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ABSTRACT 

As coral cover has declined throughout the Caribbean, interest in the role that recruitment 

processes play in reef recovery has increased. Studies investigating these processes have been 

hampered by the inability to identify many species of coral larvae or recently settled recruits 

using morphology alone. In this study, the utility of targeting the non-coding internal transcribed 

spacer (ITS) regions with a multiplex PCR assay to identify common Caribbean coral species 

was explored. To design this assay, a database of ITS sequences was developed for 17 Caribbean 

scleractinian coral species that are important reef builders and/or are common in the Florida 

Keys. It was predicted that the ITS region would contain enough genetic variation to allow for 

separation of these corals to the species level, and that this variation could be targeted using a 

single-step nested multiplex PCR technique. Analyzing the ITS region, sufficient genetic 

variation was detected that would allow for nine of the seventeen Caribbean coral species 

targeted to be categorized to the genus level, and the remaining eight to the species level. 

Subsequently, three genus-specific primers (with a total of seven included species) and six 

species-specific primers were designed for use in a single-step nested multiplex PCR protocol 

that facilitates coral identification. While still under development, this genetic assay showed 

significant promise as an inexpensive and relatively straightforward method of identifying 



planula larvae and recently settled coral recruits to the genus or species level. The increased 

accuracy and abbreviated timeframe offered by this technique for identifying coral larvae and 

recruits justifies its use as a tool for evaluating Caribbean reef recovery. 
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LITERATURE REVIEW 

 Coral reefs are important marine ecosystems providing vital economic and ecological 

goods and services. Although covering only 0.1-0.5% of the ocean floor, these ecosystems are 

home to almost a third of the world’s marine fish species and provide about 10% of the fish 

consumed by humans (Moberg and Folke 1999, Adjeroud et al. 2016). Hermatypic corals 

provide the structure for these reefs, and create topographic complexity for the wide diversity of 

animals living there (Friedlander and Parrish 1998, Donahue et al. 2008, Adjeroud et al. 2016). 

Tens of millions of people living in countries near coral reefs depend on them and their 

associated biological communities for income or dietary needs (Salvat 1992, Moberg and Folke 

1999, Adjeroud et al. 2016). Researchers have also identified several compounds found only on 

coral reefs that could be used to treat many different types of diseases (Moberg and Folke 1999). 

In addition to direct goods and services, these reefs protect coastal seagrass beds and mangroves 

from oceanic currents and tides, which in turn serve as tidal buffers for coastal areas and provide 

nursery habitat for many fish species (Ogden and Gladfelter 1983, Moberg and Folke 1999). 

Corals are vulnerable to global stressors such as increased oceanic temperature (Hoegh-

Guldberg 1999, Hughes et al. 2003) and declining pH from ocean acidification (Renegar and 

Riegl 2005, Anthony et al. 2008, Marubini et al. 2008). Bleaching, which is primarily caused by 

increased oceanic temperature and refers to the loss of color due to the expulsion of symbiotic 

algae, has caused massive declines in coral cover worldwide, including complete loss of all 

living corals in many countries (Goreau et al. 2000, Graham et al. 2015).  In addition to these 

global stressors, corals can be harmed by more local impacts including enhanced sedimentation 

(Rogers 1990, Gilmour 1999), nutrient loading (Gilmour 1999, Renegar and Riegl 2005), and 
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overharvesting of herbivores (Williams and Polunin 2000, Rogers and Miller 2006, Doropoulos 

et al. 2014).   

 Historically, reefs in the Florida Keys National Marine Sanctuary (FKNMS) consisted 

primarily of large, long-lived, reef-building scleractinian corals such as those in the genera 

Acropora, Montastraea, and Orbicella (Gleason et al. 2001, Donahue et al. 2008, Huntington et 

al. 2011). Left undisturbed, these reef-builders grow large enough to become the dominant coral 

species in Caribbean reef ecosystems, assisted by their superior competitive ability to gain and 

maintain physical space (Connell et al. 2004). For example, corals in the genus Acropora are 

large branching species that grow over smaller, encrusting corals and prevent them from 

receiving adequate sunlight. In contrast, massive reef-building corals, such as those in the genera 

Diploria, are able to dominate space on the substrata, hindering larval settlement of other coral 

species (Connell et al. 2004). Areas dominated by large reef-building species are the preferred 

habitat for many fish and marine invertebrates, as these corals provide structural support against 

wave action and hiding spots from predators (Friedlander and Parrish 1998, Donahue et al. 2008, 

Ruzicka et al. 2013). However, these long-lived corals have low recruitment rates, and can take 

decades to reach maturity (Hughes and Tanner 2000, Green et al. 2008, Huntington et al. 2011). 

Thus, when these species face times of increased mortality, it becomes more difficult for their 

populations to be sustained through recruitment (Green et al. 2008, Huntington et al. 2011, 

Ruzicka et al. 2013). 

Cover of reef-building corals in the Caribbean has steadily decreased since the 1970’s 

(Hughes 1994, Hughes et al. 2003, Donahue et al. 2008). Widespread bleaching and disease of 

scleractinian corals beginning in the 1980’s, exacerbated by global climate change, has led to 

massive decreases in richness and abundance in the Florida Keys (Donahue et al. 2008). Climatic 
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events like the one occurring in January 2010, where the Florida Keys experienced one of the 

coldest 12-day periods on record, have caused massive mortality (Kemp et al. 2011, Colella et al. 

2012). Furthermore, the loss of Diadema, herbivorous fish, and other herbivores to issues 

including disease and overharvesting have contributed to reefs being dominated by macroalgae 

(Williams and Polunin 2000, Rogers and Miller 2006, Idjadi et al. 2010, Doropoulos et al. 2014).  

As the abundance of primary reef-building corals has declined, there has been a marked 

increase in reefs dominated by smaller scleractinian corals (including those in the genera Porites, 

Siderastrea, and Undaria) that recruit in higher numbers, mature at a faster rate, and have shorter 

lifespans (Gleason et al. 2001, Green et al. 2008, Huntington et al. 2011). Reefs consisting 

primarily of these “weedy” species display a lower diversity of fish and corals than reefs 

populated with larger coral species (Donahue et al. 2008, Ruzicka et al 2013). However, these 

weedy corals tend to be less vulnerable to threats including lowered pH and increased 

temperature, and can handle the changing global climate better than the major reef-building 

species (Green et al. 2008, Huntington et al. 2011). Furthermore, these weedy species can take 

over an area quickly after a disturbance event, making it more difficult for major reef-building 

species to repopulate (Rogers and Miller 2006, Ruzicka et al. 2013). 

  Another reef type being seen more frequently in the FKNMS is one dominated by 

gorgonians (Ruzicka et al. 2013, Ramsby et al. 2014). While scleractinian coral populations in 

the Florida Keys have decreased over the past few decades, gorgonian numbers have either 

stayed stable or increased (Donahue et al. 2008, Ruzicka et al. 2013). During the 1997-1998 El 

Niño event, corals, including gorgonians, in the Florida Keys were severely damaged, but 

gorgonians proved more resilient and were able to recover faster (Colella et al. 2012, Ruzicka et 

al. 2013). Gorgonians have proven to be more resistant to such factors as reduced pH, disease, 
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and large storms, and that has allowed them to become the dominant taxa on shallow fore-reefs 

of the Florida Keys (Gabay et al. 2014, Ramsby et al. 2014, Ruzicka et al. 2013). 

 Reefs lacking coral cover and dominated by fleshy macroalgae are also becoming more 

common globally, especially in areas with decreased herbivore abundances (Williams and 

Polunin 2000, Lirman 2001, Rogers and Miller 2006, Doropoulos et al. 2014, Toth et al. 2014). 

Without herbivores, fleshy macroalgae can overgrow corals, limit the amount of sunlight 

reaching the substrata, and inhibit new coral recruitment (Williams and Polunin 2000, Lirman 

2001, Gleason et al. 2009, Gleason and Hoffman 2011, Doropoulos et al. 2014).  

 The primary management technique being implemented to protect and restore coral reefs 

to their original state after degradation is the creation of no-take marine reserves where fishing 

and other harvesting activities are strictly regulated (Williams and Polunin 2000, Donahue et al. 

