1
T∑

t=1

f (vt, θ) , (8)

where θ = (
ν′, vec(A1)

′, . . . , vec(Ap)
′, vec(B)′

)′ is a row vector
of k ≡ n + (p + 1)n2 parameters to be estimated, vt, t =
1, 2, . . . , T , consists of yt, its lags and deterministic terms. WT

is a (q × q) positive semi-definite matrix, potentially dependent
on data, that converges to a positive definite weighting matrix of
constants, W, containing the weights of the sample counterparts
of the (q × 1) vector of population moment conditions

E
[
f (vt, θ0)

] = 0, (9)

where θ0 denotes the true value of θ .
For the consistency of the GMM estimator, the moment con-

ditions should only hold at one value (θ0) in the entire parameter
space, (see Section 3.2). Finding a convenient condition for
global identification is, in general, difficult in the context of a
nonlinear model such as the SVAR model. However, for global
identification to hold, the parameters must be identified in a
neighborhood of θ0, which is the case if the rank of the matrix
of the expected partial derivatives of f (vt, θ) with respect to the
parameters evaluated at the true parameter values θ0 equals the
number of parameters,

rank{E[∂f (vt, θ0)/∂θ ′]} = k. (10)

This condition of local identification can be guaranteed by
selecting a suitable set of moment conditions (see Proposi-
tion 1), of which there must be at least k. If q > k, it may be
possible to run a test of over-identifying restrictions as a general
specification test, as discussed below in Section 3.3.

In case of over-identification (q > k), inference may be
sensitive to the choice of the weighting matrix W. Therefore,
it is, in general, desirable to use the most accurate estimator,
and as shown by Hansen (1982), the efficient estimator with
minimum asymptotic variance is obtained by setting W =
S−1, the inverse of the long-run covariance matrix of the
moment conditions, S. The latter is estimated consistently
(under regularity conditions, see Newey and West [1994]) as
the following heteroscedasticity and autocorrelation consistent
covariance (HAC) matrix estimator

ŜHAC = �̂0 +
T−1∑
i=1

ωi,T

(
�̂i + �̂′

i

)
,

where �̂i is a consistent estimator of �i, the ith autocovariance
matrix of f (vt, θ0). The HAC estimator allows for heteroscedas-
ticity and autocorrelation in the moment conditions, and the
bandwidth parameter bT embedded in the weights ωi,T (or
kernel) controls for the number of autocovariances included.
A number of different kernels have been put forth in the GMM
literature, including the Bartlett, Parzen, and Quadratic Spectral
kernels, but according to the simulation evidence of Newey and
West (1994), the bandwidth is far more important for the finite-
sample performance of the HAC estimator than the choice of
the kernel, and they propose an automatic bandwidth selection
procedure, which, coupled with the Bartlett kernel, we also
employ in Sections 3.4 and 4.
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In practice, estimation can be carried out in at least three
different ways using numerical optimization methods. First,
Hansen’s (1982) two-step estimator is obtained by first mini-
mizing Equation (8) with WT suboptimal (such as the identity
matrix), and then reestimating θ based on ŜHAC computed
using the first-step estimator of θ . Second, this procedure can
be continued iteratively until the estimate of θ converges to
obtain the iterated GMM estimator. Finally, the continuous
updating estimator (CUE) of Hansen, Heaton, and Yaron (1996)
acknowledges the dependence of the efficient weighting matrix
on the parameters. It is based on minimizing with respect to θ ,

T−1
T∑

t=1

f (vt, θ)′ ST(θ)−1T−1
T∑

t=1

f (vt, θ) ,

where

ST(θ) = �0,T(θ) +
T−1∑
i=1

ωi,T
[
�i,T(θ) + �i,T(θ)′

]
is of the same form as the HAC estimator discussed above. All
three estimation methods are implemented in the R package
gmm (Chaussé 2010) that we use to produce the empirical and
simulation results in this article. As discussed in Section 3.2,
all three estimators are consistent under regularity conditions.
However, they may have different finite-sample properties, and
the simulation results in the previous literature tend to favor
the iterated and continuous updating estimators. Unfortunately,
such results may not be very helpful as they seem to depend
considerably on the particular model. As a matter of fact,
our limited simulation study in Section 3.4 pertaining to the
estimation of the SVAR model suggests that the two-step
estimator is superior to the other GMM estimators.

3.2. Asymptotic Inference

To be able to apply the asymptotic results related to the
GMM estimator derived in the literature, we make a number
of standard assumptions, including strict stationarity and er-
godicity (see, e.g., Hall 2005, chaps 3 and 5.3), in addition to
identification. Under these assumptions, the GMM estimator
θ̂T is a consistent estimator of θ0. This holds for all two-
step, iterated and continuous updating GMM estimators that
are asymptotically equivalent although they may behave dif-
ferently in finite samples. Moreover, the efficient GMM esti-
mator is asymptotically normally distributed with covariance

matrix
(
G′

0S−1G0
)−1

, where G0 = E
[
∂f (vt, θ0)/∂θ ′] and S =

limT→∞var
[
T1/2

(
T−1 ∑T

t=1 f (vt, θ0)
)]

. Because the SVAR

model is statistically identified, additional restrictions on the
parameters can be tested, once G0 and S are replaced by their
consistent estimators, GT(θ̂T) and ŜHAC, respectively. However,
it must be borne in mind that any test on the parameters of
the impact matrix only pertains to the particular ordering of
its columns. Therefore, any hypothesis on the parameters is, in
general, meaningful only once the shocks pertaining to those
parameters have been economically identified by, say, sign
constraints (see the empirical example in Section 4).

