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Nonlinear autoregressive models with optimality properties

Francisco Blasquesa, Siem Jan Koopmana,b, and Andr�e Lucasa

aVrije Universiteit Amsterdam and Tinbergen Institute, Amsterdam, Netherlands; bCREATES, Aarhus University,
Aarhus, Denmark

ABSTRACT
We introduce a new class of nonlinear autoregressive models from their rep-
resentation as linear autoregressive models with time-varying coefficients.
The parameter updating scheme is subsequently based on the score of the
predictive likelihood function at each point in time. We study in detail the
information theoretic optimality properties of this updating scheme and
establish the asymptotic theory for the maximum likelihood estimator of the
static parameters of the model. We compare the dynamic properties of the
new model with those of well-known nonlinear dynamic models such as the
threshold and smooth transition autoregressive models. Finally, we study the
model’s performance in a Monte Carlo study and in an empirical out-of-sam-
ple forecasting analysis for U.S. macroeconomic time series.
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1. Introduction

Many empirically relevant phenomena in fields such as biology, medicine, engineering, finance
and economics exhibit nonlinear dynamics; see the discussion in Ter€asvirta et al. (2010). In eco-
nomics, for example, economic agents typically interact nonlinearly as implied by capital or cap-
acity constraints, asymmetric information problems, and habit formation. Various nonlinear
dynamic models have been proposed in the literature to describe such phenomena. Important
examples include the threshold AR (TAR) model of Tong (1983) and the smooth transition AR
(STAR) model of Chan and Tong (1986) and Ter€asvirta (1994).

Consider a nonlinear AR model with additive innovations of the form

yt ¼ wðyt�1Þ þ ut , ut � puðutÞ, (1)

for an observed process fytg and a sequence of zero-mean independent innovations futg with
density puðutÞ, where w is a function of the vector yt�1 :¼ ðyt�1, yt�2, :::Þ: We allow the data gen-
erating process (DGP) for fytgt2Z to be general and potentially nonparametric in nature. In par-
ticular, we only impose high-level conditions on fytgt2Z such as strict stationarity, ergodicity and
bounded moments. We then focus on how to best ‘fit’ a potentially misspecified dynamic para-
metric model to the observed data fytgTt¼1, where T denotes the sample size. The statistical model
thus adopts a specific parametric and possibly misspecified functional form for w. This approach
of allowing for a discrepancy between the DGP and the statistical model follows the literature on
misspecified parametric models dating back to White (1980, 1981, 1982) and Domowitz and
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White (1982), and also including the work of Maasoumi (1990) on the effects of misspecification
for forecasting based on econometric models.

Given that the model is allowed to be misspecified from the outset, our main focus lies on
finding good formulations for the parametric dynamic model that we use to ‘fit’ the data. We
argue that despite the current general setting for the DGP, we still find some (misspecified) para-
metric models more suitable than others. In order to formulate our argument, we first note that
(1) admits an autoregressive representation with time-varying autoregressive coefficient,

yt ¼ ft yt�1 þ ut , ut � puðutÞ, (2)

where ft is the time-varying autoregressive parameter, which can be written as a measurable func-
tion ft ¼ f ðyt�1Þ of the infinite past yt�1: We use the representations in (1) and (2) interchange-
ably by setting wðyt�1Þ ¼ f ðyt�1Þ yt�1: The parameter ft in (2) implies the autoregressive function
w and vice-versa. We then use the representation in (2) and appeal to the results in Blasques
et al. (2015) to obtain a parametric functional form for our model that is locally optimal in an
information theoretic sense.

While the nonlinear autoregressive representation in (1) is more commonly used, the time-
varying parameter representation in (2) has the advantage of revealing the changing dependence
in the data more clearly through the time-varying parameter ft. For example, in econometric
applications, major economic events such as the burst of the dotcom bubble in 2000, the 2008
global financial crisis, or the 2010–2011 European sovereign debt crisis can lead to temporary
changes in the dependence structure of economic time series and thus lead to time-variation in
the coefficients of standard linear time series models. The representation in (2) reveals these
changes directly.

Some earlier contributions have also considered time-varying parameters in (vector) autore-
gressive models. Doan et al. (1984) explored the estimation of time-varying coefficients in AR
models via the model’s representation in state space form and the application of the Kalman fil-
ter. More elaborate Markov chain Monte Carlo methods were explored by, for instance, Kadiyala
and Karlsson (1993) and Clark and McCracken (2010).

Here we adopt the time-varying parameter representation in (2) to find a nonlinear specifica-
tion for the nonlinear AR model in (1) that possesses particular optimality properties. We do so
by studying how to select the function f ðyt�1Þ: Specifically, we extend the results in Blasques
et al. (2015) and Creal et al. (2018) to dynamic autoregressive models. This allows us to find a
parametric functional form for w that at each time point t is guaranteed to improve the local
Kullback-Leibler divergence between the true unknown conditional density of yt and the condi-
tional density implied by the fitted parametric model. The notion of optimality we work with is
thus information-theoretic in nature. The original results in Blasques et al. (2015) do not cover
our current setting, as they do not allow for yt to depend on yt�1 conditional on ft. The parame-
ters of our time-varying autoregressive parameter model can be estimated by maximum likelihood
(ML), and we formulate conditions under which the ML estimator (MLE) has the usual asymp-
totic properties, such as consistency and asymptotic normality. We also analyze the finite-sample
performance of the model and its ability to recover the time-varying AR coefficient ft in a Monte
Carlo study. Our results show that the model performs well.

We illustrate the model empirically in two ways. First, we model the growth rate of U.S.
unemployment insurance claims, which is an often used leading indicator for U.S. gross domestic
production growth. We show how temporal dependence in this series varies over time. Second,
we illustrate that our model provides better out-of-sample forecasts than most direct competitors
for three important macroeconomic time series observed at different frequencies: the weekly
growth rate of U.S. unemployment insurance claims, the monthly growth rate in industrial pro-
duction, and the quarterly growth rate of money velocity.

560 F. BLASQUES ET AL.



The remainder of this paper is organized as follows. Section 2 introduces the model and estab-
lishes its information theoretic optimality properties, regardless of whether the model is correctly
specified or not. Section 3 discusses the reduced form dynamics of the model and compares these
with the properties of well-known alternatives. Section 4 establishes the asymptotic properties of
the MLE. Section 5 provides our empirical analysis. Section 6 concludes. In the Supplementary
Appendix, we gather supplementary material including technical proofs and extensions to the the-
oretical optimality results of Section 2.

