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Bank Business Models at Zero Interest Rates

André LUCAS and Julia SCHAUMBURG
Vrije Universiteit Amsterdam and Tinbergen Institute, Amsterdam, The Netherlands (a.lucas@vu.nl;
j.schaumburg@vu.nl)

Bernd SCHWAAB
Financial Research, European Central Bank, Frankfurt, Germany (bernd.schwaab@ecb.int)

We propose a novel observation-driven finite mixture model for the study of banking data. The model
accommodates time-varying component means and covariancematrices, normal and Student’s t distributed
mixtures, and economic determinants of time-varying parameters. Monte Carlo experiments suggest that
units of interest can be classified reliably into distinct components in a variety of settings. In an empiri-
cal study of 208 European banks between 2008Q1–2015Q4, we identify six business model components
and discuss how their properties evolve over time. Changes in the yield curve predict changes in average
business model characteristics.

KEY WORDS: Bank business models; Clustering; Finite mixture model; Low interest rates; Score-driven
model.

1. INTRODUCTION

Banks are highly heterogeneous, differing widely in terms
of size, complexity, organization, activities, funding choices,
and geographical reach. Understanding this diversity is of key
importance, for example, for the study of risks acting upon and
originating from the financial sector, for impact assessments
of unconventional monetary policies and financial regulations,
as well as for the benchmarking of banks to appropriate peer
groups for supervisory purposes.1 While there is broad agree-
ment that financial institutions suffer in an environment of
extremely low interest rates, see, for example, Nouy (2016), it
is less clear which types of banks (business models) are affected
the most. A study of banks’ business models at low interest
rates provides insight into the overall diversity of business
models, the strategies adopted by individual institutions, and
which types of banks are impacted the most by time variation in
the yield curve.2 We study these questions in a novel modeling
framework.
This article proposes an observation-driven finite mixture

model for the analysis of high-dimensional banking data. The

1For example, the assessment of the viability and the sustainability of a bank’s
business model plays a pronounced role in the European Central Bank’s new
Supervisory Review and Examination Process (SREP) for Significant Institu-
tions within its Single Supervisory Mechanism; see SSM (2016). Similar pro-
cedures exist in other jurisdictions.
2An improved understanding of the financial stability consequences of low-for-
long interest rates is a top policy priority. For example, Fed Chair Yellen (2014)
pointed to “... the potential for low interest rates to heighten the incentives of
financial market participants to reach for yield and take on risk, and ... the limits
of macroprudential measures to address these and other financial stability con-
cerns.” Similarly, ECB President Draghi (2016) explained that “One particular
challenge has arisen across a large part of the world. That is the extremely low
level of nominal interest rates. ... Very low levels are not innocuous. They put
pressure on the business model[s] of financial institutions ... by squeezing net
interest income. And this comes at a time when profitability is already weak,
when the sector has to adjust to post-crisis deleveraging in the economy, and
when rapid changes are taking place in regulation.”

framework accommodates time-varying mean and covariance
parameters and allows us to robustly cluster banks into approxi-
mately homogeneous groups. We first present a simple baseline
mixture model for normally distributed data with time-varying
component means, and subsequently consider extensions to
time-varying covariance matrices, Student’s t distributed mix-
ture densities, and economic predictors of time-varying param-
eters. We apply our modeling framework to a multivariate panel
of N = 208 European banks between 2008Q1–2015Q4, that is,
over T = 32 quarters, considering D = 13 bank-level indicator
variables for J groups of similar banks. We thus track banking
sector data through the 2008–2009 global financial crisis, the
2010–2012 euro area sovereign debt crisis, as well as the rela-
tively calmer but persistent low-interest rate environment of the
post-crises period between 2013–2015. We identify J = 6 busi-
ness model components and discuss how these adjust to changes
in the yield curve.
In our finite mixture model, all time-varying parameters are

driven by the score of the local (time t) objective function using
the so-called generalized autoregressive score (GAS) approach
developed by Creal, Koopman, and Lucas (2013); see also
Harvey (2013). In this setting, the time-varying parameters are
perfectly predictable one-step ahead. This feature makes the
model observation-driven in the terminology of Cox (1981).
The likelihood is known in the closed form through a standard
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prediction error decomposition, facilitating parameter esti-
mation via likelihood-based expectation-maximization (EM)
procedures. Our approach extends the standard score-driven
approach of Creal, Koopman, and Lucas (2013) by using the
scores of the EM-based criterion function rather than that of
the usual predictive likelihood function.
Extensive Monte Carlo experiments suggest that our model

is able to reliably classify units of interest into distinct mixture
components, as well as to simultaneously infer the relevant
component-specific time-varying parameters. In our simula-
tions, the cluster classification is perfect for sufficiently large
distances between the time-varying cluster means and suffi-
ciently informative signals relative to the variance of the noise
terms.3 This holds under correct model specification as well as
under specific forms of model mis-specification. As the simu-
lated data become less informative or the time-varying cluster
means are closer together, the share of correct classifications
decreases, but generally remains high. Estimation fit and the
share of correct classifications decrease further if we incorrectly
assume a thin-tailed mixture specification when the data are
generated by a fat-tailed mixture distribution. As a result,
robust models based on fat-tailed mixtures are appropriate for
the fat-tailed bank accounting ratios in our empirical sample.
We apply our model to classify European banks into distinct

business model components. We distinguish (A) large univer-
sal banks, including globally systemically important banks
(G-SIBs), (B) international diversified lenders, (C) fee-based
banks, (D) domestic diversified lenders, (E) domestic retail
lenders, and F) small international banks. The similarities and
differences between these components are discussed in detail
in the main text. Based on our component mean estimates
and business model classification, we find that the global
financial crisis between 2008–2009 affected banks with differ-
ent business models differently. This is in line with findings
by Altunbas, Manganelli, and Marques-Ibanez (2011) and
Chiorazzo et al. (2016), who study U.S.-based institutions.
In addition, we study how banks’ business models adapt

to changes in yield curve factors, specifically level and slope
of the yield curve. The yield curve factors are extracted from
AAA-rated euro area sovereign bonds based on a Svensson
(1995) model. We find that, as long-term interest rates decrease,
banks on average (across all business models) grow larger, hold
more assets in trading portfolios to offset declines in loan
demand, hold more sizeable derivative books, and, in some
cases, increase leverage and decrease funding through customer
deposits. Each of these effects—increased size, leverage, com-
plexity, and a less stable funding base—are intuitive, but also
potentially problematic from a financial stability perspective.
This corroborates the unease expressed by Yellen (2014) and
Draghi (2016).

From a methodological point of view, our article also con-
tributes to the literature on clustering of time series data. This lit-
erature can be divided into four strands. Static clustering of time
series refers to a setting with fixed cluster classification, that is,
each time series is allocated to one cluster over the entire sample
period. Dynamic clustering, by contrast, allows for changes in
the cluster assignments over time. Each approach can be further

3We use the terms “component,” “mixture component,” and “cluster” inter-
changeably.

split into whether the cluster-specific parameters are constant
(static) or time-varying (dynamic).
Wang et al. (2013) is an example of static clustering with

static parameters. They clustered time series into different
groups of autoregressive processes, where the autoregressive
parameters are constant within each cluster and cluster assign-
ments are fixed over time.
Fruehwirth-Schnatter and Kaufmann (2008) used static clus-

tering with elements of both static and dynamic parameters.
First, they clustered time series into different groups of regres-
sion models with static parameters. Later, they generalized this
to static clustering into groups of different hidden Markov mod-
els (HMMs), each switching between two regression models.
TheHMMcan be regarded as a specific form of dynamic param-
eters for the underlying regression model. Their method was
used by Hamilton and Owyang (2012) to differentiate between
business cycle dynamics among groups of U.S. states. Also,
Smyth (1996) clustered time series into groups characterized by
different hidden Markov models.
Creal, Gramacy, and Tsay (2014b) is an example of dynamic

clustering with static parameters. They developed a model for
credit ratings based on market data. Their main objective was
to classify firms into different rating categories over time. They
therefore allowed for transitions across clusters (dynamic clus-
tering), while the parameters in their underlying mixture model
are kept constant.
Finally, Catania (2016) is an example of dynamic clus-

