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ABSTRACT
The goal of many randomized experiments and quasi-experimental studies in economics is to inform
policies that aim to raise incomes and reduce economic inequality. A policy maximizing the sum
of individual incomes may not be desirable if it magnifies economic inequality and post-treatment
redistribution of income is infeasible. This article develops a method to estimate the optimal treatment
assignment policy based on observable individual covariates when the policy objective is to maximize an
equality-minded rank-dependent social welfare function, which puts higher weight on individuals with lower-
ranked outcomes. We estimate the optimal policy by maximizing a sample analog of the rank-dependent
welfare over a properly constrained set of policies. We show that the average social welfare attained by our
estimated policy converges to the maximal attainable welfare at n−1/2 rate uniformly over a large class of
data distributions when the propensity score is known. We also show that this rate is minimax optimal. We
provide an application of our method using the data from the National JTPA Study. Supplementary materials
for this article are available online.
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1. Introduction

In causal inference studies analyzing experimental or quasi-
experimental data, treatment response generally varies
with individual observable characteristics. Learning about
such heterogeneity from the data is essential for designing
individualized treatment rules that assign treatments on the
basis of individual observable characteristics. The optimal
individualized treatment rule maximizes a social welfare
criterion representing the policy maker’s preferences over
population distributions of post-treatment outcomes. The
literature on statistical treatment choice initiated by Manski
(2004) emphasizes this perspective of welfare-based empirical
policy design and pursues statistically sound ways to estimate
the optimal treatment assignment rule.

Research on statistical treatment rules typically focuses
on the additive social welfare criterion (sometimes called
“utilitarian”) defined as the mean of the outcomes in the
population, even though welfare economics offers a variety
of alternative criteria. The additive social welfare criterion
offers analytical and computational convenience because the
optimal treatment rule then depends only on the conditional
average treatment effect. Empirical researchers studying causal
impacts of social programs have stressed the importance of
evaluating distributional impacts, which are overlooked when
only mean outcomes are considered (e.g., Bitler, Gelbach, and
Hoynes 2006). The distributional impact of a policy is especially
important when the policy maker is concerned about economic
inequality in the population.

CONTACT Toru Kitagawa t.kitagawa@ucl.ac.uk Department of Economics, University College London, Gower Street, London, WC1E 6BT, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

We study the problem of treatment assignment that aims
to maximize a rank-dependent social welfare function (SWF),
which has the form

W ≡
∫

Yi · ω(Rank(Yi))di, (1)

where Yi is individual i’s outcome, Rank(Yi) is the outcome rank
of i from the bottom of the outcome distribution, and ω(·) is a
nonnegative weight assigned to each rank. The additive SWF is
a special case of (1) with constant ω(·). The class of generalized
Gini SWFs proposed by Mehran (1976) and Weymark (1981)
consists of SWFs of the form (1) with nonincreasing ω(·).
It closely relates to income inequality indices, including the
widely used Gini index. Blackorby and Donaldson (1978)
showed that, given a specification of ω(·), the rank-dependent
SWF can be written as a product of the average outcome
and one minus a generalized relative index of inequality, for
example, Gini. This implies that these SWFs generate a ranking
of outcome distributions that is increasing in the average
outcome and decreasing in the chosen index of inequality. While
inequality measures are predominantly applied to net income,
our analysis allows Yi to denote other outcome variables of
interest, including functions of income, consumption, wealth,
or human capital. We will therefore refer to Yi simply as “the
outcome” in this article.

The goal is to choose a treatment rule δ that assigns
individuals to one of two treatments d ∈ {0, 1} depending on
their observable pretreatment covariates X ∈ X . This choice is
made after experimental data have been collected and analyzed.

© 2019 The Authors. Published with license by Taylor & Francis Group, LLC.
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and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/07350015.2019.1688664
https://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2019.1688664&domain=pdf&date_stamp=2021-03-10
mailto:t.kitagawa@ucl.ac.uk
http://www.tandfonline.com/UBES
http://creativecommons.org/licenses/by/4.0/


562 T. KITAGAWA AND A. TETENOV

We do not consider the problem of optimal experimental design
in this article, taking the design as given. We assume that an
individual’s treatment outcome does not depend on treatments
received by others. The policy-maker in our setup can only
impact the distribution of outcomes through the choice of a
treatment assignment rule and cannot combine it with other
redistributive policies.

Finding a policy that maximizes a rank-dependent SWF is
a nontrivial problem without a closed-form solution even if
the conditional distributions of potential outcomes (P(Y0|X)

and P(Y1|X)) are known (in a slight abuse of notation typical
in the literature, Yi will denote individual i’s realization of
random variable Y ≡ (1 − D)Y0 + DY1, whereas Y0, Y1,
and Yd will denote random variables for potential outcomes
of treatments 0, 1, and d ∈ {0, 1}). Under an additive SWF(∫

u(Yi)di
)

(averaging either outcomes Yi or, more generally,
their nonlinear transformations u(Yi)), it is optimal to assign
for each subgroup the treatment with the highest conditional
mean E(u(Yd)|X). In contrast, a rank-dependent SWF is non-
decomposable across subgroups, as the ranking of treatment
assignment rules for a given covariate value may change
depending on the treatment assignment of other subgroups (see
Section B in the online supplement).

We show in Theorem 2.1 that an equality-minded rank-
dependent SWF is always maximized by a non-randomized
treatment rule (assigning the same treatment to all individuals
with identical covariates). This result greatly simplifies the space
of treatment rules that need to be considered. It also allows us
to index treatment rules by their decision sets G ⊂ X , denoting
all values of the covariates {X ∈ G} for which treatment 1 is
assigned.

Our aim is to estimate from the sample data a treatment
assignment rule Ĝ belonging to a constrained (but generally
large) set of feasible policies G, which is a collection of non-
randomized treatment rules indexed by their decision sets.
Policy makers often face legal, ethical, or political constraints
that restrict how individual characteristics can be used to
determine treatment assignment. One of the advantages of
our framework is that it easily incorporates such exogenous
restrictions. Our analytical results also require G to satisfy a
certain complexity restriction (a finite VC-dimension) to prevent
overfitting. Kitagawa and Tetenov (2018a) argue that this is not
restrictive for many public policy applications and provide rich
examples of treatment rule classes that satisfy this complexity
restriction.

We propose estimating the treatment rule Ĝ by maximizing
a sample analog of W(G), the SWF evaluated at the population
distribution of Y that is realized if treatment assignment rule
G is implemented. The general idea of estimating a policy by
maximizing an empirical welfare criterion is in line with the
method developed by Kitagawa and Tetenov (2018a) for the
additive welfare case, hence, we refer to the method proposed in
the current article for rank-dependent SWFs as equality-minded
empirical welfare maximization (EWM). However, the results of
Kitagawa and Tetenov (2018a) cannot be directly applied in this
setting. We had to construct a suitable sample analog of W(G)

using the whole distribution function and derive new methods
to show that this distributional welfare analog (which is not a
sample average, as in Kitagawa and Tetenov (2018a)) converges

uniformly over a VC-class of policies. Additionally, we develop
a novel proof technique to establish this convergence for
unbounded outcome distributions using a weak tail condition,
whereas the results in Kitagawa and Tetenov (2018a) for additive
welfare require outcomes to be bounded.

We evaluate the statistical performance of Ĝ in terms of regret

EPn

[
sup
G∈G

W(G) − W(Ĝ)

]
, which is the average welfare loss

relative to the maximum welfare achievable in G with respect
to the sampling distribution Pn of a size n sample. We derive a
non-asymptotic and distribution-free upper bound on regret in
terms of the sample size n and a measure of complexity ofG, and
show that it converges to zero at n−1/2 rate. We also show that
this rate is minimax optimal over a minimally constrained class
of population distributions, ensuring that no other data-driven
treatment rule can lead to a faster welfare loss convergence rate
uniformly over the class of distributions.

The remainder of this article is organized as follows.
Section 1.1 provides an overview of related literature. Section 2
discusses the properties of equality-minded rank-dependent
social welfare functions and their application to the analysis
of treatment choice. In Section 3, we introduce the general
analytical framework and show the convergence rate properties
of the EWM rule for rank-dependent welfare. Section 4 provides
extensions of the model that incorporate cost or capacity
constraints and that allow the sampled population to be only a
subset of the full population on which social welfare is defined.
In Section 5, we apply our method to the experimental data from
the National JTPA Study. Main proofs are collected in Appendix
A. An online supplement contains additional proofs, examples,
and extensions.

