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ABSTRACT

UNDERSTANDING MECHANOCHEMICAL PROCESSES
ON SURFACES MEASURED IN ULTRAHIGH VACUUM

by

Resham Rana

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Wilfred T. Tysoe

Tribology is the study of friction and wear and of the energy dissipated when

two surfaces slide against each other. A recent DOE report shows that improved

lubricants could save ∼103 exaJoules (1 exaJoule = 1018 joules) per year, equivalent to

20% of the world’s total energy consumption. The focus of this work is to

understand the surface chemistry and tribological reactions of model sulfur-,

carbon-, and phosphorus-based lubricant additives to understand the mechanisms

by which they operate. Previous work has shown that lubricant additives react by a

novel mechanochemical process in which the force acting on the adsorbate

accelerates the rate of reaction and can lead to new metastable materials.

The tribochemical reactions are studied using a tungsten carbide pin sliding

against a planar substrate in ultrahigh vacuum where the reaction is followed by
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detecting gas-phase products and analyzing the rubbed region using Auger

spectroscopy.

The tribochemistry of dimethyl disulfide (DMDS) on copper has been studied

previously. Here, reaction is initiated by the decomposition of adsorbed methyl

thiolate species to form small gas-phase hydrocarbons, followed by a process in

which the surface sulfur penetrates the bulk of the copper to produce a metastable

copper sulfide film. This work aims at further understanding the second step in this

process, namely, the surface-to-bulk transport of sulfur into copper by studying the

effect of coverage and the crystallinity of the copper substrate on the transport

kinetics. These kinetic studies were supplemented by electron microscopy if the

subsurface region of samples that had been prepared by fast-ion beam methods.

These studies explored the effect of binding to the substrate. As a

consequence, work was also carried out to investigate how binding of the reactive

molecule to the tungsten carbide pin might influence the tribochemistry. This work

is carried out using unsaturated carboxylic and saturated carboxylic acids, where the

carboxylate group has been shown to anchor strongly to the copper substrate, and

where the C=C species are expected to bind to the tungsten carbide counterface and

thus influence the reactivity. The adsorbed carboxylic acids were found to

decompose during sliding by rapid cleavage of the bond between the carboxylate

and the hydrocarbon groups. Difference in the surface chemistry was found, but was
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traced to difference in the reactivity of the hydrocarbon.

In addition to the sulfides investigated above, phosphorus-containing

molecules, notably phosphite esters, have been found to be good lubricants for iron.

The surface tribochemistry model lubricant additives, triethyl phosphite, and

trimethyl phosphite were studied on iron oxide (Fe3O4) by both experimental and

theoretical approaches, where the molecules were found to decompose by sequential

removal of alkoxide species to form friction-reducing iron phosphate films.
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Chapter 1

Introduction

1.1 Tribology: Friction and Wear

The word tribology is derived from the Greek word tribos, which means to rub, so

that tribology is the study of contacting interfaces or the science of friction and wear.

Tribology has a major economic significance for a range of areas from metalworking

equipment to space lubrication. Significant economic savings can arise by reducing

friction and wear processes [1, 2]. Regarding its benefit to humankind, research work

should lead to applications that are beneficial to human civilization. Interfacial chem-

istry has a profound influence on friction and wear through the formation of a film on

surfaces by the reaction of lubricant additives, emphasizing the importance of under-

standing the surface interactions occurring during tribological processes. This is the

subject of ongoing research work around the globe of the research described in this

thesis.

The first practical application of friction was its use for lighting fires by frictional

heating of rubbed pieces of wood. Looking back on the history of tribology, lubricated

wheels have been used since 3500 BC to reduce the friction for moving objects and
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Chapter 1. Introduction

wheeled harvesters were used in the past [3]. Around 1880 BC, Egyptians used sledges

to transport heavy statues, moving them with a force of ∼ 600 KN along lubricated

wooden tracks (Figure 1.1) [4].

FIGURE 1.1: A drawing in a grotto at El Bersheh, circa 1880 BC [4, 5]. Liquid being poured in
front of the colossus from a jar.

