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ML and GMM with concentrated instruments in the static
panel data model

Paul Bekker and Jelle van Essen

Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands

ABSTRACT
We study the asymptotic behavior of instrumental variable estimators in
the static panel model under many-instruments asymptotics. We provide
new estimators and standard errors based on concentrated instruments as
alternatives to an estimator based on maximum likelihood. We prove that
the latter estimator is consistent under many-instruments asymptotics only
if the starting value in an iterative procedure is root-N consistent. A similar
approach for continuous updating GMM shows the derivation is nontrivial.
For the standard cross-sectional case (T¼ 1), the simple formulation of
standard errors offer an alternative to earlier formulations.
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LIML; many-instruments
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1. Introduction

In the standard linear cross-sectional model with endogenous regressors, the Limited Information
Maximum Likelihood (LIML) estimator of Anderson and Rubin (1949) is known to be consistent
under many-instruments asymptotics where the number of instruments increases with the sample
size. Bekker (1994) formulated many-instruments consistent standard errors resulting in more
accurate cover rates of confidence sets in case of many or weak instruments. Recently, Bekker
and Wansbeek (2016) provided a simple formulation of many-instruments consistent standard
errors based on so-called concentrated instruments. As 2SLS is inconsistent under many-instru-
ments asymptotics, in particular when instruments are weak, it would be interesting to look for
LIML-like alternatives for 2SLS in a wider context.1

In panel data models the Generalized Method of Moments (GMM) approach of Arellano and
Bond (1991), or more recently, the 2SLS approach of Arellano (2016), the number of instruments
increases with the time dimension, resulting in many-instruments inconsistent estimators that suffer
from bias (e.g., Bun and Sarafidis, 2015; Kiviet, 1995; Ziliak, 1997). Wansbeek and Prak (2017) observe
that LIML estimators in panel data models, as developed by, e.g., Alvarez and Arellano (2003), Akashi
and Kunitomo (2012) and Moral-Benito (2013) for the dynamic panel data model, are least-variance
ratio estimators just as LIML, but not true ML estimators obtained from maximizing a likelihood
function. They aim at filling this gap by deriving the ML estimator for the static linear panel data
model and investigating its properties in a framework of many-instruments asymptotics.

Here we compare the approach of Wansbeek and Prak (2017), henceforth WP, with continu-
ous updating GMM and a new approach, which uses concentrated instruments. We find that the
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ML-based estimator of WP is actually many-instruments inconsistent due to an iterative proced-
ure that starts with an inconsistent estimator. We prove that starting with a root-N consistent
estimator indeed produces the claimed asymptotic distribution. However, the result is nontrivial
and a similar procedure for continuous updating GMM produces another result. Starting with
root-N consistent estimators, we distinguish between one-step estimators, using only one iteration
step, and fully iterated estimators. In the ML approach the two estimators have the same asymp-
totic distribution, but for the continuous updating GMM approach the distributions are different.

The new approach can be interpreted as 3SLS based on M concentrated instruments, where
M is the number of regressors. The one-step estimator that we call panel concentrated instru-
mental variable estimator (P-CIVE) has the same asymptotic distribution as the ML-based esti-
mator and the fully iterated continuous updating GMM estimator. Moreover, the estimator has
an appealing form and its simple 3SLS-like standard errors are many-instruments consistent. In
particular for the cross-sectional case, where T¼ 1, the standard errors offer a simple alternative
to the original formulation in Bekker (1994) and the more recent formulation in Bekker and
Wansbeek (2016).

The section structure of this paper is as follows. Section 2 introduces the model with multiple
regressors and the approach based on concentrated instruments resulting in P-CIVE and its
standard errors. To keep the presentation simple, we provide derivations for the case of a single
regressor. We discuss the WP approach and its issues in Section 3. In Section 4, we present the
continuous updating GMM estimator as an alternative. We find that it can be improved upon by
the P-CIVE estimator, which uses concentrated instruments as discussed in Section 5. The differ-
ences between the fully iterated estimators is discussed in Section 6. Section 7 gives the outcomes
of Monte Carlo simulations in which the performances of the original and corrected WP estima-
tors and the P-CIVE estimator are assessed and compared.

2. The panel model and the P-CIVE estimator

We first discuss the static panel model as considered by Wansbeek and Prak (2017) with multiple
time periods TP1 and multiple regressors MP1: We present the P-CIVE, which is a 3SLS esti-
mator with 3SLS standard errors that are both consistent under many-instruments asymptotics.
The case T¼ 1, where LIML is the ML estimator, will be discussed separately. The case M¼ 1
will be considered to present the derivations of the many-instruments asymptotic distributions.

2.1. The static panel model, T >1 and M >1

Consider a static panel data setting with N entities that are each observed at times t ¼ 1; :::;T:
For multiple regressors the model is given by

yt ¼ Xtbþ ut; (1)

Xt ¼ ZPt þ V t; (2)

where b is an M vector of parameters of interest, y1; :::; yT are observed N vectors and X1; :::;XT

are observed N�M matrices of regressors, which may be endogenous. It is assumed that any
fixed effects have been eliminated by an appropriate data transformation. An N�K matrix Z of
instruments is observed as well, where rank ðZÞ ¼ K: The disturbances in U ¼ ðu1; :::; uTÞ and
V ¼ ðV1; :::;VTÞ are not observed. Conditional on the instruments Z; the N rows of the matrix
of disturbances ðU;VÞ are assumed to be independently normally distributed with zero mean and
covariance matrix R: Furthermore, we use many-instruments asymptotic theory, where the num-
ber of instruments K increases with the number of observations N. It is assumed that K=N ! a
and P0

tZ
0ZPs=N ! Sts and

PT
t¼1 Stt ¼ S>0 as N ! 1 and T is fixed.
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We consider GMM with continuous updating and an estimator based on maximum likelihood,
as described by WP. In particular, we propose a simple many-instruments consistent estimator
based on concentrated instruments. To introduce the latter approach, let PH ¼ HðH0HÞ�1H0 and
MH ¼ I�PH for any matrix H of full column rank. Let CZ ¼ PZ�kðIN�PZÞ; where k is a scalar.
As a starting point we use the LIML estimator, which ignores the covariance structure of the dis-
turbances. It is given by

b̂LIML ¼
XT
t¼1

X0
tCZ k̂LIML

� �
Xt

( )�1XT
t¼1

Xt
0CZ k̂LIML

� �
yt; (3)

where k̂LIML is the smallest eigenvalue of the matrix.

