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1. Introduction

After the seminal work by Lasry and Lions [1], where they introduced mean-field game
theory that is devoted to the analysis of differential games with infinitely many players.
Mean-field games attracted a lot of attention and forward/backward stochastic differen-
tial equations of mean-field type are used, extensively, as dynamics (see e.g., Huang
et al. [2], Xu and Zhang [3] and Xu and Shi [4]). In Huang [5], the author studies a lin-
ear—quadratic game with a major player and a large number of minor players. The
dynamics of the major player is influenced by an aggregation of all minor players
(mean-field coupling) whereas the minor players’ dynamics depend on the control of
the major player in addition to their individual controls as well as the mean-field cou-
pling, i.e., a system of partially control-coupled forward stochastic differential equations
(SDEs). This work (Ref. [5]) was generalized to the non-linear case in Nourian and
Caines [6]. In all previously mentioned works, the authors find e-Nash equilibrium for
mean-field games, where each player play a game with the aggregation of the other
players (the mass). In the present paper, the setting is different. We consider a mean-
field type control problem where the goal is to find an optimal control via stochastic
maximum principle. The mass or the laws of state processes are not freezed, they vary
with the change of the control. Thus, finding an optimal control will yield optimal laws.
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Furthermore, in our control problem we consider a controlled partially coupled for-
ward-backward SDE of mean-field type (MF-FBSDE) as dynamics, which is a novel
contribution. We have also used the Sobolov space of random measures, introduced in
Agram et al. [7-9], in which, the Fréchet derivative with respect to the measure can be
taken directly. This is a new approach compared to what is standard in the literature,
where the Wasserstein metric space for measures and the lifting technique, introduced
by Lions [10], is used to differentiate a function of a measure.

Existence of a fully coupled MF-FBSDE is studied by Carmona and Delarue [11]
under Lipschitz assumption on the coefficients but no uniqueness result was proven.
Bensoussan et al. [12] prove existence and uniqueness of a fully coupled MF-FBSDE by
assuming Lipschitz and monotonicity conditions. Recently, Djehiche and Hamadene
[13] prove the same results but under weak monotonicity assumptions and without the
non-degeneracy condition on the forward equation.

The purpose of our work is to derive necessary and sufficient optimality conditions
in terms of a stochastic maximum principle for a set i of admissible controls which
maximize a cost functional of the form

J(u) = E[R(X(T), M(T)) + ¢(Y(0), N(0))
+ Lf(l%X(t), Y(), Z(2), M(t), N(1), u(t))dt],

with respect to admissible controls u, for some functions f,h, ¢, under dynamics gov-
erned by MF-FBSDEs. More specifically, we consider the coupled system

{dX(t) = b(t,X(t), M(t),u(t))dt + a(t,X(t), M(t), u(t))dB(t),t € [0, T],

X(O) = X0

{dY(t) = —g(t,X(t),Y(t),Z(t)), M(t),N(t), u(t))dt + Z(t)dB(t),t € [0, T),
Y(T) = $(X(T)),

for some functions b,o and a Brownian motion B(#). M(t) and N(f) denote the mar-
ginal laws of X and Y, respectively. As an application, we will consider a risk minimiza-
tion control problem. More precisely, we want to minimize the risk given by
Y(0) = —E&[p(X(T))] such that E[@(X(T))] is the convex risk measure by means of
backward stochastic differential equations of mean-field type (MF-BSDEs). Let us recall
what we mean by the convex risk measure:

Definition 1.1. A convex risk measure is a map &€ : LF(Fr) — R, p € [2,00] that satis-
fies the following properties:

o (Convexity) E(Ap; + (1 — 1) ,) < 2E(@;) + (1 — V)E(p,) for all 1. €[0,1] and
all ¢, ¢, € LP(Fr).
(Monotonicity) If ¢, < ¢,, then E(@,) > E(¢p,).
(Translation invariance) E(¢ + a) = E(@) — a for all ¢ € LP(Fr) and all constants a.
£(0) = 0.

