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Robust block bootstrap panel predictability tests�
Stephan Smeekesa and Joakim Westerlundb,c

aMaastricht University, Maastricht, The Netherlands; bDepartment of Economics, Lund University, Lund,
Sweden; cCentre for Financial Econometrics, Deakin University, Melbourne, Australia

ABSTRACT
This article develops two block bootstrap-based panel predictability test pro-
cedures that are valid under very general conditions. Some of the allowable
features include cross-sectional dependence, heterogeneous predictive slopes,
persistent predictors, and complex error dynamics, including cross-unit endo-
geneity. While the first test procedure tests if there is any predictability at all,
the second procedure determines the units for which predictability holds in
case of a rejection by the first. A weak unit root framework is adopted to
allow persistent predictors, and a novel theory is developed to establish
asymptotic validity of the proposed bootstrap. Simulations are used to evalu-
ate the performance of our tests in small samples, and their implementation
is illustrated through an empirical application to stock returns.
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1. Introduction

A fundamental empirical issue in finance is whether future stock returns (or equity premiums)
are predictable using publicly available information, and there is a huge literature on this (see
Spiegel, 2008). The workhorse approach is to regress current returns onto a constant and one lag
of some predictor, such as dividend yield, nominal interest rates, default or term spreads on
bonds, or valuation ratios (see Rapach and Zhou, 2013), and then testing whether the predictive
slope is zero by using a conventional t-test. Early studies rely on normal critical values, against
which the zero slope restriction could typically be rejected. However, it has since then become
clear that normal inference can be quite misleading in the standard situation when the predictor
is both endogenous and persistent, and that some of the rejections might therefore be due to size
distortions. This observation has attracted much attention among econometricians, so much so
that there is by now a separate literature aimed at developing robust econometric tests for pre-
dictability (see Campbell and Yogo, 2006; Cavanagh et al., 1995; Elliott and Stock, 1994; Jansson
and Moreira, 2006; Kostakis et al., 2015; Lewellen, 2004, to mention a few).

Parallel to this development, it has been recognized that many studies are not really using time
series data, but rather panel data comprising time series observations on multiple cross-sectional
units, such as firms, industries or countries. The standard approach to such data is to take any exist-
ing time series test, and to simply apply it to each unit in the sample (see, e.g., Ang and Bekaert,
2007; Driesprong et al., 2008; Polk et al., 2006; Rapach et al., 2013). This raises the issue of mass-sig-
nificance, and the need to control the overall significance level of the approach. As a response, panel
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econometric test procedures for predictability have been developed (see Hjalmarsson, 2010; Kauppi,
2001; Westerlund and Narayan, 2015; Westerlund et al., 2017). These procedures not only account
for the multiplicity of the testing problem, but also increase the precision of the predictability test by
taking the total number of observations and their variation into account.

But while certainly promising, existing panel test procedures suffer from a number of important
drawbacks. The first drawback is the formulation of the hypothesis tested. In particular, while the null
hypothesis is formulated as that there is no predictability, the alternative hypothesis is formulated as
that there are at least some units for which predictability holds, which is too broad for any interesting
economic conclusions. It could be that there is predictability for all units, but it could also be that
there is only a small fraction of units for which predictability holds. Another drawback is the way in
which cross-section dependence is accounted for. Specifically, a common factor structure is assumed,
the effect of which is removed prior to implementation of the test for predictability. Hence, with this
approach one is essentially testing for predictability in the remaining idiosyncratic component, thereby
ignoring a potentially important source of predictive information, namely, the common one. Then
there is also the fact that the assumed common factor structure need not be correct, leading to mis-
leading conclusions. Finally, there is also the requirement that the number of cross-sectional units, N,
should go to infinity with the number of time periods, T, which is certainly mistaken in practice. In
particular, while T is relatively large, N is typically much smaller (see, e.g., Ang and Bekaert, 2007;
Driesprong et al., 2008; Polk et al., 2006; Rapach et al., 2013).

In this article, we develop a set of procedures to ascertain the predictability of a panel. The
point of departure is a very general data generating process (DGP) that allows, e.g., persistent
predictors, general error serial and cross-sectional correlation, and endogeneity. In fact, except for
some mild regulatory conditions, there are virtually no restrictions on the forms of serial and
cross-sectional dependence that can be permitted. Given this generality, corrections aimed at
achieving asymptotically pivotal statistics are not really an option. In this article, we therefore
consider the block bootstrap as a means to obtain tests that are asymptotically valid. In doing so,
we extend the work of Palm et al. (2011) for univariate unit root panels to a bivariate model.

Two test procedures based on the new block bootstrap are considered. The first test procedure
is appropriate when wanting to test the hypothesis of a fully unpredictable panel versus at least
some predictability, which is the same as the one considered previously in the literature. The
second test procedure, which can be seen as an extension of the unit root test approach of
Smeekes (2015), is designed to sequentially determine the units for which predictability holds. As
already mentioned, while a non-rejection of the null of a fully unpredictable panel can be
straightforwardly interpreted as that all the cross-section units are unpredictable, a rejection of
the same null only supports the conclusion that there is at least one predictable unit. This begs
the question: Which are the units that caused the rejection, i.e., which units are predictable? The
two test procedures are therefore highly complementary and in fact form a complete panel pre-
dictability toolbox. GAUSS and R codes that implement this toolbox are available online at
http://researchers-sbe.unimaas.nl/stephansmeekes/code/. Also, unlike existing tests, the procedures
developed here are valid for any N, provided that T is large enough.

The rest of the article is organized as follows. Sections 2 and 3 introduce the model and the
block bootstrap-based test procedures, whose asymptotic properties are analyzed in Section 4.
Sections 5 and 6 are concerned with the small-sample implications of the asymptotic results,
which are investigated using both simulated and real data. Section 7 concludes. All proofs are
provided in the supplemental material.

2. The model

Consider the N � 1 variables yt ¼ ðy1;t; :::; yN;tÞ and xt ¼ ðx1;t; :::; xN;tÞ0. The DGP of these varia-
bles is given by
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yt ¼ aþ bxt�1 þ vt; (1)

xt ¼ d IN�qð Þ þ qxt�1 þ wt; (2)

where a ¼ ða1; :::; aNÞ0; b ¼ diagðb1; :::; bNÞ; d ¼ ðd1; :::; dNÞ0 and q ¼ diagðq1; :::; qNÞ. As long as
xi;0 ¼ Opð1Þ, the initialization does not affect the results. Therefore, in what remains, we assume
that x0 ¼ 0. The resulting DGP is a panel extension of the prototypical time series predictive
regression model, in which xt is a variable believed to be able to predict yt. The value of bi deter-
mines the extent to which xi;t is able to predict yi;t . If bi ¼ 0, there is no predictability, whereas if
bi 6¼ 0, then yi;t is predictable using xi;t . As in the previous panel and time series literatures, we
focus on the case when there is a single predictor.1 If, as in the empirical application of
Section 6, one has data on multiple predictors, the tests developed here can be applied in a one-
predictor-at-the-time fashion, as is commonly done in the empirical literature.

The parameter qi determines the persistence of xi;t . Since in practice most predictors have
been found to be highly persistent, yet not unit root nonstationary (see Lewellen, 2004), qi is typ-
ically assumed to be “close” to but not exactly equal to one. Assumption 1 reflects this.

Assumption 1.

q ¼ IN þ cm
T

;

where c ¼ diagðc1; :::; cNÞ<0, and m> 0 is a scalar such that m ! 1 and m=T ! 0 as T ! 1.
Assumption 1 ensures that xt is “weakly integrated” (see, e.g., Kostakis et al., 2015; Park, 2003,

2006; Phillips et al., 2010), although not local-to-unity, as when m is fixed. Hence, while q ! IN ,
the rate at which this convergence takes place is slower than in the local-to-unity case, which
makes a big difference. Indeed, while invalid in the local-to-unity case (see, e.g., Park, 2006, p.
640), as we show in Section 4, the block bootstrap considered here is valid in under Assumption
1. It will therefore be used in this article. The obvious drawback of the weak integration assump-
tion is that the asymptotic approximation can be poor if xt has a near unit root. In the supple-
mental material, we use Monte Carlo simulations as a mean to evaluate the effect of a violation
of the weak integration assumption in small samples.

