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ABSTRACT 

Ocean acidification is well-researched with respect to adult scleractinian corals, however 

information on whether adults and recruits of the same species respond similarly to this 

environmental stress is lacking. I investigated the responses to increased pCO2 of recruits of the 

temperate coral, Oculina arbuscula, whose adults are known to withstand high levels of pCO2 

with no depression in calcification (up to 1000 ppm CO2). I addressed the hypothesis that O. 

arbuscula recruit health is not affected by increased pCO2 by exposing small colonies (5-12mm 

diameter) to 475, 711, and 1270 ppm CO2 for 75 days. Calcification rates were monitored 

throughout the experiment, while mortality, respiration rates, photosynthetic rates, zooxanthella 

densities, and soluble protein were determined at the end. As predicted, higher pCO2 did not 

impact survival, zooxanthella densities, or soluble protein. In contrast, both calcification rates 

and photosynthesis:respiration (P:R) ratios tended to be lower at higher pCO2. These results 

suggest that there is a size-dependent response to pCO2 within O. arbuscula, with recruits being 

unable to keep up with the increased energetic cost of calcification that occurs at higher pCO2. 

With the mean pCO2 increasing approximately 2.4% each year in the South Atlantic Bight 

(SAB), within the next 30 years O. arbuscula recruits are predicted to experience seasonal 

depressions in calcification rate driven by the overlying natural fluctuations in oceanic pCO2, and 

within 50 years recruits are anticipated to exhibit year-round depressions in calcification rate. 
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CHAPTER 1 

LITERATURE REVIEW 

Ocean Carbonate Chemistry 

The world’s oceans moderate future climate change by absorbing large portions of the 

anthropogenically-derived carbon dioxide (CO2) emitted into the atmosphere through the burning 

of fossil fuels (Revelle 1957, Sabine et al. 2004, Orr et al. 2005). It is estimated that a third of 

anthropogenic CO2 emissions over the past two centuries is currently stored in the ocean, with 

the majority stored at depths <500 m in the North Atlantic Ocean (Feely et al. 2004, Sabine et al. 

2004). CO2 reacts with seawater resulting in an increase in hydrogen ion concentration [H+] in 

the ocean (Feely et al. 2004, Hofmann et al. 2010). This relationship is given by the equation: 

CO2(aq) + H2O ↔ H2CO3(aq) ↔ H+(aq) + HCO3-(aq)      (1) 

According to the Intergovernmental Panel on Climate Change (IPCC) 1992 scenario (IS92a), this 

process will decrease the pH of oceanic surface waters by 0.14 to 0.35 pH units by the year 2100 

(Metz et al. 2007).  

Decreased seawater pH has the potential to affect all marine life, but the most sensitive 

are calcifying species, such as corals, bryozoans, shelled mollusks, pteropods, and 

coccolithophores, that rely on the presence of calcium and carbonate (CO32-) to form their 

skeletons (Orr et al. 2005, Hofmann et al. 2008, Hofmann et al. 2010). In seawater, CO2 reacts 

with available carbonate, which further acidifies the water and leads to a depletion of carbonate. 

This relationship is given by the equation: 

CO2(aq) + H2O(aq) + CO32- ↔ 2HCO3-     (2) 

Carbonate is in limited supply in oceanic waters in the absence of added CO2, so the further 

conversion of usable carbonate to unusable bicarbonate (HCO2-) that results from CO2 emissions 
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has the potential to impede calcification in many species. Calcification is the accumulation of 

calcium in a tissue, usually the skeleton. For marine calcifiers, calcification occurs through a 

chemical reaction involving carbonate: 

Ca2+ + CO32- ↔ CaCO3       (3) 

Through this reaction marine calcifiers, such as scleractinian corals, can grow in length and girth. 

The ability of marine organisms to calcify is dependent on the saturation of aragonite or calcite 

(Ω), which is given by the equation: 

Ω(aragonite or calcite) = [Ca2+][CO32-]/K*sp              (4) 

where K*sp is the solubility product at the in situ conditions of temperature, salinity and pressure 

(Zeebe & Wolf-Gladrow 2001). Based on kinetic and thermodynamic principles, calcification is 

favored when Ω(aragonite or calcite)>1, and dissolution when Ω(aragonite or calcite)<1. The saturation of 

aragonite or calcite is positively correlated with pH, thus allowing pH to be used as an indicator 

of the calcium carbonate saturation state. Generally, the aragonite saturation state (Ωa) decreases 

with increasing depth and latitude due to higher hydrostatic pressure, lower temperatures, and 

build-up of CO2 from the lack of air-sea gas exchange (Jiang et al. 2015).  

Recent studies have found temporal and spatial variability in coastal pH and Ωa at fine 

geographic scales (Feely et al. 2008, Jiang et al. 2010, Wanninkhof et al. 2015).  For example, in 

the Southern California Bight there is seasonal upwelling of cold water rich in CO2 and dissolved 

inorganic carbon, but undersaturated with respect to aragonite (Feely et al. 2008). Similar 

fluctuations have been found in the South Atlantic Bight (SAB; Cape Hatteras, NC to Cape 

Canaveral, FL), but unlike the Southern California Bight these fluctuations are not controlled by 

seasonal upwelling (Xue et al. 2016). It is predicted that with a 2°C increase in sea-surface 

temperature and an increase in the atmospheric pCO2 to 800 ppm, the Ωa of the SAB will fall 
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considerably by the year 2100, as coastal waters are an important sink for anthropogenic CO2 

(Jiang et al. 2010). 

This evidence of a periodic influx of CO2 laden water in the SAB was found through the 

Ocean Monitoring Program at Gray’s Reef National Marine Sanctuary (GRNMS), a marine 

protected area located approximately 15 NM east of Sapelo Island, GA, USA. pCO2 at the 

surface and bottom (~19m deep) have been monitored at GRNMS since 2006. These data show 

regular temporal oscillations in pCO2, along with a linear increase over time (Xue et al. 2016, 

Fig. 1). The highest concentrations of pCO2, comparable to future predicted averages, are seen in 

the summer months, whereas the lowest are seen in the winter. Xue et al. (2016) evaluated the 

first two years of this long-term data set for the major processes which drive the fluctuations and 

found that temperature does have a part in driving the system, but river inputs, especially during 

the wet seasons, and biological respiration and production also had important influences on 

pCO2.  

Impact of Ocean Acidification on Corals 

 One of the earliest ocean acidification reviews to mention coral vulnerability to 

increasing seawater pCO2 noted a positive correlation between Ωa and coral presence (Orr et al. 

2005). This conclusion suggested that as the pCO2 of the oceans increases, corals could become 

scarcer. Over the past two decades, researchers have experimentally induced future ocean CO2 

conditions in the lab to quantify the exact response of corals to ocean acidification. Researchers 

warned of the detrimental effects of acidifying oceans, projecting dismal futures for coral reef 

ecosystems (Hoegh-Guldberg et al. 2007, Anthony et al. 2008, Doney et al. 2009, Hofmann et al. 

