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MYOSINX IS REQUIRED FOR CRANIOFACIAL DEVELOPMENT IN DANIO RERIO 

by 

COLE YANCEY 

(Under the direction of Vinoth Sittaramane) 

ABSTRACT 

 Craniofacial development is the process of laying early cartilage and bone 

patterns in the anterior region of the embryo, which ultimately results in shaping the 

structure of the face and head of an organism. Craniofacial abnormalities in humans, 

such as cleft lip and palate, are among the most common of all birth defects. Therefore, 

investigating the molecular mechanisms involved in craniofacial development will help 

us understand both evolutionary processes and genetic diseases. Craniofacial cartilage 

and bone structures are almost entirely derived from neural crest cells. Neural crest are 

a pluripotent migratory stream of cells that originate from the early developing brain and 

settle in final positions that give rise to the future skull and face. Several motor proteins 

are implicated in the migration of these neural crest cells. We have identified and 

isolated zebrafish myosinX mutants with defective craniofacial development. Currently, 

we are characterizing the role of myosinX in craniofacial development using various 

staining techniques. Alcian blue staining was used to identify specific defects within the 

cartilage, specifically ceratobranchial arches 3-5 are distorted or completely missing in 

myosinX deficient embryos. Using alizarin red staining techniques, pharyngeal tooth 

development was also examined. Tooth development occurs on the fifth ceratobranchial 

arch in a three crown clustered manner. However, in myosinX deficient zebrafish, 

pharyngeal crown protrusion was significantly hindered, showing only one developing 

crown within the tooth in most morphant embryos. This study used 
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immunohistochemical staining as well as RNA in situ hybridization techniques to identify 

the specification and position of migrating neural crest cells to establish a link between 

myosinX and neural crest cell migration during early development. In myoX morphant 

and mutant individuals, craniofacial structures are significantly deformed compared to 

wildtype and control individuals. In addition, cranial neural crest cell migration is 

inhibited in myoX morphant and mutant individuals. 

 
INDEX WORDS: Craniofacial, Myosin, Myo10, Myox, Myo10l1, Zebrafish, Cranial 
Neural Crest Cells, Cell Migration, Development 

 

ABBREVIATIONS:  

ATP - Adenosine Triphosphate 
BCIP - 5-bromo-4-chloro-3'-indolyphosphate 
BMP – Bone Morphogenic Protein 
CNCC – Cranial Neural Crest Cell(s) 
ENU - N-ethyl-N-nitrosourea (chemical formula C3H7N3O2) 
FGF – Fibroblast Growth Factor 
IB – Incubation Buffer 
IQ Motif - "IQ" refers to the first two amino acids of the motif: isoleucine (commonly) and 
glutamine (invariably) 
NBT - nitro-blue tetrazolium 
NCC – Neural Crest Cell 
PBS – Phosphate Buffered Solution 
PBST - Phosphate Buffered Solution and Tween 
PEST - proline (P), glutamic acid (E), serine (S), and threonine (T) 
PFA - Paraformaldehyde 
TMS - Tricaine mesylate 
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CHAPTER 1 
 

INTRODUCTION 
 
Vertebrate Craniofacial Development 
 
 The cellular and genetic events leading to the formation of the vertebrate 

skeleton begin early during the embryonic developmental process. In contrast to the 

vertebrae and limbs, where the skeleton is derived from mesoderm, cells of the neural 

crest play a pivotal role in this process in the head (Knight and Schilling, 2006). Neural 

crest cells must migrate out of the ectoderm to form the neurocranium and pharyngeal 

skeleton (Platt, 1893). The neurocranium (here referred to as the skull) protects the 

brain and sense organs while the pharyngeal skeleton, the jaws and gills, forms a 

muscularized pharynx for feeding and breathing (Hanken and Gross, 2006). The skull is 

an extremely complex and intricate 

structure. In humans, it comprises 22 

separate bones as well as 20 deciduous 

and 32 permanent teeth. The boney skull 

structure is formed in two units; the 

neurocranium and the viscerocranium 

(Fig 1C). The neurocranium is comprised 

of several boney interlocking plates that 

surround and protect the brain and 

sensory organs (Wilkie and Morris-Kay, 2001). The viscerocranium includes the bones 

of the face as well as the palatal, pharyngeal, temporal and auditory bones (Fig 1C). 

Craniofacial is a term which typically refers to the boney and cartilaginous structures of 

the skull and face, primarily located within the viscerocranium (Tapadia et al., 2005).  

 Experimental embryology has demonstrated that the neural crest cells that 

contribute to the cranial skeleton and connective tissues form the blueprint upon which 

the patterns of other tissues, such as muscles, are built (Noden, 1983). Thus, to 

understand cranial skeletal development, and head patterning in general, it is important 

to determine the intrinsic and extrinsic factors that control how neural crest cells are 

allocated to different fates. Craniofacial morphogenesis is a complex process which 

Fig 1.1: Neural plate folding to form the neural tube while 

neural crest cells migrate to one of many destinations. 

Highlighted in green are craniofacial structures and their 

precursor cells (Image modified from Pearson Education Inc.). 

A B C 
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provides the blueprint for building the vertebrate head and face. It is established very 

early during embryonic development and involves a multitude of precisely orchestrated 

temporal and spatial events. Even the slightest deviation from prescribed developmental 

events can cause catastrophic malformations. Craniofacial birth defects including cleft 

lip, cleft palate, small or absent facial and skull bones and improperly formed nose, 

eyes, ears, and teeth are present in one third of all children born with some sort of 

defect (Gorlin et al., 1990). A better understanding of the pathways and molecular 

mechanisms driving these processes could open up a new world of alternative MyoX 

plays an important role in 

CNCC migration (Sousa and 

Cheney, 2005) but it also 

has many other functions 

within the developing 

embryo.  MyoX has been 

show to  regulate netrin 

receptors and functions in 

axonal path-finding during 

neural development (Zhu et 

al., 2007). It has been shown to play an important role in filopodium formation by 

transportation of specific cargos within the cell (Liu et al., 2012). The nonsense mutation 

induced within out zebrafish model creates a premature stop codon which lies 

somewhere within the coil-coiled dimer structure of the MyoX motor protein. By 

truncating this region of the protein, we speculate that the FERM domains of the protein 

are not able to form properly, thus inhibiting any domain interactions between MyoX and 

its cargo/extracellular integrins (Wei et al. 2010). 

 In the early stages of embryonic development, specialized cell-types called the 

neural crest are formed at the junction between the neural plate and the non-neural 

ectoderm (Cordero et al., 2011), when the neural plate (Fig 1.1 A) rolls up and forms the 

hollow dorsal neural tube during neurulation (Fig 1.1 B). The neural tube eventually 

forms a closed cylinder that separates from the surface ectoderm. This separation is 

thought to be mediated by the expression of different cell adhesion molecules. Although 

Fig 1.2: Localization of two different cadherins during the formation of the neural 

tube. (A) Schematic showing the folding of the presumptive epidermis into the neural 

crest with cadherin espression. (B) Schematic showing cadherin expressions in the 

epidermis, neural tube, and lack of cadherin expression in the neural crest resulting 

in budding neural crest cells. (Rutishauser et al., 1988) 
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the cells that will become the neural tube originally express E-cadherin, they stop 

producing this protein as the neural tube forms, and instead synthesize N-cadherin and 

N-CAM (Figure 1.2 A) (Rutishauser et al., 1988). As a result, the surface ectoderm and 

neural tube tissues no longer adhere to each other. Bone morphogenic proteins (BMP) 

4 and 7 are two proteins that are known to be secreted by the presumptive epidermis 

(Liem et al. 1997). BMP4 and BMP7 induce the expression of the Slug protein and the 

RhoB protein in the cells destined to become neural crest along the dorsal side of the 

presumptive neural tube (Fig 1.2 B). If either of these proteins is inactivated or inhibited 

from forming, the neural crest cells fail to emigrate from the neural tube (Nieto et al. 

1994). 

 All vertebrates share this derived characteristic of a neural crest made from the 

dorsal neural ectoderm. The ‘neural crest’ is a morphological term for the dorsal folds of 

the neural tube. The localization of neural crest precursors at the border between the 

neural plate and the epidermis suggests a potential for interactive signaling between the 

two tissues during induction of the neural crest (Klymkowsky et al. 2010). The 

vertebrate hindbrain is one key source of patterning information which exerts a profound 

influence on craniofacial development. During early vertebrate embryo development, 

the hindbrain becomes 

transiently subdivided into seven 

contiguous cell lineage restricted 

compartments called 

rhombomeres (r) (Fig 1.3A) 

(Vaage, 1969). Each 

rhombomere adopts a distinct 

set of molecular and cellular 

properties including restrictions 

in cell mixing and gives rise to unique regions of the mature adult brain (Marin and 

Puelles, 1995). The segmental organization of the hindbrain presages the establishment 

of an anatomical and functional registration between individual rhombomeres, cranial 

ganglia, branchiomotor nerves, and the migration pathways of cranial neural crest cells 

into the pharyngeal arches (Fig 1.3A) (Lumsden and Keynes, 1989). Rhombomeres 

Fig 1.3: A comparison of different conserved craniofacial bones across 

varying species. All of the elements within a segment are coloured similarly: 

mandibular, 1 (red), hyoid, 2 (blue), first branchial, 3 (green), second 

through fifth branchials, 4-7 (white). (A) Migratory pathways of neural crest 

cells from rhombomeres to pharyngeal arches. (B) By larval and adult 

stages in the zebrafish. Each pharyngeal segment is further subdivided into 

dorsal and ventral skeletal elements. (C) Schematized, primitive pattern of a 

branchial arch (Schilling, 1997). 
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play an important role in housing the specification of cranial neural crest cells which 

then migrate ventrally to find their temporary resting position within the pharyngeal 

arches.  

 In all vertebrates, including humans (Fig 1.3 B-C), a series of pharyngeal arches 

develop along the lateral surface of the developing head region, which act as templates 

for the adult craniofacial structures. Once the cranial neural crest cells have aggregated 

within the pharyngeal arches, they will then migrate to their final destination within the 

developing embryo (Cordero et al., 2011). Typically the first arch, the jaw (mandibular), 

is supported by the second arch (hyoid, 2), and up to five more arches posteriorly 

(branchials, 3 to 7) develop gills in fishes or are incorporated into the throat in birds and 

mammals (Fig 1.3B) (Bronner, 2012). Teleost fishes retain what is thought to be the 

primitive skeletal pattern of ancestral gnathostomes (jawed vertebrates), including a 

large number of pharyngeal segments (seven in zebrafish), each with distinct dorsal and 

ventral elements. In all vertebrates, including humans, a series of pharyngeal arches 

develop along the lateral surface of the head. This homology makes zebrafish a 

powerful model for studying these developmental processes in human. In zebrafish, the 

pattern is most visible during the larval 

stages. During these stages, the 

pharyngeal skeleton develops first as 

cartilage but is subsequently replaced by 

endochondral bone, a process called 

endochondral ossification (Hanken and 

Hall, 1988).  

 Endochondral ossification involves 

the formation of cartilage tissue from 

aggregated mesynchymal cells, cranial neural crest cells for craniofacial development, 

and subsequent replacement of cartilage tissue by bone (Horton, 1990). The entire 

process can be broken down into five stages (Fig 1.4). First, mesynchymal cells are 

committed to become cartilage cells (Fig 1.4A). Nearby paracrine signals induce the 

expression of two distinct transcription factors within the mesynchymal cells, Pax1 and 

Scleraxis (Cserjesi et al., 1995). During the second stage, the committed mesynchymal 

Fig 1.4: Different stages of endochondral ossification 

(Fayez et al., 2009). 
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cells condense into compact nodules and differentiate into chondrocytes, cartilage cells 

(Fig 1.4B). Once these chondrocytes have formed, they proliferate extensively to form 

the cartilage model for bone formation. During the fourth phase, the chondrocytes stop 

dividing and increase their volume dramatically, becoming hypertrophic chondrocytes.  

