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ABSTRACT KEYWORDS

In the construction of the GMM version of the Anderson and Rubin (AR) Anderson and Rubin test;
test statistic there is the choice to use either uncentered or centered centering; degrees-of-
moment conditions to form the weighting matrix. We show that, when the  freedom; generalized
number of moment conditions is moderately large, the centered GMM-AR method of moments
test is oversized. At the same time, the uncentered version becomes con- JEL CODES
servative at conventional significance levels. Using an asymptotic expan- C12; C21; C26

sion, we point to a missing degrees-of-freedom correction in the centered

version of the GMM-AR test, which implicitly incorporates an Edgeworth

correction. Monte Carlo experiments corroborate our theoretical findings

and illustrate the accuracy of the degrees-of-freedom corrected, centered

GMM-AR statistic in finite samples.

1. Introduction

The Generalized Method of Moments (Hansen, 1982) is a commonly employed procedure to esti-
mate and test the parameters of econometric models. A main reason for using GMM is that it
provides asymptotically efficient inference exploiting a minimal set of statistical assumptions.
Despite the optimal asymptotic properties of GMM estimators and corresponding Wald test statis-
tics, their behavior in finite samples can be rather peculiar due to the weakness of moment condi-
tions. In case of weak identification, GMM coefficient estimators are biased and corresponding
Wald-type tests perform poorly (Stock and Wright, 2000). To overcome the aforementioned prob-
lems, identication-robust GMM statistics can be used (Kleibergen, 2005; Newey and Windmeijer,
2009; Stock and Wright, 2000), which are based on the continuous updating GMM objective func-
tion. The main advantage of these identification-robust statistics is that, unlike conventional
Wald-type inference, their limiting (%) distributions do not rely on the identification strength.

In this study we analyze the finite sample properties of the GMM version of the Anderson
and Rubin (1949) test statistic, henceforth labeled as GMM-AR. Proposed by Stock and Wright
(2000), the identification-robust GMM-AR statistic is based on the continuous updating GMM
objective function. In the construction of the GMM-AR test statistic there is the choice to use
either uncentered or centered moment conditions to form the weighting matrix. Table 1 provides
a nonexhaustive overview of the recent literature exploiting, among other things, either the
uncentered or centered version of the GMM-AR statistic. When the number of moment condi-
tions is fixed or moderately large, the choice for centering does not matter asymptotically.
However, in finite samples it affects inference and this is the purpose of this study.

CONTACT Helmut Farbmacher @ farbmacher@mpisoc.mpg.de @ Munich Center for the Economics of Aging, Max Planck
Society, Germany.
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Table 1. Definition of the weighting matrix.

Centered
Hansen et al. (1996); Stock and Wright (2000); Stock et al. (2002); Kleibergen (2005); Antoine et al. (2007); Kleibergen and
Mavroeidis (2009); Caner (2009); Li and Xiao (2012); Hayakawa and Pesaran (2015); Kleibergen (2019)

Uncentered

Donald and Newey (2000); Donald et al. (2003); Newey and Smith (2004); Bond and Windmeijer (2005); Guggenberger and
Smith (2005); Han and Phillips (2006); Antoine et al. (2007); Guggenberger (2008); Windmeijer (2008); Newey and
Windmeijer (2009); Wright (2010); Hausman et al. (2011); Caner and Yildiz (2012); Caner (2014)

We show analytically that the centered GMM-AR test using common y? critical values
becomes oversized when the number of moments increases. At the same time the uncentered ver-
sion becomes conservative at conventional significance levels. The former corroborates the simu-
lation results of Kleibergen and Mavroeidis (2009) and Hayakawa and Pesaran (2015), who both
use the centered GMM-AR statistic and report large size distortions when the number of moment
conditions increases. The latter theoretical finding has to our knowledge not been explicitly
noticed before. Newey and Windmeijer (2009) show that, when the number of moment condi-
tions is relatively small compared to the sample size, the uncentered GMM-AR statistic remains
size correct asymptotically. However, their simulation results also show that the uncentered
GMM-AR tends to underreject as the number of moments increases.

We propose a degrees-of-freedom correction for the centered GMM-AR test which markedly
improves its finite sample properties. To substantiate our degrees-of-freedom correction, we
derive an asymptotic expansion of the GMM-AR test and obtain an Edgeworth approximation of
its finite sample distribution using results from Kleibergen (2019). It turns out that the modified
centered GMM-AR statistic implicitly incorporates an Edgeworth correction and therefore follows
a y* distribution more closely relative to the centered AR statistic without degrees-of-freedom
correction or the uncentered AR statistic. We focus on a setup in which the number of moments
(m) is either fixed or just moderately large with respect to the sample size (1) such that m*/n — 0,
which corresponds to the many moments setup of Newey and Windmeijer (2009).

We obtain a more accurate understanding of the extent to which the centering of the weight-
ing matrix and the degrees-of-freedom correction influence the size of the GMM-AR test through
Monte Carlo simulations. As long as the number of moment conditions (m) is small compared to
the number of observations, the difference between a centered and uncentered definition of the
weighting matrix is negligible. In applications where m becomes moderately large, however, the
choice between these definitions is essential. We observe substantial differences in the actual size
of the test statistics, which may point to conflicting inferences in practice. Furthermore, we find
that the degrees-of-freedom corrected, centered GMM-AR statistic is size correct for both small
and moderately large number of moment conditions.

In the next section we discuss the different definitions of the GMM-AR test and propose our
degrees-of-freedom correction. In Section 3 we provide theoretical results to substantiate our cor-
rection. Section 4 shows Monte Carlo simulation results to illustrate our theoretical findings.
Section 5 concludes.