The construction of risk measures from solutions of BSDEs is given as follows:
Assume that M(¢t) := E[Y(¢)] in the driver g(t,y,m,z,n) of the above MF-BSDE and
that z— g(t,y, E[y,z) is convex for all . Then
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Elp(X(T))] = =Y(0)

defines a convex risk measure. This shows how crucial is the choice of the functional g.
Through this connection, the problem of risk minimization is equivalent to stochastic
optimal control of MF-FBSDEs, as shown in @ksendal and Sulem [14], for the non-
mean-field case. The rest of the paper is organized as follows. In Section 2, we give
some mathematical background. In Section 3, we study a stochastic optimal control of
MEF-FBSDE where sufficient and necessary optimality conditions are derived. In the last
section, we construct a dynamic risk measure by means of MF-BSDE and then we solve
an associated risk minimization problem.

2. Generalities

Let B=B(t),t € [0, T] be a one-dimensional Brownian motion defined in a complete
filtered probability space (€, F, T, P). The filtration IF = {F},., is assumed to be the
P-augmented filtration generated by B.
Definition 2.1. Let Z be the set of integers.

e Let MF be the space of random measures x on R equipped with the norm

Il = E[fela0)PQ+ e’ d] ke, @.1)
where [i is the Fourier transform of the measure g, i.e.,
aly) = [ge¥du(x); yeR.

We endow M with the inner product (u,n):= [|i(y) — )P+ ke
wh,y €R, [t and 7 are the Fourier transform of the measures p and #, respect-
ively. Then (M, || -|[\) is a pre-Hilbert space, for each k. Let M be the union

(inductive limit) of M*, k € Z.
e We denote by M, the set of all deterministic elements of M.

We give some examples:

Example 2.2 (Measures). Let us give some examples of measures in M{ and M":

(1)  Suppose that u = J,,, the unit point mass at xo € R. Then J,, € M{ and
) = p@dux) =&,

and hence
g = fglePerdy < oo,
(2) Suppose du(x)=f(x)dx, where fe&L'(R). Then u€ M) and by

Riemann-Lebesque lemma, ji(y) € Cy(R), ie., it is continuous and ji(y) — 0
when |y| — oo. In particular, || is bounded on R and hence
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A~ 12
lulig = Jrle)Pe”dy < oo
(3)  Suppose that u is any finite positive measure on R. Then u € M{ and

li(y)| < [gdu(y) = u(R) < oo, for all y,
and hence

Il = felkPe?dy < .

(4)  Next, suppose xy = xo(w) is random. Then ;) is a random measure in MO
Similarly, if f(x) = f(x, ) is random, then du(x,w) = f(x,w)dx is a random
measure in M°.

We denote by U a nonempty convex subset of R and we denote by U the set of U-valued
G-progressively measurable processes where G := {G;},., with G; C F, for all t > 0; we
consider them as the admissible control processes.

We will also use the following spaces:

e &% isthe set of R-valued F-adapted cadlag processes X = X(t),t € [0, T], such that

|1X1 % ::E[sup |X(t)|2] < oo,
€0, T)

e IL? is the set of R-valued [F-adapted processes Q = Q(t),t € [0, T], such that
2 T 2
Q% =E L Qe | < oo

IC denotes the set of absolutely continuous functions m : [0, T| — M.
K is the set of bounded linear functionals K : My, — R equipped with the oper-

ator norm

K|k = sup  |[K(m)].

mE/\/lo,IlmHMogl
e Sy is the set of F-adapted stochastic processes p : [0, T] x Q+— K, such that

|wg:ﬁwPMMQ<w

€0, T)

e I is the set of F-adapted stochastic processes q : [0, T] x Q+— K, such that

T
lallz = E“o ||q(t)||§<dt1 < o0.