1.1. Related Literature

The analysis of statistical treatment rules was pioneered
by Manski (2004), and is a growing area of research in
econometrics. Important recent developments can be found in
Dehejia (2005), Hirano and Porter (2009), Stoye (2009, 2012),
Chamberlain (2011), Bhattacharya and Dupas (2012), Tetenov
(2012), Kasy (2016, 2018), Kitagawa and Tetenov (2018a),
Mbakop and Tabord-Meehan (2018), and Athey and Wager
(2018), among others. All the existing works on treatment
choice except for Kasy (2016) posit an additive welfare criterion
as the objective function of the policy maker. Motivated by
policy concerns about economic inequality, the current article
instead analyzes the treatment choice problem for a class of
rank-dependent social welfare functions that embody inequality
aversion.

The main feature distinguishing the current analysis from
the EWM approach for the additive welfare case considered
in Kitagawa and Tetenov (2018a) is that the rank-dependent
welfare criterion is nondecomposable. Computing the empirical
welfare criterion then requires that the whole distribution of
outcomes that would be generated by each policy is estimated
first, before a nonlinear transformation is applied to this
distribution estimate. This problem has not been previously
considered in econometrics nor in the machine learning and
statistics literatures on empirical risk minimization problems
(Vapnik 1998), where the empirical risk criterion always takes
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the form of a sample average (with the exception of Wang
et al. (2018), who maximized one specific quantile of the
outcome distribution). Another novel technical contribution of
this article is that we allow outcomes to be unbounded (which
is important for analysis of economic outcomes like earnings)
with only a weak restriction on the tail of the potential outcome
distribution.

Kasy (2016) analyzed treatment choice for a class of social
welfare functions including rank-dependent social welfare. Our
approach differs from his in several aspects. First, Kasy (2016)
considered a linear approximation of the rank-dependent
welfare function around a status-quo policy to discuss (partial)
identification of a welfare-improving local policy change. We
instead focus on a globally optimal policy without invoking
approximations. Second, we assume that the welfare criterion
is point-identified by the sampling process, while Kasy (2016)
focused on partial identification of the welfare criterion and
construction of the social planner’s incomplete preference
ordering over policies. Third, we study estimation of an optimal
policy and examine optimality of the estimator in terms of
welfare regret convergence rate, while Kasy (2016) studied
asymptotically valid inference on the welfare rankings.

Aaberge, Havnes, and Mogstad (2013) estimated a rank-
dependent social welfare function of two policy alternatives:
with and without uniform implementation of the treatment.
Firpo and Pinto (2016) estimated the impact of uniform
implementation of the treatment on measures of inequality,
including the Gini coefficient. In contrast, the focus of the
current article is on estimating the optimal treatment rule from
a large class of individualized assignment rules.

We consider social welfare functions that satisfy the axiom of
anonymity, that is, social welfare functions that are functionals
of the distribution of outcomes after treatment assignment and
that are indifferent to reshuffling of the outcomes between
individuals. Thus, our objective does not depend on the
distribution of individual treatment effects P(Y1 − Y0), which
has also received attention recently in the program evaluation
literature (Heckman, Smith, and Clements 1997; Firpo and
Ridder 2019; Fan and Park 2010).

Building social welfare functions satisfying the Pigou–Dalton
principle of transfers (that a transfer of income from a higher
ranked individual to a lower ranked individual that does not
change their ranks is always desirable) is one of the central
themes in the literature of inequality measurement and welfare
economics (see Cowell 1995, 2000; Lambert 2001). Currently,
there are two widely used classes of social welfare functions
that meet the Pigou–Dalton principle. The first is the class of
Atkinson-type SWFs (Atkinson 1970), W(F) = ∫∞

0 U(y)dF(y),
where F(y) is the cumulative distribution function (cdf) of
the outcome and U(·) is a concave nondecreasing function.
Since the Atkinson-type social welfare function is linear in
F, the EWM approach of Kitagawa and Tetenov (2018a) can
be readily applied by defining the outcome observations as
U(Y). The second class, which is this article’s main focus, is
the class of rank-dependent social welfare functions introduced
by Mehran (1976), Blackorby and Donaldson (1978), and
Weymark (1981) and axiomatized by Yaari (1988). The key
axiom of Yaari (1988) that distinguishes rank-dependent social
welfare from Atkinson-type social welfare is invariance under

a rank-preserving lump-sum change of incomes at the upper
tail, which means that the preference ordering between two
income distributions F and F′ is invariant to any fixed lump-sum
increase (decrease) in income of all those above (below) the τ th
quantile of F and F′ for any τ ∈ (0, 1). On the other hand, the
key axiom that characterizes the Atkinson-type social welfare
is the independence axiom: the preference ordering between
F and F′ is invariant to any mixing with another common
income distribution. As noted in Machina (1982), the rank-
dependent social welfare generalizes the Atkinson-type social
welfare exactly as rank-dependent expected utility generalizes
classical von Neumann–Morgenstern expected utility (Machina
1982; Quiggin 1982) by relaxing the controversial independence
axiom. These rich and insightful works in welfare economics
have not yet been well linked to econometrics and empirical
analysis for policy design. One of the main aims of the current
article is to establish a link between these two important
literatures.

2. Treatment Choice With Equality-Minded Social
Welfare Functions

We call a SWF equality-minded if it satisfies the Pigou–Dalton
principle of transfers: a transfer of income from a higher ranked
individual to a lower ranked individual is always desirable
when it does not change their ranks in the income distribution.
The equality-minded SWFs analyzed in this article are the
rank-dependent SWFs with decreasing welfare weights (also
called generalized Gini SWFs), introduced by Mehran (1976)
and Weymark (1981) and axiomatized by Yaari (1988). An
equality-minded rank-dependent SWF admits the following
representation:

W�(F) ≡
∫ ∞

0
�(F(y))dy, (2)

where �(·) : [0, 1] → [0, 1] is a nonincreasing, nonnegative
function with �(0) = 1 and �(1) = 0. A rank-dependent
SWF satisfies the Pigou–Dalton principle of transfers if and only
if �(·) is convex.

The term rank-dependent is due to an equivalent
representation of (2) as a weighted sum of outcomes. Given that
a convex �(·) is almost everywhere differentiable, we can apply
integration by parts to equivalently express W�(F) as

W�(F) =
∫ 1

0
F−1(τ )ω(τ)dτ , (3)

where F−1(τ ) ≡ inf{y : F(y) ≥ τ } is the τ th quantile of the
outcome distribution and ω(τ) ≡ d[1−�(τ)]

dτ
. Thus, W�(F) is a

weighted average of outcomes Y , where ω(τ) specifies the rank-
specific welfare weight assigned to individuals with outcomes at
the τ th quantile. If the SWF is equality-minded then �(·) is
convex, hence, ω(·) is nonincreasing and assigns larger welfare
weights to individuals with lower outcomes.

Throughout the article, we consider equality-minded SWFs
satisfying the following assumption:

Assumption 2.1 (SWF). The policy-maker’s SWF has
representation (2), where �(·) : [0, 1] → [0, 1] is a
nonincreasing, convex function with �(0) = 1, �(1) = 0, and
its right derivative at the origin is finite: |�′(0)| < ∞.
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An important family of social welfare functions satisfying
Assumption 2.1 is the extended Gini family considered in
Donaldson and Weymark (1980, 1983) and Aaberge, Havnes,
and Mogstad (2013):

Wk(F) ≡
∫ ∞

0
(1 − F(y))k−1dy =

∫ ∞

0
�k(F(y))dy

=
∫ 1

0
F−1(τ )ωk(τ )dτ , (4)

where �k(τ ) ≡ (1 − τ)k−1 and the welfare weight function
is ωk(τ ) ≡ (k − 1)(1 − τ)k−2. Extended Gini social welfare
functions are equality-minded for k > 2. Setting k = 2 yields
the additive welfare function W2(F) = ∫∞

0 (1−F(y))dy = E(Y),
which is not equality-minded.