2. Model and test statistics

To describe the model, let w; (i = 1, ..., n) be independent and identically distributed observations of
a data vector w. g(w, B) = (g1(w, B), ..., gm(w, B))" is an m x 1 vector of functions of w and a p x 1
vector of parameters, 5, where m > p. fyis a p x 1 vector of true parameters satisfying the moment
conditions

E[g(wi, )] =0 . (1)
We want to test the null hypothesis Hy : f = f§, using the Anderson and Rubin (1949) test. In
case of a linear model, i.e. g(w;, fy) = zi(y; — x.f,), and imposing homoskedasticity, the IV-AR



1044 M. J. G. BUN ET AL.

test statistic is defined as

W' Pyu

ARy = ———
v WMzu/(n —m)

()
where Z is an n X m matrix containing the instrumental variables and u = y — Xf, with X a n x p
matrix containing the endogenous regressors. P; = Z(Z’Z)_IZ’,MZ = I, — Pz and I, the identity
matrix of dimension n. To the best of our knowledge, there is only this definition in the IV setup,
which has been used for instance by Anderson and Rubin (1949), Staiger and Stock (1997) or
Bekker and Kleibergen (2003).

When the number of instruments is small, the IV-AR statistic is asymptotically y? distributed.
In case of many instruments, alternative asymptotic approximations are available. Andrews and
Stock (2007) consider the linear IV model, but allow for moderately many instruments
(m*/n — 0) and show that the IV-AR statistic is normally distributed in this setup. Anatolyev
and Gospodinov (2011) consider a setup in which the number of instruments grows at the same
rate as the sample size such that m/n — u with 0 < <1, and propose a many instrument
modification for the IV-AR statistic.

While there exists only one IV-AR statistic, there are two versions of the GMM-AR test in the
literature. The first version uses a weighting matrix which is based on uncentered moments

Q) =n"" Zg:‘(ﬁ)&‘(ﬁ)/ , (3)

where g;(f}) = g(w;, ). The second version exploits a weighting matrix based on centered moments

n

Q) =n"">_ [ah) —2(P][gi(B) — (B = Q(B) — &R (B) - @
i=1
where g(f) =n"' Y7, g(p). Table 1 provides a nonexhaustive overview of studies using, among
other things, either uncentered or centered GMM-AR statistics.
In this study we also consider a third GMM-AR statistic, which is based on the centered
weighting matrix, but including a degrees-of-freedom correction. More specifically, we consider

n

Q) =(n—m=2)"">" [a(B) —&(B)][(B) - 2B - ®)

i=1

Apart from the “-2”-term, this definition is also in line with the IV-AR test statistic, see Eq. (2),
which also contains a degrees-of-freedom correction. The “~2”-term, which is negligible in large
samples, originates from an Edgeworth approximation to the finite sample distribution, see
Proposition 2 below. The IV-AR statistic in (2) does not include the “-2”-term because under

normality ARpy /m has an F-distribution and, hence, provides an exact finite-sample test
(Anderson and Rubin, 1949; Bekker and Kleibergen, 2003).
The corresponding GMM-AR test statistics are defined as

AR =n g(BYQB)'2(B) »
AR =n g(B)Q(B)"'g(B) , (6)
ARy =n Z(B)Qur(B)'2(B) -
Although asymptotically negligible for a small or moderately large number of moments, the
degrees-of-freedom correction matters in finite samples, as we shall see. To the best of our know-
ledge, ﬁdf has not been used in the literature so far. In the next section we provide the theoret-
ical background for this implementation.
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3. Theoretical results

In the following we motivate our degrees-of-freedom correction for the centered GMM-AR statis-
tic in several ways. First, we provide an algebraic connection between centered and uncentered
GMM-AR test statistics by drawing parallels with basic Wald and Lagrange Multiplier test statis-
tics. Second, we provide guidance on how to choose between the different versions of the GMM-
AR test using higher-order asymptotic results.

3.1. Algebraic connections

Let G(B) = [g1(B),...gn(B)] and i be an n x 1 vector of ones. Thus, g(f) = G(B)i/n and
Q(B) = G(B)'G(f)/n. In the following we will suppress the dependence of G on f. Consider the
auxiliary regression

i=Gy+te )

with = (G'G)™'G'i, prediction i = G(G'G)'G'i and é = i — i. The total sum of squares can be
partitioned into the explained and the residual sum of squares as follows
fi=1i+ee
A NP7 (8)
—1=7ii/li+ee/ii,
where &'¢/i'i = ¢'e/n = 62 and
nR? =1ii=1G(GG) 'GG(GG)'Gi
=n iG/n(G'G/n)""Gi/n 9)
=n 2(B'QB)'g(B) =nQ .
Thus, Q, which is the criterion function of the continuous updating estimator (CUE), is also the
coefficient of determination (R?) in Eq. (7). The uncentered GMM-AR test, which is defined as AR =
nQ, can therefore be interpreted as a Lagrange Multiplier (LM) test of joint significance of ;.
The centered GMM-AR test is linked to the uncentered one in the following way
—~ AR
1—AR/n
A similar link between the centered and uncentered criterion function of the CUE has already been
established in Newey and Smith (2004) and Antoine et al. (2007). Note that the centered GMM-AR
statistic can be interpreted as a Wald statistic of joint significance of 7." The finite sample behavior of
uncentered and centered AR statistics thus differs in the same way that LM statistics differ from

(10)

Wald tests in finite samples. In particular, AR has a larger rejection frequency in finite samples than

AR due to the well-known fact that the Wald and LM statistics in linear models satisfy the inequality
W > LM (see Berndt and Savin, 1977; Breusch, 1979; Newey and West, 1987).