These large chondrocytes alter the matrix they produce (by adding collagen X and more 

fibronectin) to enable it to become mineralized by calcium carbonate (Fig 1.4C). During 

the final phase of osterogensis, the cartilage model is invaded by surrounding blood 

vessels. The hypertrophic chondrocytes die by apoptosis and the space becomes bone 

marrow (Fig 1.4D-E). As these cells die, another group of cells that have surrounded the 

cartilage model differentiate into osteoblasts which begin forming bone matrix on the 

partially degraded cartilage (Bruder and Caplan, 1989) and eventually form bone 

structures. Thus, neural crest cell aggregation forms the underlying patterns that later 

become bone through the process of ossification. These cells are necessary to form the 

cartilage tissue that serves as a pattern for bone 

formation.  

 
Neural Crest Cell Development 
  
 ‘Neural crest cells’ are mesenchymal cells 

derived from the neural crest epithelium (Fig 1.1 

B). The two most important characteristics of 

neural crest cells are their migratory ability as well 

as their multipotency (Donoghue et al. 2008). 

Neural crest cells shed away from the ectoderm, 

undergo an epithelial-to-mesenchymal 

transformation (Mishina and Snider, 2014), and 

migrate away from the future location of the brain 

and spinal cord. This transition gives rise to many 

different derivatives in the head and trunk regions. 

Neural crest-derived mesenchymal cells differentiate into at least 21 different cell types, 

including neurons (sensory, adrenergic and cholinergic); satellite, Schwann glial and 

chromaffin cells; melanocytes; connective tissue and skeletal cells (fibro-, chondro-, 

 

Fig 1.5: Neural crest cells throughout the 

developing embryo. Different neural crest regions 

are outlined with a box (Gilbert, 2000). 
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osteo- and odontoblasts); myoblasts (cardiac, striated and smooth); adipocytes and 

angioblasts (Le Douarin & Kalcheim, 1999; Le Douarin et al. 2004; Vickaryous & Hall, 

2006; Hall, 2009).  

 The neural crest can be divided into four main functional (but overlapping) 

domains: The cranial (cephalic) neural crest, the trunk neural crest, the vagal and sacral 

neural crest, and the cardiac neural crest (Fig 1.5). The cranial neural crest cells 

migrate dorsolaterally to produce the craniofacial mesenchyme that differentiates into 

the cartilage, bone, cranial neurons, glia, and connective tissues of the face. These cells 

enter the pharyngeal arches and pouches to give rise to thymic cells, odontoblasts of 

the tooth primordia, and the bones of middle ear and jaw. The trunk neural crest cells 

take one of two major pathways. The first pathway involves neural crest cells that 

become the pigment-synthesizing melanocytes. They migrate dorsolaterally into the 

ectoderm and continue on their way toward the ventral midline of the belly. The second 

migratory pathway takes the trunk neural crest cells ventrolaterally through the anterior 

half of each sclerotome.  Sclerotomes are blocks of mesodermal cells, derived from 

somites, which will differentiate into the vertebral cartilage 

of the spine (Hall and Gillis, 2013). The trunk neural crest 

cells that remain in the sclerotome form the dorsal root 

ganglia containing the sensory neurons. These cells that 

continue more ventrally form the sympathetic ganglia, the 

adrenal medulla, and the nerve clusters surrounding the 

aorta. 

 The vagal and sacral neural crest cells generate the 

parasympathetic (enteric) ganglia of the gut (Le Douarin 

and Teillet 1973; Pomeranz et al. 1991). The vagal (neck) 

neural crest lies opposite vertebrate somites 1-7, while the 

sacral neural crest lies posterior to somite 28. Failure of 

neural crest cell migration from these regions to the colon results in the absence of 

enteric ganglia and thus to the absence of peristaltic movement in the bowels (Burns 

and Le Douarin, 1998). The cardiac neural crest is located between the cranial and 

trunk neural crests. In chick embryos, this neural crest region extends from the first to 

Fig 1.6: Molecular signals 

involved in each stage of 

cranial neural crest cell 

development. 
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the third somites, overlapping the anterior portion of the vagal neural crest (Kirby 1987; 

Kirby and Waldo 1990). The cardiac neural crest cells can develop into melanocytes, 

neurons, cartilage, and connective tissue (of the third, fourth, and sixth pharyngeal 

arches). In addition, this region of the neural crest produces the entire 

musculoconnective tissue wall of the large arteries as they arise from the heart, as well 

as contributing to the septum that separates the pulmonary circulation from the aorta 

(Le Lièvre and Le Douarin 1975). The focus of this study will be primarily cranial neural 

crest cells as facial cartilage and bone structures are derived from cranial neural crest 

cells only. 

 
Cranial Neural Crest Cell Specification 
  
 In anamniotes such as Xenopus and zebrafish, neural-inducing bone 

morphogenic proteins (BMP) antagonists, such as Noggin and Chordin, generate a 

BMP signaling gradient that specifies dorsoventral patterning within the ectoderm. The 

neural plate border cell types form at intermediate levels of BMP signaling (Selleck et 

al., 1998). In Xenopus, partial inhibition of BMP signaling as well as activation of Wnt 

signaling mediates neural crest cell induction (Chang et a., 1998). Work in zebrafish 

also supports a role for both a BMP gradient and Wnts during neural crest cell 

specification (Fig 1.6). Also in Xenopus, fibroblast growth factor (FGF) signaling can 

induce neural crest in neuralized ectoderm, albeit through a Wnt intermediary, and 

seems to be a component of the neural crest-inducing signal from the paraxial 

mesoderm (Barth et al., 1999). Expression of FGF3, FGF4 and FGF8 has been 

observed in the paraxial mesoderm, although only FGF8 can induce a subset of neural 

crest markers in isolated Xenopus ectoderm without additional factors.  

 Foxd3 is an example of a gene whose expression is specific to neural crest 

precursors in the ectoderm of all vertebrates. It is weakly expressed in the paraxial 

mesoderm as well. Foxd3 gain-of-function expands the neural crest field and loss-of-

function ablates neural crest precursors (Sasai et al., 2001). Foxd3 is expressed in 

undifferentiated embryonic stem cells, and is required for embryonic stem cell 

establishment and maintenance (Hanna et al., 2002). On the basis of their homology to 

linker histones, it has been postulated that winged-helix transcription factors like Foxd3 
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bind to nucleosomes and open compacted chromatin to potentiate transcription of target 

genes (Hanna et al., 2002). Indeed, a protein related to Foxd3, FoxA, has been shown 

to have such activity. So, Foxd3 might regulate the transcriptional accessibility of a 

collection of genes that are responsible for the multipotency of neural crest and other 

stem cells. 

 
Cranial Neural Crest Cell Migration 
 
 Cranial neural crest cell (CNCC) migration can be broken down into three distinct 

phases (Fig 1.7). The initial phase of CNCC migration is defined by the acquisition of 

directed migration along the dorsolateral pathway. After CNCCs leave the hindbrain, 

they come into close contact with the surface 

ectoderm and cranial mesenchyme adjacent to 

the hindbrain. The second phase of CNCC 

migration involves the cells homing to the 

branchial arches. The cells move together in 

loosely connected streams along the 

dorsolateral pathway. The last phase of CNCC 

migration is entry into and invasion of the 

branchial arches (Kulesa et al., 2010). During 

the first phase, CNCC begin to leave the neural 

crest and join or start on a specific migratory 

pathway, depending on their beginning location 

within the neural tube and their migratory 

destination. CNCC morphologies vary 

depending on cell position within a migratory stream. CNCCs at the migratory front of a 

stream display protrusive activity in multiple directions, and trailing cells have a bipolar 

shape with equal leading and trailing edge protrusive activity aligned along the 

migratory route (Kasemeier-Kulesa et al., 2008). This enables the cells at the front of 

the migratory stream to lead the way while CNCCs with bipolar body shapes are able to 

make contacts with passing cells allowing them to follow along. The CNCCs within each 

particular stream communicate with one another by cell to cell contact. The cells also 

Fig 1.7: Cross section of a developing embryo 

illustrating the three phases of cranial neural crest 

cell migration as well as the different types of cell 

bodies. Neural crest, NC; Neural tube, NT (P.M. 

Kulesa et al., 2010). 

Bipolar bodies 

Hairy bodies 

Dividing bodies 
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project themselves forward using contact with the ectodermal wall. Cells require 

adhesive interactions with either each other and/ or extracellular substrates in order to 

actively migrate. During cell migration, cells first flatten and spread on the matrix to 

maximize their adhesions.   

 During the second phase, in which 

cells home towards the branchial/pharyngeal 

arches, CNCCs proliferate along their 

migratory route and this activity is key to the 

complete invasion of the branchial arches 

and formation of head and neck structures, 

as seen in figure 1.8. The proliferation of 

cranial NCCs appears to occur in a rigorous 

manner that involves the FGF/TGFbeta 

signaling pathways. Specifically, a 

subpopulation of CNCCs within the front 

portion of a typical migratory stream 

proliferates at a higher rate than the trailing cells (Kulesa et al, 2008). Higher cell 

proliferation within the migratory front may be triggered by space availability in the local 

environment as well as less physical limitations, in the form of cell crowding, on the front 

CNCCs. Leading CNCCs may in turn respond to molecular signals that stimulate 

proliferative activity causing them to move in a specific direction. Alternatively, lead 

CNCCs may contain an intrinsic mechanism that regulates their proliferative activity, 

regardless of microenvironmental signals or crowding around the cell. 

 There have been many proposed mechanisms to explain the migratory 

patterning and directionality of CNCC within the developing embryo. Contact inhibition 

of movement suggested that cells innately moved away from areas of dense cell 

populations (Abercrombie and Heaysman, 1953). However, the concept of cell nudging 

first introduced by Tickle and Trinkaus (1976) indicated that contact with neighboring 

cells can lead to forward movement. CNCCs would exert a mechanical influence on 

each other which causes membrane blebbing on the opposite side of the cell. 

Membrane blebbing would lead to lamellipodia protrusive activity and subsequent 

Fig 1.8: Migratory paths of cranial neural crest cells 

starting at the dorsal rhombomeres and finding their 

way into the specific pharyngeal arch (Minoux and 

Rijli, 2010). 
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directed cell movement. The leading model mechanism for CNCC directed movement 

involves receptor–ligand mediated guidance cues and the chemotactic response of cells 

to microenvironmental signals. CNCCs may respond to non-permissive cues present in 

the NCC-free zones (Farlie et al., 1999; Kulesa and Fraser, 1998). The points of contact 

between the cell and extracellular substrates and/or other cells are stabilized at the 

leading edge of the cell while the adhesion between the trailing edge and the matrix is 

released so that the cell body can be pulled forward. 

 After the CNCCs undergo their initial migration in the segmental streams, they 

must invade their target destinations and then 

properly assemble into differentiated structures. For 

example, the NCCs which came from the 

rhombomere 4 stream must invade branchial arch 2 

(Fig 1.8) before they can form the facial bone and 

cartilage as well as any surrounding cranial ganglia. 

Recently it has been shown that this is not a passive 

event but rather a highly regulated one that involves 

multiple guidance cues including PCP signaling 

pathways and chemo attractant properties signaling of 

Fgfr1 and Nrp1 (Kulesa and Fraser, 1998) (Minoux 

and Rijli, 2010).  