2008, Huntington et al. 2011, Toth et al. 2014). This method of reef management relies on a 

cascade of events whereby the recovery of herbivorous fish populations leads to increased 

grazing on macroalgae. In turn, the reduced macroalgal cover will result in enhanced coral larval 

settlement combined with improved survival and growth. A counter argument to this 

management strategy states that while there do seem to be fewer herbivorous fish on reefs 

dominated by macroalgae in the FKNMS, herbivorous fish were not historically targeted by 

fisheries in this region (Toth et al. 2014). This argument points to the alternative conclusion that 

rather than the departure of fish leading to increases in macroalgae and decreases in coral cover, 

corals may die off first causing the fish to leave and macroalgae to take over (Toth 2014). In 

either case, evidence suggest these marine reserves have been successful in reestablishing 

populations of herbivorous fish, but they have so far failed in returning reefs to their original 
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coral-dominated state (Williams and Polunin 2000, Donahue et al. 2008, Huntington et al. 2011, 

Toth et al. 2014.). 

 After periods of extensive coral mortality, reef recovery is only possible if there is 

suitable reproductive output, adequate larval supply, substantial settlement success, and high 

rates of post-settlement survivorship (Hughes and Tanner 2000, Gleason et al. 2001, Gleason et 

al. 2009, Gleason and Hoffman 2011, Kersting et al. 2014, Humanes and Bastidas 2015, 

Adjeroud et al. 2016). Therefore, it is necessary to understand what role recruitment, the process 

by which coral larvae establish themselves on a reef, may play in maintaining corals on reefs. 

Corals have two mechanisms of sexual reproduction: broadcasting (common for major reef-

building corals) and brooding (common for weedy coral species and Caribbean gorgonians) 

(Brazeau and Lasker 1989, Baird et al. 2009, Gleason and Hoffman 2011). Broadcasting corals 

release eggs and sperm in synchronous mass spawning events coincident with the lunar cycle 

once or twice a year. These gametes combine in the water column to form embryos that develop 

into planula larvae that spend days to weeks in the water column (Babcock et al. 1986, Ritson-

Williams et al. 2009). Brooding corals only release sperm, resulting in internal fertilization in the 

polyp of a conspecific neighbor and the eventual release of fully developed planula larvae 

(Ritson-Williams et al. 2009, Gleason and Hoffman 2011). Brooding corals can spawn several 

times per year, but generally release fewer propagules per cycle than broadcasting corals (Ritson-

Williams et al. 2009). These larvae typically spend only hours to days in the plankton, but have 

the potential to spend weeks in the water column (Ritson-Williams et al. 2009). After dispersing 

in the plankton, planula larvae from both types of corals cement to the benthos and 

metamorphose (Ritson-Williams et al. 2009, Gleason and Hoffman 2011, Doropoulos et al. 

2014). Once these individuals have metamorphosed and survived for long enough to establish 
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themselves on the reef and become visible to observers, they are considered recruits (Caley et al. 

1996, Ritson-Williams et al. 2009).  

 Historically it was assumed that benthic marine invertebrate larvae recruit to areas far 

from their spawning sites (Caley et al. 1996, Pechenik 1999). However, verification that in some 

cases established adults are genetically similar to recruits provides evidence that propagules may 

settle close to their site of origin (Caley et al. 1996, Pechenik 1999, Cowen et al. 2000, Vermeij 

2005). As larvae, corals may maintain proximity to natal reefs by responding to environmental 

cues including light, hydrostatic pressure, sound, and chemical signals. (Gleason and Hoffman 

2011). Short dispersal distances may reduce coral mortality in the plankton (Pineda et al. 2009), 

and ensure that recruits are well-adapted for the area in which they settle (Strathmann et al. 

2002). The benefits of short-range dispersal, however, must be balanced against the possibility of 

overcrowding and decreased genetic variability as the number of conspecific corals increase on a 

reef (Pechenik 1999, Ritson-Williams et al. 2009). 

 Differences in planktonic larval duration may impact community resilience, especially 

following major die-off events. Most long-lived, reef-building scleractinians are broadcast 

spawners so their larvae are more likely to be dispersed away from the natal reef (Ritson-

Williams et al. 2009). In contrast, brooding Caribbean coral species exhibit a higher incidence of 

local recruitment (Brazeau et al. 2005, Ritson-Williams et al. 2009). Some brooding corals are 

known to self-fertilize, thus facilitating reproductive and recruitment success in conditions of 

low adult densities (Brazeau et al. 1998, Gleason et al. 2001). Therefore, it follows that if low 

abundances of brooding corals are left on a reef after a period of coral die-off, they could quickly 

recover and become the dominant reef taxa. However, to predict accurately how different species 
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of corals will repopulate degraded reefs, it is necessary to obtain additional information on coral 

recruitment (Adjeroud et al. 2016). 

 As coral cover has declined worldwide, there has been increased focus on the role that 

recruitment plays in reef recovery. Studies suggest lower recruitment rates in the Caribbean than 

in other regions such as the Indo-Pacific, with recruitment rates declining over the last few 

decades (Bak and Engel 1979, Rogers et al. 1984, Carlon 2001, Green and Edmunds 2011, van 

Woesik et al. 2014, Humanes and Bastidas 2015). Most recent investigations indicate no 

relationship between recruitment rates and reef recovery (van Woesik et al. 2014, Humanes and 

Bastidas 2015), although a few studies in Jamaica have documented a positive correlation 

between the recovery of large reef-building corals and recuperating populations of the long-

spined urchin Diadema (Carpenter and Edmunds 2006, Idjadi et al. 2006, Idjadi et al. 2010). The 

commonly observed disconnect between coral recruitment rates and adult communities in the 

Caribbean could be due to several factors. First, even when there are high levels of recruitment, 

most of the recruits are from weedy species, such as Undaria agaricites, rather than primary 

reef-building corals (Bak and Engel 1979, Carlon 2001, Green and Edmunds 2011, Humanes and 

Bastidas 2015). Thus, high recruitment rates are not leading to recovery of the primary reef-

building coral dominated condition (Carlon 2001, Green and Edmunds 2011, Humanes and 

Bastidas 2015). On the other hand, studies documenting high recruitment rates of primary reef-

building corals, but low abundances of corresponding adults suggest that there is significant post-

settlement mortality (van Woesik et al. 2014). A final explanation for the discrepancy between 

adult and recruit abundances could be the inability to identify young coral recruits to the species 

level using morphology alone. For example, van Woesik et al. (2014) noted that Acropora spp. 

recruits were common on Florida Keys reefs, although adults of these species were virtually 
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absent. However, a photo of an Acropora spp. recruit provided in van Woesik et al. (2014) is 

similar in appearance to an encrusting bryozoan and suggestive of a potential misidentification. 

 To predict accurately which reefs will recover to their original coral-dominated state, a 

reliable estimate of coral recruitment rates is necessary (Adjeroud et al. 2016). However, 

quantifying coral recruitment rates to the species level can be difficult as young coral recruits can 

be only millimeters in size making morphological characteristics among species difficult to 

distinguish (Baird and Babcock 2000, Babcock et al. 2003). While the relatively low coral 

diversity of the Caribbean can make coral identification simpler and easier than in other regions, 

still some species, such as Siderastrea siderea versus Undaria agaricites, and the genus Diploria 

versus Favia fragum, show striking similarities at smaller recruit sizes (Romano and Palumbi 

1996, Edmunds 2010, Hoeksema et al. 2012). Compounding the problem of identification is the 

fact that some coral species, including Montastraea cavernosa and Undaria agaricites, that are 

commonly found in the FKNMS, can show high amounts of phenotypic plasticity during early 

development (Barnes 1973, Rylaarsdam 1983). These examples highlight the need for additional 

approaches to distinguish coral species, especially at early developmental stages. Molecular 

techniques targeting unique genetic signatures may provide the means to identify coral recruits 

and therefore be useful tools for assessing coral recruitment. 

 While DNA barcoding (the use of short, unique genetic sequences to identify an 

organism) using the 5’ portion of the mitochondrial cytochrome oxidase I gene (COI) is the 

standard for identification of eukaryotes, especially larval or incomplete specimens, this method 

is not useful for corals because there is a limited database of COI sequences for corals, and what 

sequence data does exist indicates limited genetic diversity among species (Neigel et al. 2007, 

Hsu et al. 2014). This lack of diversity is due to slower evolutionary rates between different 



15 
 

species of the same genus compared to other metazoans (Romano and Palumbi 1997, Forsman et 

al. 2006, Neigel et al. 2007). Molecular markers commonly used for other organisms, such as the 

nuclear 18S rRNA and mitochondrial 16S rRNA genes, have also proven uninformative for 

corals due to the relatively slower evolutionary rates (Romano and Palumbi 1997, Forsman et al 

2006). In contrast, structural and genetic variation found in the internal transcribed spacer (ITS) 

regions between the 18S and 28S rRNA genes, which are commonly used to identify plant and 

fungal species, have shown promise for differentiating between some genera of scleractinian 

corals in the Caribbean (Chen et al. 2004, Forsman et al. 2006). While the 18S and 28S rRNA 

genes are both coding regions, the ITS 1 and 2 sequences found between them are non-coding 

and are thus less conserved (White et al. 1990, Forsman et al. 2006). The hypervariability of the 

ITS region allows for a more rapid pace of evolution and greater genetic differences between 

species (Forsman et al. 2006). 