Having established the link between the centered AR statistic and the Wald statistic, we can
use the knowledge about the finite-sample behavior of the Wald test to improve the small sample
properties of the AR statistic. Usually, Wald statistics contain a degrees-of-freedom correction to
correct the bias in the estimator of the inverse of > (see, e.g., Evans and Savin, 1982). While 62
is an unbiased estimator of the population variance, 1/G2 is a biased estimator of the inverse of
the population variance. Under normality an unbiased estimator would be (n—m)/(n 62) (see

Define W = \/n(y — 0)Var(v/ny)'vn(3 —0) with Var(ynj) = 62(G'G/n)"". It follows that W =ni/G(G'G)"
(GG/n)(GG) " Gi/62 =AR/(1 —AR/n) .
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Lemma 7.7.1 in Anderson, 2003) and the resulting AR statistic would be ((n —m)/ n)AR, which
is just slightly different from our definition of Xfidf in Eq. (6). Under normality we therefore

expect ﬁdf to perform better in finite samples than AR in the same way we expect a Wald test
with degrees-of-freedom correction to perform better than without correction. Below we will

show that Xl/de is more accurate in finite samples than AR even in case of non-normality.

3.2. Asymptotic results
For the asymptotic analysis we assume throughout that the following conditions hold

Assumption 1.

(i) gi(B,) is independent across i;

(ii) the eight order moments of g;(f,)are finite.
Assumption 2.a. as n — 0o, m is finite.

Assumption 2.b. as n — oo, mE[||gi([30)||4]/n — 0.

The existence of eight order moments in Assumption 1 is stronger than necessary to obtain
the limiting y* distribution of the GMM-AR statistic, but is needed to derive the higher-order
expansions later on (Kleibergen, 2019). Assumption 2.a is the standard case of a fixed number of
moment conditions, while Assumption 2.b is equal to the many weak moments setup in Newey
and Windmeijer (2009) in which the number of moment conditions grows slowly with the sam-
ple size. In particular, it allows for a moderately large number of moment conditions in the sense
that m*/n — 0. Occasionally we will use this many moments setup, but most results in this sec-
tion have been derived under fixed m asymptotics.

In simulation studies typically the uncentered GMM-AR statistic is shown to have control over
size, i.e. actual rejection frequencies do not exceed the nominal significance level (e.g. Newey and
Windmeijer, 2009). In contrast, some studies (Hayakawa and Pesaran, 2015; Kleibergen and
Mavroeidis, 2009) report large size distortions for the centered GMM-AR statistic. We therefore
first analyze the difference between centered and uncentered GMM-AR statistics.

Proposition 1 quantifies, in expectation, the difference between centered and uncentered AR
statistics. Part A analyzes the setting in which the number of moment conditions (m) is fixed,
while Part B allows m to grow but at a slower rate than the sample size.

Proposition 1.
Part A: Under Assumptions 1 and 2.a, we have under H,

m? +2m

E[ﬁ{—ﬁ] = +0(n™2).

Part B: Under Assumptions 1 and 2.b, we have under H,
AR — AR = % (ng'Q7'8)* + o, (%)

where 1 (ng'Q7'g)* = 0, (%) with
E B (ng’Q—lg)z} _mtom o(m—z).

n

Proof. See Appendix A.1.
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In both settings the leading term in the approximation of the difference has the same expected
value equal to ”ﬂ% For small m the difference between uncentered and centered GMM-AR is
relatively small. For example, when n =100 and m =3 we have @nm = 0.15, whereas for m =20
we have "’Zanm = 4.4, which is already roughly a quarter of the expectation of the uncentered
GMM-AR statistic. The Monte Carlo simulations in Section 4 will demonstrate that, for moder-
ately large m, the approximation of Proposition 1 captures a large fraction of the differences in
mean between centered and uncentered AR statistics.

For the rest of the asymptotic analysis we focus on the case where the number of moment
conditions (m) is fixed. Subsequently, the degrees-of-freedom correction of the centered GMM-
AR statistic is compared to the uncentered GMM-AR statistic.

Corollary 1.
Under the assumptions of Proposition 1, Part A, we have under H,

E|ARy — AR = O(n™?).

Proof. See Appendix A.1.

From Corollary 1 we infer that, compared to the difference between AR and AR statistics, the
degrees-of-freedom correction removes the O(n!) term in Proposition 1. Especially when m is
not very small compared to n, this is going to matter for inference.

Although the three GMM-AR test statistics in (6) are asymptotically equivalent (if m is fixed),
it is clear that their finite-sample behavior differs and thus may lead to conflicting inferences in
practice. Because gfidf is in expectation much closer to AR than to AR, it is expected that the
degrees-of-freedom correction is effective in reducing the size distortion of the centered GMM-
AR statistic. To obtain a more accurate understanding of the extent to which the finite-sample
performance of the discussed tests is affected, a higher-order asymptotic expansion is derived
under the following additional assumptions.

Assumption 3. Cramer condition: for a m-dimensional vector ¢ € R™, it holds that

lim sup|Elexp (it'y)]| < 1,

[t =00
where \/% S 8i(Bo) B

Assumption 4. g;(f;) is symmetrically distributed.

Assumption 3 is necessary for the Edgeworth approximation to hold (Kleibergen, 2019), while
Assumption 4 removes its dependence on odd moments. This yields the following results.

