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ABSTRACT
Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when the
number of variables in the model is large. Global-local priors are increasingly used to induce shrinkage in
such models. But the estimates produced by these priors can still have appreciable uncertainty. Sparsifi-
cation has the potential to reduce this uncertainty and improve forecasts. In this article, we develop com-
putationally simple methods which both shrink and sparsify TVP models. In a simulated data exercise, we
show the benefits of our shrink-then-sparsify approach in a variety of sparse and dense TVP regressions. In a
macroeconomic forecasting exercise, we find our approach to substantially improve forecast performance
relative to shrinkage alone.
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1. Introduction

Time-varying parameter (TVP) regressions and vector autore-
gressions (VARs) have enjoyed great popularity among econo-
metricians in recent years as a way of modeling the param-
eter change that occurs in many macroeconomic and finan-
cial time series variables. These are state space models which
have been found to work well in forecasting (e.g., D’Agostino,
Gambetti, and Giannone 2013) and been successfully used for
structural economic analysis in a changing environment (e.g.,
Cogley and Sargent 2005; Primiceri 2005). They are flexible and
capable of modeling almost any nonlinear relationship between
explanatory and dependent variables. However, this flexibility
comes at a cost: TVP models can be over-parameterized and
suffer from the curse of dimensionality, particularly when the
number of potential explanatory variables is large. This can
lead to very good in-sample fit, but poor out-of-sample forecast
performance.

There is a large and growing literature that proposes vari-
ous methods for overcoming these over-parameterization con-
cerns using Bayesian methods (see, among others, Frühwirth-
Schnatter and Wagner 2010; Belmonte, Koop, and Korobilis
2014; Kalli and Griffin 2014; Kowal, Matteson, and Ruppert
2017; Uribe and Lopes 2017; Rockova and McAlinn 2017; Koop
and Korobilis 2018; Bitto and Frühwirth-Schnatter 2019; Huber,
Kastner, and Feldkircher 2019; Eisenstat, Chan, and Strachan
2019). These articles propose different approaches to obtain
more precise inference. Much of this literature uses hierarchical
global-local shrinkage priors. A key property of these priors is
that they ensure shrinkage in the sense that they pull coefficients
toward zero. However, they do not impose them to be exactly
zero and, thus, estimation uncertainty remains. In contrast to
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1In the Bayesian literature, there are some global-local priors, such as the spike-and-slab prior, which do select variables, but these are less popular since

Markov chain Monte Carlo (MCMC) algorithms tend to mix poorly.

shrinkage approaches, selection approaches seek to choose a
single sparse specification. That is, they select a particular set of
explanatory variables and, by doing so, impose coefficients on
nonselected explanatory variables to be zero.1

Which is better: shrinkage or sparsity? The answer to this
question depends on the empirical application. In macroeco-
nomics, there is evidence that shrinkage and sparsity can both
play a role. For instance, in the case of constant coefficient
regressions and VARs, there is debate among Bayesian econo-
metricians as to whether models are sparse (in which case
sparsification methods are appropriate) or dense (in which case
shrinkage is appropriate). A recent article, Giannone, Lenza, and
Primiceri (2018), considers a range of datasets in macroeco-
nomics, microeconomics and finance and finds evidence mostly
in favor of dense models, a finding reinforced by Cross, Hou,
and Poon (2019). But there are exceptions to this pattern where
sparse models do better. But, instead of choosing one of sparsity
or shrinkage, why not do both? This is exactly what recent
articles such as Hahn and Carvalho (2015) proposed. That is,
first shrinkage is done using a Bayesian global-local shrinkage
prior and then sparsification is done on the resulting estimates.
Such an approach could add the benefits of sparsity (i.e., the
reduction in estimation error that is important for improving
forecasts) along with the benefits of shrinkage which are so
useful with dense datasets. Recent contributions in finance pro-
vide evidence that this works well if interest centers on nonlin-
ear modeling of expected returns of companies (Fisher, Puelz,
and Carvalho 2018) or constructing optimal portfolios (Puelz,
Hahn, and Carvalho 2019).

One consideration that arises in some approaches is
computation. Bayesian inference with hierarchical shrinkage
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priors requires computationally burdensome MCMC methods.
Adding a second sparsification step can greatly increase the
burden if this step uses cross-validation methods for choosing
key tuning parameters. However, in a recent contribution,
Ray and Bhattacharya (2018) proposed a simple algorithm,
the signal adaptive variable selector (SAVS), for doing the
sparsification step. This involves no tuning parameters and is
computationally trivial. Ray and Bhattacharya (2018) provided
a theoretical justification for SAVS and show it to have good
empirical performance in simulated and real data contexts.

The articles cited in the preceding paragraph all relate to
constant coefficient regression or VAR models rather than the
TVP state space models which are the focus of this article. We
develop Bayesian methods for inference and forecasting in TVP
regressions and TVP-VARs which both shrink and sparsify.
The shrinkage step can be done using any of the hierarchical
shrinkage priors that have been used with TVP regressions.
In this article, we use the Dirichlet–Laplace (DL) prior (see
Bhattacharya et al. 2015), a fully hierarchical variant of the
stochastic search variable selection prior (see George and Mc-
Culloch 1993; Ishwaran and Rao 2005; George, Sun, and Ni
2008), the Horseshoe (see Carvalho, Polson, and Scott 2010),
the Bayesian Lasso of Park and Casella (2008), and the Normal-
Gamma prior of Griffin and Brown (2010). The sparsity step is
done using the SAVS method of Ray and Bhattacharya (2018).

Another extension we make in this article relative to the
shrink-then-sparsify methods of Hahn and Carvalho (2015) and
Ray and Bhattacharya (2018) is that we allow for uncertainty
in the sparsified estimates. That is, Hahn and Carvalho (2015)
and Ray and Bhattacharya (2018) took the posterior mean from
the shrinkage step and use only this in the sparsification step.
We sparsify every MCMC draw in the shrinkage step, thus
allowing for parameter uncertainty. This feature is crucial if
interest centers on computing nonlinear functions of the pa-
rameters (such as higher order predictive distributions) and
allows for uncertainty quantification with respect to the chosen
model. Our methods are illustrated with simulated and real data
and we find them to improve estimation accuracy and forecast
performance.

The remainder of this article is organized as follows: Section 2
discusses various global-local shrinkage priors in the context
of the regression model with constant coefficients. It describes
how the sparsification strategy of Ray and Bhattacharya (2018)
works in the regression model. Section 3 extends these methods
to TVP regressions and TVP-VARs. Section 4 investigates the
performance of our methods relative to nonsparsified alterna-
tives using simulated data from a range of sparse and dense TVP
regressions. Section 5 carries out a forecasting exercise using
TVP-VARs. A comparison of forecasts which are both shrunk
and sparsified to those which are only shrunk shows the benefits
of doing both. Section 6 concludes the article and a technical
appendix provides further details on the specific prior setup and
the posterior simulation algorithms.

2. Shrinkage and Sparsification in Regression Models

In this section, we describe the shrinkage and sparsification
methods for regression which we build on in this article. In the
next section, we will show how they can be adapted for dynamic

regressions and multiple equation models such as VARs. Con-
sider the regression model:

yt = β ′Xt + εt , (1)

for t = 1, . . . , T. yt is a scalar dependent variable, Xt =
(X1t , . . . , XKt)′ is a K × 1 vector that stacks the explanatory
variables Xjt (j = 1, . . . , K), and β is a K-dimensional vector
of regression coefficients. The errors are assumed to be indepen-
dent and follow a zero mean Gaussian distribution with variance
σ 2

ε .
When K is large relative to T, Bayesians increasingly use hier-

archical priors so as to induce shrinkage. Global-local shrinkage
priors are particularly popular (see, e.g., Polson and Scott 2010).
These contain shrinkage that is both global (i.e., common to
all parameters) and local (i.e., specific to each parameter). We
consider priors which can be represented as scale mixtures of
Gaussians. In particular, for the jth regression coefficient we
assume:

βj ∼ N (0, φjλ), φj ∼ f , λ ∼ g. (2)

Global shrinkage is controlled by λ while φj handles the shrink-
age of coefficient j. f and g are mixing densities and many
different choices have been proposed for them. In this article,
we consider the Horseshoe (HS) prior of Carvalho, Polson, and
Scott (2010), the Bayesian Lasso (Lasso) of Park and Casella
(2008), the Normal-Gamma (NG) prior of Griffin and Brown
(2010), the DL prior of Bhattacharya et al. (2015), and the
Normal-Mixture of Inverse Gamma (NMIG) prior of Ishwaran
and Rao (2005), which is a variant of the stochastic search
variable selection (SSVS) prior of George and McCulloch (1993,
1997). All of these are global-local shrinkage priors and differ
from one another only in the choices of f and g. In addition, and
unless otherwise noted, we use a weakly informative inverted
Gamma prior on σ 2

ε with hyperparameters dσ = eσ = 0.01.
Using any of these global-local shrinkage priors, MCMC

methods can be used to carry out posterior inference and calcu-
late the posterior mean, β̂ . This estimate has been shrunk, but
not sparsified. It could be that many elements of β̂ will be close
to zero and thus imply a small but negligible effect of Xjt on yt .
For large K, this potentially leads to overfitting issues which is
a direct consequence of the fact that shrinkage is limited by a
lower bound on the degree of certainty (since we always have
prior scaling parameters that might be close to but not exactly
equal to zero). Sparsification solves this by taking β̂ and setting
small elements in it to zero.