tering with dynamic parameters. He proposed a score-driven
dynamic mixture model, which relies on score-driven updates
of almost all parameters, allowing for time-varying parame-
ters and changing cluster assignments and time-varying clus-
ter assignment probabilities. Due to the high flexibility of
the model, a large number of observations is required over
time. The application in Catania (2016) to conditional asset
return distributions typically has a sufficiently large number of
observations.
Our approach falls in the category of static clustering meth-

ods with dynamic parameters. We use static clustering as banks
do not tend to switch their business model frequently over short
periods of time; see, for example, Ayadi and de Groen (2015).
Also, in contrast to the application used by for instance Cata-
nia (2016), our banking data are observed over only a moderate
number of time points T , while the number of units N and the
number of firm characteristics D are high. Given static cluster-
ing, the properties of bank business models are unlikely to be
constant throughout the periods of market turbulence and shifts
in bank regulations experienced in our sample. We therefore
require the cluster components to be characterized by dynamic
parameters using the score-driven framework of Creal, Koop-
man, and Lucas (2013).
Our article also contributes to the literature on identifying

bank business models. Roengpitya, Tarashev, and Tsatsaronis
(2014), Ayadi, Arbak, and de Groen (2011), and Ayadi and de
Groen (2015) also used cluster analysis to identify bank busi-
ness models. Conditional on the identified clusters, the authors
discussed bank profitability trends over time, study banking sec-
tor risks and their mitigation, and consider changes in banks’
business models in response to new regulation. Our statistical
approach is different in that our components are not identified
based on single (static) cross-sections of year-end data. Instead,
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we consider a panel framework, which allows us to pool infor-
mation over time, leading to a more accurate assessment.
We proceed as follows. Section 2 presents a static and base-

line dynamic finite mixture model. We then propose exten-
sions to incorporate time-varying covariance matrices, as well
as Student’s t distributed mixture distributions, and introduce
model diagnostics. Section 3 discusses the outcomes of a variety
of Monte Carlo simulation experiments. Section 4 applies the
model to classify European financial institutions. Section 5 stud-
ies to which extent banks’ business models adapt to an environ-
ment of exceptionally low interest rates. Section 6 concludes. A
Web appendix provides further technical and empirical results.

2. STATISTICAL MODEL

2.1 Mixture Model

We consider multivariate panel data consisting of vectors yi,t ∈
R
D×1 of firm characteristics for firms i = 1, . . . ,N and times

t = 1, . . . ,T , where D denotes the number of observed charac-
teristics. We model yi,t by a J-component mixture model of the
form

yi,t = zi,1 · (μ1,t + �
1/2
1,t ei,t,1

)+ · · · + zi,J · (μJ,t + �
1/2
J,t ei,t,J

)
,

(1)
where μ j,t and � j,t are the mean and covariance matrix of mix-
ture component j = 1, . . . , J at time t, respectively, ei,t, j is a
zero-mean, D-dimensional vector of disturbances with identity
covariance matrix, and zi, j are unobserved indicators for the
mixture component of firm i. In particular, if firm i is in mix-
ture component j then zi, j = 1, while zi,k = 0 for k �= j. The
posterior expectations of zi, j given the data can be used to clas-
sify firms into specific mixture components later on. We define
zi = (zi,1, . . . , zi,J )′ and assume zi has amultinomial distribution
with Pr[zi, j = 1] = π j ∈ [0, 1] and π1 + · · · + πJ = 1. Finally,
we assume that zi and ei,t, j are mutually, cross-sectionally, and
serially uncorrelated. The model could be further enhanced with
an error components structure for ei,t, j if for instance cross-
sectional correlation is an issue. We leave such extensions for
future research.
We specify the precise dynamic functional form of μ j,t and

� j,t later in this section using the score-driven dynamics of
Creal, Koopman, and Lucas (2013). For the moment, it suffices
to note thatμ j,t and� j,t will both be functions of past data only,
and therefore predetermined. Finite mixture models with static
cluster-specific parameters have been widely used in the litera-
ture. For textbook treatments, see, for example, McLachlan and
Peel (2000) and Fruehwirth-Schnatter (2006).
To write down the likelihood of the mixture model in (1),

we stack the observations up to time t, yi,1, . . . , yi,t , into the
matrix Yi,t = (yi,1 . . . yi,t )

′ ∈ R
t×D. We also stack the parame-

ters characterizing each mixture component j, such as the μ j,t’s
and � j,t’s for all times t, and any remaining parameters charac-
terizing the distribution of ei,t, j (such as the degrees of freedom
of a Student’s t), into a parameter vector θ j(�), where � gath-
ers all static parameters of the model. Note that also the multi-
nomial probabilities π j are functions of �, that is, π j = π j(�).
However, if no confusion is caused we use the short-hand nota-
tion π j and θ j for π j(�) and θ j(�), respectively. The likelihood

function is given by a standard prediction error decomposition
as

logL(�) =
N∑
i=1

log

⎡
⎣ J∑

j=1

π j · f j(Yi,T ; θ j )

⎤
⎦ , (2)

where

f j(Yi,T ; θ j ) =
T∏
t=1

f j
(
yi,t | Yi,t−1 ; θ j,t

)
,

and f j(yi,t | Yi,t−1; θ j,t ) is the conditional distribution of yi,t =
μ j,t + �

1/2
j,t ei,t, j given the past data and given the (predeter-

mined) parameters for time t as gathered in θ j,t .
Before proceeding, we note that the mixture model in (1)

describes the firm characteristics using time-invariant cluster
indicators zi rather than time-varying indicators zi,t . Our choice
follows from the specific application in Section 4. Banks are
unlikely to switch their business model over limited time spans
such as ours. For instance, a large universal bank is unlikely to
become a small retail lender from one year to the next, as strat-
egy choices, distribution channels, brand building, and clientele
formation are all slowly varying economic processes. This is
why we opt for static cluster indicators. In a different empiri-
cal context, a different modeling choice might be called for. For
example, Creal, Gramacy, and Tsay (2014b) considered corpo-
rate credit ratings, which are much more likely to change over
shorter periods of time, such that some of their specifications use
time-varying cluster assignments. To explicitly check whether
the assumption of fixed cluster assignments is supported by our
data, we use the diagnostics developed in Section 2.5. Our find-
ings indicate that the vast majority of banks indeed only belongs
to one cluster for all time points.
Given our choice for static rather than dynamic cluster alloca-

tion, it becomes important to allow for time-variation in the clus-
ter means μ j,t (and possibly in the variances � j,t). Even though
banks are less likely to switch their business model, the average
characteristics of business models may change over shorter time
spans, particularly if such time spans include stressful periods
as is the case in our sample. This allows us to answer questions
relating to how the properties of business models changed, and
in particular whether some business models (and if so, which)
increased their risk characteristics during the low interest rate
period we study in Section 4. Such results are also important
for policy makers, such as the single supervisory mechanism
in Europe to decide on the riskiness of banks and on adequate
capital and liquidity levels for peer groups of banks.

2.2 EM Estimation

As is common in the literature on mixture models, we do
not estimate � directly by numerically maximizing the log-
likelihood function in (2). Instead we use the expectation maxi-
mization (EM) algorithm to estimate the parameters; see Demp-
ster, Laird, and Rubin (1977) and McLachlan and Peel (2000).4

4As pointed out by a referee, newer and faster versions of the EM algorithm
are available, such as the ECM algorithm of Meng and Rubin (1993) and the
ECME algorithm of Liu and Rubin (1994). All of these converge to the same
optimum. Computation time for the EM was not a major issue in our setting,
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To write down the EM algorithm and formulate the score-driven
parameter dynamics for μ j,t and � j,t later on, we define the
complete data for firm i as the pair (Yi,T , zi). If zi is known, the
corresponding complete data likelihood function is given by

logLc(�) =
N∑
i=1

J∑
j=1

zi, j
[
logπ j + log f j(Yi,T ; θ j )

]
. (3)

Because zi is unobserved, however, (3) cannot be maximized
directly. Following Dempster, Laird, and Rubin (1977), we
instead maximize its conditional expectation over zi given the
observed data YT = (Y1,T , . . . ,YN,T ) and some initial or previ-
ously determined parameter value �(k−1), that is, we maximize
with respect to � the function

Q(�;�(k−1))

= E
[
logLc(�)

∣∣ YT ;�(k−1) ]

= E

⎡
⎢⎣ N∑

i=1

J∑
j=1

zi, j
[
logπ j + log f j(Yi,T ; θ j )

]
∣∣∣∣∣∣∣ YT ;�(k−1)

⎤
⎥⎦

=
N∑
i=1

J∑
j=1

P
[
zi, j = 1

∣∣ YT ;�(k−1) ] [logπ j + log f j(Yi,T ; θ j )
]
.