The standard Gini social welfare function (Blackorby and
Donaldson 1978; Weymark 1981) corresponds to k = 3 in
the extended Gini family, with �3(τ ) = (1 − τ)2 and welfare
weights ω3(τ ) = 2(1 − τ). It could also be written as

WGini(F) = E(Y)(1 − IGini(F)), (5)

where IGini(F) = 1 −
∫ 1

0 F−1(τ )·2(1−τ)dτ

E(Y)
is the widely used Gini

inequality index.
Assumption 2.1 implies that the rank-specific weight

function ω(·) defined in (3) does not asymptote at the
origin, that is, the welfare weight assigned to the lowest
rank is bounded. This restriction rules out SWFs that closely
approximate the Rawlsian social welfare function.

We consider the problem of choosing a policy that assigns
individuals to one of two treatments d ∈ {0, 1} to maximize
the chosen SWF. A treatment assignment rule δ : X →
[0, 1] specifies the proportion of individuals with observable
pretreatment covariates X ∈ X ⊂ R

dx who will be assigned
to treatment 1 by the policy-maker. The policy randomly
assigns individuals with covariates X to the two treatments with
probabilities 1−δ(X) and δ(X)). The population distribution of
outcomes induced by treatment rule δ has cdf

Fδ(y) ≡
∫
X

[
(1 − δ(x))FY0|X=x(y) + δ(x)FY1|X=x(y)

]
dPX(x),

(6)
where Y0 and Y1 denote the potential outcomes of the two
treatments with conditional distributions FY0|X and FY1|X given
X and PX is the marginal distribution of X.

If the population distribution of (Y0, Y1, X) were known, the
optimal policy maximizing the social welfare function (2) would
be

δ∗ ∈ arg max
δ

W�(Fδ). (7)

For the additive welfare function (the mean of Y), the welfare
maximization problem simplifies to

δ∗
util ∈ arg max

δ

∫
X

[(1 − δ(x))E(Y0|X = x)

+ δ(x)E(Y1|X = x)]dPX(x). (8)

This social welfare function is additive across covariates and
depends on the outcome distributions only through their
conditional means E(Yd|X). Then the optimal policy is

δ∗
util = 1 {x ∈ X : E(Y1|X = x) > E(Y0|X = x)} .

In contrast, the optimal rule for a rank-dependent welfare
function (2) depends on the whole conditional distributions of
potential outcomes FY0|X and FY1|X , not only on their means.
The optimal rule can differ from the one maximizing an
additive welfare if there is no first-order stochastic dominance
relationship between FY0|X and FY1|X for some covariate values.

Even with the knowledge of the distribution of (Y0, Y1, X),
a simple characterization of the optimal rule does not seem
available for rank-dependent SWFs. The following theorem
mitigates this complication by substantially reducing the set of
candidate treatment rules that need to be considered.

Theorem 2.1. If W�(·) satisfies Assumption 2.1, then for every
measurable treatment rule δ : X → [0, 1], there exists a non-
randomized treatment rule δG(x) ≡ 1{x ∈ G} for some Borel
set G ⊂ X , such that W�

(
FδG

) ≥ W�(Fδ).
If all upper level sets of δ belong to a collection G of Borel

subsets of X :

{x : δ(x) ≥ t} ∈ G, ∀t ∈ R,

then there exists δG(x), G ∈ G, such that W�

(
FδG

) ≥ W�(Fδ).

Proof. See Appendix A.

This theorem shows that a treatment assignment rule
maximizing equality-minded rank-dependent welfare is non-
randomized (assigns all individuals with the same covariates to
the same treatment). We can therefore restrict our search for an
optimal policy to the set of non-randomized rules that can be
succinctly characterized by their decision sets G ⊂ X . Decision
set G determines the group of individuals {X ∈ G} to whom
treatment 1 is assigned. With abuse of notation, we denote the
welfare of a non-randomized treatment rule with decision set G
by W�(G), suppressing the cumulative distribution function in
its argument,

W�(G) ≡W�(FG),

FG(y) ≡
∫
X

[
FY0|X=x(y)1{x /∈ G}

+ FY1|X=x(y)1{x ∈ G}]dPX(x). (9)

Our goal is to estimate from the sample data a treatment
assignment rule that attains the maximum level of social welfare
sup
G∈G

W�(G) over the set of feasible policies G ≡ {G ⊂ X }, which

is a collection of nonrandomized treatment rules (subsets of
the covariate space X ). An important feature of our empirical
welfare maximization approach is that the complexity of G
is constrained by a finite Vapnik-Cervonenkis (VC) dimension
(defined in Appendix A).

Assumption 2.2 (VC). The class of decision sets G has a finite
VC-dimension v < ∞.

The VC-dimension is a restriction on the complexity
of the set of feasible policies. Without it, maximizing a
sample analog of W�(G) over G can lead to arbitrarily
complicated policies (overfitting) and prevent us from
learning the optimal policy on the basis of a finite number
of observations. It does not require G to be finite and allows
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for very large classes of treatment rules. For example, a
class of treatment rules defined by a linear equation in
functions of x, G ≡

{
G = {x :

∑m
j=1 βjfj(x) ≥ 0}, β ∈ R

m
}

has a finite VC-dimension. See Kitagawa and Tetenov
(2018a) for other examples of classes G that satisfy
Assumption 2.2. An example of G that does not satisfy
Assumption 2.2 is the class of all monotone treatment rules
G ≡ {

G = {(x1, x2) ∈ R
2 : x2 ≥ f (x1)}, f : R → R increasing

}
considered by Mbakop and Tabord-Meehan (2018) in the
additive welfare case.

3. EWM for Equality-Minded Welfare

We proceed to propose our method of estimating the treatment
rule in finite samples and analyze its properties.

The population from which the sample is drawn is
characterized by P, a joint distribution of (Y0i, Y1i, Di, Xi),
where Xi ∈ X ⊂ R

dx refers to observable pretreatment
covariates of individual i, Y0i, Y1i ∈ R+ are the potential
outcomes of treatments 0 and 1, and Di ∈ {0, 1} is a
binary indicator of the individual’s experimental treatment. The
observed experimental outcome is Yi = (1 − Di)Y0i + DiY1i.

The data are a size n random sample from P of observations
Zi = (Yi, Di, Xi). Based on this data, the policy-maker has to
choose a conditional treatment rule G ∈ G that determines
whether individuals with covariates X in the target population
will be assigned to treatment 0 or to treatment 1. The following
are our maintained assumptions about the class P of population
distributions of (Y0, Y1, D, X):

Assumption 3.1.
(UCF) Unconfoundedness: (Y0, Y1) ⊥ D|X.
(TC) Tail condition: There exists ϒ < ∞ such that for all P ∈ P∫ ∞

0

√
P(Yd > y)dy ≤ ϒ . (10)

(SO) Strict overlap: There exist κ ∈ (0, 1/2] such that the
propensity score satisfies e(x) ∈ [κ , 1 − κ] for all x ∈ X .

These assumptions generally hold if the data come from
an experiment with randomized treatment assignment. In
observational studies, on the other hand, unconfoundedness
rules out situations in which the observed treatment
assignments depend on subjects’ unobserved characteristics
that can be associated with their potential outcomes. Strict
overlap can also be violated in an observational study if only
one of the treatments is assigned in the sampling process for
some covariate values. We do not constrain any feature of the
joint distribution of (Y0, Y1, X) except that the distributions of
Y0 and Y1 satisfy the tail condition (TC). A sufficient condition
for (TC) is that

sup
P∈P , d∈{0,1}

E[Y2+	
d ] < ∞ (11)

for some 	 > 0. The outcome variable and the covariates can
be discrete, continuous, or their combination, and the support
of X does not have to be bounded.

Throughout the main text, we maintain the assumption that
the propensity score e(X) ≡ P(D = 1|X) is known, as is

usually the case in experimental data. Section C in the online
supplement extends the analysis to observational data for which
the propensity score is unknown and needs to be estimated.

We estimate the treatment rule by maximizing a sample
analog of the population SWF. The equality-minded EWM
treatment rule Ĝ maximizes a sample analog Ŵ�(G) of the
welfare criterion over the set of feasible rules G ∈ G. The
unknown outcome distribution FG induced by treatment rule
G in (9) could be estimated by

F̂G(y) ≡ 1 − 1
n

n∑
i=1

[
Di

e(Xi)
· 1{Xi ∈ G}

+ 1 − Di
1 − e(Xi)

· 1{Xi /∈ G}
]

· 1{Yi > y}. (12)

Under Assumption 3.1 (UCF), F̂G(y) is an unbiased estimator of
FG(y).