Newey and West (1987) show how hypotheses of the form

H0 : r(θ0) = 0 versus HA : r(θ0) �= 0

can be tested in the GMM framework. Here r(·) is an (s × 1)

vector of real-valued, continuous and differentiable functions,
and the (s × k) matrix R(θ) = ∂r(θ)/∂θ ′ has rank s, so that
there are at most as many nonredundant restrictions as there
are parameters in θ . The tests considered by Newey and West
are extensions of asymptotic tests related to ML estimation. Let
θ̂T and θ̃T denote the unrestricted and restricted (by r(θ) = 0)
efficient GMM estimators, respectively. Then the Wald test
statistic can be written as

Tr(θ̂T)′
[
R(θ̂T)[G(θ̂T)′ŜT(θ̂T)−1GT(θ̂T)]−1R(θ̂T)′

]−1
r(θ̂T).

(11)
While Equation (11) depends only on the unrestricted estimate,
the likelihood ratio (LR) type test statistic

T[QT(θ̃T) − QT(θ̂T)] (12)

is based on the change in the minimum of the objective
function between the restricted and unrestricted models. Under
standard assumptions, both Equations (11) and (12) follow
asymptotically the χ2 distribution with s degrees of freedom
when H0 is true. Compared to the LR type test, the Wald test
has the advantage that only the unrestricted model needs to be
estimated, but it is not invariant to reparameterization of the
model or the restrictions. As shown by Hall and Peixe (2003),
these tests have also power against misspecification, indicating
that they may reject because the moment conditions are violated
even if the restriction r(θ0) = 0 holds. Therefore, misspecifica-
tion testing should always precede (see Section 3.3) inference
on the parameters.

It is also important to notice that the co-kurtosis conditions
may provide only weak identification if the true errors only
slightly deviate from Gaussianity. This is akin to the problem
of weak instruments provided by short-run and long-run re-
strictions in identifying SVAR models considered by Pagan and
Robertson (1998) and Gospodinov (2010). It is well known
that under weak identification, standard asymptotic inference
in the GMM framework is inappropriate (see, e.g., Hall 2005,
sec. 8.2), and the deterioration of the asymptotic approximation
when the error distributions approach the Gaussian distribu-
tion, is also clearly demonstrated by the simulation results in
Section 3.4. Therefore, it is important to check for the non-
Gaussianity of the structural errors.

3.3. Over-Identifying Restrictions Test and Moment
Selection

As discussed in Section 2.2, the SVAR model (1) (or (3)) is
locally exactly identified if estimation is based on conditions
(5a)–(5c) and n(n − 1)/2 asymmetric co-kurtosis conditions of
the form (6). Over-identification can be achieved by introducing
additional co-kurtosis conditions. Once the model has been
estimated, it is important to ensure that the moment conditions
agree with the data. To that end, Hansen’s (1982) well-known
J-test of over-identifying restrictions is available whenever
there are more moment conditions than parameters to estimate
(q > k). When the model is exactly identified, that is, q =
k, the moment conditions are automatically satisfied, while
in the over-identified case, the additional moment conditions
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are informative about the correctness of the specification. The
test statistic, JT = TQT(θ̂T), follows asymptotically the χ2

distribution with q − k degrees of freedom under the null
hypothesis of correct specification, and it is convenient in that
it is obtained as a by-product of estimation.

Typically, several alternative over-identifying sets of mo-
ment conditions agree with the data, and a number of meth-
ods of selecting the optimal set among them have been put
forth in the literature. In this article, we successively employ
Andrews’s (1999) information criterion based approach, and
the relevant moment selection criterion proposed by Hall et al.
(2007), which concentrate on different aspects of the moment
conditions. The former attempts to find the largest set, that
is, supported by the data, while the latter tries to find the
most relevant moment conditions, yielding maximal estimation
efficiency, and avoiding redundancy. Finding a relevant set of
moment conditions is important because introducing too many
conditions might adversely affect the finite-sample properties
of the GMM estimator (see, e.g., Hall and Peixe 2003) in the
context of linear regression).

Andrews’s (1999) moment selection criterion

MSC(c) = JT(c) − (q − k)ln(T) (13)

is computed for several sets of moment conditions, indexed by
selection vector c, and the over-identifying set minimizing its
value is selected. The selection vector c, with elements equal
to either 0 or 1, corresponds to the qmax dimensional vector of
all potential moment conditions fmax(·), whose jth element is
picked if cj = 1. The first term of Equation (13) is just the
value of the J statistic of over-identifying restrictions, whose
small values lend support to the moment conditions, while
the latter term increases with the degree of over-identification
(q − k). Hence, this criterion tends to favor a large set of valid
moment conditions, without paying attention to efficiency or
redundancy. The relevant moment selection criterion

RMSC(c) = ln[|V̂θ ,T(c)|] + (q − k)ln[(T/bT)1/2](T/bT)−1/2

(14)
is, in turn, concerned with the efficiency and nonredundancy
of the moment conditions. The smaller is first term, dependent
on the covariance matrix V̂θ ,T(c) of the estimator, the more
accurately the parameters have been estimated. The bandwidth
parameter bT of the ŜHAC estimator accounts for its rate of
convergence. Also this criterion is computed for several sets of
moment conditions, and the set yielding the minimum value is
selected. The first term is obviously nondecreasing in the num-
ber of moment conditions, whereas the second term penalizes
for additional conditions, attempting to avoid redundancy.