Proposition 2. Under Assumptions 1, 2.a, 3 and 4, we have under H,

m-+ 2

Pr[ﬂ < x} =Pr. [x - x} +o(n™1),

n—m-—2—~— 1
Pr|———=AR < x| = Prpz [x] + o(n71),
n m

—~ nx _1
Pr|[AR< ——————| =Prp [x] +o(n7!),
n—m-—2+x "

where Pr, [x] is the distribution of a y%, distributed random variable evaluated at x.
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Figure 1. lllustration of Proposition 2 for centered GMM-AR test.
Proof. See Appendix A.2.

Proposition 2 shows that the centered AR statistic is size distorted up to order O(n~') when using
asymptotic critical values from the 2, distribution. More importantly, the size distortion is increasing in
the ratio m/n. We illustrate this result in Fig. 1, which shows the size distortion for various values of m
with n=100. The x-axis represents the number of moment conditions and the y-axis shows the
rejection frequency of the centered GMM-AR statistic according to the Edgeworth approximation from
Proposition 2. The nominal significance level « is set equal to 0.05. It is clearly seen that for all values of m
the centered GMM-AR test rejects the null hypothesis too often and that the size distortion increases in .

Proposition 2 implies that, for given m, the uncentered AR statistic is likely to be conservative
at conventional levels of significance. We illustrate this in Fig. 2a for m =10 using a p-value plot.
The x-axis of the p-value plot represents the nominal significance level o and the y-axis represents
the rejection frequency of the uncentered GMM-AR statistic derived from Proposition 2. Hence,
dots below the diagonal indicate conservative test results. In this example the uncentered GMM-
AR statistic is size correct only for a nominal significance level equal to 0.29, while the test
underrejects at lower significance levels.” Additionally, Proposition 2 implies that, for a given sig-
nificance level, the uncentered GMM-AR statistic is getting increasingly conservative for larger m.
Fig. 2b depicts this for the conventional significance level o = 0.05.

Finally, Proposition 2 shows that our degrees-of-freedom correction, which is straightforward to
implement, solves the size distortion of the centered AR statistic and does not suffer from the under-
rejection of the uncentered AR test. These theoretical results justify the use of a degrees-of-freedom
correction of the centered GMM-AR statistic as an implicit Edgeworth correction. It explains the
superior behavior of A\Rdf reported in the Monte Carlo simulations of Section 4, as we shall see.

Note that the assumption of a symmetrical distribution has been used to show the effectiveness
of the proposed degrees-of-freedom correction. In principle, Proposition 2 can be generalized to
accommodate skewed distributions, but it will depend on the uneven moments of the distribution
of the sample moment conditions.

4. Simulation results

In the following we analyze the finite sample performance of the three versions of the GMM-AR
statistic by conducting a series of Monte Carlo simulations for linear and nonlinear models. First,

2Let x denote the 1 — o quantile of a ¥2, distribution. According to Proposition 2 the uncentered GMM-AR test has correct size
only if nx/(n —m —2+x) = x. Given that x>0, this means that the uncentered GMM-AR statistic attains the nominal
significance level only if x = m + 2 and becomes conservative when x > m + 2.
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Figure 2. lllustration of Proposition 2 for uncentered GMM-AR test. (a) p-value plot for m = 10. (b) Actual size for o = 0.05.

the linear model is discussed and subsequently the simulation results for a nonlinear specification
are reported. Both settings are such that Assumptions 1-4 hold. Therefore, under the null
hypothesis we expect the centered GMM-AR test to overreject, the uncentered GMM-AR test to
underreject, and the degrees-of-freedom corrected, centered GMM-AR test to be size correct.

The design of the linear model is

yi = Boxi + u;,
Xi = zZ,m+ v;,

u = pvi ++/1— p*w,

cp
v; ~ N(0,1),w; ~ N(0,1),n = lm

where 1,,, is an m-vector of ones. Without loss of generalization we assume that x has no causal
effect on y (i.e., S, = 0) and the constant is set to zero as well. The sample size # is set to either
100 or 1,000, while the degree of endogeneity p is set to 0.5. The asymptotic first-stage F statistic
(F>) is fixed at 1, which implies that the set of instruments is equally weak with varying number
of moment conditions. The concentration parameter CP = F* - m is then equal to m. The num-
ber of replications for each experiment is 10,000.

Table 2 shows the simulation results of the three GMM-AR statistics for the linear model. For
varjous values of m and n we report the mean and 95% percentile of the sampling distribution of
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Table 2. Simulation results for GMM-AR test (linear model).

AR AR ARy
m Mean p95 RF Mean p95 RF Mean p95 RF
n=100
3 298 7.45 0.042 3.13 8.05 0.055 3.04 7.80 0.050
5 498 10.41 0.038 535 11.62 0.062 5.08 11.04 0.049
10 9.96 17.00 0.029 11.28 20.49 0.091 10.15 18.44 0.052
20 20.05 28.74 0.015 25.58 40.32 0.216 20.46 32.26 0.061
n=1,000
3 3.06 8.04 0.054 3.07 8.11 0.056 3.06 8.08 0.055
5 5.03 11.02 0.049 5.07 11.14 0.052 5.04 11.08 0.050
10 10.02 18.23 0.049 10.14 18.56 0.054 10.04 18.38 0.051
20 19.95 30.89 0.044 20.39 31.87 0.055 19.99 31.23 0.048
30 30.18 43.18 0.043 31.18 45.13 0.070 30.24 43.77 0.050
40 39.90 54.54 0.039 41.63 57.69 0.072 39.97 55.38 0.047

Note: p = 0.5; F*° = 1; 10,000 replications. Rejection frequencies (RF) for Hy : f = f,.
Nominal significance level 5%. The asymptotic critical values are ;3 =7.81,72 =11.07, 53, =18.31,3, = 31.41, 3, =
43.77, %, = 55.76.