Remark 1. Except for the relatively slow rate of shrinking, Assumption 1 is very general when it
comes to the types of persistency that can be permitted. Note in particular how the elements of c
may differ, which means that the extent of the persistency may vary across the cross-section. In
fact, we could even allow m to vary across i, suggesting that the rate at which qi ! 1 need not be
the same, provided of course that Assumption 1 is still met.

Most predictors are not only persistent but also endogenous. For example, if yt is stock returns
and xt is the dividend–price ratio, then an increase in the stock price will lower dividends and
raise returns. We therefore assume that

ut ¼ W Lð Þet; (3)

where ut ¼ ðv0t;w0
tÞ0 and WðzÞ ¼ P1

j¼0 Wjzj with W0 ¼ I2N .

Assumption 2.
(a)

P1
j¼0 jkWjk<1 and all the rows of Wð1Þ are nonzero;

(b) et is independently and identically distributed (iid) with Eet ¼ 0;Eete0t ¼ Ree and Eketkj<1
for some j � 4.

1The only study known to us that considers multiple predictors is that of Phillips et al. (2010).
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Under Assumption 2, the long-run covariance matrix of ut is given by

X ¼ lim
T!1

T�1
XT
t¼1

XT
s¼1

Eutu
0
s ¼

Xvv Xvw

Xwv Xww

� �
¼ W 1ð ÞReeW 1ð Þ0 ¼ Rþ Kþ K0;

where

R ¼ Eutu0t ¼
X1
j¼0

WjReeW
0
j;

K ¼ E

X1
k¼1

utu
0
tþk ¼

X1
k¼1

X1
j¼0

WjReeW
0
jþk

are the contemporaneous and one-sided long-run covariance matrices of ut, respectively, which
are partitioned conformably with X. In what follows, Xvv and Kwv ¼ E

P1
k¼1 wtv0tþk are going to

be particularly important, and we are therefore going to use x2
v;i ¼ ½Xvv�ii and kwv;i ¼ ½Kwv�ii,

respectively, to denote their diagonal elements.

Remark 2. The types of cross-sectional dependencies that can be accommodated within the cur-
rent DGP are more general than those that have been considered earlier in the literature (see
Hjalmarsson, 2010; Kauppi, 2001; Westerlund and Narayan, 2015; Westerlund et al., 2017), and
include Granger causality, common factors and even “weak cointegration” between units (as in
Phillips and Magdalinos, 2009). Moreover, since the blocks of X need not be diagonal, the units
of vt and wt are not only allowed to be both serially and cross-sectionally correlated in a general
fashion, but they can also be correlated with each other. The types of endogeneity that can be
permitted here is therefore very general indeed.

3. The test procedures

Denote by p the number of units for which yi;t can be predicted using xi;t�1, i.e., p is the number
of units for which bi 6¼ 0. The purpose of this article is to make inference regarding p and to
determine which units are predictable. As will be explained later, our procedures will allow us to
do both simultaneously. Let us denote by 0 ¼ p1< � � �<pK<N a set of K user-defined numbers,
representing the number of predictable units to be considered in the testing; how to select these
numbers will be explained later. Let H0ðpkÞ denote the null hypothesis that p ¼ pk, where
k ¼ 1; :::;K, and let H1ðpkþ1Þ denote the alternative hypothesis that p � pkþ1. The test statistic for
testing H0ðpkÞ versus H1ðpkþ1Þ is henceforth going to be written in a general notation as
sðpk; pkþ1Þ. As mentioned in Section 1, the idea is to begin by testing H0ð0Þ versus H1ð1Þ. If
H0ð0Þ is not rejected, then all the cross-section units are unpredictable and so the testing is
stopped. If, however, H0ð0Þ is rejected, then there is at least one unit for which predictability
holds, and therefore the testing continues by sequentially considering H0ðpkÞ versus H1ðpkþ1Þ for
k ¼ 1; :::;K. The testing stops when the null hypothesis cannot be rejected anymore.

The construction of sðpk; pkþ1Þ depends on where in the testing sequence we are. If H0ð0Þ is
true, all the units of the panel are unpredictable, which enables full panel pooling, whereas if
H0ð0Þ is false, then this type of pooling is no longer possible. The basic building block in con-
structing sðpk; pkþ1Þ is given by the following bias corrected t-statistic for testing bi ¼ 0:

hi ¼
PT

t¼2 x
d
i;t�1y

d
i;t�Tk̂wv;i

x̂v;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼2 xdi;t�1

� �2
r ; (4)

with xdi;t�1 ¼ xi;t�1�T�1 PT
s¼2 xi;s�1 and an analogous definition of ydi;t . In order to describe k̂wv;i

and x̂v;i, we need to introduce some notation. We begin by defining ût ¼ ðv̂0t; ŵ0
tÞ0, where v̂t and
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ŵt are the residuals obtained by applying OLS to (1) and (2), respectively. The estimated long-
run covariance matrix of ût is given by

X̂ ¼ X̂vv X̂vw

X̂wv X̂ww

" #
¼ R̂ þ K̂ þ K̂

0
;

where

R̂ ¼ T�1
XT
t¼2

ûtû
0
t; (5)

K̂ ¼
XJ�1

j¼1

K j=J
� �

T�1
XT
t¼jþ1

ût�jû
0
t: (6)

with KðxÞ ¼ ð1�jxjÞ1ðjxj � 1Þ being the Bartlett kernel and J> 0 is the associated kernel band-
width parameter. In this notation, x̂2

v;i ¼ ½X̂vv�ii and k̂wv;i ¼ ½K̂wv�ii. These are the only elements
of X̂vv and K̂wv that will be used in the testing.

Remark 3. In many cases, it is not necessary to bootstrap the t-statistic but one can also boot-
strap the OLS estimator itself.2 However, in the present case the variance correction in the
numerator is necessary to account for the endogeneity, and so we can just as well bootstrap the
t-statistic.

Remark 4. A nonzero kwv implies that past values of wt are correlated with (the current value of)
vt. One may therefore interpret the endogeneity bias that arises from a non-zero kwv as evidence
for predictability in itself. Such predictability is, however, weaker than the predictability arising
from a non-zero bi, as xi;t is more persistent than vi;t .

3

3.1. Pooled tests for testing p5 0 versus p � 1

In this section, we consider the relatively simple problem of testing H0ð0Þ (no predictability) ver-
sus H1ð1Þ (there is at least one predictable unit). The purpose is to determine if there is any pre-
dictability at all. It is therefore important that the test is powerful enough, and for this reason we
only consider pooled test statistics. The two most common ways to construct such statistics are
to use either “panel” pooling, or “group mean” pooling. The particular panel and group mean
test statistics considered in this article are given by

sP 0; 1ð Þ ¼
PN

i¼1

PT
t¼2 x

d
i;t�1y

d
i;t � Tk̂wv;i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 x̂
2
v;i

PT
t¼2 xdi;t�1

� �2
r ; (7)

sGM 0; 1ð Þ ¼
XN
i¼1

hi; (8)

respectively. It should be noted that while there is a dependence on the number of predictable
units under the null, sPð0; 1Þ and sGMð0; 1Þ do not really depend on the number of predictable
units under the alternative. The reason for still writing the test statistics as a function of the latter

2For example, when testing for a unit root in xi;t , rather than bootstrapping the associated t-statistic, one may bootstrap
Tðq̂ i�1Þ, where q̂ i is the OLS estimator of qi in the i-th equation of (2).
3If one is interested in this weaker form of predictability, one may use the same test statistic as before but without the
variance correction in the numerator. It should be pointed out that this change will lead to reduced rate of divergence under
the alternative of predictability (see Lemma 1 in the supplemental material), and hence relatively low power of the test.
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is to emphasize that in case of a rejection the appropriate conclusion is that there is at least one
unit for which predictability holds. For easy reference, however, whenever possible, we write sP
(sGM) for sPð0; 1Þ (sGMð0; 1Þ).