The sample analog of welfare (Equation (2)) is defined as

Ŵ�(G) ≡
∫ ∞

0
�(̂FG(y) ∨ 0)dy (13)

and the equality-minded EWM treatment rule is then

Ĝ ∈ arg max
G∈G

Ŵ�(G). (14)

The maximum (∨) of F̂G(y) and 0 is taken in (13) because
F̂G(y) may take values smaller than 0, for which �(·) is
not defined. The summands in (12) are nonnegative, so
F̂G(y) ≤ 1 for all y. F̂G(y) = 1 for all y ≥ max

1≤i≤n
Yi.

F̂G may not be a proper cdf because lim
y→−∞ F̂G(y) = 1 −

1
n
∑n

i=1

[
Di

e(Xi)
· 1{Xi ∈ G} + 1−Di

1−e(Xi)
· 1{Xi /∈ G}

]
may be either

below or above zero in finite samples.
We also consider properties of the normalized equality-

minded EWM rule

ĜR ∈ arg max
G∈G

ŴR
�(G), where ŴR

�(G) ≡
∫ ∞

0
�(̂FR

G(y))dy,

(15)
using a normalized cdf sample analog

F̂R
G(y) ≡

⎧⎨⎩1{y ≥ min
1≤i≤n

Yi} if F̂G(−∞) = 1,

1 − 1−F̂G(y)
1−F̂G(−∞)

if F̂G(−∞) < 1,
(16)

which always yields a proper cdf. The ranking of treatment rules
by the normalized criterion ŴR

�(G) is invariant to positive affine
transformations of outcomes Y , whereas the ranking by Ŵ�(G)

is not.
Note that

1 − F̂R
G(y) = 1

n

n∑
i=1

[
Di

e(Xi)
·1{Xi∈G}+ 1−Di

1−e(Xi)
·1{Xi /∈G}

1
n
∑n

i=1

(
Di

e(Xi)
·1{Xi∈G}+ 1−Di

1−e(Xi)
·1{Xi /∈G}

)
]

· 1{Yi > y}.

This is similar to the idea of normalizing propensity score
weights recommended for the estimation of the average
treatment effect (Imbens 2004).
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3.1. Rate Optimality of EWM

The next theorem derives a uniform upper bound of the average
welfare loss of the EWM rule.

Theorem 3.1. Under Assumptions 2.1 and 2.2, the average
welfare loss of treatment rules Ĝ and ĜR satisfies

sup
P∈P

EPn

[
sup
G∈G

W�(G) − W�(Ĝ)

]
≤ C|�′(0)|ϒ

κ

√
v
n

(17)

for all n > 1, and

sup
P∈P

EPn

[
sup
G∈G

W�(G) − W�(ĜR)

]

≤ |�′(0)|ϒ
κ

(
CR

1

√
v
n

+ 4ne−CR
2 κ2n

)
(18)

for all n > CR
3
( 1−κ

κ

)2 v, where P is the class of all distributions
satisfying Assumption 3.1 and C, CR

1 , CR
2 , CR

3 > 0 are universal
constants.

Proof. The proof of (17) is in Appendix A. The proof of (18) is
in the online supplement.

This theorem shows that for a large class of data generating
processes characterized by Assumption 3.1, the welfare of the
equality-minded EWM rule is guaranteed to converge to the
maximal attainable welfare no slower than at n−1/2 rate (the
second term in bound (18) is of a lower order). The uniform
convergence rate of n−1/2 coincides with that of the EWM rule
for the additive welfare shown in Theorem 2.1 of Kitagawa and
Tetenov (2018a). This is a nontrivial result, given that the rank-
dependent welfare function depends on the whole conditional
distributions of the potential outcomes given covariates, rather
than only on their conditional means, as is the case for the
additive welfare criterion.

The next theorem provides a universal lower bound for the
worst-case average welfare loss of any treatment rule.

Theorem 3.2. Suppose that Assumptions 2.1 and 2.2 hold with
v ≥ 2, then for any non-randomized treatment choice rule Ĝ
that is a function of the sample, and for any τ ∗ ∈ (0, 1] at which
�(·) is differentiable, it holds

sup
P∈P

EPn

[
sup
G∈G

W�(G) − W�(Ĝ)

]

≥ e−4

2
ϒ
∣∣�′(τ ∗)

∣∣√τ ∗
√

v − 1
n

for all n ≥ 4
v − 1
τ ∗ , (19)

where P is the class of all distributions satisfying
Assumption 3.1.

Proof. See the online supplement.

Since �(·) is convex and |�′(0)| > 0, there also exists some
τ ∗ > 0 for which |�′(τ ∗)| > 0. Hence, the bound (19) is always
positive for some τ ∗ > 0. A comparison of the lower bound of
this theorem with the welfare loss upper bound of the EWM rule
obtained in Theorem 3.1 shows that the EWM rule is minimax

rate optimal over the class of data generating processes satisfying
Assumption 3.1. We can therefore claim that in the absence of
any additional restrictions other than Assumption 3.1, no other
data-driven procedure for obtaining a nonrandomized rule can
outperform the EWM rule in terms of the uniform convergence
rate over P . This optimality claim is analogous to that of the
EWM rule for the additive welfare case (Kitagawa and Tetenov
2018a, Theorems 2.1 and 2.2), and the minimax optimal rate
attained by the equality-minded EWM rule is the same as the
optimal rate in the additive welfare case. It is remarkable to see
that even in the absence of any analytical characterization of
the true optimal assignment rule in terms of the population
distribution of (Y0, Y1, X), maximizing the empirical welfare
leads to a policy that, if implemented, is guaranteed to reach the
maximum attainable social welfare at the minimax optimal rate.

It is also worth noting that the VC-dimension of G appears
in the same order both in the upper and lower bound
expressions of Theorems 3.1 and 3.2. Since these bounds are
non-asymptotic, we can let v increase with the sample size,
and we can still conclude the minimax rate optimality of the
equality-minded EWM rule. This insight is similar to the EWM
rule for the additive welfare case (Kitagawa and Tetenov 2018a,
Remark 2.6).

4. Extensions

4.1. Social Welfare is Defined on a Population Larger than
the Sampled Population

One of the distinguishing features of rank-dependent social
welfare is that it is not additive over subpopulations (see
Section B in the online supplement for an illustration). If the
subpopulation for which the policy intervention takes place
(e.g., unemployed workers) is only a subset of the whole
population on which the rank-dependent SWF is defined (e.g.,
the population of a country), it is important to explicitly
take into account the outcome distribution for the rest of the
population in estimating the optimal assignment rule.

Suppose that the social welfare function is defined on
a population with distribution J that is a mixture of two
subpopulations with distributions F and H:

J = ηF + (1 − η)H, η ∈ (0, 1). (20)

Let F be the outcome distribution on the targeted subpopulation
from which the experimental data are sampled and on which
the estimated treatment policy is to be implemented. Let H
be the outcome distribution for the rest of the population
(excluded from the sampling process and unaffected by the
chosen treatment assignment rule). The mixture weight η

represents the size of subpopulation F. For simplicity, we assume
that η and H are known to the social planner. We also assume
that the outcome distribution H is invariant to the treatment
assignment policy applied to subpopulation F, for example,
there are no spillover or general equilibrium effect across F
and H.

Implementing treatment assignment rule {X ∈ G} on
subpopulation F leads to full population welfare equal to

W�(JG) ≡
∫ ∞

0
�(ηFG(y) + (1 − η)H(y))dy,
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where FG(·) is the cdf defined in (9). The empirical welfare
maximization method in this case consists of maximizing a
sample analog of W�(JG),

Ĝ ∈ arg max
G∈G

W�(ηF̂G + (1 − η)H),

where F̂G is defined in (12).
The uniform convergence proof of Theorem 3.1 can be easily

extended to this case, the only change being the proportionality
of the bound to η.

Corollary 4.1. Under Assumptions 2.1, 2.2, and 3.1,

sup
P∈P

EPn

[
sup
G∈G

W�(JG) − W�(JĜ)

]
≤ ηC|�′(0)|ϒ

κ

√
v
n

, (21)

where C > 0 is a universal constant defined in Theorem 3.1.

4.2. Cost of Treatment

In the preceding sections, we did not take into account the cost
of treatment even though cost differences among treatments are
often an important consideration in practice. In this section,
we discuss how to take the cost of treatment into account in
the estimation of welfare maximizing treatment assignment
policies.