2. Score driven time-varying AR coefficient

2.1. The model

We consider a generalization of the time-varying AR coefficient model in Eq. (2),

yt ¼ hðftÞ yt�1 þ ut , (3)

where yt denotes the observation, and hð � Þ is a bijective link function. Obvious choices for
hð � Þ are hðftÞ ¼ ft as in Eq. (2), hðftÞ ¼ exp ðftÞ > 0 to rule out negative temporal dependence,
or hðftÞ ¼ ½1þ exp ð�ftÞ��1 2 ð0, 1Þ to rule out unit-root behavior. Other appropriate link func-
tions can be thought of as well. If we allow hðftÞ to be equal to or even exceed 1 from time to
time, we can endow fytg with ‘transient’ unit-root or explosive behavior during specific time
periods. This does not rule out that fytg is strictly stationary and ergodic (SE); see Bougerol
(1993) as well as the discussions below. All results derived in this paper extend trivially to the
autoregressive model with intercept a 2 R as given by yt ¼ aþ hðftÞyt�1 þ ut: For simplicity, we
set a¼ 0 and treat the case of the de-meaned sequence of data fytg:

We specify the time-varying parameter ft as an observation driven process as formally defined
by Cox (1981). In particular, ft is a function of past observations yt�1, i.e., ft :¼ ftðyt�1Þ:
Observation driven models are essentially ‘filters’ for the unobserved fftg: They update the par-
ameter ft using the information provided by the most recent observations of the process fytg: In
general, they take the form

ftþ1 ¼ /ðft , yt , yt�1; hÞ, (4)

where h is a vector of unknown static parameters. Eq. (4) implies that ft ¼ ftðyt�1Þ is a function
of all past observations. Any function /ð � ; hÞ can be considered for updating ft to ftþ1, such as
the constant function, but also the threshold or smooth transition autoregressive specifications as
used in Tong (1983), Chan and Tong (1986) and Ter€asvirta (1994), amongst others. Petruccelli
(1992) argues that many time series models of interest can be approximated by the threshold
model and therefore our theoretical results below may have wider implications.

The parameter update function in (4) can lead to both linear and nonlinear dynamic specifica-
tions. For example, if hðftÞ ¼ ft and /ð � ; hÞ is given by

ft ¼ /ðft�1, yt�1, yt�2; hÞ ¼ xþ a ðyt�1 � ft�1yt�2Þ = yt�1,

we obtain the autoregressive moving average model yt ¼ xyt�1 þ ut þ aut�1, where x and a are
static unknown parameters. For a discrete update function /ð � ; hÞ of the type

ft ¼ /ðyt�1; hÞ ¼ xþ aIðyt�1>0Þ,

we obtain the self-exciting threshold autoregression (SETAR) of Tong and Lim (1980),

yt ¼ xyt�1 þ ut , if yt�1 < 0,
ðxþ aÞyt�1 þ ut , if yt�1 � 0:

�

In the next subsection, we introduce alternative formulations of /ð � ; hÞ that lead to empiric-
ally relevant nonlinear AR models with information theoretic optimality properties.
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2.2. Information theoretic optimality

As stressed in the introduction, it is important for our analysis to clearly distinguish between the
data generating process (DGP) and the postulated parametric statistical model. The DGP is typic-
ally unknown and potentially highly complex. For expositional purposes, we assume the DGP is
the nonlinear AR process from Eq. (1) with wðyt�1Þ of unknown form. The analysis below, how-
ever, still applies if the DGP falls outside this very general class of nonlinear time series models
and is only characterized by its (unknown) conditional density.

The unknown DGP in (1) gives rise to a true, unobserved time-varying parameter ft ¼
h�1ðwðyt�1Þ=yt�1Þ, where h�1ð � Þ denotes the inverse function of hð � Þ: Next to ft, we distin-

guish the filtered time-varying parameter ~f t as obtained from the possibly misspecified statistical

model (3). The parameter ~f t is based on the updating equation (4), i.e., ~f tþ1 ¼ /ð~f t , yt , yt�1; hÞ,
where the link function ~h used in the model may also depend on h, i.e., ~hð~f t; hÞ: The difference

between ft and ~f t is similar to the difference between innovations and regression residuals. While

fftgt2Z has properties that are directly implied by the DGP, the filtered sequence f~f tgt2N only
achieves those properties in the ideal setting of correct model specification, true values for the

static parameters, and correct initialization of the time-varying parameter ~f 1: Furthermore, while
fftgt2Z stretches to the infinite past and depends on the entire time series fytgt2Z, the filtered

path f~f tgTt¼1 is initialized at time t¼ 1 and depends only on the observed sequence y1:T :¼
ðy1, :::, yTÞ with T increasing as more data become available.

We write the true unknown joint density of the vector y1:T as pðy1, :::, yTÞ: This density can be
factorized as

pðy1, :::, yTÞ ¼
YT
t¼1

pðytjyt�1Þ ¼
YT
t¼1

pt ,

where pt :¼ pðytjyt�1Þ ¼ pðytjft , yt�1Þ denotes the true, unknown conditional density of yt given
its infinite past yt�1 We write the filtered conditional density based on the statistical model as

~pt :¼ ~pðytj~f t , yt�1; hÞ ¼ puð~ut; hÞ,
where ~ut ¼ yt � hð~f t; hÞyt�1,~f 1 2 ~F , and ~f tþ1 ¼ /ð~f t , yt , yt�1; hÞ for t> 1, with ~f 2 being a func-
tion of the first observation y1 and the fixed starting value for the filter ~f 1: The conditional model
density ~pt will typically differ from the conditional true density pt.

To estimate the static parameters h, we use the scaled log likelihood function

LTðh,~f 1Þ ¼
1

T � 1

XT
t¼2

‘tðh,~f 1Þ ¼
1

T � 1

XT
t¼2

‘ð~f t , yt , yt�1; hÞ ¼ 1
T � 1

XT
t¼2

log ~pðytj~f t , yt�1; hÞ, (5)

which naturally depends on the filtered parameter sequence f~f tgTt¼1 and thus on h and on the ini-
tialization ~f 1, since

~f t :¼ ~f tðy1:t�1; h,~f 1Þ: Our notation is summarized in Table 1.
We now proceed by showing that an update function /ð � ; hÞ in (4) is only optimal in an

information theoretic sense if it is based on the score of the predictive log-density for yt, that is
on @ log ~pt=@

~f t: Such an update locally results in an expected decrease in the Kullback-Leibler
(KL) divergence between the true conditional density pt and the conditional model density ~pt: KL
divergence is an important and widely applied measure of statistical divergence in various fields;
see, for example, Ullah (1996, 2002). The results we derive extend the results of Blasques et al.
(2015) and Creal et al. (2018) to the context of autoregressive models with time-varying depend-
ence parameters.

The optimality properties below hold whether or not the statistical model is correctly specified.
We first define the notions of expected KL variation and expected KL optimality.
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Definition 1. (EKL Optimality) Let DKLðpt , ~ptÞ denote the KL divergence between ~pt and pt, i.e.,

DKLðpt , ~ptÞ ¼
ð
pðyjyt�1Þ log pðyjyt�1Þ

~pðyj~f t , yt�1; hÞ
dy,

then a parameter update from ~f t 2 ~F to ~f tþ1 2 ~F with Expected KL (EKL) variation

Et�1 DKLðpt , ~ptþ1Þ � DKLðpt , ~ptÞ
� �

(6)

is EKL optimal if and only if Et�1½DKLðpt , ~ptþ1Þ � DKLðpt , ~ptÞ� < 0 for every true density pt. The
nonlinear autoregressive model (2) with time-varying dependence parameter as in (3) is said to
be EKL optimal if it admits an EKL optimal parameter update.

The EKL variation in (6) measures the change in KL divergence between the true conditional
density pð � jyt�1Þ and the conditional model densities

~pð � j~f t , yt�1; hÞ, ~pð � j~f tþ1, yt�1; hÞ:
As ~f tþ1 depends on yt, it is a random variable given the information up to time t – 1 only.