Sparsification has been advocated both as a way of improv-
ing model interpretability as well as improving forecasts. In
regression models with many explanatory variables, various
sparsification approaches have been proposed to select the most
important variables so as to simplify the task of interpreting
the results (see, e.g., Woody, Carvalho, and Murray 2019). The
influential article of Barbieri and Berger (2004) shows that,
under certain conditions, the median probability model (i.e., a
sparsified model which discards all coefficients with inclusion
probabilities below 0.5) has the best forecast performance. In
this article, we implement sparsification using a recently pro-
posed method where the choice of thresholds is made in an
optimal way based on a particular decision theoretical problem.
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We implement sparsification using methods developed in
Hahn and Carvalho (2015) and Ray and Bhattacharya (2018).
We first define the SAVS estimate and then offer some explana-
tion and motivation for it. The SAVS estimate is

γ j = sign(β̂j) ||Xj||−2
(
|β̂j| ||Xj||2 − κj

)
+ , (3)

with Xj = (Xj1, . . . , XjT)′ denoting the jth column of a T × K
matrix X = (X1, . . . , XT)′, (x)+ = max(x, 0) and sign(x) re-
turns the sign of x. Note that this is a soft-thresholding approach
where all values of γ j below a certain value are set to zero and
that it only acts on the posterior mean.

The sparsified estimate depends on tuning parameters, κj,
which determine the thresholds for each coefficient. Various ap-
proaches to selecting these have been proposed in the literature
including computationally intensive approaches such as cross-
validation. However, Ray and Bhattacharya (2018) came up with
a surprisingly simple solution. This is to set:

κj = 1
|β̂j|2

. (4)

This choice implies a penalty for the jth variable which is ranked
in inverse-squared order relative to the magnitude of the jth
coefficient. With this choice of thresholds, the SAVS estimate is
trivial to calculate.

To provide some motivation for the SAVS estimate note that
(3) can be obtained by first solving an optimization problem
closely related to the adaptive Lasso (see Zou 2006):

γ = arg min
γ

⎧⎨
⎩1

2

∥∥∥Xβ̂ − Xγ

∥∥∥2

2
+

K∑
j=1

κj|γj|
⎫⎬
⎭ . (5)

Equation (5) tries to find a sparse coefficient vector γ that
is close to β̂ while introducing a penalty in case of nonzero
elements in γ .

The typical way to solve this optimization problem is using
a coordinate descent algorithm (Friedman et al. 2007). But, as
shown in Ray and Bhattacharya (2018), if you initialize this
algorithm at β̂ and then do one iteration you get precisely the
simple algorithm described in (3) and (4). It was also noted in
Ray and Bhattacharya (2018) that convergence almost always
occurs after one iteration and, hence, stopping after one iteration
is a sensible thing to do.

One key shortcoming of computing the SAVS estimate is that
uncertainty quantification about γ is not possible and comput-
ing nonlinear functions of γ calls for Monte Carlo integration
techniques. Ray and Bhattacharya (2018) highlighted that one
potential solution to this issue is to replace β̂ with a draw from
the full conditional posterior distribution of β . This is an insight
we build upon in the context of the TVP models which are the
focus of this article.

A recent article, Woody, Carvalho, and Murray (2019), devel-
ops methods for improving estimates of posterior uncertainty
in sparsified regression and nonparametric regression models
(but not the TVP state space models). This article provides
further theoretical justification for our approach. It sets up an
optimization problem where the goal is to find a parsimonious
summary of the posterior which minimizes a loss function
which combines model fit with a reward for parsimony or a
restriction that the posterior summary lies in a more parsimo-
nious class of models. As a simple example consider a regression

with large K. A loss function could be chosen which would find
the optimal regression model with p < K explanatory variables.
In the context of Bayesian MCMC estimation of a regression
model, the algorithm of Woody, Carvalho, and Murray (2019)
would perform MCMC on the model with K regressors and
project each draw into the sparse posterior for the optimal
model with p explanatory variables. This is essentially the same
strategy as we will adopt below, although our approach is slightly
more general in that our posterior summaries are based on all
sparsified MCMC draws. To make this point clear in the context
of our simple example, the Woody, Carvalho, and Murray (2019)
algorithm would choose one specific optimal set of p explana-
tory variables (e.g., using the methods of Hahn and Carvalho
2015) and then project the MCMC draws from the K variable
regression into the regression model with the chosen set of p
variables. Our algorithm, if used in this simple example, would
allow for uncertainty about which specific set of p variables
is optimal and, thus, allow for model uncertainty. Apart from
this difference, the derivations in Woody, Carvalho, and Murray
(2019) provide a theoretical justification for our approach and,
in particular, the measures of posterior uncertainty it produces.

3. Shrinkage and Sparsification in TVP Models

In this section, we develop methods for shrinkage and spar-
sification in state space models such as the TVP regression
and the TVP-VAR. This is achieved using the noncentered
parameterization of Frühwirth-Schnatter and Wagner (2010).
We emphasize that the algorithms below do the sparsification at
each draw from the MCMC algorithm, allowing for treatment of
uncertainty in the shrinkage step. Thus, the algorithms are av-
eraging over different sparsified estimators in a manner similar
to Bayesian model averaging.

3.1. The TVP Regression Model

The TVP regression model used in this article takes the form:

yt = β ′
tXt + εt ,

βt = β t−1 + wt ,

where all definitions are the same as in (1) except that β t =
(β1t , . . . , βKt)′ are dynamic (time-varying) regression coeffi-
cients which follow a random walk with wt being Gaussian
innovations with zero mean and variance-covariance matrix
V = diag(v1, . . . , vK). Each vj (j = 1, . . . , K) is a process
innovation variance associated with the jth coefficient and thus
controls the amount of time-variation in βjt .

The noncentered parameterization of this model is given by

yt =β ′
0Xt + β̃

′
t
√

VXt + εt ,

β̃ t =β̃ t−1 + ηt , ηt ∼ N (0K , IK),

with the jth element of β̃ t given by β̃jt = βjt−βj0√vj
,
√

V =
diag(√v1, . . . , √vK), and β̃0 = 0K . This equation can be
written as

yt = α′Zt + εt , (6)
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whereby α = (β ′
0, √v1, . . . , √vK)′, Zt = [X′

t , (β̃ t � Xt)′]′, and
� denotes element-wise multiplication. Conditional on know-
ing the full history of the states in β̃t , (6) resembles a standard
regression model with a (partially) latent covariate vector Zt .

Well-developed MCMC methods exist to carry out Bayesian
posterior and predictive inference in state space models such as
the TVP regression model under various priors. In this article,
we simulate the full history of the normalized dynamic regres-
sion coefficients {β̃ t}T

t=1 using the forward-filtering backward-
sampling algorithm proposed in Carter and Kohn (1994) and
Frühwirth-Schnatter (1994). Conditional on β̃ t , (6) is a stan-
dard regression model, implying that we can simulate α from
a Gaussian full conditional posterior distribution and σ 2

ε from
an inverted Gamma distribution. The corresponding moments
take standard forms and are presented in Appendix B.

We propose to do shrinkage on α using the global-local
mixture priors mentioned in the previous section and described
in Appendix A. That is, conditional on a draw of the full history
of the states, {β̃t}T

t=1, we have the regression model given in (6),
and shrinkage can be done exactly as described in the preceding
section. For each of the global-local mixture priors we consider,
MCMC methods for drawing α and σ 2

ε , conditional on draws
of the states exist. For the DL prior, we follow the methods of
Bhattacharya et al. (2015). For the NMIG specification, we adopt
the algorithm proposed in Ishwaran and Rao (2005) while for
the Horseshoe, the MCMC algorithm developed in Makalic and
Schmidt (2016) is used. Since the Normal-Gamma prior nests
the Bayesian Lasso, we adopt the algorithm put forth in Griffin
and Brown (2010) (see Appendix A for further details).

As highlighted in Section 2, using shrinkage implies that
elements in α are pushed to zero and elements in Zt might have
a small effect on yt . However, in the TVP regression setting, this
problem is intensified since the state equation can be written in
terms of the sum of the past shocks to the states wt . The cor-
responding variance of βt thus increases with time and values
of √vj that are close to zero could still induce large aggregate
movements in βjt over time. In such a situation, sparsification
might help since setting √vj = 0 directly implies that βjt =
βjt−1 for all t.