For practical moment selection, we recommend a version
of the combined strategy of Hall (2005, sec. 7.3.3), where the
MSC and RMSC are employed in succession. In the second
step, the optimal set of moment conditions is obtained by mini-
mizing the RMSC over all admissible subsets of the set selected
by the MSC in the first step. In all cases, the optimal set contains
conditions (5a)–(5c), and the two-step procedure is used to
augment them with the optimal overidentifying combination
of at least n(n − 1)/2 asymmetric co-kurtosis conditions, and
potentially some symmetric co-kurtosis conditions.

We first estimate the model with all over-identifying com-
binations of at least n(n − 1)/2 asymmetric and 0, . . .,

(n
2

)
symmetric co-kurtosis conditions, and select among them the
combination of conditions that minimizes the MSC. The set of
moment conditions selected by the MSC contains the maximal
number of conditions supported by the data. Then, we estimate
the model with all combinations of the moment conditions
included in this set, and select the optimal set of moment
conditions that minimizes the RMSC. We should, thus, end
up with the most informative set of moment conditions among
those that the data lend strongest support to. At both steps, it is
important to include in each set a sufficient number of moment
conditions such that the model remains over-identified (q > k).

In high-dimensional SVAR models, the moment selection
procedure outlined above may become computationally bur-
densome because the number of subsets of admissible asym-
metric co-kurtosis conditions increases rapidly with the number
of variables. To keep the moment selection problem tractable, it
may, therefore, be necessary to devise some kind of a sequential
procedure based on only the RMSC, starting out with the
largest admissible set of asymmetric co-kurtosis conditions
(in addition to conditions (5a)–(5c)) not rejected by the J-
test, and then dropping co-kurtosis conditions, one at a time,
until the RMSC cannot be made smaller. Alternatively, in the
combined procedure, it may be required that the sets of moment
conditions to be compared differ by at least r > 1 asymmetric
co-kurtosis conditions.

3.4. Finite-Sample Properties

To gauge the properties of the GMM estimator in small
samples, we conduct a number of Monte Carlo simulation
experiments. To facilitate comparison to the PML and recursive
PML estimators of Gouriéroux, Monfort, and Renne (2017), we
first consider the bivariate SVAR(0) model that they used in
their simulations:

yt = Bεt,

where B is an orthogonal matrix dependent on a single param-
eter, i.e.,

B =
(

cos(θ) sin(θ)

−sin(θ) cos(θ)

)

with θ = −π/5. Because all elements of B depend only on θ ,
it suffices to concentrate on the estimates of just one element,
say B11 = cos(−π/5) ≈ 0.809. Each of the independent
components of εt is assumed to follow Student’s t-distribution
with 12, 24, or 48 degrees of freedom, and standardized
to have variance unity. With increasing degrees of freedom,
the t-distribution approaches the normal distribution, which is
expected to show up as deteriorating performance of both the
GMM and PML estimators, as identification is based on non-
Gaussianity. We base GMM estimation on the following set
of moment conditions: E(ε2

1t) = E(ε2
2t) = 1, E(ε1tε2t) = 0,

E(ε3
1tε2t) = 0, and E(ε2

1tε
2
2t) = 1. As discussed in Section 3.1,

one asymmetric co-kurtosis condition is necessarily required
for identification, and with the symmetric co-kurtosis condition,
over-identification is reached.
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Table 1. Simulation results of the bivariate SVAR(0) model

T = 250 T = 500 T = 1000
DF 12 24 48 12 24 48 12 24 48

Bias

Two-step 0.043 0.061 0.065 0.030 0.052 0.061 0.013 0.042 0.060
Iterated 0.061 0.077 0.080 0.037 0.062 0.072 0.018 0.047 0.066
CUE 0.061 0.076 0.078 0.039 0.061 0.070 0.018 0.048 0.065
Recursive PML −0.103 −0.116 −0.124 −0.098 −0.125 −0.122 −0.091 −0.117 −0.124
PML 0.033 0.056 0.074 0.015 0.046 0.068 0.005 0.031 0.058

Standard deviation
Two-step 0.097 0.099 0.099 0.088 0.091 0.092 0.075 0.087 0.090
Iterated 0.103 0.102 0.102 0.091 0.094 0.094 0.078 0.088 0.092
CUE 0.101 0.101 0.101 0.090 0.093 0.093 0.077 0.088 0.092
Recursive PML 0.307 0.324 0.333 0.297 0.328 0.327 0.285 0.319 0.330
PML 0.082 0.090 0.090 0.072 0.086 0.090 0.061 0.083 0.088