As a region of high variability flanked by two regions conserved among Cnidarian 

species, the ITS sequences are suitable targets for use in a single step nested multiplex 

polymerase chain reaction (SSNM-PCR) assay (Larsen et al. 2005). SSNM-PCR is a method that 

can be used to identify organisms quickly and inexpensively (Larsen et al. 2005). This method 

uses a PCR mix that contains one universal primer pair that amplifies a DNA region in all 

species of interest, and several species-specific primers that work with the universal primers to 

amplify a target region within the universal PCR product (Larsen et al. 2005). All primers are run 

at the same time and each reaction produces two separate PCR product bands when run on an 

agarose gel: one larger universal band that shows up for all target species, and one species-

specific band that differs depending on which species is used as the PCR DNA template (Larsen 

et al. 2005). This technique is beneficial for the identification of early-stage corals, as the 
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amplification of the universal band creates more DNA template for amplification of the species-

specific product, thus a smaller amount of DNA is needed for the identification of the sample to 

be completed successfully (Larsen et al. 2005). Furthermore, if no target-specific band is 

amplified, the universal band can then be sequenced for further analysis and identification of the 

unknown sample (Larsen et al. 2005). For the creation of an SSNM-PCR primer set, a region of 

high variability that can be targeted by the several species-specific primers must be flanked by 

two conserved regions that can be targeted by the universal primer pair (Larsen et al. 2005). The 

ITS region fits these criteria, and thus makes a suitable target for this type of assay. 

In this study, it was predicted that the internal transcribed spacer sequences have enough 

interspecific variation to allow for differentiation of corals to the species level and that this 

region is suitable for the creation of a set of species-specific primers for use in a single-step 

nested multiplex PCR. To investigate this, a database of ITS sequences was developed (using 

DNA from known coral adults) for 17 different Caribbean scleractinian coral species that are 

either ecologically important to the Florida Keys region as primary reef builders, or are common 

as recruits in the area. After these sequences were generated and compared to ensure that there 

was enough genetic variation to allow for species differentiation, a set of primers was created for 

use in a SSNM-PCR assay. The ultimate goal was to develop an assay that facilitates 

identification of corals at life stages where morphological characteristics lack sufficient 

resolution to do so. 
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CHAPTER 1 

EXPLORATION OF THE ITS REGION FOR SPECIES IDENTIFICATION OF CARIBBEAN 

CORALS 

 

INTRODUCTION 

 A wide range of morphological characters are used to identify corals to the species level. 

For example, in the Caribbean the two common species in the genus Acropora are distinguished 

based on colony growth form: Acropora palmata grows large flat branches that resemble moose 

antlers, while Acropora cervicornis has cylindrical branches like the antlers of a deer (Walton 

Smith 1976, Veron 1993). Polyp shape and structure are also useful for categorizing adult corals. 

For example, Siderastrea siderea and S. radians can be distinguished from each other by the 

differing slopes of their septal margins (Walton Smith 1976, Veron 1993). Other features, such 

as polyp tissue color and number of corallite septa can be integrated in to the process of 

identifying adult scleractinian corals (Walton Smith 1976, Veron 1993, Budd and Stolarski 2009, 

Budd and Stolarski 2011). 

In contrast to adults, coral recruits can be more difficult to identify to the species level 

due to their small sizes and overlapping physical characteristics (Hodgson 1985, Baird and 

Babcock 2000, Babcock et al. 2003, Jones et al. 2009). Coral recruit identification often centers 

around skeletal traits such as the number and shape of septa, presence or absence of a columella 

in the center of the corallite, or size of the corallite (Budd and Stolarski 2009, Budd and Stolarski 

2011). However, species identifications are complicated at this point in development because 

single polyp recruits can display phenotypic plasticity sometimes in response to environmental 

factors such as sedimentation and light attenuation when it comes to features such as overall 

polyp shape, shape of coral septa, and thickness of the coral skeleton (Todd et al. 2000, Babcock 

et al. 2003). The small size of early coral recruits also necessitates that many features used for 
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identification must be observed using high-powered microscopes (Budd and Stolarski 2009). 

These obstacles to identification often limit researchers studying coral recruitment to classifying 

recruits to the family level (Bak and Engel 1979, Carlon 2001, Miller and Barimo 2001, Green 

and Edmunds 2011, van Woesik et al. 2014, Humanes and Bastidas 2015).  

Given the inherent difficulties of identifying young coral recruits to the species level, it is 

clear that alternative methods need to be investigated.One potential alternative is to incorporate 

molecular techniques. DNA barcoding using the 5’ portion of the mitochondrial cytochrome 

oxidase I gene (COI) is the standard for identification of eukaryotes, especially those that are 

difficult to identify using morphological traits (Neigel et al. 2007, Hsu et al. 2014). However, the 

lack of an existing coral COI database and the slow evolutionary rate of Anthozoan 

mitochondrial genes prevent the use of this method for coral identification (Neigel et al. 2007, 

Fukami et al. 2008, Hsu et al. 2014). Other commonly used molecular markers, such as the 

nuclear 20S rRNA and mitochondrial 16S rRNA genes, have also proven uninformative for 

corals at the species level due to similarly slow evolutionary rates (Romano and Palumbi 1996, 

Forsman et al 2006). Therefore, genetic regions not commonly used for animals are needed to 

identify corals to the species level. 

 The internal transcribed spacer (ITS) 1 and 2 regions are located between the 18S, 5.8S, 

and 28S ribosomal RNA genes and have been used historically to identify to the species level 

and construct phylogenies for plants (Kim et al. 1996, LaJeunesse 2001), fungi (White et al. 

1990, Gardes and Bruns 1993), nematodes (Powers et al. 1997), and some fish (Booton et al. 

1999). By using this genetic region to build phylogenies for scleractinian corals, Chen et al. 

(2004) and Forsman et al. (2006) exhibited that it holds promise for differentiating between 

scleractinian coral species. The high genetic variability of the ITS regions can be attributed to the 
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fact that they are non-coding sequences and therefore not as highly conserved as coding regions 

(White 1990). 

For this project, it was predicted that the ITS-1 and 2 regions exhibit sufficient 

interspecies variation to serve as viable targets for differentiating Caribbean corals to the species 

level. To test this prediction, ITS sequence data were generated in the lab for 15 different target 

coral species. To test the capacity of the ITS sequences for separating Caribbean coral species a 

phylogenetic tree was created by using the sequence data from the lab with information from 

GenBank for two other coral species. Finally, genetic distances were compared within and 

among species to investigate whether these sequences were sufficiently distinct from one another 

so as to be diagnostic. 

METHODS 

 Coral species were selected based on their ecological role as reef builders and their 

prevalence in Caribbean reef communities. Seventeen coral species were selected as important 

targets for identification (Table 1.1). Twelve broadcasting corals, Acropora cervicornis, 

Acropora palmata, Acropora prolifera, Dichocoenia stokesii, Diploria labyrinthiformis, Diploria 

strigosa, Montastraea cavernosa, Orbicella annularis, Orbicella faveolata, Orbicella franksi, 

Pseudodiploria clivosa, and Siderastrea siderea were chosen based on their importance as reef 

builders (Donahue et al. 2008, Edmunds 2010, Ruzicka et al. 2013, Mercado-Molina et al. 2015). 

Five brooding species, Favia fragum, Porites astreoides, Porites porites, Siderastrea radians, 

and Undaria agaricites, were selected based on their abundance in reef communities (Chiappone 

and Sullivan 1996, Donahue et al. 2008, Edmunds 2010, Kemp et al. 2016). Samples identified 

as adults were obtained from various labs in the form of either preserved tissue or extracted DNA 

(Table 1.1).  Two to five individuals were used to encompass genetic variability among 
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individuals during design of species-specific primers for the SSNM-PCR.  The number of 

samples used for each species was a function of availability and sample quality. 

