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SILVER NANOPARTICLE FATE AND ACCUMULATION IN THE AQUATIC 

FOOD WEB OF STREAM MICROCOSMS 

by 

STEFAN PETERSEN 

(Under the Direction of Risa A. Cohen) 

ABSTRACT 

Silver nanoparticles (AgNPs) are used in 25% of all nano-enabled products and applied 

for anti-microbial properties. Silver nanoparticles are discharged into aquatic environments 

through wastewater discharge, runoff, and chemical spills. Once in aquatic environments silver 

nanoparticles have the potential to harm aquatic organisms. While the fate of silver nanoparticles 

in lentic systems has been investigated, limited information is available for the fate of silver 

nanoparticles in flowing environments. The purpose of this study was to compare the fate of 

AgNPs following a one-time pulsed application simulating a chemical spill, or small repetitive 

applications simulating effluent discharge, in artificial stream communities containing river 

water, sediment, periphyton, snails, and fish under realistic environmental conditions. In addition 

to comparing the fate of AgNPs between application types, the fate of AgNPs were also 

compared between 35 and 70 µg L-1 concentrations of AgNPs. Water samples were collected on 

days 0, 7, and 14 to quantify total Ag (TAg) in the water column. Periphyton samples were taken 

on days 0 and 14, and sediment, snail, and fish samples were taken on day 14 for silver content. 

Results from this study show that AgNP concentrations applied to streams only affects the fate of 

AgNPs in sediment where the majority of AgNPs settled and in fish which had limited exposure 

to AgNPs in the water column. Additionally, application type only affected the fate of AgNPs in 



periphyton samples of pulsed treated streams where snails and flowing conditions had a longer 

period of time to reduce Ag adsorption to periphyton compared to repetitively treated streams.  

In this study, silver nanoparticles rapidly settled in lotic environments placing benthic organisms 

at risk for Ag accumulation. Furthermore, exposure to 70 µg L-1 and 35 µg L-1 AgNPs 

concentrations in artificial streams was not toxic to aquatic organisms regardless of application 

type. This study emphasizes the importance of testing AgNP exposure under environmentally 

relevant conditions to assess their fate and toxicity in the environment. 

INDEX WORDS: Mesocosms, Ionic strength, Sedimentation, Suspension, Dissolved organic 

carbon, Toxicity, Periphyton, Snails, Fish, Settling 
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CHAPTER 1 

ACCUMULATION OF SILVER NANOPARTICLES IN AQUATIC FOOD WEBS 

FOLLOWING PULSED VS REPEATED EXPOSURE IN ARTIFICIAL STREAMS 

 

INTRODUCTION 

Over the last decade, the biomedical, agricultural, manufacturing, textile, and 

pharmaceutical industries developed nanoparticles (clusters of atoms or molecules less than 100 

nanometers in size) to improve human healthcare and food production (Gopal et. al, 2011; Keller 

et. al, 2013). Nanoparticles are created using a variety of materials including metals, metal 

oxides, nonmetals, carbon, polymers, and lipids, coated with acids and polymers to improve 

durability and prevent breakdown (Zhang et. al, 2012; Grillo et al., 2015). In 2010, an estimated 

300,000 metric tons of nanomaterials were manufactured worldwide, and production volume is 

expected to exceed 500,000 metric tons yr-1 by 2020 (Keller et al., 2013; Maurer-Jones et al., 

2013). Given the rapid growth of the nanoparticle industry and increased nanomaterial discharge 

into the environment through wastewater discharge, runoff, and chemical spills, the potential for 

ecological damage must be investigated (Gottschalk et. al, 2009).  

Silver nanoparticles (AgNPs) are used in 25% of all nano-enabled products because their 

anti-microbial properties reduce bacterial abundance and metastasizing cells (Keller et al., 2013). 

Biomedical and pharmaceutical products with AgNPs are used to combat bacterial infections by 

reducing wound healing time, and treat cancer and HIV by stimulating breakdown of tumors or 

infected cells (Wong et. al, 2013). In addition, AgNPs are integrated into consumer products like 

food packaging (De Moura et al., 2012), clothing (Liu and Hurt, 2010), cosmetics (Fabrega, et 

al., 2011), and oil-based paints to kill gram-positive (Staphylococcus aureus) and gram-negative 

(Escherichia coli) bacteria (Kumar et al., 2008). Due to the versatility of AgNPs, environmental 
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exposure is common, although the exact amount of nanoparticles released into the environment 

during their manufacture, use, and disposal is difficult to determine (Keller et al., 2013). Annual 

production and release estimates of AgNPs in 2010 were 242 metric tons yr-1 (Keller et al. 2013). 

Entry of AgNPs to surface waters occurs at a rate of 63 tons yr-1 worldwide from wastewater 

treatment plants (Sohn et al., 2015), excluding AgNPs from clothes, personal care products, and 

medications that enter septic tanks daily from untreated domestic residences (Benn et al., 2008). 

Approximately 5% of the AgNPs that reach wastewater treatment facilities are discharged into 

rivers with the remaining 95% diverted into sewage sludge (Kaegi et al., 2011). Sludge may then 

be applied to agricultural fields as fertilizer, thus AgNPs can enter rivers through runoff from 

fields following rainfall events (Fabrega et al., 2011). While the estimated concentration of actual 

AgNPs in surface waters is currently below 1 µg L-1, with growing rates of production and use it 

will become increasingly important to investigate the fate of AgNPs in the environment 

(Gottschalk et al., 2009; Wong et al., 2013).  

The fate of AgNPs in the environment is also influenced by their capping agents (Levard 

et al., 2012). Two of the most commonly used capping agents are polymer based citrate and 

polyvinylpyrrolidone (PVP) capping agents (Thio et al., 2011). Citrate capped AgNPs possess a 

negative charge and are stabilized electrosterically by repulsion between charged particles, and 

PVP capped AgNPs are neutrally charged and are stable via steric forces and inhibiting attraction 

to other molecules (Levard et al., 2012). Depending on the charge of the capping agent, AgNPs 

may bind to molecules such as dissolved organic carbon (DOC) and stay suspended in the water 

column, or bind to higher molecular weight ions and settle onto the benthos (Levard et al., 2012). 

While high molecular weight PVP capped ions settle after seven days and low molecular weight 

citrate capped AgNPS remain in suspension indefinitely in laboratory tests (Jang et al., 2014), no 
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differences in the fate of citrate vs PVP capped AgNPs occurred under environmentally relevant 

conditions in mesocosms (Furtado et al., 2015). This lack of difference in fate between citrate 

and PVP capped AgNPs is potentially in part due to molecular transformations in natural waters.  

Once AgNPs enter the environment, they commonly transform into either Ag+ ions or 

silver sulfide nanoparticles (Ag2S-NPs) following breakdown of the capping agent (Levard et al., 

2012). Silver ions are typically more toxic to aquatic organisms than AgNPs, although some 

organisms are more vulnerable to AgNPs. Exposing Daphnia magna to either Ag+ ions or 

AgNPs revealed that Ag+ ions reduced lifespan and mobility (~22-fold), feeding rate (5-fold), 

and reproductive capacity (50%) compared to AgNP treatments (Ribeiro et al., 2014). Zebrafish 

embryo hatching rates were 14% lower in Ag+ ion treatments while AgNP treatments had no 

effect (Ribeiro et al., 2014). Conversely, AgNPs exhibited twice the toxicity of Ag+ ions to green 

algae, Raphidocelis subcapitata (Ribeiro et al., 2014). During wastewater treatment, most of the 

AgNPs and Ag+ ions are typically transformed into more stable Ag2S-NPs in the presence of 

sulfide (Kaegi et al., 2011). Findings from single-species laboratory tests on a variety of 

organisms suggest Ag2S-NPs are less toxic than both AgNPs and Ag+ ions (Levard et al., 2013). 

For example, mortality rates of killifish embryos and growth inhibition of duckweed were an 

order of magnitude greater in AgNP than Ag2S-NPs treatments (Levard et al., 2013). In addition, 

AgNPs were more lethal to nematodes (5-fold) and zebrafish embryos (10-fold) than Ag2S-NPs 

(Levard et al. 2013). Furthermore, the rate of transformation of AgNPs to Ag2S-NPs decreases 

during rain events due to shortened wastewater processing and retention times, potentially 

increasing discharge of Ag+ ions or AgNPs to surface waters (Kaegi et al., 2011). Therefore 

conditions that enhance AgNP discharge coupled with the release of Ag+ ions from Ag2S-NPs in 
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the presence of sunlight and Fe+ in aquatic environments may increase contact between AgNPs 

and their derivatives with aquatic organisms (Li et al. 2015; Wong et al., 2013). 

Suspected mechanisms of AgNP toxicity to aquatic organisms include the inhibition of 

Na+/K+ channels in cell membranes, disruption of ATP production and DNA replication, and the 

production of reactive oxygen species (Schultz et. al, 2012; Reidy et al., 2013; He et al., 2011). 

AgNPs prevent ATP enzymes from binding to cells, disrupting the active transport mechanism of 

Na+/K+ ions and blocking the uptake of Na+ though Na+/K+ channels leading to cell death 

(Schultz et al., 2012). Once inside cells, AgNPs interact with mitochondria inducing an 

overproduction of reactive oxygen species (ROS), which either causes apoptosis in cells or 

decreases ATP production. Finally, AgNPs induce structural changes in nuclear membranes 

including denaturing RNA and DNA, which prevent cell replication from occurring (Reidy et al., 

2013). The variety of mechanisms and severity of cellular AgNP toxicity suggests adverse 

effects are likely to translate to the organism level.  