 The path taken by the migrating neural crest 

cells is controlled by extracellular matrices 

surrounding the neural tube (Newgreen and Gooday 1985). One set of proteins that 

promote migration include fibronectin, laminin, tenascin, various collagen molecules, 

and proteoglycans, and they are seen throughout the matrix encountered by the neural 

crest cells (Newgreen et al. 1986). Another set of proteins that impedes migration and 

provides the specificity for cellular movements are the ephrin proteins. These proteins 

are expressed in the posterior section of each sclerotome, and wherever they are, 

neural crest cells do not go (Krull et al. 1997). Eph receptors on the cellular surface of 

NCCs bind to the extracellular ephrin proteins and phosphorylate proteins within the 

NCC that interfere with the actin cytoskeleton that is critical for cell migration. 

Fig 1.9: Schematic of how the cell 

migrates using cell-substrate adhesion and 

actin cytoskeletal mediated cell protrusions 

(Mofrad and Kamm, 2006). 
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Motor Protein Mediated Cell Migration 
 
 In order for a cell to migrate towards its target properly, several variables must be 

properly aligned and functioning together. The process of cell migration begins with the 

extension of the cell surface in a particular direction. This protrusion generally occurs in 

response to chemoattractive signals in the microenvironment that are detected by the 

cell. The force required for protrusion to occur is propagated through the polymerization 

of the actin cytoskeleton. Actin filaments constitute the physical backbone of the cell 

protrusion as well as determining the overall shape of the cell. Actin filaments adopt a 

number of morphologies depending on the number of filaments in a given area of the 

cell and the number of actin binding proteins available.  As a cell moves forward, the 

actin filaments bundle together within the protrusions to form structures such as 

filopodia, and lamellipodia (Fig 1.9). Filopodia are long, thin protrusions that emerge 

from the cellular membrane while lamellipodia are broad, sheet-like protrusions that 

contain a branched network of thin, short actin filaments. Once extended from the cell 

body, these protrusions must adhere to the extracellular substrate. The leading edge of 

the cell must then adhere to extracellular substrates while its tail is pulled forward due to 

cellular tension created by the leading protrusion. Motor proteins are an essential 

component for the intracellular communication that’s necessary for cell protrusion and 

migration to occur.  

 The process of cranial neural crest cell migration is propagated by the use of 

specific motor proteins within the developing brain. Myosins are proteins that bind to 

actin filaments (F-actin) regulated by hydrolysis Adenosine triphosphate (ATP). Binding 

of F-actin promotes ATP hydrolysis by the myosin protein, which then powers the 

movement of actin filaments or allows the myosin to move along the actin filament itself. 

The ‘motor’ activity is enclosed within the N-terminal ‘head’ section of the myosin heavy 

chain. The C-terminal ‘tails’ of the heavy chains are largely atypical, binding to a varied 

array of proteins in the cell (Sokac and Bement, 2000). Myosins form over 30 distinct 

classes, based on sequence comparisons of the heavy chains (Richards and Smith, 

2005). Traditionally, the first myosin class ever discovered, myosins-2, are considered 

‘conventional’ and all other classes discovered afterwards are considered 
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‘unconventional’. The conventional myosins form large bipolar filaments via tail-directed 

homo-oligomerization (Fig 1.10). Unconventional myosins do not form filaments, 

although some have the ability to dimerize. Instead, their tails usually direct membrane 

binding and binding with other proteins.  

 The first myosin understood in detail was skeletal muscle myosin-2, which 

powers F-actin sliding in sarcomeres during muscle contraction (Lodish et al., 1995). 

Thus, when unconventional myosins were found to comprise the motor, fused to a 

variety of membrane-binding tails, it was naturally proposed that unconventional 

myosins function to move membranous organelles along actin filaments. This view 

spawned the ‘highways and local roads’ model in which microtubules serve as long 

range tracks for organelle transport powered by kinesins or dyneins, whereas F-actin 

serves as short range transport tracks powered by unconventional myosins (Langford, 

1995). Once it became clear that some unconventional myosins were necessary for 

organelle trafficking, the idea gained considerable traction and has since then been 

included in both textbooks and primary cell biology literature (Lodish et al., 1995). 

 Many unconventional myosins carry membrane-enclosed organelles such as 

mitochondria, Golgi stacks, or secretory vesicles, to their 

correct locations in the cell. While conventional myosins 

cause cytoskeletal filaments to slide against each other 

which generate the force needed to produce muscle 

contraction, ciliary beating, and cell division. These 

myosin actin motors form complexes consisting of two 

heavy chains with motor heads and two light chains. 

These proteins associate with their filament tracks 

through a head region that binds and hydrolyzes ATP 

(Alberts et al., 2002). By coordinating their nucleotide 

hydrolysis cycle with conformational changes, the proteins cycle between states in 

which their head regions are tightly bound to the corresponding filament tracks and 

states in which they are unbound. Through this cycle of filament binding, conformational 

change, filament release, conformational relaxation, and filament rebinding, the motor 

protein and its associated cargo move one step at a time along the filament (typically a 

B 
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Fig 1.10: A) Conventional myosins 
interacting with an F-actin substrate 
during muscle contraction. B) 
unconventional myosins walking along 
a similar substrate bearing protein 
cargo (Lu et al., 2012). 
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distance of a few nanometers). The myosin tails have diversified during the process of 

evolution to permit dimerization of proteins with other subunits and to interact with 

different cargoes (Lu et al., 2012). 

 

Unconventional Motor Protein Myosin X 
 
 Like all myosins, MyoX contains a motor domain that interacts with actin and 

hydrolyzes ATP. It contains several binding domains allowing for specific protein 

fastening. It contains three IQ motifs (The term "IQ" refers to the first two amino acids of 

the motif: isoleucine (commonly) and glutamine (invariably)) that allow calmodulin or 

calmodulin-like light chains to bind to the domain as well as a coiled-coil domain for 

dimerization. The tail of MyoX has a PEST 

region (a peptide sequence that is rich in 

proline (P), glutamic acid (E), serine (S), and 

threonine (T)) for proteolytic cleavage, three 

pleckstrin homology (PH) domains implicated 

in signaling through phosphatidylinositol 

phospholipids, and at the C-terminus, a 

myosin tail homology 4 (MyTH4) domain and 

a FERM domain (F for 4.1 protein, E for 

ezrin, R for radixin and M for moesin), 

important for binding microtubules and β-

integrin (Sousa and Cheney, 2005). This 

structure suggests that MyoX may mediate 

membrane-cytoskeleton interactions. Studies 

in cultured mammalian cells show that MyoX is expressed at the edges of lamellipodia, 

membrane ruffles, and the tips of filopodia. Consistent with its location, MyoX is 

required for the formation and extension of filopodia. It not only induces the formation of 

filopodia by convergence of actin bundles through dimerization, but also promotes 

filopodial extension and stabilization by transporting integrin and actin binding proteins 

Mena/VASP to their tips (Berg and Cheney, 2002; Tokuo et al., 2007). 

Fig 1.11: Model of myoX protein structure. Summarized 
domain structure and related function can be seen to 
the left. Although the myoX heavy chains are illustrated 
here as parallel dimers, their actual oligomerization 
status remains unclear. MyoX heavy chains might exist 
as stable monomers or dimers, undergo regulated 
dimerization, or form higher-order structures (Sousa 
and Cheney, 2005). 
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 MyoX expression patterns have been previously characterized (Sittaramane and 

Chandrasekhar, 2008) and vary depending on location within the embryo as well as 

elapsed time after fertilization. At 18 hpf myoX is strongly expressed within rhombomere 

5 and weakly expressed in rhombomeres 2, 3, and 4 (Sittaramane and Chandrasekhar, 

2008). At 18 hpf, expression can also be seen within the hindbrain neurons, specifically 

within the trigeminal ganglion and lateral line ganglia by 30 hpf. During this same time 

frame, myo10 is expressed within specific populations of cells of the forebrain and 

midbrain. In addition, myoX is expressed by the cells in the dorsal spinal cord by 

surrounding neural crest cells. These results suggest that myoX, among other myosins, 

are expressed in neurons and neural crest cells during the period of cell migration and 

specification (Sittaramane and Chandrasekhar, 2008).       

 In vitro culture experiments have suggested that myosinX is required for the 

adhesion of CNCCs to each other as well as the extracellular matrix. After knockdown 

experiments of myoX, neural crest cells attached but failed to spread on filopodia 

substrates, instead they remained round in shape (Nie et al., 2009). Filopodia are 

important membrane protrusive structures important for cell adhesion, movements and 

guidance. They sense the cell's surroundings and act as sites for signal transduction 

(Mattila and Lappalainen, 2008). Furthermore, in vitro results with Xenopus embryos 

suggest that MyoX is involved in maintaining contacts between neural crest cells. 

Knockdown of MyoX in vivo resulted in intermingling of neural crest cells between 

different branchial arch streams and abnormal migration patterns (Nie et al., 2009). 

Cadherins are transmembrane proteins which form adheren junctions binding cells 

within tissues together. They are a likely candidate for playing a crucial role in cell-cell 

adhesion during development since neural crest cells express different cadherins at 

different stages of migration. For example, in Xenopus, Cadherin 11 in turned on when 

CNCCs begin to migrate, indicating their possible role in CNCC migratory adhesion 

(Hadeball et al., 1998).  

 Like all myosins, MyoX contains a motor domain that interacts with actin and 

hydrolyzes ATP. It contains several binding domains allowing for specific protein 

fastening. Its domain structure suggests that MyoX may mediate membrane-

cytoskeleton interactions in migrating cells (Berg and Cheney, 2002). In vitro culture 
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experiments have suggested that myoX is required for the adhesion of CNCCs to each 

other as well as the extracellular matrix. After knockdown experiments of myoX, neural 

crest cells attached but failed to spread on filopodia substrates, instead they remained 

round in shape (Nie et al., 2009). Previous results using Xenopus embryos suggest that 

myoX is involved in maintaining contacts between neural crest cells. Knockdown of 

myoX in vivo resulted in intermingling of neural crest cells between different branchial 

arch streams and abnormal migration patterns (Nie et al., 2009). The purpose of this 

study is to characterize the role of myoX with relation to craniofacial development and 

CNCC migration in zebrafish where it has never been previously identified.  

 Similar experiments have been conducted using Xenopus (Nie et al., 2009) 

however they must be done in zebrafish as well for several reasons. Zebrafish follow 

normal Mendelian inheritance rules as we understand them where Xenopus does not. 

Other models systems’ (Xenopus included) gene expression is influenced by 

environmental factors during early embryogenesis. With zebrafish, we know that 

crossing two heterozygous individuals will results in 25% of the offspring expressing 

homozygous characteristics. Zebrafish have emerged as a great model system for 

studying development. It has many favorable characteristics which have contributed to 

its popularity as a model of disease in humans and developmental research; i.e. high 

fecundity, small size, rapid generation time, optical transparency during early 

embryogenesis. These characteristics have also contributed to its popularity to 

investigators in numerous other disciplines, including animal behavior, fish physiology, 

and aquatic toxicology (Lawrence, 2007).These valuable traits are extremely important 

when studying the genetic interactions seen in myoX dependent neural crest cells. 

Finally, the greatest advantage of using zebrafish is that these interactions can be 

visualized in vivo using fluorescent microscopy/imaging techniques. 

 Although myoX has been shown to be required for CNCC migration in xenopus 

(Hwang et al., 2009; Nie et al., 2009), very little is known about the localization and 

functions of myoX in CNCC destined to become craniofacial chondrocytes in zebrafish. 

In this study, I hypothesize that myoX is required for craniofacial development in Danio 

rerio. This study utilizes two different gene knockdown approaches to investigate the 

role of myoX in craniofacial development and CNCC migration. First, a strain of 



 

 

24 

 

zebrafish was acquired which contains a nonsense point mutation within the myoX 

gene. I also developed an anti-sense morpholino oligonucleotide to block MyoX protein 

production. Since myoX has been shown to be required for NCC migration in xenopus, 

and CNCC cells differentiate to become craniofacial chondrocytes, I used zebrafish to 

study the role of myoX in craniofacial development.  