2010). Many studies started with tropical reef-building corals to assess the future state of coral 

reefs. One early study found Acropora cervicornis to have significantly depressed calcficiation 
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rate under high pCO2 conditions (Renegar & Riegl 2005). This research was followed by work 

on species such as Stylophora pistillata, Porites sp.(Krief et al. 2010), Porites lutea (Ohde & 

Hossain 2004), and Acropora eurystoma (Schneider & Erez 2006), that also found significant 

decreases in calcification under increased pCO2. However, as the list of coral species 

investigated continued to expand the story became more complex.  

One of the first studies to detect tolerance to pCO2 in a coral species investigated impacts 

on a temperate coral native to the western Atlantic: Oculina arbuscula (Ries et al. 2010). This 

study found that O. arbuscula did not show decreased calcification when exposed to pCO2 

predicted for 100 years in the future. Expanding on these findings, a research lab in Moorea has 

done extensive research to demonstrate the species-specificity of ocean acidification. 

Specifically, Comeau et al. (2014) compared the calcification of eight coral species when 

exposed to high pCO2. They classified each coral based on their morphology 

(mounding/branching), skeleton (perforate/imperforate), and calcification (fast/slow). Comeau et 

al. (2014) used those classifications to draw the conclusion that branching, imperforate, and slow 

basal calcifiers are more resistant to pCO2 than other corals. Other recent studies have found that 

neither Pocillopora acuta (Wall et al. 2017) nor Acropora digitifera (Takahashi & Kurihara 

2013) show significant depression of calcification when exposed to pCO2 levels expected in the 

year 2100. Both corals are branching, imperforate, slow basal calcifiers which strengthens the 

conclusions drawn by Comeau et al. (2014). The bottom line is that while some species may be 

in peril, others will persist. However, if the slow basal calcifiers are the ones to persist, as 

Comeau et al. (2014) suggested, recolonization and establishment will be a slow process.  

Calcification is often measured in studies gauging the impact of pCO2 on corals because 

it is the process that combines Ca2+ and CO32- in the basal layer of the tissue to create new 
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skeletal growth (Cai et al. 2016), and is integral to the success of a coral colony. However, 

understanding the impacts of pCO2 increases on coral extend well-beyond the process of 

calcification. Another measure of coral physiology commonly used in ocean acidification 

experiments is respiration rate (Edmunds 2012, Strahl et al. 2015). Respiration rate is an 

indicator of metabolic activity, and can be used to determine the energetic contribution of the 

coral’s symbiotic dinoflagellate, Symbiodinium sp., to the holobiont. These intracellular algal 

symbionts, commonly called zooxanthellae, provide coral with energy through photosynthesis.  

Light and dark respiration are used to calculate the photosynthesis to respiration (P:R) ratio, 

which estimates the net energy flow between the coral and zooxanthellae. P:R is formally 

defined as the ratio of gross zooxanthellae photosynthesis to coral respiration, corrected for coral 

biomass (McCloskey et al. 1978). Based on this definition, a coral colony is considered to be 

autotrophic if P:R>1 and heterotrophic if P:R<1. A P:R>1 implies the coral’s energy needs are 

exceeded by the zooxanthellar production through photosynthesis. While an autotrophic coral’s 

respiration may increase under stress, the zooxanthellar photosynthesis could be high enough to 

meet the increased energy demand. This complex relationship makes the presence of 

zooxanthellae imperative for the survival and growth of autotrophic corals. 

Despite their importance to coral health, loss of the intracellular symbionts can occur 

when conditions become unfavorable. This “bleaching” response is most commonly seen with 

thermal stress (Warner et al. 1996, Jones et al. 1998, Baker 2001), but has been recorded in 

response to other stressors such as ocean acidification (Anthony et al. 2008), low salinity 

(Kerswell & Jones 2003), and low food availability (Matterson 2012). While zooxanthellae do 

have a narrow pH tolerance, bleaching with respect to ocean acidification has only been recorded 

once (Anthony et al. 2008). The rarity of bleaching in ocean acidification experiments is most 
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likely due to the physiological regulation of intracellular pH (Cai et al. 2016). This regulation is 

believed to be through passive CO2 diffusion and maintaining low dissolved inorganic carbon in 

calcifying fluids, however, the authors acknowledge that additional studies are needed to 

elucidate a firm coral calcification mechanism.  

 Finally, tissue biomass can be used to glean information about coral health. The biomass 

of tissue may be impacted by ocean acidification as a result of altered metabolic demands or 

resource allocation. Several studies have investigated soluble protein, with all but one showing 

trends of suppressed soluble protein under high pCO2 (Krief et al. 2010, Horwitz & Fine 2014, 

Strahl et al. 2016, Wall et al. 2017). These findings suggest that ocean acidification can have 

multiple effects on coral physiology, from calcification to respiration to protein content.  

Biology of Oculina arbuscula and their recruits 

The SAB off the coast of Georgia, U.S.A. is characterized by expanses of sand 

interspersed with live-bottom reefs formed on rocky outcroppings. These ledges offer up to 2 m 

of vertical relief from the surrounding sand, are composed of sandstone and relic scallop shell 

ridges, and support a diverse assemblage of sponge, ascidian, bryozoan, coral, crustacean, 

anemone, and polychaete species (Kendall et al. 2005, Ruzicka & Gleason 2009, Freeman & 

Gleason 2010, Poirson 2014). Among the invertebrates colonizing these rocky outcrops is 

Oculina arbuscula, the most structurally complex, branching scleractinian coral found in the 

SAB.  

While adults of this species reach a maximum diameter of only 0.5 m, their bushy form 

provides habitat for small invertebrate and fish species (Miller 1995). Based on long-term 

research conducted on the diversity and abundance of benthic organisms on temperate live-

bottom reefs off coastal Georgia, O. arbuscula occupies up to 30% of the exposed rocky 
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substrate (Matterson 2012). Unlike tropical scleractinian corals, O. arbuscula’s symbiosis with 

zooxanthellae is facultative; therefore, individuals can vary widely in zooxanthella density 

(Szmant-Froelich & Pilson 1984, Schuhmacher & Zibrowius 1985, Miller 1995). 

Azooxanthellate colonies are common where light levels are low, suggesting that the symbiosis 

ends when it is no longer advantageous for both constituents (Miller 1995, Matterson 2012). 

Azooxenthellate colonies are also common among newly-settled recruits, as O. arbuscula do not 

have maternal transmission of zooxanthellae and need to acquire their symbionts from the water 

column (Babcock & Heyward 1986, Richmond & Hunter 1990). 

It is well documented that juvenile mortality is high in sessile marine invertebrates.  

Factors such as competition, predation, disease, and sedimentation are responsible for mortality 

rates of up to 90% in young benthic invertebrates due to their small size and high surface area to 

volume ratio (Goodbody 1963, Sebens 1983, Young & Chia 1984, Keough 1986, Davis 1987, 

Stoner 1990, Hurlbut 1991, Worcester 1994, Osman & Whitlatch 2004, Doropoulos et al. 2016). 