Da Vinci, around the 15th century, introduced the concept of coefficient of friction

as the ratio of friction force to normal force from experimental studies on a rectangular

block sliding over a flat surface. In general, nowadays, the Coulomb friction approx-

imation is used for calculating frictional force, where Coulomb’s law of friction states

that kinetic friction is independent of the sliding velocity. For two objects moving
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1.1. Tribology: Friction and Wear

relative to each other, the relationship between the coefficient of kinetic friction (µk),

friction force (Fk) and normal force (Fn) is:

Fk = µkFn (1.1)

Over the past decades, cutting-edge tribology research has developed the funda-

mental understanding of tribology that has been used to understand friction of tri-

bological equipment from the macro to the nanoscale to save billions of dollars and

exaJoules (EJ) of wasted energy per year [1]. A recent study on the impact of tribol-

ogy on energy use shows that 20% (∼ 103 EJ) of the world’s total energy is lost to

friction [2]. In tribological systems, contact occurs between the counterfaces, where

the length scale of the contact ranges from a single to multiple asperities. In mi-

cro/nanoelectromechanical systems (MEMS/NEMS), where few or only a single as-

perity is dominant, low loads, ranging from µg to mg are important, and negligible

wear takes place. In conventional or macrotribology, higher loads are important, where

wear is inevitable and bulk properties of the material are important.

The concept of wear and friction are central subjects for understanding tribological

systems. The nature of the materials and experimental conditions influence the wear

and friction. The metallurgical compatibility, in other words, metal-metal solubility

is also an important factor to be considered for understanding friction and wear of
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contacting bodies. The increasing degree of metallurgical compatibility results in high

friction and wear [6]. Principally identical contacting pair must be avoided to avoid

high friction and wear.

The friction and wear mechanisms cannot be explained by a single approach be-

cause friction and wear depend on various conditions viz, the compatibility of the

materials pair, the chemical environment, grain sizes, surface roughness, etc. To lower

friction and wear, lubricants are applied between the contacting pair of surfaces. The

lubricating substances can be solids (thin or powdered film), liquids, or gases. Lubri-

cation is mainly divided into two types: solid lubrication and fluid (liquid or gaseous)

film lubrication. These lubricants are intended not only to decrease friction but can

also be used to decrease the wear.

The lubrication regimes depend on the sliding conditions and can be categorized

as hydrodynamic or elastodynamic, mixed, and boundary lubrication. As shown in

Figure 1.2 known as the Stribeck curve [7], the hydrodynamic regime is the condition

where the thickness of lubricant film, h, is greater than the average roughness Ra of

the contacting surface so that there is always a fluid film at the interface. In the second

regime known as mixed lubrication, h is approximately equal to the surface roughness

so that asperities on the surfaces start to come into contact. Finally, in the so-called

boundary regime, the film is much thinner than the surface roughness so that the slid-

ing surfaces are in intimate contact. Most of the friction-related work performed in this
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dissertation is carried out under boundary lubrication condition.

FIGURE 1.2: Stribeck curve: the relationship between the Hersey number, ηN

P
, where η is vis-

cosity, N is the speed of the fluid and P is the normal load per length of tribological contact,
and the friction coefficient µ at different lubrication regimes: i) hydrodynamic lubrication, ii)

mixed lubrication, and iii) boundary lubrication [8].

As shown in Figure 1.2. iii, boundary lubrication occurs when the two contacting

bodies are only separated by a thin layer of molecules so that the average roughness

of the contacting interface is greater than the thickness of the layer of molecules in the

contact. In this lubrication regime, direct contact between the surfaces is dominant,

so that significant wear and deformation can occur in the rubbing pair. To protect the

contacting surfaces and to minimize friction and wear, boundary lubricating films are

formed by physisorption, chemisorption, or by chemical reactions at the sliding inter-

face. Among these three types of surface layers, the chemisorbed layer and reactively
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formed films are more stable and durable than the physisorbed layer. Polar molecules

can bind strongly to the solid surface to provide a strong interaction between the rub-

bing surfaces and molecules [3] and such boundary layers are generally good lubricant.

The chemical activity of the sliding surface also influences the bonding and reactivity

of the boundary film for providing a durable and stable lubricant film. Over the past

few decades, there has been a significant improvement in the quality of lubricants be-

cause of active additives that are included in the lubricant, which enhances the role of

film formation by chemically reacting with the sliding surface.