Therefore, the EKL variation concentrates on whether the KL divergence reduces in expectation.
Any individual step from ~f t to ~f tþ1 may incidentally increase the KL divergence, but for an
update to be EKL the steps should reduce the KL divergence on average, whatever the true unob-
served density pt.

For a general update function /ð � ; hÞ, the parameter update from ~f t to
~f tþ1 does not neces-

sarily have this property. For a general /ð � ; hÞ the update steps may leave ~pð � j~f tþ1, yt�1; hÞ far-
ther away on average from the true conditional density pð � jft , yt�1Þ: The surprising feature of
our analysis is that despite the generality of the current set-up, we can still show that a local EKL
optimal time-varying parameter update actually exists. In particular, we show that only a score
update (or a locally topologically equivalent of that) ensures that the observation yt is incorpo-
rated in such a way that the parameter update provides a better approximation to the conditional
density of yt in an expected KL divergence sense. This does not hold for any other updat-
ing mechanism.

The optimality property leads to a nonlinear autoregressive model formulation that takes the
form of a score driven time-varying parameter model as introduced by Creal et al. (2011, 2013)
and Harvey (2013). The score driven model is defined as

~f tþ1 ¼ /ð~f t , yt , yt�1; hÞ ¼ xþ ast þ b~f t , (7)

where x, a and b are unknown coefficients included in h, and

st ¼ sð~f t , yt , yt�1; hÞ :¼ Sð~f t , yt; hÞ � ~rt , (8)

Table 1. Notation.

Symbol Description

yt Time series variable for �1 < t < 1 and observed for t ¼ 1, :::, T
yt Vector yt :¼ ðyt , yt�1, yt�2, :::Þ, toward infinite past
y1:t Observation set y1:t :¼ ðy1, :::, ytÞ, for t ¼ 1, :::, T
ft Time-varying parameter implied by the DGP
~f t :¼ ~f tðy1:t�1; h,~f 1Þ Filtered time-varying parameter obtained under h 2 H and initialization ~f 1 2 ~F
Y Domain of yt
F and ~F Domains of ft and ~f t , respectively, for t ¼ 1, :::, T
pt :¼ pð � jyt�1Þ True unknown conditional density of the data
~pt :¼ ~pð � j~f t , yt�1; hÞ Parametric conditional density of yt implied by specified model given ~f t
‘tðh,~f 1Þ :¼ ‘ð~f t , yt , yt�1; hÞ Log-likelihood contribution at time t

Note that for the definition of ~pt it is insufficient to conditoin on ~f t only, as the autoregressive specification in (2) also has
yt�1 explicitly as part of the model, even when conditioning on ~f t:
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is the scaled score of the predictive density, where

~rt ¼ ~rð~f t , yt , yt�1; hÞ :¼ @ log ~pðytj~f t , yt�1; hÞ
@~f t

, (9)

and with Sð~f t , yt; hÞ some scaling function. For our current purposes it suffices to consider the
simplified setting with Sð~f t , yt; hÞ ¼ 1: The update equation (7) formulates a possibly highly non-
linear function for ~f t in terms of the past observations yt�1: The functional form is partly deter-
mined by the postulated model density ~pt , while the impact of past observations on ~f t is also
determined by the coefficients x, a and b.

To show that the update in (7) satisfies EKL optimality properties, we make the following
assumptions.

Assumption 1.
(i) The filtering density ~pðyj~f , yt�1; hÞ is twice continuously differentiable in y and ~f and satisfies

the moment conditions

Et�1½ ~r 2
t � < 1 8ð~f t , yt�1Þ,

sup
~f

I t�1ð~f , yt�1Þ ¼ sup
~f

Et�1
@2 log ~pðytj~f , yt�1; hÞ

@~f
2

" #
� K < 1 8yt�1,

where Et�1½�� denotes the expectations operator with respect to the true, unknown conditional dens-
ity pð � jyt�1Þ, and K is a constant.

(i) The filtering density is misspecified in the sense that Et�1½ ~rt� 6¼ 0:
(ii) a > 0 and 0 < Sð~f , y; hÞ < 18ð~f , y, hÞ 2 ~F � R�H:

The proofs of Lemmas 1 and 2 below are easily obtained by extending the proofs of Propositions
1–5 in Blasques et al. (2015) and Proposition 2 in Creal et al. (2018) so as to allow yt�1 to enter the
conditioning sets of both pt and ~pt: The proofs can be found in the Supplementary Appendix.

Lemma 1 shows that the score update of ft is locally EKL optimal.

Lemma 1. Let Assumption 1 hold and let ðx, bÞ ¼ ð0, 1Þ. Then, for a sufficiently small, the score
update for ft is EKL optimal given ~f t and yt�1:

Lemma 2 shows that only a ‘score-equivalent’ update can have this optimality property. An
update is said to be ‘score-equivalent’ if it is proportional to the score as a function of yt.

Definition 2. (Score-equivalent updates) An observation driven parameter update ~f tþ1 ¼
/ð~f t , yt , yt�1; hÞ is ‘score-equivalent’ if and only if /ðf , y, y0; hÞ � f ¼ aðf , yÞ � ~rðf , y, y0; hÞ for every
ðf , y, y0, hÞ:

We make the following additional assumption.

Assumption 2. The score ~rð~f t , yt , yt�1; hÞ as a function of yt changes sign at least once for
every ð~f t , yt�1, hÞ:

Assumption 2 is intuitive. The score update should be such that the fitered time-varying par-
ameter can go up as well as down for particular (possibly extreme) realizations of yt. Otherwise,
updates will always be in one direction only. We now have the following result.

Lemma 2. Let Assumptions 1 and 2 hold. For any given pt, a parameter update is locally EKL opti-
mal if and only if the parameter update is score-equivalent.

The optimality properties above can be further extended to settings where x 6¼ 0 and/or b 6¼
1; see Blasques et al. (2015) for examples of this in a slightly different set-up. Such results apply
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as long as the ‘forces away’ from the optimal direction at ~f t as determined by the autoregressive
component xþ ðb� 1Þ~f t are weaker than the ‘forces toward’ the optimal direction as determined
by the score component a sð~f t , yt , yt�1; hÞ: Concluding, we find that the score updates have firm
foundations from the perspective of information theoretic criteria (Kullback-Leibler). In fact, in
the current general set-up only score updates possess such desirabe properties.

2.3. Illustrations

We present three illustrations to provide more intuition for the main results derived in
Section 2.2.

2.3.1. Model I: Affine gaussian updating
Consider the statistical model with ~hð~f t; hÞ ¼ ~f t8ð~f t , hÞ and conditional model density ~pt equal to
a normal with mean zero and variance r2,

log ~pðytj~f t , yt�1; hÞ ¼ � 1
2
log 2p� 1

2
log r2 � ~u2

t

2r2
,

where ~ut ¼ yt � ~f t � yt�1: The score function is given by ~rt ¼ ~ut � yt�1 = r2: For the case of unit
scaling Sð~f t , yt; hÞ ¼ 1, we obtain the update

~f tþ1 ¼ xþ a ~ut
yt�1

r2
þ b~f t: (10)

The update of ~f tþ1 responds to the model’s prediction error ~ut multiplied by the scaled lever-
age of the observation yt�1=r2: The score pushes the update up (down) if yt lies above (below) its
predicted mean ~f t yt�1, i.e., if ~ut ¼ yt � ~f tyt�1 > 0 (versus ~ut ¼ yt � ~f tyt�1 < 0). The strength of
this effect is determined both by a and yt�1=r2: When r2 is large, the update sizes are mitigated
because the predition errors ~ut are noisy signals of where ~f t is located. The score update balances
all these features in an optimal manner.