Rejection rate of LR (type) test
Two-step 0.076 0.093 0.098 0.066 0.081 0.076 0.066 0.057 0.074
Iterated 0.087 0.109 0.119 0.065 0.100 0.099 0.058 0.057 0.079
CUE 0.083 0.109 0.114 0.062 0.089 0.088 0.058 0.057 0.080
PML 0.036 0.013 0.001 0.036 0.030 0.005 0.036 0.040 0.016

Rejection rate of J-test
Two-step 0.059 0.041 0.037 0.047 0.038 0.032 0.053 0.032 0.025
Iterated 0.043 0.029 0.022 0.041 0.026 0.022 0.053 0.032 0.019
CUE 0.035 0.023 0.022 0.037 0.025 0.019 0.051 0.029 0.019

NOTES: The results for the two-step, iterated and continuous updating (CUE) GMM estimators as well as the PML and recursive PML estimators of Gouriéroux, Monfort, and Renne
(2017) are based on 5000 simulated samples of T = 250, 500, and 1000 observations. The components of the error term εt = (ε1t , ε2t)

′, are first generated from independent t-distributions
with 12, 24, or 48 degrees of freedom (DF). Then the data yt are computed from yt = Bεt , where the entries of B are B11 = cos(θ), B12 = sin(θ), B21 = −sin(θ), and B22 = cos(θ)

with θ = −π/5. The errors are centered and standardized to have variance unity. The four panels contain the bias, standard deviation and the rejections rates of the LR (type) test of
B11 being equal to its true value and the J test of over-identifying restrictions at the 5% nominal significance level. GMM estimation is based on the following five moment conditions:
E(ε2

1t) = E(ε2
2t) = 1, E(ε1tε2t) = 0, E(ε3

1tε2t) = 0, and E(ε2
1tε

2
2t) = 1. The PML estimators assume the true error distribution.

The two topmost panels of Table 1 contain the bias and
standard deviation of the estimates of B11. Recall that B is
identified only up to permutation and multiplication by −1 of
its columns. Therefore, the estimator of B11 may estimate either
B11, −B11, B12 or −B12, and the measures of bias and standard
deviation are based on a transformation of the estimate of B11,
that is, closest to the true value of B11 (minimizing the squared
deviation; cf. Gouriéroux, Monfort, and Renne 2017, sec. 2.7).

With given degrees of freedom of the t-distribution assumed
for the error term, the bias and standard deviation of all
estimators decreases with increasing sample size, as might
be expected. With greater degrees of freedom, identification
is weaker, and the estimators tend to have greater bias and
standard deviation. Perhaps somewhat surprisingly, the two-
step GMM estimator is more accurate than the iterated and
continuous updating estimators in all cases. The PML estimator
outperforms both the GMM and recursive PML estimators
when based on the true error distribution. In practice, the
error distribution is, of course, unknown, and while the PML
estimator seems quite robust with respect to misspecification
of the degrees of freedom, with an incorrect distribution, its
performance can deteriorate to some extent.

In the two bottom panels of Table 1, we report the rejection
rates of the LR (type) test of B11 being equal to its true value
and the J-test of over-identifying restrictions. In both cases, the

nominal significance level of the test is 5%. The LR test based
on PML estimation is under-sized in all cases, with rejection
rates close to zero in the case of 48 degrees of freedom, when
the error distribution is very close to being Gaussian. When
the number of degrees of freedom is misspecified, severe size
distortions may occur (these results are not shown to save space,
but they are available upon request). The LR type test related
to GMM estimation is somewhat over-sized, and severest over-
rejection takes place when the sample size is small and the error
distribution is close to a Gaussian distribution. Of the three
GMM estimators, the two-step estimator tends to be the most
accurate in terms of size. The Wald test, in contrast, exhibits
severe size distortions, with the rejection rate at least 14%
in all cases (the results are not shown to save space, but are
available upon request). Hence, based on this limited simulation
evidence, it is advisable to rely on the LR type test instead of the
Wald test. The J-test follows a similar pattern. When the error
terms follow the t distribution with 12 degrees of freedom, the
rejection rates are relatively close to the nominal size of the
test even in small samples, but as identification weakens with
increasing degrees of freedom, the rejection rates fall.

Next, we introduce some autocorrelation, and examine the
performance of the GMM estimator in a SVAR(1) model,
concentrating on the two-step GMM estimator found superior
above. Specifically, we consider the following extension of the
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Table 2. Simulation results of the two-step GMM estimator of the SVAR(1) model

T = 250 T = 500 T = 1000
C11 DF Bias Std. J-test Bias Std. J-test Bias Std. J-test

12 0.036 0.096 0.056 0.025 0.085 0.050 0.012 0.075 0.063
0.0 24 0.050 0.094 0.047 0.047 0.091 0.037 0.040 0.086 0.034

48 0.057 0.097 0.040 0.061 0.091 0.033 0.056 0.090 0.024
12 0.036 0.096 0.057 0.025 0.085 0.049 0.012 0.074 0.063

0.5 24 0.050 0.094 0.046 0.047 0.092 0.037 0.040 0.086 0.033
48 0.056 0.096 0.041 0.061 0.091 0.033 0.056 0.090 0.024
12 0.037 0.096 0.050 0.025 0.085 0.050 0.012 0.075 0.066