DNA was extracted from coral tissue samples using DNeasy™ Blood & Tissue Kits 

(Qiagen, Valencia, CA, U.S.A.). PCR was run in duplicate on extracted DNA using two 

previously designed universal primers, Coral 18S 1648F (5’-gatygaayggtttagtgagg) (Frischer 

unpublished) and ITS-4 (5’-tcctccgcttattgatatgc) (White et al. 1990), that target the region 

between 18S and 28S genes (Figure 1.1). The PCR protocol consisted of initial denaturing at 

94°C for 10 minutes, followed by 30 cycles of denaturing at 94°C for 30 seconds, annealing for 

30 seconds at 50°C, and extension at 72°C for 1 minute, followed by a final extension step for 7 

minutes. Once PCR was completed, products were pooled by sample and run through an 

electrophoresis gel. Resulting bands on the gel were removed and the target region was extracted 

using Quantum Prep® Freeze ‘N Squeeze™ tubes (Bio-Rad, Berkeley, CA, U.S.A.). 

 Once PCR products were extracted from the gel, a ligation reaction was completed using 

the TOPO TA Cloning® Kit for Sequencing (Invitrogen, Carlsbad, CA, U.S.A.). After ligation, 

transformation of bacterial E. coli cells was carried out using the ligation reactions, and 200 μL 

of competent cell solution was spread onto agar plates with a 50 μg/mL concentration of 

kanamycin and allowed to incubate overnight at 37°C. Three colonies from each cloning reaction 

were selected, then grown on a single patch plate (a singular agarose plate with several separated 

colonies from different cloning reactions growing on it at one time) overnight in order to obtain 

even larger concentrations of the target region. 

 Once a patch plate was incubated overnight, portions of each patch of E. coli cells were 

scraped off and grown in liquid LB media with a 50 μg/mL concentration of kanamycin. These 

colonies were incubated overnight. The next day, 0.5 mL of each liquid colony was saved in 
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50% glycerol stocks. Plasmids were extracted from the liquid colonies using a QIAprep® Spin 

Miniprep Kit (Qiagen, Velencia, CA, U.S.A.). Plasmids were sent to Functional Biosciences, 

INC. (Madison, WI), for sequencing in both directions to ensure quality reads for the whole 

target region for each plasmid sample.  

Consensus sequences were created for each clone to enhance sequence accuracy. This 

was accomplished by aligning the two reads obtained from Functional Biosciences using 

ClustalW Multiple Alignment on the BioEdit software. Once an alignment was made, base pairs 

were checked by hand and excess sequence reads that went past the universal primer targets were 

trimmed, and a consensus sequence was formed with just the target area. 

 Sequences were checked by uploading them to GenBank’s Basic Local Alignment Search 

Tool (BLAST), and then validated by determining if they were similar to any existing coral 

sequences already found in GenBank. Once confirmed as coral sequences, length and GC-

contents of each individual sequence were compared using the BioEdit software. Sequences for 

Montastraea cavernosa (accession numbers KT254595-KT254598) and Siderastrea radians 

(accession numbers AY322604-AY322608) were found on GenBank and used for further 

comparisons. Finalized sequences were aligned using the MUSCLE alignment formula and a 

maximum likelihood tree was generated using SATé software 

(http://phylo.bio.ku.edu/software/sate/sate.html). Branches with bootstrap values of less than 50 

were collapsed. Mean percent genetic distance within and among species were estimated based 

on pairwise differences using MEGA 7.0. 

RESULTS 

 A total of 109 usable sequences were obtained from 15 target species (Appendix 1, Table 

1.2). Sequence lengths ranged from 526 to 1121 base pairs (mean = 729.06 ± 150.13 S.D.). 
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Individuals in the genus Acropora had the shortest sequence lengths, while individuals of 

Diploria labyrinthiformis had the longest. G/C content ranged from 42.7% to 55.9% (mean = 

53.44% ± 3.93% S.D.), with Pseudodiploria clivosa having the lowest G/C content and Favia 

fragum the highest.  

 The phylogenetic tree generated using the SATé software (Figure 1.2) displayed 

consistent clustering of individuals of the same genus. The only genus that did not consistently 

group together was the genus Diploria, where Diploria labyrinthiformis grouped closer with 

Favia fragum than with Diploria strigosa (Figure 1.3), possibly caused by high amounts of intra-

specific variation found among Diploria labyrinthiformis individuals. At the species level, 

however, intra-specific clustering was not found for the genera Acropora and Orbicella (Figure 

1.4 and Figure 1.5), where there was no consistent clustering of individuals by species due to 

high amounts of intra-specific variation and low amounts of inter-specific variation respectively. 

Despite the inconsistent intra-specific groupings in the genera Acropora and Orbicella, all other 

individuals did group together by species. Nodes grouping individuals of the same genus and 

family exhibited high bootstrap support, while nodes at the species and within species levels 

were less conserved. 

Mean genetic distance between individuals of the same species ranged from 0% to 2.3% 

and from 0.2% to 51% between individuals of different species (Table 1.3). Species within the 

genera Acropora and Orbicella had the greatest genetic distances within species, and relatively 

low genetic distances among species within the same genus. As expected, genetic distances are 

even greater at the generic level, with a high of 66.8% between individuals representing different 

genera. 
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DISCUSSION 

 Based on the phylogenetic analysis and the genetic distances between individuals of 

different species, I conclude that the ITS 1 and 2 sequences can be used to differentiate among 

all targeted Caribbean corals at the generic level, and among a subgroup of the targeted corals at 

the species level. The ITS sequences cannot, however, separate species in two genera containing 

major reef-building species: Acropora and Orbicella. These findings agree with others showing a 

lack of phylogenetic separation in Caribbean species of Acropora and Orbicella (Szmant et al. 

1997, Medina et al. 1999, van Oppen et al. 2000, Vollmer and Palumbi 2006, Willis et al. 2006). 

The results of the current study also coincide with those of Forsman et al. (2006) and Chen et al. 

(2004), who found that the variation inherent in the ITS sequences can be used to create coral 

phylogenies that are similar to those constructed using coding regions or mitochondrial DNA, 

thus demonstrating that this region is separating coral species in a manner that is consistent with 

other genetic data. 

 The phylogenetic tree generated by the obtained sequences and those found on GenBank 

is similar to those developed previously using ITS sequences and other genetic regions (Medina 

et al. 1999, van Oppen et al. 2000, Vollmer and Polumbi et al. 2006, Forsman et al. 2006). This 

tree also closely matches current proposed coral taxonomy (Budd et al. 2012). While the ITS 

sequence was generally effective at grouping corals by species, genera, and families, in several 

instances unexpected results were found. For example, based on the phylogenetic tree generated 

using this sequence individuals from the genus Diploria were separated into D. labyrinthiformis 

and D. strigosa, but D. labyrinthiformis appeared to be more closely related to Favia fragum 

than its congener, D. strigosa (Figure 1.3). Additionally, Pseudodiploria clivosa, a member of 

the Faviinae sub-family (Budd et al. 2012), showed no relationship to other members of this sub-
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family, which includes D. strigosa, D. labyrinthiformis, and F. fragum, despite normally 

grouping together with these species in phylogenies using other genetic regions. It should be 

noted that it is not uncommon for trees using only one genetic region to be different from those 

incorporating combinations of genetic markers. Also, despite their locations on the phylogenetic 

tree, the genetic distances between these species indicate that they can all be distinguished from 

one another using the ITS region. 

 While many individuals were separated by species on the phylogenetic tree, this was not 

the case in the genera Acropora and Orbicella, where small genetic distances between members 

of different species resulted in low bootstrap values. This result can be explained by two factors. 

First, the species targeted in these two genera have been shown to hybridize within their 

respective genus, implying close congeneric relationships (for Orbicella see Szmant et al. 1997 

and Medina et al. 1999, for Acropora see van Oppen et al. 2000, Vollmer and Polumbi 2002, and 

Willis et al. 2006). Second, a common problem with using the ITS sequences for differentiating 

species comes from the rapid evolution of these non-coding regions (Álvarez and Wendel 2003, 

Forsman et al. 2006). This rapid evolution can allow for high ITS variation within species. This 

genetic divergence among individuals of the same species can create enough noise to obscure 

any useful differences between species (Álvarez and Wendel 2003, Forsman et al. 2006). This 

high amount of genetic variation can hinder species identification by making conspecific 

individuals just as genetically distant as congeneric individuals. 

 Another genus with low ITS variation among species was Siderastrea. Between S. 

siderea and S. radians, there was only a genetic distance of 0.3%. There was also no observed 

mean genetic distance among individuals of the same species. This corresponds with the findings 

of Forsman et al. (2006), where they also found a 0.3% genetic distance between the same two 
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species. However, in both this study and in Forsman et al. (2006), S. siderea and S. radians do 

separate by species on a phylogenetic tree, implying that there is enough variation to consistently 

distinguish them at the species level.   