Table 3. Simulation results for GMM-AR test (nonlinear model).

AR AR ARy
m Mean p95 RF Mean p95 RF Mean p95 RF
n=100
3 2.95 739 0.041 3.10 7.98 0.053 3.01 7.74 0.048
5 4.93 10.29 0.035 5.29 11.47 0.059 5.02 10.90 0.046
10 9.97 17.08 0.031 11.29 20.60 0.091 10.16 18.54 0.053
20 19.98 28.74 0.015 25.47 40.33 0.214 2038 32.26 0.059
n=1,000
3 2.99 7.90 0.052 3.00 7.97 0.053 299 7.94 0.052
5 5.00 11.04 0.049 5.03 11.17 0.052 5.01 1.1 0.051
10 10.12 18.39 0.052 10.24 18.73 0.056 10.14 18.55 0.054
20 20.06 30.65 0.040 20.51 31.62 0.053 20.10 30.98 0.044
30 29.94 42.78 0.041 30.93 44.70 0.062 30.00 4336 0.047
40 40.07 55.00 0.041 41.82 58.21 0.075 40.15 55.88 0.051

Note: p = 0.5; F*° = 1; 10,000 replications. Rejection frequencies (RF) for Hy : f = f,.
Nominal significance level 5%. The asymptotic critical values are reported in Table 2.

each of the three test statistics. Furthermore, we calculate the actual rejection frequency (RF) of
nominal 5% tests.

For small to moderate m/n the approximation in Proposition 1 captures a large fraction of the
differences in mean as reported in Table 2. When n=100 and m =10, for example, we have
"ﬂ% = 1.2, and the observed mean difference is 1.32 . For m =20 this is ’”Z;nzm = 4.4, and the
observed mean difference is 5.53 .

While the averages of the GMM-AR statistic based on the uncentered weighting matrix (AR)
approach the large sample mean of a y?, distributed random variable, their 95% percentiles are
smaller than the corresponding asymptotic values (displayed below Table 2). Therefore, the
uncentered GMM-AR statistic becomes more and more conservative with respect to the nominal
significance level. In the small sample setting (n=100) with many instruments (m =20) the
actual rejection frequency is around 0.015 although the nominal significance level is set to 0.05.
On the other hand, the centered GMM-AR test (AR) overrejects more and more severely when m

increases (the actual size is around 0.216 for m =20 and n=100). AR does not contain a
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degrees-of-freedom correction and therefore its actual size deteriorates when the number of
moment conditions becomes large relative to the sample size, as predicted by Proposition 2.

The GMM-AR statistic (Zl\l/ldf), which uses the degrees-of-freedom correction, is on average slightly
larger than the large sample mean of a y?, distributed random variable but its 95% percentile is very

close to the asymptotic value. Reflecting this, the actual size of a test based on le%df is quite close to the
nominal size. Even in samples where the number of instruments (m = 20) is relatively large compared
to the number of observations (n = 100), the actual rejection frequency is around 0.061.

For the nonlinear specification we replace the linear index by exp (f,x;), set f, =1, and let u;
still be normally distributed. The results are very similar in our nonlinear specification (see Table 3).
The uncentered GMM-AR statistic tends to underreject and the centered GMM-AR statistic without
degrees-of-freedom correction tends to overreject, corroborating the theoretical results. This pattern
becomes more distinct when the number of moment conditions increases with respect to the sample

size. The GMM-AR statistic (ﬁdf), which uses the degrees-of-freedom correction, performs very well
in this setting with actual size close to the nominal size.

5. Conclusion

In the construction of the GMM version of the Anderson and Rubin (1949) test statistic there is the
choice to use either uncentered or centered moment conditions to form the weighting matrix. Our ana-
lytical and simulation results show that the centered GMM-AR test becomes oversized if the number of
moments is moderately large, while the uncentered version is conservative. These size properties of the
GMM-AR test statistic based on the uncentered or centered weighting matrix resemble the behavior of
Lagrange multiplier or Wald test statistics without degrees-of-freedom correction.

Exploiting asymptotic expansion techniques, we derive a degrees-of-freedom correction in the cen-
tered version of the GMM-AR test, which implicitly incorporates an Edgeworth correction. Monte Carlo
experiments corroborate our theoretical findings and illustrate the accuracy of the degrees-of-freedom
corrected centered GMM-AR statistic in finite samples. Based on our findings, we recommend to use the
centered GMM-AR test with the degrees-of-freedom correction in applied research. If controlling the size
is the main aim, then using the conservative, uncentered GMM-AR test is a viable alternative.

A. APPENDIX

A.1.  Proof of Proposition 1

Proof of Part A: We suppress the dependence of AR,AR, Q, Q and g on f, and Y, is short for S .
Kleibergen (2019) develops an asymptotic expansion of the centered AR statistic by replacing the covariance matrix
estimator Q in the construction of AR by the following Taylor expansion around the true value f,

Qo '—a'-ola-qa!