Evidence of adverse effects of AgNPs on aquatic organisms derives primarily from short-

term single-species toxicity assays conducted under controlled laboratory conditions (Wong et 

al., 2013). Decreased growth and reproduction in Daphnia magna occurred after 48 hours of 

exposure to AgNPs (1.1–187 μg L-1) (Wong et al., 2013). Adult blue mussels, Mytilus edulis, 

exposed to 0.7 μg L-1 AgNPs exhibited shell abnormalities after 72 hours, and 50% of snails, 

Lymnaea luteola, died after 96 hours of exposure to 48 μg L-1 AgNPs (Wong et al., 2013; Ali, D. 

et al., 2014). In fish, AgNPs accumulated in Atlantic salmon (Salmo salar) gills during 48-hour 

exposures to 20-100 μgL-1, and hatching rates of Japanese medaka (Oryzias latipes) embryos 

decreased in the presence of 600 μgL-1 (Farmen et al., 2012; Wong et al., 2013). Chronic toxicity 

tests over 21 days show reduced reproduction and growth in D. magna after exposure to 5-30 μg 
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L-1 and 19.2-50 μg L-1 AgNP respectively (Mackevica et al., 2015; Sakka et al., 2016; Zhao and 

Wang, 2011). While acute and chronic laboratory tests on individual species are important in 

determining nanomaterial toxicity to aquatic organisms, it is difficult to extrapolate these 

responses to field conditions with multiple interacting species, natural substrates, and variable 

environmental factors (Lowry et al., 2012).  

Environmental conditions, including presence of natural substrates, DOC, pH, and water 

column temperature alter the toxicity of nanoparticles to aquatic organisms (U.S. EPA, 2012). 

The 96-hour LC50 of AgNPs for gastropods decreased from 2.18 μg L-1 in the absence of 

sediment to >100 μg L-1 when sediment was present (Bernot et al., 2010). Although increased 

DOC availability (particularly humic and fulvic acids) generally increases the stability and 

decreases the toxicity of AgNPs, responses vary by organism. Dissolved organic carbon 

increased AgNP toxicity to Daphnia magna (50 mgL-1) and Pseudomonas sp. (10 mgL-1), 

decreased the toxicity to O. latipes embryos (10 mgL-1), and Ceriodaphnia dubia (2.3 mgL-1), 

while the toxicity to Eschericia coli (5 mgL-1) and Bacillus subtilis (5 mgL-1) remained 

unchanged (Grillo et. al, 2015). Increasing temperature (from 25 to 31°C) combined with 1 mg 

L-1 of AgNPs reduced chlorophyll a production in green algae by 40% over a 24-hour period 

(Oukarroum et al., 2012). Changing multiple environmental variables at once also affects AgNP 

toxicity; decreased pH and DOC concentration coupled with higher temperatures increased 

dissolution of AgNPs into Ag+ ions, enhancing toxicity to aquatic organisms (Liu and Hurt, 

2010). Given the potential for abiotic conditions to influence AgNP toxicity and transform 

AgNPs to Ag2S and Ag+ ions in laboratory studies, experiments under more realistic 

environmental conditions are required to determine AgNP toxicity and fate in aquatic 

ecosystems. 
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The fate and behavior of AgNPs under more realistic environmental conditions and 

exposure regimes were examined in mesocosms simulating wetland, lake, and stream 

environments (Lowry et. al, 2012; Furtado et al., 2015; Kroll et al., 2015). In artificial wetlands 

receiving a single (pulse) AgNP dose of 25 mg L-1, AgNPs were transformed into Ag2S, Ag-

cysteine, and Ag0 in the water column within eight days, and after 18 months, both mosquitofish 

and chironomids contained silver in their tissues (Lowry et al., 2012).  Lake mesocosms yielded 

33% higher water column Ag concentrations in repetitive treatments than the pulsed treatment, 

roughly 2X higher sediment Ag concentrations in a pulsed treatment than repetitive treatments, 

and similar levels of accumulation in periphyton between treatments after 33 days (Furtado et al., 

2015). In artificial streams treated with one AgNP pulse dose of 2 or 20 µgL-1, 80-88% of 

AgNPs settled out of the water column after four days (Kroll et al., 2015). These studies suggest 

AgNPs and their transformation products are available to aquatic organisms for long periods of 

time after exposure, and Ag fate is likely dependent on the concentration of AgNPs, the mode of 

application (pulsed vs. repetitive) and the type of aquatic environment (lentic vs. lotic).  

Rivers and streams are at a greater risk of AgNP pollution than lakes due to more 

frequent agricultural runoff and discharge from treatment plants (NOAA, 2008). Flowing water 

may re-suspend AgNPs, prolonging water column exposure continually exposing organisms in 

the water column to AgNPs (Simmons and Wallschlager, 2004). In addition, river and stream 

communities are more susceptible to AgNP exposure than lake or wetland communities as nearly 

all wastewater treatment plants discharge into rivers (Simmons and Wallschlager, 2004). The 

community composition of organisms differs between stream and pond systems with more 

benthic dwelling organisms in streams than lakes, causing greater AgNP accumulation in benthic 

organisms as AgNPs settle (Grabowska et al., 2014; Bunn and Arthington, 2002; (Croteau et al., 
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2011)). Once benthic organisms are consumed by predators, AgNPs bioaccumulate in higher 

trophic levels (Croteau et al., 2011). The increased likelihood of AgNP discharge, spills, and 

runoff to streams combined with potential for adverse effects of AgNPs to differ in stream 

compared to lake communities suggests examining the fate of AgNPs in streams is important.  

The purpose of this study was to compare the fate and potential toxicity of two 

concentrations of AgNPs following one-time pulse application simulating a chemical spill, or 

small repetitive applications simulating effluent discharge, in artificial stream communities under 

realistic environmental conditions. I hypothesized that the fate of AgNPs differs depending on 

the mode of application and concentration applied. Specifically, I predicted that a large pulse 

application increases silver accumulation in sediments and bottom-dwelling stream inhabitants 

such as periphyton and snails (Campeloma decisum), while repetitive applications increase 

duration of AgNP exposure to fish (Lepomis macrochirus) in the water column. I also predicted 

that AgNP accumulation by organisms and sediment increases with increasing concentration 

regardless of application type. Results from this study provide insight into which stream 

components are susceptible to AgNP accumulation and should be monitored for AgNP effects. 

METHODS 

Artificial Stream Design 

Artificial streams (N=30) were constructed in the Georgia Southern University 

greenhouse (32.421432, -81.790814) using 57 L, black, oval-shaped polypropylene tanks and 

black, oval shaped, polypropylene centerpieces (centerpiece diameter 13 - 23 cm) to create a 

stream channel with a depth of 11 cm and widths from 32-34 cm (Figure 1). A 1.9 cm layer of 

sandy sediment (Quikrete 1113, Georgia, USA) was added to each microcosm. Water collected 
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from the Ogeechee River near Rocky Ford, GA, USA (32.648953, -81.840798) was transported 

to the greenhouse and a 20 L aliquot immediately added to each microcosm. One powerhead 

pump (SunSun JP–024, China) was fixed to the side of each tank with adhesive tape at a depth of 

2.7 cm, creating unidirectional flow with an average velocity of 0.18 m s-1 consistent with flow 

rates of the Ogeechee River during summer and fall months (USGS, 2017). To compensate for 

evaporation, deionized water was added daily to maintain the 20 L volume. 

Unglazed ceramic tiles (5.08 cm. x 5.08 cm.) were deployed in the Ogeechee River 

(32.419892, -81.544509) two months prior to the start of the experiment to allow natural 

periphyton communities to establish (Hauer et al., 2011). One week prior to administering 

experimental treatments, 18 tiles were added to each artificial stream and evenly spaced ~5 cm 

from the tank sides, centerpiece, and neighboring tiles. Snails, Campeloma decisum, (N=600) 

were collected from the Ogeechee River near Rocky Ford, GA (32.648953, -81.840798), and 

juvenile fish (age 1-2 months), Lepomis macrochirus (N=180), 2 to 4 cm in length, were 

obtained from the Richmond Hill Fish Hatchery (31.955373, -81.316145).  To allow time for 

acclimation to artificial streams, 20 snails and 6 fish were haphazardly selected and placed in 

each microcosm, five and four days prior to treatment respectively. Deceased or unhealthy snails 

and fish observed during this time period were replaced before AgNP application, accounting for 

<5% of all snails and fish used in the experiment. During the experiment, deceased snails (19% 

of population) and fish (15% of population) across all treatments were removed but not replaced. 

Because of the potential for food limitation within the artificial streams, fish were supplemented 

with 0.04g of fish food (Purina Aquamax Fry Starter 100, Missouri, USA) per day, equivalent to 

~5% of their body weight (Anderson et al. 2002).  
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Experimental Design 

Artificial streams were randomly assigned to one of four AgNP treatments or a no-

addition control (n=5) for a period of two weeks from 29 July to 12 August 2016. Silver 

nanoparticle concentrations selected were similar to concentrations used in previous stream and 

lake experiments and ensured the Ag content in samples was greater than the ICP-MS detection 

limit of 0.25 µg L-1 (Kroll et al., 2015; Furtado, et al., 2015). Stock solutions of 196±1 mg L-1 

citrate capped, 50 nm diameter AgNPs were synthesized for this study (John Stone, Georgia 

Southern University Chemistry Department) (Figure 2). The following AgNP treatments were 

applied: one time pulse dose of 35 µg L-1 or 70 µg L-1 AgNPs, or repetitive (every two days) 

applications of 5 µg L-1 or 10 µg L-1 AgNPs totaling 35 µg L-1 and 70 µg L-1 AgNPs by the end 

of the experiment (Table 1).  

 

Synthesis of AgNPs 

 Silver nanoparticles were synthesized in the Stone Laboratory in the Chemistry 

Department at Georgia Southern University by dissolving 90 mg of AgNO3 in 500 ml of water. 

The solution was brought to a boil and 10 ml of 1% sodium citrate solution was added while 

stirring. The solution was boiled for 30 minutes, turning from transparent yellow to opaque gray. 

Lastly, the solution was cooled to room temperature and diluted to 420 ml creating 50 nm silver 

nanoparticles (Stephanie Canonico-May, pers. comm., Dieringer et al., 2007).  
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Sampling and Analysis 

Periphyton - biomass, silver content, and chlorophyll a 

Following initial AgNP treatment addition and on the final day of the experiment, nine 

unglazed tiles were haphazardly selected for removal from each microcosm. Tiles were brushed 

with a hard nylon bristled brush (Wildco 3-156-F40, Florida, USA) to collect periphyton. Ash-

free dry mass (AFDM), chlorophyll a concentration, and silver content were each determined 

from periphyton collected from separate groups of three tiles (Porter et al., 1993). To measure 

AFDM, periphyton in pre-weighed aluminum tins was heated at 105ᵒC and weighed followed by 

combustion at 500ᵒC for one hour followed by re-wetting and drying at 105ᵒC prior to re-

weighing to correct for clay moisture (Rice et al., 2012).  