The substances which are added to the base oil and interact with the rubbing pair

to produce a protective film or tribofilm are known as lubricant additives. Additives

are mainly of three types: low-friction, anti-wear, and extreme-pressure additives. The

most commonly used additives often contain long-chain carbon atoms (Cn > 12), such

as fatty acids, alcohols, etc. The most widely used anti-wear additive is zinc dialkyal

dithiophosphate (ZDDP), a phosphate-based compound that works by forming a pro-

tective film during sliding. Phosphate or phosphite esters like trimethyl and triethyl

phosphates/phosphites and organo-sulfur compound like dimethyl disulfide (DMDS)

are also used as lubricant additives. Both types of P and S-based additives react to form

a thin protective anti-wear film of metal-phosphate and metal-sulfide/sulfate during

the tribological process. The surface and tribological properties of these compounds

are investigated as part of this work.
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1.2. Tribo/Mechanochemistry

1.2 Tribo/Mechanochemistry

Under the influence of shear at a sliding interface, chemical changes can take place at

the interface between the sliding pair caused by the work carried out during sliding,

known as mechanochemistry. These effects have been known for millennia, and in

ancient Greece, there are reports of rubbing mercuric sulfide (cinnabar) with vinegar

in copper mortar and pestle to yield mercury [9]. Shearing can modify the rate of a

chemical reaction by changing the structure of the molecule, which in turn modifies

its electronic configuration and can then lower the energy barrier of the chemical reac-

tion. Such mechanochemical phenomena can be observed for several processes such

as mechanical alloying, solid-state synthesis, etc. [10]. As will be shown below, tribo-

or mechanochemical processes can also lead to the formation of a protective anti-wear

film, can yield gas-phase reaction products [11], and induce the transport of atoms on

the surface into the bulk of the sample [12].

1.3 Overview of this work described in this thesis

The surface-to-bulk transport kinetics of sulfur is studied on copper samples that have

been cleaned and annealed at 500, 850, and 1020 K during the sample cleaning pro-

cedure in ultrahigh vacuum (UHV) to influence their crystallite sizes and mechanical

properties. The annealed copper samples were rubbed for a number of cycles by a

7
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tungsten carbide tribopin on a copper surface dosed with dimethyl disulfide (DMDS),

where it reacts to form a methyl thiolate overlayer. The rate of methyl thiolate decom-

position was measured on the different copper samples and the results showed that

the methyl thiolate decomposition rates change with changed DMDS coverage. It is

also found that the kinetics of sulfur transport depends on the nature of tribopin, i.e.

whether it is graphitic covered or cleaned. It is found that the rate of shear-induced

surface-to-bulk transport of sulfur is influenced by the presence of grain boundaries

and dislocations. To further understand the transport mechanism, samples prepared

using focused-ion beam (FIB) technique were extracted from the rubbed region formed

on copper foils annealed at different temperatures after having been exposed to DMDS

while rubbing. The sample were imaged by electron microscopy and the elemental dis-

tribution analyzed by Energy Dispersive X-Ray (EDX) images. It was found that the

surface-to-bulk sulfur transport rates depend upon the grain sizes in the copper that

are microstructurally developed during the sample annealing.

The mechanochemistry of saturated and unsaturated carboxylic acids viz, 6-heptenoic,

7-octenoic, heptanoic and octanoic acids were studied on annealed copper samples.

The carboxylic-acid-dosed copper samples were rubbed a tungsten carbide tribopin

that had been cleaned by e-beam heating. The mechanochemical reaction rates mea-

sured inside the wear track by monitoring the carbon Auger signal as a function of

the number of times that the sample was rubbed shows that the interaction between

8



1.3. Overview of this work described in this thesis

the terminus of the hydrocarbon chain and the moving counterface (the pulling point)

influenced the tribochemical reaction rate. It is expected that the reaction kinetics is

controlled by the tribochemical decomposition of the hydrocarbon fragment that is

formed.

The surface chemistry of model lubricant additives, trimethyl phosphite (TMPi)

and triethyl phosphite (TEPi), was studied on oxidized iron in UHV and the results

compared with the gas-phase lubrication of TEPi on oxidized iron in a UHV tribome-

ter. Oxide films are grown on a polycrystalline iron substrate and characterized by X-

ray photoelectron spectroscopy (XPS). It reveals that on heating, the phosphite esters

convert to phosphate species. Gas-phase lubrication experiments in the presence of 1

× 10−7 Torr of gas-phase TEPi show that the friction coefficient is significantly reduced,

where the friction reduction is found to increase with increasing reaction temperature.

The friction reduction correlates well with the proportion of phosphate product formed

in the film and indicates that the formation of phosphate tribofilm is primarily respon-

sible for reducing friction [13].