Let 0 ≤ c(x) < ∞, x ∈ X , be the cost of treatment 1
for a subject whose observable characteristics are x. We assume
that treatment 0 is cost-free and c(·) is known. For the additive
social welfare function, we can easily incorporate treatment
costs into the EWM criterion by subtracting the per-capita cost
of treatment C(G) ≡ ∫

G c(x)dPX(x) from Ŵ(G). The additive
social welfare criterion depends only on the average treatment
cost, it is invariant to assumptions about who pays the cost. For
rank-dependent social welfare this invariance does not hold,
hence, we have to be explicit about who bears the cost in the
construction of the social welfare criterion. We illustrate this
using two cost allocation scenarios.

In the first scenario, assume that the outcome variable is
income and the cost of treatment is self-financed by each
recipient of the treatment. Specifically, the income of individuals
assigned to treatment 1 (individuals with X ∈ G) will be reduced
by the full cost of their own treatment c(X). The transformed
potential outcomes in this scenario are Ỹ1i ≡ Y1i + c̄−c(Xi) and
Ỹ0i ≡ Y0i + c̄. We add the constant c̄ ≡ supx∈X c(x) < ∞ to all
outcomes to keep them nonnegative in line with Assumption 3.1
(TC). The welfare ranking of policies is unchanged when a
constant is added uniformly to all outcomes.

The rank-dependent SWF of policy G with self-financed
treatment cost is

Wsf
�(G) ≡

∫ ∞

0
�(Fsf

G (y))dy,

Fsf
G (y) ≡

∫
X

[
FỸ0|X=x(y)1{x /∈ G} + FỸ1|X=x(y)1{x ∈ G}

]
dPX(x),

(22)

where FỸ0|X=x(·) and FỸ1|X=x(·) are the cdfs of the transformed
potential outcomes. An empirical analog for Wsf

�(G) can be
obtained by replacing F̂G(y) in (13) by

F̂G(y) ≡ 1 − 1
n

n∑
i=1

[
Di

e(Xi)
· 1{Xi ∈ G} + 1 − Di

1 − e(Xi)
· 1{Xi /∈ G}

]
· 1{Ỹi > y},

(23)

where Ỹi ≡ Yi + c̄ − Di · c(Xi). Since this modification does not
affect the validity of Assumption 3.1, the EWM rule with self-
financed treatment cost attains the uniform welfare loss upper
bounds of Theorem 3.1 with ϒ + c̄ in place of ϒ .

In the second scenario, suppose that the treatment cost is
financed by all of the population members equally via a lump-
sum transfer. The average per-capita treatment cost C(G) is
subtracted from every individual’s income regardless of their
covariates and assigned treatment. Using representation (3), the
rank-dependent SWF with equal lump-sum treatment costs can
be expressed as

Wls
�(G) ≡

∫ 1

0
[F−1

G (τ )+ c̄−C(G)]ω(τ)dτ = W(G)+ c̄−C(G),

(24)
using the fact that

∫ 1
0 ω(τ)dτ = �(0) − �(1) = 1 and adding

c̄ to ensure nonnegative outcomes. Per-capita treatment cost of
policy G could be estimated using its sample analog Ĉ(G) ≡
1
n
∑n

i=1 c(Xi) · 1{Xi ∈ G} and the EWM rule is obtained by
maximizing Ŵls

�(G) ≡ Ŵ�(G) + c̄ − Ĉ(G) over G ∈ G.
In this article, we do not consider the joint optimization

of the treatment assignment and cost allocation. However, the
comparison of Wsf

�(G) and Wls
�(G) shows that the allocation

of treatment costs across the population can be used as an
additional vehicle of policy intervention to increase a rank-
dependent SWF.

4.3. Capacity-Constrained Treatment

Another practical concern ruled out in the preceding sections
is a capacity constraint limiting the proportion of population
that can be assigned to treatment. Suppose that the proportion
of the target population that could receive treatment 1 cannot
exceed K ∈ (0, 1). If PX is unknown, then policies that seem to
satisfy the capacity constraint based on the sample estimates of
PX(G) may not actually satisfy it in the population. The analysis
of the welfare loss needs to take into account what happens if
the proposed policy is infeasible. For tractability, we continue to
restrict attention only to non-randomized treatment rules (the
result in Theorem 2.1 need not hold with a capacity constraint).

For the additive welfare case, Kitagawa and Tetenov (2018a)
proposed a capacity-constrained EWM procedure assuming
that if a proposed treatment rule G violates the capacity
constraint (PX(G) > K) then the scarce treatment is randomly
rationed to a fraction K

PX(G)
of individuals with X ∈ G

independently of (Y0, Y1, X). This random rationing approach
can be straightforwardly extended to the EWM for the rank-
dependent social welfare.

With the capacity constraint and random rationing, the cdf
of outcomes generated by policy G can be written as

FK
G (y) =

∫
X

[
FY0|X=x(y) + min

{
1, K

PX(G)

}
× (FY1|X=x(y) − FY0|X=x(y)

) · 1{x ∈ G}

]
dPX(x).

(25)



568 T. KITAGAWA AND A. TETENOV

Hence, the social welfare under the capacity constraint and
random rationing is WK

�(G) ≡ ∫∞
0 �(FK

G (y))dy. Its sample
analog can be constructed by replacing F̂G(y) in (13) with

F̂K
G (y) ≡ 1− 1

n

n∑
i=1

⎡⎣ 1−Di
1−e(Xi)

+ min
{

1, K
PX,n(G)

}
×
(

Di
e(Xi)

− 1−Di
1−e(Xi)

)
1{Xi ∈ G}

⎤⎦·1{Yi > y},

(26)

where PX,n(G) ≡ 1
n

n∑
i=1

1{Xi ∈ G} is a sample analog of PX(G).

Theorem 4.1 establishes a finite sample bound for the
capacity-constrained equality-minded EWM rule similar to the
bound in Theorem 3.1.

Theorem 4.1. Under Assumptions 2.1, 2.2, and 3.1,

sup
P∈P

EPn

[
sup
G∈G

WK
�(G) − WK

�(ĜK)

]

≤
(

CK1
K

+ CK2

)
|�′(0)|ϒ

κ

√
v
n

, (27)

where CK1, CK2 > 0 are universal constants.

Proof. See the online supplement.

5. Empirical Illustration

To illustrate equality-minded empirical treatment choice,
we apply our method to the experimental data from the
National Job Training Partnership Act (JTPA) Study. A detailed
description of the study and an assessment of average program
effects for five large subgroups of the target population is
found in Bloom et al. (1997). The study randomized whether
applicants were eligible to receive a mix of training, job-search
assistance, and other services for a period of 18 months. It
collected background information about the applicants prior
to random assignment, as well as administrative and survey
data on applicants’ earnings in the 30-month period following
assignment. Our sample consists of 9223 observations with
available data on years of education and preprogram earnings
from the sample of adults (22 years and older) used in the
original evaluation of the program and in subsequent studies
(Bloom et al. 1997; Heckman, Ichimura, and Todd 1997; Abadie,
Angrist, and Imbens 2002). The probability of being assigned to
the treatment was two-thirds in this sample.

For this illustration, total individual earnings in the 30-
month period following program assignment serve as the
measure of income. We use three social welfare functions from
the extended Gini family (4) with parameters k ∈ {2, 3, 6}. k = 2
corresponds to the additive social welfare, which is not equality-
minded. k = 3 corresponds to the standard Gini SWF with
welfare weights ω3(τ ) = 2(1 − τ) and k = 6 corresponds to
an extended Gini SWF with welfare weights ω6(τ ) = 5(1 − τ)4,
which places even greater weight on low-ranked outcomes.

For simplicity, we consider only the distribution of earnings
in the population sampled for the experiment in the social
welfare function. This embodies concerns about inequality
within the study population (JTPA-eligible economically
disadvantaged adults). In practice, policy makers are more

likely to be concerned with inequality in the overall population,
which also includes individuals outside of the experiment’s
sampling frame. Then the social welfare function should be
evaluated on the income distribution of the whole population
of interest.

Pretreatment variables on which we consider conditioning
treatment assignment are the individual’s years of education
and earnings in the year prior to assignment. We do not use
race, sex, or age to condition treatment assignment. Though
treatment effects may vary with these characteristics, using
them to condition treatment assignment is often socially
unacceptable and illegal. Education and earnings are verifiable
characteristics, which is also important for conditioning
treatment assignment. The performance of treatment rules that
condition on unverifiable characteristics is hard to evaluate if
individuals change their self-reported characteristics to obtain
their desired treatment assignment (either in the experiment or
when the policy is implemented).