+071(Q -0 Q- +o,(n). N
The order of the remainder term follows from the \/n convergence rate of the covariance matrix estimator, ie. Q — Q =
0, (n~1/2). Substituting this in the centered AR statistic, we obtain under Hy : # = f3, the following higher-order expression

AR =ng'Q 'g —ng'Q Q- Q)Q '
+ng'Q7HQ - Q)Q7HQ — Q07§ + 0, (n ")
:ﬁo +1ﬁ1 +A\1/22 + Op(nil)-

3 The rejection frequencies in the Monte Carlo simulations closely follow the patterns in Figs. 1 and 2 indicating the accuracy
of Proposition 2 in finite samples. These results are available from the authors upon request.
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Theorem 1 of Kleibergen (2019) furthermore shows that
E[E{o] =m,
~1_ 1 1 \2 m 1, , D)
E[AR,] = f;E[(gth %) } + -t~ + 2m) + 0(n ™),
E[ﬁz] = %E[(gfﬂflgi)z} - % + %E[gﬁQ’lgiy,-} Q’IE[gig,fQ’ng +0(n™2).
Combining terms this results in
ElAR] = m + % (m?+2m + E[gQ g ] Q' E[gigQ 'g]) + 0(n~2).

We develop an analogous result for the uncentered AR statistic by replacing the covariance matrix estimator { in

the construction of AR by the following Taylor expansion around the true value f,

Q' =0'-al@-0a!
+ 070 - Q- +0,(n7).
Substituting this in the uncentered AR statistic, we obtain under Hy : f = f§, the following higher-order expression
AR =ng'Q g — ng' @ 1 (Q — Q)Q g
+ng' 07 Q - Q)OHQ - Q)7 +0,(n7Y)
= ARy + AR, + AR, + 0,(n7").

The leading term in the expansion ARy is equal to the leading term /21720 in the expansion of the centered AR stat-
istic, and we have E[AR,| = m. Regarding the higher-order terms AR; and AR, we find under Assumption 1

sl = e[ L Y g0 Y (o, —Q)leg@}
1 5] 13
N YLD YIED VAR VLR ¥
i iy i3 iy i3

(1 _ _ 1 _ _
AP P A F AT R DB A e
il

+E

—E +E

%Zgﬁ. Qg
P

it i#i

= n(n—1) m— %E[(g}Q’lg,-)z] +m

n2

m

== %E[(giﬂ"gi)2]>

plak,]) - [;Zg;sz‘ > (e, - 92" Y (s, - 2)0 ! Zgu}
- [ﬂt;g;el Sas0 Y (s -2)2 T

- E[;;g;m > (s -9 Sa.

E[%;g;m Snt0" Case ;g&}

LWL ;gﬂ.}

~E %Z_;gﬁ, Q! Z}:gagéﬂ’l ;gzz.}

+E :%Zg;grl ZgQ} .
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We use intermediate results from Kleibergen (2019) to derive the expectation of the four components in the above
expression

1 — — _
E[;Z&QQ 'Y &g g0 IZgiq}
i iy is A
— (-2 1
= [
E[g0 'gg] 0 E[ggQ 'g] +0(n?)
3 1
= m+;<E[(§Qflg")2] _m) +- ElgQ gigf]Q ' E[gigQ 'gi] + 0(n?),
1 — _
E[ﬁzgﬁﬁ Ingzg”,»ZQ 12&,}
{ZZ&‘Q g’zgzzQ 8il

i i
m+ E[( o) lgi)z],

E ﬁzgﬁ Q' gg Q! Zgu}
i i3 iy

n—1

+E

1 _ _
=089 68 Qg

m +%E[(g£9"gf)2]>

Combining terms we have
— 3 1
ELAR,) =m +2 (E[ (g0 ')"] - m) + B[O 'gg] 0 Elgg0 ']
-2 <n [(g,{frlgi)zD +m+0(n?)

== ta[(g )]+ Elg0 eg]0  Elag '] + 0l 2).

To determine the order of the expectation of the remainder term, we analyze the next higher-order term in the
expansion

ARy = zg @' (e - Q'Y (gug, — Q)2 Y (g — QY g

Taking expectations and assuming finite eight order moments (Assumption 1), the highest order will be O(n™2).
This results from combining two fourth order products with identical indices

4223“9 '6.8,Q7'2,8,97'2,8,Q 7",

i hF#

=0(n?).

Combining terms we find for the uncentered AR statistic
— 1
E[AR] = m + - E(/0"gig]) Q' E(gig/Q"g:) + On™2).
n
These results imply that

m? +2m
n

E[;JZ — XI\Q] = +0(n™2),

which completes the proof.

Proof of Part B: We suppress the dependence of AR, AR, Q, Q and § on o, and 3, is short for S, We
adopt the many weak moments asymptotic framework of Newey and Windmeijer (2009). They assume that
mE|||g| ] /n — 0 (Assumption 2.b), which under finite moments (Assumption 1) implies m®/n — 0. Newey and
Windmeijer (2009, Theorem 4) derive that
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AR —m 4N(0,1),
—
V2m

which implies that Zl\? O, (\/— ) hence 48 is O (J-) Note that this includes the case of standard (finite m)
asymptotics for which 48 is O,(n™!). We can therefore expand (10) as follows

— —~\ 2

~ o~ AR AR

AR =AR<1++() +>
n n

m\/m)

n2

—~ 1-=2
=AR +—-AR +Op(
n

Newey and Windmeijer (2009) derive (see their Theorem 4)

A;R = 'i+g0 (@-0a'g
='Q7'g+r,
with the leading term §'Q"'g = O, <‘/TE) and the remainder term r = o, (‘/‘) We therefore have
%1@ :n(g/Q*g + r)z
=n(g'Q™! ) +nr* 4+ 2mg'Q7'g
(98 + 0,3,
because both nr* and 2rng’Q™'g are o, (). Furthermore, the quantity (ng'Q7'g)* = 0, (%) with mean

[(ﬂg } *E{Z&Q Z&Zfﬂ Zgzq}
{ZZ&,Q 68, Q" glz] += E[ZZ&Q 6.8, Q glz]

|~

i1 h#h i1 i#h
+5 E{Z P A A gu} += E[Z§ Qg8 Q gu]
i i
n(n—1) _
:T(Wl +m+m)+;E[(ng 1gi) ]

= mZJrsz + % (E[(giﬂ’lgi)z] —(m*+ Zm))

2 2 2
:uw(m_z),
n n

because E[(ng’lg,»)z] = O(m?) under Assumption 1.