XT
t¼1

yt;Xtð Þ0PZ yt;Xtð Þ
XT
t¼1

yt;Xtð Þ0 IN � PZð Þ yt;Xtð Þ
( )�1

:

Let the LIML residuals be given by ût ¼ yt�Xtb̂LIML; which are collected in the N�T matrix
Û ¼ ðû1; :::; ûTÞ: The M concentrated instruments are given by �Z ¼ ð�Z 0

1; :::;
�Z 0
TÞ0; where �Z t ¼

CZðk̂LIMLÞMÛXt: Let y ¼ ðy01; :::; y0TÞ0 and X ¼ ðX0
1; :::;X

0
TÞ0; then the P-CIVE is given by

b̂P�CIVE ¼ �Z 0 Û
0
Û

� ��1 � IN

n o
X

h i�1
�Z 0 Û

0
Û

� ��1 � IN

n o
y: (4)

The estimated covariance matrix is given by

V̂ P�CIVE ¼ X0 Û
0
Û

� ��1 � IN

n o
�Z �Z 0 Û

0
Û

� ��1 � IN

n o
�Z

h i�1
�Z 0 Û

0
Û

� ��1 � IN

n o
X

� ��1

: (5)

We show in Section 5 that the many-instruments asymptotic distribution of the P-CIVE esti-
mator is normal, N1=2ðb̂P�CIVE�bÞ�a Nð0;VP�CIVEÞ and the asymptotic covariance matrix
VP�CIVE can be many-instruments consistently estimated by V̂ P�CIVE:

2.2. The classic model, T5 1

If T¼ 1, the model is the classic limited information instrumental variable model, where 2SLS is
the classic IV estimator and LIML is the ML estimator. LIML is many instruments consistent,
whereas 2SLS is inconsistent a shown, e.g., in Bekker (1994). The estimators are given by

b̂2SLS ¼ X0PZXð Þ�1X0PZy;

b̂LIML ¼ X0CZ k̂LIML

� �
X

� ��1
X0CZ k̂LIML

� �
y:

Let û2SLS ¼ y�Xb̂2SLS; then X0PZû2SLS ¼ 0: Similarly, let ûLIML ¼ y�Xb̂LIML; then
X0CZðk̂LIMLÞûLIML ¼ 0: However, whereas y0PZû2SLS 6¼ 0; we can show y0CZðk̂LIMLÞûLIML ¼ 0:
That is to say,

k̂LIML ¼ arg min
b

y�Xbð Þ0PZ y�Xbð Þ
y� Xbð Þ0MZ y� Xbð Þ

is the smallest value k such that ðy;XÞ0ðPZ�kMZÞðy;XÞ is singular. Consequently, ðy;XÞ0
CZðk̂LIMLÞðy;XÞP0 and ðy�Xb̂LIMLÞ0CZðk̂LIMLÞðy�Xb̂LIMLÞ ¼ 0; which implies ðy;XÞ0
CZðk̂LIMLÞûLIML ¼ 0:

Bekker and Wansbeek (2016) used this to reformulate LIML as a 2SLS-like estimator b̂LIML ¼
ðX0P�ZBW

XÞ�1X0P�ZBW
y; where �ZBW ¼ CZðk̂LIMLÞðy;XÞ are Mþ 1 concentrated instruments. They

showed that the 2SLS-like standard errors are many-instruments consistent. That is, let r̂2
u ¼

û0
LIMLûLIML=N; then V̂

BW
LIML ¼ r̂2

uNðX0P�ZBW
XÞ�1!p VLIML; where N1=2ðb̂LIML�bÞ�a Nð0;VLIMLÞ
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under many-instrument asymptotics. Consequently, these standard errors may serve as a simple
alternative to the original standard errors in Bekker (1994).

Here we go one step further and formulate LIML as a 2SLS-like estimator based on M concen-
trated instruments. The first-order equations for the optimization to find LIML can be formulated

as X0MûPZû ¼ 0; or equivalently, X0MûCZðk̂LIMLÞû ¼ 0; where û ¼ y�Xb̂LIML: This suggests to

use M concentrated instruments �Z ¼ CZðk̂LIMLÞMûX: Again LIML can be formulated as a 2SLS-

like estimator b̂LIML ¼ ð�Z0XÞ�1�Z 0y since �Z 0ûLIML ¼ 0: We find b̂LIML ¼ b̂P�CIVE and as a result of
the derivations in Section 5 and Appendix A.4, V̂ LIML ¼ r̂2

uNðX0P�ZXÞ�1 is a many-instruments

consistent estimator of VLIML as well. Appendix A.1 derives V̂
BW
LIML6V̂ LIML: A separate study may

show how the various standard errors behave in finite samples.

2.3. The model when M5 1

WP present the model for M¼ 1. They find that their derivation of the maximum-likelihood-
based estimator is hardly affected when there are multiple regressors and that the generalization
carries on to the many-instruments consistent standard errors. Similarly, this holds for the P-
CIVE estimator with multiple regressors (4) and its standard errors based on (5). In order to
keep the presentation simple, we follow WP and consider the case of a single regressor.

To emphasize that Xt and Pt are vectors when M¼ 1, we write xt ¼ Xt; pt ¼ Pt and x ¼ X:
Let Y ¼ ðy1; :::; yTÞ and �X ¼ ðx1; :::; xTÞ; so that y ¼ vecðYÞ and x ¼ vecð�XÞ: The model Eqs. (1)
and (2) can thus be written as Y ¼ �Xbþ U; where b is a scalar, and �X ¼ ZPþ V; where P ¼
ðp1; :::; pTÞ: Similar to WP, we use many-instruments asymptotics and let P0Z0ZP=N ! QP0;
where S ¼ trðQÞ>0:

First, we discuss the ML-based estimator of WP in Section 3 and continuous updating GMM
estimation in Section 4. In Section 5 we discuss the derivations for P-CIVE.

