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ABSTRACT
In pre-Born–Oppenheimer (pre-BO) theory amolecule is considered as aquantumsystemas awhole,
including the electrons and the atomic nuclei on the same footing. This approach is fundamentally
different from the traditional quantum chemistry treatment, which relies on the separation of the
motion of the electrons and the atomic nuclei. A fully quantummechanical description ofmolecules
has a great promise for future developments and applications. Its most accurate versions may con-
tribute to the definition of new schemes for metrology and testing fundamental physical theories;
its approximate versions can provide an efficient theoretical description formolecule-positron inter-
actions and, in general, it would circumvent the tedious computation and fitting of potential energy
surfaces and non-adiabatic coupling vectors while it includes also the quantum nuclear motion also
often called ‘molecular quantum dynamics’. To achieve these goals, the review points out impor-
tant technical and fundamental open questions. Most interestingly, the reconciliation of pre-BO
theory with the classical chemistry knowledge touches upon fundamental problems related to the
measurement problem of quantummechanics.
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1. Quantum chemistry vs. quantummechanics
and chemistry?

We start this article with a historical overview of the
chemical theory of molecular structure and the origins
of quantum chemistry, which is followed bymethodolog-
ical details and applications of pre-Born–Oppenheimer
theory.

1.1. Historical background: chemical structure,
physical structure from organic chemistry
experiments

[T]he dominating story in chemistry of the 1860s, 1870s,
and 1880s was neither the periodic law, nor the search
for new elements, nor the early stages of the study of
atoms and molecules as physical entities. It was the mat-
uration, and demonstration of extraordinary scientific
and technological power, of the “theory of chemical
structure” . . .
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During the second half of the 19th century, the pio-
neering organic chemists generation—represented by
Williamson, Kekulé, Butlerov, Crum Brown, Frank-
land, and Wurtz—had explored an increasing number
of chemical transformations in their laboratory experi-
ments and worked towards the establishment of a logical
framework for their observations. The ‘first chemistry
conference’, held in Karlsruhe on 3 September 1860,
resulted in an internationally recognised definition of the
atomic masses. This agreement ensured that the same
molecular formula was then used for the same sub-
stance in all laboratories around the world, and thereby
opened the route to the successful development of the
theory of chemical structure. The development of the
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chemical theory had been surrounded by heated debates
about what was reality and what was mere speculation.
Contemporary physics (gravitation, electromagnetism)
was not able to provide any satisfactory description for
molecules. To give a taste of this exciting period, we
reproduce a few extracts from Alan J. Rocke’s chemical
history book [1]:

• Friedrich August Kekulé [von Stradonitz] (1858):
‘rational formulas are reaction formulas, and can be
nothing more in the current state of science’.

• FriedrichAugust Kekulé [von Stradonitz] (1859): ‘[he]
rejected the possibility of determining the physical
arrangement of the constituent atoms in a molecule
from the study of chemical reactions, since chemi-
cal reactions necessarily alter the arrangements of the
atoms in the molecule’.

• Charles Adolphe Wurtz (1860): ‘[W]e do not have
any means of assuring ourselves in an absolute
manner of the arrangement, or even the real exis-
tence of the groups which appear in our rational
formulas . . .merely express parental ties’.

• Hermann Kolbe (1866): ‘Frankly, I consider all these
graphical representations . . . as dangerous, because
the imagination is thereby given too free rein’.

• Johannes Wislicenus (1869): ‘[it] must somehow be
explained by the different arrangements of their atoms
in space’.

• JacobusHenricus van’t Hoff (5 September 1874, 1875):
‘La chimie dans l’espace’

• Joseph Achille Le Bel (5 November 1874): physical
structure in the 3-dimensional space

1.2. Historical background: application of quantum
theory tomolecules

At the time when Erwin Schrödinger wrote down his
famous wave equation [2], the concept of the classi-
cal skeleton of the atomic nuclei arranged in the three-
dimensional spacewas already a central idea inmolecular
science derived from the organic chemists’ laboratory
experiments. The idea of a separate description of the
electrons and the atomic nuclei, i.e. the motion of the
atomic nuclei on a potential energy surface (PES), which
results form the solution of the electronic problem in
the field of fixed external nuclear charges, is usually con-
nected to the work of Born and Oppenheimer in 1927
[3] and perhaps the later references [4,5] are also cited.
At the same time, Sutcliffe and Woolley analyze in refer-
ence [6] René Marcelin’s doctoral dissertation published
in 1914 (the author died during World War I), which
appears to be the earliest work inwhich ideas reminiscent
of a potential energy surface can be found. Sutcliffe and

Woolley argue that the idea of clamping the atomic nuclei
in order to define an electronic problem was attempted
already within the framework of The Old Quantum The-
ory, and later these attempts were taken over (more suc-
cessfully) to Schrödinger’s theory for molecules. In any
case, what we usually mean by quantum chemistry gains
its equations from a combination of quantum mechanics
and the Born–Oppenheimer (BO) approximation (and
perhaps corrections to the BO approximation are also
included).

1.3. Quantum chemistry

The tremendous success of the usual practice might per-
haps be best regarded as a tribute to the insight and
ingenuity of the practitioners for inventing an effective
variant of quantum theory for chemistry.

B. T. Sutcliffe and R. G. Woolley, J. Chem. Phys. 137,
22A544 (2012) [7].

The well-known theory applicable to molecules has
grown out from the separation of the motion of the elec-
trons and the atomic nuclei. This separation defines two
major fields for quantum chemistry, electronic structure
theory and the corresponding electronic Hamiltonian (in
atomic units):

Ĥel = −
ne∑
i=1

1
2
�ri +

ne∑
i=1

ne∑
j>i

1
|ri − rj|

−
ne∑
i=1

nn∑
n=1

Zn
|ri − Rn| +

nn∑
n=1

nn∑
m>n

ZnZm
|Rn − Rm| (1)

with the ri electronic and Rn nuclear positions and elec-
tric charges, Zn; and nuclear motion theory with the
Hamiltonian for the motion of the atomic nuclei (or
rovibrational Hamiltonian):

Ĥnuc = T̂(ρ) + V̂ , (2)

where T̂(ρ) is the rovibrational kinetic energy operator
and the potential energy, V̂ , which is called the poten-
tial energy surface and it is obtained from the eigenvalues
of Equation (1) computed at different positions of the
atomic nuclei.

Within this framework, a variety of molecular prop-
erties are derived from the eigenstates of the electronic
Hamiltonian, Equation (1), and an effective combina-
tion of the quantummechanics of electrons with classical
electronic properties of identifiable nuclei and quantum
mechanics for nuclear motions, Equation (2).

Several chemical concepts gain a theoretical back-
ground from this construct, most importantly the poten-
tial energy surface (PES) is defined. Its minimum struc-
ture (or structures if it has several local minima) defines
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the equilibrium structure, which is a purely mathemat-
ical construct resulting from the separability approx-
imation but it is usually identified with the classical
molecular structure. Then, the nuclei are re-quantised
to solve the Schrödinger equation of the atomic nuclei,
Equation (2), to calculate rovibrational states, resonances,
reaction rates, etc.

The electronic structure and quantum nuclear motion
theories have many similar features but each field have
its own peculiarities. Most importantly, the spatial sym-
metries are different: in electronic-structure theory the
point-group symmetry is defined by the fixed, classical
nuclear skeleton, whereas in nuclear-motion theory the
PES depends only on the relative positions of the nuclei
in agreement with the translational and rotational invari-
ance of an isolated molecule. Furthermore in electronic-
structure theory, themolecular translations and rotations
are separated off by fixing the atomic nuclei, and thus
the kinetic energy can be written in a very simple form
in Cartesian coordinates. In nuclear-motion theory, it
is convenient to define a frame fixed to the (non-rigid)
body to separate off the translation and to account for
the spatial orientation of this frame by three angles [8,
9]. Thereby, in a usual nuclear-motion theory treatment,
the coordinates are necessarily curvilinear. In spite of all
complications, it was possible to develop automated pro-
cedures [10–14], which allow us to efficiently compute
hundreds or thousands of rovibrational energy states for
small molecules using curvilinear coordinates appropri-
ately chosen for a molecular system [15–17].