If b¼ 1 and x¼ 0, the score is the only determinant of the parameter update. For 0 < b < 1,
the updating mechanism becomes more complex and the signal from the score has to off-set the
autoregressive step xþ b~f t toward the long-term unconditional mean of ~f t , that is
toward x=ð1� bÞ:

2.3.2. Model II: Logistic updating
Consider the same setting as Model I but with link function ~hðft; hÞ ¼ ½1þ exp ð�ftÞ��1 which
allows for transient (near) unit-root dynamics in yt, but rules out negative dependence and explo-
sive behavior. The parameter update becomes

~f tþ1 ¼ xþ a

�
yt � yt�1

1þ exp ð�~f tÞ

�
exp ð�~f tÞyt�1

r2ð1þ exp ð�~f tÞÞ2
þ b~f t: (11)

The intuition for this update is similar to Model I, with the exception that the size of the
update is mitigated if j~f tj is large, i.e., when ~hð~f t; hÞ is close to zero or one.

2.3.3. Model III: Robust updating
Robustness to outliers and influential observations can be obtained by making alternative assump-
tions for the conditional model density ~pt: For example, we can assume that ~pt is fat-tailed as in
Harvey and Luati (2014). Consider the same setting as Model I, but with ~pt a Student’s t distribu-
tion with zero mean, scale parameter r, and degrees of freedom parameter k, i.e.,
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log ~pðytj~f t , yt�1; hÞ ¼ log
Cððkþ 1Þ=2Þ
Cðk=2Þ

ffiffiffiffiffiffiffiffiffiffi
pkr2

p � kþ 1
2

log 1þ ~u2
t

k r2

� �
,

where ~ut ¼ yt � ~f t yt�1: As a result, the score update becomes

~f tþ1 ¼ xþ a
ðkþ 1Þ~utyt�1

kþ ~u2
t =r

2
þ b~f t ¼ xþ a ð1þ k�1Þ ðyt � ~f tyt�1Þyt�1

1þ k�1 � ðyt � ~f tyt�1Þ2=r2
þ b~f t: (12)

The update ~f tþ1 is now less sensitive to large values of ~ut compared to the Gaussian case
(k�1 ¼ 0). In particular, the robust score update in (12) is a bounded function of ~ut: The intu-
ition is as follows. When the conditional model density is fat-tailed, large realizations of ~ut can
be attributed to either an increase of the true, unobserved conditional mean ~f t yt�1 or to the fat-
tailed nature of the prediction errors. The score update again balances these two competing
explanations in an information theoretic optimal way. For the limiting case k�1 ¼ 0, we recover
Eq. (10).

Figure 1 compares the different updating functions for ~f t for Models I and III. For the
Student’s t distribution (Model III), the impact of large prediction erorrs on ~f tþ1 is clearly
bounded, in contrast to the updates for Model I. The reactions are steeper if yt is persistently
away from the zero unconditional mean, i.e., if both yt�1 and yt are substantially positive. For
extremely large prediction errors, the update tends to zero again as the KL perspective attributes
such observations to the fat-tailedness of the model distribution rather than to shifts in the condi-
tional mean. The parameter updates with b ¼ 0:5 tend to bring ~f tþ1 faster to its unconditional
mean compared to b¼ 1.

Figure 1 further reveals how the updating function uses the value yt�1 as a crucial guidance
mechanism to distinguish between changes in observed data that provide information about the
conditional expectation and those that do not. For example, if the new observation is very close
to its zero unconditional mean (left graph), then there is no reason to strongly update the condi-
tional expectation, regardless of whether the realization yt is large or small: the observation yt
does not contain much information about the dependence of the process as the mean-reverting
mechanism is almost inactive in this case. By contrast, if jyt�1j is large, the observed yt carries
more information about ~f t: Consider the case where yt�1 ¼ 4 (right graph). Then, if yt is also
large, these observations provide strong evidence that the process has strong dependence and

Figure 1. Shape of Normal (black) and Student’s t (red) updating functions. The updated parameter ftþ1 is plotted as a function
of yt for given ft ¼ 0.5 and given low initial state yt�1 ¼ 0:5 (left) high initial state yt�1 ¼ 2 (middle) and very high initial state
yt�1 ¼ 4 (right). All plots are obtained with x¼ 0 and a ¼ 0:1: Solid lines have b ¼ 0:5 and dashed lines have b¼ 1.
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hence that ft is large, resulting in an upward drift of ~f tþ1: On the other hand, if yt is close to
zero, mean reversion apparently is fast and causes a downward pressure on ~f tþ1:

2.4. Estimation and forecasting

Maximum likelihood (ML) estimation of the parameter vector h in the score driven AR(1) model
(7) is similar to ML estimation for autoregressive moving average (ARMA) models. The condi-
tional likelihood function (5) is known in closed-form given the explicit expressions for both the
updating equation for ~f tþ1 and the score function st. The maximization of the log-likelihood
function (5) with respect to h is typically carried out using a quasi-Newton optimization method.
The prediction errors ~ut evaluated at the maximum likelihood estimate ĥT of h can be used for
diagnostic checking.

Forecasting with the score driven time-varying AR model is also straightforward. The forecast
for yTþ1 can be based directly on (3) with ~f Tþ1 computed by (7) given the value for yT. Given
the nonlinearity of the model, multi-step-ahead forecasts can only be obtained via simulation. For
example, to forecast yTþ2, one simulates values of yTþ1 using ~f Tþ1 and simulated values of ~uTþ1:
Each simulated value of yTþ1 can be used to obtain a simulated value of ~f Tþ2, which in turn can
be combined with a simulated value of ~uTþ2 to produce a simulated value of yTþ2: A series of
simulated realizations yTþ2 can be used to construct the mean or median or quantile forecasts of
yTþ2: The computations are simple, fast, and can be carried out in parallel for large simulation
sizes to achieve accuracy and efficiency. Forecasts of yTþj, for j ¼ 3, 4, :::, can be
obtained similarly.

3. Nonlinear AR model representations

3.1. Reduced form of time-varying AR coefficient model

It may appear difficult to compare the nonlinear autoregressive model from Section 2 with other
nonlinear models such as the TAR and STAR models that are discussed in Section 1. The TAR
and STAR models use lags of the dependent variable yt itself as state variables to make the autor-
egressive coefficient of the AR(1) model time-varying. The score driven approach from Section 2
treats the time-varying autoregressive parameter as a time series process with innovations that are
also functions of past observations. The commonalities become apparent when we consider the
reduced form of the score driven model.