For chlorophyll a concentration and silver content, periphyton brushed from tiles was 

centrifuged at 3000 rpm for ten minutes to pellet the material (EPA, 1996). To determine 

chlorophyll a concentration, the pellet was submerged in 10mL of 90% acetone for 24 hours in 

the dark at -20°C to extract pigments, followed by fluorescence measurement using a Trilogy 

Fluorometer (Turner Designs, CA, USA) according to EPA Method 445.0 (Arar and Collins, 

1997). For periphyton silver content, periphyton pellets were frozen at -20°C in the dark until 

analysis for silver content could be performed within three months of processing (EPA, 2007). 

After thawing, samples were dried at 60°C and weighed (Lantry and O’Gorman, 2007) followed 

by digestion with 70% Trace-Metal Grade HNO3 (9 ml) and 36% HCl (1 ml), and H2O2, (2 ml) 

and refluxing (continuously evaporating and condensing) at 120°C for six hours until any 

yellow/brown color disappeared (EPA, 1996; Furtado et al. 2015). Digested samples were kept at 

room temperature overnight to allow particulate matter to settle. A subsample (1 ml) was then 

removed from each sample, diluted by a factor of ten, and used to quantify silver content using 
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an ICP-MS (NexION 300X ICP-MS, Perkin Elmer, Massachusetts, USA) (Furtado et al. 2015). 

The ICP unit of the instrument aerosolized the liquid substance and converted the elemental 

atoms into positively charged ions. The MS unit then separated the ions by their mass-to-charge 

ratio and allowed for quantification of the number of ions of each element in the sample. Using a 

predetermined linear regression curve, the number of silver atoms in the periphyton was 

calculated (Wolf, R. 2005).  

 

Snail and Fish Silver Content 

Silver content in fish and snails were only determined at the end of the experiment due to 

the destructive nature of the sampling. All fish and snails were removed from each artificial 

stream and rinsed with deionized water to remove any AgNPs on the surface of each organism 

(Zhao et al., 2011). Fish were euthanized by cervical dislocation (AMVA, 2013). Snails and fish 

were frozen at -80ᵒC until silver analysis could be performed one and four months later, 

respectively (EPA Method SW-846; EPA, 2007). Organisms were dried at 60ᵒC for three days 

and weighed (Lantry and O’ Gorman, 2007). Aqua regia (90:10, 70% trace metal-grade HNO3, 

35% trace metal-grade HCl) was used to completely liquefy individual whole fish (3 ml) and 

groups of whole snails (3-4 individuals; 2 ml) at 70ᵒC (~6 hours) (Lowry et al., 2012). 

Subsamples (0.5 ml) were taken from each digested fish, diluted by a factor of four, and 

analyzed for Ag via ICP-MS at Georgia Southern University (EPA Method 6020A; EPA 1998). 

Indium was added to snail samples as an internal standard to track interference from high Ca+ ion 

concentration from shells during Ag content analysis using ICP-MS (NexION 300D ICP-MS, 

Perkin Elmer, Massachusetts, USA in the Buck Laboratory at the Skidaway Institute of 

Oceanography (Clifton Buck, pers. comm., EPA Method 6020A; EPA 1998).  
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Sediment Ag content 

Sediment samples were collected only at the end of the experiment to avoid disruption 

from suspended sediment during the study. Three sediment cores (2.54 cm diameter, 1.9 cm 

depth) were haphazardly collected from each microcosm and frozen at -80ᵒC until analysis. After 

thawing, sediment was dried at 80ᵒC, weighed, and combusted at 400ᵒC for 10 hours (Furtado et 

al., 2015). Three, one-gram subsamples were taken from each core, and digested with 10 ml of 

70% HNO3. The solution was refluxed for 2 hours at 120ᵒC, and again for two hours after adding 

another 5 ml of HNO3 to the solution. Lastly, 3 ml of H2O2 was added prior to a final 2 hours of 

reflux. The solution was vortexed for five seconds and stored overnight at room temperature to 

settle suspended particulates. A subsample (1 ml) of the final solution was diluted by a factor of 

7 and analyzed via ICP-MS for Ag content (Furtado et al., 2015).  

 

Percent Recovery of Ag 

Percent recovery of Ag added to streams was calculated by totaling the mass of Ag found 

in the water column, sediment, periphyton, snails, and fish and dividing the result by the mass of 

AgNPs added to each treatment during the experiment. Percent recovery of Ag was compared 

between water, sediment, and organisms to determine the fate of AgNPs in artificial streams.  

 

Water Column Measurements  

Environmental conditions (temperature, pH, conductivity, and dissolved oxygen) were 

measured prior to and immediately after administration of AgNP treatments, after one week, 

before each repetitive application, and at the end of the experiment using a hand-held multi-

probe (YSI Professional Series, Yellow Springs Instruments, Ohio, USA). Snail and fish 
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excretion contributed ammonia to streams, consequently increasing pH. To mitigate this effect, 

10% HCl was added to each stream to reduce the pH to initial levels (7.9 ± 0.1). Water 

temperature, pH, DO, and specific conductivity measurements did not differ across treatments, 

therefore measurements were pooled to calculate mean values for each day (Table 2). 

Water samples were collected from the center of the water column (approx. 5 cm from 

the top and bottom) on days 0, 7, and 14 to quantify total Ag (TAg), chlorophyll a, and DOC 

concentrations in each artificial stream. To analyze water column total Ag concentration, water 

samples (10 ml) were immediately acidified in 4% HNO3 and stored at 4ᵒC for one week until the 

samples could be heated to 70ᵒC for six hours, cooled to room temperature, and analyzed via 

ICP-MS (Furtado et al. 2015). 

Samples for DOC analysis (50 ml) were collected and filtered through Whatman 

nitrocellulose filters (pore size 0.45 µm) to remove particulate carbon and analyzed for total 

carbon (TC) and dissolved inorganic carbon (DIC) using a TOC analyzer (Schimadzu TOC-L, 

Maryland, USA) in accordance with Standard Method 5310B (Rice et al., 2012). Dissolved 

organic carbon was then calculated by subtracting DIC from TC. Initial DOC concentration did 

not differ between treatments, ensuring differences in AgNP fate were not due to DOC content 

(Table 3).  

Water column chlorophyll a concentration in each stream was determined from water 

samples (100 ml) filtered through Whatman GF/F glass microfiber filters (0.7 µm nominal pore 

size) to collect algal cells. Pigments were extracted from cells on the filters in 90% acetone for 

22 hours at -4ᵒC and measured using fluorometry accordance to EPA Method 445.0 (Arar and 

Collins, 1997). 
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Statistical Analysis 

Data were tested for normality and homogeneity of variances using equal variance and 

normal distribution tests. Data not meeting assumptions were either transformed, or analyzed 

using nonparametric tests. Differences in Ag content between control and treated streams were 

analyzed using one-way ANOVA on log transformed fish and periphyton Ag concentration, and 

nonparametric Kruskal-Wallis tests on sediment and snail Ag concentration. To examine the 

effect of AgNP concentration and application type on Ag content, two-way ANOVA was 

conducted for sediment data and log transformed periphyton and fish Ag concentration. Water 

and snail Ag concentration could not be transformed, and were analyzed using Kruskal-Wallis 

tests followed by the Scheirer-Ray Hare extension.  

Initial differences due to treatment in DOC (Log 10 transformation), periphyton biomass, 

and water chlorophyll a (square root transformation) were determined using one-way ANOVA 

tests and initial differences due to treatment in periphyton chlorophyll a were analyzed via 

Kruskal-Wallis tests. Differences in DOC (Log 10 transformation) on Day 14 between 

treatments were again analyzed using a one-way ANOVA. To determine whether AgNP 

application type or concentration affected periphyton biomass, periphyton chlorophyll a, and 

water chlorophyll a at the end of the experiment, two-way ANOVA tests (periphyton biomass 

and water chlorophyll a) or a Scheirer-Ray Hare test (periphyton chlorophyll a) were conducted. 

All statistical tests were performed using JMP statistical software (Version 12.0, SAS Institute 

Inc., Cary, NC).  
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RESULTS 

Fish (L. macrochirus) Ag accumulation occurred in all AgNP treated streams (Table 3) 

and was dependent on the concentration applied not application type (Table 4). Fish tissue Ag 

concentration in the 70 µg L-1 treatments were 2.5–3.8X those in the 35 µg L-1 treatments 

regardless of application type (Table 4, Figure 7), with no effect on mortality (One-Way 

ANOVA, F4, 25 = 0.9532, p = 0.4501). While Ag accumulation in fish was affected by 

concentration applied, sediment Ag concentrations were influenced by both AgNP concentration 

and application type resulting in an interaction effect (Table 4, Figure 8). The interaction 

occurred because sediment in 35 µg L-1 pulsed treatment accumulated twice as much Ag as the 

35 µg L-1 repetitive treatment, but there was no difference in accumulation between the two 70 

µg L-1 treatments.  

Application type affected Ag adsorption to periphyton. Periphyton Ag concentration in 

repetitive treatments was 1.9-3.4X higher than the control less than one hour following initial 

application, indicating rapid settling of AgNPs (Table 3). Settling of AgNPs was also highly 

variable; periphyton in streams receiving 10 µg L-1 AgNPs in the 70 µg L-1 repetitive treatment 

accrued twice the Ag of periphyton in 35 and 70 µg L-1 pulsed treated streams (Table 3, Figure 

4). Final periphyton Ag concentration in repetitive treatments streams averaged 2-3X higher than 

pulsed AgNP treatments (Table 4, Figure 5). However, tissue Ag concentration was unrelated to 

periphyton pigment (chlorophyll a) concentration or abundance, which did not differ by AgNP 

concentration or application type (Table 5, Table 6). 