1.4. Quantummechanics and chemistry?

The direct treatment of molecules as few-particle quan-
tum systems is much less explored. Nevertheless, we may
think about a molecule as a quantum system as a whole
without any a priori separation of the particles, which we
call pre-Born–Oppenheimer (pre-BO) molecular struc-
ture theory (it is also called non-Born–Oppenheimer
theory in the literature [18,19]).

The (np + 1)-particle time-independent Schrödinger
equation

Ĥ� = E� (3)

contains the non-relativistic Hamiltonian

Ĥ = T̂ + V̂ , (4)

which is the sum of the kinetic energy operator

T̂ = −
np+1∑
i=1

1
2mi

�ri (5)

and the Coulomb potential energy operator

V̂ =
np+1∑
i=1

np+1∑
j>i

qiqj
|ri − rj| , (6)

where atomic units are used and ri labels the laboratory-
fixed (LF) Cartesian coordinates of the ith particle. The
full molecular Hamiltonian has 2(np + 1) parameters,
the mass and the electric charge for each particle, mi
and qi (i = 1, 2, . . . , np + 1), respectively. In addition,
the physical solutions must satisfy the spin-statistics
theorem, thereby the spins si (i = 1, 2, . . . , np + 1) (the
fermionic or bosonic character) appear as additional
parameters. In total, there are 3(np + 1) parameters,
which define the molecular system. In addition, we may
specify the quantum numbers corresponding to the con-
served quantities of an isolated molecule: the total angu-
lar momentum, its projection to a space-fixed axis, the
parity, and the spin quantum numbers labelled with N,
Nz, p, Sa, MSa , Sb, MSb , . . . (for particle types a, b, etc.),
respectively.1

It is important to note that the full molecular Hamilto-
nian, Ĥ specified in Equations (4)–(6), has very different
mathematical properties from the electronic Hamilto-
nian, Ĥel in Equation (1). Although the potential energy
is the simple Coulomb interaction term both in Ĥ and
Ĥel, in Ĥ all electric charges belong to the quantum sys-
tem. While, for a neutral molecule Ĥel has an infinite
discrete spectrum and the continuous spectrum begins
at the first ionisation energy, the Ĥ molecular Hamilto-
nian does not have any discrete spectrum at all unless the
overall molecular translation is removed (see for example
Refs. [20–22]). In fact, Ĥ has the same spatial symme-
tries as Ĥnuc in nuclear-motion theory. If we separate off
the overall translation of the molecule, the translation-
ally invariant molecular Hamiltonian may or may not
have any discrete states, if it has, they end at the lowest
dissociation threshold, which is generally unknown (see
Section 2.7 and Figure 2).

One can introduce new coordinates in Ĥ, in order
to (a) separate off the overall translational motion,
and (b) to describe the internal dynamics more effi-
ciently. The choice of the coordinates (for the kinetic

Figure 1. Example translationally invariant coordinates: coordi-
nates of relative vectors within the many-particle system.
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Figure 2. The ladder structure of the pre-Born–Oppenheimer
(pre-BO) energy levels is visualised in the right. The left of
the figure shows the rovibrational states corresponding to their
respective potential energy surfaces in the Born–Oppenheimer
(BO) approximation. While in the BO picture, the rovibrational
states corresponding to the excited electronic state are bound
states, the corresponding rovibronic states in pre-BO theory
appear as resonances. [Reprintedwith permission from E. Mátyus,
J. Phys. Chem. A 117, 7195 (2013). Copyright 2013 American
Chemical Society.]

energy operator) is a question of convenience. We could
use some appropriate curvilinear system similarly to
nuclear-motion theory. The motivation however for
using laboratory-fixed Cartesian coordinates, similarly
as in electronic structure theory, is provided by the aim
to develop a generally applicable theoretical and com-
putational framework, similarly to the recent electron-
nuclear orbital theories [23–30], which have grown out
from electronic-structure theory by incorporating (some
of the) atomic nuclei in the quantum treatment. Further-
more, (laboratory-fixed) Cartesian coordinates will be
the preferred choice for a generalisation to the relativistic
regime.

Various direct and highly specialised techniques have
been proposed in the literature [31–34] for the solution
of themany-particle Schrödinger equation, Equation (4).
Our approach, a variational solution method using
explicitly correlated Gaussian basis functions (ECGs), is
detailed in Section 2. ECGs [35,36] have been success-
fully used in electronic-structure theory [37] and their
application for molecules and in general for few-particle
quantum systems has been pioneered by Adamowicz
and co-workers [18,19] and Suzuki and Varga [38].
An important year in the development of this field is
1993 when Kinghorn and Poshusta [39] and Kozlowski
and Adamowicz [40] published tightly converged ECG-
variational results for zero total angular momentum
states of the Ps2 = {e+, e+, e−, e−}, which can be thought
of as a ‘quasi molecule’. Later, analytic energy gradients

were derived and implemented [41] to speed up the ECG-
exponent optimisation, and this development resulted in
a highly efficient approach for the computation of ‘real’
diatomic molecules [42,43]. The computational proce-
dures developed by Adamowicz and co-workers have
been recently extended to N=1 and N=2 total angular
momentum quantum numbers (corresponding to natu-
ral parity) [44–47].

The diatomic formalism has been extended also to
triatomic molecules in Ref. [48]. Practical computations
have been carried out using another generally applicable
basis set, in which the ECGs can have complex-valued
parameters [49,50]. Computations with complex ECG
basis functions are presently considered as a promising,
practical generalisation towards polyatomic molecules.

Considerable effort has been devoted by Adamow-
icz and co-workers for the development and evalu-
ation of leading relativistic corrections, the Darwin
and mass-velocity terms, computed as expectation val-
ues with the non-Born–Oppenheimer wave functions.
The original implementation [51] in 2006 was followed
by several applications for ground and vibrationally
excited states of diatomic molecules [52–57]. The largest
diatomic molecule to date for which the ground-state
non-Born–Oppenheimer energy (as well as leading rel-
ativistic corrections) were computed is the BH molecule
including two nuclei and six electrons on the same foot-
ing in the quantum mechanical treatment [58].

Suzuki and Varga pioneered the development of flex-
ible basis sets and their applications with the stochastic
variational method for many-particle quantum systems
with various spatial symmetries and the elegant deriva-
tion of the corresponding integral expressions [59–61].
Their formalism was successfully used for the com-
putation of bound, resonance, and scattering states of
positronium and excitonic complexes [62–69] with var-
ious quantum numbers.

2. Variational solution of the electron-nuclear
Schrödinger equation with explicitly correlated
Gaussian functions

A general (np + 1)-particle variational approach, which
we call QUANTEN (QUANTum mechanical treatment
of Electrons and atomic Nuclei), was developed in
Refs. [20,70] for the solution of the time-independent
many-particle Schrödinger equation, Equation (3), to
obtain (absolute) molecular energies beyond spec-
troscopic accuracy2 corresponding to various non-
relativistic quantum numbers, N,Nz, p, Sa,MSa ,
Sb,MSb , . . .. Our aim was to avoid any a priori sepa-
ration of the different particles, and thus the compu-
tational method is applicable over the entire physically
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allowed range of the 3(np + 1) physical parameters: the
mi mass, the qi electric charge, and the si spin (bosonic or
fermionic character) of the particles (i = 1, . . . , np + 1).
Details of the variational procedure are reviewed in the
next subsections according to the following aspects:

(1) Coordinates: translationally invariant (TI) or
laboratory-fixed (LF) Cartesian coordinates

(2) Hamiltonian: TI and LF forms of the Hamilto-
nian

(3) Basis functions: ECGs with a polynomial pref-
actor and adapted to the spatial symmetries

(4) Matrix elements: analytic expressions with
quasi-normalisation and pre-computed quan-
tities using infinite-precision arithmetics

(5) Eigensolver: direct diagonalisation using LA-
PACK library routines, non-orthogonal basis
sets, numerical treatment of near-linear depen-
dencies

(5 + 1) Parameterisation of the basis functions: the
enlargement and refinement of the basis set
with one function at a time, fast eigenvalue esti-
mator, sampling-importance resampling, ran-
dom walk or Powell’s method for the refine-
ment of the basis functions

2.1. Coordinates

Translationally invariant (TI) and centre-of-mass (CM)
coordinates are obtained from the LF Cartesian coordi-
nates, r, by a linear transformation(

x
RCM

)
= (U ⊗ I3)r ⇔ r = (U−1 ⊗ I3)

(
x

RCM

)
,

(7)
whereRCM labels the centre-of-mass coordinates and x is
invariant upon the overall translation of the system, if the
constant matrix, U ∈ R

(np+1)×(np+1), has the following
properties:

np+1∑
j=1

Uij = 0, i = 1, . . . , np and

Unp+1,j = mj/mtot, j = 1, . . . , np + 1. (8)

(I3 denotes the 3 × 3 dimensional unit matrix). There are
infinitely many possible TI coordinate sets (examples are
shown in Figure 1), any two of them, x and y, are related
by a linear transformation:(

y
RCM

)
= (VU−1 ⊗ I3)

(
x

RCM

)
⇔

(
x

RCM

)

= (UV−1 ⊗ I3)
(

y
RCM

)
(9)

with(
y

RCM

)
= (V ⊗ I3)r ⇔ r = (V−1 ⊗ I3)

(
y

RCM

)
,

(10)
where V satisfies the same conditions as U in Equation
(8).