 The genetic variation detected among Caribbean coral species in the ITS region 

represents a useful new characteristic that can be used to improve identification strategies for 

corals at early life cycle stages. Corals such as those generally grouped together as “Faviids” (i.e. 

Diploria spp., Favia fragum, and Pseudodiploria clivosa) in recruitment studies using physical 

characteristics (see Green and Edmunds 2011 and van Woesik et al. 2014) can be resolved to the 

genus or species levels using the ITS regions. Based on the variation of the ITS regions, 

Caribbean species of Diploria, Siderastrea, and Porites can be distinguished from one another, 

which is increasingly difficult at smaller sizes using morphological features. While there is not 

enough intrageneric variation to separate corals in the genera Acropora and Orbicella to the 

species level, the ITS region can be used to easily separate them from other species at the larval 

or early recruit stages. 

 For decades, researchers have struggled to find reliable methods of identifying coral 

larvae and young recruits to the species level (Forsman et al. 2006, Neigel et al. 2007, Hsu et al. 

2014). While polyp morphology is adequate for species resolution in some genera, it is clear that 

molecular approaches are required in many cases. This study demonstrates that the ITS-1 and 

ITS-2 regions contain enough genetic variation to correctly classify 6 Caribbean coral species to 

the genus level and 11 to the species level. This is a marked improvement over identification 

using only morphological characteristics (Baird and Babcock 2000, Babcock et al. 2003). In 

order take advantage of this genetic variation, in Chapter 2, methods were developed that allow 

researchers to identify coral samples quickly and efficiently using the ITS regions. 
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TABLES AND FIGURES 

Table 1.1: Target coral species, their reproductive mode, the type of sample obtained, and the 

investigator who provided the samples. Species that were analyzed using sequences from 

GenBank have the accession numbers used in the Donor(s) column. 

 
Species Reproductive 

Mode 

Type of 

Sample 

Donor(s) 

Acropora 

cervicornis 

Broadcaster Tissue and 

DNA 

N. Fogarty and S. Schopmeyer 

Acropora palmata Broadcaster Tissue N. Fogarty 

Acropora prolifera Broadcaster Tissue N. Fogarty 

Dichocoenia stokesii Broadcaster DNA A. Baker 

Diploria 

labyrinthiformis 

Broadcaster DNA A. Baker 

Diploria strigosa Broadcaster Tissue N. Fogarty 

Favia fragum Brooder DNA A. Baker 

Montastraea 

cavernosa 

Broadcaster Tissue and 

DNA 

A. Baker, D. Brazeau, GenBank Accession 

Numbers KT254635-KT254638 

Orbicella annularis Broadcaster DNA A. Baker 

Orbicella faveolata Broadcaster DNA A. Baker 

Orbicella franksi Broadcaster DNA N. Fogarty 

Porites astreoides Brooder DNA N. Fogarty 

Porites porites Brooder DNA S. Schopmeyer 

Pseudodiploria 

clivosa 

Broadcaster DNA A. Baker 

Siderastrea radians Brooder N/A GenBank Accession Numbers AY322604-

AY322608 

Siderastrea siderea Broadcaster DNA S. Schopmeyer 

Undaria agaricites Brooder DNA M.A. Coffroth 
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Table 1.2: Data for the ITS sequences used in this study. Sequence data includes the number of 

sequences obtained in the lab for each species, average sequence length, average G/C content, 

and GenBank accession numbers. Table includes Montastraea cavernosa and Siderastrea 

radians sequences obtained from GenBank. 

Species Number of 

Sequences 

Average 

Length (bp) 

(± S.D.) 

Average 

G/C content 

(%) (± S.D.) 

GenBank 

Accession 

Numbers 

Acropora 

cervicornis 

14 537.2 

(±9.05) 

56.0 

(±0.38) 

KY867552-

KY867565 

Acropora 

palmata 

8 544.6 

(±5.49) 

55.0 

(±0.21) 

KY867566-

KY867573 

Acropora 

prolifera 

9 543.3 

(±7.11) 

55.8 

(±0.30) 

KY867574-

KY867582 

Dichocoenia 

stokesii 

6 763 

(±0.00) 

54.8 

(±0.05) 

KY867583-

KY867588 

Diploria 

labyrinthiformis 

5 1105.2 

(±12.68) 

55.0 

(±0.40) 

KY867589-

KY867593 

Diploria 

strigosa 

5 1045 

(±8.00) 

53.5 

(±0.26) 

KY8675924-

KY867598 

Favia fragum 6 836.5 

(±0.40) 

57.0 

(±0.10) 

KY867599-

KY867604 

Montastraea 

cavernosa 

4 891.5 

(±1.00) 

53.9 

(±0.17) 

KT254635-

KT254638 

Orbicella 

annularis 

9 761.2 

(0.44) 

55.4 

(0.16) 

KY867605-

KY867613 

Orbicella 

faveolata 

9 761 

(±0.00) 

55.5 

(±0.00) 

KY867614-

KY867622 

Orbicella franksi 9 761 

(±0.00) 

55.5 

(±0.18) 

KY867623-

KY867632 

Porites 

astreoides 

6 771.2 

(±3.20) 

45.3 

(±0.15) 

KY867633-

KY867637 

Porites porites 6 766 

(±0.00) 

45.1 

(±0.15) 

KY867638-

KY867643 

Pseudodiploria 

clivosa 

3 783 

(±0.00) 

42.7 

(±0.06) 

KY867644-

KY867646 

Siderastrea 

radians 

4 605 

(±0.00) 

48.8 

(±0.00) 

AY322604-

AY322608 

Siderastrea 

siderea 

6 732 

(±0.00) 

48.7 

(±0.10) 

KY867647-

KY867652 

Undaria 

agaricites 

8 729 

(±0.00) 

53.0 

(±0.10) 

KY867653-

KY867660 
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Table 1.3: Mean percent genetic distance matrix for individuals within species and between species generated using MEGA 7 

software. Species with lower inter-specific distance than intra-specific distances are highlighted.  

 Species 1 2 3 4 5 6 7 8 9 10 11 12 113 14 15 16 

0.015 1. A. cervicornis                 

0.011 2. A. palmata 0.018                

0.024 3. A. prolifera 0.022 0.018               

0.003 4. D. stokesii 0.524 0.513 0.515              

0.013 5. D. 

labyrinthiformis 

0.577 0.573 0.574 0.168             

0.008 6. D. strigosa 0.591 0.589 0.590 0.167 0.056            

0.001 7. F. fragum 0.579 0.574 0.576 0.141 0.065 0.060           

0.004 8. M. cavernosa 0.537 0.521 0.525 0.064 0.140 0.163 0.130          

0.004 9. O. annularis 0.550 0.537 0.543 0.070 0.169 0.193 0.147 0.043         

0.001 10. O. faveolata 0.545 0.532 0.538 0.069 0.168 0.193 0.147 0.042 0.003        

0.001 11. O. franksi 0.546 0.533 0.540 0.069 0.168 0.193 0.146 0.042 0.002 0.001       

0.004 12. P. clivosa 0.682 0.668 0.392 0.392 0.458 0.443 0.445 0.410 0.396 0.394 0.394      

0.003 13. P. astreoides 0.532 0.516 0.526 0.153 0.213 0.226 0.248 0.157 0.181 0.178 0.179 0.405     

0.000 14. P. porites 0.536 0.523 0.533 0.147 0.219 0.235 0.243 0.169 0.181 0.179 0.179 0.405 0.042    

0.000 15. S. radians 0.509 0.493 0.503 0.089 0.190 0.181 0.183 0.107 0.117 0.116 0.116 0.351 0.140 0.141   

0.000 16. S. siderea 0.507 0.492 0.502 0.086 0.190 0.181 0.183 0.103 0.113 0.113 0.112 0.356 0.140 0.141 0.003  

0.001 17. U. agaricites 0.511 0.507 0.514 0.101 0.186 0.195 0.179 0.116 0.123 0.121 0.121 0.401 0.158 0.098 0.098 0.098 

Mean Within 

Species Distance 

 Mean Between Species Distances 
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Figure 1.1: Schematic of the target DNA region. Primers targeting the highly conserved 3’ end 

of the 18S rRNA coding gene (18S 1648F) and the highly conserved 5’ end of the 28S rRNA 

coding gene (ITS-4) allow for the amplification of the hypervariable ITS 1 and ITS 2 regions, as 

well as the highly conserved 5.8S rRNA coding gene. 
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Figure 1.2: Phylogenetic tree for all sequences (GenBank accession numbers KY867522-

KY867660) using Alcyonium sp. (GenBank accession number AF262355.1) as an outgroup. 