Proof of Corollary 1: We exploit the derived approximations for E[AR] and E [AR] from Part A of Proposition 1.
Upon collecting O(n2) and lower order terms in the remainder term, we have

E[ARy — AR| ="~ =2 F[AR] - £[4R]
- (1 - '"TH> {m + % (m* +2m + E[gQ ' gig/] Q' E[gg/Q"g])

—m— %E[gzgflgig;] QflE[gig;QﬂgJ + on?)
=0(n2).

A.2. Proof of Proposition 2

We use Theorem 5 of Kleibergen (2019), which is an adaptation of Theorem 2.4 in Phillips and Park (1988), to
provide the following Edgeworth approximation for the finite sample distribution of the centered AR statistic.
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Under Assumptions 1, 2.a and 3, Kleibergen (2019) derives that under H : f = f,
—~ E(S
Pr[AR < x| = Pr,; [x - Qx} +o(n™),
fon m

where Prp [x] is the distribution of a an distributed random variable evaluated at x and S = Xl/ll + ;\\1/12 with ;1721
and AR, defined in Proposition 1. In general the expectation of S, which is of order O(n™!), depends on third
moments. However, under Assumption 4 it simplifies to

m? +2m
E(S) D

which results in

—~ 2
Pr[AR < x} = Prp {x _mt x} +oln™1).
o n

Using this result it is not difficult to see that
n—m-—2 — — n
Prl——— AR < x:| =Pr |:AR < 796}
n n—m-—2
=Prp [x] + o(n™").

Finally, combining Proposition 2 with (10) we have

n—m-—2 f/@ _n—m—2/\ ﬁ
Pr|—— — < x| =Pr|——AR+x—<«x
n AR L n n

177
n
w2 -
S L +xAR§x}
I n
=prﬁzg”7x},
I n—m-—2+x

which completes the proof.

Acknowledgment

Helpful comments were provided by Stanislav Anatolyev, Frank Kleibergen, Martin Spindler, and
Frank Windmeijer.

References

Anatolyev, S., Gospodinov, N. (2011). Specification testing in models with many instruments. Econometric Theory
27(02):427-441. doi:10.1017/50266466610000307

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, New York: Wiley. [Database]

Anderson, T. W., Rubin, H. (1949). Estimation of the parameters of a single equation in a complete system of sto-
chastic equations. The Annals of Mathematical Statistics 20(1):46-63. doi:10.1214/aoms/1177730090

Andrews, D. W. K,, Stock, J. H. (2007). Testing with many weak instruments. Journal of Econometrics 138(1):
24-46. doi:10.1016/j.jeconom.2006.05.012

Antoine, B., Bonnal, H., Renault, E. (2007). On the efficient use of the informational content of estimating equa-
tions: Implied probabilities and Euclidean empirical likelihood. Journal of Econometrics 138(2):461-487. doi:10.
1016/j.jeconom.2006.05.005

Bekker, P., Kleibergen, F. (2003). Finite-sample instrumental variables inference using an asymptotically pivotal
statistic. Econometric Theory 19(05):744-753. do0i:10.1017/S0266466603195023

Berndt, E. R, Savin, N. E. (1977). Conflict among criteria for testing hypotheses in the multivariate linear regres-
sion model. Econometrica 45(5):1263-1277. d0i:10.2307/1914072

Bond, S., Windmeijer, F. (2005). Reliable inference for GMM estimators? Finite sample properties of alternative
test procedures in linear panel data models. Econometric Reviews 24(1):1-37. doi:10.1081/ETC-200049126

Breusch, T. S. (1979). Conflict among criteria for testing hypotheses: Extensions and comments. Econometrica
47(1):203-207. doi:10.2307/1912356

Caner, M. (2009). Testing, estimation in GMM and CUE with nearly-weak identification. Econometric Reviews
29(3):330-363. doi:10.1080/07474930903451599


https://doi.org/10.1017/S0266466610000307
https://doi.org/10.1214/aoms/1177730090
https://doi.org/10.1016/j.jeconom.2006.05.012
https://doi.org/10.1016/j.jeconom.2006.05.005
https://doi.org/10.1016/j.jeconom.2006.05.005
https://doi.org/10.1017/S0266466603195023
https://doi.org/10.2307/1914072
https://doi.org/10.1081/ETC-200049126
https://doi.org/10.2307/1912356
https://doi.org/10.1080/07474930903451599

1056 M. J. G. BUN ET AL.

Caner, M. (2014). Near exogeneity and weak identification in generalized empirical likelihood estimators: Many
moment asymptotics. Journal of Econometrics 182(2):247-268. doi:10.1016/j.jeconom.2014.05.001

Caner, M., Yildiz, N. (2012). CUE with many weak instruments and nearly singular design. Journal of
Econometrics 170(2):422-441. doi:10.1016/j.jeconom.2012.05.014

Donald, S. G., Imbens, G. W., Newey, W. K. (2003). Empirical likelihood estimation and consistent tests with con-
ditional moment restrictions. Journal of Econometrics 117(1):55-93. doi:10.1016/S0304-4076(03)00118-0

Donald, S. G., Newey, W. K. (2000). A jackknife interpretation of the continuous updating estimator. Economics
Letters 67(3):239-243. doi:10.1016/S0165-1765(99)00281-5