(4)

The conditionally expected likelihood (4) can be optimized iter-
atively by alternately updating the conditional expectation of the
component indicators zi (E-Step) and subsequently maximizing
the remaining part of the function with respect to � (M-Step).
In the E-Step, the conditional component indicator probabil-

ities are updated using

τ
(k)
i, j := P

[
zi, j = 1 | YT ,�(k−1)]

=
π

(k−1)
j f j

(
Yi,T ; θ

(k−1)
j

)
f
(
Yi,T ;�(k−1)) =

π
(k−1)
j f j

(
Yi,T ; θ

(k−1)
j

)
∑J

h=1 π
(k−1)
h fh

(
Yi,T ; θ

(k−1)
h

) .

(5)

We again point out that the τ
(k)
i, j s do not depend on time, as banks

in our application in Section 4 are statically assigned to clus-
ters. An alternative would be to use dynamic cluster assignments
as in Catania (2016), in which case the densities f j(Yi,T ; θ

(k−1)
j )

above would have to be replaced by their time t counterparts
f j(yi,t | Yi,t−1 ; θ

(k−1)
j,t ) and would result in time-specific poste-

rior probabilities τ
(k)
i, j,t ; see also the diagnostic statistics intro-

duced in Section 2.5.
Once the τ

(k)
i, j s are updated, we move to the M-Step. Max-

imizing Q(�;�(k−1)) with respect to π j under the constraint
π1 + · · · + πJ = 1, we obtain

π
(k)
j = 1

N

N∑
i=1

τ
(k)
i, j , j = 1, . . . , J. (6)

The optimization of Q(�;�(k−1)) with respect to the remain-
ing parameters in � can sometimes be done analytically,
for instance in the case of the normal finite mixture model

with the algorithm typically converging in 15 iterations. We therefore leave such
extensions for future work.

with static location μ j,t ≡ μ j and scale � j,t ≡ � j. Otherwise,
numerical maximization methods need to be used. The E-step
andM-step are iterated until the difference L(�(k+1)) − L(�(k) )
has converged. The EM algorithm increases the likelihood on
each step, and convergence typically occurs within 15 iterations
in our application. After convergence, when � has been esti-
mated, we can use the final τ

(k)
i, j to assign banks to clusters. We

do so by assigning bank i to cluster j which has the highest τ (k)
i, j

across j. Note that due to the EM perspective of the score steps,
filtering μ̂ j,t for a panel of firms is not a straightforward recur-
sion from time t = 1, . . . ,T as in the standard setting for score-
driven models. In particular, for given τ

(k)
i, j , we can computeμ j,t ,

and the other way around. Given that both quantities need to be
estimated, however, the filtering problem for μ j,t requires the
simultaneous solution of τi, j.We solve this problem via the addi-
tional alternation of E-steps and M-steps in the EM algorithm.

2.3 Normal Mixture With Time-Varying Means

As explained in Section 2.1, it is important to allow for time-
varying cluster means. We first do so for the case of a nor-
mal mixture with time varying means and constant covariance
matrices. We set f j(yi,t | Yi,t−1; θ j,t ) = φ(yi,t;μ j,t,� j ), where
φ( · ;μ,�) denotes a multivariate normal density function with
meanμ and variance�. In this section, we introduce a version of
the score-driven approach of Creal, Koopman, and Lucas (2013)
to the parameter dynamics of μ j,t ; compare also Harvey (2013)
and Creal et al. (2014a). Rather than using the score of the log-
density as in Creal, Koopman, and Lucas (2013), however, we
use the score of the EM criterion in (4) to drive the parameter
dynamics. Our simulation section shows that the score-driven
dynamics can fit various patterns for the cluster means, both in
correctly specified and mis-specified settings.
For simplicity and parsimony, we consider the integrated

score-driven dynamics as discussed by Lucas and Zhang
(2016),

μ j,t+1 = μ j,t + A1sμ j,t , (7)

where A1 = A1(�) is a diagonal matrix that depends on
the unknown parameter vector �, and where sμ j,t is the
scaled first derivative of the time t EM objective function∑N

i=1

∑J
j=1 τ

(k)
i, j logφ(yi,t;μ j,t ,� j ) with respect to μ j,t , where

we dropped the part
∑N

i=1

∑J
j=1 τ

(k)
i, j logπ j as it does not depend

on μ j,t . The score is given by

∇μ j,t = ∂

∂μ j,t

⎛
⎝ N∑

i=1

J∑
j′=1

τ
(k)
i, j′ logφ(yi,t;μ j′,t,� j′ )

⎞
⎠

= ∂

∂μ j,t

⎛
⎝ N∑

i=1

J∑
j′=1

τ
(k)
i, j′
[− 1

2 log |2π� j′ |

− 1
2 (yi,t − μ j′,t )

′�−1
j′ (yi,t − μ j′,t )

]⎞⎠

= �−1
j

N∑
i=1

τ
(k)
i, j

(
yi,t − μ j,t

)
. (8)
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The score in (8) is based on the EM local objective function.
Onemight ask how this score relates to the standard score as pro-
posed originally in Creal, Koopman, and Lucas (2013). In Web
Appendix A, we show that if the density of themixing variable zi
does not depend on ft , then the standard predictive density score
and the EM score evaluated at the MLE optimum are identical.
The result was also used to account for missing values by Lucas,
Opschoor, and Schaumburg (2016). The current finite mixture
model is a special case of this more generic result.
To scale our score for μ j,t , we compute the inverse of the

expected negative Hessian under mixture component j. In par-
ticular, we take the derivative of (8) with respect to the transpose
of μ j,t , switch sign, and compute the inverse, thus obtain a scal-
ing matrix � j/

∑N
i=1 τ

(k)
i, j . This yields a corresponding scaled

score update of the form

μ j,t+1 = μ j,t + A1 ·
∑N

i=1 τi, j(yi,t − μ j,t )∑N
i=1 τi, j

. (9)

This updating mechanism is highly intuitive: the component
means are updated by the prediction errors for that component,
accounting for the posterior probabilities that the observation
was drawn from that same component. For example, if the
posterior probability τ

(k)
i, j that yi,t comes from component j is

negligible, the update ofμ j,t does not depend on the observation
of firm i.
We note that we do not scale the score by the inverse Fisher

information matrix as suggested in for instance Creal, Koop-
man, and Lucas (2013). So far, there is no optimality theory for
the choice of the scale for the score, and different proposals can
be found in the literature. Computing the information matrix for
the mixture model is hard, particularly if we take into account
that also τ

(k)
i, j is a function of yi,t . We can show, however, that

our proposed way of scaling the score collapses to the inverse
information matrix if the mixture components are sufficiently
far apart.
All static parameters can now be estimated using the EM-

algorithm. Starting from an initial �(k−1) and an initial mean
μ

(k−1)
j,1 , we compute μ

(k−1)
j,2 , . . . , μ

(k−1)
jT using the recursion (9).

We compute the posterior probabilities as

τ
(k)
i, j =

π
(k−1)
j

∏T
t=1 φ

(
yi,t;μ

(k−1)
j,t ,�

(k−1)
j

)
∑J

h=1 π
(k−1)
h

∏T
t=1 φ

(
yi,t;μ

(k−1)
ht �

(k−1)
h

) . (10)

Next, the M-Step maximizes

N∑
i=1

T∑
t=1

D∑
j=1

τ
(k)
i, j

×
[
− 1

2 log(|2π� j|) − 1
2 (yi,t − μ j,t )

′�−1
j (yi,t − μ j,t )

]
, (11)

with respect to A1 and � j. The initial values μ j,1 can also be
estimated if J and D are not too large. Otherwise, the number of
parameters becomes infeasible. Alternatively, one can initialize
the time-varying means μ j,1 by the τi, j-weighted average of the
first cross-section(s). Given the values of J and D in our empir-
ical study, we opt for this latter approach. We set μ j,1 equal
to the weighted unconditional sample average in the simulation
study, and to the weighted average of the first cross-section in
the empirical application. Given μ j,1 and A1, the optimization

with respect to � j can be done analytically. The optimization
with respect to A1 has to be carried out numerically.