Given a draw from the posterior of α, denoted as α(n), from
any of the MCMC algorithms is sparsified using SAVS. Applying
the SAVS estimator in (3) to each draw from the posterior of α

yields:

γj
(n) = sign

(
α

(n)
j

)
||Zj||−2

(
|α(n)

j | ||Zj||2 − κj
)

+ ,

for n = 1, . . . , N, (7)
where Zj denotes the jth column of Z = (Z1, . . . , ZT)′,
κj = |α(n)

j |−2 and N denotes the number of post burn-in
MCMC draws. This procedure effectively allows for uncertainty
quantification and the computation of potentially nonlinear
functions of the sparsified parameters such as higher order fore-
casts or impulse response functions. Thus, one can think of our
proposed procedure as an approximate MCMC algorithm which
draws from the sparsified conditional posterior p(γ |α, Z).2

2The algorithm is approximate since σ 2
ε does not play a role in the SAVS

algorithm. If desired, after each sparsification, one could take a draw of σ 2
ε

conditional on the sparsified estimates.

Hence, forecasts produced will average over different sparsified
models. That is, one MCMC draw will lead to one particular
sparsified model which is used for forecasting, another draw
may choose another sparsified model to produce forecasts.
Hence, what we are proposing is similar in spirit to Bayesian
model averaging. This feature allows us to calculate posterior
inclusion probabilities (PIPs) for each variable. The PIP for a
given coefficient is the proportion of MCMC draws for which
the coefficient is not set to zero.

Another possibility would be to use the SAVS algorithm
directly on the posterior mean of α as is done by Hahn and
Carvalho (2015) and Ray and Bhattacharya (2018). This pro-
cedure yields a point estimate for the time-invariant coefficients
and the state innovation variances. However, one shortcoming
of doing this is that Zt includes latent quantities that need to be
integrated out or a plug-in estimate (such as the posterior mean)
might be used. However, as Puelz, Hahn, and Carvalho (2017)
noted, this could negatively impact inference since the corre-
sponding uncertainty surrounding Zt is ignored. Our approach
circumvents this by integrating out the latent states contained in
Zt . In addition, if the researcher wishes to select a single sparse
model, as produced by sparsifying the posterior mean directly,
our approach provides an alternate way of choosing the sparsity
pattern based on PIPs.

Another point worth emphasizing about our algorithm is
that it is fast. Relative to the computational time required to
do MCMC, adding the SAVS step increases the computational
burden by a trivial amount. For any empirical specification
where MCMC is possible, our proposed algorithm is also pos-
sible. Of course, if K is too large, then MCMC methods may be
computationally infeasible. In such a case, variational Bayesian
methods may be a practical alternative (see Koop and Korobilis
2018). But with variational Bayes methods, the SAVS algorithm
would be applied on the approximate posterior mean and model
uncertainty ignored.3

3.2. The TVP-VAR

The shrink-then-sparsify algorithm we propose for the TVP
regression can be extended to handle the TVP-VAR in a straight-
forward fashion.4 The idea is to transform the TVP-VAR so
that the error covariance matrix in the measurement equation is
diagonal. Then the TVP regression algorithm of the preceding
subsection can be applied one equation at a time. Equation-by-
equation estimation of VARs is done in several recent articles
using transformations similar to the one used here (see, e.g.,
Kastner and Huber 2017; Carriero, Clark, and Marcellino 2019;
Koop, Korobilis, and Pettenuzzo 2019) and the reader is referred
to these articles for further details about the computational
advantages of this approach. With macroeconomic data it is

3It would be possible to surmount this drawback of variational Bayes by first
using variational Bayes to obtain an approximation to the posterior and
then applying the SAVS algorithm to draws from this approximation. But
this would be computationally demanding, thus undermining the main
advantage of variational Bayes.

4For a recent article that combines shrinkage and sparsity in a multivariate
reduced rank regression framework, see Chakraborty, Bhattacharya, and
Mallick (2019).
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often important to add stochastic volatility (SV), which leads us
to the TVP-VAR-SV specification described in this section.

Let yt be an M × 1 vector of endogenous variables for t =
1, . . . , T. The TVP-VAR-SV can be written as

yt = (IM ⊗ X′
t)βt + εt , (8)

where Xt = (y′t−1, . . . , y′t−P, 1)′ contains the P lags of yt and
an intercept, β t is the vector K = M(MP + 1) coefficients at
time t which is assumed to evolve according to a multivariate
random walk. The errors are independent over time with εt ∼
N (0M , �t). �t is the time-varying error covariance matrix with

�t = U tHtU ′
t .

Let U t denote a lower unitriangular matrix and Ht =
diag(eh1t , . . . , ehMt ). The M(M −1)/2 free elements in U t follow
independent random walks while the hjt ’s are log-volatilities
that evolve according to AR(1) processes,

hjt = μj + ρj(hjt−1 − μj) + ηt , ηt ∼ N (0, σ 2
η,j). (9)

Here, we let μj denote the unconditional mean, ρj the persis-
tence parameter and σ 2

η,j the error variance of the log-volatility
process. The initial state h0 is drawn from the stationary dis-
tribution of the process. The prior specification on the param-
eters of the log-volatility equation closely follows Kastner and
Frühwirth-Schnatter (2014). Specifically, we use a zero mean
Gaussian prior with variance 102 on μj, a Beta prior on ρj+1

2 ∼
B(25, 5) and a Gamma prior on σ 2

η,j ∼ G(1/2, 1/2). This
Gamma prior translates into a Gaussian prior on ±ση,j with
zero mean and unit variance. In the MCMC algorithm, the full
history of hjt as well as the parameters of Equation (9) are ob-
tained using the algorithm proposed in Kastner and Frühwirth-
Schnatter (2014). This algorithm exploits the centered and non-
centered parameterization of the nonlinear state space model
to increase sampling efficiency and samples the full history of
the log-volatilities from a (T − 1)-dimensional multivariate
Gaussian distribution.

As noted in Carriero, Clark, and Marcellino (2019), Kastner
and Huber (2017), and Koop, Korobilis, and Pettenuzzo (2019),
computation is greatly simplified if the model is transformed
so that the errors in different equations are independent of one
another. This can be achieved by augmenting the ith equation
in the system with the contemporaneous values of the first i − 1
elements in yt . That is, if yit is the ith variable (for i > 1), we can
write the TVP-VAR-SV as a set of M unrelated TVP regressions:

yit = X′
tβ it +

i−1∑
j=1

uij,tyjt + ηit , ηit ∼ N (0, ehit ), (10)

where ηit and ηjt are independent for i �= j, β it denotes the
elements of β t in the ith equation and uij,t are the elements of
U−1

t for i = 2, . . . , M; j = 1, . . . , i − 1.
We then write the TVP-VAR-SV using the noncentered pa-

rameterization. For equation i we obtain

yit = X′
tβ i0 + (

√
Vβ

i Xt)
′β̃ it +

i−1∑
j=1

uij,0yjt

+
i−1∑
j=1

√
vu

ijũij,tyjt + ηit , ηit ∼ N (0, ehit ). (11)

Here, we let
√

Vβ
i = diag

(√
vβ

i1, . . . ,
√

vβ
iK

)
and

√
vβ

ij de-

notes the standard deviation of the error in the random walk
state equation for the jth VAR coefficient in the ith equation.
Similarly,

√
vu

ij is the standard deviation for the random walk

state equation for the elements of U t . Thus, β̃ it and ũij,t are the
states for equation i and the shocks in the corresponding state
equations have unit standard deviation.

Since the errors in the different equations are independent
of one another, estimation of one equation at a time using the
algorithm of the preceding subsection, including the SAVS step
detailed in (7), can be done. Computation is also sped up since
parallelization is feasible. Note also that, since the coefficients
in U−1

t are appearing as regression coefficients in (10), these
can also be shrunk and sparsified. In large TVP-VARs, where
there are many such error covariance terms, this is potentially
beneficial for forecasting purposes. Notice that we do not only
obtain a sparse error covariance matrix but also allow for check-
ing whether the corresponding free elements are time-varying
or constant.