In the final section of this work, the adsorption energies of phosphite ester molecules

and their fragments are calculated using the Vienna ab initio simulation package (VASP)

density functional theory (DFT) method, where the results show that trimethyl phos-

phites are slightly more strongly adsorbed than triethyl phosphites on Fe3O4 surface

and the phosphite esters molecule adsorb on top of the octahedral Fe3+ atom. The
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Chapter 1. Introduction

adsorption energies calculated by DFT also scale linearly with the activation energies

for the sequential removal of alkoxide groups from the phosphite esters measured ex-

perimentally using temperature-programmed desorption, and thus obey a linear-free

energy relationship proposed by Evans and Polanyi [14, 15].
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Chapter 2

Experimental Methods

2.1 Introduction

Most of the work presented in this dissertation was carried in an ultrahigh vacuum

(UHV) chamber where pressures in the range of 1.0 × 10−9 – 1.0 × 10−12 Torr are cate-

gorized as being in the UHV regime. Performing surface-science experiments in a UHV

chamber has some advantages. The key feature for performing experiments in UHV

is that clean and well-defined surfaces can be obtained and kept free from contami-

nants for times that are sufficient to allow experiments to be performed [1]. Another

advantage of carrying out experiments in UHV is that electron-based spectroscopic

techniques, which are inherently surface sensitive because of the small mean-free path

of electrons in solids, can operate inside the chamber. From the kinetic theory of gases,

if every molecule that collides with a surface sticks, a monolayer coverage can be ob-

tained with a pressure of ∼ 1.0 × 10−6 Torr during a period of one second. Therefore,

pressures much better than 1.0 × 10−6 Torr are required to perform surface-science ex-

periments, and generally pressures of ∼ 2.0×10−10 Torr are needed for extensive exper-

iments and most of the experiments performed for this thesis work were done under
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Chapter 2. Experimental Methods

a vacuum of ∼ 2.0 × 10−10 Torr unless specifically indicated. The vacuum systems and

UHV tools used for this work are described in the following sections.

2.2 Vacuum Pumps

The use of various pumps are required to reach the UHV pressure range by using sev-

eral sequential pumping stages to obtain ultrahigh vacuum inside the chamber. First, a

mechanical pump is used to initially pump systems from atmospheric pressure, which

leads to pressures up to a medium vacuum of ∼ 2.0 × 10−3 Torr. Second, turbomolec-

ular pumps can be used which reduce the pressure to ∼ 2.0 × 10−8 Torr (high vacuum)

and finally, ion pumps are used to reach the UHV range of ∼ 2.0× 10−10 Torr after bak-

ing the system as explained in the section describing the UHV chambers. In cases in

which high gas throughputs are required, diffusion pumps can be used, but were not

required during the course of this work. However, for pumping the gas-handling lines,

two pumping systems are used. First, a mechanical pump is used to obtain a medium

vacuum and a diffusion pump is used to obtain a high vacuum in the gas line.

2.2.1 Rotatory/Mechanical Pump

The working principle of the rotary pump is based on the use of pump oil with the

help of a rotating vane to pressurize and expel the gas, where the pump oil also works
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2.2. Vacuum Pumps

as both a lubricant and sealant. The vane slides into and out of the rotor and seals

on all edges, so that during this process the vane traps the gas coming from the inlet

section and forces it out from the outlet section as shown in the Figure 2.1. This vane

operates at a steady speed and creates vacuum a in the mTorr range [2]. Although the

mechanical pump cannot create a high vacuum, it has a high throughput and is used

as a backing pump to diffusion and turbomolecular pumps and for initially pumping

the chamber from atmospheric pressure.

FIGURE 2.1: Rotary pump operation stages.
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2.2.2 Diffusion Pump

The diffusion pump, also called the gas-jet pump, uses a high speed of vapor to direct

gas molecules down into the bottom of the pump towards the outlet. In other words,

oil gas molecules traveling upward through the jet assembly are directed downward

and forced to exit through the outlet, where a rotary pump is connected to finally re-

move the gas from the system. Oil having a low vapor pressure is used for producing

the gas-jet. The diffusion pump does not work alone for pumping and it must be con-

tinuously backed by the mechanical pump via the outlet throughout its operation. A

schematic of diffusion pump is shown in the Figure 2.2.