0.9 24 0.051 0.095 0.040 0.046 0.091 0.037 0.041 0.086 0.034
48 0.058 0.096 0.036 0.061 0.092 0.030 0.056 0.090 0.024
12 0.041 0.096 0.033 0.026 0.085 0.052 0.012 0.074 0.049

0.97 24 0.054 0.096 0.022 0.047 0.091 0.038 0.041 0.086 0.025
48 0.061 0.096 0.019 0.063 0.092 0.029 0.057 0.090 0.019

NOTES: See the notes to Table 1. The data are generated from the DGP in Equation (15).

previous data-generating process

yt =
(

1
1

)
+

(
C11 0
0.5 0.5

)
yt−1 + Bεt, (15)

where the components of εt = (ε1t, ε2t)
′ are generated in

the same way as above, and C11 ∈ {0, 0.5, 0.9, 0.97}, with
persistence increasing in the value of C11. The same sets
of moment conditions as above are entertained. The results
reported in Table 2 are comparable to those in Table 1, with the
bias and standard deviation in most cases even smaller. While
the persistence seems to have little effect on the properties of
the estimator, the rejection rate of the J test seems to fall more
with weak identification when persistence is higher.

To gauge the performance of the J-test in a larger system,
we consider a trivariate SVAR model, where the B matrix
in the data generating process is taken to be the estimated
impact matrix B̂ in our empirical application in Section 4.
Each of the independent components of εt is generated from
a Student’s t-distribution with 12, 24, or 48 degrees of freedom,
and standardized to have variance unity. For simplicity, the
model contains no lags. We use four asymmetric and one sym-
metric co-kurtosis conditions in estimation (the ones included
in the optimal set in the empirical application in Section 4),
and because only three asymmetric conditions are necessarily
needed for identification, the model is over-identified, with two
over-identifying conditions. In all cases, the rejection rates are
lower than 5%, and this example demonstrates that when the
errors are close to being Gaussian, the J-test can be severely
undersized. With errors following the t distribution with only 12
degrees of freedom, the rejection rate of the J-test slowly moves
closer to the nominal size as the sample size increases, but with
as few as 250 observations, there are great differences among
the three GMM estimators such that the two-step estimator
seems to be the most reliable in small samples.

All in all, our simulation results warrant three conclusions.
First, the GMM estimators are slightly inferior to the PML
estimator of Gouriéroux, Monfort, and Renne (2017) in accu-
racy (assuming the correct error distributions are known), but
outperform it in terms of size of the LR (type) test. Moreover,

both the GMM and PML estimators are superior to the recursive
PML estimator. Second, the performance of both the GMM and
PML estimators deteriorates as the error distributions get closer
to normal distributions. Third, the two-step GMM estimator
seems superior to the iterated and CUE estimators in terms
of accuracy and size of the LR type and J-tests. The falling
rejection rates of the J-test with weakening identification as
well as the superiority of the two-step estimator are also
in line with the findings of Gospodinov, Kan, and Robotti
(2014) and Gospodinov, Kan, and Robotti (2017). However,
our simulation study is quite limited, and should be extended
in future research. Among other things, our conclusions may
depend on a number of things, including the data-generating
process and the moment conditions employed.

4. EMPIRICAL ILLUSTRATION

We demonstrate SVAR analysis based on GMM estimation
by means of an empirical application to quarterly United States
macroeconomic data covering the period from 1960:I to 2017:II
(230 observations). In particular, we consider a stylized three-
variable VAR model for yt = (πt, ut, rt)

′, where πt is inflation,
ut is the unemployment gap, and rt is the federal funds rate.
In the period 2009–2015, when the federal funds rate was
virtually constant at the zero lower bound, it is replaced by
the “shadow rate” of Wu and Xia (2016). Otherwise, all data
are extracted from the Federal Reserve Economic Database
(FRED). Inflation is computed as the logarithmic difference,
multiplied by 400, of the seasonally adjusted GDP deflator
(mnemonic GDPDEF) and the unemployment gap as the dif-
ference between the observed unemployment rate (mnemonic
UNRATE) and the natural rate of unemployment (mnemonic
NROU).

To obtain initial estimates of the autoregressive parameters,
we start out by estimating a reduced-form VAR model with an
intercept term. The Akaike and Schwartz information criteria
pick models with 6 and 2 lags, respectively. The latter exhibits
remaining autocorrelation in the residuals of all equations,
while in the former, it is clearly a problem only in the equation
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Table 3. Rejection rates of the J-test at the nominal 5% significance level in the trivariate SVAR model

T = 250 T = 500 T = 1000
DF 12 24 48 12 24 48 12 24 48

Two-Step 0.021 0.008 0.004 0.027 0.005 0.004 0.032 0.007 0.003
Iterated 0.009 0.002 0.001 0.017 0.003 0.001 0.029 0.004 0.002
CUE 0.006 0.003 0.002 0.021 0.004 0.002 0.034 0.007 0.003

NOTES: The results for the two-step, iterated, and continuous updating (CUE) GMM estimators are based on 5000 simulated samples of T = 250, 500, and 1000 observations. The
components of the error term εt = (ε1t , ε2t , ε3t)

′, are first generated from independent t-distributions with 12, 24, or 48 degrees of freedom (DF). Then the data yt are computed from
yt = Bεt , where B equals the estimated matrix of impact effects B̂ in Section 4. The co-kurtosis conditions used in GMM estimation are the following: E(ε3