To obtain the reduced form, we first write Eq. (3) as

yt ¼ hðftÞyt�1 þ ut () hðftÞ ¼ yt � ut
yt�1

,

which is valid almost surely. Here we suppress the dependence of functions on h: We also use ft
rather than ~f t as we treat the model here as the true data generating process rather than as the
filter. Using h�1 as the inverse of the link function h, we obtain

ftþ1 ¼ xþ as
�
h�1

�
hðftÞ

	
, yt , yt�1

	
þ b h�1 yt � ut

yt�1

� �
:

Substituting this expression into (3), we obtain

yt ¼ xyt�1 þ a s h�1 yt�1 � ut�1

yt�2

� �
, yt�1, yt�2

� �
yt�1 þ b h�1 yt�1 � ut�1

yt�2

� �
yt�1 þ ut ,
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which reduces the model to a nonlinear ARMA model with two lags of yt and one lag of ut, that
is a nonlinear ARMA(2, 1). This formulation of the score driven time-varying AR(1) model as a
nonlinear ARMA(2, 1) model facilitates a direct comparison with the TAR and STAR models.

For Model I from Section 2.3, we have st ¼ utyt�1=r2 and hðftÞ ¼ ft: The nonlinear ARMA(2,
1) specification then becomes

yt ¼ xyt�1 þ a
yt�1yt�2ut�1

r2
þ b

yt�1 � ut�1

yt�2
yt�1 þ ut:

Similarly, for Model III we obtain the nonlinear ARMA representation

yt ¼ xyt�1 þ aðkþ 1Þ yt�1yt�2ut�1

kþ u2t�1
þ b

yt�1 � ut�1

yt�2
yt�1 þ ut:

These highly nonlinear ARMA representations originate from a linear AR(1) model with a
time-varying autoregressive coefficient based on the update function ftþ1 ¼ xþ ast þ bft: While
the original model is relatively simple, it implies a complex but parsimonious nonlinear ARMA
model. We emphasize that the current reduced form of the score driven model is only used for
studying the nonlinearity of the model compared to competing model specifications, and not for
the actual implementation of the model in simulations or empirical estimation. For such purposes
we use the specification as presented in Section 2.

In case of Model II, the score expressions are slightly more complicated due to the chain rule
for the nonidentity link function hðftÞ ¼ ½1þ exp ð�ftÞ��1 with h�1ðhðftÞÞ ¼ logitðhðftÞÞ ¼
log ðhðftÞÞ � log ð1� hðftÞÞ: The corresponding score function is

st ¼ h0ðftÞ yt�1 ut
r2

¼ hðftÞ 1� hðftÞ
� � yt�1 ut

r2
¼ ðyt � utÞ ðut � DytÞ ut

r2 yt�1
,

with Dyt ¼ yt � yt�1, since hðftÞ ¼ ðyt � utÞ = yt�1: The updating equation becomes

ftþ1 ¼ xþ ast þ blogitððyt � utÞ=yt�1Þ: (13)

and we obtain the nonlinear ARMA model representation as

yt ¼ ½1þ exp ð�x� a st�1 � b logitððyt�1 � ut�1Þ=yt�2ÞÞ��1yt�1 þ ut:

We conclude that any score driven model can be represented in reduced form as a nonlinear
ARMA model. To provide an intuition for the dynamic patterns described by these representa-
tions, we now compare the dynamic patterns of our model with those of TAR and STAR models.

3.2. Comparison with other nonlinear AR models

Two well-known nonlinear AR models are the threshold AR (TAR) model of Tong (1983) and
the smooth transition AR (STAR) model of Chan and Tong (1986) and Ter€asvirta (1994). We
relate our nonlinear dynamic model with the basic versions of these two competing nonlinear AR
models. We already have shown in Section 2 that our model has information theoretic optimality
properties. Such optimality properties are not available for other models, including the TAR and
STAR models.

We consider a standard TAR model of the following nonlinear autoregressive form,

yt ¼ c1yt�1 þ c2 1ðyt�2 < c3Þyt�1 þ ut ,

where 1ð � Þ is an indicator function that takes the value one if the condition in the argument
holds, and zero otherwise. The AR(1) coefficient switches between c1 and c1 þ c2 depending on
whether yt�2 is smaller or larger than c3. The model can be generalized in various ways.
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A standard STAR model is given by

yt ¼ c4yt�1

1þ exp ð�c6 yt�2Þ �
exp ð�c6 yt�2Þc5yt�1

1þ exp ð�c6 yt�2Þ þ ut ,

where the AR(1) coefficient switches smoothly from c4 to c4 þ c5 depending on the value of yt�2:
Both the TAR and STAR models are nonlinear ARMA(2, 0) models and have the same number
of parameters as Models I and II from Section 2.3.

We visualize the differences between the models in Fig. 2 where each panel presents the
response of yt to different values of yt�1 and yt�2 for the TAR and STAR models, and for Model
II with specific values of ut�1: In this visualization, the nonlinear response functions appear simi-
lar in many respects. The similarities hold even though TAR and STAR models are nonlinear
AR(2) models and Model II is a nonlinear ARMA(2, 1) model.

In all cases, we can distinguish two separate regimes. For the STAR model, one regime occurs
for positive values of yt�2 and has a large slope in the yt�1 direction. Another regime with a small
slope in the yt�1 direction occurs for negative values of yt�2: In both the TAR and STAR models
these regimes are linear in yt�1, and hence, in each regime, the slope is constant over yt�1: The
cross-section over the yt�2 axis, however, shows the difference between the TAR and STAR mod-
els: the transition from one regime to the other is discontinuous for the TAR model, whereas the
transition is smooth for the STAR model.

The response of Model II is similar to the TAR model given that the transition is abrupt from
negative to positive values of yt�2: Model II is also similar to the STAR model because the
response functions in yt�1 vary continuously with the values of yt�2 in a similar way, within each
regime. The response functions for Model II are nonlinear in yt�1 whether we have a positive or
negative yt�2: This feature makes the nonlinearity of Model II markedly different. In particular,
for negative values of yt�2 we observe an increasing slope in yt�1, while for positive values of
yt�2 the response function has a decreasing slope in yt�1: In Section 5, we investigate whether
these differences improve the forecasting performance of the score driven model. The
Supplementary Appendix moreover contains simulation evidence that the score driven model suc-
ceeds in uncovering the dynamics of the true ft by the filtered ~f t in cases where the model is
severely misspecified.

4. Statistical properties

4.1. Stochastic properties of the filter

The elements f‘ð~f t , yt , yt�1; hÞg of the log-likelihood function (5) depend on both the data fytg
and the filter f~f tg: Even if the data fytg are well-behaved, the stochastic properties of the likeli-
hood function cannot be obtained without first establishing the stochastic properties of the filter
f~f tg for the unobserved time-varying parameter fftg: In particular, to derive the asymptotic prop-
erties of the ML estimator (MLE) for the score driven time-varying AR parameter model of
Section 2, we need to establish strict stationarity, ergodicity and bounded moments of the filter
f~f tg uniformly on the parameter space H, and we need to ensure that the filter is Near Epoch
Dependent (NED) on a mixing sequence at h0 2 H where h0 is the true parameter; see the treat-
ments of Gallant and White (1988) and P€otscher and Prucha (1997) for precise definitions. The
stationarity and ergodicity (SE) property and bounded moments are required to obtain the con-
sistency of the MLE. The additional NED property is used to establish asymptotic normality.