Recruits can mitigate mortality from these factors through selective placement on the substrata, 

i.e. seeking out crevices hidden from predators or areas that have high herbivory (Doropoulos et 

al. 2016). It is important to note that the authors did find trade-offs between factors such as 

growth, predation, and competition, and if a new stressor were to be introduced into the system, 

such as increased pCO2, these choices would be impacted. 

Recently, more effort has been focused on the response of coral recruits to ocean 

acidification, and decreased Ωa has been found to negatively impact the biomineralization of 

Porites astreoides (Albright & Langdon 2011, de Putron et al. 2011), Favia fragum (Cohen et al. 

2009, de Putron et al. 2011), Acropora millepora (Doropoulos et al. 2012) and Acropora 

spicifera (Foster et al. 2016) larvae upon settlement. Additionally, these studies have shown that 
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OA has the potential to not just affect biomineralization of coral recruits, but also depress 

metabolism (de Putron et al. 2011) and reduce settlement rates (Albright & Langdon 2011) when 

exposed to increased pCO2. Depressed metabolic and calcification rates inhibit the growth of 

coral recruits causing them to be at smaller and more vulnerable sizes longer.  

While studies investigating the effects of ocean acidification on coral recruits have 

become more common in recent years, there are still few species where more than one life stage 

have been addressed. In fact, there has only been one study which compared the skeletal 

mineralogy of both coral recruits and adult skeletons (Clode et al. 2011). This study found that 

recruit skeletons were composed of mainly aragonite, consistent with those of adults and 

concluded that recruits likely respond similarly to adults when it comes to increasing pCO2 

(Clode et al. 2011). In this study, I sought to decrease this gap of knowledge by investigating the 

physiological responses of O. arbuscula recruits to increased pCO2, and comparing those 

responses to the already known responses of the adult life-stage. These data are useful for 

determining if there is a differential response between recruits and adults, which has implications 

for predicting the stability of the species in the future.  
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CHAPTER 2 

PHYSIOLOGICAL IMPACTS OF OCEAN ACIDIFICATION ON 
RECRUITS OF THE TEMPERATE CORAL, OCULINA ARBUSCULA 

 
INTRODUCTION 

 Over the past two centuries the world’s oceans have absorbed ~28% of CO2 emissions, 

and will continue to do so until its holding capacity is reached (Sabine et al. 2004). The average 

open ocean pH is currently 8.1, but with the additional CO2 in seawater this value is projected to 

fall to 7.8 by the year 2100 (Metz et al. 2007, Hofmann et al. 2010). Excess CO2 in the water 

reacts with carbonate, one of the essential building blocks of skeleton for calcifying marine 

organisms, converting it to bicarbonate and rendering it unusable to calcifying organisms. 

Additionally, CO2 creates a more acidic environment, which causes dissolution of calcium 

carbonate skeletons in high concentrations.  

 One group of organisms that may be particularly vulnerable to ocean acidification is 

scleractinian corals, due to their production of aragonite skeleton (Oliver 1980, Cuif et al. 2003, 

Stolarski 2003). Early investigations into the effects of pCO2 on corals suggested that as pCO2 

increases and the aragonite saturation state (Ωa) decreases, the abundance of all coral species will 

decline (Orr et al. 2005, Hoegh-Guldberg et al. 2007, Hofmann et al. 2010). The explanation for 

this response was grounded in the inability of corals to cope with aragonite-poor environments, 

thus causing the corals to fall into net dissolution. However, as more investigations into the 

direct impacts of acidification on coral calcification were completed, it became clear that the 

response was species specific (Edmunds et al. 2012, Comeau et al. 2013, Comeau et al. 2014). 

For example, species such as Porites rus and Stylophora pistillata (Krief et al. 2010) have 

reduced calcification rates under high pCO2, while others, including massive Porites spp. 

(Edmunds et al. 2012) and Oculina arbuscula (Ries et al. 2010) see no change. These species-
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specific responses are believed to be due to differences in ecologically-relevant taxonomic 

‘functional groups’, such as basal calcification rate, gross morphology, and skeletal porosity. 

Slow growing, imperforate, branching corals are the most robust to ocean acidification,  while 

fast calcifiers are the most vulnerable (Comeau et al. 2014). 

 To date most studies have focused on the adult stage, rather than the vulnerable larval and 

recruit phases. It is well documented that juvenile mortality in sessile marine invertebrates is 

high, up to 90% (Goodbody 1963, Keough & Downes 1982, Young & Chia 1984, Stoner 1990, 

Worcester 1994, Doropoulos et al. 2016). This mortality rate can be due to biotic factors such as 

predation, competition, and disease (Goodbody 1963, Young & Chia 1984, Doropoulos et al. 

2016), and abiotic factors such as sedimentation (Young & Chia 1984, Gleason et al. in press). 

Several studies found that the biomineralization of coral recruits was affected by increased pCO2 

(Cohen et al. 2009, Albright & Langdon 2011, de Putron et al. 2011, Foster et al. 2016) and one 

linked depressed calcification with an increase in predation (Doropoulos et al. 2012). Rapid 

increase in size is imperative to the survival of coral recruits, and changes in biomineralization at 

an early life stage has the possibility to hamper that success. 

 A coral species of interest to Georgia coastal managers is Oculina arbuscula, the only 

habitat forming scleractinian off the coast of Georgia. This coral inhabits rocky ledges and 

artificial surfaces throughout the eastern US. At Gray’s Reef National Marine Sanctuary 

(GRNMS), located 17 NM off the coast of Sapelo Island, GA, O. arbuscula covers ~30% of the 

available ledge habitat (Gleason, unpub. data). The facultatively symbiotic O. arbuscula is 

known to be a relatively adaptable species, tolerating a broad range of temperature (4-30°C), 

light (1-100%) (Miller 1995), and, recently, pCO2 (400-900 ppm) (Ries et al. 2010). In 2010, 

Ries et al. found that adult calcification rates were only affected when exposed to a CO2 
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saturation state that favors dissolution of CaCO3 skeletons. This robustness with respect to pCO2 

is of particular importance for O. arbuscula due to seasonal fluctuations in pCO2, where 

concentrations reach predicted near-future averages (600-700 ppm) in the summer months (Fig. 

1).  

While O. arbuscula adults may be unaffected by the future acidification, it is unknown as 

to how the larval and recruit stages will respond. To obtain a better understanding of the ability 

of O. arbuscula to persist under current and future pCO2 conditions, I investigated the responses 

of recruits to ocean acidification. With seawater off the Georgia coast reaching near-future pCO2 

levels annually and recruitment rates appearing to be high (Gleason et al. in press), I 

hypothesized that O. arbuscula recruits possess physiological mechanisms to withstand the 

effects of increased pCO2. I addressed this hypothesis by exposing O. arbuscula recruits to 

current and near-future pCO2 levels in the lab for 75 days while monitoring physiological 

parameters related to coral health. I predicted that the physiological parameters would be similar 

across pCO2 treatments if this hypothesis were true.    