Montastraea cavernosa and Siderastrea radians sequences were obtained from GenBank 

(accession numbers KT254635-KT254638 and AY322604-AY322608, respectively). Samples 

sharing a number in the label are clones of the same individual. Samples with identical sequences 

to another individual of the same species were excluded from the tree. Maximum likelihood tree 

was generated using SATé software package. Numbers located at nodes are bootstrap values.
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Figure 1.3: A closer look at the Diploria genus and Favia fragum branches of the generated 

phylogenetic tree (Figure 1.2). While D. strigosa and D. labyrinthiformis are in the same genus, 

D. labyrinthiformis displays closer relation to F. fragum using the ITS-1 and ITS-2 regions. 

 

Figure 1.4: A closer look at the Acropora genus branches of the generated phylogenetic tree 

(Figure 1.2), displaying a lack of consistent grouping by species within this genus. 
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Figure 1.5: A closer look at the Orbicella genus branches of the generated phylogenetic tree 

(Figure 1.2). While O. annularis and O. faveolata separated from each other, O. franksi is found 

among individuals of both species. 
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CHAPTER 2 

A MOLECULAR ASSAY FOR CARIBBEAN CORAL IDENTIFICATION 

INTRODUCTION 

 Coral reefs in the Caribbean have faced rapid decline for several decades (Hughes 1994, 

Hughes et al. 2003, Donahue et al. 2008). As these reefs continue to lose ecologically important 

hermatypic corals, questions about the role that coral recruitment plays in reef recovery and 

sustainability have become increasingly important to address. Unfortunately, distinguishing 

between species of young coral recruits that are one to two polyps in size can be difficult due to 

their small size and similar morphologies. Thus, most recruitment studies only identify newly 

settled individuals to the familial or generic levels (Bak and Engel 1979, Carlon 2001, Miller and 

Barimo 2001, Green and Edmunds 2011, van Woesik et al. 2014, Humanes and Bastidas 2015).  

The inability, in many cases, to reliably identify early-stage coral recruits to the species 

level poses problems for managing reefs, as species within the same family can have different 

ecological roles. For example, in the sub-family Faviinae, species in the genus Diploria are large, 

long-lived, reef-building corals that provide sufficient structure to support a diversity of fish and 

marine invertebrates (Edmunds 2010). In the same sub-family, Favia fragum is a small, short-

lived “weedy” coral that can quickly recruit to a reef, but does not grow large enough to provide 

substantial structural habitat (Gleason et al. 2001, Hoeksema et al. 2012). These corals are 

difficult to separate at early juvenile stages and are often grouped together as “Faviids,” thereby 

reducing the ability of recruitment surveys to make conclusions about the potential for recovery 

of reef function (Green and Edmunds 2011, Humanes and Bastidas 2015).  

 Genetic markers provide a potential tool for species identification of corals when 

morphological resolution is insufficient. However, commonly used molecular techniques, such 

as barcoding the mitochondrial cytochrome oxidase I (COI) and the PaxC genes, have failed to 
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provide consistent taxonomic resolution past the family or genus level in corals due to the 

generally slow evolutionary rates for these genetic regions in anthozoans (Neigel et al. 2007, Hsu 

et al. 2014). Other molecular markers, such as the nuclear 20S rRNA and mitochondrial 16S 

rRNA genes, have also displayed little promise for determining coral species (Romano and 

Polumbi 1999, Forsman et al. 2006). Therefore, molecular approaches investigating different 

genetic regions are warranted. 

 In Chapter 1, it was confirmed that the rapid evolution of the internal transcribed spacer 

(ITS) regions 1 and 2 provides enough variation to separate Caribbean corals to the generic level, 

and many to the species level. In this chapter methods were developed that facilitate use of this 

variable genetic region for efficient identification of corals. Specifically, a single-step nested 

multiplex polymerase chain reaction (SSNM-PCR) assay was designed. The ITS-1 and ITS-2 

regions are suitable targets for this type of assay because they have enough variation to 

differentiate corals to the species or genus level and are flanked by two coding regions conserved 

among Cnidarians (the 18S and 28S rRNA genes) (Larsen et al. 2005, Forsman et al. 2006). The 

SSNM-PCR assay utilizes a PCR mix that contains one pair of universal primers that amplify a 

region present in all individuals of the animal group of interest, and several individual primers 

that work within the universal region to amplify a second smaller product that is species-specific 

(Larsen et al. 2005). All primers are run in one step, and the size of the target-specific PCR 

product is used to identify the organism of interest (Larsen et al. 2005). Such a method has been 

used in the past to identify bivalve larvae to the species level, and may be useful for coral larvae 

and recruits as well (Larsen et al. 2005, 2007). 

 For this project, it was predicted that the ITS regions are viable targets for the creation of 

primers for use in a single-step nested multiplex PCR assay that can be used to identify target 
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coral species. To test this prediction, the ITS sequences obtained in Chapter 1 were used to 

design primers targeting certain Caribbean coral species or genera. The designed primers were 

then combined into three separate sub-assays in order to prevent unwanted interference between 

primers and tested in conjunction with the universal primer pair using plasmids containing the 

target species DNA to verify that the designed primers work for their targets. 

METHODS 

 To create primers for Caribbean coral identification, consensus sequences of the ITS 

regions were made for 15 coral species that are either prevalent and/or ecologically important in 

the Caribbean using the sequence data gathered in the lab in Chapter 1 (Table 1.1). Potential 

species-specific target regions within the ITS sequences were identified by aligning sequences 

obtained for the target coral species and looking for regions that were conserved within species, 

but variable among species. Optimal primers were designed for these regions using Primer3Plus 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). Potential primers were 

chosen based on their ability to only amplify a region for the intended species/genus, and 

whether or not they work without disrupting the universal primers 181648F and ITS-4. Primers 

generated for each species were compared against the sequences for non-target species. A primer 

was rejected if it had fewer than three base pair differences from a non-target species and an 

alternative primer was available. Primers were synthesized by Integrated DNA Technologies® 

(Coralville, Iowa) and ordered in 25 nmol concentrations with standard desalting purification. 

Primers were first tested for specificity in silico by comparing their sequences to those 

available in the GenBank database using the BLAST tool (Basic Local Alignment Tool; 

https://blast.ncbi.nlm.nih.gov/Blast.cgi). Primers were considered to show a false positive if they 

had a 100% match for another Cnidarian species in GenBank. Extracted plasmids containing 

known coral DNA, which were obtained through the cloning procedures in Chapter 1, were used 
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to test the primers experimentally. First, plasmids of target species were used as the DNA 

template for a PCR using the universal primer pair and the species-specific primer. PCR products 

were then run through electrophoresis on an agarose gel for visualization. Primers that 

successfully amplified both a universal PCR product and a species-specific product were 

subsequently used in PCR incorporating plasmids from non-target species as the template. If 

only a universal PCR product was generated in this reaction, then the primer was considered 

validated for the target coral species in question. If primers generated both a universal product 

and a “species-specific” product for species in the same genus, then the primer was either 

discarded or used as a genus-specific primer. 

To ensure that the primers did not interfere with each other, verified primers were 

grouped into three sub-assays. Each sub-assay contained the universal primer pair and two to 

three species/genus-specific primers. The primers were grouped together based on in silico tests 

of whether or not they would interfere with each other in the assay using PriDimerCheck 

(biocomputer.bmi.ac.cn/MPprimer/primer_dimer.html). An attempt was also made to separate 

primers that amplified species/genus-specific products that were within 30 base pairs of each 

other. These sub-assays were tested as a whole using both extracted plasmids containing known 

coral DNA (obtained in Chapter 1), as well as extracted DNA from known corals when 

available. If primers did not work in one sub-assay, then they were shifted until all three sub-

assays consisted of primers that worked for their targets without interference from the other 

primers. Interference included cross-hybridization between primers, the production of excessive 

primer-dimers (small oligonucleotides that form when primers hybridize with each other instead 

of with the DNA template), or the prevention of amplification in a PCR. For example, primers 

included in sub-assays 1 and 2 prevented the primers targeting Favia fragum and Diploria spp. 
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from amplifying the species/genus-specific product associated with their targeted corals. 

Therefore, it was necessary to create a separate sub-assay containing just those two primers, 

where they would not be inhibited from amplifying their target PCR products. 

To differentiate between species/genus-specific primers with similar sizes (within 30 base 

pairs of each other), restriction enzyme cut sites were investigated using Sequencher
©

 software. 