We recall now the notion of differentiability which will be used in the sequel.
Let X,Y be two Banach spaces with norms ||-|[y,|-[[y, respectively, and
letF: X — ).

e  We say that F has a directional derivative (or Gateaux derivative) at v € X" in the
direction if
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DyE(Y) = lim (F(v + ow) — F(¥))

exists in ).

o  We say that F is Fréchet differentiable at v € X if there exists a continuous linear
map A : X — Y such that

lim
h*qu
heX

|E(v+h) — F(v) = A(h)|[y = 0,

where A(h) = (A, h) is the action of the liner operator A on h. In this case we
call A the gradient (or Fréchet derivative) of F at v and we write

A=V,F.

e If F is Fréchet differentiable at v with Fréchet derivative V,F, then F has a direc-
tional derivative in all directions w € X and

DF(v) = V,E(w) = (V,F,w).

In particular, note that if F is a linear operator, then V,F = F for all v.

3. Optimal control problem

Here we denote by M(t) := L(X(t)) the law of X(f) at time t and by N(¢) := L(Y(¢))
the law of Y(¢) at time t. We assume that our system is governed by a coupled system
of MF-FBSDE as follows:

The MF-SDE X*(t) = X(t) is given by

{dX(t) = b(t,X(t), M(t), u(t))dt + o(t, X(t), M(t), u(t))dB(¢),t € [0, T},

X(O) = Xo» (31)

for functions 7, b : Q x [0, T] X R x My x U — R which are supposed to be F,;-measurable
and the initial value x, € IR.
The couple MF-BSDE (Y*(t),Z"(t)) = (Y(t),Z(t)) satisfies

{ AY(1) = —g(tX(0) Y(0). 26, ML N(O. u(0)de + Z(0)dB(e). e € 0.T) 5
(1) = y(X(T))
where ¢:Q x[0,T] x R®> x Mj x U— R is F-adapted and ¥ :Q xR x My, — R
is Fr-measurable.
It follows from the definition of the norm (2.1) that
LX) = LX)y, < E[xH - x@)],

where X() and X are random variables that follow the distributions £(X")) and
L(X@), respectively.

Assume that (C is a constant that may change from line to line)

(A1) there exists C> 0, such that



240 N. AGRAM AND S. E. CHOUTRI

e forall t €[0,T], forall fixed u € U, x,x € R,m,m' € M,

lo(t,x, m,u) — a(t,x',m',u)| + |b(t, x, m,u) — b(t,x',m’, u)|
S C(lx = x|+ [lm — m'|| uy, )-

e forall t €[0,T], for all fixed u € U,
lo(t,0, 00, u)| + |b(t,0, 0, u)| < C,

where 0, is the distribution law of zero, i.e., the Dirac measure with mass at zero.
(A2) there exists C> 0, such that, for all fixed u € U and all knowing X(t) € S* of
Equation (3.1) and M(¢) := L(X(t)) € M,, we have

e forallt€(0,T], y,y,2,2 € Ryn,n’ € M,

lg(t.x. yzmymu) — g(t,x,y, 2 mn' s u) |
<Cly=yl+lz =2+ In=nlr,)

e foralltelo,T],
|g(t,x,0,0,m, 80, u)| < C.

Proposition 3.1. Under Assumptions (A1) and (A2), the MF-FBSDE (3.1)-(3.2) admits a
unique solution (X,Y,Z) € §* x §* x 12,

Since the system is partially coupled i.e., the forward equation does not depend on
the solution of the backward one, we can solve the system separately as follows: we first
find a solution X(t) of the MF-SDE (3.1) and then we plug it into the backward
Equation (3.2), then we solve it.

Our aim is to maximize the performance functional of the form

J(w) = E[R(X(T), M(T)) + $(Y(0),N(0)) + [ F(6X(£), Y(£), Z(t), M(£), N(1), u())d]

over all admissible controls, for functions f:Q x [0,T] x R® x M x U — R,h:
QOXRxMy—Rand ¢: QxR x Mg — R.
Now, we can define the Hamiltonian