Final water chlorophyll a and DOC were unaffected by AgNP concentration and 

application type (Table 6). Neither concentration nor application type influenced snail (C. 
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decisum) or water column Ag concentration (Table 4). Snail (C. decisum) tissue Ag content was 

5.8 – 19.6X higher in treatments that received AgNPs than the control (Table 3, Figure 6), yet no 

differences in Ag concentration (Table 4, Figure 6) or mortality (One-Way ANOVA, F4, 25 = 

1.5402, p = 0.2211) due to application type or concentration were observed. Percent error 

calculated between average initial total Ag (TAg) measured in the water column and nominal 

AgNP concentration applied was lowest in 10 µg L-1 AgNP treatments (0.53%), followed by 70 

µg L-1 AgNP treatments (3.39%), 5 µg L-1 treatments (6.07%), and 35 µg L-1 treatments 

(19.01%) (Table 1). Silver concentrations measured among streams in each treatment were 

precise, having low coefficients of variations (5 µg L-1 (6.63%), 10 µg L-1 (1.50%), 35 µg L-1 

(4.24%), 70 µg L-1 (5.61%). Differences determined in initial Ag concentrations were no longer 

detected across concentration or application treatments after one week (Table1, Figure 3). 

Concentrations in 70 µg L-1 and 35 µg L-1 pulsed treatments decreased by 98% and 96% by day 

7. Despite addition of 5 and 10 µg L-1 to repetitive treatments on days 0, 2, 4 and 6, 92% and 

94% of TAg settled out of the water column by day 7 (Table 1). All TAg concentrations in 

AgNP treatments remained below 2.32 µg L-1 with no difference between treatment 

concentration or application type (Table 1, Table 4).  

Most silver accumulation occurred in the sediment across all treatments (90-95%), while 

4-8% of Ag remained the in the water column, and <1% of Ag was recovered in aquatic 

organisms. Across organisms, snails accumulated the highest amount of Ag (10- 36 µg g-1), 

followed by periphyton (3.5-9.6 µg g-1), and fish (0.15-0.69 µg g-1) (Figure 9). Percent recovery 

of AgNPs was between 71 and 75% for the 35 and 70 µg L-1 repetitive treatments and the 70 µg 

L-1 pulsed treatment. Streams treated with 35 µg L-1 AgNPs appeared to have greater than 100% 
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recovery of AgNPs, but this is most likely attributed high variability in recovery of 35 µg L-1 

treated streams and the small samples sizes of sediment.   

 

DISCUSSION 

Concentration Effects  

The hypothesis that the fate of AgNPs in streams depends on the concentration and mode 

of application was partially supported. Specifically, I anticipated that Ag concentration in 

organisms, water, and sediment should increase with increasing external concentration. Silver 

uptake in fish was dependent only on the concentration of AgNPs applied. Fish take up silver 

nanoparticles via dietary consumption, water ingestion, or respiration (Bruneau et al., 2016). 

Though fish were observed feeding on algae in streams, their diet primarily consisted of 

supplementary food, suggesting Ag accumulation occurred largely via respiratory routes or 

ingestion of water (Bruneau et al., 2016). Furthermore, once AgNPs settled, they did not appear 

to become resuspended, thus potentially limiting AgNP exposure time and contact with fish. Fish 

ingest ~30% of their body weight per day in water, therefore fish may have quickly accumulated 

AgNPs from the water column prior to settling leading to a concentration effect (Bruneau et al., 

2016). Fish AgNP uptake in this study (0.20-0.69 µg g-1) was similar to wet weight mosquitofish 

body burdens (0.5 µg g-1) in wetland mesocosms exposed to a pulsed treatment of 25 mg L-1 

AgNPs (3.5X greater magnitude) over 18 months, however, if dry weights were recorded for 

mosquitofish, body burdens would likely increase (Lowry et al., 2012). Furthermore, 

mosquitofish may have had higher body burdens after the initial pulsed exposure, but expelled 



23 
 

Ag from their tissues via depuration over the 18-month period as AgNPs settled from the water 

column (Jang et al., 2014).  

Water column Ag concentration did not affect periphyton tissue Ag concentration. This 

result was surprising given that concentration influenced periphyton Ag concentration following 

pulsed applications of 2 and 20 µg L-1 to artificial streams (Kroll et al., 2016).  Final Ag 

adsorption to periphyton in this study was similar to adsorption in streams receiving only 2 µg L-

1 AgNPs after 18 days (Kroll et al., 2016). Differences in periphyton Ag adsorption between the 

two studies may be attributed to the presence of snails in this study (Amato et al., 2016). Benthic 

organisms like snails commonly change the position and chemical structure of contaminants in 

benthic areas by mixing sediments, disturbing periphyton, or ionizing metals through means of 

oxygenation in anoxic sediments (Amato et al., 2016). Bioturbation practiced by snails combined 

with the consumption of AgNPs on/in periphyton most likely reduced Ag concentrations 

adsorbed to periphyton in 70 and 35 µg L-1 treatments preventing any concentration effects 

(Amato et al., 2016; Oliver et al., 2014).   

Absence of concentration effect in snail body burdens was potentially due to dietary 

uptake and the variability in AgNP settling (Croteau et al., 2011; Ren et al., 2016). 

Concentrations of heavy metals like Ag often settle with spatial variability leading to areas with 

higher and lower AgNP densities in the sediment and periphyton (Tam and Wong, 1995; Ren et 

al., 2016). Snails feeding on periphyton may accumulate AgNPs at different rates as they travel 

through sediment depending on the concentration of AgNPs in the area (Oliver et al., 2014; 

Croteau et al., 2011).  Therefore uptake of AgNPs by C. decisum was most likely dependent on 

variable AgNP densities in periphyton.  
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Though initial total Ag (TAg) concentrations in the water column reflected nominal 

concentrations applied, AgNPs rapidly settled and no differences were detected between 

treatment concentrations on Day 7 and 14. This finding was contradictory to water column Ag 

concentrations determined in previous lake and stream mesocosm studies (Furtado et al., 2015; 

Kroll et al., 2016). Though artificial streams in this study had similar DOC and ion 

concentrations as lake systems, AgNPs in lakes stayed suspended over one month longer 

(Furtado et al., 2015). One possible reason for this discrepancy is that flowing water in the 

artificial streams increased interaction with sediment and periphyton likely removing AgNPs 

from the water column at a faster rate than lake systems (Velzeboer et al., 2014). However, 

flowing water may not be the only reason for a lack of concentration effect in the water column 

of this study as another stream experiment also showed differences between AgNP 

concentrations applied (Kroll et al., 2016). Stream design potentially led to the difference in 

concentration effect between this experiment and Kroll et al. (2016). Though artificial streams in 

both experiments were recirculating, streams in this experiment were circular in shape and 

included sediment compared to artificial streams in Kroll et al. (2016), which lacked sediment 

and were straight, reducing collisions with periphyton and sediment (Kroll et al., 2016; 

Velzeboer et al., 2014).  

 

Effects of Application Type 

Increased Ag concentration associated with benthic organisms was expected in pulsed 

AgNP treatments. However, more Ag was adsorbed to periphyton in the repetitive treatments, 

possibly due to the presence of water flow. In the pulse treatments there was more time to move 

unbound AgNPs off the periphyton tiles and for bioturbation or ingestion of Ag by snails (Kroll 
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et al., 2016; Amato et al., 2016; Croteau et al., 2011) giving the appearance of decreased Ag 

concentration. Evidence of flowing water reducing periphyton Ag concentrations was indicated 

in Kroll et al. (2016) as periphyton Ag concentrations decreased by 80% over a two-week period 

following a pulsed application. Furthermore, no effect of application type on snail tissue AG 

concentration occurred, potentially because C. decisum can avoid AgNPs (Justice and Bernot, 

2014). In this study, half the snails exposed to AgNPs moved away from the sediment and up the 

walls of artificial streams. The snail Physa acuta was observed climbing container walls after 

exposure to 0.03 µg L-1 of AgNP despite increased visibility to predators, suggesting 

contaminant avoidance (Justice and Bernot, 2014). The AgNP treatments in this experiment were 

three orders of magnitude greater than 0.03 µg L-1, therefore concentration could have been more 

important in eliciting avoidance behavior than application type. 

Although repetitive applications of AgNPs were expected to remain suspended in the 

water column longer than pulsed treated streams, rapid settling occurred in both repetitive and 

pulsed application treatments. Citrate-capped, small, low molecular weight AgNPs may remain 

suspended in water indefinitely (Velzeboer et al., 2014). However, suspension time may be 

reduced by physicochemical conditions including ionic strength (Ca+2, Mg+2, Na+ and Cl-), DOC 

concentration, and pH (Velzeboer et al., 2014; Fabrega et al., 2011). Silver nanoparticles in 

environments with DOC concentrations greater than 4 mg L-1 form heteroagglomerates with 

natural organic matter, in turn stabilizing and suspending AgNPs in the water column (Fabrega et 

al., 2011). Conversely, environments with high ionic strength reduce the repulsion between 

negatively charged citrate capped AgNPs leading to the formation of large AgNP aggregates, in 

turn increasing their mass and settling via gravitational forces (Hotze et al., 2014; Navaro et al., 

2008). Aggregation of citrate capped AgNPs also increases in acidic environments (pH of 3) and 
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stabilizes AgNPs in neutral to basic environments (Badaway et al., 2010). Ogeechee River water 

used in this experiment was characterized by high DOC content, low ionic strength, and slightly 

basic conditions (Meyer et al., 1997; R. Cohen, personal communication), which would typically 

lead to the suspension of AgNPs, yet rapid settling occurred in artificial streams.  