3.2. Sequential test procedure

The tests considered in the previous section are appropriate if one wishes to infer whether there
is actually any predictability at all. In many cases, however, one would like to go further than just
concluding that there is some predictability in case of a rejection. In this section, we therefore
consider a sequential test that determines the units for which predictability holds. In so doing, we
will assume that the testing numbers, p1; :::; pK , are known and that p belongs to this set; later on
we discuss how to proceed in general when p is permitted to lie between test numbers.

The sequential test requires that the units can be ranked according to significance. Any unit-
specific test statistic can be used for this purpose, provided that (i) a larger value provides more
evidence for predictability, and (ii) the marginal distribution is the same across units (see Remark
2 of Smeekes, 2015, for a discussion). Here we use jhij. Let us therefore denote by jhjð1Þ � ::: �
jhjðNÞ the “reverse” order statistics associated with jh1j; :::; jhN j. The test statistic to be used in the
sequential testing, denoted sSQðpk; pkþ1Þ, is given by the order statistic corresponding to the alter-
native hypothesis to be tested;

sSQ pk; pkþ1ð Þ ¼ jhj pkþ1ð Þ; (9)

and is appropriate for testing H0ðpkÞ versus H1ðpkþ1Þ.4 The sequential test procedure considered
in this article is based on repeated use of this test statistic, and is similar to the procedure used
by Smeekes (2015) to determine the proportion of stationary units in a panel. The procedure
does not just yield an estimate of p, but in fact estimates the set of predictable units. The algo-
rithm for determining p is given below.

3.2.1. Search algorithm
1. Test H0ðp1Þ against H1ðp2Þ using the test statistic sSQðp1; p2Þ. Reject H0ðp1Þ if the p-value is

lower than the chosen significance level a.
2. If H0ðp1Þ is not rejected, set p̂ ¼ p1, whereas if H0ðp1Þ is rejected, use sSQðp2; p3Þ to test

H0ðp2Þ against H1ðp3Þ.
3. Keep testing until H0ðpkÞ cannot be rejected anymore, and set p̂ ¼ pk. If all null hypotheses

up until and including H0ðpKÞ are rejected, set p̂ ¼ N.
Let Sx ¼ fi : jhij � jhjðxÞg be the set of x units for which the null hypothesis of no predictability
has been rejected. The estimated set of predictable units is simply given by Sp̂.

The above search algorithm is based on the assumption that the researcher knows beforehand
which numbers p1; :::; pK to test, which of course need not be the case in practice. The most nat-
ural approach is to simply add the units one-by-one such that pk ¼ k�1 for k ¼ 1; :::;N. This
approach has the advantage that all possible numbers are tested and the set of predictable units
can be determined exactly. The drawback is that it is likely to suffer from low power, especially
when N is “large.” The drawback of taking the numbers further apart is that if p lies between
these values, the method will be unable to detect it. While in Section 4, we elaborate on the inter-
pretation of the results when p is in between tested numbers, in Sections 5 and 6, we discuss the
selection of p1; :::; pK .

4The intuition for taking the order statistic corresponding to H1ðpkþ1Þ is as follows. Suppose for simplicity that the units are
added one-by-one, which amounts to setting pk ¼ k�1 for k ¼ 1; :::;N. In this case, it is quite clear that when H0ðp1Þ is
tested against H1ðp2Þ, one has to take jhjðp2Þ ¼ jhjð1Þ as a test statistic, as jhjðp1Þ ¼ jhjð0Þ is undefined.
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3.3. The bootstrap

Define the following bias corrected estimators of bi and qi:

~bi ¼
PT

t¼2 x
d
i;t�1y

d
i;t�Tk̂wv;iPT

t¼2 xdi;t�1

� �2 ; (10)

~qi ¼
PT

t¼2 x
d
i;t�1x

d
i;t�Tk̂ww;iPT

t¼2 xdi;t�1

� �2 ; (11)

where k̂ww;i ¼ ½K̂ww�ii. The next algorithm describes how ~bi and ~qi are used in testing H0ðpkÞ
versus H1ðpkþ1Þ.

3.4.1. Bootstrap algorithm
1. Let zt ¼ ðx0t; y0tÞ0. Obtain zdt ¼ ðyd0t ; xd0t Þ0 ¼ zt�T�1

PT
s¼1 zs.

2. Let ~c ¼ ð~b0
; ~q0Þ0, where ~b ¼ diagð~b1; :::;

~bNÞ; ~q ¼ diagð~q1; :::; ~qNÞ0; z0 ¼ 0, and calculate ~ut ¼
ð~v0t; ~w0

tÞ0 ¼ zdt �~cxdt�1 for t ¼ 2; :::;T.
3. Choose a block length ‘. Draw I1; :::; I k iid from the uniform distribution on

f1; 2; :::;T�‘g, where k ¼ dðT � 1Þ=‘e is the number of blocks.
4. Construct u�t ¼ ðv�0t ;w�0

t Þ0 ¼ ~uI ktþst�ðT�‘Þ�1 PT�‘
s¼1 ~usþst , where t ¼ 2; :::;T; kt ¼ dt=‘e

and st ¼ t�ðkt�1Þ‘.
5. Let y�t ¼ v�t and x�t ¼ ~qx�t�1 þ w�

t for t ¼ 2; :::;T with x�1 ¼ xd1 and y�1 ¼ yd1.
6. Let û�

t ¼ ðv̂�0t ; ŵ�0
t Þ0, where v̂�t and ŵ�

t are the residuals obtained by applying OLS to the boot-
strap versions of (1) and (2), respectively. The bootstrap versions of x̂2

v;i and k̂vw;i, denoted
x̂�2

v;i and k̂
�
vw;i, respectively, are as before but with X̂ and K̂ replaced by

X̂
� ¼ 1

T

Xk�1

m¼1

X‘

s¼1

X‘

j¼1

û�
m�1ð Þ‘þsû

�0
m�1ð Þ‘þj þ

XT� k�1ð Þ‘

s¼1

XT� k�1ð Þ‘

j¼1

û�
k�1ð Þ‘þsû

�0
k�1ð Þ‘þj

0
@

1
A;

K̂
� ¼ 1

T

Xk�1

m¼1

X‘

s¼1

Xs�1

j¼1

û�
m�1ð Þ‘þs�jû

�0
m�1ð Þ‘þs þ

XT� k�1ð Þ‘

s¼1

Xs�1

j¼1

û�
k�1ð Þ‘þs�jû

�0
k�1ð Þ‘þs

0
@

1
A;

respectively.
7. Calculate

h�i ¼
PT

t¼2 x
�d
i;t�1y

�d
i;t�Tk̂

�
wv;i

x̂�
v;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼2 x�di;t�1

� �2
r ;

with x�di;t�1 ¼ x�i;t�1�T�1 PT
s¼2 x

�
i;s�1 and an analogous definition of y�di;t .

8. Obtain h�i for all i 2 S
c
pk
, where S

c
pk

is the complement of Spk , the set of units for which the no
predictability null has been rejected in previous steps. The bootstrap test statistic is given by

s�SQ pk; pkþ1ð Þ ¼ h�pkþ1�pk:S
c
pkð Þ;

i.e., s�SQðpk; pkþ1Þ is the ðpkþ1�pkÞ-th largest value of h�i 2 S
c
pk
.5

5Note that one has to take the ðpkþ1�pkÞ-th largest value of h�i calculated for the “remaining” units. This might seem at odds
with the calculation of the original test statistic as the pjþ1-th smallest value of hi for all units. However, one should note that
pk units have already been dropped in previous steps and are therefore not included in the bootstrap sample for this step.
Therefore, one should not take the pkþ1-th smallest value of h�i for the bootstrap test statistic, but the ðpkþ1�pkÞ-th smallest
to account for the pk units that have already been dropped.
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9. Repeat steps 3–8 B times and calculate the bootstrap p-value as B�1 PB
b¼1 I½s�;bSQðpk; pkþ1Þ

>sSQðpk; pkþ1Þ�, where I(x) is the indicator function and s�;bSQðpk; pkþ1Þ is the b-th bootstrap
test statistic.