MATERIALS AND METHODS 

Coral Collection and Experimental Design 

 Coral samples were collected from exposed surfaces of three artificial reefs off the coast 

of Georgia, as O. arbuscula is known to recruit in highest densities on artificial surfaces 

(Gleason et al. in press). The first two sites are the main and stern decks of the “SS Addie Bagley 

Daniels” (31°36.207 N, 80°47.750 W and 31°36.260 N, 80°47.680 W, respectively), 17 m below 

sea level. The third is the vessel “Jane Yarn” (31°36114 N, 80°47.725 W), 18 m below sea level. 

In May 2017, a total of 144 recruits, defined in this study as individuals with a diameter between 

5 and 10 mm, were collected from the exposed surfaces of the three artificial reefs and 
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transported to Georgia Southern University in well aerated sea water. As O. arbuscula recruits 

may not assimilate zooxanthellae immediately upon settlement, coral color was not considered in 

collection, meaning that both colonies with high and low densities of zooxanthellae (i.e. brown 

to white) were collected. After a two-day temperature acclimation period to ~25°C, recruits were 

sorted first by size and then by color to be epoxied in pairs on pre-labeled acrylic squares. Total 

surface area of each coral pair was kept approximately equal among squares, and less pigmented 

corals were randomly dispersed among the squares to reduce bias related to differences in 

zooxanthellae density. 

For the 75-day experiment, 72 coral pairs were divided equally among nine aquaria. Each 

aquarium was filled with artificial seawater (Instant Ocean, 35 ppt). The total alkalinity (TA) was 

adjusted to ~2300 µM CaCO3 using 10% hydrochloric acid mixed in a large carboy over 36 

hours. The pH of the seawater was checked before adding it to the aquaria. Each aquarium was 

outfitted with a power filter, one airstone, a small circulation pump (60 gph), a 19” LED light 

and cover (Novia, 13W), and a PVC pedestal to bring the recruits as close to the light source as 

possible. The aquaria were subjected to a 12 hr light:12 hr dark cycle. Individuals were fed 

Artemia sp. nauplii ad libitum twice a week in small containers within each aquarium. After 

feedings, partial water changes (~15%) were done, and a soft toothbrush was used to clean the 

plexiglass squares.  

The Apex Aquarium Control System (Neptune, Inc., Fig. 2) was used to control 

temperature and pH. Each aquarium contained a pH and temperature probe, logging data every 5 

minutes. Temperature was regulated in each aquarium using a submersible heater (Aqueon 

Products). pH (used as a proxy for pCO2) was maintained in each aquarium by bubbling pure 

carbon dioxide for 5 seconds at a time when the pH rose above the set point. As pH probes do 
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not measure total pH, the pH was also determined spectrophotometrically once a week using m-

cresol purple (Riccoh Inc.)(Dickson et al. 2007). The spectrophotometric pH was used to adjust 

the value recorded by the probes to total pH.  

After a two-week acclimation period at ambient pH (~8.0), the pH of the six experimental 

aquaria were brought down to their respective set point, either 7.6 (high pCO2) or 7.8 (moderate 

pCO2), over a 24-hour period. The three control aquaria were maintained at a pH of 8.0.  These 

treatments were chosen to signify the current average pH (8.0), the current low pH (7.8), and a 

possible future low pH (7.6) experienced by O. arbuscula on the reef. TA was measured at the 

end of the experiment from preserved water samples according to SOP 3b (Dickson et al. 2007). 

Samples from each aquarium were taken three times a week at the same time each day and fixed 

with mercury (II) chloride, then analyzed off-site at the end of the experiment using an automatic 

seawater titrator (Apollo SciTech). pCO2 and aragonite saturation state were determined using 

the CO2SYS program, with temperature, pressure, salinity, TA, and pH measurements as inputs 

(Dickson et al. 2007). 

Coral Physiological Measures 

 The calcification rate of each coral pair was calculated as the percent-change in buoyant 

weight over time. Buoyant weight was measured initially and every 15 days to the nearest 0.1 mg 

using an electronic balance (Sartorius R200D). Each coral pair was weighed in a wide-mouth 

mason jar in their original seawater to avoid the stress of rapid change in water chemistry. 

Salinity (35 ppt) and temperature (25.5°C) were measured and adjusted prior to weighing to 

maintain the same seawater density throughout the experiment. The plexiglass plates were 

suspended approximately 4 cm below the surface of the water on a wire hook that was attached 

to the underhook of the balance. After being weighed each coral colony was visually inspected, 
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and any complete mortality was recorded. Mortality was defined in this study as a whole colony 

having little to no tissue cover, with no response to touch.  

Respiration measurements were initiated on day 76 and were completed over 3 days. Two 

coral pairs were randomly chosen from each aquarium to complete respiration measurements. 

Both light and dark respiration were measured on each coral pair, with light measurements 

beginning one hour after the lights turned on and dark measurements beginning two hours after 

the lights turned off. The start times were chosen to minimize residual effects of light history 

(Edmunds 2012). Each coral pair was placed in a plexiglass respiration chamber hooked up to a 

recirculation pump (total volume= 547 ml) and allowed 15 minutes of acclimation. The dissolved 

oxygen was recorded at the start of the thirty-minute measurement period (Oakton DO6+), and 

every three minutes thereafter. Once completed, the dissolved oxygen of the seawater in the 

empty chamber was recorded every minute for ten minutes to document background respiration 

rates. The light and dark respiration rates were then corrected based on the background levels to 

obtain net rates of photosynthesis and respiration (McCloskey et al. 1978).  

All 72 coral pairs were placed in a -20°C freezer at the end of the experiment. To 

standardize other measurements, surface area of each coral pair was quantified as the mean 

weight for aluminum foil that was carefully molded to the tissue surface three consecutive times 

(Marsh 1970). Thirty, 1 cm2 pieces of aluminum foil were weighed and the mean of these 

measures was used to convert individual aluminum foil weights to surface area. Each recruit was 

subsequently crushed and homogenized with a mortar and pestle in DI water. The slurry was 

centrifuged at ~5000 rpm in a 50 mL tube for 7 minutes, and the supernatant was decanted, 

lyophilized to isolate the tissue, and stored at -20°C. The pellet was resuspended in 30 mL DI 

water, and divided equally between two centrifuge tubes. One of these tubes was used to 
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quantify chlorophyll and soluble protein concentrations, and the other for estimates of 

zooxanthella densities.  

Measures of zooxanthella density proceeded by initially decalcifying samples at 4ºC 

using 5 ml of 10% HCl for 24 hours, or until no bubbles were produced upon the addition of 

more acid.  Fully decalcified samples were centrifuged for 7 minutes at ~5000 rpm, and the 

pellet was resuspended in 15 mL DI water. Samples were homogenized with a tissue grinder and 

stored at -20°C until they were analyzed for zooxanthella densities on a hemocytometer (n=3 

replicates per aliquot), expressed as cells cm-2 of coral surface area. 