1tε2t) = 0, E(ε3
2tε3t) =

0, E(ε3
3tε1t) = 0, E(ε3

3tε2t) = 0, and E(ε2
1tε

2
2t) = 1 .

of the federal funds rate. Qualitatively, the fit of the model with
four lags is similar to the former, so in the interest of parsimony,
we proceed with the VAR(4) model. For identification, non-
Gaussianity of at least two of the structural shocks is crucial,
and, therefore, we check the residuals of the estimated VAR
model for normality. Because the structural errors are linear
combinations of the reduced-form errors, normality of all of
the latter would imply normality of the former and, hence,
violation of identification. The quantile–quantile (Q–Q) plots
of the reduced form residuals in the upper panel of Figure 1
indicate heavy tails and, hence, clear deviation from normality,
which suggests that the necessary conditions for identification
might be satisfied.

To find the optimal set of moment conditions, we next
estimate a three-variable SVAR(4) model using different com-
binations of these conditions. In view of the simulation results
in Section 3.4, we use the two-step GMM estimator through-
out. In all cases, conditions (5a)–(5c) are included, while the
rest of the moment conditions are selected by the sequential
procedure outlined in Section 3.3. With three variables in
the SVAR, there are six asymmetric and three symmetric co-
kurtosis conditions in total. In the first step, the set of moment
conditions minimizing the MSC contains all six asymmetric co-
kurtosis conditions and two symmetric co-kurtosis conditions
(E(ε2

1tε
2
2t) = E(ε2

2tε
2
3t) = 1). The p-value of the J-test for

this set equals 0.571. In the second step, we consider all over-
identifying subsets of these conditions not rejected by the J-
test at the 5% level. The set minimizing the RMSC among
these subsets contains four asymmetric co-kurtosis conditions
(E(ε3

1tε2t) = E(ε3
2tε1t) = E(ε3

3tε1t) = E(ε3
3tε2t) = 0) and

one symmetric co-kurtosis condition (E(ε2
1tε

2
2t) = 1). The p-

value of the J-test for the selected optimal set is 0.661. In
addition to the set of moment conditions selected, we also
experimented with a number of alternative over-identifying
sets, and in this particular application, the results turned out
to be quite robust with respect to the moment conditions
entertained.

The Q–Q plots in the lower panel of Figure 1 indicate non-
Gaussianity of all three structural errors, so local identification
is reached. The GMM estimate of the matrix of impact effects
is

B̂ =

⎡
⎢⎢⎢⎣

0.901
(0.077)

−0.153
(0.074)

0.185
(0.063)

0.050
(0.030)

0.264
(0.015)

−0.074
(0.022)

−0.076
(0.093)

−0.129
(0.069)

0.959
(0.250)

⎤
⎥⎥⎥⎦

where the figures in parentheses are asymptotic standard errors.
According to the asymptotic Wald test, only the (2,1) and (3,1)
elements are insignificant at the 5% level. However, in view
of the simulation results in Section 3.4, the Wald test tends to
over-reject, and, therefore, we also conducted the LR type test
of significance of the elements of the impact matrix. These tests
indicate significance of only the (2,2), (2,3), and (3,3) elements.
Thus, only the third shock appears to have a significant effect
(at the 5% level) on impact on the federal funds rate, suggesting
that it is the likeliest candidate for the monetary policy shock.
If, based on this, we label the third shock as the monetary policy
shock, we can test for the identification scheme considered in
the previous literature that B is a lower triangular matrix, that
is, the null hypothesis B12 = B13 = B23 = 0 (see, e.g.,
Castelnuovo 2016 and the references therein). This hypothesis
is clearly rejected, with p-values 2.79e–12 and 0.013 in the
Wald and LR type tests, respectively. The markedly smaller
p-value of the Wald test may indicate its poor finite-sample
properties, but in any case, there seems to be little support
for the recursive identification scheme popular in the previous
literature. It must be borne in mind, though, that the test is based
on the assumption that the third shock is the monetary policy
shock.

The impulse responses of the three shocks along with their
95% confidence bands are depicted in Figure 2. Only the
third shock was found to have a statistically significant effect
on the federal funds rate on impact at the 5% level in the
asymptotic LR type test, and this conclusion is reconfirmed by
the bootstrapped confidence bands in the rightmost column of
Figure 2. Thus, only the third shock can indeed be labeled as the
monetary policy shock. The effect of a contractionary monetary
policy shock on inflation is seen to be initially positive, and
turning negative only after a relatively long time. This may
reflect the so called price puzzle effect due to the model being
very simple. Its effect on the unemployment gap is negative on
impact, but turns positive after a few quarters, and eventually
converges to zero. Hence, the effect of the contractionary
monetary policy shock is negative on inflation and output in
the medium term, albeit these effects are not significant at the
5% level.