To perform sP (sGM), simply replace s�SQðpk; pkþ1Þ in step 8 of the algorithm by s�P (s�GM), the stat-
istic based on the bootstrap sample. In addition, as sP (sGM) is a two-sided test, the bootstrap
p-value in step 9 is calculated as

2min
1
B

XB
b¼1

I s�;bP pk; pkþ1ð Þ > sP pk; pkþ1ð Þ
h i

;
1
B

XB
b¼1

I s�;bP pk; pkþ1ð Þ � sP pk; pkþ1ð Þ
h i( )

:

Remark 5. The bootstrap variance correction explicitly takes into account the known block-wise
structure of the bootstrap process. The effects of the method of studentization of block bootstrap
statistics in a stationary setting have been extensively researched (see, e.g., H€ardle et al., 2003,
Section 3). G€otze and K€unsch (1996) find that the type of correction used in step 6 works best in
terms of both small-sample properties and asymptotic refinements, and our (unreported) simula-
tions results confirm this.6

Remark 6. According to our Monte Carlo results, the small-sample precision of X̂ and K̂ can be
greatly improved by iteration. In this case, we define ~X ¼ ~R þ ~K þ ~K

0
, where ~R and ~K are

defined as in (5), but with ût replaced by the bias corrected residuals ~ut defined in step 2 of the
bootstrap algorithm. The bias correction is then carried out using ~X and ~K in place of X̂ and K̂,
respectively.

Following the bulk of the previous literature, the tests developed here are designed for in-sam-
ple testing. Alternatively, we may use out-of-sample evaluation, either directly, for instance
through the out-of-sample R2 (Campbell and Thompson, 2008), or indirectly by measuring the
economic benefit for investors, for instance through the evaluation of the performance of trading
strategies (Marquering and Verbeek, 2004). With only minor modifications our bootstrap method
can be used for such out-of-sample evaluation.

To fix ideas, consider the generic out-of-sample predictability statistic sOOS. This could be a
formal statistical test, but it can also be R2 or some measure of economic benefit, such as total
return or the Sharpe ratio. We assume that there is a total of Tþ h observations on zt available,
where the first (last) T (h) observations form the in-sample (out-of-sample) period. The two sam-
ple periods play very distinctive roles; with the in-sample data the investor estimates the model
and makes the prediction for the future, or decides on the weights in the investment portfolio.
The prediction or trading strategy is then evaluated using the out-of-sample data, by for instance
calculating the out-of-sample R2 for the predictions, or a performance measure for the investment
strategy.

To implement the bootstrap, note that since both test and bootstrap are used for ex post
evaluation, we can use the full sample up to Tþ h to generate the bootstrap sample. Therefore, in
steps 1 and 2 of the bootstrap algorithm all Tþ h observations available are used in the estima-
tion, while in steps 3–5Tþ h bootstrap observations fz�t gTþh

t¼1 are generated. In the final steps of
the bootstrap algorithm, the bootstrap statistic s�OOS is calculated, again distinguishing between
the in-sample and out-of-sample periods. As we always bootstrap under the null hypothesis of no
predictability, s�OOS is generated under the null hypothesis irrespective of the specific statistic con-
sidered. Asymptotic validity follows from the same arguments used in Section 4 for the in-sample
tests considered here.

6One disadvantage of using the correction in step 6 is that it does not guarantee that X̂
�
and K̂

�
ZK̂

�
are positive definite,

which, if required, can be remedied by weighting with a lag window.
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4. Asymptotic distributions

The results reported in this section are based on keeping N fixed and sending T (and also m) to
infinity, which means that in practice what matters for accuracy is that T is sufficiently large. The
fixed-N, large-T requirement is not only consistent with the typical data set in the literature, but
is in fact necessary for the validity of the unit-by-unit sequential approach, as pk ¼ k�1 is indis-
tinguishable from pkþ1 ¼ k when N ! 1.

4.1. The sample statistics

We begin by reporting the asymptotic distributions of the test statistics when applied to the sam-
ple data. The results are summarized in Theorem 1.

Theorem 1. Suppose that Assumptions 1 and 2 hold, m ¼ oðT1=2�1=jÞ and J ¼ oðm�1
ffiffiffiffi
T

p Þ. Then
the following hold as m; J; T ! 1:

(i) Under H0ð0Þ,
sGM 0; 1ð Þ!d

PN
i¼1 Xi;

sP 0; 1ð Þ!d

PN
i¼1 Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr Xvv 	 C 	 Xwwð Þp ;

where Y ¼ ðY1; :::;YNÞ0¼dðC 	 Xww 	 XvvÞ1=2Z, with Z
Nð0; INÞ;!d and ¼d signify equal-
ity in distribution and convergence in distribution, respectively, 	 is the Hadamard product,
trðAÞ is the trace of the matrix A, C is a symmetric N�N matrix with typical element
½C�ij ¼ �1=ðci þ cjÞ;Xi ¼

ffiffiffiffiffiffiffiffiffi�2ci
p

Yi=xv;ixw;i, and x2
w;i ¼ ½Xww�ii.

(ii) Under H1ð1Þ; sGMð0; 1Þ; sPð0; 1Þ ¼ OpðT=
ffiffiffiffi
m

p Þ.
(iii) Under H0ðpÞ,

sSQ pk; pkþ1ð Þ ¼ Op T=
ffiffiffiffi
m

p� �
if pkþ1 � p;

sSQ pk; pkþ1ð Þ!dX pkþ1�p:bi¼0ð Þ if pkþ1>p;

where Xðpkþ1�p:bi¼0Þ indicates the ðpkþ1�pÞ-th largest value of the set of Xi variables for
which bi ¼ 0.

The rate of divergence of sSQðpk; pkþ1Þ under the alternative implies that our tests have power
against local alternatives of the form bi ¼ bi

ffiffiffiffi
m

p
=T for some bi 6¼ 0. In the supplemental material,

we derive the relevant asymptotic distribution theory for such alternatives, which is used in
Section 5 to evaluate the small sample behavior of our tests.

Remark 7. The requirement that m ¼ oðT1=2�1=jÞ is the same as in Park (2006). The required
expansion rate of J, which is stricter than the usual oð ffiffiffiffi

T
p Þ rate, can be explained in the follow-

ing way. As m increases, the convergence rate of ~bi and ~qi is reduced. Therefore, ~ut is a poor
estimator of ut, and as a result X̂ and K̂ are poor estimators of X and K, respectively. To com-
pensate, J must be set as a decreasing function of m.

Remark 8. The corrections applied to the numerators and denominators of the test statistics
ensure that the unit-specific nuisance parameters are eliminated, but not those arising from the
cross-sectional dependence. In the time series case (N¼ 1), it is easy to see that
X1 ¼

ffiffiffiffiffiffiffiffiffiffi�2c1
p

Y1=xv;1xw;1 ¼
ffiffiffiffiffiffiffiffiffiffi�2c1

p
=xv;1xw;1ðxv;1xw;1Z1=

ffiffiffiffiffiffiffiffiffiffi�2c1
p Þ ¼ Z1. Therefore, h1 has a limit-

ing N(0, 1) distribution. If, however, N> 1, then X1; :::;XN are correlated, which means that the
panel statistics are not asymptotically pivotal. The only exception is the empirically irrelevant case
when there is no cross-section dependence.
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4.2. The bootstrap statistics

Theorem 2. Suppose that Assumptions 1 and 2 hold, m ¼ oðT1=2�1=jÞ and ‘ ¼ oðm�1
ffiffiffiffi
T

p Þ. Then
the following hold as m; ‘; T ! 1:

(i) Under H0ð0Þ and H1ðpÞ for any 0<p � N,

s�GM 0; 1ð Þ!d�
XN
i¼1

Xi in probability;

s�P 0; 1ð Þ!d�

PN
i¼1 Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr Xvv 	 C 	 Xwwð Þp in probability;

where !d� signifies convergence in distribution conditional on the realization of the ori-
ginal sample.