Table 1 compares empirical estimates of social welfare
measures (representative income) for a few alternative treatment
rules. First, we consider simple treatment rules that either
assign no one or everyone to treatment. Second, we consider
empirically optimal rules from the class of quadrant treatment
rules:

GQ ≡ {{x : s1(education − t1) > 0
& s2(prior earnings − t2) > 0}, s1, s2 ∈ {−1, 0, 1},
t1, t2 ∈ R}. (28)

This class of treatment eligibility rules is easily implementable
and is often used in practice. To be assigned to treatment
according to such rules, an individual’s education and
preprogram earnings both have to be above (or below) some
specific thresholds. Third, we consider empirically optimal
rules from the class of linear treatment rules:

GLES ≡ {{x : β0 + β1 · education + β2 · prior earnings > 0},
β0, β1, β2 ∈ R}. (29)

Table 1. Estimated representative income under alternative treatment rules that
condition on education and preprogram earnings.

Representative
income

Average Gini Gini Proportion
Treatment rule (k = 2) (k = 3) (k = 6) to be treated

Treat no one $15,311 $6769 $1561 0
Treat everyone $16,487 $7423 $1786 1

Quadrant class conditioning on years of education and preprogram
earnings

Maximize average income $16,646 $7490 $1807 95%
Maximize standard Gini

SWF (k = 3)
$16,462 $7522 $1828 80%

Maximize extended Gini
SWF (k = 6)

$16,153 $7388 $1835 52%

Linear class conditioning on years of education and preprogram
earnings

Maximize average income $16,670 $7528 $1820 96%
Maximize standard Gini

SWF (k = 3)
$16,489 $7537 $1839 78%

Maximize extended Gini
SWF (k = 6)

$16,154 $7405 $1852 51%
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The first column in Table 1 displays the estimated average
income under each treatment rule. The second column shows
the standard Gini social welfare, expressed in terms of the
representative income of the policy (the income distribution
generated by the policy is valued as much as an equal income
distribution with the representative income). The third column
shows the representative income under an extended Gini SWF
with k = 6. The fourth column lists the proportion of the target
population assigned to treatment by each policy.

Figure 1 compares the quadrant treatment rules maximizing
the average income, the standard Gini SWF, and an extended
Gini SWF (k = 6). Figure 2 compares the linear treatment
rules maximizing the same three criteria. The size of black
dots shows the number of individuals with different covariate

values. Many individuals would be assigned to treatment by
treatment rules maximizing any of the considered welfare
functions, but there are also notable differences. Treatment
rules maximizing the standard Gini SWF target a smaller
proportion of the population, focusing on individuals with
lowest preprogram earnings. Treatment rules maximizing the
more equality-minded extended Gini SWF assign even fewer
individuals to treatment. The estimated treatment rules change
discontinuously with the Gini parameter k. For example, the
linear treatment rule maximizing the additive SWF (k = 2)
is also optimal for a range of other Gini parameters (k =
2.25, 2.5, 2.75), whereas the linear rule maximizing the extended
Gini SWF (k = 6) is also optimal for larger parameters (k =
7, 8, 9).

Figure 1. Treatment rules from the quadrant class that maximize welfare functions from the extended Gini family (including the additive welfare).

Figure 2. Treatment rules from the linear class that maximize welfare functions from the extended Gini family (including the additive welfare).
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Figure 3. Quantile treatment effects of the Gini welfare maximizing rule compared to the additive welfare maximizing rule. Treatment rules from the quadrant class.

Figure 3 explores the trade-off between treatment rules
maximizing different social welfare functions. We compute
the income distributions generated by ĜAdd, the quadrant
treatment rule maximizing average income, and by ĜGini, the
quadrant rule maximizing the Gini SWF. The left panel displays
the difference between the income distributions generated by
these treatment rules at each quantile: F̂−1

ĜGini
(τ ) − F̂−1

ĜAdd
(τ ).

The average-maximizing treatment rule ĜAdd generates an
income distribution in which top quantiles (0.8 and higher) are
substantially higher than in the income distribution generated
by the Gini treatment rule. However, the distribution produced
by the Gini treatment rule is better at midrange quantiles (0.4–
0.8). The additive welfare criterion equally weights changes of
all quantiles, hence, it favors ĜAdd.

The standard Gini welfare criterion, in contrast, uses
decreasing welfare weights ω3(τ ) = 2(1−τ). The right panel of
Figure 3 displays the same quantile differences between the two
income distributions weighted by ω3(τ ). With these equality-
minded welfare weights, the gains offered by treatment rule
ĜAdd at top quantiles get a lower welfare weight than the gains
offered by ĜGini in the middle of the income distribution, hence,
ĜGini is preferred under the Gini SWF.

6. Conclusion

This article develops the first method for individualized
treatment choice when the policy maker’s objective is to
maximize an equality-minded rank-dependent SWF. We
showed that the average social welfare obtained by the estimated
policy converges at the minimax-optimal n−1/2 rate. The key
restriction underlying these rate results is the complexity
restriction (Assumption 2.2 (VC)) imposed on the set of
feasible policies. This complexity restriction still allows for rich
classes of individualized treatment rules and offers a flexible
and convenient way to incorporate exogenous constraints

that policy makers face in realistic settings of policy design.
Our analytical results cover a general class of equality-minded
rank-dependent SWFs, and the shown regret bounds are valid
even when the complexity of policies grows with the sample
size. Efficient computation for the equality-minded EWM and a
data-driven choice of complexity for policies (e.g., as proposed
by Mbakop and Tabord-Meehan (2018) for the additive welfare
case) remain open questions.

Appendix A: Lemmas and Proofs

Proof of Theorem 2.1. Denote an upper level set of δ(x) at level u ∈
[0, 1] by G(u) ≡ {x ∈ X : δ(x) ≥ u}. By noting that

δ(x) =
∫ 1

0
1{x ∈ G(u)}du,

we can rewrite Fδ(y) defined in (6) as

Fδ(y) =
∫
X

[ ∫ 1

0
1{x /∈ G(u)}du · FY0|X=x(y)

+
∫ 1

0
1{x ∈ G(u)}du · FY1|X=x(y)

]
dPX(x)

=
∫ 1

0

[ ∫
X

(1{x /∈ G(u)} · FY0|X=x(y)

+ 1{x ∈ G(u)} · FY1|X=x(y))dPX(x)

]
du

=
∫ 1

0
FG(u)(y)du,

where FG(u)(y) is the distribution of outcomes induced by treatment
rule δG(u) ≡ 1{x ∈ G(u)}. By convexity of �(·), we obtain

�(Fδ(y)) ≤
∫ 1

0
�(FG(u)(y))du,

and this leads to

W�(Fδ) ≤
∫ 1

0
W�(FG(u))du ≡ W̄�. (A.1)
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Suppose that W̄� − W�(FG(u)) > 0 for all u ∈ [0, 1]. Then the
integral of this function over the set u ∈ [0, 1] of positive measure must
also be strictly positive,

0 <

∫ 1

0

(
W̄� − W�(FG(u))

)
du = W̄� − W̄�,

which is a contradiction. Therefore, there exists u∗ ∈ [0, 1] for which
W�(FG(u∗)) ≥ W̄�, hence, W�(FG(u∗)) ≥ W�(Fδ). If all upper level
sets G(u) of δ belong to G, then also G(u∗) ∈ G.

The following five lemmas will be used in the proof of Theorem 3.1.
The first lemma establishes a quadratic upper bound for the function
t−1/2 for t ≥ 1.

Lemma A.1. Let t0 > 1, define

g(t) ≡
{

0 for t = 0,
t−1/2 for t ≥ 1, (A.2)

h(t) ≡ t−1/2
0 − 1

2
t−3/2
0 (t − t0) + t−2

0 (t − t0)2. (A.3)

Then g(t) ≤ h(t) for t = 0 and for all t ≥ 1.

Proof of Lemma A.1. For t = 0,

h(0) = t−1/2
0 + 1

2
t−3/2
0 t0 + t−2

0 t2
0 = 3

2
t−1/2
0 + 1 > 0 = g(0).

Now consider the function (h − g)(t) and its derivatives for t ≥ 1:

(h − g)(t) = t−1/2
0 − 1

2
t−3/2
0 (t − t0) + t−2

0 (t − t0)2 − t−1/2,

(h − g)′(t) = −1
2

t−3/2
0 + 2t−2

0 (t − t0) + 1
2

t−3/2,

(h − g)′′(t) = 2t−2
0 − 3

4
t−5/2, and

(h − g)′′′(t) = 15
8

t−7/2.