Restriction enzymes ApoI and HaeII were selected based on their ability to make different-sized 

digestion products that were easier to differentiate than the species-specific products. These 

enzymes were tested using the species/genus-specific products from primers targeting Undaria 

agaricites, Dichocoenia stokesii, Pseudodiploria clivosa, Porites astreoides, Porites spp., and 

Siderastrea siderea, which all produced similarly-sized products. Restriction digest products 

were visualized using a 2% agarose gel instead of a 1.5% gel to allow for a wider spread of 

unequal-sized products. 

RESULTS 

 The goal of this project was to design primers for use in a SSNM-PCR assay that will 

assist scientists and natural resource managers in identifying coral larvae and young recruits. 

Nine primers were developed during this project and grouped into 3 sub-assays (each sub-assay 

includes the universal cnidarian ITS primers, 18S1648F and ITS-4) (Table 2.1, Table 2.2, Figure 

2.1). Sub-assay one consists of species-specific primers PCF3 (Pseudodiploria clivosa) and 

SSR5 (Siderastrea siderea), and the genus-specific primer, PPR1 (Porites spp.). Sub-assay two 

consists of two species-specific primers, DSR7 (Dichocoenia stokesii) and UAR1 (Undaria 

agaricites), and one genus-specific primer, O2R1 (Orbicella spp.). Sub-assay three consists of 

one species-specific primer, FFR3 (Favia fragum), and one genus-specific primer, DS2R2 

(Diploria spp.). The final primer, PAF1 (Porites astreoides) is for use after a positive reaction 
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with the PPR1 primer in sub-assay 1. While the PPR1 primer works for both P. astreoides and P. 

porites, PAF1 only works for P. astreoides, and can thus be used to distinguish between the two 

Porites species found in the Caribbean. 

One third of the designed primers produced false positives based on in silico searches on 

GenBank (Table 2.3). PAF1 was compatible with four Porites species native to the Red Sea and 

the Indo-Pacific, SSR5 showed compatibility with two other Siderastrea species (one native to 

the Caribbean and one from Brazil), and PCF3 displayed false positives for Millepora exaesa, a 

fire coral native to the Indo-Pacific, and two Zanclea species, which are hydroids found in the 

Caribbean. DNA samples for the false positives were not available, so these were not tested in 

situ. 

 While UAR1, DSR7, PCF3, PAF1, PPR1, and SSR5 all generated similar-sized (within 

30 base pairs) products, there was some success in differentiating between them by performing a 

restriction digest on the species/genus-specific product and running it on a 2% agarose gel (Table 

2.4, Figure 2.2). Enzyme digests for Siderastrea siderea and Pseudodiploria clivosa using HaeII 

and ApoI respectively are easily distinguished from one another and can be used to differentiate 

between similarly-sized species-specific products generated by the designed assay. However, 

restriction digest products for DSR7 and UAR1 (both in sub-assay 2) are still close in size and 

may require a different method to tell them apart. Products generated by Diploria-specific primer 

DS2R2 were not tested for restriction digests as it is in a separate sub-assay with a primer that 

produces a distinctly-sized PCR product. 

DISCUSSION 

 Currently, the only method of species identification commonly employed in coral 

recruitment studies is the use of morphological characters (Bak and Engel 1979, Carlon 2001, 
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Miller and Barimo 2001, van Woesik et al. 2014, Humanes and Bastidas 2015). Using this 

technique, researchers are only able to confidently identify most new coral recruits to the family 

or genus level (Bak and Engel 1979, Carlon 2001, Miller and Barimo 2001 van Woesik et al. 

2014, Humanes and Bastidas 2015). Previous attempts to identify corals to the species level 

using molecular techniques such as the coral COI and PaxC regions have also met with limited 

success (Neigel et al. 2007, Hsu et al. 2014). For this project, the prediction that the ITS regions 

are viable targets for the creation of primers for use in a single-step nested multiplex PCR assay 

that can be used to identify targeted coral species and genera was tested. The goal was to develop 

a set of primers that can be used in a SSNM-PCR assay to identify corals more efficiently and 

with greater accuracy than is currently possible and at a reasonable cost. Six species-specific and 

three genus-specific primers were designed that allowed for identification of the species 

Dichocoenia stokesii, Favia fragum, Porites astreoides, Porites porites, Pseudodiploria clivosa, 

Undaria agaricites, and Siderastrea siderea, as well as corals in the genera Diploria, Orbicella, 

and Porites (Table 2.1, Figure 2.1). These primers work using a combination of PCR 

amplifications and restriction enzyme digests (Figure 2.3). 

This SSNM-PCR technique has several advantages over commonly used molecular 

techniques. First, the amplification of a universal product in conjunction with the target-specific 

product allows researchers to sequence the ITS region of an unknown sample that does not 

exhibit a target-specific band on an electrophoresis gel. This gives investigators the opportunity 

to identify the sample based on its ITS sequence, and then potentially create a new primer or edit 

an existing primer based on the new genetic data. The universal band also serves as an internal 

positive control for the PCR reaction in that if the universal band does not amplify, then there is 

either a PCR error, or the DNA is not from a cnidarian. The universal band also enhances the 
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efficiency of the target-specific primers as it increases the amount of DNA template for the PCR 

reaction. Finally, using the developed primers within an assay is less expensive than using them 

in separate PCR amplifications, with the SSNM-PCR costing users approximately 40% of the 

price of a standard PCR using the same primers. It is even less expensive than sequencing 

samples, ranging from 58% to 89% less per sample. This lower cost will allow investigators on a 

limited budget to identify greater numbers of recruits and larvae. 

The increased accuracy of coral identification provided by this assay represents a step 

forward for coral research. The ability to identify coral larvae using molecular techniques makes 

it possible for researchers to quantify larval supply to reefs, a task that has been hindered by the 

small sizes and lack of descriptive morphological features of coral planulae (Hodgson 1985, 

Jones et al. 2009). The ability to quantify larval supply will provide insight into whether or not 

larval supply is further limiting potential reef recovery. Additionally, this technique can be used 

as a tool for imporving and refining coral recruit field guides that are based on morphology. 

Specifically, the molecular assay allows unambiguous identification of coral recruites if they are 

a member of one of the targeted genera or species. Once the identity is known, efforts to locate 

species of genus-specific, non-plastic skeletal characters can commense. Any such 

morphological features can then be used in the development of a field guide of coral recruits, 

thus increasing the speed at which scientists can identify these early-stage corals.  

 While the development of this SSNM-PCR assay targeting the ITS region is an 

improvement, further development is required to increase its usefulness. The rapid evolutionary 

rates of the ITS regions made it unsuitable for amplifying species- or genus-specific products for 

Acropora palmata, Acropora cervicornis, and Acropora prolifera. Furthermore, the small size of 

the ITS regions in Acropora spp. relative to the other coral species investigated (Table 1.1) 
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generated a second problem: all Acropora ITS primer sites suitable for targeting by this assay 

were close to the 5’ or 3’ ends leading to the genus-specific product being indistinguishable from 

the universal product when run on the gel. Finally, there is evidence that Acropora prolifera is an 

F1 hybrid of A. palmata and A. cervicornis, which would mean that the three species are closely 

related, creating further difficulties in distinguishing between them (van Oppen et al. 2000, 

Vollmer and Polumbi 2002, Willis et al. 2006). Therefore, a different genetic region will need to 

be explored for identification of recruits of Acropora spp. 

 Further limits of this assay include the inability to distinguish between species within the 

genera Orbicella and Diploria. However, the ability to differentiate between Orbicella spp., 

Diploria spp. and Favia fragum is a step in the right direction as they are often grouped together 

as “faviids” when using morphological features (Green and Edmunds 2011). Furthermore, 

Orbicella spp. and Diploria spp. are ecologically important reef-building corals that have 

declined in number over the past few decades (Donahue et al. 2008, Edmunds 2010, Manzello et 

al. 2015).  

 In its current form, this coral identification method incorporates a combination of PCR 

sub-assays and restriction enzyme digests (Figure 2.3). To identify an unknown coral, an 

investigator will first run three separate PCR amplifications (one for each sub-assay). Each 

reaction consists of the extracted DNA of the unknown coral, the universal ITS primers 18S-

1648F and ITS-4, a PCR mixture containing Taq polymerase, water, dNTPs, and buffer, and the 

appropriate primers for each sub-assay (sub-assay 1: PPR1, PCF3, and SSR5; sub-assay 2: 

DSR7, O2R1, and UAR1; sub-assay 3: DS2R2 and FFR3). The sub-assays will be run through a 

PCR amplification using the following parameters: initial denaturing at 94°C for 10 minutes, 

followed by 30 cycles of denaturing a 94°C for 30 seconds, annealing for 30 seconds at 50°C, 
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and extension at 72°C for 1 minute, followed by a final extension step for 7 minutes. Products 

can then be run on a 1.5% agarose gel. From there, the identity of the can either be determined 

from the size of the species/genus-specific product, or further steps involving either a restriction 

enzyme digest or a secondary PCR amplification will be needed.  