(ii) Under H0ðpÞ,
s�SQ pk; pkþ1ð Þ!d�X pkþ1�pk:S

c
pkð Þ in probability:

Theorem 2 establishes the asymptotic validity of the pooled bootstrap statistics, and establishes
the asymptotic properties of the sequential bootstrap statistics in a single step. The consequences
for the properties of the sequential approach as a whole are given in the following corollary to
Theorem 2.

Corollary 1. Under the assumptions of Theorem 2,

lim
T!1

P p̂ ¼ pk
� � ¼ 0 if pkþ1 � p;

lim
T!1

P p̂ ¼ pk
� � 2 0; 1½ � if pk<p<pkþ1;

lim
T!1

P p̂ ¼ pk
� � ¼ 1�a if pk ¼ p;

lim
T!1

P p̂ ¼ pk
� � 2 a; 1½ � if pk�1<p<pk;

limsup
T!1

P p̂ ¼ pk
� � � a if pk�1 � p;

where a is the chosen significance level and PðAÞ is the probability of the event A. In addition, Sp
will equal the true set of predictable units with probability tending to one.

Corollary 1 says that if p is among the numbers to be tested, the sequential method is asymptotic-
ally valid in the sense that limT!1 Pðp̂<pk�1Þ � a and limT!1 Pðp̂>pkþ1Þ ¼ 0. In addition, the cor-
rect units are identified as predictable. The corollary also sheds light on what is likely to happen if
the true proportion is in between selected numbers. Specifically, assuming that p̂ ¼ pk, we have

P p 2 pk�1; pkþ1½ �ð Þ ¼ 1�P p<pk�1ð Þ�P p>pkþ1ð Þ � 1�a: (13)

Hence, if the units are not added one-by-one, so that there is a possibility that p lies between
the numbers considered in the testing, then the finding that p̂ ¼ pk is best interpreted as provid-
ing evidence of p 2 ½pk�1; pkþ1�.

5. Monte Carlo simulations

5.1. Setup

In this section, we investigate briefly the performance of the proposed tests in small samples. The
DGP used for this purpose is given by a restricted version of (1) and (2) that sets a ¼ d ¼ 0
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(although we do not assume knowledge of this in the construction of the tests) and m ¼ T1�c,
such that q ¼ 1þ c=Tc. We similarly set b ¼ b=Tc, such that under the alternative the predict-
ability is weak. Also,

ut ¼ kft þ et; (14)

where k ¼ ðk0v; k0wÞ0; kv ¼ ðkv;1; :::; kv;NÞ0 with a similar definition of kw, and ft ¼ /ft�1 þ �t with
/ ¼ 0:5 and �t
Nð0; r2�Þ independent of et
Nð0; I2NÞ. Hence, in the DGP considered here ut is
assumed to have a common factor representation, which is by no means necessary under our
assumptions. Moreover, both the serial and cross-sectional dependence are assumed to originate
with ft, which is also not necessary. However, it is convenient, not only in terms of transparency,
but also because it facilitates a straightforward comparison with the test of Westerlund et al.
(2017), as we explain in detail below. As for bi, the i-th diagonal element of b, bi
U½5; 15� for
i ¼ 1; :::; p, and bi ¼ 0 for i ¼ pþ 1; :::;N, which is consistent with the parameterizations consid-
ered in the time series literature (see, e.g., Campbell and Yogo, 2006; Cavanagh et al., 1995;
Elliott and Stock, 1994; Jansson and Moreira, 2006). We further set p ¼ bqNc,
where q ¼ 0; 0:2; 0:5; 0:9.

The parameters that matters for the persistence of xt are c, T and c. The i-th diagonal element
of c, ci, is made a draw from U½�5; 0�, which is again consistent with previous studies. As for c,
we consider two specifications; c ¼ 0:9 and c¼ 1. In interest of space, however, we focus on the
case when c ¼ 0:9, and place the c¼ 1 results in the supplemental material. Two values of each
of N and T are considered; N¼ 10, 30 and T¼ 100, 250, which corresponds roughly to the empir-
ical sample sizes considered in Section 6. This means that when T¼ 100, which is the value that
makes qi furthest away from one, qi
U½0:93; 1� with an average of 0.96. Hence, even in this case
xt highly persistent.

In our setup, the extent of serial and cross-sectional correlation in vi;t (wi;t) is determined by
kv;i (kw;i), / and r2� , as is clear from Evi;tvj;t�h ¼ Ekv;ikv;jr2�/

h=ð1�/2Þ for h> 0 or i 6¼ j and
Ev2i;t ¼ Ek2v;ir

2
�=ð1�/2Þ þ 1. Moreover, since Evi;twi;t�h ¼ Ekv;ikw;ir2�/

h=ð1�/2Þ, the extent of
endogeneity is determined by kv;i; kw;i;/ and r2� . Four factor loading cases are considered:

L1. kv;i ¼ kw;i ¼ 0 and r2� ¼ 1.
L2. kv;i
U½�1; 3�; kw;i ¼ 0 and r2� ¼ 1.
L3. kv;i ¼ �kw;i
U½�1; 3� and r2� ¼ 1.
L4. kv;i ¼ �kw;i
U½2; 5� and r2� ¼ 2.

L1–L4 are intended to demonstrate the flexibility of the proposed tests. L1 is most restrictive.
Here vi;t and wi;t are independent, both cross-sectionally and across time, and there is no endoge-
neity. L2 is more general than L1 in that while wi;t is again uncorrelated, vi;t is both serially and
cross-sectionally correlated. The correlation between vi;t and vj;t�h can be computed using the
above formula and the known properties of the uniform distribution. It is given by 0:32 � /h for
i 6¼ j and 0:76 � /h for i¼ j. L3 is in turn more general than L2, and allows both vi;t and wi;t to be
serially and cross-sectionally uncorrelated, and also correlated with each other (endogeneity). The
correlation between vi;t and wi;t is –0.76, which is in the range considered by, e.g., Campbell and
Yogo (2006), Elliott and Stock (1994), and Jansson and Moreira (2006). This correlation in L4 is
–0.97, which is even higher than in L3, and would have to be considered an extreme case.

A word on the tests considered. As a benchmark for sP and sGM, we include the test of
Westerlund et al. (2017), henceforth denoted sWKN, which is arguably the most general existing
competitor. However, while relatively general when compared to existing tests, sWKN is still rather
restrictive. In particular, as alluded to in Section 1, while xi;t is permitted to be both serially and
cross-sectionally correlated in a very general fashion, the cross-correlation in vi;t is assumed to be
made up of a single common factor. The type of endogeneity that can be permitted is also highly
restrictive, but is satisfied in this section. Moreover, while in general both the idiosyncratic and
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common components of vi;t are assumed to be serially uncorrelated, with weakly integrated pre-
dictors, ft may be serially correlated. The DGP considered here is therefore tailored to meet the
requirements of sWKN, and it is important to keep this in mind when interpreting the results.

As a benchmark for sSQ, since there is no other test like it in the literature, we consider the
naive testing strategy that consists of classifying the units one-by-one using the individual hi sta-
tistics. Of course, since the asymptotic distributions of these statistics are generally unknown (see
Theorem 1), the p-values still have to be bootstrapped, and for this purpose we use the same
algorithm as in Section 3.3. This means that while the serial- and cross-sectional dependence is
accounted for, the multiplicity of the testing problem is not. The resulting test is henceforth
denoted sI.