Evans, G. B. A,, Savin, N. E. (1982). Conflict among the criteria revisited: the W, LR and LM tests. Econometrica
50(3):737-748. doi:10.2307/1912611

Guggenberger, P. (2008). Finite sample evidence suggesting a heavy tail problem of the generalized empirical likeli-
hood estimator. Econometric Reviews 27(4-6):526-541. do0i:10.1080/07474930801960410

Guggenberger, P., Smith, R. J. (2005). Generalized empirical likelihood estimators and tests under partial, weak,
and strong identification. Econometric Theory 21(04):667-709. doi:10.1017/S0266466605050371

Han, C,, Phillips, P. C. B. (2006). GMM with many moment conditions. Econometrica 74(1):147-192. doi:10.1111/
j.1468-0262.2006.00652.x

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50(4):
1029-1054. doi:10.2307/1912775

Hansen, L. P., Heaton, J., Yaron, A. (1996). Finite-sample properties of some alternative GMM estimators. Journal
of Business ¢ Economic Statistics 14(3):262-280. doi:10.2307/1392442

Hausman, J., Lewis, R., Menzel, K., Newey, W. (2011). Properties of the CUE estimator and a modification with
moments. Journal of Econometrics 165(1):45-57. doi:10.1016/j.jeconom.2011.05.005

Hayakawa, K., Pesaran, M. H. (2015). Robust standard errors in transformed likelihood estimation of dynamic
panel data models with cross-sectional heteroskedasticity. Journal of Econometrics 188(8):111-134. doi:10.1016/j.
jeconom.2015.03.042

Kleibergen, F. (2005). Testing parameters in GMM without assuming that they are identified. Econometrica 73(4):
1103-1123. doi:10.1111/j.1468-0262.2005.00610.x

Kleibergen F. (2019). Improved Accuracy of Weak Instrument Robust GMM Statistics through bootstrap and
Edgeworth Approximations. Discussion Paper, February 2019. University of Amsterdam.

Kleibergen, F., Mavroeidis, S. (2009). Weak instrument robust tests in GMM and the new Keynesian Phillips curve.
Journal of Business & Economic Statistics 27(3):293-311. doi:10.1198/jbes.2009.08280

Li, H, Xiao, Z. (2012). Weak instrument inference in the presence of parameter instability. The Econometrics
Journal 15(3):395-419. doi:10.1111/j.1368-423X.2012.00384.x

Newey, W. K., Smith, R. J. (2004). Higher order properties of GMM and generalized empirical likelihood estima-
tors. Econometrica 72(1):219-255. doi:10.1111/j.1468-0262.2004.00482.x

Newey, W. K., West, K. D. (1987). Hypothesis testing with efficient method of moments estimation. International
Economic Review 28(3):777-787. d0i:10.2307/2526578

Newey, W. K., Windmeijer, F. (2009). Generalized method of moments with many weak moment conditions.
Econometrica 77(3):687-719.

Phillips, P. C. B., Park, J. Y. (1988). On the formulation of Wald tests of nonlinear restrictions. Econometrica
56(5):1065-1083. doi:10.2307/1911359

Staiger, D., Stock, J. H. (1997). Instrumental variables regression with weak instruments. Econometrica 65(3):
557-586. d0i:10.2307/2171753

Stock, J. H., Wright, J. H. (2000). GMM with weak identification. Econometrica 68(5):1055-1096. doi:10.1111/1468-
0262.00151

Stock, J. H., Wright, J. H., Yogo, M. (2002). A survey of weak instruments and weak identification in generalized
method of moments. Journal of Business & Economic Statistics 20(4):518-529. doi:10.1198/073500102288618658

Windmeijer, F. (2008). GMM for panel data count models. In: The Econometrics of Panel Data, Berlin, Germany:
Springer, pp. 603-624.

Wright, J. H. (2010). Testing the adequacy of conventional asymptotics in GMM. Econometrics Journal 13(2):
205-217. doi:10.1111/j.1368-423X.2010.00312.x


https://doi.org/10.1016/j.jeconom.2014.05.001
https://doi.org/10.1016/j.jeconom.2012.05.014
https://doi.org/10.1016/S0304-4076(03)00118-0
https://doi.org/10.1016/S0165-1765(99)00281-5
https://doi.org/10.2307/1912611
https://doi.org/10.1080/07474930801960410
https://doi.org/10.1017/S0266466605050371
https://doi.org/10.1111/j.1468-0262.2006.00652.x
https://doi.org/10.1111/j.1468-0262.2006.00652.x
https://doi.org/10.2307/1912775
https://doi.org/10.2307/1392442
https://doi.org/10.1016/j.jeconom.2011.05.005
https://doi.org/10.1016/j.jeconom.2015.03.042
https://doi.org/10.1016/j.jeconom.2015.03.042
https://doi.org/10.1111/j.1468-0262.2005.00610.x
https://doi.org/10.1198/jbes.2009.08280
https://doi.org/10.1111/j.1368-423X.2012.00384.x
https://doi.org/10.1111/j.1468-0262.2004.00482.x
https://doi.org/10.2307/2526578
https://doi.org/10.2307/1911359
https://doi.org/10.2307/2171753
https://doi.org/10.1111/1468-0262.00151
https://doi.org/10.1111/1468-0262.00151
https://doi.org/10.1198/073500102288618658
https://doi.org/10.1111/j.1368-423X.2010.00312.x

	Abstract
	Introduction
	Model and test statistics
	Theoretical results
	Algebraic connections
	Asymptotic results

	Simulation results
	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2

	Acknowledgment
	References