The efficiency of this assay can be increased by making preliminary identifications from 

recruit morphology, thus saving PCR reagents and primers. For example, if morphological 

examination places the coral recruit in the genus Porites, it will be more efficient to run a single 

PCR amplification using only the PAF1 primer and determining whether the coral is P. porites or 

P. astreoides. Another way the efficiency of this assay can be improved is by separating the PCR 

products using a capillary gel electrophoresis sequencer instead of running them on a gel. The 

former allows for differentiation of PCR products with minimal size differences, thus rendering 

the secondary PCR reactions or restriction digests required for identification of some coral 

species unnecessary (Grossman and Colburn 2012). For example, the species-specific primers 

for Dichocoenia stokesii (DSR7) and Siderastrea siderea (SSR5) amplify 199 and 178 base pair 

products, respectively. While the 21 base pair difference is hard to recognize on a standard gel, 

capillary gel electrophoresis can register these differences and eliminate the need for a second 

round of PCR. A final way to streamline this assay is to use fluorescently labeled primers. With 

each primer having a different fluorescent label, the PCR products can be analyzed using a 

luminescence spectrometer, or a capillary gel sequencer with a fluorescence detector (Livak et al. 

1995, Grossman and Colburn 2012). This technique allows for identification based on the 

fluorescent label of the species/genus-specific primer rather than the size of the PCR product 

itself.  
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 Finally, while this assay can identify seven species and two genera of Caribbean corals 

that are either ecologically important or commonplace in the FKNMS, these species represent a 

subset of all species present. In order to be able to identify more species or genera of Caribbean 

corals, ITS sequence data and good-quality DNA extracts of additional target corals will be 

needed. The process of designing these primers is relatively straightforward once the DNA 

sequence is obtained, and in the future additional primers can be developed to allow for the 

identification of more coral species found in the Caribbean, or corals native to different regions 

altogether. Furthermore, for species such as those in the genus Acropora, for which primers for 

this assay could not be developed, or those in the genera Diploria and Orbicella, for which 

identification using this assay is only possible to the genus level, more genetic data will be 

needed to identify DNA regions that may be targeted in a similar assay that may allow for the 

separation of these species. 

 For this project, primers targeting six species and three genera of Caribbean corals were 

developed for use in a SSNM-PCR assay. This is a step forward for coral research, as this 

molecular technique will assist researchers in identifying coral larvae and early recruits with 

better accuracy than is currently possible. The increased accuracy will permit investigators to 

address questions about coral recruitment and larval supply that have thus far been intractable. 

The ability to identify coral recruits and larvae to the species level can enhance our 

understanding of how larval supply and recruitment are connected, and how they might 

contribute to reef recovery.  
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TABLES AND FIGURES 

Table 2.1: Information pertaining to the developed primers. The primer orientation (forward or 

reverse) is indicated by the last letter in the primer name (F or R), with the exception of ITS-4, 

which is a previously developed primer with reverse orientation. The “Product Size” column 

contains the size of the band generated by the primer and the universal co-primer. If the species- 

or genus-specific product is a forward primer, its co-primer is ITS-4, if the species- or genus-

specific primer is a reverse primer, it works with 18S1648F. The “Annealing Temperature” 

column displays the optimal annealing temperature for each primer working with its intended 

compliment. The product size of the universal primers varies depending on the species. The 

length of the universal band for each species can be found in Table 1.2 under “Average Sequence 

Length.”  

 
Primer 

Name 

Target Species Sequence Product 

Size (bp) 

Annealing 

Temperature (ºC) 

18S1648F Universal 5’-GATYGAAYGGTTTAGTGAGG-3’ 567-1162 53.9 

ITS-4 Universal 5’-TCCTCCGCTTATTTGATATGC-3’ 

DSR7 Dichocoenia 

stokesii 

5’-TCACACGGTAACAAAAACAA-3’ 199 55.1 

DS2R2 Diploria spp. 5’-CTTAAACAACCGGTTCACAC-3’ 219 55.7 

FFR3 Favia fragum 5’-TGCAGGACAAAAATCGACG-3’ 419 59.8 

O2R1 Orbicella spp. 5’-ACCGTCAAAAGTTGTCTCTG-3’ 393 53.6 

PAF1 Porites 

astreoides 

5’-TTGGACTCGCATTCTCTATT-3’ 200 55.0 

PPR1 Porites spp. 5’-ACCTGTGCGACCCCTAAAG-3’ 217 59.1 

PCF3 Pseudodiploria 

clivosa 

5’-GAAGGCTCAACTAGCTTCTG-3’ 166 54.6 

UAR1 Undaria 

agaricites 

5’-GTCTTTGAGACTCGTCTTGG-3’ 178 55.0 

SSR5 Siderastrea 

siderea 

5’-CTTGGACACGTATCGGTAAT-3’ 164 55.1 

 

Table 2.2: The primer contents of each sub-assay developed. Each sub-assay is also run with the 

universal primers, 18S1648F and ITS-4. Primer PAF1 (targeting Porites astreoides) is used only 

if a reaction with sub-assay 1 identifies the sample as Porites spp. 

 

Primer Name Target Species Sub-Assay 

PPR1 Porites spp.  

1 PCF3 Pseudodiploria clivosa 

SSR5 Siderastrea siderea 

DSR7 Dichocoenia stokesii  

2 O2R1 Orbicella spp. 

UAR1 Undaria agaricites 

DS2R2 Diploria spp. 3 

 FFR3 Favia fragum 

PAF1 Porites astreoides N/A 
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Table 2.3: Cross hybridization with non-targeted Cnidarian species identified by sequence 

comparison of all sequences available in GenBank using the BLAST search tool. 
 
Primer Target Species “False Positives” Identified Through Blast Search Accession No. 

DSR7 Dichocoenia stokesii None N/A 

DS2R2 Diploria spp. None N/A 

FFF3 Favia fragum None N/A 

O2R1 Orbicella spp. None N/A 

PAF1 Porites astreoides Porites lutea
b
 LT558237.1 

Porites lobata
c
 LT558234.1 

Porites evermanni
c
 LT558211.1 

Porites compressa
c
 LT558177.1 

PPR1 Porites porites None  

PCF3 Pseudodiploria clivosa Millepora exaesa
b
 U65484.1 

Zanclea galli
a
 LT606999.1 

Zanclea sango
a
 LT607001.1 

UAR1 Undaria agaricites None  

SSR1 Siderastrea siderea Siderastrea stellata
d
 KT750839.1 

Siderastrea radians
a
 KT750832.1 

aSpecies that are found in the Caribbean 
bSpecies that are found in the Red Sea 
cSpecies that are found in the Indo-Pacific 
dSpecies that are only confirmed in Brazil 
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Table 2.4: Sizes of products generated by restriction digests of similarly-sized PCR products. 

The change in product size after a restriction digestion reaction can be used to distinguish 

between two species that display similarly-sized products after being run through the designed 

assay. 

Primer Sub-Assay Non-Digested Product Size Restriction Enzyme Digested Product Size (bp) 

PCF3 1 166 ApoI 78 

PPR1 1 200 HaeII 182 

SSR5 1 164 HaeII 164 

DSR7 2 199 HaeII 152 

UAR1 2 178 HaeII 143 

 

Figure 2.1: Examples of PCR products for each target species or genus. Species or genus name 

is followed by the size of the PCR product of the universal primer pair/the size of the PCR 

product of the species or genus-specific primer.  

 

 

  



47 
 

 

Figure 2.2: Separation of similarly-sized species or genus-specific PCR products using 

restriction digests. The top row displays the undigested species or genus-specific products, while 

the bottom row exhibits how these products look after being run through a restriction digest.  
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Figure 2.3: Procedure for identifying an unknown coral sample using the SSNM-PCR. To identify an unknown coral, first run three 

separate PCR amplifications (one for each sub-assay). Each reaction consists of the extracted DNA of the unknown coral, the 

universal ITS primers 18S-1648F and ITS-4, a PCR mixture containing Taq polymerase, water, dNTPs, and buffer, and the 

appropriate primers for each sub-assay (sub-assay 1: PPR1, PCF3, and SSR5; sub-assay 2: DSR7, O2R1, and UAR1; sub-assay 3: 

DS2R2 and FFR3). From there the coral can either be identified based on the size of the species/genus-specific product, or further 

steps involving either a restriction enzyme digest or a secondary PCR amplification will be needed based on the results of the different 

sub-assays. 
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