In many tropical scleractinian corals individual zooxanthella cells can undergo seasonal 

fluctuations in chlorophyll concentrations (Fitt et al. 2000). To determine if differences in 

chlorophyll concentrations among recruits was due to the number of zooxanthellae or the 

chlorophyll concentration within zooxanthella cells, chlorophyll a concentration analysis was 

carried out. The aliquots set aside for zooxanthellae counts were centrifuged for 7 minutes at 

~5,000 rpm, decanting the supernatant, and performing two 24-hour chlorophyll a extractions on 

the pellet in the dark at 4°C using 20 ml 100% HPLC grade acetone. Following the second 

extraction, the two supernatants were combined and the absorbance at 630 and 663 nm was 

determined on a spectrophotometer (Shimadzu UV2600). Concentrations of chlorophyll a, 

expressed as µg cm-2 of coral surface area, were calculated using the equations in Jefferey and 

Humphrey (1975). The number of extractions required to remove the chlorophyll was 

determined by carrying out consecutive 20 mL extractions over a 3 day period. Approximately 

97% of the chlorophyll was extracted in the first two days, while the third extraction resulted in 

absorbance values that were at the sensitivity limits of the spectrophotometer.  
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The pellet remaining after extraction of chlorophyll and the corresponding lyophilized 

tissue were combined and processed for soluble protein. Soluble protein is a common proxy for 

biomass used in scleractinian corals, to achieve an index of stress. (Krief et al. 2010, Strahl et al. 

2015, Wall et al. 2017). Both the pellet and the lyophilized tissue were resuspended in 3 ml 1N 

NaOH, vortexed for 30 seconds, and incubated in a 90°C water bath for 1 hr to dissolve protein. 

Upon dissolution, samples were centrifuged for 7 minutes and the supernatants were decanted, 

combining the supernatants of the pellet and the corresponding lyophilized tissue. A portion of 

the combined samples were then diluted with diH2O to a concentration of 0.05 N NaOH in 1.5 

ml microcentrifuge tubes. Protein concentrations were estimated using the Bradford technique 

(Bradford 1976), whereby 160 µl of each sample was combined with 40 µl diluted dye reagent 

(Bio Rad Inc.) in a 96-well plate and incubated for 10 min at 25°C. Protein standards in the range 

of 0-85 µg/ml were also prepared using bovine gamma globulin (Bio Rad Inc.) and incubated as 

above. Blanks were prepared by combining 160 µl of 0.05 N sodium hydroxide and 40 µl of dye 

reagent. Absorbance was measured at 595 nm and converted to soluble protein concentration 

based on the standard curve created with bovine gamma globulin. 

Statistical Analyses 

TA, pH, and temperature were analyzed on 14 of the 75 days, approximately once a 

week. These three seawater parameters were then used to calculate pCO2 for each date, thus, any 

change in one of the three parameters would cause a shift in pCO2.  

Temperature, pH, TA, pCO2 and buoyant weight were measured over time while 

calcification, respiration, photosynthesis, P:R, zooxanthellae density, and protein concentrations 

were quantified at the end of the experiment. All variables were analyzed for normality and 

equality of variance using the Shapiro Wilk W and Levene tests, respectively. Data that failed to 
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meet statistical assumptions were either log +1 or square root transformed to meet normality 

assumptions and reduce heterogeneity of variance. To test for differences in temperature, pH, 

TA, and pCO2 among treatments over time, I used a repeated measures ANOVA. To test for 

differences in calcification, chlorophyll a concentration, zooxanthellae density, and soluble 

protein within and among treatments, I used a one-way nested ANOVA. Regression analysis was 

employed to investigate the relationship between calcification and zooxanthellae density, and 

also the relationship between chlorophyll a concentration and zooxanthellae density. Mortality 

was quantified as the number of individual colonies dead in each aquarium and differences in  

mortality among treatments were evaluated with a chi square test of independence. 

As the within treatment sample sizes for respiration, photosynthesis, and P:R were 

insufficient for nesting (n = 2), coral pairs were treated as independent replicates and the means 

of respiration, photosynthesis, and P:R among treatments were compared with a one-way 

ANOVA.  

RESULTS 

Good separation of pH was maintained between treatments (Fig. 3a). As expected, pH 

and pCO2 were significantly different among treatments, while temperature and TA were not 

(Table 1). TA was also similar among aquaria within treatments, but pH, pCO2, and temperature 

were all significantly different within treatments (Table 1). The latter result is likely an artifact of 

the large sample sizes greatly reducing the variance (Table 2). Temperature and pH remained 

constant over time however, TA, and as a result pCO2, both declined significantly over time 

(Table 1, Fig. 3). Further evaluation revealed that this decline was due to a change in the TA of 

the last batch of salt mix that was used for the experiment. However, while the TA level does 

fall, it was still well-within the range needed for coral calcification.  
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Coral Physiological Measures  

Corals appeared healthy throughout the experiment, as evidenced by extended polyps and 

tentacles throughout the day, consistent with individuals observed on reefs off shore. Several 

aquaria experienced a cyanobacteria bloom during the experiment, but the bloom did not seem to 

affect the health of O. arbuscula recruits as the tentacles remained extended, partial mortality did 

not increase, and calcification rates were unchanged. Some partial recruit mortality occurred in 

all treatments and aquaria, but this was not extensive with only one or two polyps dying in each 

aquarium.  

Complete mortality of coral recruits in each treatment was low, with the highest instance 

being 4 out of 16 colonies in one aquarium. Two coral pairs in the highest pCO2 treatment did 

not survive the experiment, while any remaining mortality affected only one colony in a pair. 

Total mortality was only 7.6% across all treatments and independent of pCO2 treatment (Fig. 4, 

χ2 = 2.478, p = 0.2897).  

All coral pairs exhibited positive calcification rates over the 75-day experiment (Fig. 4). 

Overall, no significant differences in calcification rates were detected among aquaria within 

treatments or between treatments, however, there was a trend (p = 0.05) for lower calcification 

rates with higher pCO2 exposure (Table 3, Fig. 5). The highest pCO2 of 1261 ppm depressed 

calcification rates by ~20% when compared to the lowest pCO2 of 475 ppm (Fig. 5). When 

calcification rates for coral pairs exposed to different pCO2 treatments showed a consistent 

pattern of divergence throughout the 75 day experiment (Fig. 6). These differences in 

calcification rates were not attributable to dissimilarities in zooxanthella densities because there 

was no significant relationship between these two variables (Fig. 7, R2 = 0.0383, p = 0.1021).  
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At the end of the 75-day experiment, zooxanthellae densities in recruit pairs ranged from 

0 to 3026 cm-2. No significant differences in zooxanthellae density were detected within or 

among treatments (Table 3, Fig. 10). As individual zooxanthella cells can vary their chlorophyll 

concentrations, the relationship between chlorophyll a concentration and zooxanthellae density 

was investigated (Fitt et al. 2001). Chlorophyll a concentrations are dependent on zooxanthella 

densities, however the relationship is not strong (Fig. 9, R2 = 0.1785, p = 0.0003) and chlorophyll 

a concentrations did not differ significantly within or among treatments (Table 3, Fig. 8). 