H:Ox[0,T] xR x M x UxR*x K xR x K — R
by
H(t,x, 9,2, m,n,u, p°, g% p', 2% A1) = f(t, %, y, 2, m, u) + p°b(t, x, m, u)
+ o (t, x, m,u) + 2°g(t, x, y, 2, m, n, u) (3.3)
+ <pl’m/> _ </11,7/l/>.
Remark 3.2. For ease of notation we drop the dependence of all variables except for the
time t,YO € {o,f,H, h,g, ¢}, we write ®(t),Vt. Moreover, we will use

(£), u(t))
t

t
(£), u(t))]-

N

D(t) == D(t, X (1), Y (1), Z(t), M(t)
D(t) == D¢, X (1), Y (1), Z(¢t), M(t)

SN(t),u
SN(t), u

We assume that
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(A3) {o,f,H,h,g, ¢, ¥} are continuously differentiable with bounded partial derivatives
w.r.t all the variables.
For u € U with corresponding solution X* =X, define, whenever solutions exist,
pit =p=(p°p") and gqit = ¢ = (¢°,¢q") and At = A = (2% 1) by the adjoint equations:
The BSDE for the unknown processes (p°,¢°) € S* x 1.2

dp®(t) = —0H(t)dt + q°(¢)dB(t),t € [0, T, (3.4)
PI(T) = 9h(T)+2°(T)Ap(T). '
The MF-BSDE for the unknown processes (p',q') € S x Li
dp'(t) = =V, H(t)dt+ q'(t)dB(t),t € [0, T}, (3:5)
pi(T) = Vuh(T). '
The forward SDE 1° € S
{dﬂﬁ(r) = Q,H(t)dt + d.H(t)dB(t),t € [0, T], G6)
PO = 340, |
and 2! € Si
ai = n , , T,
~1 (1) V.H(t)dt, t € [0, T] (3.7)
A0) = Vu(0).

Remark 3.3. The real-valued linear system of FBSDE (3.4) and (3.6) have a unique solu-
tion by Proposition 3.1 since the coefficients satisfy condition (A3). However, Equation
(3.5) is equivalent to the degenerate BSDE

T
PH(t) = Vh(T) + J [V (5) + P Voub(s) + 4*(5) Vi (s) s

- J q' (t)dB(t).

t

We take conditional expectation to obtain
T
pi(t)=E lvmh(T) + J {Vif () + p*(5)Viub(s) + 4" (5) Vo () }ls| F |
t
Similarly, a solution for (3.7) is given by

t
(6 = Vb(0) + [ () + 2 Vgl s
0
Before stating and proving sufficient and necessary conditions of optimality, we need
the following result, which is Lemma 2.3 in Agram and @ksendal [7].
Lemma 3.4. Suppose that X(t) is an Ito process of the form

dX(t) = 0(t)dt + y(t)dB(t), te|0,T],
{X(O) =Xy € R,

where 0,y are adapted processes.
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Then the map M(t) : [0, T| — M, is absolutely continuous.

It follows that t+— M(t) is differentiable for t-a.e. We will in the following use the
notation

M'(t) :%M(t).

In fact, it is proven in [7] that if M(t) € M* then M'(t) € M** k € Z.

3.1. Sufficient optimality conditions
We state and prove a type of a verification theorem.

Theorem 3.5. Suppose that i € Ug with corresponding solutions X(t), (Y (),

Z(1), (0°(1),q° (), (" (1), q"(¢)), 2°(t), A1 (t) to Equations (3.1), (3.2), (3.4), (3.5), (3.6)
and (3.7), respectively. Suppose that

o x,m— h(k,m),

oy, n= ¢y, n), x—=(x),
o x,y,z,mnu— H(-,x,y,z,m,n,u),
are concave functions P-a.s for each t € [0, T]. Moreover,

E[H(1)|G] = maxE[H(1)G],

P-as for all t € [0, T|. Then u is an optimal control.

Proof. We show that J(u) — J(1) < 0, for an arbitrary u and a fixed optimal & € Ug.
We introduce first the following notation V® € {o,f,H, h,g, ¢, M,N,M’,N'} and V¢,

oD(t) = d(t) — (1),
and

SM'(t) = 5(21\4@)) :Z(éM@)).