The E-step andM-step are iterated until convergence. To start
up the EM algorithm, we initialize the weights τi, j randomly. To
robustify the optimization algorithm, we use a large number of
random starting values and pick the highest value for the final
converged criterion function.

2.4 Extensions

2.4.1 Time-Varying Component Covariance Matrices.
This section derives the scaled score updates for time-varying
component covariance matrices � j,t . If we also want to endow
the time-varying covariance matrices with integrated score
dynamics, we have

� j,t+1 = � j,t + A2 s� j,t , (12)

where s� j,t is again defined as the scaled first partial derivative of
the expected likelihood function with respect to � j,t . Following
equation (8), the unscaled score with respect to � j,t is

∇� j,t = 1
2

N∑
i=1

τ
(k)
i, j �

−1
j,t

[
(yi,t − μ j,t )(yi,t − μ j,t )

′ − � j,t
]
�−1

j,t .

(13)

Taking the total differential of this expression, and subsequently
taking expectations E j[ · ] conditional on mixture component j,
we obtain

1
2 E j

[
N∑
i=1

τ
(k)
i, j

(
d�−1

j,t (yi,t − μ j,t )(yi,t − μ j,t )
′�−1

j,t

+ �−1
j,t (yi,t − μ j,t )(yi,t − μ j,t )

′d�−1
j,t − d�−1

j,t

)]

= 1
2

N∑
i=1

τ
(k)
i, j d�

−1
j,t = −

(
N∑
i=1

1
2 τ

(k)
i, j

)
�−1

j,t d� j,t �−1
j,t . (14)

Vectorizing (14), we obtain −( 12
∑N

i=1 τ
(k)
i, j )(� j,t ⊗ � j,t )−1

vec(d� j,t ), where vec(·) concatenates the columns of a matrix
into a column vector, and where the negative inverse of the
matrix in front of vec(d� j,t ) is our scaling matrix to correct for
the curvature of the score. Multiplying the vectorized version of
(13) by this scaling matrix, we obtain the scaled score

vec(s� j,t ) =
(

1
2

N∑
i=1

τ
(k)
i, j

)−1

(� j,t ⊗ � j,t ) · vec (∇� j,t

)

=
(

N∑
i=1

τ
(k)
i, j

)−1

· vec (2� j,t∇� j,t� j,t
) ⇔

s� j,t =
∑N

i=1 τ
(k)
i, j

[
(yi,t − μ j,t )(yi,t − μ j,t )′ − � j,t

]
∑N

i=1 τ
(k)
i, j

. (15)

The estimation of the model can be carried out using the EM
algorithm as before, replacing � j by � j,t in equations (10) and
(11).
2.4.2 Student’s t Distributed Mixture. This section

robustifies the dynamic finite mixture model by considering
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panel data that are generated by mixtures of multivariate Stu-
dent’s t distributions. Assuming a multivariate normal mixture
is not always appropriate. For example, extreme tail observa-
tions can easily occur in the analysis of accounting ratios when
the denominator is close to zero, implying pronounced changes
from negative to positive values.
To use the EM-algorithm for mixtures of Student’s t distribu-

tions, we use the densities

f j(yi,t; θ j,t ) = �((ν j + D)/2)

�(ν j/2) |πν j� j,t |1/2

× (1 + (yi,t − μ j,t )
′ (ν j� j,t )

−1 (yi,t − μ j,t )
)−(ν+D)/2

.

(16)

Both the E-steps and theM-steps of the algorithm are unaffected
save for the fact that we use Student’s t rather than Gaussian
densities. The main difference follows for the dynamic models,
where the score steps now take a different form. Using (16), the
scores for the location parameter μ j,t and scale matrix � j,t are

∇μ j,t = �−1
j,t

N∑
i=1

τ
(k)
i, j wi, j,t ·

(
yi,t − μ j,t

)
, (17)

∇� j,t = 1
2

N∑
i=1

τ
(k)
i, j �

−1
j,t

[
wi, j,t · (yi,t − μ j,t )

× (yi,t − μ j,t )
′ − � j,t

]
�−1

j,t , (18)

wi, j,t = (1 + ν−1
j D)/(

1 + ν−1
j (yi,t − μ j,t )

′ �−1
j,t (yi,t − μ j,t )

)
.

(19)

The main difference between the scores of the Student’s t and
the Gaussian case is the presence of the weights wi, j,t . These
weights provide the model with a robustness feature: observa-
tions yi,t that are outlying given the fat-tailed nature of the Stu-
dent’s t density receive a reduced impact on the location and
volatility dynamics bymeans of a lower value forwi, j,t ; compare
Creal, Koopman, and Lucas (2011, 2013) and Harvey (2013).
We use the same scale matrices for the score as in Sections 2.3
and 2.4.1. For the location parameter, which is our main param-
eter of interest, the scaling matrix for the Student’s t case is pro-
portional to that for the normal, such that any differences are
included in the estimation of the smoothing parameter A1. We
obtain the scaled scores

sμ j,t =
(

N∑
i=1

τ
(k)
i, j wi, j,t ·

(
yi,t − μ j,t

))/(
N∑
i=1

τ
(k)
i, j

)
, (20)

s� j,t =
(

N∑
i=1

τ
(k)
i, j

(
wi, j,t · (yi,t − μ j,t )(yi,t − μ j,t )

′ − � j,t

))

/(
N∑
i=1

τ
(k)
i, j

)
. (21)

The intuition is the same as for the Gaussian case, except for the
fact that the scaled score steps forμ j,t and� j,t are redescending
to zero and bounded, respectively, if yi,t is extremely far from

μ j,t . Also note that for ν j → ∞ we see in (19) that wi, j,t → 1,
such that we recover the expressions for the Gaussian mixture
model.
2.4.3 Explanatory Covariates. The score-driven

dynamics for component-specific time-varying parameters
can be extended further to include contemporaneous or lagged
economic variables as additional conditioning variables. For
example, a particularly low interest rate environment may push
financial institutions, overall or in part, to take more risk or
change their asset composition; see, for example, Hannoun
(2015), Abbassi et al. (2016), and Heider, Saidi, and Schepens
(2017). Using additional yield curve-related conditioning vari-
ables allows us to incorporate and test for such effects. Let Xt
be a vector of observed covariates, and Bj = Bj(�) a matrix
of unknown coefficients that need to be estimated. In the case
of a Student’s t distributed mixture, the score-driven updating
scheme then changes slightly to

μ j,t+1 = μ j,t + A1 ·
∑N

i=1 τ
(k)
i, j wi, j,t (yi,t − μ j,t )∑N

i=1 τ
(k)
i, j

+ Bj · Xt .

(22)

Again, in the case of a Gaussian mixture, wi, j,t = 1. The covari-
ates can also be made firm and cluster component specific, that
is, Xi, j,t .

2.5 Diagnostics: Stability of Cluster Allocation Over
Time

The assumption that component membership is time-invariant
implies that pooling information over t = 1, . . . ,T is optimal.
This is of substantial help to robustly classify each unit i.
Although our sample covers only 32 quarters (8 years), it is clear
that switches in component membership become more likely as
the sample period grows. In such a case, we have to trade off
estimation efficiency against estimation bias.
To check whether component probabilities τi, j are time-

varying, we consider the point-in-time diagnostic statistic

τ̂i j|t = π̂ j f j
(
yi,t
∣∣Yi,t−1; θ j,t (�̂)

)
∑J

h=1 π̂h fh
(
yi,t
∣∣Yi,t−1; θh,t (�̂)

) , (23)

which can be viewed as the time t posterior probability that
firm i belongs to cluster component j, computed using the esti-
mates under the null of time-invariant cluster assignments. A fil-
tered counterpart using information from time 1 to t can be con-
structed by replacing f j(yi,t | Yi,t−1; θ j,t (�̂)) by

∏t
s=1 f j(yi,s |

Yi,s−1; θ j,s(�̂)). If τ̂i, j|t is close to 1 or 0 for all t for a specific
(i, j), firm i is unlikely to have switched clusters. Otherwise,
switches may be a concern. We discuss time series plots of τi, j|t
for diagnostic purposes in our application in Section 4.