Likewise, soluble protein concentrations varied widely (14.68 to 116.39 µg cm-2), with no 

significant differences either within or among treatments (Table 3, Fig. 11). 

Respiration and photosynthesis were quantified at the end of the experiment for two coral 

pairs per aquarium, six per pCO2 treatment. Respiration and photosynthesis were both similar 

among treatments (Table 4, Fig. 12). To evaluate the ability of the zooxanthellae to meet the 

metabolic needs of the coral recruits the ratio between photosynthesis and respiration was 

calculated for each coral pair. This P:R ratio ranged from 0.37 to 2.62, with mean P:R depressed 

60% by high pCO2 relative to the ambient treatment (Fig. 12).  Significant differences in P:R 

were detected between CO2 treatments (Table 4). A Tukey-Kramer a posteriori test showed that 

P:R in the 1261 ppm treatment was significantly lower than in the 475 ppm treatment (p < 0.05), 

while the 711 ppm treatment was not significantly different from either the high or low pCO2 

treatments (Fig. 12). 

DISCUSSION 

 This study explored how O. arbuscula recruits respond physiologically to several 

concentrations of dissolved CO2, to determine if recruit function and survival is jeopardized 

under high pCO2. Based on their existence in the naturally fluctuating pCO2 environment of the 



27 
 

 
 

SAB, I hypothesized that O. arbuscula recruits possess physiological mechanisms to withstand 

the effects of increased pCO2 and predicted that all seven physiological parameters measured 

would be similar among treatments. Oculina arbuscula recruits subjected to three pCO2 levels in 

the laboratory for 75 days demonstrated a trend for depressed calcification with increasing pCO2 

and a negative relationship between P:R and pCO2, while mortality, respiration, photosynthesis, 

zooxanthellae density, chlorophyll a, and soluble protein were all similar among treatments. 

These results demonstrate that the health of O. arbuscula recruits is affected by ocean 

acidification, but only with respect to calcification rate and P:R ratio.  

This study found that higher pCO2 causes a significant reduction in P:R, with the mean 

P:R under 1 in the highest pCO2 treatment. While neither photosynthesis nor respiration alone 

were found to be significantly different among pCO2 treatments, these parameters covaried in a 

manner that resulted in the inverse relationship between P:R ratio and pCO2. This result was 

interesting because it was not consistent with previous studies on corals. A meta-analysis of 

eleven studies revealed that increased pCO2 had no discernable effect on photosynthesis 

(Kroeker et al. 2013), and further evidence showed that the response of coral respiration to pCO2 

was equivocal. For example, there were no effects of increased pCO2 on dark respiration of 

Acropora eurystoma (Schneider & Erez 2006) and A. formosa, while there was a decrease in 

dark respiration for massive Porites spp. (Edmunds 2012), A. millepora (Kaniewska et al. 2012), 

and larvae of P. astreoides (Albright & Langdon 2011).  

A P:R<1 signifies the zooxanthellae are unable to meet the metabolic needs of the coral 

(McCloskey et al. 1978). This situation is commonly seen in tropical corals bleached due to 

temperature stress, and can result in the death of the colony if the stress is not abated (Fitt et al. 

2000, Baker et al. 2008, Lesser 2011). However, P:R<1 is also seen in corals which are 
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azooxanthellate or in facultatively symbiotic coral species occurring in environmental conditions 

unfavorable to the zooxanthellae (Miller 1995). Facultative symbiosis means that the coral can 

occur naturally without zooxanthellae as an energy source, relying on heterotrophy (Szmant-

Froelich & Pilson 1984, Schuhmacher & Zibrowius 1985, Miller 1995). Facultative symbiosis 

may explain the large variation in zooxanthella density (0-3000 cells/cm2) among the recruits in 

the study in addition to the drastic differences in zooxanthella density observed in tropical corals 

(106 cells/cm2, Fitt et al. 2000) relative to those of O. arbuscula (103 cells/cm2, present study). 

While O. arbuscula is able to survive for long periods of time with a P:R<1, this condition has 

been shown to negatively impact calcification rates. Miller (1995) conducted extensive 

laboratory and field studies demonstrating that colonies of O. arbuscula possessing lower 

zooxanthella densities (assumed to have lower P:R ratios) exhibit significantly lower 

calcification rates. As I found calcification rate to be independent of zooxanthellae density, these 

two studies seem to be in direct contradiction. There is the possibility that the added pCO2 stress 

is overwhelming the effect of zooxanthella density on calcification, however, further 

investigation is needed to parse out the effects.  

Calcification rates for adult O. arbuscula were not affected by pCO2 concentrations 

similar to those used here, with mean changes in weight per day across the three treatments of 

0.185-0.197 % (Ries et al. 2010). These calcifications rates are similar to those documented for 

the recruits exposed to 475 and 710 ppm CO2, but not for the recruits exposed to 1261 ppm CO2. 

These results suggest that the response of O. arbuscula to increasing pCO2 is size-dependent 

when it comes to calcification rate. This finding is similar to that of Edmunds and Burgess 

(2016), who found that adult Pocillopora verrucosa show depressed calcification rates with 

decreased colony size when exposed to increased pCO2. While all P. verrucosa individuals in the 



29 
 

 
 

Edmunds and Burgess (2016) study were taken from adult colonies, their results provide further 

evidence of a size-dependent calcification response to higher pCO2.  

While the trend of decreased calcification rate with increased pCO2 I found was not 

significant, this was likely due to the small sample size (n=3 aquaria). Analyses for the 

calcification measurements confirmed that the power was only 0.57 and retrospective power 

analyses indicated that doubling the sample size would have increased the power to an 

acceptable range (>0.8), reducing the probability of a type II error. Additionally, given the 

calcification trajectories in all three treatments, the available evidence suggested that if the 

experiment had been run for a longer period of time the skeletal weights of the recruits would 

have continued to diverge (Fig. 6). As environmental monitoring has shown, O. arbuscula 

recruits in the SAB are seasonally exposed to increased pCO2 for 90 or more days each year 

(Xue et al. 2016, Fig. 1), thus it would be ecologically relevant to increase the exposure time to 

90+ days in future experiments.  

The increase in skeletal weight observed over time in all three treatments provided no 

evidence of an ability of O. arbuscula to acclimate to higher pCO2 over 75 days. The skeletal 

weight curve of the highest pCO2 treatment never converges with the control treatment. This 

result shows that O. arbuscula recruits exhibit a chronic depression in calcification with no 

apparent acclimation, which could be classified as disrupted negative feedback (Romero 2004). 