As mentioned in the introduction, we allow the data generating process to be general and non-
parametric in nature. As such we only impose high-level conditions on the data and obtain the
properties of the filter and the MLE allowing for misspecification of our parametric model. In
this sense, we follow the classical M-estimation literature in deriving the MLE asymptotics while
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Figure 2 Response functions for TAR, STAR, and Model II. Response functions for the TAR and STAR model (top 2 rows) are pre-
sented for different slopes in each regime. For example, in the top-left panel the TAR switches AR(1) coefficient from 0.1 to 0.55
depending on whether yt�2 is positive or negative. The response functions for Model II (bottom 2 rows) are presented for x¼ 0,
a ¼ 0:05, different values of b (0.5 or 1.0), different values for the innovations ut�1 (-0.5, 0 and 0.5).
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imposing only high-level conditions on the data such as stationarity, fading memory and
moments; see e.g. Domowitz and White (1982), Gallant and White (1988), White (1994), and
P€otscher and Prucha (1997). If one wishes to work under an axiom of correct specification, then
additional work should be carried out to show that the data generated by the model satisfies the
desired properties.

For notational simplicity, we define the score update as

~f tþ1 :¼ /ð~f t , yt , yt�1; hÞ :¼ xþ asð~f t , yt , yt�1; hÞ þ b~f t ,

and the supremum as

�qt :¼ sup
ðf , hÞ2 ~F�H





a @sðf , yt , yt�1; hÞ
@f

þ b





:
In many cases of interest, this supremum will prove to be bounded. We notice that �qt is a ran-

dom variable due to its dependence on yt and yt�1: Whenever convenient, we make the depend-
ence of the filtered parameter ~f tþ1 on the initialization ~f 1 2 ~F , the data y1:t ¼ fysgts¼1, and the
parameter vector h 2 H explicit in our notation, for example,

~f tþ1ðy1:t , h,~f 1Þ ¼ xþ asð~f tðy1:t�1, h,~f 1Þ, yt , yt�1; hÞ þ b~f tðy1:t�1, h,~f 1Þ, (14)

for all t 2 N:
To establish the asymptotic properties of the MLE, we require the dependence of the filter

~f tþ1ðy1:t , h,~f 1Þ on the initial condition ~f 1 to vanish in the limit. Theorem 1 below is a slight adap-
tation of Blasques et al. (2014) and formulates these conditions more precisely. Apart from
requiring the existence of appropriate moments, the main requirements are conditions (ii), (iv),
and (v), which state that (14) is contracting on average in an appropriate sense. Below we let ln þ

be a function satisfying ln þðxÞ ¼ 0 for 0 � x � 1 and ln þðxÞ ¼ ln ðxÞ for x> 1. Additionally, ?
is used to denote independence between random variables.

Theorem 1 (Blasques et al., 2014). Let ~F be convex, H be compact, fytgt2Z be SE, s 2 Cð ~F �
Y2 �HÞ and assume there exists a nonrandom ~f 1 2 ~F such that

(i) E ln þ suph2H jsð~f 1, yt , yt�1; hÞj < 1; and
(ii) E ln �q1 < 0:

Then f~f tð~f 1, y1:t�1; hÞgt2N converges exponentially fast almost surely (e.a.s.) to the limit SE pro-
cess f~f tðyt�1; hÞgt2Z; i.e. we have

ct sup
h2H

j~f tð~f 1, y1:t�1; hÞ � ~f tðyt�1, hÞj!a:s:0,

for some c> 1 as t ! 1. If furthermore 9nf � 1 such that

(i) E suph2H jsð~f 1, yt , yt�1; hÞjnf < 1; and either
(ii) suph2H jsðf , y; hÞ � sðf 0, y; hÞj < jf � f 0j8ðf , f 0, yÞ 2 ~F � ~F � Y2; or
(iii) E�q

nf
1 < 1 and ~f tð~f 1, y1:t�1; hÞ?�qtþ1ðhÞ8ðt,~f 1, hÞ 2 N� ~F �H,

where y is any point in Y2. It then follows that both f~f tð~f 1, y1:t�1; hÞgt2N and the limit SE process
f~f tðyt�1; hÞgt2Z have nf bounded moments. Hence,

sup
t
E sup

h2H
j~f tðy1:t�1, h,~f 1Þjnf < 1, E sup

h2H
j~f tðyt�1; hÞjnf < 1: (15)
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For more details on e.a.s. convergence, we refer to Straumann and Mikosch (2006). The limiting
sequence ~f tðyt�1; hÞ in Theorem 1 does not depend on the initialization condition ~f 1: Whereas
condition (ii) is key in ensuring that the initialized sequence ~f tðy1:t�1; h,~f 1Þ converges to its sta-
tionary and ergodic (SE) limit, conditions (iv) and (v) are essential for establishing the existence
of an appropriate number of unconditional moments of the SE limiting sequence.

The verification of the conditions in Theorem 1 is often straightforward. Consider Model II
from Section 2.3 with its updating equation (11). If fytgt2Z is SE and satisfies Ejytjny < 1, then
the SE condition (ii) reduces to

E ln





 sup
ðf , hÞ2 ~F�H

bþ a h00ðf Þ ðyt � f yt�1Þyt�1

r2
� a h0ðf Þ y

2
t�1

r2





 < 0, (16)

with hðf Þ ¼ ½1þ exp ð�f Þ��1: The parameter space over which (16) is satisfied can now easily be
computed, either numerically or by using upper bounds on the constituents of (16). For example,
if jytj has some bounded moment, it is easy to see that there exists a parameter space H with
b < 1 and a sufficiently close to zero for every h 2 H, such that (16) is satisfied for all points in
the parameter space.

The presence of the supremum over h in all of the expressions in Theorem 1 guarantees that
we do not only obtain pointwise convergence, but that we also establish the convergence of the
sequence f~f tðy1:t�1, � ,~f 1Þgt2N with random elements taking values in the Banach space
ðCðH, ~F Þ, jj � jjHÞ for every t 2 N to a limiting sequence f~f tðy1:t�1, �Þgt2Z, where jj � jjH denotes
the supremum norm on H. This more abstract convergence result in a function space allows us
to relax some smoothness requirements for the likelihood in Section 4.2. In particular, we only
need to put appropriate conditions on the second rather than on the third order derivatives of
the likelihood; compare Straumann and Mikosch (2006) and Blasques et al. (2014).

Following P€otscher and Prucha (1997), Theorem 2 below shows that, under appropriate condi-
tions, the NED properties of the data fytg can be ‘inherited’ by the filtered sequence f~f tg: This
additional property is needed to establish the asymptotic normality of the MLE.

Theorem 2. Let fytgt2Z be SE, have two bounded moments Ejytj2 < 1 and be NED of size – q on
some sequence fztgt2Z. Furthermore, assume that

jjb ðf � f 0Þ þ a ðsðf , y; hÞ � sðf 0, y0; hÞÞjj �
ajjf � f 0jj þ bjjy � y0jj 8ðf , f 0, y, y0Þ 2 ~F 2 � Y4,

with 0 � a < 1 and 0 � b < 1. Then f~f tðy1:t�1, h,~f 1Þgt2N is NED of size – q on fztgt2Z for every
initialization ~f 1 2 ~F :

Theorem 2 imposes that the score sðf , y; hÞ is bounded by a linear function in y ¼ ðyt , yt�1Þ
and bounded by a contracting linear function in f. This condition is slightly more restrictive than
its counterpart in Theorem 1. We use the NED property to establish asymptotic normality of the
MLE for our model under misspecification: the result of the theorem allows us to use a central
limit theorem for the score of the log-likelihood function.