2.2. Hamiltonian

Translationally invariant energies and wave functions are
computed from a translationally invariant Hamiltonian
[20], which is obtained from writing the kinetic energy
operator in TI Cartesian coordinates, defined in Equa-
tions (7) and (8), and by subtracting the kinetic energy
operator of the centre of mass. An alternative approach
has been proposed in Refs. [22,71], which avoids any
transformation of the operators and eliminates the trans-
lational contamination from the matrix elements of the
(np + 1)-particle kinetic energy operator, Equation (5),
during the course of the integral evaluation.

2.3. Basis functions

Weapproximate an eigenfunction corresponding to some
spatial λ = (NMNp) and spin ς = (Sa,MSa , Sb,MSb , . . .)
quantum numbers as a linear combination of symmetry-
adapted basis functions

�[λ,ς] =
Nb∑
I=1

cI�
[λ,ς]
I . (11)

The Ith basis function is a(n) (anti)symmetrised product
of spatial and spin functions for (fermions) bosons

�
[λ,ς]
I (r, σ) = Â{φ[λ]

I (r)χ [ς]
I (σ )} (12)

where the (anti)symmetrisation operator is

Â = (Nperm)−1/2
Nperm∑
p=1

εpP̂p, (13)

and Nperm is the total number of possible permutations
of the identical particles in the system and εp is −1 if
the permutation operator, P̂p, contains an odd number
of interchanges of identical fermions, otherwise εp is +1.

In order to define spatial basis functions, we first intro-
duce geminal (or pair) functions as

ϕ(r1, r2) = exp
(− 1

2α12|r1 − r2|2
)

(14)

= exp
(
− 1

2r
T(A ⊗ I3)r

)
, (15)
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with

r =
(
r1
r2

)
∈ R

6 and

A =
(
A11 A12
A21 A22

)
=

(
α12 −α12

−α12 α12

)
∈ R

2×2. (16)

The geminal functions are generalised to (np + 1)-
particle explicitly correlated Gaussian functions (ECGs)
as:

φ(r;A) =
np+1∏
i=1

np+1∏
j>i

exp
(

−1
2
αij|ri − rj|2

)
(17)

= exp
(

−1
2
rT(A ⊗ I3)r

)
(18)

with

r =
⎛
⎝ r1

. . .

rnp+1

⎞
⎠ ∈ R

3(np+1) (19)

and

Aij = −αij(1 − δij) +
⎛
⎝

np+1∑
k=1,k�=i

αij

⎞
⎠ δij

(i, j = 1, . . . , np + 1). (20)

The matrix form, Equations (15) and (18), makes it
apparent that the functions have a general mathemat-
ical form for (np + 1) particles. It has been observed
(see for example Ref. [20]) that in molecular applica-
tions with multiple heavy particles (nuclei), these basis
functions are inefficient when sub-spectroscopic accu-
racy is sought for. In a first attempt to describe atomic
nuclei more efficiently, we introduced ECGs with shifted
centres, so-called ‘floating ECGs’:

φ(r;A,R) = exp
(
− 1

2 (r − R)T(A ⊗ I3)(r − R)
)
,
(21)

whereR can be treated as a fixed or a variational parame-
ter and thereby, it should provide amore efficient descrip-
tion for the atomic nuclei displaced from the origin
(Section 3). It turned out however that the convergence
rate of amolecular computation becameworsewith float-
ing ECGs, Equation (21), thanwith origin-centred ECGs,
Equation (18). This behaviour is explained by the fact
that φ(r;A,R) with an arbitrary R �= 0 position vector
is an eigenfunction of neither the total angular momen-
tum operators, N̂2 and N̂z, nor the parity. In the case of
floating ECGs, the spatial symmetries of the eigenfunc-
tions are restored numerically during the course of the

variational optimisation, which results in a substantial
increase in the number of required basis functions.

In order to obtain very accurate numerical results
for a molecular system, it is necessary to describe dis-
placed atomic nuclei efficiently, and at the same time,
account for the spatial symmetries of the system. In
principle, it would be possible to project the floating
ECGs, Equation (21), onto the irreps of the O(3) group
(numerically). As an alternative, we use explicitly cor-
related Gaussians in conjunction with the global vector
representation (ECG-GVR) [38,59,60]:

φ[λ](r;A,u,K) = 1
BKN

∫
dê YMN

N (ê)
{
∂(2K+N)
a g(r;A, au ⊗ e)

}
a=0,|e|=1

(22)

= |v|2K+NYMN
N (v̂) exp

(
−1
2
rT(A ⊗ I3)r

)
, (23)

which corresponds to an analytic projection of a genera-
tor function

g(r;A, au ⊗ e) = exp
(
− 1

2r
T(A ⊗ I3)r + a(u ⊗ e)Tr

)
(24)

with a so-called global vector

v = (u ⊗ e)Tr =
np+1∑
i=1

uiri. (25)

Further notation used in Equations (22)–(23): ∂
(2K+N)
a

= ∂(2K+N)/∂a(2K+N), YMN
N (ê) is the spherical harmonic

function of degree N and order MN , ê = (θ ,φ) collects
the polar angles characterising the orientation of the unit
vector e, and

BKN = 4π(2K + N)!(K + N + 1)2N+1

K!(2K + 2N + 2)!
(26)

with K and N ∈ N0. According to Ref. [60], the applica-
tion of Equation (23) in a variational procedure is equiv-
alent to using a basis set constructed by a hierarchical
coupling of the subsystems angular momenta to a total
angular momentum state with (N,MN). It is interesting
to re-write a floating ECG function into the following
form

exp
(
− 1

2 (r − R)T(A ⊗ I3)(r − R)
)

= exp
(
− 1

2RT(A ⊗ I3)R
)

exp
(
− 1

2r
T(A ⊗ I3)r + RT(A ⊗ I3)r

)
, (27)

which highlights its relation to the generator function
of ECG-GVR. Alternatively, an ECG-GVR function can
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be written in a form containing a polynomial prefac-
tor, Equation (23), which highlights its effectiveness in
describing vibrating molecular systems (at least for two
heavy particles).