 Because craniofacial bone development relies primarily on CNCC migration, 

CNCC migration in both mutant and morphant individuals was observed and 

characterized using both immunohistochemical staining as well as RNA in situ 

hybridization techniques. Based on the results found in the craniofacial cartilage 

characterization previously mentioned, I inferred that the migratory ability of the CNCCs 

was inhibited in myoX knockdown individuals. I hypothesize that myoX is required for 

CNCC migration in zebrafish as well. The goal of this study is to couple myoX motor 

protein activity to cranial neural crest cell migration with regards to craniofacial 

development in zebrafish.  
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CHAPTER 2 
 

MATERIALS AND METHODS 
 
Fish Strains  
 
 The zebrafish (Danio rerio) has recently emerged as a prominant vertebrate 

biomedical research model in many laboratories. The zebrafish strain myoXl1sa728 was 

used (zebrafish.org/zirc) in experiments as a model for genetic knock out fish and was 

acquired through the Zebrafish Mutation Project (Kettleborough et al., 2013). A 

mutagen, such as Ethylnitrosourea (ENU), is used to create hundreds of point mutations 

in male premeiotic germ cells. The sperm from these males are divided into two groups. 

One group is labeled and stored. The other group is analyzed to identify where the point 

mutations occurred. Once identified, the stored sperm cells can be used to create an F2 

generation consisting of 50% wild type fish and 50% containing one copy of the mutated 

genome. When two heterozygous fish are bred, 25% of their offspring will be 

homozygous for the desired mutation. 

 

Fish Husbandry  
 

 Adult zebrafish were maintained in a self-contained laboratory system following 

published materials (Westerfield, 2007). An IUCAC proposal has been submitted and 

approved for all research done in our lab using live zebrafish. Adult zebrafish are set up 

to breed using separate, smaller tanks and fertilized embryos are collected the morning 

after. Laboratory lights are automated in all fish laboratories to turn on at 9:00 A.M. and 

off at 11:00 P.M. This photoperiod 14 hours light and 10 hours dark are intended to 

simulate optimal natural breeding conditions. Fish are fed twice a day, once in the 

morning and once in the evening on a rotating fish feed cycle. A fish flake blend is fed in 

the morning while live brine shrimp are used to feed fish in the evening. Embryos were 

raised in tissue culture plates in 30% Danieu’s medium at 28.5°C. To inhibit 

pigmentation in embryos to be viewed in whole-mount, 1-phenyl-2-thiourea (PTU, 

0.003% final concentration) was added to the medium at approximately 15 hpf. 

Embryonic development is reported in actual hours or days post fertilization according 

to the published staging series (Kimmel et al., 1995).  
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Morpholino and RNA Rescue Injections 
 
 Glass needles were made in our lab using 3.5” Drummond replacement tubes 

(#3-000-203-g/x) in a Model P-1000 Fleming/Brown Micropipette Puller. Morpoholino 

powder provided from Gene Tools was resuspended in nuclease free water. 

Morpholinos are diluted in dextran tetramethyl-rhodamine and nuclease free water.  

Morpholinos must also be titrated to determine the lowest possible amount that is 

necessary to elicit a specific phenotype. The morpholino solution was then placed in the 

glass needle followed by oil to remove all the air within the needle. The tip of the needle 

must be broken to allow the flow of the morpholino using micro tweezers. Using a 

Nanoject II™ Auto-Nanoliter Injector, approximately 4.6 nl of the myosinX morpholino 

antisense oligonucleotide in a solution of 0.2% phenol red was injected into the yolk of 

1–4 cell embryos. The translation start-site targeting myosinX MO, myoXl1 

(5’CCTCTGCGAAGAAGGTCTCCATCTT3’) was injected at 1.5 mg/ml. The 

concentrations reported were determined empirically to maximize effects on cartilage 

and teeth while minimizing general defects such as necrosis. 

 To assess the specificity of the MO 

knockdown, mRNA rescue experiment 

using the myosinX specific RNA was 

performed. Isolated zebrafish mRNA 

encoding the protein from the targeted 

locus is injected into the yolk of 1–2-cell 

embryos (Hyatt and Ekker 1999) and 

compared to MO injected embryos. RNA 

was prepared using an in vitro CAP RNA 

transcription reaction on the transcript of 

interest (myosinX). CAP RNA is a specially altered nucleotide on the 5′ end of some 

eukaryotic primary transcripts such as precursor messenger RNA. This process, known 

as mRNA capping (Fig 2.1), is highly regulated and vital in the creation of stable and 

mature messenger RNA able to undergo translation during protein synthesis. MyosinX 

cDNA was inserted into a pCS2+ plasmid vector and an in vitro synthesis reaction of 

Fig 2.1: Vector map of pSC2+ vector. MyoX cDNA was inserted 
between BamHI and XbaI restriction enzyme sites. 
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large amounts of capped RNA was performed using mMessage mMachine SP6 kit 

(Ambion, Inc., AM1340). The RNA samples were then purified using the RNeasy Mini kit 

(Qiagen, Inc., 74104). Concentrations of RNA samples were then determined using a 

NANODrop 2000 spectrophotometer and stored at -80°C until ready for injections.  

 

Genscript® and Subcloning 
 

 Subcloning was conducted using compotent E. Coli cells and agar medium. The 

pCS2+ vector was digested using ThermoScientific Fast Digest restriction enzymes 

(XbaI and BamHI). The MyosinX insert was 

isolated using specific primers and PCR, bands 

were separated using gel electrophoresis and 

extracted from the gel using a QIAquick Gel 

Extraction Kit. Upon successful ligation, 

plasmid/insert constructs were sent to the 

Sanger Sequencing Center at Clemson 

University for verification. A second method of 

construct synthesis was through the Genscript® 

biosynthesis company. The myoX gene was 

synthesized and subcloned into the psc2+ vector 

by Genscript®. The myoX sequence was 

provided to Genscript® 

(ENSDART00000113347) who constructed the 

synthetic (Fig. 2.2) insert and our lab provided the pCS2+ vector backbone for 

subcloning. 

To conduct rescue experiments, embryos are divided into several experimental 

groups—those injected with the targeting MO and with a control mRNA (i.e., GFP-

encoding) versus those injected with the targeting MO and with the gene-specific 

mRNA, as well as mRNA constructs or MO alone (Brent et al., 2009). 

 
Cartilage/Bone Staining and Immunohistochemistry 
 

Fig 2.2: Vector map of pSC2+ vector and myoX insert 
as received from Genscript® MyoX cDNA was inserted 
between StuI and XbaI restriction enzyme sites. 
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 For cartilage preparations, the methods of Javidan and Schilling (2004) using 

alcian blue (Sigma) were followed, a dye that stains the extracellular matrix associated 

with chondrocytes. Larvae were anaesthetized using 200mg/L tricaine 

methanesulfonate (TMS) solutions at 6-6.5 dpf and tissues preserved in 4% neutral 

buffered formaldehyde (pH 7.0) at room temperature overnight. Pigmentation was 

removed by bleaching in 30% hydrogen peroxide for several hours to overnight and 

then transferred into a 0.01% solution of alcian blue dissolved in 70% ethanol/1% 

concentrated HCL. After staining in this solution overnight, embryos were rinsed in 

phosphate buffered saline with 0.1% Tween-20 (PBT) and rehydrated gradually into 

70% glycerol solutions (embryos were exposed to 25% glycerol, then 50% glycerol 

first). Stained preparations were mounted in 70% glycerol. 

 To visualize pharyngeal tooth development, the two-color acid free bone and 

cartilage staining protocol of Walker and Kimmel (2007) was used. 100 mM MgCl2 was 

used in place of acid to differentiate cartilage staining and limit tissue deterioration. An 

acid-free double stain solution was made in two parts that were mixed together just prior 

to staining. The first part includes alcian blue 8 GX (C.I. 58005, Sigma, St. Louis, MO) 

for cartilage staining and the second part includes alizarin red S (C.I. 74240, Sigma) for 

bone staining. The final concentrations for Part 1 are 0.02% alcian blue, 200 mM 

MgCl2, and 70% ethanol. Part 1 was made by first making a stock of 0.4% alcian blue in 

70% ethanol. Because alcian blue is not readily soluble in 70% ethanol, the powder was 

added to a smaller volume of 50% ethanol, and occasionally mixed to dissolve; 100% 

ethanol and water were added to obtain final concentrations. 100 ml of Part 1 was made 

by adding together 5 ml 0.4% alcian blue in 70% ethanol, 70 ml 100% ethanol, and 100 

mM MgCl2 and water to obtain final concentrations. Part 2 is 0.5% alizarin red S powder 

dissolved in water. An acid-free double stain solution containing 10 ml of Part 2 and 1 

ml of Part 1 was mixed just prior to staining. 6.5 dpf larvae were fixed and bleached in 

the same manner as in the alcian blue staining mentioned previously. 1 ml of acid-free 

double stain solution was added to larvae and rocked at room temperature overnight 

using a Fisher Scientific™ Platform Rocker. Stain solution was removed the following 

morning and tissue was cleared with successive changes of a solution of glycerol and 

KOH. After removing the staining solution, 1 ml of a solution of 20% glycerol and 0.25% 
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KOH was added and rocked at room temperature overnight. This solution was replaced 

by 1 ml 50% glycerol and 0.25% KOH and rocked at room temperature overnight. 

 To further increase bone and cartilage visualization, the methods of Javidan and 

Schiling (2004) for microdissections of stained cartilage were used, with few 

modifications. Using two Bioquip insect pins (No. 000) attached to the end of two Wilton 

Cookie Sticks with tape; the eyes were removed by gently pulling at the base of the 

socket and are discarded. One of the insect pins is bent to a 45° angle to be used as 

the securing pin while the other is left straight to be used as the dissecting pin. While 

securing the body of the larva with the securing pin, brain tissue was scrapped away 

anteriorly to posteriorly until little to none remains. Once eyes and brain tissue have 

been removed, the remaining yolk tissue was removed from the ventral side of the 

specimen in a similar manner to removing brain tissue. After positioning the securing 

needle, the dissecting needle was placed beneath the hyosymplectic (hs), near the joint 

between hs and the neurocranium and gently pulled to detach at the joint. This was 

repeated for the contralateral joint. The dissecting needle was then placed at the joint 

between the tip of the palatoquadrate (pq) and the ethmoid plate (ep) and gently pulled 

to detach. The dissecting needle was gently inserted horizontally, along the plane of the 

neurocranium and dorsal to the arches to remove any remaining soft tissue and 

repeated until the jaw and arches separate from the neurocranium. Neurocranium was 

then discarded while ventral structures are mounted in 70% glycerol and imaged using 

a Zeiss Stereo Discovery.V12 microscope with a mounted Axiocam Erc 5s and Zen Lite 

2011 (Blue Edition) software at varying magnifications. 

 Immunohistochemical staining was done following the Zebrafish Fluorescent 

Antibody labeling protocol (Sittaramane, 2013). Embryos were fixed at various times 

post fertilization in 4% paraformaldehyde in phosphate buffered saline (PBS) solution. 

Embryos were washed 4 times in incubation buffer (IB) for 30 min per wash. Embryos 

were then washed in IB containing 1% horse serum for 30 min. After that wash, 

embryos were incubated overnight in IB with 1% horse serum and the proper diluted 

primary fluorescent antibody. Staining continued the next day with four 30 min washes 

in IB, an addition wash in IB containing 1% horse serum (30 min), and a final wash in IB 

containing 1% horse serum and the proper diluted secondary antibody. From this point 



 

 

30 

 

on, tubes containing embryos were wrapped in aluminum foil to protect fluorescent 

properties. On the final day of staining, the embryos were washed 3 times (5-10 min 

each) in 1X PBS and fixed in 4% paraformaldehyde overnight. Embryos were then 

washed in 1X PBS 3-4 times (5-10 min each) and progressively stored in 70% glycerol 

solution, stepwise.  