First, we will show that (h − g)(t) ≥ 0 for t ∈ [1, t0]. The function
is positive at t = 1:

(h − g)(1) = t−1/2
0 − 1

2
t−3/2
0 (1 − t0) + t−2

0 (1 − t0)2 − 1

= t−1/2
0 − 1

2
t−3/2
0 + 1

2
t−1/2
0 + t−2

0 − 2t−1
0 + 1 − 1

= 1
2

t−1/2
0

(
3 − 4t−1/2

0 − t−1
0 + 2t−3/2

0

)
= 1

2
t−1/2
0

(
1 − t−1/2

0

)2 (
3 + 2t−1/2

0

)
> 0

because t−1/2
0 > 0. At t = t0, (h − g)(t0) = 0. We will next show that

(h − g)(t) ≥ 0 between t = 1 and t = t0.
The second derivative of (h − g) is positive at t = t0,

(h − g)′′(t0) = 2t−2
0 − 3

4
t−5/2
0 = t−2

0

(
2 − 3

4
t−1/2
0

)
> 0 (A.4)

because t0 > 1 by assumption, hence, t−1/2
0 < 1. Since the third

derivative is positive on [1, t0], it follows that the second derivative
is either positive everywhere on [1, t0], or it is first negative on some
interval [1, t2) and then positive on (t2, t0].

The first derivative of (h − g) equals zero at t = t0:

(h − g)′(t0) = −1
2

t−3/2
0 + 2t−2

0 (t0 − t0) + 1
2

t−3/2
0 = 0.

If the second derivative is positive everywhere on [1, t0], then the
first derivative must be negative everywhere on [1, t0). If the second
derivative changes sign from negative to positive, then the first
derivative must either be negative on [1, t0) or it could switch sign from
positive on some interval [1, t1) to negative on (t1, t0).

Since (h − g)(1) > 0, (h − g)(t0) = 0, and (h − g) is either
decreasing on [1, t0) or increasing on [1, t1) and then decreasing on
(t1, t0), it follows that (h − g)(t) ≥ 0 for all t ∈ [1, t0].

Second, consider t > t0. At t = t0, (h−g)(t0) = 0, (h−g)′(t0) = 0,
and the second derivative is positive for all t > t0 because it is positive
at t = t0 (A.4) and the third derivative is positive for all t ≥ t0. It
follows that (h − g)(t) > 0 for all t > t0.

The second lemma applies the bound in Lemma A.1 to the
expectation of the function g(·) of a binomial variable.

Lemma A.2. Suppose that random variable B ∼ Binomial(n, p) with
np > 1 and g(·) is the function defined in (A.2). Then

E[g(B)] < 2(np)−1/2.

Proof of Lemma A.2. Let h(·) be the function defined in (A.3) with
t0 = np = E[B]. Lemma A.1 shows that g(t) ≤ h(t) for all values
in the support of B (t ∈ {0, 1, 2, . . . }), therefore

E[g(B)] ≤ E[h(B)] = E
[
(np)−1/2 − 1

2
(np)−3/2(B − E[B])

+ (np)−2(B − E[B])2
]

= (np)−1/2 − 1
2
(np)−3/2 · 0 + (np)−2var[B]

= (np)−1/2 + (np)−2(np)(1 − p)

< (np)−1/2 + (np)−1 < 2(np)−1/2

because np > 1 implies p > 0 and (np)−1 < (np)−1/2.

Let xl ≡ {x1, . . . , xl} be a finite set with l ≥ 1 points in X . Given a
class of subsetsG inX , define N(xl) = |{xl∩G : G ∈ G}| as the number
of different subsets of xl picked out by G ∈ G. The VC-dimension
v ≥ 1 of G is defined by the largest l such that supxl N(xl) = 2l holds
(Vapnik 1998). See Vapnik (1998), Dudley (1999, chap. 4), and van der
Vaart and Wellner (1996) for extensive discussions. Note that the VC-
dimension is smaller by one compared to the VC-index used to measure
the complexity of a class of sets in empirical process theory, for example,
van der Vaart and Wellner (1996).

Let Zi = (Yi, Di, Xi) ∈ Z , where Z ≡ R+ × {0, 1} × X . The
subgraph of a real-valued function f : Z �→ R is the set

SG(f ) ≡ {(z, t) ∈ Z × R : 0 ≤ t ≤ f (z) or f (z) ≤ t ≤ 0}.

The third lemma is reproduced from Kitagawa and Tetenov (2018b,
Lemma A.1). It establishes a link between the VC-dimension of a class
of subsets in the covariate space X and the VC-dimension of a class of
subgraphs of functions on Z .

Lemma A.3. Let G be a VC-class of subsets of X with VC-dimension
v < ∞. Let g and h be two given functions from Z to R. Then the set
of functions from Z to R

F = {
fG(z) = g(z) · 1 {x ∈ G} + h(z) · 1 {x /∈ G} : G ∈ G

}
is a VC-subgraph class of functions with VC-dimension less than or
equal to v.
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The fourth lemma, reproduced from Kitagawa and Tetenov (2018b,
Lemma A.4), is a maximal inequality that bounds the mean of a
supremum of a centered empirical process indexed by a VC-subgraph
class of functions.

Lemma A.4. Let F be a class of uniformly bounded functions, that is,
there exists F̄ < ∞ such that

∥∥f
∥∥∞ ≤ F̄ for all f ∈ F . Assume that

F is a VC-subgraph class with VC-dimension v < ∞. Then, there is a
universal constant C1 such that

EPn

[
sup
f ∈F

∣∣En(f ) − EP(f )
∣∣] ≤ C1F̄

√
v
n

holds for all n ≥ 1.

The last novel lemma allows us to prove Theorem 3.1 for
unbounded outcomes.

Lemma A.5. Let F be a class of uniformly bounded functions, that is,
there exists F̄ < ∞ such that

∥∥f
∥∥∞ ≤ F̄ for all f ∈ F . Assume thatF is

a VC-subgraph class with VC-dimension v < ∞. Let (Y , Z) ∼ P, where
Y ≥ 0 is a scalar (Y and Z may be dependent). Let {(Yi, Zi)}n

i=1 ∼ Pn

be an iid sample from P. Assume that∫ ∞
0

√
P(Y > y)dy ≤ M. (A.5)

Then, there is a universal constant CT such that∫ ∞
0

EPn

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (Zi)1{Yi > y} − EP
[
f (Z)1{Y > y}]∣∣∣∣∣

]
dy

≤ CTF̄M
√

v
n

(A.6)

holds for all n ≥ 1.

Proof of Lemma A.5. We start by deriving upper bounds for each value
of y, y > 0, on

EPn
[
ξn(y)

]
,

ξn(y) ≡ sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (Zi)1{Yi > y} − EP
[
f (Z)1{Y > y}]∣∣∣∣∣ .

First, consider values of y for which nP(Y > y) ≤ 1. Due to the

envelope condition,

∣∣∣∣∣ 1
n

n∑
i=1

f (Zi)1{Yi > y}
∣∣∣∣∣ ≤ F̄ · 1

n
n∑

i=1
1{Yi > y} for

any f ∈ F , hence,

EPn

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (Zi)1{Yi > y}
∣∣∣∣∣
]

≤ F̄ · EPn

[
1
n

n∑
i=1

1{Yi > y}
]

= F̄P(Y > y).

Also, EP
[
f (Z)1{Y > y}] = P(Y > y)EP

[
f (Z)|Y > y

] ≤ F̄P(Y > y).
It follows that

EPn
[
ξn(y)

] ≤ EPn

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (Zi)1{Yi > y}
∣∣∣∣∣
]

+ sup
f ∈F

EP
[
f (Z)1{Y > y}]

≤ 2F̄P(Y > y) ≤ 2F̄
√

P(Y > y)√
n

, (A.7)

where the last inequality holds because
√

nP(Y > y) ≤ 1.

Second, we consider values of y for which nP(Y > y) > 1. Define

random variables Ny ≡
n∑

i=1
1{Yi > y} for the number of observations

in the data with Yi > y, then

1
n

n∑
i=1

f (Zi)1{Yi > y} =
⎧⎨⎩

0 if Ny = 0,
Ny
n · 1

Ny

n∑
i=1

f (Zi)1{Yi > y} if Ny ≥ 1.