In the numerical results presented later in this section,
we used ECG-GVR-type functions, φ[λ](r;A,u,K), as
spatial basis function and optimised all (non-linear)
parameters—the αij (A) exponents, the ui (u), global-
vector coefficients, and the K ∈ N0 integer exponent of
the polynomial prefactor—variationally. The transforma-
tion properties of these functions under TI coordinate
transformations are equivalent to a simple transforma-
tion of the parameter vectors (u in the global vector)
and matrices (A in the exponent). These transformation
properties are conveniently exploited during the course
of the analytic evaluation of the integrals (see for exam-
ple Ref. [20,21,70–73], as well as in an efficient param-
eterisation scheme of the basis functions [22]). Due to
the importance of these transformation relations (for the
separation of the translational motion, in integral eval-
uations, and for efficient computations), we summarise
them in the following equations:

|v|2K+NYMN
N (v̂) exp

(
− 1

2r
T(A ⊗ I3)r

)
(28)

= |v|2K+NYMN
N (v̂) exp

(
− 1

2x
T(A(x) ⊗ I3)x

)
(29)

= |v|2K+NYMN
N (v̂) exp

(
− 1

2y
T(A(y) ⊗ I3)y

)
, (30)

where

A(x) = U−TAU−1 ⇔ A = UTA(x)U and

A(x) =
(A(x) 0

0 cA

)
(31)

A(y) = V−TAV−1 ⇔ A = VTA(y)V and

A(y) =
(A(y) 0

0 cA

)
(32)

and

A(y) = (UV−1)TA(x)UV−1 ⇔
A(x) = (VU−1)TA(y)VU−1. (33)

and the global-vector coefficients transform as

u = UTu(x) = VTu(y) and u(x) = (UV−1)Tu(y).
(34)

2.4. Evaluation of thematrix elements

Matrix elements of an Ô operator—e.g. identity, kinetic
or potential energy operators, Ô = Î, T̂ or V̂ , respec-
tively—with the (anti)symmetrised products of the spin
and spatial functions, Equations (22) and (23), are
obtained by evaluating analytic expressions. In what fol-
lows, we summarise the main steps of the derivation
of the analytic expressions and a few implementation
aspects (further details can be found in Refs. [20,38,61]):

O[λ,ς]
IJ = 〈�[λ,ς]

I |Ô|�[λ,ς]
J 〉r,σ

= 〈Â{φ[λ]
I χ

[ς]
I }|Ô|Â{φ[λ]

J χ
[ς]
J }〉r,σ

=
Nperm∑
p=1

εp〈φ[λ]
I χ

[ς]
I |Ô|P̂p{φ[λ]

J χ
[ς]
J }〉r,σ

=
Nperm∑
p=1

εp〈φ[λ]
I |Ô|P̂pφ[λ]

J 〉r〈χ [ς]
I |Ô|P̂pχ [ς]

J 〉σ

=
Nperm∑
p=1

c[ς]IJp O
[λ]
IJp (35)

with

c[ς]IJp = εp〈χ [ς]
I |Ô|P̂pχ [ς]

J 〉σ and

O[λ]
IJp = 〈φ[λ]

I |Ô|φ[λ]
Jp 〉r, (36)

which are separate integrals of Ô with the spin and
the spatial functions, respectively. The c[ς]IJp term can be
obtained by simple algebra (see for example Ref. [20]).
TheO[λ]

IJp term contains multidimensional integrals of the
spatial functions, Equation (22) and (23), for which ana-
lytic expressions are obtained by working out the formal
operations in three steps.

Step 1: evaluation of the integral with the generator
function:

IO,1(s, s′) = 〈g(r;A, s)|Ô|g(r;A′, s′)〉r (37)

Step 2: expansion of the angular pre-factors:

IO,2(e, e′)

= {∂2K+N
a ∂2K

′+N
a′ IO,1(au ⊗ e, a′u′ ⊗ e′)} a=a′=0

|e|=|e′|=1
(38)

Step 3: evaluation of the angular integrals:

O[λ] = 1
BKNBK′N∫
dê

∫
dê′ (YMN

N (ê))∗YMN
N (ê′) IO,2(e, e′) (39)

The resulting expressions [20, 38, 61] are completely
general for basis function with any N total angular
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momentum quantum number and natural parity, (−1)N
(similar functions and working formulae with unnatu-
ral parity, (−1)N+1, were introduced in Ref. [74]). It is
important to mention that details of the computer imple-
mentation with finite precision arithmetics of the final
expressions are critical in order to ensure the numeri-
cal stability and efficiency of molecular applications in
which N+2K are larger than about 5. In particular, we
had to introduce the so-called ‘quasi-normalisation’ of
the basis functions and pre-compute and tabulate certain
coefficients with infinite-precision arithmetics to be able
to evaluate the final expressions in double precision arith-
metics (this implementation was tested up to ca. 2K=40
and N=5−10) [20].

2.5. Computation of bound states

2.5.1. Direct diagonalisation
The cI linear combination coefficients in Equation (11)
are obtained by solving the generalised eigenvalue prob-
lem:

HcI = EIScI . (40)

The eigenvalues and eigenvectors are computed by
replacing Equation (40) with the symmetric eigenvalue
equation

H′c′I = EIc′I (41)

by using Löwdin’s procedure [75]

H′ = T′ + V′ (42)

with

T′ = S−1/2TS−1/2 and V′ = S−1/2VS−1/2. (43)

2.5.2. Non-linear parameterisation strategy
2.5.2.1. Parameter selection. The nonlinear parameters
for each basis function are selected and optimised based
on the variational principle applicable for the ground and
for a finite number of excited states (p. 27–29 of Ref. [38]).
In practice, this optimisation strategy translates to the
simple rule: the lower the energy, the better the param-
eter set. The parameter selection is carried out using the
stochastic variational method [38], in which new basis
functions are generated one by one. Trial values for the
parameters of the spatial basis functions, Equation (22),
K, ui, lnαij, are drawn from discrete uniform, continu-
ous uniform, and normal distributions, respectively. The
optimal parameters of each distribution are estimated
from short exploratory computations. Due to the one-
by-one generation of the basis functions, the updated
eigenvalues can be evaluated very efficiently [38] using
the known eigenvalues and eigenvectors corresponding

to the old basis set, and this allows a rapid assessment of
a trial set.

2.5.2.2. Refinement. The refinement of the basis-function
parameters generated by the stochastic variationalmethod
is necessary if very accurate solutions are required. Sim-
ilarly to the enlargement of the basis set, the basis func-
tions are refined one after the other with the fast rank-
1 eigenvalue update algorithm, which is used also for
the selection of a new basis function from a set of ran-
domly generated trials. Refined parameters are found
by using Powell’s method [76] started from the origi-
nally selected parameters for each basis function. The
random-walk refinement can be used to adjust theK inte-
ger value (for which the Powell method is not applicable),
however in practice it is usually sufficient to generate
K from a discrete uniform distribution spread over a
pre-optimised interval and to refine only the continuous
variables, ui and αij. During the course of and at the end
of the enlargement of the basis set, every basis function is
refined in repeated cycles.

2.6. Computation of resonance states

2.6.1. Stabilisation technique
The stabilisation of eigenvalues of the real eigenvalue
equation, Equation (40), is monitored with respect to the
size of the basis set [77,78]. This simple application of
the stabilisation method [79–82] allowed us to estimate
the energy of long-lived resonances [70]. In order to gain
access to the lifetimes (and in general, shorter-lived res-
onance positions and widths), it is necessary to estimate
the box size corresponding to the increasing number of
basis functions, which is a non-trivial task with ECG
functions.

2.6.2. Complex-coordinate-rotationmethod
The application of the complex-coordinate-rotation
method [83] requires the complex scaling of the coordi-
nates according to the r → reiθ replacement. The scaling
rule is rather simple for both the kinetic energy and
the Coulomb potential energy operators, and thus the
Hamiltonian is scaled according to

Ĥ = T̂ + V̂ → Ĥ(θ) = e−2iθ T̂ + e−iθ V̂ . (44)

The corresponding matrix equation is written as

H̃(θ)c̃i(θ) = Ei(θ)Sc̃i(θ), (45)

which, similarly to its real analogue, Equation (40), is
transformed to

H̃′(θ)c̃′i(θ) = Ei(θ)c̃′i(θ) (46)
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with

H̃′(θ) = e−2iθS−1/2TS−1/2 + e−iθS−1/2VS−1/2

= cos(2θ)T′ + cos(θ)V′

− i(sin(2θ)T′ + sin(θ)V′). (47)

The complex symmetric eigenproblem, Equation (46),
is solved using LAPACK library routines [84], and the
stabilisation point, E = (E,−�/2) with the E energy
and � width, in the complex energy plane is identified
visually.

Although the complex analogue of the real variational
principle [83] states that the exact solution is a stationary
point in the complex plane with respect to the variational
parameters and the scaling angle, there is not any practi-
cal algorithm for using this principle to optimise the basis
set and to systematically improve the resonance param-
eters. The convergence of the resonance parameters is
confirmed by achieving reasonable agreement within a
series of computations with a varying number of basis
functions and parameterisation (see also Section 2.7).