 
RNA In Situ Hybridization 
 
 During RNA in situ hybridization, the utmost care was taken when handling the 

embryos and reagents during.  All plastic ware and glassware was sterilized for at least 

30 min prior to beginning to reduce the risk of contamination. Embryos were fixed in 4% 

paraformaldehyde/1XPBS (PFA-PBS) overnight and washed two times, 5 minutes each 

in PBS in the morning. A series of washes then took place in the following way: wash 1 

X 5 min in 50% PBS/50% MeOH, wash 1 X 10 min in MeOH. Solutions were replaced 

with fresh MeOH and stored at -20°C overnight (minimum 2-3 hours). 100 ml PBS with 

Tween-20 was made using the following concentrations: 50 ml 2XPBS, 100 µl 100% 

Tween-20, 50 ml sterile H2O and used for a wash for 5 min in 50% MeOH/50% PBST. 

A second wash was performed for 5 min in 30% MeOH/70% PBST afterwards. The 

embryos were then washed twice for 5 min each in PBST. Embryos were fixed for 1 

hour in PFA/PBS. Fix solution was removed and embryos were washed three times for 

5 min in PBST each. Digest with 10 µg/ml Proteinase K in PBST (1 µl of 10 mg/ml 

Proteinase K + 999 µl PBST).  Treatment times will vary with age--5 min for 20 hpf or 

younger, up to 20 min for 48 hpf or older embryos. Embryos were washed twice for 5 

min each in PBST and fixed in PFA-PBS for 1 hour afterwards. Embryos were then 

washed three times for 5 min each in PBST and transferred after 2nd wash to 0.5 ml 

microfuge tube. Embryos were then washed one time for 10 min in 50% hyb/50% PBST 

and are ready for prehybridization preparation.  

 To prepare embryos for hybridization, embryos were incubated in 450 µl 

hybridization (hyb) buffer for at least two hours at 65°C on a rocking platform inside the 

incubator. 10 ml of hybridization buffer was made using the following reagents and 

volumes: 5 ml formamide, 2.5 ml 20XSSC, 10 µl of 50 mg/ml heparin, 500 µl of 10 

mg/ml tRNA, 10 µl of 100% Tween –20, 1.888 ml DEPC’d water, 92 µl 1M citric acid 
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(pH~6.0). To perform hybridization, the prehybridization buffer was removed and 200 µl 

hybridization buffer with 100 ng of the specific probe was added to the tube. Typical 

probe concentration was 0.5 ng/µl. Tubes are then incubated overnight (9-12 hrs) at 

65°C. The tubes are placed on a tilted platform (without rocking them) such that 

embryos are distributed along the wall of the tube. The used hybridization probe was 

then stored at -20°C and may be reused 2-3 times. The probe solution was then 

replaced with hybridization buffer and rinsed for 0.5-1 hour at 65°C. 

 Three washing solutions were made as follows; 10 ml Wash A: 1 ml 20XSSC, 4 

ml ddH2O, 10 µl Tween, 5 ml formamide; 10ml Wash B: 1 ml 20XSSC, 9 ml ddH2O, 10 

µl Tween; 10 ml Wash C: 1 ml Wash B, 9 ml ddH2O, 9 µl Tween. All washes were 

performed on a rocking platform. Embryos were washed using these solutions as 

described in the lab Sittaramane lab protocol and then incubated overnight at room 

temperature. The following morning, embryos were washed eight times for 15 min in 

Maleic Acid buffer containing 0.1% Tween. Immediately following, embryos were 

washed three times for 10 min in TMNT. Embryos were transfered to a 24 well microtiter 

plate after 2nd TMNT wash.  TMNT was made using the following reagents and 

volumes: 5 ml 1M Tris-HCl, pH 9.5, 2.5 ml 1M MgCl2, 1.25 ml 4M NaCl, 50 µl 100% 

Tween-20, 41.15 ml sterile H2O, 50 µl 1M Levamisole. 

 To make Coloration solution, 45 µl NBT stock was added to 35 µl BCIP stock to 

10 ml TMNT.  1 ml of coloration solution was used per well of embryos.  Embryos were 

incubated at 37°C in the dark for 15 min-2 hrs, and watch for appearance of color in 

specific tissues. After color reaction was complete, embryos were washed 2-3 times 

rapidly with PBS and fixed overnight at 4°C in PFA-PBS. Embryos were brought to 70% 

glycerol gradually and were stored at 4°C indefinitely.   

 
PCR and Sequencing 
 
 Genomic DNA was extracted according to the Meeker et al. 2007 protocol. 

Tissues were placed into microcentrifuge tubes containing 50 mM NaOH. The liquid 

volume used was sufficient for the complete submersion of the embryo (500ul). The 

samples were then heated to 95°C until the tissue was noticeably friable. 10 min was 

sufficient for fresh embryos and 20 min for paraformaldehyde-fixed embryos or adult 
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tissues. The tubes were cooled to 4°C, and then 1/10th the volume of 1 M Tris-HCL, pH 

8, was added to neutralize the basic solution. The sample was centrifuged to pellet the 

debris, and the supernatant was immediately ready for use in PCR. One to 5 µl 

solutions were used per 25ul PCR.  

 PCR reactions are then set up using the aforementioned genomic DNA and 

myosinX specific forward and reverse primers designed specifically for this project (F: 5’ 

CAT CAA ATA ACC ATT GGG AAA GTT CTT AAT 3’, R: 5’ TGT CAC TGA GCC ACG 

TAT GTG AAA CAA TGA 3’). The primers were designed to isolate and amplify the 

myosinX target sequence. PCR settings were run as follows: 1 cycle of 98°C for 5 

minutes, 30 cycles of 98°C for 30 seconds, 55°C for 30 seconds, and 72 °C for 42 

seconds, followed by 1 cycle of 72°C for 10 minutes and finally held at 4°C indefinitely. 

PCR products were verified using a 1% agarose gel electrophoresis protocol. Once the 

PCR products were confirmed, samples were sent to the Clemson University Genomics 

Center for Sanger Sequencing procedures. 

 

Mutant Zebrafish Strain SA728 

 

 We obtained embryos containing a point mutation within the myoX gene from the 

Zebrafish Mutation Project (ZMP). Using a mutagen, such as Ethylnitrosourea (ENU), 

hundreds of point 

mutations are created 

throughout the genome 

and are outbred with 

wild type individuals to 

create strains of fish 

with single point 

mutations in each 

allelic portion of the 

genome (Kettleborough 

et al., 2013). This strain of zebrafish contains a single point mutation affecting amino 

acid number 805 (Fig 2.3 A). This point mutation changes the existing thymine to a 

A B 

Fig 2.3 A) Mutation details regarding the SA728 zebrafish line provided by ZIRC. B) Map of the 
myoX genetic sequence and corresponding motor domains. C) Expected protein structure 
based on where the point mutation occurs within the sequence. 

C 
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cysteine, causing a change in amino acid. It is hypothesized that this mutation disrupts 

the coiled-coil dimerization within the long arm of the myoX protein itself, according to 

the corresponding protein domain map (Fig. 2.3 B/C). 

 

Cell Counts and Statistics 

 

 Alcian blue stained individuals were imaged using a Zeiss Discovery.V12 Stereo 

microscope and a Zeiss AX10 compound microscope. Cartilage cell counts were done 

using Zen 2011 Blue Edition and structure angles were measured using Zen 2011 Black 

Edition software. Cell shape analyses were done by outlining individual cells using Zen 

2011 Blue software and measuring the cells at the longest and widest positions within 

each cell. Ratios between longest and widest points were compared between control 

and mutant individuals. Neural crest cell migration was visualized using sox-10 antibody 

marker and visualized using a Zeiss LSM 710 confocal microscope and processed 

using Zen 2011 Black Edition. Z stack images were compressed using maximum 

intensity image processing and cells were counted using ImageJ photo processing 

software.  

 Once uploaded into ImageJ, backgrounds were removed, image threshold was 

adjusted to remove noise produced from immunohistochemical staining, and particles 

larger than 20 pixels were analyzed. Each data set was collected from two different 

populations or from randomly selected individuals from the same population at different 

times and compared using a student’s T test statistical analysis. Rescue experiments 

were analyzed using one way ANOVA statistical tests and compared individually using 

Tukey’s test. 
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CHAPTER 3  
 

RESULTS 
 

MyosinX is Required for Craniofacial Development in Zebrafish 
 

MyoX Mutant Individuals Display Craniofacial Deformities 

 

 Once grown, 

embryo morphology was 

compared between 138 

wild type (WT+/+) and 43 

myosinX deficient (myoX-

/-) individuals from the 

same clutch (Fig 3.1). 

MyoX deficient zebrafish 

display shortened 

nasofrontal structures as 

well as a protruding 

lower jaw. The arrows 

highlight these 

abnormalities (Fig 3.1 

A/B). The head region is much more flattened dorso-ventrally in myoX deficient 

individuals (Fig 3.1 A/B). Adult fish were positioned in the same manner and compared. 

Wild type zebrafish exhibit normal jaw structures while in the closed mouth position 

while the individual on the right to be myoX deficient based on its abnormal mouth 

formation (Fig 3.1 C/D). Approximately 25% of myoX mutant F2 offspring exhibit 

craniofacial deformities (45 individuals out of a total of 183 screened) (Fig 3.1 E). 

Zygosity of individuals was determined by examining external morphology only.   

Fig. 3.1 Zebrafish morphology comparisons between 6 dpf mutant and wild type individuals as 
well as adult individuals. A) Dorsal view of Wild type whole embryos (top) versus mutant 
whole embryos (bottom). B) Lateral view of Wild type whole embryos (top) versus mutant 
whole embryos (bottom). C-D) Wild type adult zebrafish (left) and possible heterozygous 
mutant adult (right). E) Zebrafish zygosity from a batch of 183 siblings, 45 individuals show 
mutant phenotype.  

N=45/183 

N=138/183 

N=45/183 

N=138/183 
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 Cartilage structures were stained using 0.01% Alcian blue solutions and 

visualized using a stereo microscope. Both the ceratobranchial (cb) arches as well as 

the basohyal (bh) structures were severely deformed in mutant fish. Ceratohyal (ch) 

formation displays an angle nearly 2x wider that which is seen in wild type zebrafish 

(mean wt angle = 63°, mean mutant angle = 36°). (Fig 3.2 C/D) To visualize cartilage 

development even further, previously stained structures were carefully dissected from 

the surrounding tissues. 20 fish showed the mutant phenotype out of 90 total (22%). By 

6.5 dpf, pharyngeal tooth development can be visualized on the fifth ceratobranchial 

(cb) structure. A combination of Alcian blue and Alizarin red stains were used to 

simultaneously stain for bone and cartilage structures. 8 fish showed the mutant 

phenotype out of 38 total (21%) (Fig. 3.2 E/F). Pharyngeal teeth (pt) are 

underdeveloped in myoX deficient zebrafish.  