The acute response elicited by O. arbuscula recruits in the increased pCO2 became the disrupted 

baseline, causing the recruits to continue to have lower calcification rates. Calcification is a 

highly regulated process, with the coral maintaining a high pH in the calcification fluid right 

above the skeleton through H+-pumping (Cai et al. 2016). Under elevated pCO2 conditions, H+ 

removal is increasingly difficult, which increases the energetic cost of calcification (Cai et al. 
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2016). The increased energetic cost of calcification coupled with the size difference between 

recruits and adults may explain why adult O. arbuscula are able to calcify at normal levels under 

increased pCO2 (Ries et al. 2010) while recruits are not. The explanation for this size-dependent 

response rests in the idea that increasing pCO2 exerts a cost and larger colonies can share the ost 

over a larger surface area and greater number of polyps (Edmunds & Burgess 2016). Future 

research should explore this size-dependent response in O. arbuscula and identify the “pCO2-

size-escape threshold”.  

The size-dependent differences in calcification rates observed in recruit (this study) 

versus adult (Ries et al. 2010) O. arbuscula contrasts with the findings of Clode et al. (2010), 

who concluded that recruit and adult stages of all scleractinian coral species should respond 

similarly to acidifying oceans. The conclusions of Clode et al. (2010) were based solely on the 

similarity in skeletal mineralogy between recruits of Acropora millepora and the general 

composition of adult scleractinian coral skeletons. In contrast, studies on recruits of other 

scleractinian species with respect to increased pCO2 found depressed calcification (Cohen et al. 

2009, Albright & Langdon 2011, de Putron et al. 2011, Doropoulos et al. 2012), several also 

finding skeletal deformities (Foster et al. 2016) and decreased settlement rates (Albright & 

Langdon 2011, Allen et al. 2017).  

These depressions in calcification seen in coral recruits, while sublethal in isolation, have 

been shown to increase the chance of predation up to ~60% depending on the fish species 

(Doropoulos et al. 2012). The higher depredation rates observed under increased pCO2 can be 

attributed to the smaller diameter of the recruit and the weaker skeletal structure due to the 

depressed calcification (Doropoulos et al. 2012). The conclusion that grazer predation on corals 

is enhanced in high pCO2 conditions follows the principles of size-escape theory (Paine 1976, 
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Gosselin & Qian 1997), and the longer O. arbuscula recruits remain below the size threshold, the 

greater the chance they have to be depredated. Consequently, O. arbuscula recruits in the SAB 

(South Atlantic Bight) which settle from May-August will have a greater chance of being 

depredated by predators such as the urchins Arbacia punctulata and Lytechinus variegatus, and 

several species of generalist fishes (e.g., Halichoeres bivittatus and Serranus subligarius) 

(Gleason et al. in press).  

While predation is one contributing factor of mortality at Gray’s Reef, two other 

prevalent factors which coral recruits must overcome to survive to the next life-stage are 

sedimentation and competition. It is hypothesized that sedimentation is the largest contributor to 

recruit mortality (Gleason et al. in press), as a negative relationship between survival of O, 

arbuscula recruits <40mm in diameter and sedimentation rates was detected (Divine 2011). Once 

the coral recruits have an upright, branching morphology, they are less likely to suffer mortality 

than recruits that are encrusted (Divine 2011). For O. arbuscula recruits under increased pCO2, 

their depressed calcification rates will leave them vulnerable to the threat of sedimentation 

longer than if they were able to grow at a normal pace. Lastly, coral recruits must compete with 

other sessile invertebrates for space, making rapid growth imperative to survival (Keough & 

Downes 1982, Branch 1984, Gosselin & Qian 1997). Thus, decreased calcification and P:R ratio 

will result in O. arbuscula recruits being outcompeted by their neighbors.  

Competition, sedimentation, and predation will all have a greater negative impact on the 

survival and growth of O. arbuscula recruits in the presence of increased pCO2. In the SAB, 

seasonal fluctuations result in summer pCO2 as high as 600 ppm, which is close to ocean 

averages predicted for 50-100 years in the future (Metz et al. 2007). This means that in the 

summer months O. arbuscula recruits likely exhibit reduced calcification rates and remain at a 
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smaller size for a longer period of time. This impact on the calcification rate of these coral 

recruits will lead to more mortality not from the pCO2 itself, but from competition, 

sedimentation, predation, and other such factors that impact all sessile invertebrate recruits 

(Gosselin & Qian 1997, Doropoulos et al. 2016).  

Most tropical corals show seasonal reproduction and recruitment (reviewed in Gleason 

and Hofmann 2011), however, O. arbuscula recruits at low levels throughout the year (Gleason 

et al. in press). Year-round recruitment means that larvae will be settling during the more acidic 

summer months and growing at a depressed rate until the pCO2 begins to decrease around 

September. Recruits which settle as the pCO2 is changing, around October and November, will 

have the advantage of the most time spent outside of the increased pCO2 stress. Interestingly, we 

already see a spike in recruitment during those months (Gleason et al. in press), which further 

suggests that these months are the optimal time for recruitment.  

In the SAB, seasonal fluctuations in pCO2 present an interesting system in which all 

organisms, including O. arbuscula, need to cope for months at a time with pCO2 levels not 

predicted to occur for 50-100 years in the future. My results suggest that O. arbuscula recruits in 

the SAB will be susceptible to depressions in calcification rate and autotrophic energy 

availability as the average pCO2 continues to increase. With the average pCO2 increasing 2.4% 

each year, if nothing changes it is possible that in 30 years the pCO2 will reach levels >1200 ppm 

in the summer, depressing the calcification rate of recruits during those months. Not much 

further into the future O. arbuscula may face year-round depressions in calcification rate. While 

currently the populations of O. arbuscula are not seeing detrimental levels of pCO2, they very 

well could be in the near future. As the average ocean pCO2 increases, O. arbuscula recruits will 

have depressed calcification in the summer and we may see increased recruit mortality which 
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could lead to a reduction in abundance. However, based on the findings of Ries et al. (2010), that 

adults do not have depressed calcification at these high future levels of pCO2, we know that 

adults will continue to survive in the foreseeable future, and those coral recruits that surpass the 

pCO2-size-escape threshold will as well. 
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TABLES AND FIGURES 

Table 1. Repeated measures ANOVA results of time and pCO2 treatment for four water quality 

variables. N=3 aquaria for each of the three pCO2 treatments: 475, 711, and 1261 ppm pCO2. 