The results in this section do not require the statistical model to be correctly specified. As the
optimality results from Section 2.2 already indicate, the score based updates are optimal even if
the model is severely misspecified. The Supplementary Appendix presents a number of simulated
examples that demonstrate the usefulness and stability of the filter in such cases. The results of
those simulations show that the score based ~f t track well the dynamics the time-varying ft if the
later varies sufficiently slowly over time. For a highly volatile ft process, the data may not be suffi-
ciently informative to allow for an accurate local estimation of the time-varying autoregres-
sive parameter.
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4.2. Asymptotic properties of MLE

To establish the strong consistency of the MLE,

ĥT :¼ ĥTð~f 1Þ 2 argmin
h2H

LTðhÞ, (17)

with LTðhÞ as defined in Eq. (5), we make the following three assumptions.

Assumption 3. ðH,BðHÞÞ is a measurable space and H is a compact set. Furthermore, h : R ! R

and pu : R�H ! R are continuously differentiable in their arguments.

Assumption 4. 9ðnf , f Þ 2 ½1,1Þ � ~F such that

(i) E suph2H jsðf , yt , yt�1; hÞjnf < 1 and either
(ii) supðf 	, y, y0, hÞ2 ~F�Y�Y�H jbþ a @sðf 	, y, y0; hÞ=@f j < 1 or

(iii) E�q
nf
1 ¼ E supðf 	, hÞ2 ~F�H jbþ a @sðf 	, yt , yt�1; hÞ=@f jnf < 1 and

~f tðy1:t�1, h,~f 1Þ?�qtþ1ðhÞ8ðt, f1, hÞ 2 N� ~F �H:

Definition 3. (Moment Preserving Maps) A function H : R�H ! R is said to be n/m-moment
preserving, denoted as H 2 MHðn,mÞ, if and only if E suph2H jxtðhÞjn < 1
implies E suph2H jHðxtðhÞ; hÞjm < 1:

Assumption 5. h 2 MHðnf , nhÞ and log pu 2 MHðn, n log puÞ with n log pu � 1 for n ¼ minfny, ny
nh=ðny þ nhÞg:
Assumption 3 ensures the existence of the MLE as a well-defined random variable, while

Assumptions 4 and 5 ensure the SE properties of the filter and the existence of the correct num-
ber of moments of the likelihood function, respectively. Moments are ensured via the notion of
moment preserving maps; see Blasques et al. (2014). Products and sums satisfy all the intuitive
moment preservation properties via triangle and Minkowski inequalities.

Assumption 4 is easy to verify for the robust update Model III introduced in Section 2.4. The
moment bound for the score in Assumption 4(i) and the contraction condition in Assumption
4(ii) hold on a non-degenerate parameter space H since the score function

sðft , yt , yt�1; kÞ ¼ ðkþ 1Þ ðyt � ~f tyt�1Þyt�1

kþ ðyt � ~f tyt�1Þ2
,

where k is an element of h, is uniformly bounded and Lipschitz continuous.
The following theorem now establishes the consistency of the MLE. Below, ‘1 denotes the

limit likelihood function.

Theorem 3. (Consistency) Let fytgt2Z be an SE sequence satisfying Ejytjny < 1 for some ny > 0
and assume that Assumptions 3, 4 and 5 hold. Then the MLE (17) exists. Furthermore, let h0 2 H
be the unique maximizer of ‘1ðhÞ on the parameter space H. Then the MLE satisfies ĥTð~f 1Þ!

a:s:
h0

as T ! 1 for every ~f 1 2 R:

Blasques et al. (2015, Theorem 4.9) offer global identification conditions for well-specified
score models which ensure that the limit log likelihood has a unique maximum h0 2 H: The
assumption of a unique h0 2 H may however be too restrictive in the case of a misspecified
model; see also Freedman and Diaconis (1982) for failure of this assumption in a simple location
problem with iid data and Kabaila (1983) in the context of ARMA models. Remark 1 below fol-
lows P€otscher and Prucha (1997, Lemma 4.2) and highlights that if the restrictive identifiable
uniqueness condition fails, then we can still show that the MLE ĥTð~f 1Þ converges to the set of
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maximizers of the limit loglikelihood function ‘1: In other words, we can avoid the assumption
of uniqueness of h0 2 H, stated in Theorem 3, and obtain the a set-consistency result. A simple
regularity condition is required which states that the level sets of the limit loglikelihood function
‘1 are regular (see Definition 4.1 in P€otscher and Prucha, 1997). The regularity of the level sets
is trivially satisfied in our case.

Remark 1. Let the conditions of Theorem 3 hold. Suppose that ‘1 is maximized at a set of
points. Then the MLE converges ĥTð~f 1Þ converges to that set as T ! 1 for every ~f 1 2 R; see
Lemma 4.2 P€otscher and Prucha (1997).

Assumption 6 below imposes the conditions used in Theorem 2 to ensure that the filter f~f tg
inherits the NED properties of the data. It also states conditions that are used to ensure that the
likelihood score ‘0tðwt , hÞ inherits the NED properties of the vector wt :¼ ð~f t , yt , yt�1Þ, with
‘0tðwt , hÞ ¼ ‘0ð~f t , yt , yt�1; hÞ :¼ @‘ð~f t , yt , yt�1; hÞ=@h and ‘00t ðwt , hÞ :¼ @2‘tðhÞ=@h@h0:
Assumption 6. For every h 2 H, it holds that

(i) j‘0tðw, hÞ � ‘0tðw0, hÞj � cjjw� w0jj8ðw,w0Þ 2 ~F 2 � Y4 with jcj < 1
(ii) jjb ðf � f 0Þ þ a ðsðf , y; hÞ � sðf 0, y0; hÞÞjj � ajjf � f 0jj þ bjjy � y0jj for all ðf , f 0, y, y0Þ 2

~F 2 � Y4 with 0 � a < 1 and 0 � b < 1:

Conditions (i) and (ii) of Assumption 6 can be verified for the robust update Model III since,
for k bounded away from zero, the ML score function ‘0t is Lipschitz continuous on w and the
updating score function s is Lipschitz continuous on f and y: Condition (ii) in Assumption 6
allows for simple and clear results and is the same contraction condition as used in P€otscher and
Prucha (1997) and Davidson (1994). A less restrictive condition can be used that allows for ran-
dom coefficient autoregressive updates; see Hansen (1991).

Using Assumption 6, we obtain the asymptotic normality of the MLE in Theorem 4 by assum-
ing that fytgt2Z is NED on an a-mixing sequence. To ease the exposition, we imposed moment
bounds in Assumption 6 directly on the derivatives of the likelihood function; see also
Straumann and Mikosch (2006). Alternatively, these bounds could have been derived in a similar
way as in Theorem 3 from primitive conditions concerning the moment preserving properties of
h and pu; see the Supplementary Appendix.