From the definition of the Hamiltonian (3.3), we have
Of () = 0H(t) — ob(1)p°(t) — da(t)q’(1)
— (p'(t), 0M' (1)) — (2'(#), 6N'(1)),

and
T

J(u) —J(@) = E“ {oH(t) — ob(t)p°(t) — da(t)q’(t) — (p'(t), oM (t))
0 (3.8)
— (2'(t), ON'(t)) }dt + Sh(T) + 5®(0)|.

We use the concavity of h and ¢ as well as the boundary values of Equations (3.4),
(3.5), (3.6) and (3.7)
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Oh(T) 4 0¢(0) < Och(T)oX(T) + (Viuh(T), 6M(T))
+ 0:$(0)0Y(0) + (V4 ¢(0), IN(0))
= p*(T)dX(T) — 2°(T)dX(T) + {p'(T), 0M(T))
+2°(0)0Y(0) + (2'(0), 0N(0)).
Applying Ito formula to p°(t)dX(t), (p'(t), SM(t)), 2°(t)dY (t) and ('(t),N(t)), yields

the following duality relations:

(3.9)

T

T
E[p°(T)oX(T)] — E[2°(T)o(T)] = EUO p°(t)ob(t)dt — J oX

0

(t)0.H (t)dt]
(3.10)

+E

JO qo(t)éa(f)dt] — E[2(T)oa (1)),

E[(p!(T),sM(T))] = E U()T(pl(t), SM(t))dt — LT(VW,H(t), 5M(t)>dt] , (3.11)

T

E[2°(T)oY(T)] — E[2°(0)6Y(0)] = —E U A2(t)dg(t)dt

0

+E

JT SY(t)0,H (t)dt]

+E JT OZ(t)0.H (t)dt

(3.12)

Concavity of  gives

JT AO(t)ég(t)dt] —E UT 5Y(t)8yH(t)dt]

_E JT S2(6)0LE(¢)dt

E[2°(0)0Y(0)] = E[2°(T)oy(T)] + E

< E[(T)0(T)oX(T)] + E

JT ;P(t)ag(t)dt}

[T ] T
_E [ SY ()0, (t)dt EU 5Z(t)8zﬁl(t)dt},
; ]

E[Z1(T)ON(T)] — E[(2'(0),6N(0))] = E U (L(8), 0N (1)) + (VL H(t), 5N(t)>dt] .

(3.13)
By the concavity of H, we obtain
SH(t) < 8XH(At)6X(t) + @,H(t)éli(t) + 8ZH(t)5Z(t? G14)
+ (VmH(t),0M(t)) + (V,H(t), ON(t)) + 0,H (t)ou(t).

Finally, by substituting the derived duality relations (3.10), (3.11), (3.12) and (3.13) in
(3.8) and using the estimates (3.9), (3.14), we obtain
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T

J(u) —J(it) <E U auH(t)éu(t)] :

0

Using the tower property and the fact that u(t) is G-adapted the desired result follows

T

0

J(u) — (@) < EU E[@uH(t)|gt]6u(t)dt] <o,

and thus, @ is optimal. 0

3.2. Necessary optimality conditions

Given an arbitrary but fixed control u € Ug, we define

u’ =1+ pu,p €[0,1]. (3.15)
Note that, the convexity of U and U guarantees that u” € Ug, p € [0, 1]. We denote by
X :=X" and by X :=Xi;, the solution processes corresponding to u’ and i,

respectively.
For each t; € [0, T] and all bounded G, -measurable random variables «, the process

u(t) = ol

belongs to Ug.
In general, if K*(¢) is a process depending on i1, we define the operator D on K by

DKii(t) := D'K"(t) = %K””“(tﬂpo, (3.16)
whenever the derivative exists.
Define the following derivative processes

DX(1) = 5 X" (0, = X0,

DY() i = YD), = V()