This rapid settling in lotic environments also seems contradictory given that higher Ag 

concentrations were found in lake sediment following a pulsed application compared to 

repetitive applications (Furtado et al., 2013). When the comparing artificial streams in this study 

to the artificial lakes in Furtado’s study, both systems were characterized by high DOC, neutral 

to slightly basic pH, and relatively low conductivity, suggesting flow actually decreased the 

suspension of AgNPs in artificial streams (Kennedy et al., 2012). In artificial streams with flow 

rates similar to this study (0.20 m s-1), rapid settling of 80-88% of AgNPs occurred in artificial 

streams after four days (Kroll et al., 2016). However, the conditions in the streams used by Kroll 

et al. (2016) included high ionic content (conductivity 4X higher than this study) and low DOC 

content (6X lower), conducive to faster settling rates. In this study, it is possible that the flowing 

conditions increased collisions between suspended particles or phytoplankton in the water 

column inducing settling (Velzeboer et al., 2014). Silver nanoparticles may have also adsorbed to 

periphyton growing on the sides of the streams reducing suspension time of AgNPs. No 

periphyton was removed from the sides of streams because the majority was removed by grazing 

snails. Clearly more work must be conducted in order to fully determine how flow rates affect 

AgNP settling rates and aggregation. 
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Interactive Effects 

Sediment responses to AgNP exposure exhibited some support for effects of 

concentration and application type. Concentration effects in sediment seemed to occur when 

comparing the 35 µg L-1 and 70 µg L-1 repetitive treatments, but not in pulsed treatments. Similar 

concentration effects occurred in lake systems where sediment Ag concentrations increased with 

the application of higher AgNP concentrations (Furtado et al., 2015). The unpredictably high 

sediment Ag concentration in the 35 µg L-1 pulse treatment most likely occurred due to spatial 

variation in heavy metal settling and is common in aquatic environments (Tam and Wong, 1995; 

Ren et al., 2016). Though previous studies collected 2-3 sediments cores per mesocosm to 

acquire sediment Ag concentrations, this study suggests a larger sampling size could reduce 

variation and provide more precise results in future studies (Furtado et al., 2015; Lowry et al., 

2013).   

Fate of AgNPs in Artificial Streams 

The overall goal of this study was to determine if the fate and effects of AgNPs differ 

with concentration and application type in lotic environments under environmentally relevant 

conditions. Nearly all (90-95%) of the Ag recovered from artificial streams was in the sediment 

regardless of treatment, suggesting benthic organisms are at greater risk of AgNP exposure than 

pelagic organisms. In addition, this risk may be long-term and spread to new areas. Once AgNPs 

and their derivatives settle, they often remain in the sediment and bioavailable to aquatic 

organisms (US EPA, 2017). Silver bound to sediments may also become resuspended and 

contaminate aquatic communities downstream (US EPA, 2017). Recovery of Ag in organisms of 

artificial streams was in the following order: benthic snails > periphyton > fish. When comparing 
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biotic uptake of Ag in artificial stream and wetland mesocosms, benthic organisms also 

accumulated more Ag silver than pelagic organisms: riparian plants (primarily roots) > benthic 

macroinvertebrates (chironomids, odonates) > fish (Gambusia sp.) (Lowry et al., 2012). As 

AgNPs accumulate in benthic organisms, there is potential for trophic transfer to pelagic 

organisms in both lotic and lentic systems (Wang et al., 2014). Despite Ag accumulation in 

aquatic organisms, neither mortality (fish or snail) nor periphyton abundance was affected by 

AgNP exposure. While AgNP concentrations below 70 µg L-1 were lethal to algae and snails 

under controlled laboratory settings (Wong et al., 2013), the presence of multiple species, sulfide 

ions, and natural organic matter (NOM) in artificial streams may have reduced toxic effects (Wu 

et al., 2017; Levard et al., 2012). It is also possible that the AgNPs accumulated in benthic 

organisms undergo trophic transfer to pelagic organisms in lotic systems (Wang et al., 2014) but 

this may require longer time frames than investigated in the present study. 

 

Conclusion 

This study shows that both concentration and application type have a role in the fate of 

AgNPs in artificial streams. Concentration affected water column (albeit briefly) and fish tissue 

Ag concentration, likely via respiratory contact and water ingestion. Application type influenced 

Ag adsorption to periphyton, possibly because AgNPs in pulse treatments of had more time to be 

removed from tiles as a result of water movement and snail grazing. Sediment Ag concentration 

appeared to be affected by concentration in the repetitive treatments, but not the pulsed 

treatments due to the variability in AgNP settling. Overall, rapid settlement of AgNPs regardless 

of application type suggests sediment as a sink for Ag, placing benthic organisms at particular 

risk of exposure. In addition, absence of mortality following exposure to concentrations 
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previously shown to be lethal to snails and periphyton under laboratory settings indicates the 

importance of testing AgNP exposure under ecologically and environmentally relevant 

conditions to properly assess their toxicity in aquatic environment.
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Table 1: Measured total water column Ag concentration ± one standard error of the mean (SEM) 

initially and one and two weeks after treatment application (n=6). 

AgNP Treatments Day 0 Day 7 Day 14 

Ctrl 0 ± 0 0 ± 0 0 ± 0 

35 µg L-1 repetitive 5.30 ± 0.16 1.69 ± 0.02 2.16 ± 0.05 

70 µg L-1 repetitive 9.95 ± 0.07 2.33 ± 0.28 2.32 ± 0.04 

35 µg L-1 pulsed 28.35 ± 0.54 1.15 ± 0.03 1.95 ± 0.02 

70 µg L-1 pulsed 67.63 ± 1.70 1.17 ± 0.02 2.00 ± 0.02 
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Table 2: Average stream pH, DO, specific conductivity, and temperature in all streams over two 

weeks (N=30). Numbers in parentheses represents ± one SEM.  

Day pH DO (mg L-1) Specific Cond (µs) Temperature 

0 (before dose) 8.05 (0.02) 7.31 (0.03) 92.20 (1.67) 29.12 (0.11) 

0 (after dose) 8.35 (0.02) 6.73 (0.07) 93.49 (1.34) 30.61 (0.09) 

2 9.00 (0.04) 7.83 (0.07) 91.69 (1.23) 32.06 (0.20) 

4 8.96 (0.03) 8.39 (0.14) 97.78 (1.28) 32.11 (0.16) 

6 8.80 (0.03) 7.36 (0.10) 102.54 (1.70) 30.79 (0.06) 

7 8.51 (0.06) 7.38 (0.06) 107.35 (2.17) 30.66 (0.17) 

8 8.56 (0.04) 7.48 (0.07) 104.49 (1.76) 29.64 (0.08) 

10 8.33 (0.03) 7.38 (0.07) 107.84 (1.94) 29.20 (0.08) 

12 8.32 (0.04) 7.29 (0.07) 108.66 (2.22) 29.45 (0.13) 

14 7.81 (0.05) 7.31 (0.04) 110.68 (2.39) 28.93 (0.12) 
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Table 3: Comparisons showing overall differences between treatments in Ag accumulation Day 0 

periphyton, Day 14 periphyton, snails, fish, and sediment on day 14, in addition to the 

corresponding Tukey-Kramer, Wilcoxon Each Pair, and Steel-Dwass All Pairs Post-Hoc tests 

(n=6). Significant values are denoted with an asterisk. 

 

Test Df Test Statistic p-value 

Periphyton 

Ag Day 0 
Kruskal-Wallis 4, 23 X2 = 14.4906 <0.0059* 

 
Wilcoxon Each Pair 

Comparison 
   

 10 µg L-1 vs all treatments   <0.05* 

 ctrl vs. 35 µg L-1 Repetitive   0.0216* 

 ctrl vs. 35 µg L-1 Pulsed   0.0552 

Periphyton 

Ag Day 14 
One-Way ANOVA 4, 24 F = 13.4084 < 0.0001* 

 
Tukey-Kramer post hoc 

Comparisons 
   

 ctrl vs. all treatments   < 0.05* 

Snails Ag Kruskal-Wallis 4, 25 X2 = 14.4172 0.0061* 

 
Wilcoxon Each Pair 

Comparisons 
   

 ctrl vs. all treatments   < 0.05* 

Fish Ag One-Way ANOVA 4,25 F = 29.3845 < 0.0001* 

 
Tukey-Kramer post hoc 

Comparisons 
   

 ctrl vs. all treatments   < 0.05* 

Sediment Ag Kruskal-Wallis 4, 25 X2= 21.2000 0.0003* 

 
Steel-Dwass All Pairs 

Comparisons 
   

 ctrl vs. all treatments   < 0.05* 
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 Table 4: Comparisons of final Ag concentration in periphyton, snails, fish, sediment, and water 

(n=6) across application type and concentration treatments. Asterisks denote significant 

differences.  

Analysis Df Test Statistic p-value

Periphyton Ag Day 14 Two-Way ANOVA 

Treatment 1, 19 F = 0.00350 0.9532 

Application Type 1, 19 F = 15.7322 0.0008* 

Interaction 1, 19 F = 0.0883 0.7695 

Snails Ag Scheirer-Ray Hare 

Treatment 1, 20 H = 1.270 > 0.10

Application Type 1, 20 H = 0.0013 > 0.10

Interaction 1, 20 H = 0.6413 > 0.10

Fish Ag Two-Way ANOVA 

Treatment 1, 20 F = 22.0049 0.0001* 

Application Type 1, 20 F = 0.0132 0.9096 

Interaction 1, 20 F = 22.0049 0.4484 

Sediment Ag Two-Way ANOVA 

Treatment 1, 20 F = 7.7080 0.0117* 

Application Type 1, 20 F = 3.3913 0.0804 

Interaction 1, 20 F = 5.6000 0.0282* 

Table continued on next page. 
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Table continued from previous page. 

Water TAg Day 14 Scheirer-Ray Hare    

 Treatment 1, 20 H = 0.3925 > 0.05 

 Application Type 1, 20 H = 2.3789 > 0.05 

 Interaction 1, 20 H = 0.1252 > 0.05 
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Table 5: Comparisons of initial periphyton biomass, water chlorophyll a, periphyton chlorophyll 

a, and DOC concentration across treatments (n=6). 