3. The panel LIML estimator of Wansbeek and Prak

WP introduce the panel LIML estimator, which is the maximum likelihood estimator of b under
normality. Using U ¼ Y��Xb; it satisfies

b̂ML ¼ arg min
b

jU 0Uj
jU 0MZUj ; (6)

2 arg solve
b

tr U0Uð Þ�1U 0 �X � U0MZUð Þ�1U 0MZ �X
n o

¼ 0
h i

; (7)

where “j:j” indicates the determinant. They show the ratio in the right-hand side of (6) converges
in probability to a function of b with a unique minimum in the true value, leading to the many-
instruments consistency of b̂ML:

In order to find the asymptotic variance, WP consider the infeasible estimator

~b ¼ tr A Uð Þ� �
=tr B Uð Þ� �

;

A Uð Þ ¼ U 0Uð Þ�1
Y 0 �X� U 0MZUð Þ�1Y 0MZ �X ;

B Uð Þ ¼ U 0Uð Þ�1 �X 0 �X� U 0MZUð Þ�1 �X 0MZ �X ;

(8)

and claim that b̂ML and ~b have the same asymptotic variance.2 Using Ruu;Rvv and Rvu for submatri-
ces of R; with Rvvju ¼ Rvv�RvuR

�1
uuRuv; they find the asymptotic variance of N1=2ð~b�bÞ equals

2The result is true as is shown in Appendix A2. The result and the proof are nontrivial. The same approach applied to
continuous updating GMM has a different outcome, as shown in Section 4.
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vML ¼
tr R�1

uu Qþ kRvvju
� �n o

tr2 R�1
uuQ

� � ; (9)

where k ¼ a=ð1�aÞ:
As a feasible estimator WP use b̂ ¼ trfAð ~U Þg=trfBð ~U Þg; where ~U ¼ Y��X b̂; which is solved

iteratively by using b̂2SLS ¼ ðPT
t¼1 xt0PZxtÞ�1PT

t¼1 xt
0PZyt as a starting value. WP claim that the

resulting estimator, b̂}; has the same asymptotic variance as ~b; or b̂ML: However, this claim is

incorrect since b̂ML is not a unique solution to the first-order condition (7).3As a result, b̂} is

many-instruments inconsistent, due to the many-instruments inconsistency of b̂2SLS:
As an alternative, we suggest to use the LIML estimator defined in (3) as a starting value,

where M¼ 1 and Xt ¼ xt: It can be formulated as an extremum estimator, b̂LIML ¼
arg minbkðbÞ; where

k bð Þ ¼
PT

t¼1 yt � xtb
� �0PZ yt�xtb

� �
PT

t¼1 yt � xtb
� �0 IN � PZð Þ yt � xtb

� � :
As yt�xtb ¼ Zptðb�bÞ þ ut þ vtðb�bÞ; and using k ¼ a=ð1�aÞ; we find similar to the steps

taken by WP to prove the many-instruments consistency of the maximum likelihood estimator
(6) that

k bð Þ ¼ kþ b�bð Þ2 1þ kð Þtr Qð Þ
tr Ruuð Þ þ 2 b� bð Þtr Ruvð Þ þ b�bð Þ2tr Rvvð Þ þ op 1ð Þ:

Consequently, b̂LIML is a many-instruments consistent root. In particular, we find it to be
many-instruments root-N consistent: b̂LIML ¼ bþ OpðN�1=2Þ: As k̂LIML ¼ kðb̂LIMLÞ; we also
have k̂LIML ¼ kþ OpðN�1Þ:

If we use b̂LIML as a starting value, then the iterative procedure would produce b̂ML; at least if the
sample size is not too small. In Appendix A.2 we prove the following result. Let the initial estimator
b̂0 be root-N consistent and let the one-step estimator be given by b̂1 ¼ trfAðÛ 0Þg=trfBðÛ 0Þg;
where Û 0 ¼ Y��X b̂0; then N1=2ðb̂1�bÞ�a Nð0; vMLÞ; where vML is given by (9).

We find the asymptotic distribution is not affected by the choice of b̂0 as long as ðb̂0�bÞ2 ¼
opðN�1=2Þ: In particular, for b̂0 ¼ b̂ML; we find the asymptotic distribution of the ML estimator.
For b̂0 ¼ b we find the asymptotic distribution of the infeasible ~b estimator. For b̂0 ¼ b̂LIML we
find the asymptotic distribution of the feasible one-step estimator b̂ML;1; where further iterations
do not change the many-instruments asymptotic distribution.

4. Continuous updating GMM estimation

Consider the case of a single regressor. Let R̂ ¼ R̂ðb;PÞ ¼ N�1ðU;VÞ0ðU;VÞ: The GMM object-
ive function is given by

QGMM b;Pð Þ ¼ vec0 U;Vð Þ� �
R̂

�1 � PZ

� 	
vec U;Vð Þ� �

¼ tr R̂
�1

U;Vð Þ0PZ U;Vð Þ
n o

:

3For example, consider the case T¼ 1, where b̂ML is the standard LIML estimator, which is the solution to the first-order
condition that produces the smallest eigenvalue û1PZ û1=û1ðIn�PZÞû1 of the matrix
ðy1; x1Þ0PZðy1; x1Þfðy1; x1Þ0ðIN�PZÞðy1; x1Þg�1: Another solution is found for the largest eigenvalue. The outcome of an
iterative procedure would depend on the starting value and it need not converge to b̂ML:
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In order to find the continuously updated GMM (CUGMM) estimator, the objective function
is minimized while U;V and R̂ depend on b and P: Appendix A.3 shows that given a value for
b, the objective function QGMMðb;PÞ is minimized by P̂ðbÞ ¼ ðZ0MUZÞ�1Z0MU �X ; which is the
same matrix function as found by WP for maximizing the normal likelihood. The CUGMM esti-
mator b̂CUGMM is given by

b̂CUGMM ¼ arg min
b

tr R̂
�1
uuU

0PZU
� 	

; (10)

2 arg solve
b

tr U 0Uð Þ�1 �X 0MUPZU
n o

¼ 0
h i

: (11)

Notice that for T¼ 1, where U 0U is a scalar, b̂ML ¼ b̂CUGMM: However, for T> 1 the functions
are different. Again, similar to (7), the first-order condition (11) may allow for more than
one solution.