DZ(t) : = %Zﬂ“’"(mpo = Z(t),

DN(t) : = %N“f’“(mpo,

DM(t) : = %M‘”"“(t)po,

DN'(t): = %% )] s
DM'(t) : = %% )] o

such that
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+{0,a(t)X(t) + (Vo (t), DM(t)) + d,0(t)u(t) }dB(t), t € [0, T], (3.17)

dx(t) ={0b(t)X(t) + (Vub(t),DM(t)) 4+ 0,b(t)u(t)}dt
{ X(0) =o,

and

)
+(V,.g(t),DN(t)) + d,g(t)u(t)}dt + Z(t)dB(t),t € [0, T], (3.18)

{ dY(t) = —{9:g()X(1) + 0,g(H)V(t) + (1) Z(t) + (Ving(t), DM(1))
(
I(T) = 0p(T)X(T).

Remark 3.6. Equations (3.17), (3.18) are linear FBSDE with bounded coefficients, then
by Proposition 3.1 they have a unique solution.

Theorem 3.7. Let & € Ug be the optimal control and X(t),(V(t), Z(t)), (p°(¢),
2°(1)), (p'(t), ' (1)), 2°(t), 2'(t) be the corresponding solutions to the Equations (3.17),
(3.18), (3.4), (3.5), (3.6), (3.7), respectively. Then, the following statements are equivalent

(i) %](i{ + pu)|,_y = 0 for all bounded f} € Ug.
(i) E[ZH(t)|G] =0 foralltel0,T]

Proof We first prove Theorem 3.7 by assuming (i) and aiming to show (ii)

d
0= d—pl(u + )=

= 5[ [ 2L o0, o+ (10(T) ~ YOI + (5 (1),DUCT)
# 22010 + (2'(0).DN(0)
{we substitute f(t) from Equation (3.3)}
= [ L) - P00~ P 0070~ 2080~ (0,17 ()
(0N () Hy—odt + (TYX(T) — 25(T)(T) + (91 (T), DM(T))
+ 20910 + (70, DNO)

by using the chain rule, we obtain
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iH”(t)|p:o = O:H(1)X(t) + O,H(H)V(t) + OH(8) Z(t) + (VmH(1), DM(t))

dp
+ (V,H(t), DN(¢)) + 0,H(t)u(t),
%p‘)(t)b"(t)lpo = p°()8cb(6)X (1) + p°(£)(Vimb(t), DM(t)) + p°(£)Dub(t)u(t),
diqo(t)aﬂ(t)Ip:o = 4° ()00 () X(t) + 4°(t)(Vma(t), DM(t)) + q°(t)Dua (t)u(t),

dip?f’( )8° (D)= = 2 (10 (DX (1) + 2° (D8 () V(1) + 2°(1)D:g(1) Z(1)

+ 2°(6){Vng(t), DM(1)) + 2°(t)(V g (), DN(t))
+ 22(1)0,g(t)u(t),
d

%@l(f),M”/(t)Hp:o = (p' (1), DM'(1)),

and

dipul(t))N“/(t))Ipo = (A'(1), DN'(t)).

We apply Ito formula to p°(t)X(t), (p'(t), DM(t)), 2°(t)Y(t) and (A'(t), DN(t)) then we
take the expectation, we obtain the following important duality relations:

E[p*(T)X(T)] = EHO {P°(0)0:b(1) X (t) + p°(t)(Vub(t), DM(t))
+ p°(1)9,b(t)u(t) — OH(t)X(t) + q°(t)Oca(t) X (1)
+q° () (Vo (t), DM(t)) + q°(£)0,0(t)u(t) }dt |,

E[(p"(T),DM(T))] = E JT@l(t) DM'(t)) — (V,,H(t), DM(t))dt],

1)0,g()V(t) — 2°(1)0.4(t) Z(t)
t)(Vmg(t), DM(t))
*(£)(Vag(£), DN(1)) — 2°(£)Dug (t)u(t)
+ 0,H(t)Y + 0 H(t )Z(t)}dt}