If Ny ≥ 1 then

ξn(y) = sup
f ∈F

∣∣∣∣Ny
n

· 1
Ny

n∑
i=1

f (Zi)1{Yi > y}

− P(Y > y)EP
[
f (Z)|Y > y

] ∣∣∣∣

= sup
f ∈F

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ny
n · 1

Ny

n∑
i=1

f (Zi)1{Yi > y}

−P(Y > y) 1
Ny

n∑
i=1

f (Zi)1{Yi > y}

+P(Y > y) 1
Ny

n∑
i=1

f (Zi)1{Yi > y}
−P(Y > y)EP

[
f (Z)|Y > y

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣Ny

n
− P(Y > y)

∣∣∣∣ sup
f ∈F

∣∣∣∣∣ 1
Ny

n∑
i=1

f (Zi)1{Yi > y}
∣∣∣∣∣

+ P(Y > y) sup
f ∈F

∣∣∣∣∣ 1
Ny

n∑
i=1

f (Zi)1{Yi > y} − EP
[
f (Z)|Y > y

]∣∣∣∣∣
≤ F̄

∣∣∣∣Ny
n

− P(Y > y)
∣∣∣∣ (the sum has Ny nonzero terms, each

bounded by F̄)

+ P(Y > y) sup
f ∈F

∣∣∣∣∣ 1
Ny

n∑
i=1

f (Zi)1{Yi > y} − EP
[
f (Z)|Y > y

]∣∣∣∣∣ .

(A.8)

Note that {Zi}i:Yi>y is an iid sample of size Ny from the conditional
distribution P(Z|Y > y). We next apply the bound in Lemma A.4 for
each value of Ny ≥ 1:

EPn

[
sup
f ∈F

∣∣∣∣∣ 1
Ny

n∑
i=1

f (Zi)1{Yi > y} − EP
[
f (Z)|Y > y

]∣∣∣∣∣
∣∣∣∣∣Ny

]

≤ C1F̄
√

v
Ny

. (A.9)

Combining inequality (A.8) with bound (A.9), and using the definition
g(t) = t−1/2 for t ≥ 1 from (A.2), we obtain a bound on the
conditional expectation of ξn(y) for Ny ≥ 1:

EPn
[
ξn(y)|Ny

] ≤ F̄
∣∣∣∣Ny

n
− P(Y > y)

∣∣∣∣+ P(Y > y)C1F̄
√

vg(Ny).

(A.10)

If Ny = 0 then 1{Yi > y} = 0 for all i, hence,

ξn(y) = sup
f ∈F

EP
[
f (Z)1{Y > y}] = P(Y > y) sup

f ∈F
EP
[
f (Z)|Y > y

]
≤ F̄P(Y > y) = F̄

∣∣∣∣Ny
n

− P(Y > y)
∣∣∣∣+ P(Y > y)C1F̄

√
vg(Ny),

where the last equality uses the definition g(0) = 0 from (A.2).
Therefore, the conditional expectation bound (A.10) also holds for
Ny = 0.
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The unconditional expectation of ξn(y) is then bounded by

EPn
[
ξn(y)

] ≤ F̄EPn

∣∣∣∣Ny
n

− P(Y > y)
∣∣∣∣+P(Y > y)C1F̄

√
vEPn

[
g(Ny)

]
.

(A.11)
The random variable Ny has a Binomial(n, P(Y > y)) distribution,
hence,

EPn

∣∣∣∣Ny
n

− P(Y > y)
∣∣∣∣ ≤

√
var
(Ny

n

)
=
√

P(Y > y)(1 − P(Y > y))
n

≤
√

P(Y > y)
n

.

Since nP(Y > y) > 1, applying Lemma A.2 yields EPn
[
g(Ny)

] ≤
2√

n
√

P(Y>y)
. Combining this inequality with (A.11) and v ≥ 1 we

obtain

EPn
[
ξn(y)

] ≤ F̄
√

P(Y > y)
n

+ P(Y > y)C1F̄
√

v
2√

n
√

P(Y > y)

≤ 2(1 + C1)F̄
√

v
n
√

P(Y > y) = CTF̄
√

v
n
√

P(Y > y),

(A.12)
where CT ≡ 2(1 + C1). This bound is higher than the bound (A.7)
derived for y such that nP(Y > y) ≤ 1, hence, bound (A.12) holds for
all y ≥ 0.

The last step is to integrate the bound (A.12) over y and apply (A.5):∫ ∞
0

EPn
[
ξn(y)

]
dy ≤

∫ ∞
0

CTF̄
√

v
n
√

P(Y > y)dy ≤ CTF̄M
√

v
n

.

Proof of Theorem 3.1. Take an arbitrary set G∗ ∈ G, then

W�(G∗) − W�(Ĝ) = W�(G∗) − Ŵ�(Ĝ) + Ŵ�(Ĝ) − W�(Ĝ)

≤ W�(G∗) − Ŵ�(G∗) + Ŵ�(Ĝ) − W�(Ĝ)

≤ 2 sup
G∈G

∣∣Ŵ�(G) − W�(G)
∣∣ ,

where the second line follows since Ŵ�(Ĝ) maximizes Ŵ�(G) over
G ∈ G. It follows that

sup
G∈G

W�(G) − W�(Ĝ) ≤ 2 sup
G∈G

∣∣Ŵ�(G) − W�(G)
∣∣ . (A.13)

Since �(·) is convex and nonincreasing,

sup
G∈G

∣∣Ŵ�(G) − W�(G)
∣∣ = sup

G∈G

∣∣∣∣ ∫ ∞
0

�(̂FG(y) ∨ 0)dy

−
∫ ∞

0
�(FG(y))dy

∣∣∣∣
≤ sup

G∈G

∫ ∞
0

∣∣�(̂FG(y) ∨ 0) − �(FG(y))
∣∣ dy

≤
∫ ∞

0
sup
G∈G

∣∣�(̂FG(y) ∨ 0) − �(FG(y))
∣∣ dy

≤ |�′(0)|
∫ ∞

0
sup
G∈G

∣∣̂FG(y) − FG(y)
∣∣ dy.

(A.14)

Combining (A.13) and (A.14), the average welfare loss of Ĝ can be
bounded by

EPn

[
sup
G∈G

W�(G) − W�(Ĝ)

]

≤ 2|�′(0)|
∫ ∞

0
EPn

[
sup
G∈G

∣∣̂FG(y) − FG(y)
∣∣] dy. (A.15)

By Lemma A.3, the class of functions W = {wG(·) : G ∈ G}, where

wG(Zi) ≡
[

Di
e(Xi)

· 1{Xi ∈ G} + 1 − Di
1 − e(Xi)

· 1{Xi /∈ G}
]

(A.16)

is a VC-subgraph class with VC-dimension of at most v.
Assumption 3.1 (SO) implies that wG(Zi) ∈

[
0, 1

κ

]
, hence, functions

in W are uniformly bounded by 1
κ .

Since FG(y) = 1 − EP
[
wG(Z) · 1{Y > y}] and F̂G(y) = 1 −

1
n

n∑
i=1

wG(Zi) · 1{Yi > y},

∣∣̂FG(y) − FG(y)
∣∣

=
∣∣∣∣∣ 1

n

n∑
i=1

wG(Zi) · 1{Yi > y} − EP
[
wG(Z) · 1{Y > y}]∣∣∣∣∣ .

It follows from Assumption 3.1 (TC) and
√

a + b ≤ √
a + √

b that∫ ∞
0

√
P(Y > y)dy =

∫ ∞
0

√
P(Y1 > y, D = 1) + P(Y0 > y, D = 0)dy

≤
∫ ∞

0

[√
P(Y1 > y) +√

P(Y0 > y)
]

dy ≤ 2ϒ .

(A.17)

Applying Lemma A.5 to (A.15) yields

EPn

[
sup
G∈G

W�(G) − W�(Ĝ)

]
≤ 4CT |�′(0)|ϒ

κ

√
v
n

.

Setting C = 4CT completes the proof of (17).
The proof of (18) is found in the online supplement.

Supplementary Materials

Supplementary Materials, available on the journal’s website, include the
dataset and replication code for the empirical application, an online
appendix containing an illustrative example of the properties of rank-
dependent SWFs, proofs of Theorems 3.1, 3.2 and Theorem 4.1, and an
extension of the method with estimated propensity score.
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