 Test Df Test Statistic p-value 

Periphyton Chl-a Kruskal-Wallis 4 Χ2 = 1.9140 0.7516 

Periphyton biomass One-Way ANOVA 4,25 F = 1.7525 0.1701 

Water Chl-a One-Way ANOVA 4,25 F = 1.5342 0.2228 

DOC One-Way ANOVA 4,25 F = 0.2162 0.9270 
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Table 6: Comparisons of the effects of AgNP concentration and application type on final 

periphyton biomass, water chlorophyll a, periphyton chlorophyll a, and DOC concentrations 

(n=6). 

Periphyton Biomass  Two-Way ANOVA Df Test Statistic p-value 

 
Treatment 1, 20 F = 0.3239 0.5756 

 
Dosing Regimen 1, 20 F = 0.0351 0.8533 

  Interaction 1, 20 F = 0.0149 0.9042 

Water Chl a  Two-Way ANOVA 
   

 
Treatment 1, 20 F = 0.4239 0.5224 

 
Dosing Regimen 1, 20 F = 0.9416 0.3434 

  Interaction 1, 20 F = 2.474 0.1314 

Periphyton Chl a  Scheirer-Ray Hare 
   

 
Treatment 1, 20 H = 0.0213 > 0.05 

 
Dosing Regimen 1, 20 H = 0.6482 > 0.05 

  Interaction 1, 20 H = 1.822 > 0.05 

DOC  One-Way ANOVA    

  4, 25 F = 0.1460 0.9631 
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Figure 1: Artificial stream microcosm A) dimensions, B) set up with water, sediment and tiles, 

and C) experimental set up in the Georgia Southern University greenhouse. 
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Figure 2: Citrate capped AgNPs (~50nm) used in the experiment. 
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Figure 3: Average water column total Ag concentration (µg L-1) following 0, 7, and 14 days of 

AgNP exposure (n=6). Standard error bars are not visible due to low variation among total Ag 

measurements.  
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Figure 4:  Initial periphyton tissue Ag concentration across AgNP treatments (n=6). Treatments 

not sharing the same letters are significantly different from one another. Error bars represent ± 

one SEM.  
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Figure 5: Final periphyton tissue Ag concentration across AgNP treatments (n=6). Error bars 

represent ± one SEM and treatments not sharing the same letters are significantly different from 

one another.  

 

 

 



42 
 

  

Figure 6: Mean snail Ag concentration after 14 days of exposure to AgNP treatments (n=6). 

Error bars represent ± one SEM and treatments not sharing the same letters are significantly 

different from one another.  
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Figure 7: Average fish tissue Ag concentration after 14 days of exposure to AgNP treatments 

(n=6). Error bars represent ± one SEM and treatments not sharing the same letters are 

significantly different from one another.  
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Figure 8: Mean sediment Ag g-1 concentration after 14 days of exposure to AgNP treatments 

(n=6). Error bars represent ± one SEM and treatments not sharing the same letters are 

significantly different from one another.  

 

 



45 
 

 

 

  

Figure 9: The concentration of Ag in, and possible trophic interactions among periphyton, fish 

and snails in artificial stream microcosms. Concentration ranges include Ag recovered from 

pulsed and repetitive AgNP treatments.  



46 
 

LITERATURE CITED 

 

Ali, D.; Yadav, P. G.; Kumar, S.; Ali, H.; Alarifi, S.; Harrath, A. H., Sensitivity of freshwater 

pulmonate snail Lymnaea luteola L., to silver nanoparticles. Chemosphere 2014, 104, 134-

140. 

 

Amato, E. D.; Simpson, S. L.; Remaili, T. M.; Spadaro, D. A.; Jarolimek, C. V.; Jolley, D. F., 

Assessing the effects of bioturbation on metal bioavailability in contaminated sediments by 

diffusive gradients in thin films (DGT). Environmental science & technology 2016, 50, (6), 

3055-3064. 

 

Anderson, D.; Saoud, I. P.; Davis, D. A., The effects of stocking density on survival, growth, 

condition, and feed efficiency of bluegill juveniles. North American Journal of Aquaculture 

2002, 64, (4), 297-300. 

AVMA, Guidelines for the Euthanasia of Animals American Veterinary Medical Association 

2013. 

 

Arar, E. and Collins, G., In Vitro Determination of Chlorophyll a and Pheophytin a in Marine 

and Freshwater Algae by Fluorescence Revision 1.2. USEPA 1997, 1-23.  

 

Badawy, A. M. E.; Luxton, T. P.; Silva, R. G.; Scheckel, K. G.; Suidan, M. T.; Tolaymat, T. 

M., Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the 

surface charge and aggregation of silver nanoparticles suspensions. Environmental science & 

technology 2010, 44, (4), 1260-1266. 

 

Benn, T. M.; Westerhoff, P., Nanoparticle silver released into water from commercially 

available sock fabrics. Environmental science & technology 2008, 42, (11), 4133-4139. 

 

Bernot, R. J.; Brandenburg, M., Freshwater snail vital rates affected by non-lethal 

concentrations of silver nanoparticles. Hydrobiologia 2013, 714, (1), 25-34. 

 

Bruneau, A.; Turcotte, P.; Pilote, M.; Gagné, F.; Gagnon, C., Fate of silver nanoparticles in 

wastewater and immunotoxic effects on rainbow trout. Aquatic Toxicology 2016, 174, 70-81. 

 

Bunn, S. E.; Arthington, A. H., Basic principles and ecological consequences of altered flow 

regimes for aquatic biodiversity. Environmental management 2002, 30, (4), 492-507. 

 

Choi, J. E.; Kim, S.; Ahn, J. H.; Youn, P.; Kang, J. S.; Park, K.; Yi, J.; Ryu, D.-Y., Induction 

of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. 

Aquatic Toxicology 2010, 100, (2), 151-159. 



47 
 

Croteau, M.-N.; Misra, S. K.; Luoma, S. N.; Valsami-Jones, E., Silver bioaccumulation 

dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and 

ionic Ag. Environmental science & technology 2011, 45, (15), 6600-6607. 

 

De Moura, M. R.; Mattoso, L. H.; Zucolotto, V., Development of cellulose-based bactericidal 

nanocomposites containing silver nanoparticles and their use as active food packaging. 

Journal of Food Engineering 2012, 109, (3), 520-524. 
 

Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; Van Duyne, R. P., A frequency domain 

existence proof of single-molecule surface-enhanced Raman spectroscopy. Journal of the 

American Chemical Society 2007, 129, (51), 16249-16256. 

 

Farmen, E.; Mikkelsen, H.; Evensen, Ø.; Einset, J.; Heier, L.; Rosseland, B.; Salbu, B.; 

Tollefsen, K.; Oughton, D., Acute and sub-lethal effects in juvenile Atlantic salmon exposed 

to low μg/L concentrations of Ag nanoparticles. Aquatic Toxicology 2012, 108, 78-84. 

 

Fabrega, J.; Fawcett, S. R.; Renshaw, J. C.; Lead, J. R., Silver nanoparticle impact on 

bacterial growth: effect of pH, concentration, and organic matter. Environmental science & 

technology 2009, 43, (19), 7285-7290. 

 

Fabrega, J.; Luoma, S. N.; Tyler, C. R.; Galloway, T. S.; Lead, J. R., Silver nanoparticles: 

behaviour and effects in the aquatic environment. Environment international 2011, 37, (2), 

517-531. 

 

Farkas, J.; Christian, P.; Gallego-Urrea, J. A.; Roos, N.; Hassellöv, M.; Tollefsen, K. E.; 

Thomas, K. V., Uptake and effects of manufactured silver nanoparticles in rainbow trout 

(Oncorhynchus mykiss) gill cells. Aquatic Toxicology 2011, 101, (1), 117-125. 

 

Furtado, L. M.; Norman, B. C.; Xenopoulos, M. A.; Frost, P. C.; Metcalfe, C. D.; 

Hintelmann, H., Environmental Fate of Silver Nanoparticles in Boreal Lake Ecosystems. 

Environmental Science & Technology 2015, 49, (14), 8441-8450. 

 

Gopal, M.; Gogoi, R.; Srivastava, C.; Kumar, R.; Singh, P. K.; Nair, K. K.; Yadav, S.; 

Goswami, A., Nanotechnology and its application in plant protection. Plant pathology in 

India: vision 2011, 2030, 224-232. 

 

Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B., Modeled environmental 

concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different 

regions. Environmental science & technology 2009, 43, (24), 9216-9222. 

 

Grabowska, M.; Glińska-Lewczuk, K.; Obolewski, K.; Burandt, P.; Kobus, S.; Dunalska, J.; 

Kujawa, R.; Goździejewska, A.; Skrzypczak, A., Effects of hydrological and 



48 
 

physicochemical factors on phytoplankton communities in floodplain lakes. Polish Journal 

of Environmental Studies 2014, 23, (3). 

 

Grillo, R.; Rosa, A. H.; Fraceto, L. F., Engineered nanoparticles and organic matter: A 

review of the state-of-the-art. Chemosphere 2015, 119, 608-619. 

 

 

Griffitt, R. J.; Brown‐Peterson, N. J.; Savin, D. A.; Manning, C. S.; Boube, I.; Ryan, R.; 

Brouwer, M., Effects of chronic nanoparticulate silver exposure to adult and juvenile 

sheepshead minnows (Cyprinodon variegatus). Environmental toxicology and chemistry 

2012, 31, (1), 160-167. 

 

Gunsolus, I. L.; Mousavi, M. P.; Hussein, K.; Bühlmann, P.; Haynes, C. L., Effects of humic 
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APPENDIX 

SILVER NANOPARTICLE AND SILVER ION TOXICITY TO NAVICULA SP. IN 

ARTIFICIAL STREAMS 

 

 

INTRODUCTION 

 As the base of aquatic food webs, phytoplankton communities, composed of diatoms, 

green algae, and cyanobacteria, play an integral part in energy to transfer to primary consumers 

like zooplankton, macroinvertebrates, and filter feeding fish (Sandgren, C.D., 1988; Carpenter et 

al., 1996). Fluctuations in phytoplankton communities due to environmental changes drastically 

influence the composition of aquatic food webs by limiting or increasing food availability 

(Richardson et al., 2004). As the production of contaminants like silver nanoparticles increase 

and enter aquatic environments, it is crucial to understand how AgNPs impact phytoplankton 

communities.  