The first shock (top row of Figure 2) has a positive effect
on both inflation and unemployment gap, and can thus be
labelled a positive supply (or cost-push) shock. The second
shock (the middle row), having a negative effect on inflation
and a positive effect on the unemployment gap on impact, in
turn, can be labelled as a contractionary demand shock. Visual
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Figure 1. Quantile–quantile plots of the residuals (upper panel) of the equations of inflation, unemployment gap and the federal funds rate
(from left to right) and the structural errors (lower panel) of the selected SVAR(4) model.

inspection of the confidence bands suggests that asymptotic
theory does not provide a very accurate approximation. In
particular, based on the bootstrapped confidence bands, the
evidence is weaker against the lower-triangularity restriction
on B that was strongly rejected by the asymptotic tests. It
must, of course, be borne in mind that the tests involving joint
restrictions and confidence intervals on single parameters are
not directly comparable. Moreover, the results should be inter-
preted with caution because the residual-based wild bootstrap
does not produce confidence intervals with asymptotically cor-
rect coverage rates in the presence of conditional heteroscedas-
ticity, especially at short horizons. Nevertheless, according to
the simulation results of Brüggemann, Jentsch, and Trenkler
(2016), it performs reasonably well and is not outperformed by
the asymptotically valid residual-based moving block bootstrap
even in moderately large samples.

5. CONCLUSION

In this article, we have considered GMM estimation of
structural SVAR models whose errors are non-Gaussian. In
particular, we have shown that by suitable selection of moment

conditions, non-Gaussianity can be exploited to identify the
parameters of the SVAR model up to the ordering and scaling
of the structural shocks. Our approach deviates from the related
statistical identification literature in that the structural shocks
do not have to be independent, and no particular distributional
assumptions are required. The independence assumption may
be problematic because there need not be a linear transfor-
mation that makes the errors of the reduced-form VAR model
independent, and it precludes various forms of conditional het-
eroscedasticity. Although the PML estimators of Gouriéroux,
Monfort, and Renne (2017) are to some extent robust with re-
spect to distributional misspecification, our approach is generic
in that the optimal set of moment conditions can in any appli-
cation be selected by conventional moment selection criteria.
There seems to be no corresponding procedure for specifying
the error distributions in ML and PML estimation, and the
selected distributions may affect the results. According to our
simulation study the performance of the GMM estimator seems
comparable to that of the PML estimator and superior to the
recursive PML estimator.

Statistical identification rarely produces structural shocks
with economic interpretation, and our approach is no excep-
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Figure 2. Impulse responses of the three shocks in the SVAR model estimated using the full set of moment conditions. Each row contains
the impulse responses of one shock on all variables. The shaded areas are the pointwise 95% Hall’s percentile confidence bands obtained by
residual-based wild bootstrap with 10,000 replications.

tion. In our empirical application to a trivariate United States
macroeconomic model, in order to label the shocks, we made
use of the shapes of the impulse responses on which there is a
relatively wide agreement in the literature. Labeling could also
be based on short-run or long-run restrictions that are testable in
our setup. As a matter of fact, we tested recursive identification
restrictions entertained in some of the related empirical liter-
ature, and they were strongly rejected. Yet another possibility
would be to combine the moment conditions arising from non-
Gaussianity with those related to external instruments. The
instruments typically used in the literature are known to be
potentially weak, and the larger set of moment conditions might
enhance inference.

As discussed in Section 3.2, identification may be weak, that
is, the condition for local identification may be only marginally
satisfied, if the distribution of the error is close to being
Gaussian. In that case, standard asymptotic inference may work
poorly. Alternative asymptotic theory has recently been derived
by Donovon and Hall (2018). They also consider simulation-
based methods, including indirect inference, simulated method
of moments, and efficient method of moments that our

set-up could be extended to as well. It may also be difficult
to detect the presence of weak identification. In this article,
we rely on checking for non-Gaussianity of the estimated
structural shocks, but Guay and Normandin (2018) have
recently considered testing for their normality based on the
reduced-form VAR model that might be applicable in our set-up
as well. Another possibility might be a test based on comparing
two different GMM estimators, which have the same limiting
distribution only under strong identification as in Inoue and
Rossi (2011). We leave these issues for future research.

Appendix: Local Identification

Proof of Proposition 1. The necessary condition for θ to be
locally identified is that the expectation of the Jacobian matrix
E

[
∂f (υt, θ0)/∂θ ′], evaluated at θ0, the true value of θ , has full column

rank k. Because the row rank equals the column rank, it suffices to
show that k rows of the Jacobian matrix are linearly independent. The
Jacobian matrix corresponding to conditions (5a)–(5c) and n(n − 1)/2
conditions of the form (6) is obtained by stacking (A.1), (A.2), the
n(n − 1)/2 components of the form (A.3), and n(n − 1)/2 components
of the form (A.4):
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E

[
∂(εt ⊗ xt−1)

∂θ ′
]

= −
[
E

[
(In ⊗ xt−1)(x′

t−1 ⊗ A)
]

, 0n(np+1)×n2

]
,

(A.1)

E

[
∂(ε2

it)

∂θ ′

]
= [

01×n(np+1), −2(e′
i ⊗ ai)

]
, i = 1, . . . , n, (A.2)

E

[
∂(εitεjt)

∂θ ′
]

=
[
01×n(np+1), −(e′

j ⊗ ai) − (e′
i ⊗ aj)

]
, i �= j, (A.3)

E

[
∂(ε3

itεjt)

∂θ ′

]
= −

[
E(ε3

it)(E(x′
t−1) ⊗ aj), 3(e′

j ⊗ ai) + E(ε4
it)(e

′
i ⊗ aj)

]
,

i �= j. (A.4)

Here i, j ∈ {1, ..., n}, ei is the ith column of the n×n identity matrix,
and ai is the ith row of A ≡ B−1.