2.6.3. Parameterisation strategy
Due to the lack of any practical approach relying on the
complex variational principle to select and optimise the
non-linear parameters of the basis functions, we relied
on the random generation of the parameters from some
broad parameter intervals. In addition, we have devised
a parameter-transfer approach [70], in which a param-
eter set optimised based on the real variational princi-
ple for bound states with one set of input parameters is
transferred to a computationwith other input parameters
(e.g. different quantum numbers). Note that the spatial
symmetries of a basis function are determined by the
quantum numbers, Equation (23), and in this sense, the
parameters K, ui, and A, are transferable.

2.7. Variational results

Quantitative comparison of precision experiments and
computations is possible if extremely accurate non-
relativistic results are available and they are corrected
also for relativistic and quantum electrodynamics (QED)
effects. Such corrections have been computed in Ref. [85]
for bound states of few-particle systems within a per-
turbative scheme which started from a very accurate
Born–Oppenheimer solution. As an alternative route,
efforts have been devoted to the a direct variational solu-
tion of the Dirac equation [86,87]. As to an intermediate
approach, expectation values of the Breit–Pauli Hamil-
tonian were computed with the many-particle wave
function, i.e. without evoking the BO approximation,
to obtain relativistic corrections [88–90]. In the spirit

of this second direction, the present work focuses on
the computational methodology of very accurate pre-
Born–Oppenheimer energies and wave functions, which
provides the starting point for a forthcoming computa-
tion of relativistic and QED corrections.

Within the non-relativistic regime, the determination
of not only the ground but also the excited states with all
possible combinations of the quantum numbers is a chal-
lenging task. What makes it particularly challenging is
the fact that rovibrational states corresponding to excited
electronic states —which can be rigorously defined only
within the BO framework—, appear as bound states,
whereas the corresponding rovibronic states in pre-BO
theory are rigorously obtained as resonances, which are
fully coupled to the dissociation continuum of the lower-
lying electronic states (Figure 2, see also Section 1.4). This
makes the computation and a systematic improvement
of excited rovibronic states (with various non-relativistic
quantum numbers) a highly challenging task. Neverthe-
less, if it is successfully realised, not only the energy
position but also the predissociative lifetime is obtained,
potentially from a full pre-BO computation. The fol-
lowing paragraphs review variational results obtained in
a series of computations [20, 70] motivated by these
ideas.

2.7.0.1. Bound and resonances states of the positron-
ium molecule, Ps2 = {e+, e+, e−, e−}. Computation of
positroniumcomplexes are extremely challenging for tra-
ditional quantum chemistry methods, because of the
presence of positively charged light particles. At the same
time, positronium complexes are excellent test systems
for pre-BO methodological developments [20, 70]. The
present ECG-GVR basis set has turned out to be par-
ticularly well-suited for positronium systems, which is
qualitatively explained by their diffuse, delocalised inter-
nal structure in comparison with the localised atomic
nuclei in molecular systems. Tightly converged energy
levels were computed with basis functions including only
low-order polynomial prefactors in Ref. [70]. (Due to
the low-order polynomials in the basis functions, Equa-
tions (22) and (23), the results were obtained with amod-
est computational cost and this fact made the positron-
ium complexes excellent systems for testing and develop-
ing the pre-BO method.) The basis function parameters
were selected by minimising the energy of the lowest-
lying state. The resulting basis set was well-suited for not
only the lowest-energy bound state but also for a few
low-energy resonance states.

The obtained bound-state energies and resonance
parameters were in excellent agreement or improved
upon the best results available in the literature (see Table 2
of Ref. [70]). We may think that the computed resonance
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parameters were more accurate than earlier literature
data, because the energies of nearby-lying bound states
were improved (lowered) for which the (real) variational
principle allows us to make a clear-cut assessment.

2.7.0.2. Bound and resonances states of the hydrogen
molecule, H2 = {p+, p+, e−, e−}. The first variational
computations with explicitly correlated Gaussian func-
tions and N>0 angular momentum quantum numbers
carried out for the H2 molecule as an explicit four-
particle system were reported in Refs. [20,70]. Both the
ground and certain excited electronic states were con-
sidered. We note that exceedingly accurate pure vibra-
tional states of the ground electronic state were com-
puted earlier by the Adamowicz group [91]. Further-
more, very accurate rovibrational states corresponding to
the ground electronic state were available from the non-
adiabatic perturbation theory computations performed
by Pachucki and Komasa [92].

Besides the ground electronic state, we could access
electronically excited states by choosing different com-
binations of the non-relativistic quantum numbers in
Ref. [70]. (Note that the electronic states exist only within
the BO framework, and they are used here only to label
the pre-BO states.) Thereby, we performed independent
computations in four different blocks with natural parity:

‘X 1�+
g block’: N ≥ 0, p = (−1)N , Sp = (1 − p)/2, Se

= 0;
‘B 1�+

u block’:N ≥ 0, p = (−1)N , Sp = (1 + p)/2, Se =
0;

‘a 3�+
g block’:N ≥ 0, p = (−1)N , Sp = (1 − p)/2, Se =
1;

‘b 3�+
u block’:N ≥ 0, p = (−1)N , Sp = (1 + p)/2, Se =
1.

The computations resulted in improved energies for
some of the rotational states corresponding to electroni-
cally excited states (seeTable 3 inRef. [70]). For the lowest
rotational states of the B 1�+

u block, the newly computed
energies were lower than those of Ref. [93] by ca. 0.8μEh.
Furthermore, the computed energies improved upon the
first and the second rotational states of the a 3�+

g block
by a few tens of nEh in comparison with the best earlier
prediction [94].

In comparison with the positronium molecule, the
basis-set parameterisation for the hydrogenmolecule has
turned out to be computationally far more demand-
ing for the bound states and a really challenging task
for the resonances. As to rovibrational (rovibronic)
states corresponding to higher excited electronic states,
they can be computed within the pre-BO framework

as resonances embedded in the continuum of the
lowest-energy electronic state of their respective symme-
try block (Figure 3). At present, there is not any existing,
practical approach for the optimisation of basis func-
tions for resonance states. Instead, we followed a prac-
tical strategy to gain access to some resonance states:
we compiled a giant parameter set from all parame-
ters obtained in bound-state optimisations with various
combinations of the non-relativistic quantum numbers,
and performed a search for resonance states using this
large set (parameter-transfer approach). The stabilisa-
tion of certain points in the complex plane with respect
to the scaling angle are visualised in Figure 3 for the
X 1�+

g and b 3�+
u blocks with N = 0, 1, and 2 angu-

lar momentum quantum numbers (reproduced from
Ref. [70]).

TheX 1�+
g block starts with the bound (ro)vibrational

states corresponding to the ground electronic state,
X 1�+

g , which are along the real axis up to the first dis-
sociation threshold, H(1) + H(1), indicated with a black
arrow in each subfigure. Before the start of the seconddis-
sociation limit, H(1) + H(2), we identify (ro)vibrational
(rovibronic) states which are assigned to the EF 1�+

g
electronic state (known from BO computations).

As to the b 3�+
u block (see Figure 3), it starts with

the first dissociation channel, H(1) + H(1), and does
not support any bound state (in agreement with our
knowledge from BO and post-BO results). Before the
H(1) + H(2) channel opens, we observe a series of vibra-
tional states for N=0, which were assigned (based on
their energies) to the e 3�+

u electronic state. These states
are located very close to the real axis, which indicates
that they are long-lived resonances. It is interesting to
note the appearance of a set of lower-energy states for
N>0. This set of states were assigned to the vibrational
(R=0 rotational angular momentum) and rovibrational
(R=1) states corresponding to the c 3�+

u electronic state
(with L=1 orbital angular momentum) for N=1 and 2,
respectively. This example highlights the coupling of the
electronic orbital (�̂L) and rotational angular ( �̂R)momenta
to the total angular momentum ( �̂N), which is automat-
ically included in our pre-BO approach. We note that
the electronic, L, and rotational, R, angular momentum
quantum numbers are non-exact quantum numbers in
the full many-particle quantum treatment, but they are
useful labels to describe properties of a state with someN
total angular momentum quantum number.