Let an initial estimator b̂0 be root-N consistent and let b̂1 be the one-step estimator

b̂1 ¼
tr Û

0
0Û 0

� 	�1
�X 0MÛ 0

PZY


 �

tr Û
0
0Û 0

� 	�1
�X 0MÛ 0

PZ �X


 � ; (12)

where Û 0 ¼ Y��X b̂0: Appendix A.3 shows, for the many-instruments asymptotic sequence,
that

N1=2 b̂1�b
� 	

¼N�1=2
tr R�1

uu ZPþ V?ð Þ0 PZ�aINð ÞU
n o

tr R�1
uu Qþ aRvvju
� �n o

þ aN1=2 b̂0�b
� 	 tr R�1

uu Qþ Rvvju
� �n o

tr R�1
uu Qþ aRvvju
� �n oþ op 1ð Þ;

(13)

where V? ¼ V�UR�1
uuRuv: We find, different from maximum likelihood, that the asymptotic dis-

tribution of the one-step CUGMM estimator depends on the initial estimator. As

N�1=2tr R�1
uu ZPþ V?ð Þ0 PZ�aINð ÞU

n o
¼ N�1=2vec ZPþ V?ð Þ0 R�1

uu � PZ�aINð Þ� �
vec Uð Þ

�a N 0; 1� a2ð Þtr R�1
uu Qþ kRvvju
� �n o� 	

;

we find in particular, when b̂0 ¼ b̂1 ¼ b̂CUGMM; that

N1=2 b̂CUGMM�b
� 	

¼
tr R�1

uu ZPþ V?ð Þ0 PZ�aINð ÞU
n o

1� að Þtr R�1
uuQ

� � þ op 1ð Þ�a N 0; vMLð Þ;

as in (9). This shows that the fully iterated estimator, b̂CUGMM; has the same many-instruments
asymptotic distribution as the one-step ML estimator. However, when b̂0 ¼ b; the infeasible esti-
mator b̂1 has a different asymptotic distribution. It shows that the claim of WP that ~b as defined
in (8) and b̂ML have the same asymptotic distribution is nontrivial. A similar claim about
CUGMM would be wrong.
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5. P-CIVE

Consider a single regressor. Let ~z ¼ vecfCZðkÞðZPþ V?Þg be a single infeasible instrument. As
~z is independent of u; we find N�1=2~z 0ðR�1

uu � INÞu�a Nð0; vÞ; where u ¼ vecðUÞ and

v ¼ plim
n!1

~z 0Var�1 uð Þ~z
N

� 

¼ plim

n!1

tr R�1
uu ZPþ V?ð Þ0C2

Z kð Þ ZPþ V?ð Þ
n o

N

 !

¼ tr R�1
uu Qþ kRvvju
� �n o

:

Furthermore, ~z 0ðR�1
uu � INÞx=N ¼ trðR�1

uuQÞ þ opð1Þ: Consequently, we find that the infeasible
estimator ~b ¼ ð~z 0ðR�1

uu � INÞxÞ�1~z 0ðR�1
uu � INÞy satisfies N1=2ð~b�bÞ�a Nð0; vMLÞ; where vML is

given in (9) and

vML ¼ plim
n!1

x0 R�1
uu � IN

� �
~z ~z 0 R�1

uu � IN
� �

~z
� ��1

~z 0 R�1
uu � IN

� �
x

N

 !�1

:

It has the same asymptotic distribution as the one-step ML estimator or the fully iterated
CUGMM estimator.

To make this approach feasible, consider the P-CIVE, (4), which for M¼ 1 amounts to

b̂P�CIVE ¼ �z 0 Û
0
Û

� ��1 � IN

n o
x

h i�1

�z 0 Û
0
Û

� ��1 � IN

n o
y;

�z ¼ vec CZ k̂ð ÞMÛ
�X

n o
;

where Û ¼ Y��X b̂LIML and k̂ ¼ k̂LIML; as described in (3). The difference with the one-step
CUGMM estimator is that PZ in (12) is replaced by CZðk̂Þ :

b̂P�CIVE ¼ tr Û
0
Û

� ��1
�X 0MÛCZ k̂ð ÞY

n o
tr Û

0
Û

� ��1
�X 0MÛCZ k̂ð Þ�X

n o : (14)

In Appendix A.4 we show that N1=2ðb̂P�CIVE�bÞ�a Nð0; vP�CIVEÞ; where vP�CIVE ¼ vML as
given in (9). It can be consistently estimated by (5), which amounts to

v̂P�CIVE ¼ x0 Û
0
Û

� ��1 � IN

n o
�z �z 0 Û

0
Û

� ��1 � IN

n o
�z

h i�1

�z 0 Û
0
Û

� ��1 � IN

n o
x

� ��1

¼ tr �X 0MÛC
2
Z k̂ð ÞMÛ

�X Û
0
Û

� ��1
n o
tr2 �X 0MÛCZ k̂ð Þ�X Û

0
Û

� ��1
n o :

(15)