Mutant and wild type cell shapes were measured and counted. Ceratohyal (ch) 

angle was measured as the angle of these structures largely determines the overall 

shape of the zebrafish face. Mutants CH structures were significantly shorter then in 

wild type individuals (P<0.01, DF=18, t= 4.66, meanMut=13.9µm, meanWT=21.8µm, 

SD=0.93, 1.44) (Fig. 3.3 A/D/E). The distance from meckel’s cartilage (m) to the neuro 

cranium (nc) as well as the distance from ceratohyal was measured as well as this was 

Fig 3.2 (A) Cartilage structures were stained using 0.01% Alcian blue. Visceral cranium in mutants shows 
developmental deformities as compared to wild type individuals. Abbreviations used: bb, basibranchial; bh, 
basihyal; cb, ceratobranchial; ch, ceratohyal; D, dorsal; hb, hypobranchial; hs, hyosymplectic; ih, interhyal; L, 
lateral; M, medial; m, Meckel’s; pq, palatoquadrate; V, ventral.  
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a good indicator of facial dynamics. Mutant populations were not significantly different 

then wild type individuals (CH->M: P=0.46, DF=18, t=-0.75, meanMut=26.8µm, 

meanWT=28.8µm, SD=6.6, 4.8) (M->NC: P=0.68, DF=18, t=-0.42, meanMut=10.6µm, 

meanWT=11.1µm, SD=1.5, 2.7) (Fig 3.3 B/F/G). Individual cells were counted from the 

ceratohyal and ceratobranchial structures in both mutant and wild type individuals (Fig. 

3.3 C). Wild type individuals had significantly more cells than mutant individuals in the 

ceratohyal structures (P<0.001, DF=14, t=-7.60, meanMut=38.4 cells, meanWT=89.1 

cells, SD=15.5, 10.8) and ceratobrachial (DF=14) (Pcb1<0.001, meanmutcb1=29.7 cells 

meanwtcb1=62.3 cells SD=10.6, 17.7, tcb1=-4.47) (Pcb2<0.001 meanmutcb2=21.6 cells 

meanwtcb2=52.4 cells SD=14.7, 14.3, tcb2=-4.25) (Pcb3=0.0022, meanmutcb3=5.3 cells 

meanwtcb3=40.5 cells SD=11.1, 21.8, tcb3=4.08) (Pcb4<0.001, meanmutcb4=4.3 cells 

meanwtcb4=37.8 cells SD=8.7, 16.9, tcb4=4.96) (Fig. 3.3 H). Cells were measured at their 

longest and widest points to determine shape. To determine cell shape, the ratio of 

length to width was compared between the two populations and no significant difference 

was found between populations (P=0.857, DF=62, t=0.18) (Fig 3.3 I) 

 

MyoX Morphant Individuals Display Stunted Growth  

 

Fig. 3.3 Complete competency characterization of zebrafish cells in mutant and wild type individuals. A) Ceratohyal angle in 
mutant (left) versus wild type (right). B) Measurements from neural cranium to meckels cartilage to ceratohyal, lateral view, 
mutant (left versus wild type (right). C) Cell shape characterization in mutant (left) versus wild type (right). D-I) Graphs showing 
different cell characterizations. Bars indicate standard deviation. 
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 After injection of myoX morpholino, embryos were grown and preserved at 

specific time intervals to examine and compare embryo morphology. By comparing two 

separate knockdown techniques (morphant and mutant) we can better understand the 

mechanisms myoX is involved in. By 48 hpf, morphant embryos already exhibited 

distinct morphological differences than their control morpholino counterparts. 48 hpf 

morphants showed a delayed cranial development as well as curved or kinked tail 

structures (Fig 3.4 A/D). By 72 

hpf, control embryo were 

beginning to swim on their 

own with a straight tail and 

diminished yolk. Morphant 

individuals at the same age 

displayed extremely 

curved/kinked tail structures 

as well as underdeveloped 

cranial structures including 

dwarfed  size and abnormal 

shape (Fig 3.4 B/E). At 72 hpf, 

control individuals begin to 

form craniofacial structures 

Fig 3.4 A/D) 24 hpf whole embryos, control (top) and myoX morphant individuals (bottom). B/E) 
48 hpf whole embryos, control (top) and myoX morphant individuals (bottom). C/F) 72 hpf whole 
embryos, control (top) and myoX morphant individuals (bottom). 

Fig 3.5 A) Uninjected control 5 dpf individuals. B) Control morphant 
individuals C) Diagram of wild type neuro cranium D) MyoX morphant 
individuals, dwarfed trabecula (tr) and  parachordal (pch) structures. 



 

 

38 

 

while their face and head begins to flatten out. Morphants individuals’ tails were 

completely curled underneath their bodies, while exhibiting cardiac edema. Morphant 

individuals were unable to swim at all and lacked any semblance of craniofacial 

structures when compared to control individuals (Fig 3.4 C/F). 

 

MyoX Morphant Individuals Exhibit Stunted Cartilage Structures at 5 DPF 

 

 5 dpf embryos were 

stained using a 0.01% alcian 

blue solution to visualize 

craniofacial cartilage 

structures. Both control 

groups displayed well 

developed neurocranial 

structures as well as visceral 

cranial structures compared 

to expected craniofacial 

development (Fig 3.5 A-C). 

Morphant individuals 

displayed no signs of 

visceral cranium structures. These same individuals exhibited stunted growth in the 

neural cranium, specifically the 

parachodial and trabecular structures 

(Fig 3.5 D).  

 In conclusion, both morphant 

and mutant individuals exhibited 

disfigured craniofacial structures. In 

both groups, some amount of 

craniofacial cartilage was present but 

not in the sufficient amount to create 

full structures when compared to 

Fig 3.6 A-B) Control (top) and myoX morphant (bottom) 24 hpf individuals, 
sox-10 stained showing neural crest cell migration. C-D) Control (top) and 
myoX morphant (bottom) 48 hpf individuals. E-F) Control (top) and myoX 
morphant (bottom) 72 hpf individuals. 

Fig 3.7 Sox-10 stained individuals were counted using ImageJ 
image processing software. All groups were significantly 
different. P24h= 0.0002, P48h= 0.004, P72h=5.17E-06. Bars 
indicate standard deviation. Bars indicate standard deviation. 
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control groups. This indicates migratory inhibition in NCC as opposed to NCC 

specification being the root source of craniofacial structure disfiguration.   

 

MyosinX is Required for CNCC Migration, Not Specification 

 

Cranial Neural Crest Cell Migration Inhibited in MyoX Morphant Individuals 

 

 Cranial neural crest cell migration was visualized using immunohistochemical 

staining. Anti sox-10 anti-bodies were used to stain cranial neural crest cells at different 

stages of development in both control and myoX morpholino injected individuals. Once 

IHC staining was completed, cells were imaged using a Zeiss LSM 710 confocal 

microscope and processed using Zeiss Zen 2011 Black Edition software. 24 hpf control 

MO individuals displayed significantly more cranial neural crest cells than myoX 

morphant individuals (P= 0.0001, df=31, 

t= 4.24, meanMO=201.7 cells, 

meanCTRL=264.1 cells, SD=42.26, 42.15) 

(Fig 3.6 A-B, Fig 3.7). 48 hpf control 

individuals also displayed significantly 

more cells than there morphant 

counterparts (P=0.004, df=9, t=3.8, 

meanMO=200.5 cells, meanCTRL=318.6 

cells, SD=82.19, 32.61) (Fig 3.6 C-D, Fig 

3.7) However, 72 hpf control morphant 

individuals had significantly fewer cells 

than the 72 hpf myoX morphant 

individuals (P=5.17E-06, df=8, t=10.68, 

meanMO=194.6 cells, meanCTRL=30.2 

cells, SD=13.52, 31.64) (Fig 3.6 D-E, Fig 

3.7).  

 

Early Craniofacial Structures Absent in MyoX Morphant Individuals 

Fig 3.8 A-B) Control morphant 48hpf and 72 hpf individuals, sox-10 
stained showing neural crest cell migration. C-D) MyoX morphant 48 
hpf  and 72 hpf individuals. Images shown are the bottom half of the 
embryos showing early craniofacial structure formation. 
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In addition to counting NCCs, visceral structures can be visualized starting from 

48 hpf. This allows us to put the NCC count numbers into the developmental context of 

structure formation. Control individuals begin to form craniofacial structures at 48hpf 

(Fig 3.8 A) while morphant individual lack any organized craniofacial patterning (Fig 3.8 

C).  These cell aggregations form the underlying patterns for craniofacial bone 

structures in zebrafish. By 72hpf, control individuals show little to no NCC migratory 

cells (Fig 3.8 D) as structuring patterning is heavily underway (Fig 3.8 B). Groups of 

cells can be found in morphant individuals which resembles the same structures found 

during alcian blue staining at 5dpf.  

 

In Situ Staining Shows Stunted NCC Migration in MyoX Mutants 

 

 In situ RNA hybridization (ISH) is a powerful tool in visualizing gene expression. 

By targeting genes expressed specifically in CNCCs, we can visualize their migration 

throughout the embryo. ISH was used to visualize neural crest cell migration in myoX 

mutant individuals. 41 siblings were stained with in situ hybridization using tfap2a and 

crestin riboprobes marking cranial neural crest cells (Fig 3.9 A-B). Heterozygous wild 

Fig. 3.9 A) In situ hybridization (tfap2) showing cranial neural crest cell migration in wild type zebrafish. B) In situ hybridization (tfap2) 
showing cranial neural crest cell migration in mutant zebrafish. C) 9 out of 41 (22%) total siblings exhibited the mutant phenotype. D) 
Migratory streams of neural crest cells in the tail of wild type individuals using in situ hybridization (crestin). E) Migratory streams of 
neural crest cells in the tail of mutant individuals using in situ hybridization (crestin). F) 9 out of 39 (23%) of the sibling population 
exhibit mutant phenotype. 
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type siblings exhibit wild 

type phenotypes while 

homozygous individuals 

show stunted neural crest 

cell migration as indicated 

by arrows (Fig 3.10 A-B). 9 

of the 41 siblings exhibited 

mutant phenotypes (22%, 

Fig 3.9 C). 39 mutant 

siblings were hybridized 

using the crestin gene as a 

marker (Fig 3.9 D-E). 

Migrating streams of 

neural crest cells can be 

seen in the tail of wild type individuals (Fig 3.9 D), indicated by arrows, while the same 

streams of cells are not present in mutant individuals (Fig 3.9 E). 9 out of 31 mutant F2 

siblings exhibit the mutant phenotype 

(23%, Fig 3.9 F). 

 

Wildtype NCC Counts Not Significantly 

Different From Mutant Siblings 

 

Cranial neural crest cell migration 

was visualized using immunohistochemical 

staining. Anti sox-10 anti-bodies were used 

to stain cranial neural crest cells at 

different stages of development in both 

wildtype and mutant individuals from the 

same clutch. Once IHC staining was 

completed, cells were imaged using a 

Zeiss LSM 710 confocal microscope and 

Fig 3.10 A-B) Wildtype  (top) and myoX mutant (bottom) 24 hpf individuals, sox-10 
stained showing neural crest cell migration. C-D) Wildtype (top) and MyoX mutant 
(bottom) 48 hpf individuals. E-F) Wildtype (top) and myoX mutant (bottom) 72 hpf 
individuals. 

Fig 3.12 A-B) Wild type 48hpf and 72 hpf individuals, sox-10 
stained showing neural crest cell migration. C-D) MyoX Mutant 
48 hpf  and 72 hpf individuals. Images shown are the bottom 
half of the embryos showing early craniofacial structure 
formation. 
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processed using Zeiss Zen 2011 Black 

Edition software. 24 hpf wildtype and 

mutant individuals did not display any 

significant difference in cranial neural crest 

cell counts (P= 0.53, df=5, t= 2.57, 

meanMUT=188.0 cells, meanWT=169.3 cells, 

SD=46.0, 10.6) (Fig 3.10 A-B, Fig 3.11). 48 

hpf wildtype and myoX mutant individuals 

also showed no significant difference in 

NCC counts (P= 0.74, df=7, t= 2.36, 

meanMUT=198.3 cells, meanWT=213.6 cells, 

SD=84.1, 34.1) (Fig 3.11 C-D, Fig 3.12). It follows that 72 hpf wildtype and myoX mutant 

individuals also displayed no significant difference in NCC counts (P= 0.1, df=8, t= 2.31, 

meanMUT=64.1 cells, meanWT=148.2 cells, SD=13.52, 31.64) (Fig 3.11 D-E, Fig 3.12).  