To date laboratory studies conducted have focused on the acute toxicity of AgNPs 

compared to silver ions in green algae (Chlorella vulgaris, Chlamydomonas reinhardtii, 

Dunaliella tertiolecta), marine diatoms (Thalassiosira pseudonana), and cyanobacteria 

(Synechococcus sp.). Silver nanoparticle exposure to Chlorella vulgaris and Dunaliella 

tertiolecta over 24 hours increased cell aggregation at 0.1 mg L-1, reduced chlorophyll a content 

at 1 mg L-1, and amplified reactive oxygen species (common mode of AgNP toxicity) at 1 mg L-1 

(Oukarroum et al., 2012). When comparing 72 hour growth inhibition caused by Ag+ ions and 

AgNPs, cell growth was 50% lower in Thalassiosira pseudonana at 1.2 μM and 10μM 

concentrations respectively. Ag+ ion and AgNP exposure to Synechococcus sp. caused a 50% 

reduction in growth at 0.9 μM and 3.5 μM respectively (Burchardt et al., 2010). Toxicity in 

AgNP treatments in this study were attributed to both the dissolution and release of Ag+ ions 
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from AgNPs over the 72 hour period and AgNPs themselves (Burchardt et al., 2010). Comparing 

changes in photosynthetic production of Chlamydomonas reinhardtii after two hours, Ag+ ions 

exhibited an 18X greater toxicity than AgNPs, however, similar to work conducted by Burchardt 

et al. (2010), AgNP toxicity was determined to be a combination of AgNP releasing Ag+ ions 

and a AgNP/cell interaction (Navarro et al., 2008). While single species toxicity studies 

demonstrate Ag+ ions to be more toxic than AgNPs to phytoplankton, no work has been 

conducted comparing the impacts AgNP and Ag+ ions have on phytoplankton under 

environmentally relevant conditions or for chronic periods of time longer than three days.  

The purpose of this study was to compare the toxicity of AgNP and Ag+ ions to the 

freshwater diatom, Navicula sp., under both environmentally relevant flowing and non-flowing 

conditions. I hypothesized that AgNPs and Ag+ ions will negatively impact diatom communities 

in lentic and lotic environments. Specifically I predicted Ag+ ions to exhibit greater lethality to 

diatom populations than AgNP treatments. Results from this study will provide insight on AgNP 

toxicity relative to Ag+ ions and their impact on primary producers. 

 

METHODS 

Stream and pond microcosm design 

Individual stream microcosms (N=28) were constructed in the Georgia Southern 

University greenhouse (32.421432, -81.790814)  using a 27 L polyethylene circular tank and 

pond microcosms were created using an 11.4 L white, polyethylene circular bucket, also serving 

as the stream’s centerpiece (Figure 10). Stream bottoms were coated with clear polyethylene 

plastic lining and pond centerpieces were encased in 11 L plastic bags to prevent AgNP 

contamination in future experiments. Ogeechee River water collected near Rocky Ford, GA, 
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USA, (32.648953, -81.840798) was transported to the greenhouse. Aliquots of 7.5 L were 

immediately added to each stream microcosm creating stream channels with a width of 12.7 cm 

and depth of 7.9 cm. Additionally, four liters of Ogeechee River water were added to each pond 

with a width of 22.9 cm and depth of 11.4 cm.  One powerhead pump (SunSun JP–022, 

Zhejiang, China) was attached to the outside of each bucket (5.8 cm below water) with adhesive 

tape creating a unidirectional flow with an average of 0.1 m s-1 (Figure 10). To compensate for 

evaporation, deionized water was added daily to streams and ponds to maintain a 7.5 and four 

liter volumes respectively. Artificial streams and ponds were inoculated with nominal 

concentrations of 1000 cells per ml of Navicula sp. To ensure Navicula sp. cell growth was not 

limited by deficient nutrient levels, supplemental nominal additions of 0.25 mg L-1 nitrate and 

0.015 mg L-1 phosphorus were added to each stream from stock solutions of 1925 mg L-1 nitrate 

and 230 mg L-1 phosphorus at the start of the experiment.  

Streams and ponds (n=7) were randomly assigned to either one of the four following 

treatments over a one week period from July, 7 to July, 14 2016: one time pulse dose of 35 µg L-

1, one time pulse dose of 70 µg L-1 AgNPs, one-time pulse dose of 35 µg L-1 Ag+ ion, or no 

addition control treatment. Nominal AgNP concentrations were added to assigned streams from 

stock concentrations of 20 mg L-1 citrate capped 50nm diameter AgNPs (nanoComposix, 

California, USA). Nominal Ag+ ion concentrations were added to corresponding streams from a 

20 mg L-1 Ag+ ion stock solution created by dissolving AgNO3 in deionized water. Although 

AgNP concentrations selected were higher than current estimates for surface water, they were 

chosen to ensure Ag content in samples were greater than ICP-MS detection limits of 0.25µg L-1.  
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Sample collection and analysis 

Three 0.5 ml water samples were be collected on days 0, 1, 3, 5, and 7 from the bottom, 

middle, and surface of stream and pond water columns and pooled to reduce variance in 

sampling. Samples were analyzed via BD Accuri C6 flow cytometer (Becton-Dickinson, CA, 

USA) to determine Navicula sp. populations. Water quality measurements (temperature, pH, DO, 

conductivity) were taken on days 0, 1, 3, 5, and 7 using a hand-held multi-probe meter (YSI 

Professional Series, Yellow Springs Instruments, Ohio, USA) to ensure environmental 

measurements taken during the experiment were within the relevant stream conditions (Table 7). 

Water samples were collected after the initial addition of Navicula sp. and on the final day of the 

experiment to be analyzed for Ag content (100 ml) and chlorophyll a fluorescence (100 ml). 

Water samples for DOC content (50 ml) were also collected from a subset of streams and ponds 

(n=4) on Day 0. DOC samples were processed in accordance to Standard Method 5310B and 

analyzed via Shimadzu TOC analyzer (Rice et al., 2012).  Water samples for Ag content were 

filtered through Whatman GF/F glass fiber filters (0.7 um pore size), immediately acidified to a 

concentration of 4% HNO3  and stored at 4ᵒC for one week until the samples could be analyzed. 

Samples were then heated to 70ᵒC for six hours, cooled to room temperature, and analyzed via 

ICP-MS (Furtado et al., 2013). Filtered particulate matter was frozen at -20ᵒC and intended to be 

analyzed for Ag accumulation in phytoplankton, however, due to complications with digestion 

instrumentation the process was not completed (Furtado et al., 2013). Chlorophyll a 

concentration in each stream was determined from algal cells collected from water samples (100 

ml) filtered through Whatman GF/F (0.7 µm nominal pore size). Pigments were extracted from 

cells on the filters with 90% acetone in the dark at -20ᵒC and measured using a Trilogy 
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Fluorometer (Turner Designs, CA, USA) in accordance to EPA Method 445.0 (Arar and Collins, 

1997). 

 

Statistical Analysis 

 Normal distribution and equal variance assumptions were tested prior to performing 

parametric one way ANOVA analyses. If assumptions failed to be met, transformations were 

performed and assumptions tested again. Normal distribution was also tested before parametric 

Pearson’s correlation tests were conducted. If the assumption failed to be met before and after 

data transformation, a non-parametric Spearman’s ranks test was performed to analyze the data. 

Due to the non-normal distribution of data, Friedman’s tests were carried out to analyze repeated 

measures datasets. 

 To determine if AgNP or Ag ion+ treatments affected diatom populations in ponds or 

streams over the one week experiment, cells counts were analyzed using Friedman’s tests. Initial 

and final differences in water chlorophyll a in both pond and stream due to treatments were 

determined using one-way ANOVA tests. Initial differences in DOC between stream treatments 

and pond treatments were also tested using one-way ANOVA tests.  To establish relationships 

between Ag concentration in the water column and column DOC concentration on Day 0, 

Pearson’s correlation coefficient tests were run with stream Ag data and Spearman’s rank 

correlations were applied with pond Ag data. 

 

RESULTS 

 Initial Ag concentrations detected in the water column were roughly 50% of nominal 

AgNP applications and 20% of Ag+ ion applications in treated ponds and streams (Table 8). 
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Silver concentrations in control streams and ponds were near or below detection limits. Initial 

DOC concentrations were not significantly different between treatments in streams or ponds 

(Table 9). No relationship between initial DOC and Ag concentrations occurred in streams, 

however, a trend immerged showing a positive correlation between DOC concentrations and Ag 

concentrations in ponds (Table 9). Final stream Ag concentrations in the water column did not 

differ between all AgNP and Ag+ ion treatments (One-Way ANOVA, F2, 18 = 1.1545, p-value = 

0.3375). Final silver concentrations in the water column of 35 µg L-1 Ag+ ion treated ponds were 

significantly greater than both 70 µg L-1 AgNP and 35 µg L-1 AgNP treated streams (Kruskal-

Wallis, X2
4

 = 13.9221, p-value <0.0009), however, final mean Ag concentrations in ponds only 

ranged between 1-2.5 µg L-1.  

Initial chlorophyll a values were 3.2X lower in 35 µg L-1 Ag+ ion treated streams and 2.3-

2.5X lower in 35 µg L-1 Ag+ ion treated ponds when compared to all other treatments (Table 10). 

Final chlorophyll a content did not differ between stream treatments, whereas final pond 

chlorophyll a content did vary between treatments (Table 10). Pond chlorophyll a was 

significantly greater in 35 µg L-1 Ag+ ion treated streams than control and 35 µg L-1 AgNPs 

treated streams. Furthermore, 70 µg L-1 AgNP treated streams possess more chlorophyll a than 

control streams (Table 10).  

Corresponding to initial chlorophyll a values, diatom populations in ponds were 3.1-3.6X 

lower in 35 µg L-1 Ag+ ion treated ponds (Table 11). Overall diatom populations in ponds did not 

vary between treatments throughout the experiment as populations in 35 µg L-1 Ag+ ion treated 

ponds started to recovery after three days (Friedman’s Test, Table 11). Although differences in 

Day 7 pond cell counts were not statistically significant between treatments, populations in 35 µg 
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L-1 Ag+ ion treated streams were trending towards significantly higher totals than control streams 

(Table 11). 