0 [ 0
E[(T)Y(T)] — E[2*(0)(0) [ (=200, (1)1
0
-2
-2

(
°(
(

E[(4!(T), DN(T))] — E[{2"(0), DN(0 [ {il(t DN'(t))

(Y, H(H).D <t>>}dt]

By substituting the derived duality relations and the partial derivatives of f(t) the desired
result follows. This proof can be reversed to prove (ii) = (i). We omit the details.
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4. Mean-field risk minimization
4.1. Mean-field dynamic risk measure

In this section, we are interested in a particular class of MF-BSDE of the following
form

{dY(t) = —f(t,Y(¢), E[Y(t)], Z(t))dt + Z(t)dB(t), t € [0, T], @1
Y(T) =4 '
where

£(¢,Y(1), E[Y(t)], Z(t)) := —r(t)Y(t) — ¥ (t)E[Y(t)] + F(t, Z(t)).
We assume that the generator (y,7,z) — £(t,Y(¢), E[Y(¢)],Z(t)) : Q@ x [0, T] x R x R x
R — R is F-adapted, uniformly Lipschitz and concave, and the terminal condi-
tion ¢ € L*(Q, Fr).

Definition 4.1. Define &, : (T; &) — £,(T; &) by
E(T;¢) = —Yu(T;8),t€0,T],

where Y,(T; &) is a component of the solution of the MF-BSDE (4.1) with terminal
horizon T, terminal condition ¢ and driver f. Then E,(T; &) is a dynamic risk measure
induced by the MF-BSDE (4.1).

We may remark that the driver f depends linearly on Y and its expected value E[Y], and
nonlinearly on Z. This is interpreted as a market with interest rates (r(t),7'(t)). We
can reformulated this as a problem with a driver independent of Y and E[Y] by discounting
the financial position £. We assume that the instantaneous interest rates r(t) and r'(t) are
deterministic. We denote by £., the corresponding discounted risk measure.

Define the discounted process

Y'(t) = e—jo<r(s)+ﬂ(s))dsy(t)_
Then Y" with driver

Fr(_) t, Z(t)) — e—fo(r(s)Jrr’(s))dsF(., t, e—ﬁ)(r(s)+r’(s))dsz(t)))

and the terminal value & := eiJI)(r(S)HJ(s))dsé is a part of the solution of the associated
BSDE. We obtain also a discounted risk measure accordingly

50(5’ T) _ 56 (e— J;) (V(S)-‘rr’(s))dSé’ T) )

This discounted risk measure is translation-invariant because F" does not depend on Y,
we have for ¢ € L*(Q, Fr) and a € R,

Eolé + aejo (r(5)+7/(5))ds T) = 56(67L(r(s)+r/<s>)ds E+aT)

_ 56 (6_ ﬂ(r(s)-ﬁ-r’(s))ds(:) T) —a
= gO(éa T) —a.
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Similarly, we can get for each t € [0, T], that
E(ET) =& <e—j0(r(s)+r'(s))ds€, T>

is translation-invariant.

4.2. Optimal portfolio with mean-field risk minimization

Consider a financial market with two investment possibilities:

(i) Safe, or risk-free asset with unit price
So(t) =1,t €0, T].
(ii)  Risky asset with unit price
dsS, (t) = Si(t)[bo(t)dt + oo(t)dB(t)], t € [0, T].

Let 7(t) be a self-financing portfolio invested in the risky asset at time ¢. We want to
minimize the risk @(X"(T)) of the terminal value of the wealth process X"(t) corre-
sponding to a portfolio © which satisfies the linear SDE

{dX“(t) = n(t)X"(t)[bo(t)dt + ao(t)dB(t)], t € [0, T], 4.2)
X™0) = xo )
such that
»(X™(T)) = —Y™(0)
where Y™(t) satisfies a MF-BSDE
{—dY”(t) = [—ro(t)E[Y™(t)] + F(Z(t))]dt — Z(t)dB(t), t € [0, T], (4.3)
YNT) = X*(T). :

Here we assume that by(t), ao(t), ro(t) are given deterministic functions and F: R —
R is some given concave function. We want to find & € Ug such that

inf (—Y™(0)) = —Y#(0).