A word on the implementation of the proposed tests. The sequential procedure is based on
setting pk�pk�1 ¼ N=10 for k ¼ 1; :::;K, which means that the spacing between the number of
predictable units to be tested is increasing in N. As we illustrate in Section 5.2 below, the fact
that pk�pk�1 is allowed to increase with N is important for the performance of sSQ. The block
length and bandwidth are set equal to ‘ ¼ J ¼ b1:75T1=3c, a value that was also used by Palm
et al. (2011).7 All other implementation issues, including kernel and bootstrap variance estimator,
are dealt with as explained in Section 3. We focus on the tests based on the iterative bias correc-
tion procedure described in Remark 6, although in the supplemental material we also report
some results for the non-iterative tests. For sP, sGM, and sWKN, we report 5% size and raw power,
whereas for sSQ, we report the average proportion of units incorrectly classified as predictable
(PIC) and the average proportion of units correctly classified as predictable (PCC). Here PIC can
be loosely interpreted as size, while PCC can be loosely interpreted as power. All results are based
on 2,000 simulations and 399 bootstrap replications.

5.2. Results

The empirical rejection frequencies for sP, sGM, and sWKN are reported in Table 1. While for
q¼ 0 these values represent size, for q> 0 they represent power. We begin by considering the

Table 1. Empirical rejection frequencies of sP, sGM, and sWKN.

q¼ 0 q¼ 0.2 q¼ 0.5 q¼ 0.9

N T Case sP sGM sWKN sP sGM sWKN sP sGM sWKN sP sGM sWKN

10 100 L1 0.016 0.014 0.049 0.425 0.366 0.218 0.971 0.971 0.638 1.000 1.000 0.912
L2 0.025 0.018 0.035 0.099 0.147 0.165 0.410 0.570 0.581 0.825 0.939 0.854
L3 0.059 0.040 0.041 0.402 0.510 0.422 0.791 0.905 0.735 0.965 0.995 0.875
L4 0.065 0.067 0.055 0.151 0.115 0.573 0.684 0.674 0.629 0.997 0.998 0.698

250 L1 0.017 0.016 0.046 0.557 0.533 0.250 0.994 0.996 0.728 1.000 1.000 0.933
L2 0.026 0.025 0.040 0.135 0.200 0.215 0.507 0.704 0.621 0.894 0.975 0.899
L3 0.044 0.037 0.051 0.455 0.597 0.499 0.826 0.946 0.811 0.982 0.999 0.907
L4 0.061 0.066 0.043 0.137 0.099 0.678 0.735 0.751 0.746 0.999 1.000 0.800

30 100 L1 0.011 0.009 0.037 0.853 0.816 0.437 1.000 1.000 0.941 1.000 1.000 0.993
L2 0.025 0.022 0.036 0.245 0.354 0.410 0.825 0.950 0.921 0.992 1.000 0.993
L3 0.054 0.042 0.043 0.476 0.729 0.682 0.895 0.989 0.869 0.994 1.000 0.927
L4 0.051 0.056 0.039 0.132 0.118 0.591 0.735 0.711 0.670 1.000 0.999 0.783

250 L1 0.024 0.020 0.047 0.934 0.935 0.489 1.000 1.000 0.960 1.000 1.000 0.998
L2 0.029 0.024 0.042 0.313 0.451 0.475 0.897 0.983 0.960 1.000 1.000 0.997
L3 0.059 0.049 0.043 0.542 0.778 0.743 0.922 0.995 0.919 0.997 1.000 0.947
L4 0.059 0.063 0.042 0.134 0.111 0.700 0.813 0.812 0.789 1.000 1.000 0.839

Notes: q refers to the fraction of predictable units and c is such that m ¼ T1�c . The results in the table are based on set-
ting c ¼ 0:9.

Cases L1–L4 differ with respect to the extent of serial and cross-sectional correlation, and endogeneity.

7For the variance estimation, we also considered automatic bandwidth selection and pre-whitening, but this did not affect
the results.
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former set of results. With 2,000 replications the 95% confidence interval for the size of the 5%
level tests studied here is ½0:04; 0:06�. With this in mind, we see that all three tests tend to per-
form really well in all four cases considered. Of course, size accuracy is not perfect and there are
some distortions. However, most distortions go in the “right” downwards direction, leading to
conservative tests. The proposed tests generally suffer most with sizes that can be down to 0.009
when the nominal level is 5%. The reason for these distortions is the bias correction, which is not
perfect unless T is really large (see Remarks 4 and 6 for discussions). The sWKN test is also some-
what undersized, although the distortions are, as already pointed out, relatively small, as might be
expected given that the DGP considered is a perfect match for this test. Of course, once the con-
ditions of the DGP are relaxed there are no assurances of continued good performance. For
example, as explained earlier, sWKN presumes that the cross-section dependence in vi;t is gener-
ated by a single common factor. The performance of this test is therefore likely to deteriorate
once we move away from the single factor DGP considered here, and we have unreported results
that confirm this.

The power of the tests increases with q, N and T, which is a reflection Theorem 1 (ii). The
performances of sP and sGM are very similar, although the overall impression is that the latter
test is slightly more powerful. The relatively high power for sGM is not uniform, however, and
there are cases where sP is more powerful. The least powerful test is typically given by sWKN. The
main exception is in L4 when q¼ 0.2, in which case sWKN tends to be more powerful than the
proposed tests.

As pointed out in Section 4, in the supplemental material we report the asymptotic distribu-
tion theory that applies under the kind of weak predictability considered here. The fact that
powers of sP and sGM go down as q becomes smaller is just as expected given this theory.
Unfortunately, since Westerlund et al. (2017) only provide the asymptotic distribution of their
test under the null hypothesis, theory cannot explain why sP and sGM are in general more sensi-
tive to variations in q than sWKN. One possibility is that the relative performance is due to differ-
ences in test construction. A major difference when compared to sP and sGM is that sWKN does
not require bias correction, which is due to the fact that the type of endogeneity that can be per-
mitted in this other test is relatively restrictive. Moreover, owing again to the difference in gener-
ality, while the proposed tests must be bootstrapped, sWKN does not. Both the bias correction and
the bootstrap are needed to ensure that the tests are asymptotically correctly sized under the null
hypothesis, and such size-preserving measures are known to be quite costly in terms of power.
This could explain why sP and sGM are sometimes less powerful than sWKN.

Let us now consider Table 2, which contain the results for sSQ and sI. The first thing to note
is the very low PIC values for sSQ. Most values are below 0.01, and are substantially smaller than
those reported for sI. In fact, in a majority of cases the PIC values for sI are more than 10 times
larger than those reported for sSQ. Hence, sI misclassifies more unpredictable units as predictable,
which is to be expected given that this test does not account for the multiplicity of the test-
ing problem.

In terms of PCC, while sI tends to dominate quite markedly in L1–L3, in L4 the difference in
performance is very small. Hence, again, power is gained by letting go of size control. Interesting,
the gain in power when compared to sSQ is not even near enough to offset the increase in size
distortion. We also see that while the performance of sI only increases in T, for sSQ the PCC is
increasing in q, T and N. For the effect of N to kick in it is crucial to allow for larger gaps
between pk�1 and pk when N increases, as we do here. Unreported simulations show that the
PCC of the unit-by-unit approach based on setting pk ¼ k�1 deteriorates as N increases, which is
to be expected given the discussion in Section 3.2. Of course, this effect is not unique to sSQ, but
is there for most (if not all) sequential multiple testing procedures of this type. Indeed, as
Smeekes (2015) shows in the context of selecting the number of (non-)stationary units in a panel,
his sequential procedure generally compares favorably when compared to existing procedures,
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such as those of Moon and Perron (2012), Romano and Wolf (2005), and Romano et al. (2008).
As mentioned in Section 3.2, the sequential procedure considered here is very similar to the one
of Smeekes (2015). It is therefore expected to perform relatively well when compared to these
other procedures if used in the present more general context.