Theorem 4. (Asymptotic Normality) Let fytgt2Z be an SE sequence that is NED of size –1 on the
/-mixing process fztgt2Z of size �d=ðd� 1Þ, and let Assumptions 3, 4, 5 and 6 hold. Furthermore,
let Ej‘0Tðw0, h0Þjd < 1 EjL0Tðw0, h0Þjd < 1 for some d > 2,E suph2H j‘00t ðw0, hÞj < 1 and h0 2
intðHÞ be the unique maximizer of ‘1 on H. Then the ML estimator ĥTð~f 1Þ satisfiesffiffiffiffi

T
p

ðĥTð~f 1Þ � h0Þ!d Nð0, I�1ðh0ÞJ ðh0ÞI�1ðh0ÞÞ as T ! 1,

where Iðh0Þ :¼ �E‘00t ðw0, h0Þ and J ðh0Þ :¼ E‘0tðw0, h0Þ‘0tðw0, h0Þ> are the Fisher information
matrix and the expected outer product of gradients, respectively, both evaluated at h0:

5. Empirical application

5.1. Time-varying temporal dependence in U.S. insurance claims

We illustrate the empirical relevance of our nonlinear autoregressive model by analyzing weekly
observations of U.S. unemployment insurance claims (UIC). The empirical analysis of the time
series of UIC based on dynamic macroeconomic models has received much attention in the lit-
erature; see for example McMurrer and Chasanov (1995), Meyer (1995), Anderson and Meyer
(1997, 2000), Hopenhayn and Nicolini (1997), and Ashenfelter et al. (2005). The importance of
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forecasting weekly UIC time series data has been highlighted by Gavin and Kliesen (2002) who
show that UIC is a highly effective leading indicator for labor market conditions and hence for
forecasting gross domestic product growth rates. Our sample consists of weekly continuously
compounded growth rates of the seasonally adjusted (four-week moving) average initial
unemployment insurance claims observed from 1960 to 2013, as included in the Conference
Board Leading Economic Index.

We only present the estimation results for Model I. The results for Model II are very similar.
We find that the nonlinearity of the model sometimes poses challenges to the numerical optimiza-
tion of the likelihood function, and that one has to use different starting values to ensure conver-
gence to the proper maximum. If the nonlinearity of the model is combined with a density that is
not log-concave, such as the Student’s t distribution in Model III, multiple local optima occur
more often. Several of these local optima are not stable if the parameters are perturbed around the
optimum. For example, in Model III we obtain a maximum of the likelihood function close to the
one reported for Model I below, as well as a second higher local maximum for a negative value of
a. A negative a does not satisfy the optimality theory developed in Section 2. The likelihood func-
tion near this second maximum is very peaked and disappears if the degrees of freedom parameter
in Model III is perturbed to somewhat higher levels. Combining the properties of the different
specifications, Model I presented below provides the best compromise in terms of (i) the stability
of the optimum under perturbations of the parameter and the empirical interpretability of the fil-
tered path, (ii) the optimality restriction from Section 2.2, that is a > 0, and (iii) in-sample fit in
terms of corrected Akaike’s information criterion (AICc) of Hurvich and Tsai (1991).

Figure 3 presents the UIC data together with the filtered estimates of the time-varying autore-
gressive parameter that fluctuate considerably over time. The parameter reaches a minimum of
roughly 0.2 in the late 1960s, indicating that UIC has little temporal dependence during this time
period. In the 1980s, the parameter climbs to about 0.6, indicating that the UIC may deviate per-
sistently from its unconditional mean over an extended number of weeks. During the financial
crisis of 2008 and its aftermath in 2009, we again see a rise in the level of persistence of claims,
followed by a steady decline until the end of the sample.

5.2. Forecasting comparison for three U.S. economic time series

We consider the one-step ahead forecasting performance of Model I and three benchmark mod-
els. We consider the weekly unemployment insurance claims series from Section 5.1 and two

Figure 3. Growth rate of U.S. seasonally adjusted weekly unemployment insurance claims; Filtered estimates of time-varying
autoregressive parameter from Model I.
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additional series: the U.S. monthly industrial production index from 1947 to 2013, and the U.S.
quarterly money velocity M2 from 1919 to 2013. All three time series are in log-differences
such that we focus on forecasting growth rates. The three series have three different seasonal fre-
quencies: weekly, monthly and quarterly. The parameter estimates are obtained from the in-
sample analysis.

Table 2 compares the forecast precision of Model I with the forecast precision of the TAR,
STAR and linear AR(p) models for all three series. The order of the AR model p is chosen by the
general-to-specific methodology that selects the lag length based on the minimum AICc; the opti-
mal order is denoted by p	: We find that for all three macroeconomic time series Model I, the
TAR, and the STAR model outperform the linear AR model in terms of root mean squared fore-
cast error by a wide margin. Also, for all three time series, the score driven Model I has the low-
est root mean squared forecast error out of the models considered. These results are consistent
with the likelihood-based results: Model I also outperforms the TAR, STAR, and AR(p	) models
in terms of the log-likelihood value and AICc.

We conclude that the score driven Model I produces relatively accurate out-of-sample forecasts
for the three U.S. macroeconomic time series. The reported F-RMSEs of Model I are considerably
lower than those of the AR(p	) models. The nonlinear adaptation to the serial dependence par-
ameter in Model I is therefore potentially an important feature for the forecasting of such key
economic time series.

6. Conclusions

We have shown that updating the parameters in an autoregressive model by the score of the pre-
dictive likelihood results in local improvements of the expected Kullback-Leibler divergence, and
thus in nonlinear autoregressive models with information theoretic optimality properties. The
reduced form of the resulting model can be written as a nonlinear ARMA model that can be
compared to alternative nonlinear autoregressive models such as the threshold and smooth transi-
tion autoregressive models. Estimation of the static parameters in the new model is straightfor-
ward, and the maximum likelhood estimator can be shown to be consistent and asymptotically
normal. In our empirical illustration for U.S. unemployment insurance claims, and for two other
key U.S. macroeconomic time series, our most basic nonlinear dynamic model outperforms well-
known alternatives such as the threshold and smooth transition autoregressive models.

Table 2. Out-of-sample forecast comparisons for three U.S. macroeconomic time series

Model I TAR STAR AR(p	)
Weekly unemployment insurance claims, p	 ¼ 2
F-RMSE 0.7502 0.7522 0.7521 0.8484
LogLik 6743.96 6736.22 6736.86 6438.89
AICc �13477.90 �13462.41 �13463.70 �12869.76
Monthly industrial production, p	 ¼ 3
F-RMSE 0.560 0.564 0.563 0.880
Log Lik 3025.94 3020.07 3020.50 3020.84
AICc �6041.83 �6030.09 �6030.95 �6031.62
Quarterly money velocity M2, p	 ¼ 3
F-RMSE 0.1492 0.1514 0.1514 0.2079
Log Lik 646.54 643.29 643.30 643.53
AICc �1282.79 �1276.31 �1276.32 �1276.78

The values for the maximized log-likelihood (LogLik), Akaike’s information criterion with finite sample correction (AICc) and
root mean squared errors for one-step-ahead forecasts (F-RMSE) of the logarithmic growth rates of U.S. seasonally adjusted
time series for weekly unemployment insurance claims, monthly industrial production index (2007¼ 100), quarterly money
velocity M2; source: Federal Reserve Bank of St. Louis.
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