The submatrix consisting of the first n(np + 1) rows in Equation
(A.1),the n rows in (A.2), and the n(n−1)/2 rows given by (A.3) below
them is block diagonal, and thus the first n(np + 1) rows are linearly
independent of the following n + n(n − 1)/2 rows. Moreover, (A.1)
is of full row rank, which can be easily seen by writing its n(np + 1)

leftmost columns as

E
[
P((In ⊗ xt−1)(x′

t−1 ⊗ A)
)] = E(xt−1x′

t−1) ⊗ A (A.5)

for a particular permutation matrix P. Because permuting the rows of
a matrix does not change its rank, we can focus on E(xt−1x′

t−1) ⊗ A.
Now, as a positive definite matrix, the (np+1)×(np+1) square matrix
E(xt−1x′

t−1) is of full rank, and the n × n matrix B (and hence A =
B−1) is assumed to be of full rank. Because rank(E(xt−1x′

t−1) ⊗ A))
= rank(E(xt−1x′

t−1))×rank(A) = (np + 1)n, the first n(np + 1) rows

of E
[
∂f (υt, θ0)/∂θ ′] must be linearly independent. Finally, it is clear

that the n rows in (A.2), and the n(n − 1)/2 rows given by (A.3) must
be mutually linearly independent because the rows of A are linearly
independent.

The remaining rows of E
[
∂f (υt, θ0)/∂θ ′] in (A.4) can be readily

seen to be mutually linearly independent, and independent of the first
n(np + 1) rows of the Jacobian matrix. However, they are linearly
independent of the rows given by (A.3) only if at most one of the
components of εt is Gaussian and suitable asymmetric co-curtosis
moment conditions are selected. To see this, suppose first that all n
components of εt are non-Gaussian. In this case, generally E(ε3

it) �= 0

and E(ε4
it) �= 3 for all i, and it is not possible to express any of the

rows of the form (A.4) as a linear combination of the rows given by
(A.3), and thus the Jacobian matrix is of full row (and column) rank.
In contrast, if the ith component of εt is Gaussian, E(ε4

it) = 3 and

E(ε3
it) = 0, then it is possible that one of the rows given by (A.4)

equals 3 times one of the rows given by (A.3), and the Jacobian matrix
is of reduced rank. However, by inspecting (A.4), it is easy to see that
if the asymmetric co-kurtosis conditions do not involve the third power
of the Gaussian element of εt, the rows given by (A.3) and (A.4) are
linearly independent, and the Jacobian matrix is of full rank.

Finally, multiplication of the columns of B by −1 is equivalent to
multiplication of the rows of A by −1, which has no effect on the rank
of the Jacobian matrix.�

Let us illustrate Proposition 1 by an example of a trivariate SVAR
model (n = 3), estimated by imposing three asymmetric co-kurtosis
conditions: E(ε3

1tε2t) = 0, E(ε3
1tε3t) = 0, and E(ε3

2tε3t) = 0. Thus,

q = k. The expectation of the Jacobian matrix becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−E
[
(I3 ⊗ xt−1)(x′

t−1 ⊗ A)
]

03k×3 03k×3 03k×3

01×3(3p+1) −2a1 01×3 01×3
01×3(3p+1) 01×3 −2a2 01×3
01×3(3p+1) 01×3 01×3 −2a3
01×3(3p+1) −a2 −a1 01×3
01×3(3p+1) −a3 01×3 −a1
01×3(3p+1) 01×3 −a3 −a2

−E(ε3
1t)(E(x′

t−1) ⊗ a2) −E(ε4
1t)a2 −3a1 01×3

−E(ε3
1t)(E(x′

t−1) ⊗ a3) −E(ε4
1t)a3 01×3 −3a1

−E(ε3
2t)(E(x′

t−1) ⊗ a3) 01×3 −E(ε4
2t)a3 −3a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is seen that the last n(n − 1)/2 = 3 rows of the Jacobian matrix
can be linearly independent of the rows in the block above it only
if ε1t and ε2t are non-Gaussian because then E(ε4

1t) and E(ε4
2t) are

generally different from each other and from 3. Also, the quantities
E(ε3

1t) and E(ε3
2t) are generally different from zero, if the distributions

of these errors are asymmetric. However, even if their distributions
are symmetric, their being leptokurtic suffices to guarantee that the
Jacobian matrix is of full rank. If ε1t is Gaussian, the quantities E(ε4

1t)

and E(ε3
1t) equal 3 and 0, respectively, and the first and second rows

in bottom block equal 3 times the first and second rows in the third
block, respectively, so that they are linearly dependent. Likewise, if ε2t
is Gaussian, the third rows in the middle and bottom blocks are linearly
dependent. In contrast, even if the third component ε3t is Gaussian, the
Jacobian matrix has full rank because this component does not enter
the moment conditions in its third power, and thus its moments do not
appear in the Jacobian matrix.

SUPPLEMENTARY MATERIAL

A zip file containing the data and R codes for replicating the
empirical results is available online.
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