 

Early Craniofacial Structures Absent in MyoX Mutant Individuals 

 

Wildtype individuals begin to form craniofacial structures at 48hpf (Fig 3.12 A) while 

myoX mutant individual 

lack any organized 

craniofacial patterning at 

the same stage (Fig 3.12 

C).  These cell 

aggregations form the 

underlying patterns for 

craniofacial bone 

structures in zebrafish. By 

72hpf, wildtype individuals 

show little to no NCC 

migratory cells (Fig 3.12 

D) as craniofacial 

Fig 3.13 A/D) Control MO (top) and myoX muorphant (bottom) 24 hpf individuals, 
sox-10 stained showing neural crest cell migration. B/E) Control MO (top) and 
myoX morphant (bottom) 48 hpf individuals. C/F) Control MO (top) and myoX 
mophant (bottom) 72 hpf individuals. 
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structure patterning is heavily underway (Fig 3.12 B). Unlike the myoX morphant 

individuals, groups of cells are not present in myoX mutant individuals where these 

structures should be forming. This implies that NCC migratory pathways are much more 

obstructed in myoX mutant individuals than their morphant and wildtype counterparts.  

  

Rescuability of Exogenous MyoX RNA 

 

By reintroducing exogenous 

RNA into knockdown embryos, we 

hope to reverse myoX mutant and 

morphant phenotypes. This is also 

an effective method of accessing the 

effectiveness of the myoX 

knockdown, exogenous myoX RNA 

was co-injected into 2-8 cell stage 

wildtype zebrafish and phenotype 

was characterized in the same 

manner as previously described 

using mutant and morphant individuals. Prior to performing co-injections, over 

expression experiments were performed on 24, 48, and 72 hpf embryos (Fig 3.13. A-F). 

Morphological defects were documented in few (<5%) injected individuals at high 

concentrations of myoX RNA. NCC counts show no significant difference between 

uninjected control individuals and myoX RNA injected individuals at 24 and 72 hpf. 

However, 48 hpf myoX RNA injected individuals displayed significantly fewer NCC than 

the control individuals at the same developmental stage (Fig 3.14). When myoX RNA 

was co-injected with myoX MO, no significant change in NCC can be observed. Co-

injected individuals at all observed stages (24, 48, and 72hpf) were statistically the 

same as myoX MO individuals. Control individuals were displayed significantly fewer 

NCC than both injected groups in 24 and 48 hpf individuals. No rescue of NCC 

migratory inhibition was observed in any of the observed developmental stages. Ventral 

craniofacial structures were not observed in rescue individuals (Fig 3.15-16). 

Fig 3.14 Sox-10 stained individuals were counted using ImageJ image 
processing software. Students T test analys was performed. Only 48 hpf 

groups were significantly different. P24h= 0.2, P48h< 0.01, P72h=0.99. 
Bars indicate standard deviation. 
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Fig 3.16 Sox-10 stained individuals were counted using 
ImageJ image processing software. Students T test 
analys was performed. Only 48 hpf groups were 

significantly different. P24h= 0.2, P48h< 0.01, P72h=0.99. 
Bars indicate standard deviation. 

Fig 3.15 A,D,G) Control MO (top) and myoX muorphant (middle) and myoX 
MO+RNA (bottom) 24 hpf individuals, sox-10 stained showing neural crest cell 
migration. B,E, H) Control MO (top) and myoX morphant (middle) and myoX 
MO+RNA (bottom) 48 hpf individuals. C,F, I) Control MO (top) and myoX 
mophant (middle) and myoX MO+RNA (bottom) 72 hpf individuals. 
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CHAPTER 4 

 
DISCUSSION 

  

MyoX as a Downstream Responder to Intracellular Signaling Mechanisms 

 

 There are two major intracellular signaling pathways which regulate craniofacial 

development in zebrafish. The Hedgehog and Wnt signaling pathways transmit 

information to embryonic cells required for proper development (Cooper 2000). Different 

parts of the embryo have different concentrations of Hedgehog and Wnt signaling 

proteins in which cells respond to according to their cellular receptors (Ingham et al., 

2011). These signal transduction pathways are made of proteins that pass signals from 

outside of a cell through cell surface receptors to the inside of the cell. Both of these 

pathways end in activating transcription factors that are important for cranial neural 

crest cell specification and migration (Mohler, 1988). There have been several studies 

showing mutations within these signaling pathways lead to mutant craniofacial 

phenotypes similar to those seen in myoX mutant individuals.  

Hedgehog (Hh) is a family of secreted glycoproteins that play a central role in the 

patterning of a variety of tissues and organs, including CNS, somites, limbs, bones, 

skin, lungs and testes (Hammerschmidt et al., 1997; Murone et al., 1999). Several 

membrane and intracellular proteins are important for transducing the Hh signal in the 

target cells. Genetic screens in Drosophila have identified patched (ptc), smoothened 

(smo), fused (fu), cubitus interruptus (ci) as crucial components of the Hh signaling 

machinery (Lin and Matsui 2012). It is thought that Hh binds to the transmembrane 

protein  Ptc,  that  this  causes  dissociation  of  the  Ptc-Smo complex  at  the  

membrane,  and  that  the  free  Smo  protein initiates  intracellular  signaling  events  

including  activation  of Fused  protein  and  conversion  of  Ci  from  a  transcriptional 

repressor to an activator (Lin and Matsui 2012). Embryos containing mutations within 

the smo gene have expressed similar phenotypes to myoX morphant individuals. 

Smo mutants have a ventrally curved body, small head with severe craniofacial 

defects and no outgrowth from the pectoral fin buds (Chen et al., 2001). Smo mutant 

embryos at 120 hpf show smaller heads, posterior cyclopia, and absence of 
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cartilaginous jaw and brachial arches. In addition, a reduced cleithria and absence of 

pectoral fins (Chen et al., 2001). This phenotype holds many of the same characteristics 

found in myoX morphant individuals. MyoX morphant individuals also displayed a 

shrunken head and a ventrally curved body. In addition, myoX morphants displayed an 

almost complete absence of cartilaginous jaw structures and branchial arches much like 

smo mutant phenotypes. This suggests a possible link between the smoothened protein 

and downstream molecules involved in craniofacial development such as myoX. 

 The Wnt gene family encodes a class of secreted signaling molecules involved in 

several neural crest processes in various organisms from Drosophila to vertebrates 

(LaBonne and Bronner-Fraser, 1998). Moreover, neural crest cell induction, facial 

patterning and morphogenesis are disrupted when Wnt signaling pathway is impaired, 

resulting in craniofacial malformations invertebrates (Brugmann et al.,2007) Wnt ligands 

function by binding to Frizzled receptors and activating downstream signaling including 

canonical Wnt/β-catenin and non-canonical PCP pathways (Lewis et al., 2004; Tada et 

al., 2002). Variations in Wnt signaling have been associated with both syndromic and 

non-syndromic cleft lip and palate anomalies (Juriloff et al., 2006). Previous studies 

have shown that the Wnt/frizzled signaling receptors frzb and fzd7a are necessary for 

chondrocyte proliferation, morphologic change and medio lateral intercalation to 

mediate palate extension. Further, wnt9a, frzb and fzd7a are necessary for lower jaw 

formation. 

 Frzb and fzd7a mophant individuals produced smaller craniofacial structures 

grossly and narrow mouth openings. The proximal trabeculae form and converge at the 

midline, but fail to elongate and the palate does not form (Kamel et al., 2013). The 

chondrocytes in the leading edge of the trabeculae in frzb and fzd7a morphants appear 

dysmorphic and rounded and fail to adopt an organized intercalated pattern compared 

to wildtype individuals. In frzb and fzd7a morphants, the lower jaw is absent and 

undetected by Alcian blue cartilage staining (Kamel et al., 2013). Similarly, myoX 

morphant individuals form portions of the trabeculae of the neurocranium which also 

converges at the midline yet fails to form the palate. The lower jaw of myoX mutants is 

also completely absent, much like the phenotype seen in frzb and fzd7a morphants. 
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This suggests a possible connection between upstream wnt/frizzled signaling pathways 

and downstream motor protein activity. 

Many large scale craniofacial mutant screens have been performed in the past 

with several resulting phenotypes being similar in nature to the phenotype seen in this 

study (Neuhass et al. 1996; Schilling et al. 1996). For example, the lockjaw (allele 

ts213) mutation has a phenotype exhibiting a ventrally protruding jaw with restricted 

movements and reduced branchial arches. The lockjaw mutant phenotype is a result of 

a mutation in the tfap2 gene, which is expressed in migrating neural crest cells (Knight 

et al., 2003).The head and eyes remain slightly reduced and melanocytes are reduced 

throughout the body (Schilling et al. 1996). These results are similar to the phenotype 

seen in myoX mutant individuals which express a dwarfed head and eye regions along 

with a protruding jaw, indicating that myoX may have a similar role in craniofacial 

development. 

By staining for migrating CNCCs, it is apparent that specification is not impaired 

in the mutant populations yet cells are not able to migrate and form the proper 

craniofacial structures during development (Kimmel et al., 2002). CNCC specification 

occurs without any trouble yet is unable to form craniofacial structures due to migratory 

inhibition resulting from a truncated myoX motor protein. RNA in situ hybridization 

assays staining for Tfap2 (Hoffman et al., 2007) and Crestin (Luo et al., 2001), CNCC 

gene markers, indicate that CNCC cells are present in both wild type and mutant 

siblings but are unable to migrate to the craniofacial region properly in mutant 

individuals (Fig 3.9 A-B). The myoX mutation disrupts the expression of neural crest 

genes, much like what is seen using myoX MO in Xenopus (Nie et al., 2009). It is 

possible that the transcription factor tfap2 plays a key role in CNCC migration alongside 

myoX. I speculate that many other genes play critical roles in craniofacial development 

in conjuction with myoX however there is no known pathway established. 

 

MyoX as a Responder to Extracellular Cues 

  

In addition to intracellular signaling pathways, many genes expressed 

extracellularly must be present along with myoX for proper craniofacial development 
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(Spears and Svoboda 2005). Fgf signaling is inductive for neural crest formation 

(Monsoro-Burq et al, 2003, 2005), it also promotes the formation of chondrocyte lineage 

in the cranial neural crest (Monsoro-Burq et al, 2005). In advancing development, Fgf 

signaling is present in both the epithelia and mesenchyme and mediates the epithelial–

mesenchymal interaction involved in almost all structure development. Fgfr1 and Fgfr2 

are broadly expressed in the facial primordia (Bachler and Neubuser, 2001). Moreover, 

Fgf-dependent Erk activity has been reported in developing pharyngeal arches 

(Christen and Slack, 1999). In addition, it has recently been proposed that Fgf signals 

emanating from the neural tube might also influence neural crest development; 

specifically that Fgf8 from the isthmus might repress Hoxa2 expression in first arch 

crest, thereby specifying it to form first arch skeletal elements (Trainor et al., 2002). 