6. The iterated estimators after convergence

We already found that for T¼ 1 the three one-step estimators ML, CUGMM and P-CIVE coin-
cide if the starting value is given by LIML. Would this also hold true for the iterated estimators if
T> 1? To answer this question we reconsider the first-order conditions. For ML we reformulate
(7), given by

tr Û
0
Û

� ��1
Û

0 �X � Û
0
MZÛ

� ��1
Û

0
MZ �X

n o
¼ 0;

by using
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Û
0
Û

� ��1
Û

0 �X� Û
0
MZÛ

� ��1
Û

0
MZ �X

¼ Û
0
Û

� ��1
Û

0 �X � Û
0
PZÛ Û

0
MZÛ

� ��1
Û

0
MZ �X � Û

0
MZ �X

n o
¼ Û

0
Û

� ��1
Û

0
PZ �X � Û

0
PZÛ Û

0
MZÛ

� ��1
Û

0
MZ �X

n o
¼ Û

0
Û

� ��1
Û

0
PZMÛ

�X � Û
0
PZÛ Û

0
MZÛ

� ��1
Û

0
MZM �X

n o
¼ Û

0
Û

� ��1
Û

0
PZMÛ

�X þ Û
0
PZÛ Û

0
MZÛ

� ��1
Û

0
PZMÛ

�X
n o

¼ ðÛ 0
Û Þ�1

n
IT þ Û

0
PZÛ ðÛ 0

MZÛ Þ�1
o
Û

0
PZMÛ

�X

¼ Û
0
MZÛ

� ��1
Û

0
PZMÛ

�X ;

as

tr Û
0
MZÛ

� ��1
Û

0
PZMÛ

�X
h i

¼ 0: (16)

For CUGMM the first-order condition (11) is

tr Û
0
Û

� ��1
Û

0
PZMÛ

�X
n o

¼ 0: (17)

Using (14) we find iterated P-CIVE satisfies after convergence

tr Û
0
Û

� ��1
Û

0
PZ � trÛ

0
PZÛ

trÛ
0
MZÛ

 !
MZ

( )
MÛ

�X

( )
¼ 0:

As

Û
0

PZ � trÛ
0
PZÛ

trÛ
0
MZÛ

 !
MZ

( )
MÛ

�X ¼

Û
0

PZ þ trÛ
0
PZÛ

trÛ
0
MZÛ

 !
PZ

( )
MÛ

�X ¼ trÛ
0
Û

trÛ
0
MZÛ

 !
Û

0
PZMÛ

�X :

iterated P-CIVE satisfies

tr Û
0
Û

� ��1
Û

0
PZMÛ

�X
n o

¼ 0;

which amounts to the same first-order condition (17) as CUGMM. Therefore, iterated P-CIVE is
equivalent to CUGMM. Furthermore, comparing (16) and (17), ML is equivalent to iterated P-
CIVE if Û

0
Û=N is a scalar multiple of Û

0
MZÛ=N; which occurs asymptotically, or when T¼ 1.

In general, when T> 1, the first-order conditions are not equivalent, so that ML is different from
P-CIVE.

7. Simulations

The performance of the WP estimator, the one-step ML estimator and the P-CIVE estimator is
assessed by means of Monte Carlo simulations. We consider the simulation setup of WP, which
uses the model described in Section 2 with T¼ 2, N¼ 500 and b¼ 1. They vary an endogeneity
parameter x, an instrument strength parameter F and the number of instruments K to create dif-
ferent simulation settings. However, their instrument strength parameter F is too low to properly
reflect the central location of the F-values as they hold in the simulated samples. The difference
is approximately one, so that the parameter value F¼ 3 produces a median of the F statistics that
on average is close to 4, where the bias is less severe when compared to the case where the
median of the F statistics is actually close to 3. Therefore, we follow the approach of Bekker and
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Wansbeek (2016), so that the strength parameter F�; as we use it, is more in agreement with the
actual median value of the F statistics.

The elements of the matrices Z;U and an N�T matrix E are drawn independently from a
standard normal distribution. Let V ¼ xU þ E so that

R ¼ 1 x
x 1þ x2

� �
� I2

� 

:

The matrix P is defined as P ¼ ðpi2; 0Þ0; where i2 is a 2� 1-vector of ones. The value of the

scalar p is determined by F�: We use p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
N ðx2 þ 1ÞðF��1Þ

q
; which solves

F� ¼ E x0 I2 � PZð Þx� �
= 2Kð Þ

E x0 I2 � I2 � PZð Þ� �
x

� �
= 2N � 2Kð Þ ¼

Np2 þ K x2 þ 1ð Þ
K x2 þ 1ð Þ :

for p.4 In order to illustrate how the empirical F-statistics correspond to the specified level F�; we
report the median of the F-statistics for each parameter setting.

We use 16 specifications found for x 2 f1=2; 2g; F� 2 f2; 3; 5; 10g;K 2 f10; 30g:5 For each set-
ting, we simulate 50,000 replications.

For each estimator, we compute the median bias, the length of the range between the 5th and
95th quantile, and the empirical rejection rate of the hypothesis that b¼ 1 with a theoretical sig-
nificance level of 5%. The latter measure requires computation of standard errors. For the WP
and one-step ML estimators, these are based on the formula for the estimated variance of their
estimator as described in their paper,

Table 1. Results of Monte Carlo simulation.

K¼ 10 K¼ 30

x¼ 2 x ¼ 0:5 x¼ 2 x ¼ 0:5

WP 1ML P-CIVE WP 1ML P-CIVE WP 1ML P-CIVE WP 1ML P-CIVE

F� ¼ 2
Median bias (�1000) 59.71 �0.06 0.02 30.78 4.59 4.77 22.14 0.20 0.23 1.85 �0.32 �0.03
90% range (�10) 5.88 4.30 4.29 11.00 11.34 11.31 5.57 2.21 2.21 5.61 5.66 5.66
5% rejection rate 0.258� 0.070 0.070 0.051� 0.049 0.049 0.191 0.052 0.052 0.049 0.046 0.046
Median F 1.96 1.96 1.99 1.98

F� ¼ 3
Median bias (�1000) 4.22 �0.44 �0.39 0.86 �0.59 �0.36 0.45 0.37 0.38 0.34 0.32 0.41
90% range (�10) 2.55 2.62 2.62 5.94 5.98 5.97 1.46 1.46 1.46 3.31 3.31 3.31
5% rejection rate 0.078� 0.056 0.056 0.043 0.045 0.045 0.052 0.052 0.052 0.048 0.049 0.048
Median F 2.95 2.95 2.99 2.98

F� ¼ 5
Median bias (�1000) 0.12 0.11 0.09 0.33 0.29 0.39 0.04 0.04 0.01 �0.17 �0.19 �0.18
90% range (�10) 1.76 1.76 1.76 3.71 3.71 3.71 0.99 0.99 0.99 2.11 2.11 2.11
5% rejection rate 0.051 0.052 0.052 0.045 0.046 0.046 0.051 0.051 0.051 0.048 0.050 0.050
Median F 4.95 4.96 4.98 4.98