The PCC of sSQ is markedly lower in L2 than in the other cases. This is in accordance with
theory. In particular, as we show in the supplemental material, under the weak predictability par-
ametrization considered here,

hi!d
bixw;iffiffiffiffiffiffiffiffiffi�2ci

p
xv;i

þ Xi

as T ! 1. Since Xi does not depend on bi power is driven by the first term on the right, which
represents a drift in the asymptotic distribution. By using again the above given formulas for the
variances and autocovariances of vi;t and wi;t;x2

v;i and x2
w;i, and hence also the drift can be com-

puted. What we find is that while in L1, L3, and L4 x2
v;i ¼ x2

w;i, in L2 x2
v;i ¼ 57=9�6:33 and

x2
w;i ¼ 1. The drift is therefore relatively small in L2, which is suggestive of low PCC. We also see

that power is typically somewhat higher in L3 and L4, than in L1 and L2. In the supplemental
material, we offer an explanation for this.

All-in-all, we find that our asymptotic results tend to provide a reasonable approximation to
the observed behavior in small samples. In particular, we find that while sP and sGM can some-
times be oversized when the predictors are highly endogenous and close to unit root non-station-
ary, iterative correction seems to provide a very effective means by which these distortions can be
removed. Another finding is that sSQ seems to be very good at controlling the PIC. The PCC can
sometimes be low, but is generally acceptable, and it improves with increases in q, T, and N.

6. Empirical application

One of the advantages of using stock-level panel data when predicting returns is that since the
behavior of individual stocks is relatively uninteresting little is lost by taking an overall panel per-
spective. However, many studies of return predictability use cross-country panels (see, e.g., Ang
and Bekaert, 2007; Driesprong et al., 2008; Hjalmarsson, 2010; Polk et al., 2006; Rapach et al.,

Table 2. Average proportions of correctly and incorrectly selected predictable units using sSQ and sI.

q¼ 0 q¼ 0.2 q¼ 0.5 q¼ 0.9

PIC PCC PIC PCC PIC PCC PIC PCC

N T Case s SQ sI sSQ sI sSQ sI sSQ sI sSQ sI sSQ sI sSQ sI sSQ sI
10 100 L1 0.000 0.007 – – 0.000 0.008 0.284 0.607 0.000 0.006 0.289 0.605 0.000 0.006 0.305 0.608

L2 0.000 0.013 – – 0.001 0.012 0.097 0.281 0.001 0.013 0.089 0.264 0.001 0.010 0.094 0.271
L3 0.000 0.012 – – 0.001 0.010 0.433 0.617 0.001 0.010 0.443 0.606 0.001 0.008 0.467 0.615
L4 0.000 0.006 – – 0.000 0.006 0.865 0.951 0.001 0.007 0.876 0.951 0.003 0.005 0.908 0.949

250 L1 0.000 0.015 – – 0.001 0.018 0.511 0.750 0.001 0.019 0.526 0.753 0.002 0.019 0.553 0.751
L2 0.001 0.025 – – 0.001 0.024 0.170 0.367 0.001 0.024 0.176 0.371 0.001 0.027 0.183 0.367
L3 0.001 0.022 – – 0.001 0.022 0.527 0.671 0.001 0.023 0.544 0.674 0.004 0.028 0.558 0.669
L4 0.002 0.021 – – 0.003 0.020 0.935 0.979 0.004 0.021 0.944 0.976 0.025 0.022 0.966 0.980

30 100 L1 0.000 0.007 – – 0.001 0.007 0.341 0.606 0.002 0.006 0.463 0.606 0.004 0.006 0.561 0.611
L2 0.000 0.012 – – 0.001 0.012 0.051 0.273 0.002 0.012 0.123 0.269 0.002 0.014 0.160 0.270
L3 0.000 0.010 – – 0.002 0.010 0.384 0.625 0.004 0.010 0.498 0.623 0.007 0.011 0.548 0.615
L4 0.000 0.006 – – 0.000 0.006 0.750 0.946 0.001 0.007 0.840 0.950 0.004 0.005 0.909 0.949

250 L1 0.000 0.018 – – 0.004 0.017 0.541 0.754 0.007 0.017 0.672 0.757 0.028 0.017 0.771 0.755
L2 0.001 0.024 – – 0.004 0.023 0.139 0.369 0.007 0.024 0.227 0.364 0.008 0.024 0.272 0.367
L3 0.000 0.022 – – 0.004 0.023 0.459 0.673 0.005 0.022 0.568 0.676 0.015 0.022 0.626 0.674
L4 0.001 0.020 – – 0.002 0.022 0.878 0.979 0.004 0.020 0.916 0.978 0.022 0.019 0.954 0.978

Notes: PIC and PCC refer to the average proportion of units correctly and incorrectly classified as predictable, respectively. See
Table 1 for an explanation of the rest.
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2005, 2013), in which case the unit of observation is certainly not without interest. The bootstrap
tests developed in the present article are ideally suited for panel data of this type and we will use
them here as an illustration of their usefulness from an applied point of view.

The data set is an update of the one of Hjalmarsson (2010). While the original data set ends
in 2004, the updated data set include 10 more years of data and stretches the period
1988M3–2013M1. The number and choice of countries is the same as in the original sample.
Unfortunately, the data coverage varies significantly among countries. We therefore ended up
truncating the sample in order to make it balanced. Since the aim here is to maximize the total
number of observations (subject to the balanced panel restriction), the truncation is done separ-
ately for each regression. The resulting truncated sample size for each regression is reported in
Table 3. We see that while N is quite small, T is much larger, which is appropriate given the
fixed-N, large-T asymptotic approach used in Section 4. The data set contains five variables; the
dependent variable, excess returns (ER), and four predictors, the dividend-price (DP) ratio, the
earnings-price (EP) ratio, the short term interest rate (SR) and the term spread (TS). A complete
description of these variables and of the data source is provided in Hjalmarsson (2010). Also, as
in this other article, for each of the four ER–predictor combinations we consider three subsam-
ples; the global sample containing all countries, the developed countries, and the emerging market
countries.

6.1. Preliminary results

Before, we come to the predictability test results we report some preliminary evidence on the
extent of serial and cross-section correlation. As a measure of the cross-section correlation, we
compute the pair-wise correlation coefficients of the first-differenced variables (to safeguard
against possible non-stationarity) of each predictive regression. The simple average of these cor-
relation coefficients across all pairs of countries, together with the associated CD test discussed in
Pesaran et al. (2008), are reported in Table 4. The average correlation coefficient for all variables
and subsamples ranges between 0.04 and 0.55, and the CD statistic is highly significant in all
cases. Hence, as expected, the countries are not uncorrelated with each other. We also see that
the correlation is highest among the developed countries, which is partly as expected.

As a second preliminary we test the variables for unit roots. However, because of the cross-
correlations, we cannot use the conventional “first-generation” approach of just combining indi-
vidual time series unit root tests as if they were independent. For this purpose, we employ the
block bootstrap sp and sgm test statistics of Palm et al. (2011), which are very similar in spirit to
the sP and sGM statistics considered here. The tests are constructed with a common unit root
under the null hypothesis and possibly heterogeneous autoregressive roots under the alternative,
suggesting that a rejection of the null should be taken as evidence in favor of stationarity for at
least one unit. The block length is set as in Section 5 to b1:75T1=3c, and the number of bootstrap
replications is 9,999. All tests are implemented while allowing for a country-specific intercepts
and time trends. The results reported in Table 5 suggest that for ER the evidence against the unit
root null is very strong, as to be expected. The test values for the predictors are smaller (in abso-
lute value), but a large majority is still significant at the 1% level, and at the 10% level there is no

Table 3. Regression-specific sample sizes.

Emerging Global Developed

Regression N T N T N T

ER–EP 9 297 30 297 21 297
ER–DP 8 296 28 296 20 296
ER–SR 9 299 31 299 22 299
ER–TS 4 292 24 292 20 292
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evidence in favor of the unit root null at all. This is reflected in the estimated largest autoregres-
sive roots, which lie in the interval ½0:851; 0:959�. This means that the predictors are less persist-
ent than those considered in the Monte Carlo simulations, suggesting that the proposed
predictability tests should perform well with no major violations of the weak integra-
tion assumption.