4. Evidence Using Artificial Data

In this section, we present evidence on the performance of
the proposed methodology using artificial data generated from
different TVP regression models. Across the different data gen-
erating processes (DGPs), the covariates are drawn from a Uni-
form distribution bounded between −1 and 1. The β t ’s are
generated using the noncentered parameterization with β0 ∼
N (0K , 0.12IK) and ±√vj ∼ N (0, 0.12), j = 1, . . . , K, while
differing percentages of the elements in α are randomly set to
zero. The measurement error variance σ 2

ε is set equal to 0.12.
Before presenting results using repeated samples, the main

features of sparsification are illustrated in Figure 1. The results
in the three panels of the figure are based on the Horseshoe
prior and use three different single artificial datasets obtained
by simulating T = 400 observations from a large (K = 30)
dynamic regression model. Figure 1(a) plots posterior features
of βjt against time for a case where it is zero (i.e., the DGP is
one where jth regressor is not selected) using a nonsparsified
and sparsified estimator. Note that the sparsified estimator is
precisely correct, it sets βjt = 0 with probability one. Thus,
it exactly coincides with the true value and cannot be seen in
Figure 1(a). The nonsparsified posterior distribution, although
the posterior mean is very close to the correct value, has a
credible interval that is nonnegligible. This reflects estimation
uncertainty and could spill over into poor forecast performance
using the nonsparsified posterior. The performance of the SAVS
algorithm when βjt is a nonzero constant (i.e., the DGP is one
where βjt = βjt−1 for all t) is shown in Figure 1(b). In this
case, the posterior distributions of the sparsified and nonsparsi-
fied models almost coincide. Notice, however, that the credible
sets are constant over time for the sparsified model, indicating
that the corresponding element in

√
V is set equal to zero

throughout all iterations of the MCMC algorithm. In contrast,
Figure 1(c) illustrates a case where βjt is nonzero and time-
varying. Notice that the sparsified and nonsparsified posterior
distributions are close to being identical. In this case, it is not
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(a) DGP with βjt = 0 for all t (b) DGP with βjt = βjt−1 for all t (c) DGP with βjt time-varying
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Figure 1. Sparsified and nonsparsified posteriors of βjt for a large time-varying parameter model. NOTES: The dark blue line denotes the true βjt over time, the gray shaded
area represents 5th and 95th credible sets of the posterior of βjt under a HS prior. Purple lines represent 5th and 95th credible sets of the sparsified posterior.

Table 1. Mean absolute errors between the true realization of the βt ’s and the posterior median.

Nonsparsified Sparsified

Sparsity level Flat DL Lasso NG HS NMIG Flat DL Lasso NG HS NMIG

Small (K = 5)

T = 250

Dense 7.97 7.51 8.08 7.33 7.65 7.91 7.85 7.91 8.33 7.48 7.72 8.28
Moderate 4.66 4.59 4.47 4.97 4.27 3.62 4.06 4.53 4.29 5.11 4.30 3.75
Sparse 3.63 3.05 3.46 2.73 3.48 3.33 2.84 2.96 3.04 2.58 3.15 3.17

T = 400

Dense 7.57 7.14 6.89 6.40 7.65 7.03 7.45 7.65 7.15 6.42 7.91 7.46
Moderate 4.41 4.10 4.27 5.13 3.89 4.42 3.94 4.08 4.21 5.05 4.17 4.53
Sparse 2.90 2.74 3.40 2.80 2.44 3.43 2.26 2.64 2.93 2.70 2.19 3.23

Medium (K = 15)

T = 250

Dense 11.60 10.88 9.51 9.39 8.72 9.76 11.32 11.78 9.18 9.24 8.83 10.07
Moderate 3.46 3.98 5.22 3.27 3.64 3.03 2.29 3.48 4.84 2.88 3.39 2.90
Sparse 3.21 1.81 2.44 2.09 1.84 2.04 2.02 1.40 1.48 1.79 1.63 1.55

T = 400

Dense 9.87 10.77 9.60 8.19 8.44 8.72 9.61 11.50 9.70 8.07 8.95 9.41
Moderate 2.93 3.09 3.78 3.62 3.86 3.83 1.99 2.72 3.00 3.20 3.67 3.57
Sparse 2.30 2.14 2.37 1.75 1.27 1.90 1.23 1.89 1.96 1.51 1.08 1.39

Large (K = 30)

T = 250

Dense 15.40 14.18 14.30 12.84 13.97 12.32 15.04 15.14 13.64 12.88 14.06 12.64
Moderate 5.24 3.48 3.84 3.26 2.44 2.38 4.27 2.83 2.74 2.64 2.04 2.11
Sparse 2.53 1.33 2.48 1.36 1.72 1.67 1.17 0.79 1.59 0.97 1.59 1.07

T = 400

Dense 13.71 12.48 12.29 13.50 12.39 11.68 13.33 13.27 11.83 13.22 12.17 12.06
Moderate 4.73 3.43 3.71 4.06 2.64 2.27 3.73 2.79 2.69 3.92 2.38 1.76
Sparse 1.78 1.36 1.47 1.32 0.52 1.43 0.63 0.75 0.60 0.89 0.44 0.78

NOTES: The mean is taken over time, over all parameters and over all artificial datasets. All mean absolute errors are multiplied by 100. Flat refers to a dynamic regression
model with a loosely informative prior, DL to the Dirichlet-Laplace prior, Lasso to the Bayesian Lasso, NG to the Normal-Gamma prior, HS to the Horseshoe, and NMIG to
the Normal-Mixture of Inverse Gamma prior.

desirable to sparsify the corresponding elements in α and the
SAVS algorithm is not doing so. Thus, regardless of whether
a coefficient is zero, a nonzero constant or time-varying, this
figure indicates that our methods estimate it well. They work
better than the nonsparsified alternative in cases where there is
sparsity and equally well in nonsparse cases.

Table 1 presents evidence for the importance of sparsification
and shrinkage in TVP regression models using different data

configurations, priors, numbers of regressors, and sample sizes.
The DGP described above is modified to reflect varying degrees
of sparsity. These different sparsity levels are labeled sparse (with
90% zeros in α), moderate (with 70% zeros), and dense (with
30% zeros). To assess how our techniques perform across model
dimensions and length of time series involved, we consider
variants of each sparsity level with K = 5, 15, and 30 explanatory
variables and T = 250 and 400 observations. The latter are
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typical values in quarterly and monthly macroeconomic
datasets. For each DGP, we generate 100 artificial datasets and
then run each through a sparsified and nonsparsified algorithm
using each of the five global-local shrinkage priors listed in
Section 2. We also include a noninformative prior (labeled Flat
in the table) which does not do shrinkage. Posterior medians of
β t are produced and the absolute value of the difference between
these and the true value used in the DGP is calculated. The fig-
ures in Table 1 are averages taken over three dimensions: (i) the
100 simulated datasets, (ii) time, and (iii) the K elements of β t .

Table 1 shows the value of sparsification, particularly with
sparse DGPs. With the latter, mean absolute errors (MAEs) are
lower than their nonsparsified counterpart for every prior and
choice for T and K. But even in moderately dense specifications,
sparsification lowers MAEs in most cases. In the dense spec-
ification, sparsification does not improve upon the single best
performing nonsparsified model specification. However, in that
situation, accuracy differences are found to be negligible.

The benefits of shrinking and sparsifying increase with the
number of explanatory variables. Note, for instance, that the
unsparsified Flat prior model does not perform that poorly
when K = 3 and 15, but displays a weak performance when
K = 30. In fact, when K = 3, the Flat prior works quite well
with the sparse specification, provided sparsification is done.
This indicates that there are some cases where sparsification is
more important than shrinkage.

The choice of T has little impact on the results. In a regression
model with constant parameters, we would expect sparsification
to be less important as the sample size increases since, with
longer time series, the estimation error would decrease. How-
ever, with TVP regressions, the number of parameters is also
increasing with the sample size which negates this effect. Thus,
even with large numbers of observations, the researcher working
with TVP models can still benefit from sparsification.

With regards to the different global-local shrinkage priors, no
clear pattern emerges where one performs consistently the best
across different specifications. When K = 30 and the DGP is
sparse, DL (for T = 250) and HS (for T = 400) models that are
sparsified are the best performers. When K = 30 and the DGP is
dense, the accuracy of both, the DL and the HS prior deteriorates
slightly while the unsparsified NMIG model shows the best
performance. Notice that in this situation, accuracy differences
across the sparsified and nonsparsified NMIG specification are,
however, quite small.

From this discussion it is apparent that identifying a default
prior choice is difficult. One key take away from this analysis,
however, is that if the DGP is sparse, flexible shrinkage speci-
fications such as the HS, the DL and the NMIG prior in com-
bination with the SAVS algorithm provide accurate parameter
estimates. Overall, the table tells a story of the importance of
both shrinkage and sparsity, especially in large models, with the
precise choice of shrinkage prior being of lesser importance.

In the next step, we assess how well the SAVS algorithm
identifies true zeros in α. Table 2 shows average hit rates that
measure the percentage of correctly estimated zeros using the
SAVS algorithm. From this table, we observe that irrespective of
the priors used, our approach works well in identifying the true
level of sparsity. For sparse situations, the fraction of correctly
identified zeros is often above 95% for most shrinkage priors and

Table 2. Average hit rates of the SAVS algorithm across different prior specifica-
tions.