F� ¼ 10
Median bias (�1000) �0.06 �0.06 �0.06 0.49 0.47 0.48 0.02 0.02 0.02 0.23 0.23 0.25
90% range (�10) 1.13 1.13 1.13 2.30 2.30 2.30 0.64 0.64 0.64 1.33 1.33 1.33
5% rejection rate 0.049 0.049 0.049 0.047 0.048 0.048 0.050 0.050 0.050 0.050 0.050 0.050
Median F 9.93 9.95 9.98 9.98

Note: Number of replications: 50,000. Fixed parameters N¼ 500, T¼ 2, b¼ 1. Other parameters (F� , x, K) are varied as indi-
cated in the table. “WP,” “1ML” and “P� CIVE” refer to the Wansbeek–Prak, one-step ML and panel CIVE estimators, respect-
ively. Estimated variances for the WP estimator were negative in some replications. These variances were counted as zero
variances, resulting in rejections. Parameter settings for which one or more variances were negative are indicated by a
star (�).

4WP use p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

N�K ð1þ x2ÞF
q

; where F ¼ ðN�KÞR2
Kð1�R2Þ and R2 ¼ p2=ðp2 þ x2 þ 1Þ:

5WP use x 2 f1=2; 2g; F 2 f3; 5; 10g and K 2 f10; 30g:
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v̂} ¼
tr Û

0
Û

� ��1
�X 0 C2

Z k̂ð Þ � k̂PÛ

� 	
�X


 �

tr2 Û
0
Û

� ��1
�X 0CZ k̂ð Þ�X

n o ;

where k̂ ¼ K=ðN�KÞ: This estimator can take on negative values, implying that the standard
error cannot be computed. When this happens, these variances are counted as zero variances,
resulting in rejections. Parameter settings for which one or more variances were negative are indi-
cated by a star (�). For the P-CIVE estimator, the simple standard errors (15) are used.

Results are given in Table 1. We observe that the one-step ML and P-CIVE estimators perform
very similarly. One might conjecture, based on the empirical distributions, that the two estimators
are identical and the differences are due to numerical imprecision. However, the observed differ-
ences between the estimators in 50,000 replications are not only due to numerical imprecision.
The estimators are different, as has been shown in Section 6. They perform well in terms of bias
and inference, with a slight degree of overrejection for x¼ 2. For higher instrument strength,
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Figure 1. Histograms of estimates of b from Monte Carlo simulation on the interval ½0; 2�: Number of replications: 50,000.
Parameter settings: N¼ 500, T¼ 2, b¼ 1, K¼ 10, x¼ 2. Parameter F� is varied as indicated. “WP” and “P-CIVE” refer to the
Wansbeek–Prak and panel CIVE estimator, respectively.
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F� 2 f5; 10g; the WP estimator performs similarly to the other two estimators, but it is increas-
ingly biased for lower settings of F�:

Figure 1 gives insight into the bias of the WP procedure. It contains histograms of the WP
and P-CIVE estimators; we have omitted the one-step ML estimator, because its distribution is
rather similar to the distribution of P-CIVE. However, all estimators are numerically different. In
particular, we have chosen K¼ 10 and x¼ 2 as an example, and F� ¼ 2; 5: We observe that the
WP estimates follow a bimodal distribution when the instruments are weak. This is visual evi-
dence of the issue discussed in Section 3 about the multiplicity of solutions to the first-order con-
dition (7). When instruments are weak, the 2SLS estimator is median biased. This results in the
WP procedure, which uses 2SLS to obtain a starting value, converging to the wrong root with
substantial positive probability.

Interestingly, the inclusion of additional instruments improves the performance of the WP
estimator in most settings. Although the 2SLS estimator is known to be biased for larger numbers
of instruments, the present settings control for F�: As a result the inconsistency of 2SLS does not
increase with K if F� is fixed. That is to say, WP derive the inconsistency as

plim b̂2SLS�b
� 	

¼ atr Rvuð Þ
tr Qð Þ þ atr Rvvð Þ ;

which, in the present setting amounts to

b̂2SLS ¼ bþ
K
Nx

p2 þ K
N 1þ x2ð Þ þ op 1ð Þ ¼ bþ x

x2 þ 1ð ÞF� þ op 1ð Þ:

So, indeed, the inconsistency does not vary with K when F� is fixed. Apparently, this fixed
inconsistency of the starting value of the WP procedure causes the biggest problems when there
are few weak instruments.

Appendix

A.1. Standard errors when T5 1

How do the standard errors of Section 2.2 based on V̂
BW
LIML and V̂ LIML compare? To answer this question, first

observe ðy;XÞA ¼ ðû;MûXÞ; where A is nonsingular,

A ¼ 1 00

�b̂LIML IM

� 

1 � û0X

û 0û
0 IM

0
@

1
A:

As X0CZðk̂LIMLÞû ¼ 0; we find

X0P�ZBW
X ¼ X0CZ k̂LIML

� �
y;Xð Þ y;Xð Þ0C2

Z k̂LIML

� �
y;Xð Þ

n o�1

y;Xð Þ0CZ k̂LIML

� �
X;

¼ X0CZ k̂LIML

� �
û;MûXð Þ û;MûXð Þ0C2

Z k̂LIML

� �
û;MûXð Þ

n o�1

û;MûXð Þ0CZ k̂LIML

� �
X;

¼ X0CZ k̂LIML

� �
MûX 0; IMð Þ û;MûXð Þ0C2

Z k̂LIML

� �
û;MûXð Þ

n o�1

0; IMð Þ0X0MûCZ k̂LIML

� �
X;

PX0CZ k̂LIML

� �
MûX X0MûC

2
Z k̂LIML

� �
MûX

n o�1

X0MûCZ k̂LIML

� �
X

¼ X0P�ZX:

Consequently, V̂
BW
LIML6V̂ LIML:
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A.2. The asymptotic distribution of the one-step ML estimator