Mátyus [70] gives a detailed account of the numerical
results in comparisonwith the best available results in the
literature: accurate adiabatic computations had been per-
formed by Kołos and Rychlewski for the e 3�+

u state [95],
and accurate BO calculations are available for the c 3�+

u
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Figure 3. Part of the spectrum of the complex-scaled Hamiltonian,H(θ)with θ ∈ [0.005, 0.065] for the X 1�+
g block [p = (−1)N , Sp =

(1 − p)/2, Se = 0] and for the b 3�+
u block [p = (−1)N , Sp = (1 + p)/2, Se = 1] with N = 0, 1, and 2 total spatial angular momen-

tum quantum numbers. The black triangles indicate the threshold energy of the dissociation continua corresponding to H(1)+H(1),
H(1)+H(2), and H(1)+H(3). [Reprinted with permission from E. Mátyus, J. Phys. Chem. A 117, 7195 (2013). Copyright 2013 American
Chemical Society.]

state from the same authors [96]. Mátyus [70] reported
the first computational results for rotational excitations
corresponding to the c 3�+

u electronic state, which can be
obtained only by accounting for the coupling of rotational
and electronic angular momenta (automatically included
in our method).

It is also important to note that the results reviewed
in the previous paragraphs provided accurate estimates
for the energies. In order to pinpoint the widths and the
related lifetimes, it will be necessary to optimise and/or
enlarge the basis (and parameter) set. For this purpose, it
will be necessary to develop a systematically improvable
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basis-set optimisation approach, perhaps relying on the
(complex) variational principle, which is applicable for
unbound states.

3. Molecular structure from quantum
mechanics

If the BO approximation is not introduced, the non-
relativistic limit can be, in principle, approached arbitrar-
ily close, and when relativistic and QED corrections are
also included, computations come close or even challenge
precision measurements. It is important to note how-
ever that the present-day theoretical foundations for the
structure of molecules relies on the BO approximation:
the molecular structure is identified with the equilibrium
structure, which is defined as a local minimum of the
potential energy surface. Interestingly, there is not avail-
able any rigorous and practical definition of the molecu-
lar structure independent of the BO approximation.3

In relation to the separation of the motion of the
electrons and the atomic nuclei, which is commonplace
in quantum chemistry, Hans Primas points out in his
book [97]:

We describe the six degrees of freedom of the ground
state of the helium atom (considered as 3-particle prob-
lemwith the centre-of-massmotion separated) as a prob-
lem of two interacting particles in an external Coulomb
potential. However, in the case of the molecule H+

2 we
discuss the very same type of differential equation in an
entirely different way, and split the 6 degrees of free-
dom into 1 vibrational mode, 2 rotational modes, and 3
electronic type degrees of freedom. This qualitatively dif-
ferent description does by nomeans follow from a purely
mathematical discussion.

Following this observation, we would like to study the
structure and possible structural changes within a series
of three-particle systems including H− = {e−, e−, e+} as
well as H+

2 = {p+, p+, e−}. At the same time, due to the
lack of any definition of the molecular structure beyond
the BO approximation, we may wonder how to study the
structure of a molecular system without introducing the
separation of the motion of the electrons and the atomic
nuclei?

Observables in quantum mechanics are computed as
the expectation value of the appropriate operator with the
wave function of the system. It is straightforward to cal-
culate expectation values of structural parameters with
the (all-particle) molecular wave function. However, it
is important to recognise that if we calculated the car-
bon nucleus-proton distance in an organic molecule, we
would obtain a single 〈�|rCH�〉 value [98–100] due to
the quantummechanical indistinguishability of identical
particles. Another insightful example originates from an
attempt to determine the structure of the H+

3 molecular

ion from an all-particle computation [98–100]. The cal-
culation of the single expectation value of the HHH
angle in H+

3 is not sufficient to distinguish between the
linear and triangular arrangements of the three pro-
tons, since the expectation, i.e. average value, 〈αHHH〉 =
〈�|αHHH�〉, would be the same either for a linear
〈αHHH〉 = (0o + 180o + 0o)/3 = 60o or for a triangu-
lar arrangement, 〈αHHH〉 = (60o + 60o + 60o)/3 = 60o

of the three protons.
Even if we considered the molecular Hamiltonian in

which the atomicmasses tend to infinity would not result
in the electronic Hamiltonian, Ĥel, for which we can
define the equilibrium structure, because the infinite-
mass limit leaves the nuclear position variables as multi-
plicative operators, whereas in Ĥel they are multiplicative
constants. Although considering the infinite mass limit
may result in useful approximations, it does not provide
us a direct mathematical link between the full molecu-
lar Hamiltonian, Ĥ in Equation (4), and the electronic
Hamiltonian, Ĥel in Equation (1)

The general problem of the reconciliation of the clas-
sical molecular structure theory with a full many-particle
quantum description has been recognised decades ago
and was referred to as themolecular structure conundrum
[101] (further relevant references include [101–104]).

3.1. Probabilistic interpretation of the wave
function

Claverie and Diner suggested in 1980 that appropri-
ate marginal probability density functions calculated
from the full wave function could be used to identify
molecular structural features in the full electron-nuclear
wave function [103]. In other words, structural param-
eters do not have sharp, dispersionless values, but they
are characterised by some probability density function.
This idea has been explored for the analytically solv-
able Hooke–Calogero model of molecules [105–108].
The atoms-in-molecule analysis has been extended to
the realm of electron-nuclear quantum theory [109,
110]. Most recently, it was demonstrated that the pro-
ton density in methanol obtained from an electron-
proton orbital computation (with fixed carbon and oxy-
gen nuclei) can bematched with the spatial configuration
obtained from a BO electron-structure calculation [111].
In addition, to the electronic and nuclear densities, flux
densities have also been considered in Refs. [112–114].

For the sake of the present discussion, we shall stay
with the analysis of (molecular) structure in terms of
probability density functions calculated from the full
wave function. Further general discussion of obtaining
the classical molecular structure from quantummechan-
ics is provided in Section 3.2. In what follows, one-
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and two-particle probability density functions [72,73] are
introduced which will be used for the structural analysis
later in this section. The probability density of selected
particles measured from a ‘centre point’ P fixed to the
body is

D(n)
P,a1a2...an(R1,R2, . . . ,Rn)

= 〈�|δ(ra1 − rP − R1)δ(ra2 − rP − R2) . . .

δ(ran − rP − Rn)|�〉 (48)

with Ri ∈ R3 and the three-dimensional Dirac delta dis-
tribution, δ(r). The centre point P can be the centre of
mass (denoted by ‘0’) or another particle. For a single
particle, this density function is

D(1)
P,a(R1) = 〈�|δ(ra − rP − R1)|�〉 . (49)

For P = 0, D(1)
0,a is the spatial density of particle a around

the centre of mass (‘0’), while for P = b, D(1)
b,a measures

the probability density of the displacement vector con-
necting a and b.

Due to the overall space rotation-inversion symmetry,
D(1)
P,a(R1) is ‘round’ forN=0, p=+1 and the correspond-

ing radial function is:

ρP,a(R) = D(1)
P,a(R1) (50)

with R1 = (0, 0,R) and R ∈ R
+
0 . We normalise the den-

sity functions to one (so, they measure the fraction of
particles which can be found in an infinitesimally small
interval dR around R):

4π
∫ ∞

0
dRR2ρP,a(R) = 1. (51)

The probability density function for the included a–P–b
angle is obtained by integrating out the radii in the two-
particle density measured from a centre point P

�P,ab(α) =
∫ ∞

0
dR1R21

∫ ∞

0
dR2R22D

(2)
P,ab(R1,R2), (52)

with

D(2)
P,ab(R1,R2)

= 〈�|δ(ra − rP − R1)δ(rb − rP − R2)|�〉 . (53)

The centre point, P, can be the centre of mass (P =
0) or another particle (P = c). Similarly to D(1)

P,a(R1),
D(2)
P,ab(R1,R2) is also spherically symmetric for wave

functions with N=0, p=+1, and its numerical value
depends only on the lengths R1 = |R1|, R2 = |R2|, and

the α included angle of the vectors R1 and R2 (for non-
zero lengths). We normalise the angle density according
to

8π2
∫ π

0
dα sinα �P,ab(α) = 1. (54)

In the next subsections, we continue with the study of the
structural features of few-particle (‘atomic’ and ‘molec-
ular’) quantum systems using the ‘radial’ and ‘angular’
probability density functions introduced in the previous
equations.