Diatom populations were 3.7-4.3X lower in 35 µg L-1 Ag+ ion treated streams than all 

other treatments (Table 11, Figure 11). Overall, differences in diatom populations in ponds 

continued to be seen during the seven day experiment as cell growth in 35 µg L-1 Ag+ ion treated 

streams was slow to recover (Friedman’s Test, Table 11, Figure 11). After seven days, final cell 

counts in streams showed ~2.1X greater cell densities in control and 70 µg L-1 AgNP treated 

streams than 35 µg L-1 Ag+ ion treated streams, as well as, 35 µg L-1 AgNP treated streams 

trending towards this pattern with 1.6X more cells than 35 µg L-1 Ag+ ion treated streams (Table 

11, Figure 11).  

 

DISCUSSION 

 The hypothesis that AgNPs and Ag ions will negatively impact diatom populations in 

lentic and lotic environments was partially supported. Specifically I predicted 35 µg L-1 Ag+ ions 

to yield greater toxicity to diatom populations in ponds and streams than both 35 µg L-1 and 70 

µg L-1 AgNP treatments. While Ag+ ions reduced diatom cell counts in both streams and ponds, 

neither AgNP treatment impacted diatom populations compared to controls streams. These 

results also support previous laboratory studies indicating significantly greater phytoplankton 

toxicity to Ag+ ions than AgNPs (Oukarroum et al., 2012; Burchardt et al., 2010; Navarro et al., 

2008), and the idea that Ag+ ions are taken up rapidly by freshwater algae increasing their 

toxicity potential to aquatic organisms (U.S. EPA, 2012). While pond diatom populations in Ag+ 

ion treated streams recovered after five days, stream populations were slower to recover never 

reaching populations in control and AgNP treated streams. This may be attributed to 
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phytoplankton reproducing less effectively in turbid, flowing environments than non-flowing 

environments (Zhang et al., 2015).  

The reduction of diatom cells in Ag+ ions treated ponds and streams was confirmed using 

chlorophyll a values indicating the same trend in toxicity. However, significant differences were 

detected in final chlorophyll a values of ponds relative to flow cytometry cell counts, and vice 

versa in stream results (Table 10, Table 11). While chlorophyll a is a good proxy for determining 

phytoplankton abundance, variation can occur due to differences in cell size and chlorophyll a 

production during the time of sampling (Jakob et al., 2005; White and Payne, 1977). Whereas, 

flow cytometry methods are able analyze individual cells increasing the accuracy of population 

analyses (Veldhuis and Kraay, 200). Results from both methods do agree on the order of mean 

diatom abundance between treatments in ponds and streams.  

 Initial silver concentrations in the water column below nominal concentrations applied is 

most likely due to Ag+ ions and AgNPs collecting on diatom cells during the filtration process 

(Furtado et al., 2015). Furthermore, Ag analysis was limited due to filters not being rinsed to 

remove unbound Ag without diluting water samples. Though final water samples suggest Ag 

falling out of the water column in ponds and streams over the one week period, the analysis was 

again limited due to filtering procedures. Previous lentic mesocosm studies have shown 

contradicting results on suspension time of AgNPs with settling occurring in wetlands ~8 days 

compared to AgNP settling estimated at 66 days in boreal lakes. However, the AgNP 

concentrations applied in wetlands were three orders of magnitude larger than AgNP 

concentrations applied in boreal lakes and the present study (Furtado et al., 2015; Lowry et al., 

2012). High concentrations of AgNPs may lead to aggregation of AgNPs and shorter suspension 

times than low AgNP concentrations (Furtado et. Al, 2015) Differences in suspension time may 
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be increasing by site specific factors like higher DOC content, ionic content, and biotic particles 

described in Chapter 1 (Furtado et al., 2015).  

 This study confirms laboratory findings suggesting Ag+ ions are more toxic to 

phytoplankton communities than AgNPs in environmentally relevant conditions. Findings also 

suggest contaminants like heavy metals may have a greater impact on diatom communities in 

flowing vs non-flowing environments due to slower recovery times in flowing systems. Slower 

recovery times of diatom communities in streams may have far reaching implications in the 

aquatic food web by limiting the growth of primary and secondary consumers. 
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Table 1: Average stream pH, DO, specific conductivity, and temperature in all streams over one 

week (N=28). Numbers in parentheses represents ± one standard error of the mean. 

 Temp Spec. Cond pH DO 

Day pond stream pond stream pond stream pond stream 

0 32.21 

(0.27) 

33.02 

(0.24) 

134.18 

(0.28) 

134.95 

(0.48) 

7.78 

(0.02) 

7.94 

(0.02) 

6.69 

(0.07) 

6.34 

(0.09) 

1 32.89 

(0.41) 

33.44 

(0.41) 

133.06 

(0.98) 

132.96 

(1.37) 

7.88 

(0.02) 

7.99 

(0.03) 

5.82 

(0.13) 

6.22 

(0.10) 

3 32.15 

(0.28) 

32.83 

(0.28) 

133.94 

(0.74) 

134.90 

(1.75) 

8.11 

(0.08) 

8.12 

(0.03) 

6.59 

(0.29) 

6.39 

(0.08) 

5 31.08 

(0.27) 

31.90 

(0.32) 

133.04 

(0.98) 

132.79 

(1.88) 

8.17 

(0.08) 

8.15 

(0.04) 

6.67 

(0.32) 

6.51 

(0.08) 

7 30.87 

(0.24) 

31.66 

(0.25) 

133.56 

(0.83) 

133.66 

(1.77) 

8.10 

(0.07) 

8.13 

(0.04) 

6.60 

(0.26) 

6.54 

(0.09) 
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Table 2: Mean total Ag concentrations in the water column ± one standard error of the mean 

(SEM) on Days 0 and 7 (n=7). 

 Treatment Day 0 Day 7 

Ponds    

 control 0.40 ± 0.04 0.07 ± 0.07 

 35 µg L-1 AgNP  16.77 ± 0.70  1.01 ± 0.03 

 35 µg L-1 Ag+ ion 7.56 ± 0.49 2.55 ± 0.28 

 70 µg L-1 AgNP 36.96 ± 1.29 1.37 ± 0.16 

Streams    

 control 0.17 ± 0.06 0 ± 0 

 35 µg L-1 AgNP  17.81 ± 0.53 0.93 ± 0.07 

 35 µg L-1 Ag+ ion 9.95 ± 0.60 1.59 ± 0.40 

 70 µg L-1 AgNP 33.74 ± 2.47 1.52 ± 0.29 
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Table 3: One-Way ANOVA comparisons of initial DOC concentrations on Day 0 (n=7) and 

relationships between DOC concentrations and Ag concentrations in the water column using 

parametric Pearson’s Correlations tests and non-parametric Spearman’s Ranks tests (n=7). 

 Test Df Test Statistic p-value 

Stream DOC Day 0 One-Way ANOVA 3, 12 F = 2.0667 0.1582 

Pond DOC Day 0 One-Way ANOVA 3, 12 F = 2.2429 0.1358 

Stream DOC vs Ag Day 0 Pearson's Correlation 12 r = - 0.0111 0.9727 

Pond DOC vs Ag Day 0 Spearman's Ranks 12 rho = 0.5664 0.0548 
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Table 4: One-Way ANOVA comparisons of initial and final water chlorophyll a concentrations 

on Days 0 and 14 (n=7). Asterisks denote significant differences between treatments. 

 Test Df Test Statistic p-value 

Stream Chl-a Day 0 One-Way ANOVA 3, 24 F = 88.3842 <0.0001* 

 Tukey-Kramer post hoc 

comparison 

 
 

 35 µg L-1 Ag+ ions vs 

all treatments 

  
<0.05* 

Pond Chl-a Day 0 One-Way ANOVA 3, 23 F = 101.0486 <0.0001* 

 Tukey-Kramer post 

hoc comparison 

  
 

 35 µg L-1 Ag+ ions vs 

all treatments 

  
<0.05* 

Stream Chl-a Day 14 One-Way ANOVA 3, 23 F = 0.8414 0.4852 

Pond Chl-a Day 14 One-Way ANOVA 3, 24 F = 8.6924 0.0004* 

 Tukey-Kramer post hoc 

comparison letters report 

 
 

   35 µg L-1 Ag+ ions A 

   70 µg L-1 NP A B 

   35 µg L-1 NP B C 

   Ctrl C 
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Table 5: Non-parametric Friedman’s tests comparing Navicula sp. populations over the seven 

day experiment (n=7). One-Way ANOVA comparisons of initial and final stream cell counts 

(n=7).  Asterisks denote significant differences between treatments. 

 
Test Df Test Statistic p-value 

7 Day Stream Cell 

Counts 
Friedman's Test 3 2.04 >0.05* 

7 Day Pond Cell 

Counts 
Friedman's Test 3 9.24 <0.05* 

Initial Stream Cell 

Counts 
One-Way ANOVA 3, 24 F = 92.6115 <0.0001* 

Initial Pond Cell 

Counts 
One-Way ANOVA 3, 24 F = 66.9865 <0.0001* 

Final Stream Cell 

Counts 

One-Way ANOVA 3, 24 F = 8.4244 0.0005* 

 Tukey-Kramer post hoc comparison 

letters report 
Ctrl A 

   70 µg L-1 NP A 

   35 µg L-1 NP A B 

   35 µg L-1 Ag+ ions B 

Final Pond Cell Counts One-Way ANOVA 3, 24 F = 2.8037 0.0614 
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Figure 1: Stream mesocosm with a powerhead pump attached to the side of the bucket generating 

a recirculating flow of 0.1 m s-1. The water inside the bucket serves as a lentic system.  
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Figure 2: Mean Navicula sp. cell counts in ponds and streams taken on day 0, 1, 3, 5, and 7. 

Error bars represent ± 1 standard error of the mean (SEM) (n=7).   
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