The one-step estimator b̂1 ¼ trfAðÛ 0Þg=trfBðÛ 0Þg; where Û 0 ¼ Y��X b̂0 satisfies

N1=2ðb̂1�bÞ ¼ N1=2 trfðÛ 0
0Û 0Þ�1U0 �X�ðÛ 0

0MZÛ 0Þ�1UMZ �Xg
trfðÛ 0

0Û 0Þ�1 �X 0 �X � ðÛ 0
0MZÛ 0Þ�1 �XMZ �Xg

; (A.1)

where b̂0 ¼ bþ OpðN�1=2Þ and so ðb̂0�bÞ2 ¼ opðN�1=2Þ: We have U0U=N!p Ruu;U0MZU=ðN�KÞ!p Ruu;

�X 0 �X=N!p Qþ Rvv and �X 0MZ �X=ðN�KÞ!p Rvv: As Û 0 ¼ U�ZPðb̂0�bÞ�Vðb̂0�bÞ; we also find

Û
0
0Û 0

N
¼ U0U

N
� U0V

N
þ V0U

N

� 

b̂0�b
� 	

þ op N�1=2ð Þ;

Û
0
0MZÛ 0

N � K
¼ U0MZU

N � K
� U0MZV

N � K
þ V0MZU

N � K

� 

b̂0�b
� 	

þ op N�1=2ð Þ;

so, Û
0
0Û 0=N!p Ruu; Û

0
0MZÛ 0=ðN�KÞ!p Ruu and

Û
0
0Û 0

N

 !�1

¼ U0U
N

� 
�1

þ U0U
N

� 
�1
U0V
N

þ V0U
N

� 

U0U
N

� 
�1

b̂0�b
� 	

þ op N�1=2ð Þ;

with a similar expression for ðÛ
0
0MZÛ 0

N�K Þ�1: We thus find

N1=2 Û
0
0Û 0

N

 !�1

� U0U
N

� 
�1

8<
:

9=
; ¼ R�1

uu Ruv þ Rvuð ÞR�1
uu N

1=2 b̂0�b
� 	

þ op 1ð Þ;

N1=2 Û
0
0MZÛ 0

N � K

 !�1

� U0MZU
N � K

� 
�1

8<
:

9=
; ¼ R�1

uu Ruv þ Rvuð ÞR�1
uu N

1=2 b̂0�b
� 	

þ op 1ð Þ:

(A.2)

Consequently, for the denominator of (A.1) we find

tr Û
0
0Û 0

� 	�1
�X 0 �X � Û

0
0MZÛ 0

� 	�1
�X 0MZ �X


 �
!p tr R�1

uuQ
� �

: (A.3)

For the numerator n, say, we have

n ¼ N1=2tr Û
0
0Û 0

� 	�1

U0 �X� Û
0
0MZÛ 0

� 	�1

UMZ �X


 �

¼ N1=2tr U0Uð Þ�1
U0 �X� U0MZUð Þ�1UMZ �X

n o
þ op 1ð Þ:

Under normality we have V ¼ UR�1
uuRuv þ V?; where V? is independent of U: We find

n ¼ N1=2tr U 0Uð Þ�1
U0ZP

� �
þ N1=2tr U0Uð Þ�1

U0 � U0MZUð Þ�1U0MZ

n o
V?

h i
þ op 1ð Þ:

For the first term, we have

N1=2tr U0Uð Þ�1
U 0ZP

� �
¼ tr R�1

uu N�1=2U0ZPð Þ
n o

þ op 1ð Þ
¼ vec0 R�1

uu

� �
N�1=2P0Z0 � IT
� �

vec U0ð Þ þ op 1ð Þ
�a N 0; v1ð Þ;

(A.4)

where v1 ¼ vec0ðR�1
uu ÞðQ� RuuÞvecðR�1

uu Þ ¼ trðR�1
uuQÞ: For the second term, we find

N1=2tr U0Uð Þ�1
U0 � U0MZUð Þ�1U0MZ

n o
V?

h i
¼ vec R�1

uu

� �
N�1=2V?0 � N1=2 N�Kð Þ�1V?0

MZ

� �
� IT

� �
vec U 0ð Þ þ op 1ð Þ

�aN 0; v2ð Þ;
(A.5)

where v2 ¼ ktrfR�1
uu ðRvv � RvuR

�1
uuRuvÞg: As the relevant terms in (A.4) and (A.5) are uncorrelated, we find the

numerator satisfies n�aNð0; v1 þ v2Þ: Together with the result for the denominator in (A.3), this gives the desired
result (9).
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A.3. The asymptotic distribution of the CUGMM estimator

As R̂ ¼ R̂ðb;PÞ ¼ N�1ðU;VÞ0ðU;VÞ and

R̂
�1 ¼ R̂

�1
uu O
O O

 !
þ �R̂

�1
uu R̂uv

IT

 !
R̂vv � R̂vuR̂

�1
uu R̂uv

� 	�1

�R̂vuR̂
�1
uu ; IT

� 	
;

the objective function QGMMðb;PÞ ¼ trfR̂�1ðU;VÞ0PZðU;VÞg can be rewritten as

QGMM b;Pð Þ ¼ tr R̂
�1
uuU

0PZU
� 	

þ tr R̂vv�R̂vuR̂
�1
uu R̂uv

� 	�1

V � UR̂
�1
uu R̂uv

� 	0
PZ V � UR̂

�1
uu R̂uv

� 	
 �
:

The second term on the right-hand side is nonnegative, and for P ¼ P̂ðbÞ ¼ ðZ0ZÞ�1Z0 �X�ðZ0ZÞ�1Z0UR̂
�1
uu R̂uv;

where R̂uv ¼ U0fX�ZP̂ðbÞg=N; it is zero. This amounts to P̂ðbÞ ¼ ðZ0MUZÞ�1Z0MU �X : The resulting concen-
trated objective function is given by

Q bð Þ ¼ tr R̂
�1
uuU

0PZU
� 	

:

The first-order condition for minimizing QðbÞ is given by trfðU0UÞ�1 �X 0MUPZUg ¼ 0:
The one-step estimator in (12) satisfies