Sparsity level Flat DL Lasso NG HS NMIG

Small (K = 5)

T = 250

Dense 86.50 73.60 81.30 79.90 78.70 79.60
Moderate 88.40 93.10 92.00 94.10 91.80 91.40
Sparse 90.40 96.10 96.40 96.70 96.40 94.00

T = 400

Dense 85.60 74.80 80.20 83.10 81.50 74.90
Moderate 89.60 92.90 93.40 94.90 93.40 91.10
Sparse 91.70 97.40 96.10 97.60 97.30 95.60

Medium (K = 15)

T = 250

Dense 79.17 77.63 79.37 80.03 79.07 78.23
Moderate 83.93 97.97 95.70 97.87 96.50 96.47
Sparse 91.23 99.17 98.00 99.17 99.47 98.97

T = 400

Dense 82.57 80.40 82.27 82.97 80.73 78.33
Moderate 87.00 98.33 96.47 97.70 96.73 96.67
Sparse 93.97 99.67 98.83 99.57 99.73 98.97

Large (K = 30)

T = 250

Dense 68.57 72.57 76.05 76.05 76.47 75.38
Moderate 72.40 98.83 95.42 97.75 96.93 97.13
Sparse 85.12 99.70 97.73 99.62 99.62 99.55

T = 400

Dense 71.30 78.50 78.35 79.23 77.80 76.37
Moderate 80.68 99.17 96.32 98.57 97.17 97.38
Sparse 91.60 99.82 98.35 99.80 99.65 99.53

NOTES: The mean is computed over all parameters and artificial datasets. Flat refers
to a dynamic regression model with a loosely informative prior, DL to the Dirichlet-
Laplace prior, Lasso to the Bayesian Lasso, NG to the Normal-Gamma prior, HS to
the Horseshoe, and NMIG to the Normal-Mixture of Inverse Gamma prior.

model sizes considered. In the case of a Flat prior, we observe
values just above 90%, which is remarkable but still well below
the percentages observed for the different shrinkage specifica-
tions under scrutiny. This slightly weaker performance can be
traced back to the fact that without shrinkage, values in α are
not pushed to zero and the corresponding penalty κj is too small.
Consistent with the findings in Table 1, we find no discernible
differences in performance across the different shrinkage priors,
with all of them displaying a strong performance. In fact, in
a sparse setting with K = 30, the SAVS algorithm identifies
almost all zeros correctly, with hit rates being above 99%.

To sum up, this discussion highlights that sparsification im-
proves estimation accuracy. These improvements tend to in-
crease with model size and the level of sparsity of the DGP.
Among the set of competing shrinkage priors, we find no single
best performing specification. In terms of correctly predicting
zeros in α, we found that SAVS works well across all shrink-
age priors considered, often correctly identifying above 99% of
the zeros. At this point, and before proceeding to the empiri-
cal application, it is worth emphasizing that our analysis only
considers whether our shrink-then-sparsify approach improves
accuracy of point estimates, ignoring a potential bias-variance
tradeoff. One key finding is that applying SAVS never signif-
icantly decreases estimation accuracy and correctly predicts a
large fraction of true zeros. In light of Figure 1, this indicates
that, by zeroing out shrunk coefficients, our approach pushes
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the posterior variance to zero and this could increase predictive
accuracy in forecasting applications.

5. Forecasting U.S. Macroeconomic Variables

In this section, we present results from a forecasting exercise
using U.S. quarterly macroeconomic data taken from the FRED-
QD database (see McCracken and Ng 2016) that span the period
from 1959Q1 to 2017Q4. We focus on forecasting GDP, inflation
(based on the GDP deflator), and the Fed Funds rate (hence-
forth labeled focus variables). Table C.1 provides details on the
specific variables included alongside transformations used.

We use the TVP-VAR-SV of Section 3.2 combined with
the same set of global-local shrinkage priors as in the preced-
ing section. The only specification we do not consider here
is the TVP-VAR-SV with a flat prior since this model per-
forms poorly in out-of-sample forecasting and large dimen-
sions.5 More specifically, using weakly informative priors lead
to overfitting, which in turn translates into model instability
since no penalty is introduced to rule out explosive regions of
the parameter space. Woody, Carvalho, and Murray (2019) note
that in such situations, we fit the noise in the first stage, leading
to insufficient posterior variability in the summary.

For each prior, we use nonsparsified and sparsified versions
of the model to produce the forecasts. We forecast with small
(M = 3), medium (M = 8), and large (M = 20) datasets
and set the lag length equal to 2. Thus, the dimension of the
state space in the TVP-VAR-SVs ranges from being moderate
to huge. Our forecast evaluation begins in 1997Q1 and runs
to the end of the sample. We use root mean squared forecast
errors (RMSEs) to evaluate the quality of the point forecasts
and average log predictive likelihoods (LPLs) to evaluate the
quality of predictive densities. Both are benchmarked relative
to a VAR-SV with DL prior, a specification that works well for
US macroeconomic data (see Kastner and Huber 2017). This
is identical to the TVP-VAR-SV with DL prior except that the
DL prior now applies directly to the constant VAR coefficients

while
√

Vβ
i and

√
vu

ij are set equal to zero for all i, j. The VAR
is transformed to allow for equation-by-equation estimation as
described in Section 3.2.

Before presenting the results of our forecasting exercise, we
present Figure 2 which sheds light on which variables our al-
gorithm is choosing to predict the focus variables. This figure is
produced using the large dataset and the HS prior. Previously, we
have discussed how doing sparsification for each MCMC draw
shares similarities with Bayesian model averaging, allowing us to
analyze PIPs. Figure 2 is a heatmap of these PIPs at the end of the
sample. Remember that, in the noncentered parameterization
of the TVP-VAR-SV (see Equation (11)), there are coefficients
which appear on the initial states which are constant coefficients.
The upper panel of the figure relates to these. The remaining
coefficients determine whether there is time-variation relative
to the constant coefficients. The lower half of the figure relates
to these.

5The results for the flat prior model are available upon request from the
authors.

Figure 2 shows that our methods are inducing a high degree
of sparsity in the TVP-VAR-SV in that most of the PIPs are
near zero. However, a few of them are not. In terms of the
VAR coefficients there is only one coefficient which is always
selected (i.e., has a PIP of one). This is the first lag of the 1-
year treasury bill rate in the equation for the Fed Funds rate.
However, an appreciable number of other predictors have PIPs
that are substantially above zero but much less than one. In
terms of the error covariance matrix, a similar pattern emerges.
There is only one error covariance term which is nonzero in
every MCMC draw.6 This is the covariance between the errors
in the equations for two different inflation measures. However,
there are several other error covariances with PIPs that are
substantially above zero, even if they are below one. We stress
that such a finding would not be possible if we were to use the
SAVS algorithm directly on the posterior mean as opposed to
using it on each MCMC draw. In the former case every PIP
would be either zero or one with no values in between.

These patterns are consistent with those found in Giannone,
Lenza, and Primiceri (2018) who conclude

there seems to be a lot of uncertainty about whether certain
predictors should be included in the model, which results
into their selection only in a subset of the posterior draws.
These findings reflect a substantial degree of collinearity
among many predictors that carry similar information, hence
complicating the task of structure discovery. In sum, model
uncertainty is pervasive and the best prediction is obtained
as a weighted average of several models.

These features seem to be exactly what our algorithm is
uncovering in an automatic fashion.

Finally, it is worth noting that there is evidence of time
variation in several of the coefficients and our algorithm is
automatically deciding which ones to allow to be time-varying.
That is most of the PIPs which are appreciably above zero in
the top half of the figure are also above zero in the bottom half.
This pattern indicates a nonzero coefficient at time zero which
is time varying. But our method also allows for a coefficient to
be nonzero but constant. There are some cases which provide
evidence of this. For instance, in the GDP growth equation the
first lag of S&P500 stock returns has a PIP which is appreciably
above zero in the top half of the figure, but is much closer to zero
in the bottom half of the figure. This pattern indicates support
for a constant coefficient on this predictor.

The evidence in Figure 2 suggests that shrinking then spar-
sifying is working in a sensible fashion. But the key test of
our methodology is how well it forecasts. Table 3 presents the
results of our forecasting exercise. A comparison of each set
of sparsified forecasts to its nonsparsified counterpart shows
the benefits of our shrink-then-sparsify strategy, particularly in
large models. For M = 8 and M = 20, sparsification leads to
substantial improvements in both RMSEs and LPLs in almost
every case. These improvements are particularly noticeable for
GDP forecasting for the one-step-ahead forecasts. In general,
the benefits of sparsification are largest when using the DL or
Lasso priors. For M = 3 the benefits of sparsification are less

6Note that the other green areas refer to the diagonal elements of Ut .
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Figure 2. Heatmaps of posterior inclusion probabilities (PIPs) for the three focus variables in t = 2017:Q4.

pronounced. In terms of RMSEs, there seems to be no benefits
of sparsification, although it does lead to slight improvements
in the density forecasts even for this already fairly parsimonious
case. This smaller accuracy premium from sparsification can be
traced back to the fact that, in small models, the detrimental
influence of irrelevant but nonzero regression coefficients on
predictive accuracy is small. In larger models, this effect eventu-
ally accumulates, leading to inflated posterior uncertainty and a
decreased forecasting accuracy.