3. SIMULATION STUDY

3.1 Simulation Design

This section investigates the ability of our score-driven dynamic
mixture model to simultaneously (i) correctly classify a dataset
into distinct components, and (ii) recover the dynamic cluster
means over time. In addition, we investigate the performance of
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Figure 1. True mean processes (black) together with median filtered means over 100 simulation runs (red) and the filtered means (green
triangles). Both panels correspond to simulation setups under correct specification with circle centers that are 8 units apart (distance = 8). The
left panel corresponds to the simulation setup with radius 4, while the right panel depicts the mean circles with radius 1.

several model selection criteria from the literature in detecting
the correct model when the number of clusters is unknown. In
all cases, we pay particular attention to the sensitivity of the EM
algorithm to the (dis)similarity of the clusters, the number of
units per cluster, and the impact of model misspecification.
We simulate from a mixture of dynamic bivariate densities.

These densities are composed of sinusoid mean functions and
iid disturbance terms that are drawn from a bivariate Gaussian
distribution or a bivariate Student’s t distribution with five or
three degrees of freedom. The covariance matrices are chosen
to be time-invariant identity matrices.
The sample sizes are chosen to resemble typical sample sizes

in studies of banking data. We thus keep the number of time
points small to moderate, considering T ∈ {10, 30}, and set the
number of cross-sectional units equal to N = 100 or to N =
400. The number of clusters used to generate the data is fixed
at J = 2 throughout. In our first set of simulation results in Sec-
tion 3.2, we assume J = 2 is known. In a second set of simula-
tions, we do not assume to know the number of clusters, but
determine it using different model selection criteria. To save
space in the main text, the description of these criteria has been
moved toWeb Appendix B, together with the outcomes of these
simulations.
In our baseline setting, visualized in Figure 1, we generate

data from two clusters located around means that move in two
nonoverlapping circles over time. Across our different simu-
lation designs, the data have different signal-to-noise ratios in
the sense that the radius of the circles is large or small rela-
tive to the variance of the error terms. In addition, we also con-
sider two more challenging settings where the two circles over-
lap completely: the circles have the same center, but differ in
the orientation of the time-varying mean component (clockwise
vs. counterclockwise). Again, we consider circles with a large
and small radius, respectively, while keeping the variance of the
error terms fixed and thus changing the signal-to-noise ratio in
the simulation set-up.
Finally, we investigate the impact of two types of model

misspecification. First, we incorrectly assume a Gaussian mix-
ture in the estimation process when the data are generated by
a mixture of Student’s t densities with five degrees of free-
dom (ν = 5). Alternatively, we simulate from a t(3)-mixture,
but fix the degrees of freedom parameter to five in the estima-
tion. In both cases, we check the effect of misspecifying the tail
behavior of the mixture distribution. In total, we consider 96
different simulation settings.

3.2 Simulation Results for Classification and Tracking

Using the score-driven model set-up and EM estimation
methodology from Section 2, we classify the data points and
estimate the component parameters from the simulated data.
The static parameters to be estimated include the distinct entries
of the covariance matrices, and the diagonal elements of the
smoothing matrix A1, which, for simplicity, we assume to be
equal across dimensions and components, that is, A1 = a1ID.

Figure 1 illustrates our simulation setup with two examples.
The data-generating processes are plotted as solid black lines.
In each panel, the true process is compared to the pointwise
median of the estimated paths over simulation runs (solid red
line), as well as the filtered mean estimates for each simula-
tion run (green triangles). The actual observations are dispersed
much more widely around the black circles, as for each point
on the circle they are drawn from the bivariate standard nor-
mal distribution, thus ranging from approximately μ j,t − 2.5
to μ j,t + 2.5 with 99% probability. Our methodology allocates
each data point to its correct component and in addition tracks
the dynamic mean processes accurately.
Table 1 presents mean squared error (MSE) statistics as

our main measure of estimation fit. MSE statistics for time-
varying component means are computed as the squared devi-
ation of the estimated means from their true counterparts, aver-
aged over time and simulation runs. The top panel of Table 1
contains MSE statistics for eight simulation settings. Each of
these settings considers Nj = 100/2 = 50 units per component.
The bottom panel of Table 1 presents the same information for
Nj = 400/2 = 200 units per component. In each case, we also
report the proportion of correctly classified data points, aver-
aged across simulation runs.
Not surprisingly, the performance of our estimation method-

ology depends on the simulation settings. For a high signal-
to-noise ratio (i.e., a large circle radius) and a large distance
between the unconditional means, the cluster classification is
close to perfect, both under correct specification and model mis-
specification. Interestingly, the distance between circles is irrel-
evant for estimation fit and classification ability in the case of
large radii (signal-to-noise ratios).
As the distance between means and the circle radii decrease,

the shares of correct classifications decrease as well. Both esti-
mation fit and share of correct classification decrease further
if we assume a Gaussian mixture although the data are gener-
ated from a mixture of fat-tailed Student’s t distributions. This
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Table 1. Simulation outcomes

T=10 T=30

N rad. dist. MSE % C1 % C2 MSE % C1 % C2

correct specification

100 4 8 0.34 100 100 0.36 100 100
100 4 0 0.34 100 100 0.36 100 100
100 1 8 0.04 100 100 0.04 100 100
100 1 0 0.04 99.18 99.28 0.04 100 99.99

misspecification 1

100 4 8 0.34 100 100 0.37 100 100
100 4 0 0.35 100 100 0.37 100 100
100 1 8 0.05 100 99.98 0.05 100 100
100 1 0 0.12 89.31 84.67 0.08 96.62 93.8

misspecification 2

100 4 8 0.42 100 100 0.46 100 100
100 4 0 0.42 100 100 0.46 100 100
100 1 8 0.05 100 100 0.05 100 100
100 1 0 0.07 94.14 93.78 0.05 99.7 99.62

correct specification

400 4 8 0.32 100 100 0.34 100 100
400 4 0 0.32 100 100 0.34 100 100
400 1 8 0.02 100 100 0.03 100 100
400 1 0 0.04 98.38 98.31 0.03 99.98 99.99

misspecification 1

400 4 8 0.32 100 100 0.35 100 100
400 4 0 0.32 100 100 0.35 100 100
400 1 8 0.03 100 100 0.03 100 100
400 1 0 0.06 94.16 91.68 0.03 99.71 99.61

misspecification 2

400 4 8 0.41 100 100 0.44 100 100
400 4 0 0.41 100 100 0.44 100 100
400 1 8 0.03 100 100 0.04 100 100
400 1 0 0.05 95.03 95.18 0.06 97.74 97.78

NOTES: Mean squared error (MSE) and average percentage of correct classification for each cluster (% C1 and % C2) across simulation runs. Considered sample sizes are N = 100,
400 and T = 10, 30. Radius (rad.) refers to the radius of the true mean circles and is a measure of the signal-to-noise ratio. Distance (dist.) is the distance between circle centers and
measures the distinctness of clusters. Correct specification refers to the case of simulating from a normal mixture and estimating assuming a mixture of normal distributions. In the case of
misspecification 1, data are simulated from a t-mixture with 5 degrees of freedom, but the model is estimated assuming normal mixtures. In the case of misspecification 2, a t(3)-mixture
is used to simulate the data while in the estimation, a fixed value ν = 5 is assumed.

indicates a sensitivity to outliers when assuming a Gaussian
mixture in the case of fat-tailed data. Incorrectly assuming five
degrees of freedom when the data are generated by a t(3)-
mixture, on the other hand, leads to little bias. Consequently, a
misspecified t-mixture model allows us to obtain more robust
estimation and classification results than a Gaussian mixture
model when the data are fat-tailed. This is because also the t(5)
based score-dynamics for μ j,t already discount the impact of
outlying observations, although not as strictly as the score-based
dynamics of a Student’s t(3) distribution.

In our empirical study of banking data, the number of clusters,
that is, bank business models, is unknown a priori. A number of
model selection criteria and so-called cluster validation indices
have been proposed in the literature, and comparative studies
have not found a dominant criterion that performs best in all

settings; see, for example, Milligan and Cooper (1985) and de
Amorim andHennig (2015).We therefore run an additional sim-
ulation study to see which model selection criteria are suitable
to choose the optimal number of components in our multivariate
panel setting. We refer to Web Appendix B for the results. The
Davies–Bouldin index (DBI; see Davies and Bouldin (1979)),
the Calinski–Harabasz index (CHI; see Calinski and Harabasz
1974), and the average Silhouette index (SI; see de Amorim and
Hennig 2015) perform well.