In order to get a rough feeling for the extent of endogeneity, which we have seen can create a
problem when coupled with near-unit root predictors, we computed the correlation between v̂t
and ŵt , the OLS residuals from (1) and (2), respectively. The correlations lie between –0.04 and
0.137 with an average of 0.182, suggesting that endogeneity is not a big problem. Based on this
and the Monte Carlo evidence reported in the supplemental material suggesting that iterated bias
correction can be costly in terms of power, in the empirical analysis we do not iterate.

6.2. Predictability test results

We begin by considering the results obtained by applying sP and sGM, which are implemented in
the same way as in Section 5. The only differences are that we detrend rather than demean the
data, and that we set the number of bootstrap replications to 9,999.8 The results reported in
Table 6 lead to the following conclusions. First, except possibly for the emerging market sub-
sample, where sGM is significant at the 1% level, EP has no real predictive ability. This finding is
in agreement with those of Hjalmarsson (2010), who reports some evidence of predictability for
EP, but only for the emerging market economies. Second, for DP, SR and TS there is strong evi-
dence to suggest that ER is in fact predictable, which is in agreement with the general consensus
in the literature (Rapach and Zhou, 2013, p. 372).

The results reported so far suggests that for three out of four predictors there is evidence of
predictability for at least some countries. In view of this, a natural question is: Which are the
countries for which ER can be predicted? To answer this question we employ the sequential test
procedure, the results of which are reported in Table 7. As mentioned in Section 5, with N large,
sequentially adding units one-by-one (pk�pk�1 ¼ 1) is likely to lead to underestimation of p. To
compensate for this tendency, in this section we use different sequences for different subsamples.
According to Table 3, in the developed and global samples N is about two and three times larger
than in the emerging market subsample, respectively. We therefore set pk�pk�1 ¼ 1; 2; 3 in the
emerging, developed and global samples, respectively. The data are again detrended and the num-
ber of bootstrap replications is again set to 9,999, but, apart from this, the implementation is
exactly as in Section 5. The first thing to note from the results is that the number rejections is
very few, if any. The only exception is for SR where we count six rejections for the global sample,

Table 4. Cross-correlation results.

Emerging Global Developed

Regression Variable CORR CD p-value CORR CD p-value CORR CD p-value

ER–EP EP 0.090 9.283 0.000 0.072 25.823 0.000 0.078 19.401 0.000
ER 0.232 23.996 0.000 0.405 145.463 0.000 0.518 129.463 0.000

ER–DP DP 0.093 8.437 0.000 0.246 82.327 0.000 0.334 79.181 0.000
ER 0.218 19.820 0.000 0.403 134.953 0.000 0.518 122.809 0.000

ER–SR SR 0.038 3.904 0.000 0.076 28.274 0.000 0.120 31.416 0.000
ER 0.182 18.926 0.000 0.387 144.484 0.000 0.518 136.198 0.000

ER–TS TS 0.132 5.545 0.000 0.136 38.575 0.000 0.163 38.380 0.000
ER 0.274 11.475 0.000 0.480 136.394 0.000 0.547 128.879 0.000

Notes: “CORR” and “CD” refer to the average pair-wise correlation coefficient, and the Pesaran et al. (2008) test of the null
hypothesis of no cross-section correlation, respectively. The results are for the first-differenced variables.

8The constant-only results are reported in the supplemental material.
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of which four (two) are due to developed (emerging) economies. This finding is in agreement with
studies such as Ang and Bekaert (2007), Hjalmarsson (2010), Rapach et al. (2013), and Rapach et al.
(2005), who all find strong evidence in favor of predictability based on SR. The poor performance of
DP and EP corroborates the previous findings of Ang and Bekaert (2007), and Rapach et al. (2005).
The fact that for these predictors many of the rejections at the overall panel level seem to be driven
by single countries illustrates the risk of using a pooled panel approach. It is possible that some coun-
tries have been incorrectly classified as unpredictable. However, even if we were to account for this
possibility, a majority of countries would still be unpredictable.

Table 5. Unit root test results.

Predictor ER

Regression Subsample AR s p p-value sgm p-value AR sp p-value sgm p-value

ER–EP Emerging 0.851 �117.651 0.000 �45.569 0.000 0.113 �262.201 0.000 �271.451 0.000
Global 0.874 �103.842 0.000 �39.723 0.000 0.126 �258.955 0.000 �262.111 0.000
Developed 0.878 �76.727 0.000 �37.218 0.000 0.141 �254.736 0.000 �258.107 0.000

ER–DP Emerging 0.899 �60.526 0.000 �35.341 0.000 0.120 �259.996 0.000 �267.027 0.000
Global 0.926 �39.113 0.000 �25.068 0.000 0.128 �257.319 0.000 �260.076 0.000
Developed 0.936 �21.605 0.000 �20.959 0.002 0.131 �253.767 0.000 �257.296 0.000

ER–SR Emerging 0.946 �11.491 0.092 �16.428 0.000 0.114 �264.992 0.000 �273.639 0.000
Global 0.947 �14.464 0.036 �16.332 0.000 0.130 �260.511 0.000 �262.701 0.000
Developed 0.948 �70.548 0.000 �16.292 0.000 0.136 �254.916 0.000 �258.226 0.000

ER–TS Emerging 0.927 �20.105 0.002 �21.478 0.004 0.015 �271.645 0.000 �274.448 0.000
Global 0.953 �13.993 0.044 �15.952 0.004 0.116 �255.652 0.000 �255.948 0.000
Developed 0.959 �13.851 0.054 �14.847 0.016 0.136 �248.877 0.000 �252.248 0.000

Notes: “AR” refers to the average of the estimated largest autoregressive roots for each country. sp and sgm are the panel unit
root tests of Palm et al. (2011).

Table 6. Pooled predictability test results.

Regression Subsample sP p-value sGM p-value

ER–EP Emerging �0.257 0.810 �1.609 0.012
Global �0.303 0.836 �0.544 0.356
Developed �0.283 0.974 �0.088 0.907

ER–DP Emerging 3.295 0.098 2.423 0.000
Global 3.686 0.088 1.208 0.050
Developed 1.720 0.670 0.722 0.564

ER–SR Emerging �4.959 0.001 �1.716 0.001
Global �5.336 0.000 �2.143 0.000
Developed �3.704 0.029 �2.318 0.002

ER–TS Emerging �0.327 0.568 0.165 0.803
Global 6.214 0.061 1.490 0.045
Developed 6.399 0.054 1.754 0.030

Table 7. Rejections from the sequential test procedure.

Regression Subsample Rejections

ER–EP Emerging None
Global None
Developed None

ER–DP Emerging None
Global None
Developed None

ER–SR Emerging Brazil
Global Belgium, Brazil, Denmark, France, New Zealand, South Africa
Developed Belgium, Denmark, France, New Zealand

ER–TS Emerging None
Global None
Developed None

Notes: The rejections are obtained by applying sSQ at the 5% level.
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7. Concluding remarks

The difficulty of predicting stock returns using time series data, typically for the US, has recently
motivated researchers to consider panel data as a means to increase the power of conventional
(time series) tests. Indeed, since the predictable component of stock returns is bound to be small,
if indeed one does exist, there seems to be little chance of reaching a decisive conclusion based
on US data alone. The few panel data tests that do exist are, however, not only based on restrict-
ive assumptions, but are also somewhat uninformative in the sense that they cannot be used to
identify the units for which returns can be predicted. In the present article we take this as our
starting point to develop a block bootstrap algorithm that can be used to infer panel predictive
regressions under very general conditions. Three tests based on this bootstrap are proposed,
denoted sP, sGM, and sSQ. While the first two are suitable when testing the null hypothesis of no
predictability versus the general alternative, the third can be used to identify the units for which
predictability holds. The asymptotic validity of the tests is proven for the case when N is fixed
and T ! 1, and is investigated in finite samples using Monte Carlo simulations. What we find
is that while sP and sGM can sometimes be oversized, sSQ can run into problems with low PCC.
As expected, however, these are small-sample problems that disappear with increases in T. In our
real data application, we consider as an example a cross-country data set on stock returns and
four predictors.
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