In relation to the benchmark VAR-SV model, it is interesting
to note that it is inferior to the TVP-VAR-SV models for the
small and medium datasets. Clearly, addition of time-variation
in the VAR coefficients helps improve forecasts in these cases.
However, in the large dataset, the evidence is mixed. In this
case, the RMSEs produced by the TVP-VAR-SV are substantially
better than those produced by the VAR-SV. However, the density
forecasts are not. This could be due to the fact that there is

typically a tradeoff between model dimension and parameter
change. In small models, there is often a need for a high degree
of parameter change to adequately fit patterns in the data and
alleviate potential omitted variable biases. But in larger mod-
els, the information provided by the additional variables can
fit these patterns, leaving less of a role for parameter change.
Thus, in high dimensional cases the VAR-SV might be adequate
and the extra flexibility provided by a TVP-VAR-SV may not
be required. Of course, if the correct specification has a zero
coefficient, the nonsparsified approach would try and estimate
the time-varying coefficient to be constant over time. But, as il-
lustrated in Figure 1, estimation uncertainty (although reduced)
would still exist which could potentially hurt the forecasting
performance of our approach. Sparsification as done in this
article clearly helps, but in the large dataset there are still some
cases where the VAR-SV is superior. In such cases, a simple
extension of our shrink-then-sparsify approach could help. In
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Table 3. Relative root mean square errors (RMSEs) to a large BVAR-SV with a DL prior: 1997Q4 to 2017Q4.

Nonsparse Sparse

DL LASSO NG HS MNIG DL LASSO NG HS MNIG

Small (m = 3)
One-step-ahead
GDPC1 0.516 0.528 0.525 0.522 0.516 0.525 0.529 0.531 0.532 0.525

(0.209) (0.188) (0.194) (0.2) (0.223) (0.228) (0.231) (0.227) (0.222) (0.229)

GDPCTPI 0.861 0.866 0.866 0.864 0.871 0.885 0.914 0.912 0.902 0.89∗∗
(0.134) (0.125) (0.122) (0.125) (0.125) (0.114) (0.075) (0.076) (0.085) (0.105∗∗)

FEDFUNDS 0.839 0.856 0.843 0.834 0.834 0.815 0.827 0.826 0.821 0.822
(0.495) (0.466) (0.509) (0.547) (0.554) (0.542∗∗) (0.564∗∗) (0.583∗∗) (0.604∗∗) (0.603∗∗)

Four-step-ahead
GDPC1 0.51 0.512 0.512 0.511 0.531 0.545 0.542 0.545 0.547 0.547

(0.516) (0.501) (0.507) (0.514) (0.529) (0.542) (0.553) (0.545) (0.547) (0.537)

GDPCTPI 0.983 0.983 0.986 0.986 0.983 0.988 0.985 0.989 0.985 0.985∗
(0.091) (0.099) (0.098) (0.099) (0.088) (0.081) (0.072) (0.071) (0.073) (0.079)

FEDFUNDS 0.744 0.758 0.749 0.739 0.757 0.761 0.738 0.737 0.745 0.763
(0.457) (0.431) (0.454) (0.495) (0.488) (0.466) (0.468∗) (0.477∗) (0.505∗) (0.499∗∗)

Medium (m = 7)
One-step-ahead
GDPC1 0.656 0.649 0.651 0.618 0.533 0.492∗ 0.499 0.495∗ 0.489∗ 0.469∗

(0.056) (0.081) (0.091) (0.14) (0.199) (0.237∗∗) (0.273∗∗) (0.273∗∗) (0.277∗) (0.273∗)

GDPCTPI 0.875 0.862 0.859 0.862 0.858 0.88 0.911 0.909∗ 0.902∗ 0.877∗
(0.106) (0.126) (0.134) (0.137) (0.147) (0.132) (0.064) (0.074) (0.089) (0.124)

FEDFUNDS 0.849 0.868 0.855 0.819 0.83 0.781 0.787 0.789 0.783 0.787
(0.273) (0.327) (0.408) (0.552) (0.464) (0.401) (0.546∗∗) (0.581∗∗) (0.646∗∗) (0.593∗∗)

Four-step-ahead
GDPC1 0.62 0.624 0.621 0.594 0.533 0.554 0.547 0.55 0.554 0.552

(0.22) (0.272) (0.297) (0.377) (0.438) (0.524∗∗) (0.545∗) (0.547∗) (0.533) (0.513)

GDPCTPI 0.992 0.98 0.98 0.979 0.988 0.998 0.985 0.986 0.984 0.986
(−0.001) (0.058) (0.068) (0.096) (0.086) (0.07) (0.025) (0.033) (0.054) (0.067)

FEDFUNDS 0.827 0.837 0.807 0.75 0.753 0.771 0.739 0.729 0.736 0.749
(0.262) (0.297) (0.372) (0.46) (0.372) (0.417) (0.443) (0.46) (0.448∗∗) (0.368∗∗)

Large (m = 20)
One-step-ahead
GDPC1 1.001 0.835 0.834 0.844 0.693 0.671∗∗ 0.546∗∗ 0.531∗∗ 0.53∗ 0.513∗

(−0.355) (−0.145) (−0.119) (−0.003) (0.085) (−0.072∗∗) (0.212∗∗) (0.216∗∗) (0.214∗∗) (0.232∗∗)

GDPCTPI 1.119 1.051 1.089 1.018 0.929 1.005∗∗ 0.941 1.029 0.952 0.912
(−0.054) (0.048) (0.032) (0.062) (0.084) (0.022∗∗) (0.041) (0.024) (0.03) (0.054)

FEDFUNDS 1.265 1.492 1.403 1.209 0.938 1.025∗∗ 1.269∗∗ 1.23∗∗ 1.036∗∗ 0.858∗∗
(−0.555) (−0.443) (−0.326) (0.2) (0.154) (−0.32∗∗) (−0.119∗∗)(−0.005∗∗) (0.516∗∗) (0.552∗∗)

Four-step-ahead
GDPC1 0.99 0.554 0.515 0.497 0.538 0.655∗ 0.539 0.535 0.542 0.57

(−1.189) (−0.316) (−0.244) (0.188) (0.363) (−0.338∗∗) (0.536∗∗) (0.513∗∗) (0.56∗∗) (0.543∗∗)

GDPCTPI 1.067 1.059 1.074 1.015 0.989 1.016∗∗ 1.006 1.041 0.992∗ 0.986
(−0.815) (−0.184) (−0.149) (0.01) (0.03) (−0.287∗∗)(−0.022) (−0.03) (0.012) (0.012)

FEDFUNDS 0.913 0.871 0.826 0.784 0.84 0.804 0.771 0.759∗ 0.786 0.825
(−1.456) (−0.714) (−0.602) (0.085) (0.094) (−0.729∗∗) (0.02∗∗) (0.056∗∗) (0.274) (0.223∗)

NOTES: Numbers in parentheses refer to the average log predictive likelihoods (LPLs) vis-á-vis the BVAR-SV with a DL prior. DL refers to a TVP-VAR-SV with a Dirichlet-
Laplace prior, Lasso to the Bayesian Lasso, NG to the Normal-Gamma prior, HS to the Horseshoe, and NMIG to the Normal-Mixture of Inverse Gamma prior. Asterisks
indicate statistical significance between a sparsified model and its nonsparsified model at the 5 (∗∗) and 10 (∗) percent significance level.

this article, we have focused on sparsifying α in Equation (6).
But any function of the parameters of a model could be spar-
sified in the same manner and, in particular, sparsifying the
change in the states would be possible. This would lead to the
constancy of a coefficient over certain periods in time while
allowing for movements in other points in time when this kind
of sparsification is applied.