4. BANK BUSINESS MODELS

4.1 Data

The sample under study consists of N = 208 European banks,
for which we consider quarterly bank-level accounting data
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from SNL Financial between 2008Q1–2015Q4. This implies
T = 32. We assume that differences in banks’ business mod-
els can be characterized along six dimensions: size, com-
plexity, activities, geographical reach, funding strategies, and
ownership structure. We select a parsimonious set of D = 13
indicators from these six categories. We consider banks’ total
assets, leverage with respect to CET1 capital (size), net loans to
assets ratio, risk mix, assets held for trading, derivatives held for
trading (complexity), share of net interest income, share of net
fees and commissions income, share of trading income, ratio of
retail loans to total loans (activities), ratio of domestic loans to
total loans (geography), loans to deposits ratio (funding), and an
ownership index (ownership).
We refer to Web Appendix C for a detailed discussion of our

data, including data transformations and SNL Financial field
keys. Web Appendix C also discusses our treatment of missing
observations and banks’ country location.

4.2 Model Selection

This section motivates the model specification employed in our
empirical analysis. We first discuss our choice of the number of
clusters. We then determine the parametric distribution, pooling
restrictions, and choice of covariance matrix dynamics.
Table 2 presents likelihood-based and distance-based infor-

mation criteria, as well as different cluster validation indices
for different values of J = 2, . . . , 10. The log-likelihood
fit increases monotonically with the number of clusters.
Likelihood-based information criteria turn out to be sensitive
to the specification of the penalty term. They either select the
maximum number (AICc, BIC) or minimum number (AICk,
BaiNg2) of components; see Web Appendix B for definitions of
the different criteria. Distance-based cluster validation indices
such as the CHI, DBI, and SI suggest J = 6. Each of these
takes a local maxium/minimum at this value. In practice, experts
consider between five and up to more than ten different bank
business models; see, for example, Ayadi, Arbak, and de Groen
(2011) and Bankscope (2014, p. 299).With these considerations
in mind, to be conservative and in line with Table 2 and the sim-
ulation results as reported inWeb Appendix B, we choose J = 6
components for our subsequent empirical analysis.
Table 3 motivates our additional empirical choices. We

estimate a range of models with varying degrees of flexibility:

Table 3. Model specification

Density ν Value A1 � j; � j,t loglik 	loglik

N — ∞ scalar static 17,131.4
t fixed ≡ 5 scalar static 20,485.3 3,353.9
t fixed ≡ 5 vector static 20,499.6 14.3
t est 6.6 scalar static 20,617.1 117.5
t est 6.6 vector static 20,631.2 14.1

N — ∞ scalar dynamic 21,305.9 674.7
t fixed ≡ 10 scalar dynamic 28,606.0 7,300.1
t est 5.7 scalar dynamic 29,190.3 584.3

NOTES: Log-likelihoods and differences in log-likelihoods for different model specifica-
tions. The estimates are conditional on the same (optimal) allocation of banks to J = 6
components; cluster validation indices are not presented for this reason.

normal versus Student’s t, static versus dynamic covariance
matrices, and a scalar versus a diagonal A1. We observe two
large likelihood improvements. First, allowing for fat-tailed
rather than Gaussian mixtures increases the likelihood by more
than 3400 points for the static covariance case, and more than
7800 points for dynamic covariance matrices. Second, allowing
covariance matrices to be dynamic increases the likelihood
more than 4100 points for Gaussian mixtures, and more than
9500 points for the Student’s t case. Allowing A1 to be diagonal
only results in a minor likelihood increase, and the diagonal
elements are all quite similar. We therefore adopt a Student’s
t model with scalar A1, estimated degrees of freedom ν, and
dynamic covariance matrices � j,t as our main empirical speci-
fication. The autoregressive matrices are given by A1 = a1 · ID,
and A2 = a2 · ID. Unknown parameters to be estimated in the
M-step are therefore 
 = (a1, a2, ν)′. Using this parameter
specification, we combine model parsimony with the ability to
study a high-dimensional array of data.
Web Appendix D presents the estimated diagnostic statistics

as defined in Section 2.5. Specifically, we report all time t pos-
terior probabilities that unit i belongs to cluster component j for
all 208 banks in our sample. In addition, we present histograms
of the maximum average point-in-time and filtered component
probabilities. The plots indicate that there is one most suitable
business model for almost all banks in our data.
Web Appendix E compares our cluster allocation outcomes

with a 2016 supervisory ECB/SSM bank survey (“thematic

Table 2. Information criteria

J loglik AICc BIC AICk BaiNg2 CHI DBI SI

2 1134.4 − 1828.8 − 393.8 2525.4 − 0.218 12.71 3.61 11.0
3 9159.9 − 17652.0 − 15520.5 2973.5 − 0.074 9.00 4.03 1.3
4 13700.4 − 26497.4 − 23677.2 3243.5 − 0.038 8.08 3.79 1.4
5 17055.1 − 32963.1 − 29462.2 3615.3 0.059 7.42 3.84 1.1
6 19812.8 − 38226.5 − 34053.3 3990.6 0.157 7.90 3.18 1.9
7 21522.2 − 41384.0 − 36547.6 4085.8 0.040 7.25 3.27 1.1
8 25142.2 − 48353.6 − 42863.3 4576.8 0.227 7.57 2.86 1.1
9 27341.3 − 52471.3 − 46337.1 5035.6 0.386 7.43 2.85 1.8
10 29883.8 − 57265.3 − 50497.7 5281.3 0.369 6.31 3.23 0.5

NOTES: Likelihood- and distance-based information criteria as well as cluster-validation indices for different values of J = 2, . . . , 10. The panel refers to a model specification with
time-varying component means μ j,t , time-invariant � j , and ν estimated as a free parameter. Each statistic is the maximum (respectively minimum) obtained from 5,000 random starting
values for the model parameters. We refer to Web Appendix B for exact formulas and literature references for all reported selection criteria. The average Silhouette index (SI) is multiplied
by 100. The top three suggested values are printed in bold.
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Figure 2. Time-varying component medians. Filtered component medians for 12 indicator variables; see Table C.1. The component medians
coincide with the component means unless the variable is transformed; see the last column of Table C.1 in Web Appendix C. The ownership
variable is omitted since it is time-invariant. The component mean estimates are based on a Student’s t mixture model with J = 6 components
and time-varying component means μ j,t and covariance matrices � j,t . We distinguish large universal banks, including G-SIBs (black line),
international diversified lenders (red line), fee-focused lenders (blue line), domestic diversified lenders (green dashed line), domestic retail lenders
(purple dashed line), and small international banks (light-green dashed line).

review”) that asked a subset of banks in our sample which other
banks they consider to follow a similar business model. We find
that our classification outcomes for these banks approximately,
but not perfectly, correspond to bank managements’ own views.
Web Appendix F studies to which extent the clustering out-

comes change by leaving out variables d = 1, . . . ,D one-at-a-
time and then reestimating the model. All variables turn out to
be important in the sense that they have a substantial influence
on the clustering outcome. In addition, the clustering outcomes
are not dominated by a single variable, such as for instance total
assets.

4.3 Discussion of Bank Business Models

This section studies the different business models implied by
the J = 6 different component densities. Specifically, we assign
labels to the identified components to guide intuition and for
ease of reference. These labels are chosen in line with Figure 2,
Figure G1 in Web Appendix G, and the identities of the firms in
each component. In addition, our labeling is approximately in
line with the examples listed in SSM (2016, p. 10).

Figure 2 plots the component median estimates for each
indicator variable and business model component (except
ownership, which is time-invariant). Web Appendix G presents
additional figures, such as boxplots of the time series averages
of each variable for each business model group. In addition,
Web Appendix G presents the filtered component-specific
time-varying standard deviations

√
� j,t (d, d) for variables

d = 1, . . . ,D− 1. The standard deviations tend to decrease
over time starting from the high dispersion observed during the
financial crisis (2008–2009). The standard deviation estimates
also differ across business models.
We distinguish

(A) Large universal banks, including G-SIBs (14.9% of firms;
comprising, for example, Barclays plc, Credit Agricole SA,
Deutsche Bank AG.)

(B) International diversified lenders (11.1% of firms; for exam-
ple, ABN Amro NV, BBVA SA, Confederation Nationale
du Credit Mutuel SA.)