Previous studies have shown that the inhibition of Fgf signaling results in the 

absence of all pharyngeal and neurocranial cartilages (Walsh and Mason 2003). Using 

morpholino oligonucleotides to inhibit individual members of the family, it was shown 

that Fgf3 is required for the formation of all cartilage elements derived from pharyngeal 

arches 1-4. While inhibition of Fgf8 by itself had little to no effect on cartilage formation, 

inhibition of both Fgf3 and Fgf8 together resulted in an almost complete absence of 

cranial and pharyngeal cartilages (Walsh and Mason 2003). When using lower 

concentrations of the Fgf3mo, all cartilage derivatives of the first and second arches 

were present and identifiable but somewhat dysmorphic. Most notably, the ceratohyal 

elements projected posteriorly rather than anteriorly; however, this did not represent a 

reversal in second arch polarity as the midline basihyal elements still projected 

anteriorly (Walsh and Mason 2003). The fifth ceratobranchial cartilage, easily 

identifiable by its pharyngeal teeth, was present and apparently normal. However, the 

ceratobranchial elements derived from arches 1-4 were greatly reduced in size when 

compared with embryos injected with the control morpholino (Walsh and Mason 2003). 

The Fgf3/8mo phenotypes are comparable to the myoX mutant phenotype found 

in this study. Much like the Fgfmo phenotypes, myoX mutant individuals displayed 

developmental defects in both the ceratohyal and ceratobranchial arches. The angle 

formed in myoX mutant individuals was nearly twice as obtuse as those found in control 

individuals, much like the Fgfmo individuals. Ceratobrachial arches 1-4 are largely 
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missing in myoX mutant individuals however the tooth bearing fifth ceratobranchial arch 

is largely unaffected, much like Fgfmo individuals. Given the similarities in mutant 

phenotypes, I speculate that these genes are working together in similar signaling 

pathways necessary for fibroblast projections and ultimately cellular migration. Fgf is 

involved in extracellular signaling, possibly upstream of myoX activity. It is possible that 

both studies are showing the same signaling pathway being disrupted at different 

points, thus giving similar phenotypes. 

Additionally, it has been shown that extracellular retinoic acid (RA) signaling 

influences endodermal pouch development at different embryonic stages. It is 

understood that RA affects pharyngeal arch development because of the phenotypes 

observed in infants whose mothers were exposed to high levels of Vitamin A during 

pregnancy (de Die-Smulders et al., 1995). In addition, these defects can be 

phenocopied by treating pregnant experimental animals with vitamin A (a precursor of 

RA) or synthetic RA (Davis and Sadler, 1981; Scambler, 2000). Also, genetic disruption 

of the RA signaling pathway leads to defects in structures derived from pharyngeal 

arches 3–4 in mice and zebrafish (Matt et al., 2003; Niederreither et al., 2003). While 

extensive evidence exists implicating RA signaling in pharyngeal arch development, it is 

not as clear on which cells or tissues of the developing arches RA may act upon.  

In embryos treated with diethylaminobenzaldehyde (DEAB), a potent inhibitor of 

the enzyme retinaldehyde dehydrogenase (RALDH) that converts retinal to RA during 

gastrulation, the cartilages of the mandibular and hyoid arches are present but smaller 

in size and misshapen (Kopinke et al, 2006). Cartilages of the posterior arches (2-5) are 

absent. Even though neural crest cells are present in the posterior pharyngeal arches of 

embryos treated with DEAB post-gastrulation, they do not differentiate into cartilage. 

Cartilages derived from neural crest cells of the first and second pharyngeal arches are 

reduced but present in RA-depleted embryos, while cartilages of pharyngeal arch 3 are 

reduced and cartilages of arches 4–5 are absent (Rhinn and Dolle 2012). 

 Much like the previous example, the myoX mutant phenotype resembles that 

which was found in the DEAB treated individuals, specifically in the ceratobranchial 

arches. I found a reduction in the number of cells in mutant individuals as well as 

misshapen structures, much like those individuals treated with DEAB. A majority of the 
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posterior cartilage structures were absent in myoX mutant individuals. This pattern can 

also be found in RA inhibited individuals. By comparing the similarities between DEAB 

treated and myoX mutant individuals, I am suggesting that RA signaling may be 

upstream of MyoX and similar motor proteins responsible for filopodial protrusions and 

cell migration during development. 

 

MyoX in Filopodial Extensions 

 

 I have shown that there is a possible connection between both intracellular and 

extracellular signaling pathways, myoX, and craniofacial development. These signaling 

pathways are in place to activate myoX at the tips of filopodial extensions (Tokuo et al., 

2007). MyoX is a major actin binding protein that activates and regulates filopodial 

dynamics necessary for cell migration (Zhu et al., 2007). Recent studies have revealed 

that myoX has an important role in the elongation of filopodia (Berg and Cheney, 2002). 

The N-terminal domain of myoX functions as a motor domain, which is followed by a 

neck region. The predicted coiled-coil segment is present at the C-terminal side of the 

neck region (Berg et al., 2000). The C-terminal end of the molecule is the tail domain 

that was reported as a binding portion to the specific cargo molecules (Tokuo and 

Ikebe, 2004). Because myoX moves toward the tip of filopodia and transports the cargo 

molecules, the function of myoX was thought to simply be that of a cargo carrier. 

However, studies have shown that the motor activity of myoX is itself critical for the 

initiation of filopodia formation (Tokuo et al., 2007). 

Similar studies have been performed demonstrating that myoX is selectively 

expressed in premigratory and migrating neural crest cells in the early Xenopus embryo 

and that it plays a critical role in their migration, partly by influencing cell adhesive 

interactions (Nie and Bronner-Fraser 2009). Based on the craniofacial cartilage 

characterization results seen in Chapter 3, it is likely that the disruption of proper MyoX 

protein formation is inhibiting the filopodial-tip complex from forming. Without this 

formation, cell migration is virtually impossible within the embryo.  Although little is 

known about the role of MyoX in filopodial formation, one can speculate based on 
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previous work that without MyoX these filopodial protrusions will not form, thus inhibiting 

cellular migration through the developing embryo. 

MyoX has several distinguished cellular features as compared with other 

unconventional myosin family proteins. It is primarily localized at the tips of filopodia or 

the edges of lamellipodia and membrane ruffles (Berg and Cheney, 2002). It undergoes 

forward and rearward movements within filopodia and promotes filopodia formation, 

elongation and sensing, possibly by transporting actin-binding proteins and cell 

adhesion receptors to the leading edge of the cell (Tokuo and Ikebe, 2004). It is widely 

expressed and implicated in multiple cellular functions in different cell types, including 

netrin-1-induced neurite outgrowth and growth-cone guidance (Zhu et al., 2007), BMP6-

dependent filopodial migration and activation of BMP receptors (Pi et al., 2007), and 

migration of Xenopus cranial neural crest cells (Hwang et al., 2009; Nie et al., 2009).  

 MyoX has been show to regulate netrin receptors and functions in axonal path-

finding during neural development (Zhu et al., 2007). It has been shown to play an 

important role in filopodium formation by transportation of specific cargos within the cell 

(Liu et al., 2012). The nonsense mutation induced within our zebrafish model creates a 

premature stop codon which lies somewhere within the coil-coiled dimer structure of the 

MyoX motor protein. By truncating this region of the protein, we speculate that the 

FERM domains of the protein are not able to form properly, thus inhibiting any domain 

interactions between MyoX and its cargo/extracellular integrins. 

 During cell migration, the protrusive leading edge plays a key role in directional 

movement (Ridley et al., 2003). The leading edge of the migrating cells consists of the 

two types of actin cytoskeletal architectures, lamellipodia and filopodia. Filopodia is the 

structure protruding from the edge of the cells that plays an essential role in the wide 

range of cell motile activities, including cancer cell migration (Wicki et al., 2006) and 

neuronal path finding (Bentley and O'Connor, 1994). Although many studies have been 

conducted on the role of actin-binding proteins in the actin dynamics at membrane 

protrusion (Nakagawa et al., 2003; Biyasheva et al., 2004), little is known about the role 

of the actin-based motor protein myosin in filopodia formation. However, I speculate that 

myoX inhibition is keeping these filopodial extensions from forming, which is turn inhibits 
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forward cellular movement. More studies need to be conducted to investigate the nature 

of this complex. 

 

Future Directions 

 

To further investigate the effects of myoX knockdown, a sox-10 transgenic line of 

zebrafish can be obtained and used to live image migrating cells. By observing embryos 

at specific larval stages, we are simply taking a snapshot at very complex and dynamic 

processes. Real time NCC migration imaging would allow us to see the entire process, 

not just moments in time. MyoX is thought to be localized at filopodial tips (Mattila and 

Lappalainen, 2008), so live imagining would allow us to visualize these cellular 

extensions. By comparing cellular movements between treatment and control groups, 

cellular projections and CNCC migration can be linked with the MyoX motor protein 

(Kwak et al., 2013).  

 Across all three stage groups of myoX morphant individuals, the number of 

CNCC remained relatively constant, indicating that the lack of structures in these 

individuals isn’t due to premature cellular apoptosis, rather the inability to migrate into 

their proper cartilage structure locations. These findings coincide with previous work 

done in xenopus that CNCC migration and stream formation are abnormal after myoX 

knockdown events (Nie et al., 2009). To ensure that the cells are not migrating due to 

inhibition of myoX, specific cell death can be visualized through anti body staining. This 

will prove that the NCCs are specifying and staying alive but not migrating to their final 

location for differentiation, which is essential for proper craniofacial development. 

 Because CNCCs acquire much of their differentiation potential by inductive 

interactions during and after migration (Le Douarin et al., 2004), it is possible that myoX 

knockdown CNCCs are unable to receive such inductive cues, leading to a failure to 

differentiate properly. To conclusively say that the craniofacial structure deformities are 

a result of cellular migration inhibition and not the inability to differentiate, the transgenic 

line FliI/GFP can be implemented into this study. This line of transgenic zebrafish will 

allow us to visualize craniofacial chondrocyte differentiation.  

 MO specificity can be addressed in a variety of ways. One commonly used 

approach for phenotypes observed in the first 24–48 h of development is to reverse the 
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noted effects by a strategy called RNA “rescue” (Bill et al, 2009). MyoX rescue 

experiments were performed on myoX MO individuals and compared to control 

individuals to assess the effectiveness of the myoX morpholino. However, the 

phenotype was not rescued in any myoX MO+RNA individuals. There are many reasons 

to possibly explain this. This particular protein may be very time sensitive in its 

effectiveness to NCC migration, and missing that specific time frame by only a few 

hours may prevent the injected RNA from rescuing the phenotype. Furthermore, a MYC 

tag (a polypeptide protein tag derived from the c-myc gene product that can be added to 

a protein using recombinant DNA technology) was inserted into the RNA construct to 

allow easy identification of the expressed protein. MYC tag anti body staining was 

performed on rescue individuals but results were inconclusive to the presence of this 

tag. This staining will allow us to easily visualize if the exogenous RNA is being 

expressed as a protein. 

The cartilage structure phenotype seen in other mutants is very similar in myoX 

mutants but melanocyte quantification in myoX mutants has not been performed. 

CNCCs also differentiate into melanocytes which suggest that CNCCs are involved in 

this particular mutation as well. A valuable way of characterizing the myoX phenotype 

would be to quantify the melanocytes in developing zebraifsh (Schilling et al. 1996). 

This will generate data with regards to CNCC migration in myoX mutants. 

 In conclusion, this study has shown that in both morphant and mutant individuals, 

myoX is required for craniofacial development in zebrafish. MyoX morphant individuals 

display near total loss of craniofacial cartilage structures while maintaining CNCC 

integrity as seen in their IHC staining assays. Different stages of morphant individuals 

maintain the same relative number of cells indicating problems within the migratory 

pathways of these cells and that the loss of structures is not due to premature cell death 

but as a result of inhibited migration. Mutant individuals exhibited similar loss of 

craniofacial structures while maintaining cellular shape and size. These findings remain 

constant with previous studies involving in vitro cultures and cell dissociation–

reaggregation assays which suggested that myoX may be required for cell protrusion 

and cell–cell adhesion (Nie et al., 2009; Hwang et al., 2009). 
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