The results in Table 3 highlight that, when the full hold-
out period is considered, sparsification often improves predic-
tive accuracy relative to a nonsparsified model specification.
In selected cases, however, the SAVS step also seems to hurt
forecasting accuracy. This raises the question whether a prac-
titioner should always use the sparsification step. The findings
in the table indicate that relative accuracy gains obtained from
using SAVS increase with model size. In large models (with

M = 20), improvements in predictive accuracy for point and
density forecasts are often substantial (see, e.g., the improve-
ments for GDP growth and short-term interest rates) while in
small models, differences are often negligible and sometimes
favor nonsparsified models. This suggests that in large models,
using SAVS appears to improve forecasts. However, we would
like to stress that applying SAVS yields predictions that are
always competitive relative to nonsparsified competitors, even
in small-dimensional models. This is corroborated by Diebold
and Mariano (1995) tests which suggest that in most cases
where the SAVS step lowers predictive accuracy, these decreases
are statistically insignificant whereas in the case that sparsi-
fication improves forecast accuracy, the differences are often
significant. Thus, we can recommend applying the sparsification
step in all large-dimensional cases (i.e., for M ≥ 7) since
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(a) Evolution of log predictive Bayes factor (sparse versus non-sparse)
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(b) Evolution of cumulative squared forecast errors
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Figure 3. Performance differences between a sparsified and nonsparsified TVP-VAR-SV with a HS prior. NOTES: The log-predictive Bayes factor between the sparsified
and nonsparsified model is obtained by considering the joint one-step-ahead predictive density for the three focus variables and the squared forecast errors are averages
across the one-step-ahead forecast errors for the focus variables. The black line in panel (b) refers to the sparsified squared forecast error while the red line denotes the
nonsparsified model. The gray shaded areas refer to NBER reference recessions in the United States.

the computational burden is not increased significantly while
the predictive performance is adversely affected in only a few
situations in a significant manner.

The discussion in the previous paragraph provides a simple
recommendation that is based on using the full hold-out period.
In the next step, we ask whether accuracy differences could also
be specific to certain periods in time. To this end, Figure 3(a)
shows the evolution of the log predictive Bayes factor between
the sparsified and nonsparsified large-scale TVP-VAR-SV with
the HS prior over the hold-out period.7 This Bayes factor is
obtained by evaluating the one-step-ahead predictive density
for the three focus variables jointly after integrating out the
remaining variables. To investigate whether the gains in density
forecasting performance stem from capturing higher order mo-
ments in the predictive distribution or from a more precise point
forecast, Figure 3(b) shows cumulative squared one-step-ahead
forecast errors averaged across the focus variables over time.

7Comparable figures for other shrinkage priors reveal similar patterns. Thus
for the sake of brevity, we discuss the results for the HS prior exclusively.

Figure 3(a) indicates that accuracy premia from sparsifica-
tion tend to vary significantly over the business cycle. During
expansionary stages, sparsification yields modest (in the case
of the medium-sized model) to sustained (in the case of the
large model) improvements in density forecasting performance
relative to the nonsparsified competitor. For the small-scale
TVP-VAR-SV, accuracy gains are more muted during expan-
sionary periods. During recessions, in contrast, sparse mod-
els tend to be outperformed by their nonsparsified counter-
parts. Our conjecture is that this stems from the fact that dur-
ing turbulent times, the sparsified predictive distributions fea-
ture a smaller variance, making it harder to capture outly-
ing observations and thus translating in lower log predictive
likelihoods.

Our conjecture is confirmed when focusing on point fore-
casts. In terms of point predictions, we observe that forecast
errors are almost identical in the period up to the global finan-
cial crisis. During the recession in 2008/2009, forecast errors
increase markedly but slightly less so for the sparsified model
and for the medium and large dataset. This suggests that the
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drop in the log predictive Bayes factor is mainly driven by higher
order moments, implying that while the accuracy of the point
prediction increases, adverse movements in the corresponding
predictive variance offset this gain.

6. Conclusions

Global-local shrinkage priors have enjoyed great popularity in
over-parameterized regressions and VARs involving large num-
bers of variables. And, increasingly, they have been used with
TVP versions of these models which are potentially even more
over-parameterized. Use of such priors can potentially reduce
estimation error and improve forecasts. However, estimation
error is not completely eliminated and it is possible that further
improvements in forecasting performance can be achieved by
adding an additional sparsification step to shrunk estimates to
further reduce the lower bound on accuracy associated with
shrinkage. In this article, we have developed methods for doing
so.

Our approach contributes to the literature along two dimen-
sions. First, we combine shrinkage and sparsity in the context of
a potentially large-dimensional TVP regression model. Second,
we control for model uncertainty by sparsifying each MCMC
draw. This is in contrast to a recent article (see Woody, Carvalho,
and Murray 2019), which provides methods for quantifying
posterior uncertainty in sparsified models based on selecting a
single sparse model.

In an artificial data exercise, we have shown that our shrink-
then-sparsify approach to TVP regression leads to more accu-
rate estimates for a variety of DGPs. Particularly large gains are
found in sparse DGPs. In a macroeconomic forecasting exercise,
adding sparsification to shrinkage also leads to substantial im-
provements in forecast performance if interest centers on using
large models.

Appendix A: Global-Local Shrinkage Priors

The first four subsections of this appendix provide relevant details
on the prior setup, briefly discussing key features of the used priors,
hyperparameter choices used, and relevant information necessary to
perform posterior inference.

A.1. The Dirichlet–Laplace Prior

The DL prior, originally proposed in Bhattacharya et al. (2015), as-
sumes that each element in α, αj (j = 1, . . . , 2K), follows a Gaussian
distribution,

αj|ωj, ξj, λ ∼ N (0, ωjξ
2
j ζ 2),

with

ωj ∼ E(1/2), ξj ∼ D(a, . . . , a), ζ ∼ G (2Ka, 1/2) ,

where ωj is a variable-specific scaling parameter that features an ex-
ponentially distributed prior, with E denoting the exponential distri-
bution, ξj denotes yet another local shrinkage parameter with ξ =
(ξ1, . . . , ξ2K)′ being bounded to the (2K−1)-dimensional simplex (i.e.,
ξj ≥ 0 and

∑
j ξj = 1). We use a Dirichlet distributed prior with

intensity parameter a on ξj. Finally, ζ is a global shrinkage term that
follows a Gamma distribution. Notice that the relationship between this

prior hierarchy and the general form provided in Equation (2) can be
seen by defining φj = ωjξ2

j and λ = ζ 2.
Bhattacharya et al. (2015) show within the stylized normal means

problem that the optimal value of a is specified to be (2K)−(1+ϕ) with ϕ

being a positive number close to zero. Since this hyperparameter plays
a crucial role in determining the shrinkage behavior of the DL prior, we
estimate it using a prior which is a uniform distribution that is bounded
between (2K)−1 and 1/2.

Posterior simulation can be carried out using a slightly modified
variant of the MCMC algorithm proposed in Bhattacharya et al. (2015).
The full conditional posterior distribution of ωj follows an inverse
Gaussian distribution:

ωj|αj, ξj, ζ ∼ IG
(

ζ
ξj

|αj| , 1

)
.

The global shrinkage parameter ζ follows a generalized inverted Gaus-
sian (GIG) distribution,

ζ |α, ξ ∼ GIG

⎛
⎝2K(a − 1), 1, 2

2K∑
j=1

|αj|
ξj

⎞
⎠ .

Moreover, we draw the second set of local scaling parameters ξj by
introducing auxiliary variables Tj that follow a GIG distribution:

Tj|a, αj ∼ GIG(a − 1, 1, 2|αj|).

We then set ξj = Tj/
∑2K

i=1 Ti to obtain a valid draw from the full
conditional posterior of ξj.

To simulate from the conditional posterior of a, we employ a
Metropolis–Hastings algorithm with a Gaussian proposal distribution
truncated between (2K)−1 and 1/2. The variance of the proposal
distribution is tuned during the first 20% of the burn-in stage of the
MCMC sampler such that the acceptance rate is between 20 and 40
percent.

A.2. The Normal-Gamma Prior and the Lasso

As compared to the DL prior, the NG prior proposed in Griffin and
Brown (2010) consists of a single group of idiosyncratic scaling factors
φj and a global shrinkage parameter λ = 1/λ̃. We assume that each αj
follows a zero mean Gaussian distribution a priori:

αj|φj, λ̃ ∼ N (0, φj), φj|λ̃ ∼ G(ϑ , ϑλ̃/2), λ̃ ∼ G(d
λ̃

, e
λ̃
).

Here, we let ϑ denote a hyperparameter that controls the tail behavior of
the prior, with smaller values of ϑ leading to heavier tails and increasing
mass is placed on zero while larger value do the opposite. d

λ̃
and e

λ̃
are hyperparameters that control the overall degree of shrinkage, with
values close to zero implying heavy shrinkage toward zero.

One key feature of the NG prior is that it nests the Bayesian Lasso
of Park and Casella (2008) by setting ϑ = 1. Since ϑ plays a crucial
role, we follow Griffin and Brown (2010) and introduce an Exponential
prior on ϑ :

ϑ ∼ EXP(ϑ).

ϑ is set equal to 1, pushing the prior toward the Bayesian Lasso.
Moreover, we set d

λ̃
= e

λ̃
= 10−4, implying a disperse prior on λ̃ and

thus being consistent with heavy shrinkage (by allowing large values of
λ̃).

The hierarchical structure of the prior yields closed-form full con-
ditionals for φj and λ̃. The local scaling parameters φj follow a GIG
distribution:

φj|λ̃, αj ∼ GIG
(

ϑ − 1
2

, ϑλ̃, α2
j

)
.
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For the global shrinkage parameter, we obtain a Gamma-distributed
full conditional posterior distribution:

λ̃|φ1, . . . , φ2K , ϑ ∼ G

⎛
⎝d

λ̃
+ ϑ2K, e

λ̃
+ ϑ

2

2K∑
i=1

φi

⎞
⎠ .