(C) Fee-focused bank (15.9% of firms; for example, Monte Dei
Paschi di Sienna, Banco Populare, Bankinter SA.)
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(D) Domestic diversified lenders (26.9 % of firms; for example,
Aareal Bank AG, Abanca Corporacion Bancaria SA, Alpha
Bank SA.)

(E) Domestic retail lenders (17.8% of firms; for exam-
ple, Alandsbanken Abp, Berner Kantonalbank, Newcastle
Building Society.)

(F) Small international banks (13.5% of firms; for example,
Alpha Bank Skopje, AS Citadele Banka, AS SEB Pank.)

Large universal banks, including G-SIBs (black line) stand
out as the largest institutions, with up to € 2 trn in total assets per
firm for globally significantly important banks. Approximately
60% of operating revenue tends to come from interest-bearing
assets such as loans and securities holdings. This leaves net
fees and commissions as well as trading income as significant
other sources. Large universal banks are the most leveraged
at any time between 2008Q1–2015Q4, even though leverage,
that is, total assets to CET1 capital, decrease by more than a
third from pre-crisis levels, from approximately 45 to below
30; see Figure 2. Large universal banks hold significant trading
and derivative books, both in absolute terms and relative to
total assets. Naturally, such large banks engage in significant
cross-border activities, including lending (between 40% and
50% of loans are cross-border loans).
International diversified lenders (red line) are second in terms

of firm size, with total assets ranging between approximately €
100–500 bn per firm. As the label suggests, such banks lend sig-
nificantly across borders and to both retail and corporate clients.
The share of nondomestic loans to total loans is approximately
30%, and the share of retail loans ranges between approxi-
mately 20%–60%. International diversified lenders also serve
their corporate customers by trading securities and derivatives
on their behalf, resulting in significant trading and derivatives
books. In addition, such banks tend to be non-deposit funded,
as indicated by a high loans-to-deposits ratio between 100 and
200%.
Fee-focused banks (blue line) achieve most of their income

from net fees and commissions (approximately 30%). This
group contains banks that focus on fee-based commercial
banking activities, such as transaction banking services, trade
finance, credit lines, advisory services, and guarantees. In addi-
tion, however, this component appears to contain “weak” banks
which do not generate much income in their traditional lines
of business. The component mean for net interest income is
low, raising the share of net fees and commissions. Fee-focused
banks tend to exhibit a relatively high loans-to-assets ratio of
approximately 70%, and also tend to focus on domestic loans
(approximately 80%). Median total assets are typically below
100 bn per firm.
Domestic diversified lenders (green dashed line) are relatively

numerous, comprising approximately 27% of firms, and are of
moderate size. Total assets are typically below € 50 bn per
firm. Domestic diversified lenders tend to be well capitalized,
as implied by relatively low leverage ratios (of typically less
than 20). Trading and derivatives books are small. Lending is
split approximately evenly between corporate and retail clients.
Nondomestic loans are typically below 20%.
Finally, domestic retail lenders and small international banks

are the smallest firms, with typically less than € 25 bn in

total assets. Domestic retail lenders and small international
banks have much in common. Both types of banks display low
leverage, suggesting they are well capitalized. The relatively
largest part of their risk is credit risk (risk mix). Neither group
holds significant amounts of securities or derivatives in trad-
ing portfolios. Approximately two-thirds of their income comes
from interest-bearing assets, making it the dominant source of
income.
Domestic retail lenders differ from small international banks

in two ways: asset composition and geographical focus. Domes-
tic retail lenders focus almost exclusively on loans (as indi-
cated by a high loans-to-assets ratio) and domestic retail clients.
By contrast, small international banks own substantial nonloan
assets, and also serve nondomestic and nonretail (corporate)
clients. The loans-to-deposits ratio is low for small international
banks, at approximately one.
Figure 2 can also be used to discuss bank heterogeneity dur-

ing the great financial crisis between 2008–2010 and the euro
area sovereign debt crisis between 2010–2012, as well as overall
banking sector trends during our sample. We refer the interested
reader to Web Appendix H.

5. BANK BUSINESS MODELS AND THE YIELD
CURVE

This section studies the extent to which banks adapt their
business models to changes in the yield curve. We first review
European interest rate developments before discussing parame-
ter estimates.

5.1 Low Interest Rates

Figure 3 plots fitted zero-coupon yield curves for maturities
between one and twenty years at different times during our
sample (left panel). European government bond yields expe-
rienced a pronounced downward shift during our sample, ulti-
mately reaching ultra-low and in part negative values. The yield
curve factors underlying the yield curve estimates are based on a
Svensson (1995) four-factor model and are extracted daily from
market prices of AAA-rated sovereign bonds issued by euro area
governments. The yield curve factor estimates can be obtained
from the ECB’s website.
Figure 3 also plots the level factor, along with the implied

short rate (right panel). The slope factor fluctuates around a
value of approximately −2 in our sample and is not reported.
Long-term yields increase up to approximately 4% between
2009–2011 following an initial sharp drop during the global
financial crisis. Between 2013–2015, nominal yields decline to
historically low levels. In 2015, European 10-year rates are often
below 1%. Short-term rates become negative in 2015 following
a cut of the ECB’s deposit facility rate to negative values. Low
nominal interest rates do not necessarily only reflect unconven-
tionalmonetary policies, including the ECB’s Public Sector Pur-
chase Programme (PSPP; or “Quantitative Easing”). Decreasing
inflation rates, inflation risk premia, demographic factors, and
an imbalance between global saving and investment likely also
play a role; see, for example, Draghi (2016).
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Figure 3. Yield curve and factor plots. All yield curve and factor plots refer to AAA-rated euro area government bonds, and are based on
a Svensson (1995) four-factor model. Yield factor estimates are taken from the ECB. The left panel plots fitted Svensson yield curves on four
dates—mid-2008Q1, mid-2010Q1, mid-2015Q1, and mid-2015Q4, for maturities between one and 20 years, and based on all yield curve factors.
The right panel plots the level factor estimate, along with the model-implied short rate (given by the sum of the level and slope factor).

5.2 Fixed Effects Panel Regression Results

Table 4 presents fixed effects panel regression estimates of
bank-level accounting variables 	4yi,t (d), d = 1, . . . , 12, on
a constant and contemporaneous as well as one-year lagged
changes in two yield curve factors, level and slope. We consider
four-quarter differences since most banks report at an annual

frequency. Table 4 pools bank data across business model com-
ponents. Table 5 reports the regression coefficients for the one-
year changes in the yield curve level, pooled as well as disaggre-
gated across business model clusters. Web Appendix I reports
all estimates for each variable and business model group.
We discuss five findings. First, as long-term interest rates

decrease, banks on average grow larger in terms of total assets,

Table 4. Factor sensitivity estimates

	4ln(TAt ) 	4ln(Levt ) 	4(TL/TA)t 	4ln(RMt) 	4(AHFT/TA)t 	4(DHFT/TA)t

	4 levelt − 0.0508*** − 0.0260** 1.824*** 0.00586 − 0.00688** − 0.0111***

(0.0118) (0.0116) (0.292) (0.0125) (0.00327) (0.00354)
	4 slopet − 0.0514*** − 0.0267** 1.470*** − 0.00336 − 0.00489 − 0.0105***

(0.0123) (0.0112) (0.303) (0.0141) (0.00304) (0.00339)
	4 levelt−4 − 0.0169*** 0.00685 0.213** − 0.00465 0.000441 0.00237

(0.00422) (0.00490) (0.0984) (0.00527) (0.00133) (0.00159)
	4 slopet−4 − 0.0346*** − 0.00777 0.118 − 0.00742 − 0.000742 − 0.000591

(0.00540) (0.00567) (0.143) (0.00645) (0.00153) (0.00179)
constant 0.0104* − 0.0425*** 0.236 0.0201*** − 0.00238* − 0.00107

(0.00578) (0.00344) (0.138) (0.00541) (0.00127) (0.00140)

Observations 3,064 2,640 2,902 2,179 2,285 2,286
Number of groups 208 206 208 203 208 208
Bank FE YES YES YES YES YES YES
Within R2 0.0508 0.00758 0.0251 0.00218 0.0207 0.0656

	4(NII/OR)t 	4(NFC/OI)t 	4(TI/OI)t 	4(RL/TL)t 	4(DL/TL)t 	4(L/D)t

	4 levelt 1.931 0.371 − 0.0509 0.00562*** 1.225*** − 0.230
(2.040) (0.664) (1.871) (0.00194) (0.291) (0.498)