3.1.1. Numerical demonstration of the H− −→H+
2

transition
Following Hans Primas’ observation (Figure 4) Ref. [72]
studied the family of {a±, a±, b∓}-type three-particle
Coulomb interacting systems with two identical particles
and a third one. This family of systems is described with
the Hamiltonian

Ĥ(ma,mb, r) = − 1
2ma

�r1 − 1
2ma

�r2 − 1
2mb

�r3

+ 1
|r1 − r2| − 1

|r1 − r3| − 1
|r2 − r3| ,

(55)

for various ma and mb mass values and unit charges.
(Note that theHamiltonian is invariant to the inversion of
the electric charges.) Furthermore, rescaling the masses
by a factor η is equivalent to scaling the energy and
shrinking the length by the factor η

Ĥ(ηma, ηmb, r) = ηĤ(ma,mb, ηr), ∀ η ∈ R \ {0}.
(56)

Thereby, it is sufficient to consider only thema/mb mass
ratio to obtain qualitatively different eigenfunctions of
Equation (55). It is also known that Ĥ(ma,mb, r) has at
least one bound state for allma/mb values [115,116].

To numerically study the H− → H+
2 transition, the

ground-state wave functions were computed in Ref. [72]
for several ma/mb values using the variational proce-
dure described in Section 2. Figure 5 shows the transi-
tion of the particle density, D(1)

0a . It is interesting to note

Figure 4. For the three-particle He atom and for the three-
particle H+

2 molecular ion ‘we discuss the very same type of dif-
ferential equation in an entirely different way’ [97] in the standard
quantum chemistry approach.
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Figure 5. Transition of the ground-state particle density, D(1)
0a , by increasing the ma/mb mass ratio in {a±, a±, b∓}-type systems [72].

The centre (0) of each plot is the centre of mass.

that the emergence of the particle shell is solely induced
by the increase of ma/mb [72,73], while the symmetry-
properties of the systems remain unchanged. All systems
are ‘round’ in their ground state with N=0 and p=+1.
In Ref. [72] the transition point was numerically esti-
mated to be between 0.4 and 0.8, which also suggests that
the positronium anion, Ps− = {e−, e−, e+}, has some
molecular character. The figure represents theH+

2 molec-
ular ion as a shell. We may wonder whether it is possible
to identify the relative position of the protons within
the shell. For this purpose the angular density function,
�0,pp′ , was calculated in Ref. [73], which demonstrated
that the protons are indeed found at around antipodal
points of the shell (remember that the centre of each
plot is the centre of mass). As to earlier theoretical work,
Kinsey and Fröman [117] and later Woolley [102] have
anticipated similar results by considering the ‘mass polar-
isation’ in the translationally invariant Hamiltonian aris-
ing due to the separation of the centre of mass (note that
the separation of the centre of mass is responsible also

for an important change of the spectral properties of the
Hamiltonian discussed in Section 1.4). Furthermore, the
proton shell has some finite width, which can be inter-
preted as the zero-point vibration in the BO picture.
Recent work [118–120] has elaborated more on the tran-
sition properties and vibrational dynamics of this family
of three-particle systems and determined the mass ratio
where the transition takes place more accurately.

3.1.2. Numerical example for a triangular molecule
In the particle density plots, larger molecules would
also be seen as ‘round’ objects in their eigenstates
with zero total angular momentum and positive par-
ity (N=0,p=+1), and localised particles form shells
around the molecular centre of mass. In order to demon-
strate a non-trivial arrangement of the atomic nuclei
within a molecule, the H2D+ = {p+, p+, d+, e−, e−}
molecular ion was studied in Ref. [73]. Interestingly, the
qualitative features of the computed density functions
(see Figure 6) converged very fast, small basis sets and

Figure 6. Radial, ρab, and angular, �a,bc , probability density functions computed for H2D+ = {e−, e−, p+, p+, d+}.
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a loose parameterisation was sufficient to observe con-
verged structural features, whereas the energies were far
from spectroscopic accuracy.

Figure 6 summarises the particle-density functions
which highlight characteristic structural features of the
system. First, we can observe the delocalised electron
cloud (ρ0,e), the proton shell (ρ0,p), and the deuteron shell
(ρ0,d) around the centre of mass (0). The deuteron shell is
more peaked and more localised in comparison with the
proton shell. (Remember that these plots show the spher-
ically symmetric density along a ray, ρab, and the density
functions are normalised to one.)

Next, let’s look at the probability density functions for
the included angle, �0,ab, of two particles measured from
the molecular centre of mass (‘0’). The dashed line in
the plots shows the angular density corresponding to a
hypothetical system in which the two particles (a and
b) are independent. It is interesting to note that for the
two electrons �0,ee′ shows very small deviation from the
(uncorrelated system’s) dashed line. At the same time,
we see a pronounced deviation from the dashed line for
the nuclei, �0,pp′ and �0,pd. These numerical observa-
tions are in line with Claverie and Diner’s suggestion
based on theoretical considerations [103] that molecular
structure could be seen in an fully quantum-mechanical
description as correlation effects for the nuclei.

As to the included angle of the two protons and
the deuteron, the �d,pp′ probability density function
has a maximum at around 60 degrees, which indi-
cates the triangular arrangement of the nuclei. Due to
the almost negligible amplitude of �d,pp′ at around 180
degrees the linear arrangement of the three nuclei (in
the ground state) can be excluded. Thus, the structure
of H2D+ derived from our pre-BO numerical study
is in agreement with the equilibrium structure (equi-
lateral triangle) known from BO electronic-structure
computations.

3.2. Classical structure from quantummechanics

Relying on the probabilistic interpretation of quantum
mechanics, the structure of H+

2 was visualised as a pro-
ton shell (Figure 5) with the protons found at around the
antipodal points, and H2D+ was seen as a proton shell
and a deuteron shell within which the relative position of
the three nuclei is dominated by a triangular arrangement
(Figure 6). This analysis has demonstrated that elements
of molecular structure can be recognised in the appro-
priate marginal probability densities calculated from the
full electron-nuclear wave function. At the same time,
a chemist would rather think about H+

2 as a (classical)
rotating dumbbell (Figure 7) and H2D+ as a (nearly)
equilateral triangle. Although elements can be recognised

Figure 7. Quantum vs. classical structure of molecules: superpo-
sition or rotating dumbbell.

in the probability density functions, the link to the clas-
sical structure which chemists have used for more than a
century to understand and design new reaction pathways
for new materials, is not obvious [97,99,100,102,121,
122].

In the next couple of paragraphs we briefly outline a
promising direction which can offer a resolution to this
puzzle. We collect the most relevant aspects and ideas,
whereas their detailed exploration is left for future work
in this field. In order to recover the classical molecular
structure from a fully quantum mechanical treatment, it
is necessary to obtain for a molecule

(a) the shape;
(b) the handedness: chiral molecules are found exclu-

sively in their left- or right-handed version or in a
classical mixture (called racemic mixture) of these
mirror images but ‘never’ in their superposition;

(c) the individual labelling of the atomic nuclei (distin-
guishability).

Although it is possible to write down appropriate lin-
ear combinations (wave packets) of eigenstates of the full
Hamiltonian, which satisfy these requirements at cer-
tain moments, we would like to recover these proper-
ties as permanent molecular observables. (Most recently,
Grohmann and Manz [123] have pointed on the fact
that it is impossible to form localised superpositions of
quantum states of molecular rotors, which would coin-
cide with our (semi)classical picture of methyl groups,
due to the different spin part corresponding to the
spatial functions which would be necessary for these
superpositions.)

A possible resolution of the quantum-classical molec-
ular structure puzzle will start out from the description
of the molecule as an open quantum system being in
interaction with an environment [124,125]. According
to decoherence theory pointer states are selected by the
continuous monitoring of the environment. As a result,
the system’s reduced density matrix (after tracing out the
environmental degrees of freedom from the world’s den-
sity matrix) written in this pointer basis evolves in time
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so that its off-diagonal elements decay exponentially with
some decoherence time, characteristic to the underlying
microscopic interaction process with the environment
(radiation or matter). This decay of the off-diagonal
elements leads to the suppression of the interference
terms between different pointer states, and results in a
(reduced) density matrix the form of which corresponds
to that of mixed states. Hence, this result can be inter-
preted as the emergence of the classical features in a
quantummechanical treatment.4 So, decoherence theory
allows us to identify pointer states, which are selected and
remain stable as a result of themolecule’s interactionwith
its environment.