Variable F DF p 

Temperature    
 Among Treatments 0.05 2,6 0.96 
 Within Treatments 2379.26 6,131 <0.0001* 
 Day 0.86 1,131 0.36 
 Among*Day 0.23 2,131 0.79 

pH    
 Among Treatments 266.29 2,6 <0.0001* 
 Within Treatments 6.46 6,131 <0.0001* 
 Day 14.26 1,131 0.0002* 
 Among* Day 0.91 2,131 0.4049 

Total Alkalinity    
 Among Treatments 1.11 2,6 0.39 
 Within Treatments 1.76 6,131 0.11 
 Day 111.95 1,131 <0.0001* 
 Among* Day 1.31 2,131 0.27 

pCO2    
 Among Treatments 307.96 2,6 <0.0001* 
 Within Treatments 10.75 6,131 <0.0001* 
 Day 108.59 1,131 <0.0001* 
 Among* Day 0.68 2,131 0.51 
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Table 2. Summary statistics (mean±SE) of water quality parameters for three pCO2 treatments 

over the 75-day experimental period. Three aquaria are nested within each treatment for each 

variable. 

 pCO2 Treatment 

 1261 ppm 710 ppm 475 ppm 

Temperature 25.59±0.003 25.74±0.003 25.98±0.003 

25.89±0.003 26.01±0.003 25.67±0.003 

25.81±0.003 25.65±0.003 25.63±0.003 

Total pH 7.59±0.01 7.79±0.01 7.95±0.01 

7.55±0.01 7.78±0.01 7.97±0.01 

7.56±0.01 7.83±0.01 7.98±0.01 

Total Alkalinity 2148.57±43.06 20.82.27±44.47 2124.30±43.06 

2196.21±43.06 2142.63±43.06 2069.89±43.06 

2127.05±43.06 2103.92±43.06 2178.96±43.06 

pCO2 1206.77±17.02 700.27±17.58 462.98±17.02 

1350.66±17.02 729.61±17.02 459.41±17.02 

1249.84±17.02 701.23±17.02 502.21±17.02 
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Table 3. Nested ANOVA results of pCO2 treatment for physiological measures of O. arbuscula 

recruit pairs. N=8 within each aquarium, and n=3 aquaria for each of the three pCO2 treatments: 

475, 711, and 1261 ppm pCO2. 

Variable F DF p 

Calcification    
 Among 4.85 2,6 0.05 

 Within 0.61 6,62 0.72 
Chlorophyll a Concentration     

 Among 0.51 2,6 0.62 
 Within 0.78 6,60 0.59 

Zooxanthellae Density    
 Among 1.5 2,6 0.3 

 Within 1.04 6,60 0.41 

Soluble Protein    
 Among 0.28 2,6 0.76 

 Within 0.79 6,60 0.58 
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Table 4. One-way ANOVA for respiration and photosynthesis measures of O. arbuscula recruit 

pairs maintained at three pCO2 levels: 475, 711, and 1261 ppm pCO2. Two coral pairs were 

analyzed from each aquarium, but each pair was treated as an independent replicate for data 

analysis. Thus, n=6 for all treatments. 

Variable F DF p 

Respiration Rates 0.54 2,15 0.59 

Photosynthetic Rates 0.69 2,15 0.52 

Photosynthesis:Respiration 5.01 2,15 0.022* 
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Fig. 1. Seawater and air pCO2 at Gray’s Reef National Marine Sanctuary from 2006-2016. 

Seawater measurements are in blue, and air are in red. There is a linear increase in seawater 

pCO2 apparent, along with the seasonal oscillations. Data were obtained from Dr. Scott Noakes, 

as part of an international CO2 monitoring program. 
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Fig. 2. Schematic of the aquarium control system set-up. The nine aquaria are at the bottom of 

the page, under the PM1 modules which record the pH and temperature. The base unit is 

connected to the internet via wifi and accessed through an external computer. The base unit, 

energy bars, PM1 modules, and probes were all supplied by Neptune, the solenoid valves were 

manufactured by Milwaukee Instruments, and the heaters were manufactured by Aqueon.   
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Fig. 3. Mean (±SE) of three water chemistry variables, a) total pH, b) TA, and c) pCO2 of 

ambient (475 ppm), moderate (710 ppm) and high (1261 ppm) pCO2 treatments over the 75-day 

experimental period. The values graphed are approximately every week, chosen from the 14 days 

of TA data analyzed. A decline in TA over the last 35 days, illustrated in graph (b), was due to 

changes in the chemical composition of the salt mix used.  
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Fig. 4. Mortality of O. arbuscula recruits at ambient (475 ppm), moderate (710 ppm) and high 

(1261 ppm) pCO2 treatments over 75 days. There were no differences between treatments. N = 

48 in all treatments, with each colony treated as an independent replicate.   
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Fig. 5. Mean (±SE) calcification rates for O. arbuscula recruit pairs maintained at ambient (475 

ppm), moderate (710 ppm) and high (1261 ppm) pCO2 for 75 days. Calcification rates were not 

significantly different from each other, but there was a trend for depressed calcification with 

increased pCO2. N=3 aquaria for each treatment, with 8 coral pairs in each aquarium. Aquaria 

within treatments were not significantly different from each other.  
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Fig. 6. Mean (±SE) calcification of O. arbuscula recruit pairs at ambient (475 ppm), moderate 

(710 ppm) and high (1261 ppm) pCO2 treatments over a 75-day period. N=3 aquaria for all 

treatments.  
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Fig. 7. The relationship between zooxanthella density and recruit calcification rate. Calcification 

rate was independent of zooxanthella densities (n=71; y=0.66+0.0018x; R2=0.038; p=0.1021). 
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Fig. 8. Mean (±SE) zooxanthella density of O. arbuscula recruit pairs at ambient (475 ppm), 

moderate (710 ppm) and high (1261 ppm) pCO2 for 75 days. There were no significant 

differences between treatments. N=3 aquaria for each treatment, with 8 coral pairs in each 

aquarium. Aquaria within treatments were not significantly different from each other.  
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Fig. 9. The relationship between zooxanthella density and recruit chlorophyll a concentrations. 

Concentrations of chlorophyll scaled to coral surface area were dependent to zooxanthella 

densities, with a weak relationship (n=69; y=1.70+0.0323x; R2=0.1785; p=0.0003).  
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Fig. 10. Mean (±SE) chlorophyll a concentration of O. arbuscula recruit pairs at ambient (475 

ppm), moderate (710 ppm) and high (1261 ppm) pCO2 for 75 days. There were no significant 

differences between treatments. N=3 aquaria for each treatment, with 8 coral pairs in each 

aquarium. Aquaria within treatments were not significantly different from each other. 
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Fig. 11. Mean (±SE) soluble protein of O. arbuscula recruit pairs at ambient (475 ppm), 

moderate (710 ppm) and high (1261 ppm) pCO2 for 75 days. There were no significant 

differences between treatments. N=3 aquaria for each treatment, with 8 coral pairs in each 

aquarium. Aquaria within treatments were not significantly different from each other. 
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Fig. 12. Mean (±SE) of a) respiration rates, b) photosynthesis rates, and c) 

photosynthesis:resporation ratios of O. arbuscula recruit pairs at ambient (475 ppm), moderate 

(710 ppm) and high (1261 ppm) pCO2 at the end of 75 days. Two coral pairs were analyzed per 

aquarium, but each pair was treated as an independent replicate for data analysis. Thus, n=6 for 

all treatments. Bars with same letter not significantly different. 
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