Finally, we obtain draws from the conditional posterior of ϑ by setting
up a random walk MH algorithm in terms of log ϑ (see Griffin and
Brown 2010).

A.3. The Horseshoe Prior

For the HS prior of Carvalho, Polson, and Scott (2010), we consider the
representation based on auxiliary variables proposed in Makalic and
Schmidt (2016). The corresponding prior hierarchy is given by

αj|λ, φj ∼ N (0, φjλ), φj ∼ G−1(1/2, 1/νj), λ ∼ G−1(1/2, 1/ϕ),

whereby νj and ϕ denote auxiliary variables and G−1 denotes the
inverse Gamma distribution. The auxiliary variables also follow inverse
Gamma distributions,

ν1, . . . , ν2K , ϕ ∼ G−1(1/2, 1).

This representation of the HS prior allows for straightforward updating
of the local and global scaling parameters and involves sampling from
inverted Gamma distributions exclusively. The corresponding full con-
ditional posterior distributions are

φj|αj, λ, νj ∼ G−1
(

1,
1
νj

+
α2

j
2λ

)
,

λ|αj, φj, ϕ ∼ G−1

⎛
⎝2K + 1

2
,

1
ϕ

+ 1
2

2K∑
i=1

α2
i

φj

⎞
⎠ .

The conditional posteriors of the auxiliary variables are given by

νj|φj ∼ G−1
(

1, 1 + 1
φ2

j

)
,

ϕ|λ ∼ G−1
(

1, 1 + 1
λ

)
.

A.4. The Normal-Mixture of Inverse Gamma Prior

The NMIG prior of Ishwaran and Rao (2005) extends the original
SSVS prior proposed in George and McCulloch (1993, 1997) along
several dimensions. To set the stage, we use a mixture of Gaussians prior
distribution on αj:

αj|δj, τ2
j ∼ N (0, τ2

j )δj + N (0, cτ2
j )(1 − δj),

where δj denotes a Bernoulli random variable with prior probability
Prob(δj = 1) = p while c is a constant close to zero and τ2

j is a
coefficient-specific scaling factor. Following Ishwaran and Rao (2005),
we specify an inverse Gamma prior on τ2

j and a Beta distributed prior
on p:

τ2
j ∼ G−1(dτ , eτ ),

p ∼ B(dp, ep),

with dτ , eτ , dp, and ep denoting hyperparameters. Notice that this
specification implies conditional prior independence between the indi-
cators δj. However, the common prior inclusion probability p serves as a
common factor, implying that marginally, the indicators are dependent.

Ishwaran and Rao (2005) noticed that after integrating out τ2
j

and p, the two components in the prior follow t-distributions. The
hyperparameter dτ controls the degrees of freedom of the marginal
prior while the variances are given by ceτ /dτ (for the spike component)
and eτ /dτ (for the slab component). In the empirical applications, we
set ep = dp = 1, implying a Uniform prior on p and c = 2.5/105.
Moreover, we set dτ = 5, leading to 10 degrees of freedom and eτ = 4.
This is the benchmark prior setup as specified in Malsiner-Walli and
Wagner (2011).

For this prior specification, all conditional posterior distributions
are available in closed form. The full-conditional posterior of δj follows
a Bernoulli distribution with posterior probability pj given by

pj = Prob(δj = 1|αj, τ2
j , p)

=
1
τ 2

j
exp

(
− 1

2
α2

j
τ 2

j

)

1
τ 2

j
exp

(
− 1

2
α2

j
τ 2

j

)
p + 1

cτ 2
j

exp
(

− 1
2

α2
j

cτ 2
j

)
(1 − p)

.

The scaling factors τ2
j follow an inverted Gamma distribution

τ2
j |α2

j , δj ∼ G−1
(

dτ + 1
2

, eτ +
α2

j
δj + (1 − δj)c

)
.

Finally, the posterior distribution of p is a Beta distribution:

p|δ1, . . . , δ2K ∼ B

⎛
⎝dp +

2K∑
j=1

δj, ep + 2K −
2K∑
j=1

δj

⎞
⎠ .

Appendix B: Full Conditional Posterior Simulation

For the dynamic regression models used in the main body of the
text, we use a relatively standard MCMC algorithm. Since we estimate
the TVP-VAR-SV on an equation-by-equation basis, we describe the
MCMC algorithm for the TVP regression model only. However, it is
worth noting that all priors described in the previous subsection are
specified to be equation-specific. This implies that instead of having
a single global shrinkage parameter λ, each equation features its own
global (equation-specific) shrinkage parameter. Moreover, one addi-
tional difference is that the dynamic regression model in Section 3
features homoscedastic errors. In the TVP-VAR case, we allow for
stochastic volatility, implying that the MCMC algorithm differs slightly.

Our posterior simulator cycles between the following steps:

1. Simulate the full-history of β̃t , conditional on the remaining param-
eters, using the forward-filtering backward-sampling algorithm pro-
posed in Carter and Kohn (1994) and Frühwirth-Schnatter (1994)
while exploiting the noncentered parameterization.

2. Sample the error variances from an inverted Gamma full conditional
posterior distribution:

σ 2
ε |• ∼ G−1

⎛
⎝dσ + T/2, eσ + 1

2

T∑
t=1

(yt − α′Zt)2

⎞
⎠ ,

where the • indicates conditioning on all parameters and the data.
3. Conditional on {β̃t}T

t=1 and σ 2
ε , the conditional posterior of α takes

a multivariate Gaussian form:

α|• ∼ N (α, 	),

with

	 = (σ−2
ε Z′Z + 	−1)−1,

α = 	
(
σ−2
ε Z′y

)
,
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where Z is a T × 2K matrix with the tth row equal to Z′
t . Likewise,

y = (y1, . . . , yT)′ is a T-dimensional vector. 	 denotes a diagonal
prior variance-covariance matrix with typical element depending on
the specific shrinkage prior chosen.

4. Depending on the global-local shrinkage prior adopted, construct
the matrix 	 based on the conditional posterior distributions out-
lined in Appendix A.

In case we use a stochastic volatility specification for the error variances,
we use the algorithm proposed in Kastner and Frühwirth-Schnatter
(2014) and implemented in the R package stochvol (Kastner 2016). For
the VAR case, the main steps of this algorithm remain identical except
that the different steps of the algorithm can be interpreted as being
specific to a given equation of the model. In all applications, we repeat
this algorithm 30,000 times and discard the first 15,000 draws as burn-
in.

Appendix C: Data Appendix

Table C.1. Data description.

Transformation
FRED mnemonic Description codes Small Medium Large

GDPC1 Real Gross Domestic
Product

5 x x x

PCECC96 Real Personal
Consumption
Expenditures

5 x x

FPIx Real Private Fixed
Investment

5 x x

GCEC1 Real Government
Consumption
Expenditures and
Gross Investment

5 x

INDPRO IP:Total Index Industrial
Production Index
(Index 2012 = 100)

5 x

CE16OV Civilian Employment
(Thousands of
Persons)

5 x x

UNRATE Civilian Unemployment
Rate (Percent)

2 x

CES0600000007 Average Weekly Hours of
Production and
Nonsupervisory
Employees:
Goods-Producing

2 x x

HOUST Housing Starts: Total:
New Privately Owned
Housing Units Started

5 x

PERMIT New Private Housing
Units Authorized by
Building Permits

5 x

PCECTPI Personal Consumption
Expenditures:
Chain-Type Price Index

6 x

GDPCTPI Gross Domestic Product:
Chain-Type Price Index

6 x x x

CPIAUCSL Consumer Price Index for
All Urban Consumers:
All Items

6 x

CES0600000008 Average Hourly Earnings
of Production and
Nonsupervisory
Employees

6 x x

FEDFUNDS Effective Federal Funds
Rate (Percent)

2 x x x

GS1 1-Year Treasury Constant
Maturity Rate
(Percent)

2 x

GS10 10-Year Treasury
Constant Maturity
Rate (Percent)

2 x

(Continued)

Table C.1. (Contiuned)

Transformation
FRED mnemonic Description codes Small Medium Large

TOTRESNS Total Reserves of
Depository Institutions

6 x

NONBORRES Reserves of Depository
Institutions,
Nonborrowed

7 x

S.P.500 S&P’s Common Stock
Price Index: Composite

5 x

NOTES: Transformation codes for a series y: (1) no transformation, (2) first dif-
ferences δyt , (3) double differences �2yt , (4) logarithmic transform log yt , (5)

difference of the logarithm � log yt , (6) double difference of the logarithm
�2 log yt , and (7) �(yt/yt−1 − 1).
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