It is interesting to note that importantmolecular prop-
erties (shape, handedness, atomic labels) break the fun-
damental symmetries of an isolated quantum system: the
rotational and inversion symmetry, as well as the indis-
tinguishability of identical particles. It remains a task to
explore on a detailed microscopic level how and why
these broken-symmetry states become pointer states of
a molecular system.

(a) Shape. Following the pioneering studies which have
identified pointer states and confirmed their stability
upon translational localisation [126–128] Ref. [129]
provides a detailed account of the rotational deco-
herence of mesoscopic objects induced by a photon-
gas environment or massive particles in thermal
equilibrium. The qualitative conclusions are similar
for the two different environments, but there are dif-
ferences in the estimated decoherence time and its
temperature dependence differ for the two environ-
ments. Orientational localisation of the mesoscopic
ellipsoid takes place only if there are at least two
directions for which the electric polarisabilities are
different, and coherence is suppressed exponentially
with the angular distance between two orientations.

(b) Handedness. As to the chirality of molecules, the
superselection phenomenon has been demonstrated
in Ref. [130] by using a master equation [131] which
describes the incoherent dynamics of the molec-
ular state in the presence of the scattering of a
lighter, thermalised background gas. Experimental
conditions are predicted under which the tunnelling
dynamics is suppressed between the left and right-
handed configurations of D2S2.

(c) Individual labelling of the atomic nuclei. Concerning
the distinguishability of atomic nuclei, it remains a
challenge to work out the detailed theoretical equa-
tions and to estimate the experimental conditions
under which the individual labelling of quantum
mechanically identical atomic nuclei (e.g. protons)
emerges.

4. Summary, conclusions, and future challenges

The direct solution of the full electron-nuclear Schrö
dinger equation, without the introduction of any kind
of separation of the electronic and the nuclear motion,
makes it possible to approach the non-relativistic limit
arbitrarily close. We call this approach to the molec-
ular problem pre-Born–Oppenheimer (pre-BO) theory
in order to emphasise that the usual BO separation is
avoided. The article presented details of our pre-BO com-
putational method, which we call QUANTEN (QUAN-
Tum mechanical treatment of Electrons and atomic
Nuclei), using explicitly correlated Gaussian functions
and the stochastic variational method with relevant cita-
tions to the pioneers of these computational techniques
[18,19,38].

We have reviewed numerical results obtained for sev-
eral bound and a couple of unbound states of three- and
four-particle systemswith various quantumnumbers and
with sub-spectroscopic accuracy in the energy. Although
these computations are very demanding, they will allow
us to test the results provided by more efficient, effective
Hamiltonians obtained for example from non-adiabatic
perturbation theory [92]. It is also interesting to notice
that rovibrational states bound by an excited electronic
state within the BO approximation are obtained as reso-
nances within a pre-BO treatment with direct access to
not only the energy but also to the finite predissocia-
tion lifetime of the state (due to rovibronic couplings).
Numerical results demonstrating this ideawere discussed
for the hydrogen molecule.

At the moment, larger (polyatomic) systems can be
addressed with a much reduced accuracy (in the energy)
with the various existing pre-BO methods. Indeed, it
has been an open problem for many years to define
efficient basis functions and/or parameterisation strate-
gies which make a pre-BO treatment amenable for poly-
atomics with (sub-)spectroscopic accuracy. As soon as
polyatomic pre-BO computations of (sub-)spectroscopic
accuracy will become possible (even if only a few states
of selected non-relativistic quantum numbers can be
computed), rigorous variational benchmark values will
become available to the effective non-adiabatic theories,
which can be efficiently used to compute all rovibra-
tional (rovibronic) bound and many resonance states.
At the moment results of these effective non-adiabatic
computations can be compared only with experimen-
tally measured spectroscopic transitions for which rela-
tivistic (and probably also some QED) correction must
be included, which would also need to be validated.
Already at the present stage and possibilities of pre-
BO theory, less accurate computations of polyatomic
molecules shed light to a long-standing problem: the
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reconstruction of the chemist’s (classical) molecular
structure form a fully quantum mechanical description.
We reviewed computational results, which allowed us to
identify elements of the molecular structure from the
full electron-nuclear wave function by inspecting and
finding local maxima of appropriately defined marginal
probability density functions.

We believe that this, currently less common, route
to describe molecular systems, i.e., an equal quantum
mechanical treatment of electrons and atomic nuclei,
opens up great possibilities and also sets outstanding
challenges for future theoretical work and for applica-
tions in comparisonwith the latest experimental develop-
ments. To conclude this article, we highlight three impor-
tant directions to motivate further work in this old-new
field of molecular quantum mechanics:

(1) Fully quantummechanical developments for precision
spectroscopy of small molecules The comparison of
precision measurements and highly accurate molec-
ular computations for small and lightmolecules con-
tributes to the testing of fundamental physical con-
stants, e.g. the proton-to-electronmass ratio, the fine
structure constant, or to pinpoint fundamental phys-
ical quantities, such as the proton radius, and to
test fundamental physical theories [132,133]. For a
meaningful comparison, it ismandatory to be able to
solve the non-relativistic Schrödinger equation very
accurately for several (bound and unbound) states of
di- and polyatomic molecules and to account for the
relativistic as well as QED effects.

(2) A hierarchy of approximate pre-BO methods The
idea of including the atomic nuclei in the quantum
mechanical treatment of the electrons has been pur-
sued in order to develop a systematically improvable,
hierarchy of approximate pre-BO methods [23–29,
134,135]. An appealing feature of a pre-BO treat-
ment is that it allows us to avoid the computation and
fitting of the potential energy surface(s) and non-
adiabatic coupling vectors (for multiple electronic
states). At the moment, it appears to be technically
and computationally extremely challenging to devise
a practical, accurate, and systematically improvable
hierarchy of approximate electron-nuclear methods
applicable to larger, polyatomic molecules. Recently,
a combination of electronic structure and quantum
nuclear motion theory has been suggested [30,136],
which aims to combine the best of the two worlds in
a practical manner.

(3) Chemical observables from a fully quantum mechan-
ical treatment The definition of molecular struc-
ture within a fully quantum mechanical (pre-BO)
description of molecules remains to be an unsettled

problem [97,99,100,102,121,122] either for a numer-
ically ‘exact’ or an approximate treatment. Certainly,
the probabilistic interpretation of the molecular
wave function and the study of appropriate marginal
probability densities provide useful pieces of infor-
mation about the structure of a molecule. In order
to arrive at a quantum molecular theory, in which
the molecule is treated quantum mechanically as
a whole, and at the same time the known chemi-
cal concepts are restored from the theoretical treat-
ment, it is necessary to re-establish the shape, the
handedness, and the individual labelling of the iden-
tical atomic nuclei. Interestingly, these important
chemical properties break the fundamental symme-
tries of an isolated quantum system. The application
of decoherence theory with realistic microscopic
models for molecules offers a reasonable starting
point for the reconstruction of these known classical
chemical properties. The estimation of decoherence
time for various environments and interactions has
relevance for the practical realisation of quantum
control and quantum computing experiments with
molecules.

Notes

1. We use the spectroscopists’ notation [137] for the total
angular momentum quantum number, N, instead of L that
is commonly used in the physics literature.

2. The term “spectroscopic accuracy” is not uniquely defined
but it is usually used to refer to computations providing
vibrational transition wave numbers with an uncertainty
better than 1 cm−1 (≈ 4.6μEh) and even higher accuracy
for rotational transitions.

3. For example, the IUPAC’s Compendium of Chemical Ter-
minology (‘Gold Book’) [138] defines the equilibrium
geometry in terms of a potential energy surface, but we
do not find anything beyond the BO approximation, apart
from the definition of the primary, secondary, etc. struc-
tures of macromolecules. Interestingly, themolecular shape
is defined in the Compendium.

4. There is an unsettled discussion concerning the mixed
states of open quantum systems in terms of proper vs.
improper mixtures, which is related to the quantum mea-
surement problem [139,140].
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