el
Define the Hamiltonian H that corresponds to our problem by
H(t,x,z, 5,7 p° q° 2% A1) = p°bomx + qoomx
+ 22(roy + F(2)) + (', y).
The couple (p° g°) solution of the following BSDE

{dpo(f) = = [P"(Obo(t)n(t) + g (t)oo(t)n(1)] dt + q°(t)dB(1), t € [0, T,
p(T) = AT),
and (p',q') satisfies

{dpl(f) = q'(t)dB(t),t € [0,T),
p(T) = o.
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The equation for 1° is given by the forward SDE

{dz‘)(t) = O.F(Z(t))X°(t)dB(t), t € [0, T],

o) - 1 (4.4)

and 1! satisfies

{dil(t) = —r(t)2°(t)dt, t € [0, T],
o) = o

The first order necessary optimality condition gives
P(Obo(DX(1) +3°(Nan(nX (1) = 0,

where we denoted by X (t) = X™(t) and so on. Since X (t) > 0 for all ¢ P-a.s., we obtain

P2(D)bo(t) + §°(t)ao(t) = 0, (4.5)
which implies
-0 .0 bo(1) .0
40 = G'(dB(0) = — 2P (0dB().t € [0.T],

P = (),

this together with Equation (4.4), yields
0

PO = 27(e), 3°(e) = BF(Z ()2 (1),
From (4.5), we get

. bo(t
OF(2() =~ 41
For example, if we choose
F(z) = — %zz. (4.6)
That is
5 bo(t)
Z(t) = .
® =7, 0

Substituting the expression of Z(t) above into the MF-BSDE (4.3), we obtain

4y (1 Z‘l_ro(tw[ff(t)}‘%W)) 1&_%“)@(0’ 0T g

2 O'()(t) O'()(t)
Y(T) =X(T).

Consequently

_E[Y(5)] = l—mu)E[iv(t)} - (""(” ) ]dt,

thus
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2 00'(2)(5) 0

E[Y(t)] = exp(— [ ro(s)ds) [f/(o) +1J bo—(s)exp (J ro(oc)doc> ds] : (4.8)

Define I'(t) to be the solution of the linear SDE

{dF(t) = 50 rape), e o),

Go(t)
ro) =1,

or explicitly

I(t) = exp < - Jt b0s) s 1Jt <b°(s) >2ds>, teo,T]. (4.9)

000(s) 2 Jo \ o0(s)

By the Girsanov theorem of change of measures, we know that there exists an equiva-
lent local martingale measure Q < P, such that

dQ=TI(T)dP on Fr,

with I'(T) = Z—g is the Radon-Nikodym derivative of Q with respect to P on Fr.

Substituting (4.8), (4.9) into (4.7) we have
o LB ([
Y(0) + EJO 20) exp < Jo rdoc)doc)]

0

3, () o [ game

o \ 00(s) 0 00(s)

#(0) +1Jt 50 oo <J ro(oc)doc> ds] ~ InT(s).

X(T)=Y(T) = Y(0) + exp (— Jt ro(s)ds>

+

t

=Y(0) + exp(—J ro(s)ds)

0

2 0‘73(5) 0

Taking the expectation but now with respect to the new measure Q, we get

0 000 0

- exp(—1 [ ro(s)ds) { TR ( - J; r‘)(s)ds) BJ; i%i?) =P <Jo r"(a)da> ds]

— E[I'(T) In F(T)]},

—Y(0) = —xo — exp < - Jt ro(s)ds) lf/(o) +%Jt bég exp <JS ro(a)da) dsl — Eq[InT°(T)]

(4.10)

where E[I'(T)InT(T)] is the entropy of Q with respect to P.
Since we obtained the optimal value of Y (0), we can get the corresponding optimal

terminal wealth X (7).
Summarizing, we have the following conclusion:

Theorem 4.2. Suppose that (4.6) holds. Then the minimal risk of our problem is given
by (4.10).
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