N1=2 b̂1�b
� 	

¼ N1=2
tr Û

0
0Û 0

� 	�1
�X 0MÛ 0

PZU


 �

tr Û
0
0Û 0

� 	�1
�X 0MÛ 0

PZ �X


 � ; (A.6)

where Û 0 ¼ Y��X b̂0 and b̂0 ¼ bþ OpðN�1=2Þ; hence ðb̂0�bÞ2 ¼ opðN�1=2Þ: Let again V ¼ UR�1
uuRuv þ V?: As

Û 0 ¼ U�ZPðb̂0�bÞ�Vðb̂0�bÞ we find the following results: NðÛ 0
0Û 0Þ�1 ¼ R�1

uu þ opð1Þ; N�1 �XPZ �X ¼
Qþ aRvv þ opð1Þ and N�1 �X 0PÛ 0

PZ �X ¼ aRvuR
�1
uuRuv þ opð1Þ: Consequently, the denominator of (A.6) satisfies

tr Û
0
0Û 0

� 	�1
�X 0MÛ 0

PZ �X


 �
¼ tr R�1

uu Qþ aRvvju
� �n o

þ op 1ð Þ: (A.7)

For the numerator of (A.6), nGMM; we find

nGMM ¼ N1=2tr Û
0
0Û 0

� 	�1
�X 0MÛ 0

PZU


 �
¼ tr R�1

uu N
�1=2 �X 0MÛ 0

PZU
n o

þ op 1ð Þ:
Furthermore, using (A.2),

N�1=2 �X 0PZU ¼ N�1=2 ZPþ V?ð Þ0PZU þ N�1=2RvuR
�1
uuU

0PZU;

N�1=2 �X 0PUPZU ¼ N�1=2 ZPþ V?ð Þ0PUPZU þ N�1=2RvuR
�1
uuU

0PZU

¼ aN�1=2 ZPþ V?ð Þ0U þ N�1=2RvuR
�1
uuU

0PZU þ op 1ð Þ;
N�1=2 �X 0PÛ 0

PZU ¼ N�1=2 �X 0Û 0 U0Uð Þ�1
Û

0
0PZU

þ
�X 0Û 0

N

� 

R�1
uu Ruv þ Rvuð ÞR�1

uu
Û

0
0PZU
N

 !
N1=2 b̂0�b

� 	
þ op 1ð Þ

¼ N�1=2 �X 0PUPZU�a Qþ Rvv�RvuR
�1
uuRvu

� �
N1=2 b̂0�b

� 	
þ aRvuR

�1
uu Ruv þ Rvuð ÞN1=2 b̂0�b

� 	
þ op 1ð Þ

¼ N�1=2 �X 0PUPZU�a Qþ Rvv�RvuR
�1
uuRuv

� �
N1=2 b̂0�b

� 	
:

For the numerator we thus find

nGMM ¼ N�1=2tr R�1
uu ZPþ V?ð Þ0 PZ�aINð ÞU

n o
þ atr R�1

uu Qþ Rvvju
� �n o

N1=2 b̂0�b
� 	

þ op 1ð Þ:
Combining this with (A.7) gives the desired result in (13).
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A.4. The asymptotic distribution of the P-CIVE estimator

Concerning the P-CIVE estimator (14)

b̂P�CIVE ¼
tr Û 0Ûð Þ�1 �X 0MÛCZ k̂ð ÞY
n o

tr Û 0Ûð Þ�1 �X 0MÛCZ k̂ð Þ�X
n o ; (14)

where k̂ ¼ kþ opðN�1=2Þ; we find similar to the steps made following (A.6), that N�1 �XCZðk̂Þ�X ¼ Qþ opð1Þ and
N�1 �X 0PÛCZðk̂Þ�X ¼ opð1Þ: Consequently, the denominator of (14) satisfies

tr Û
0
Û

� ��1
�X 0MÛCZ k̂ð Þ�X

n o
¼ tr R�1

uuQ
� �þ op 1ð Þ: (A.8)

For the numerator of (14), nP�CIVE; we find

nP�CIVE ¼ N1=2tr Û
0
Û

� ��1
�X 0MÛCZ k̂ð ÞU

n o
¼ tr R�1

uu N
�1=2 �X 0MÛCZ kð ÞU

n o
þ op 1ð Þ:

Furthermore, using (A.2),

N�1=2 �X 0CZ kð ÞU ¼ N�1=2 ZPþ V?ð Þ0CZ kð ÞU þ N�1=2RvuR
�1
uuU

0CZ kð ÞU;

N�1=2 �X 0PUCZ kð ÞU ¼ N�1=2 ZPþ V?ð Þ0PUCZ kð ÞU þ N�1=2RvuR
�1
uuU

0CZ kð ÞU
¼ N�1=2RvuR

�1
uuU

0CZ kð ÞU þ op 1ð Þ;
N�1=2 �X 0PÛCZ kð ÞU ¼ N�1=2 �X 0Û U0Uð Þ�1

Û
0
CZ kð ÞU

þ
�X 0Û
N

� 

R�1
uu Ruv þ Rvuð ÞR�1

uu
Û

0
CZ kð ÞU
N

 !
N1=2 b̂LIML�b

� 	
þ op 1ð Þ

¼ N�1=2 �X 0PUCZ kð ÞU þ op 1ð Þ:
For the numerator we thus find

nP�CIVE ¼ N�1=2tr R�1
uu ZPþ V?ð Þ0CZ kð ÞU

n o
þ op 1ð Þ:

Combining this with (A.8) gives the desired result in N1=2ðb̂P�CIVE�bÞ�a Nð0; vP�CIVEÞ; where vP�CIVE ¼ vML

as given in (9). Finally,

tr �X 0MÛC
2
Z k̂ð ÞMÛ

�X Û 0Ûð Þ�1
n o

¼tr R�1
uu Qþ kRvvju
� �n o

þ op 1ð Þ;

tr �X 0MÛCZ k̂ð Þ�X Û 0Ûð Þ�1
n o

¼tr R�1
uuQ

� �þ op 1ð Þ;
and so v̂ML as defined in (15) is many-instruments consistent for vP�CIVE:
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