	4 slopet 2.712 1.606** 1.041 0.00615*** 1.182*** − 1.047
(1.868) (0.740) (1.610) (0.00174) (0.395) (0.700)

	4 levelt−4 − 1.160** − 1.293*** 0.686 − 0.00210*** − 0.200 0.277
(0.536) (0.414) (0.433) (0.000714) (0.196) (0.279)

	4 slopet−4 − 2.191*** − 1.335** 1.243** 0.000269 − 0.111 0.0282
(0.631) (0.572) (0.509) (0.00102) (0.189) (0.349)

constant 0.118 − 0.0291 − 0.0375 0.00728*** 0.362 − 1.973***

(0.839) (0.313) (0.711) (0.00117) (0.212) (0.362)

Observations 2,836 2,827 2,737 1,895 1,498 2,417
Number of groups 208 208 208 181 172 207
Bank FE YES YES YES YES YES YES
Within R2 0.00287 0.00391 0.00745 0.00578 0.00633 0.00426

NOTES: Fixed effects panel regression estimates for annual changes in bank-level accounting data 	4yit (d), d = 1, . . . , 12, on a constant and contemporaneous and one-year lagged
annual changes in yield curve factors level and slope. Specifically, 	4yit (d) = b1	4levelt + b2	4slopet + b3	4levelt−4 + b4	4slopet−4 + constant + fixed effectsi + εit . Dependent
variables are as listed in Table C.1 of the Web Appendix. Standard errors are Driscoll–Kraay standard errors with three lags; stars denote significance at a 10%, 5%, and 1% level.
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by approximately 5% in response to a 100 bps drop in the level
factor. The coefficient estimates for short-term rates and lagged
changes in yields are negative as well. This finding is in line with
banks’ incentive to extend the balance sheet to offset squeezed
net interest margins for new loans and investments. In addition,
and trivially, some bank assets are worth more at lower rates.
Second, bank leverage is predicted to increase as yields

decline. This correlation needs to be interpreted with caution.
Leverage declined most strongly between 2010 and 2012, when
euro area yields were increasing owing to the sovereign debt
crisis. In addition, leverage is influenced by changes in finan-
cial regulation which we do not control for.
Third, the composition of bank assets is sensitive to changes

in the yield curve factors. The loans-to-assets ratio decreases
by approximately 2% on average across business models in
response to a 100 bps drop in long-term rates. By contrast, the
sizes of banks’ trading and derivative books increase to some
extent. This change in balance sheet composition is driven
mostly by the larger banks (components A to C; Table 5), and
could reflect a decreased demand for new loans from the private
sector in an environment of strongly declining rates; see Abbassi
et al. (2016). In this environment, large banks may invest in
tradable securities such as government bonds instead of
expanding their respective loan books; see Acharya and Steffen
(2015).
Fourth, we observe little variation in the shares of income

sources in response to falling yields. In particular, the share of
net interest income is not significantly (at 5%) associated with
contemporaneous changes in yields. Two opposing effects could

be at work. On the one hand, banks funding cost also decrease,
and may even do so at a faster rate than long-duration loan
rates. In addition, banks’ long-term loans and bond holdings are
worth more at lower rates, leading to mark-to-market gains. On
the other hand, low long-term interest rates squeeze net interest
margins for newly acquired loans and bonds. The former effects
could approximately balance the latter in our sample.
Finally, some banks appear to decrease their deposits-to-loans

ratio in response to falling short-term rates. We refer to Web
Appendix I, Table I.4, for the respective coefficient estimates.
As the slope factor declines by 100 bps, banks in components A,
B, andD decrease their deposits-to-loans ratio by approximately
2–5%.
Changes in term structure factors can also be added to the

econometric specification as discussed in Section 2.4.3. Given
the limited number of T = 32 time series observations, how-
ever, we need to pool the coefficients Bj across mixture com-
ponents Bj ≡ B to reduce the number of parameters. Web
Appendix J discusses the parameter estimates. The increased
log-likelihood values suggest a slightly better fit than the base-
line specification. Coefficients in B are, however, rarely statisti-
cally significant according to their t-values.
We conclude that bank business model characteristics appear

to adjust to changes in the yield curve. Given their direction
for falling rates—increased size, increased leverage, increased
complexity through larger trading and derivatives books, and
possibly less stable funding sources—the effects are potentially
problematic and need to be assessed from a financial stability
perspective.

Table 5. Sensitivities to changes in the term structure level (	4lt )

Dependent variable All A B C D E F

	4 ln(TA)t − 0.0508*** − 0.126*** − 0.0612*** − 0.0501*** − 0.0286*** − 0.0375 − 0.0301
(0.0118) (0.0216) (0.00568) (0.0150) (0.00809) (0.0432) (0.0253)

	4 ln(Lev)t − 0.0260** − 0.0678* − 0.0358 0.0107 0.00223 − 0.0745*** − 0.0474
(0.0116) (0.0354) (0.0235) (0.0177) (0.0204) (0.0255) (0.0341)

	4 (TL/TA)t 1.824*** 3.391*** 2.236*** 2.495*** 1.204*** 1.446** 0.0682
(0.292) (0.666) (0.394) (0.234) (0.258) (0.611) (0.619)

	4 ln(RM)t 0.00586 − 0.0807 − 0.101*** 0.0567 0.0257* 0.0206 0.0850*

(0.0125) (0.0702) (0.0254) (0.0364) (0.0143) (0.0304) (0.0462)
	4 (AHFT/TA)t − 0.00688** − 0.0290** − 0.00814*** − 0.00926*** 0.00168 0.000203 0.00138***

(0.00327) (0.0115) (0.00203) (0.00310) (0.00168) (0.000869) (0.000416)
	4 (DHFT/TA)t − 0.0111*** − 0.0474*** − 0.0165*** − 0.0107*** − 0.00197 0.00135** 0.000454

(0.00354) (0.0135) (0.00412) (0.00164) (0.00138) (0.000554) (0.000306)
	4 (NII/OR)t 1.931 − 6.797 4.614 5.992** 2.985 0.184 − 2.010

(2.040) (4.742) (5.120) (2.195) (1.753) (4.745) (3.212)
	4 (NFC/OI)t 0.371 1.447 1.703 0.234 − 0.986 0.184 2.591

(0.664) (0.954) (1.767) (0.728) (0.987) (1.631) (2.216)
	4 (TI/OI)t − 0.0509 12.40*** 0.623 − 1.792 − 1.755 − 4.171 1.448

(1.871) (4.188) (2.611) (2.585) (1.725) (3.010) (1.518)
	4 (RL/TL)t 0.00562*** 0.00129 0.00252 0.0108*** 0.00141 0.0113*** − 0.00195

(0.00194) (0.00316) (0.00480) (0.00351) (0.00373) (0.00398) (0.00828)
	4 (DL/TL)t 1.225*** 1.158* 3.736*** 1.418*** 0.384 0.0161 2.581*

(0.291) (0.563) (1.009) (0.374) (0.447) (0.205) (1.466)
	4 (L/D)t − 0.230 − 1.754 − 3.275* 2.924 − 1.534 0.347 0.620

(0.498) (1.837) (1.705) (2.080) (1.510) (1.642) (1.462)

NOTES: Yield level factor sensitivities for bank-level accounting data, controlling for changes in the slope factor and lagged changes in the yield curve. Factor sensitivity parameters are
reported as pooled across all business models (Column 2: All) as well as disaggregated across business model components A–F (Columns 3–8). Estimates are obtained by fixed effects
panel regression. Standard errors are Driscoll–Kraay standard errors with three lags.
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6. CONCLUSION

We proposed a novel score-driven finite mixture model for
the study of banking data, accommodating time-varying com-
ponent means and covariance matrices, normal and Student’s
t distributed mixtures, and term structure factors as economic
determinants of time-varying parameters. In an empirical study
of European banks, we classified more than 200 financial
institutions into six distinct business model components. Our
results suggest that the global financial crisis and the euro area
sovereign debt crisis had a substantial yet different impact on
banks with different business models. In addition, banks’ busi-
ness models adapt over time to changes in long-term interest
rates.

SUPPLEMENTARY MATERIALS

The Web appendix provides further technical and empirical
results.
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