A diffusion pump contains vertically stacked jet assemblies inside a glass or stain-

less steel container, where a gas-jet is produced by heating the oil bath via an oil heater

which is attached to the bottom of the chamber [2, 3]. The diffusion pump is equipped

with cooling system which minimizes back streaming of the oil into the gas handling

line/UHV chamber and condensed the oil in the outset, thus leaving the pressurized

gas to be pumped away by the rotary pump. Depending on the make, for cooling the

oil vapor, a water coil or air fan is used and backstreaming can be prevented by using

a or cryotrap. Despite the back-streaming problem, these pumps are cost-effective.
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2.2. Vacuum Pumps

FIGURE 2.2: Schematic of the diffusion pump.

2.2.3 Turbomolecular Pump

The turbomolecular pump operates by the use of a very rapidly spinning turbine. The

multiple stages of the turbine (rotor) and stator blades are organized in series to give

momentum to the gas molecules and push them towards the outlet end of the pump,

which is connected to backing pump. Repeated collision of gaseous molecules with

a set of rotor/stator blades arranged in series occurs when angled blades rotate up to

speeds of ∼75 krpm. The spinning rotor blades transfer energy to the gas molecules

and these gas molecules enter the stator to exit a first set of rotor and stator blades.
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Again, these gas molecules collide with second set of rotor blades and enter the stator

blades, and this process continues until the gas molecules are forced out from the end

of the pump to exit the chamber [2, 4]. Figure 2.3 shows the arrangement of rotor and

stator blades in the pump.

FIGURE 2.3: Schematics of turbomolecular pump.

Since the rotating speed of blade is high (75 krpm/1350 Hz at normal operation),

it is required to maintain the blade thickness to withstand the high pressure. Friction

builds up heat due to the high speed, therefore the pump is air-cooled by a fan attached

to the end of the pump. To reduce the deformation of rotor blades, stiff materials are

used to build them. To minimize the friction, magnetic bearings are used, and these
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bearings also help to eliminate oil contamination. Turbomolecular pump can be used

over wide range of high vacuum pressures and it can achieve a vacuum of ∼ 1.0× 10−8

Torr. Depending upon the size of pump, the turbomolecular pump is fitted to the UHV

chamber with Conflat R© flange and backed continuously up by a mechanical pump.

2.2.4 Ion Pump

Ion pump is the primary pump for achieving UHV, where incoming gaseous molecules

are ionized within the chamber by an electric discharge. An electrical potential of be-

tween 3 to 7 kV is maintained between the ion pump electrodes, which accelerates the

ions into the cathode and helps to trap the ions or sputter the cathode to produce a

newly exposed surface. The electric discharge creates a swirling electron cloud which

ionizes the incoming gaseous molecules. The gas ions formed during this process ac-

celerate towards the titanium/tantalum cathode to become buried, and the pumping

effect occurs. The incoming ions are either chemisorbed or physisorbed onto the cath-

ode [2].

As shown in the Figure 2.4, a strong magnetic field of 800 - 2000 G is applied parallel

to the anodes to guide the electrons in a spiral trajectory, which increases the ionization

probability. The ion pump can operate when the pressure of the chamber reaches ∼

1.0× 10−5 Torr and can reach a vacuum of ∼ 1.0× 10−10 Torr after the chamber has been

baked. Once it reaches the optimum vacuum, this pump does not require a backing
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FIGURE 2.4: Schematics of ion pump.

pump. This pump is also vibration free but, because the gases are trapped in the pump,

cannot be used when the gas loads are high.

2.3 Gas Handling Line and Chemical Purification

A gas-handling is used to store gases and volatile liquids for introduction into the UHV

chamber via a high-precision leak valve. The line is built from glass tubes, where sev-

eral valves are fitted to attach gas cylinders or vials for liquids, and is connected to ro-

tary and diffusion pumps to ultimately produce a vacuum in the 1.0× 10−7 Torr range.

A schematic diagram of a typical gas-handling line and its attachment to the UHV

20



2.3. Gas Handling Line and Chemical Purification

chamber is shown in Figure 2.5. A diaphragm manometer is fitted to the gas-handling

line to monitor the gas pressure inside it. The arms of the gas lines are connected to the

FIGURE 2.5: Schematics of gas handling line attached with UHV chamber.

UHV chamber through high-precision leak valves to introduce various gaseous chem-

icals into the vacuum chamber. For example, these can be Ar for argon-ion sputter

cleaning of samples, N2 for back-filling the chamber, and gaseous chemicals of inter-

est for dosing onto the sample. A small glass bottle or vial containing the chemical of

interest is attached through a valve to introduce the chemical into the gas line. The

liquid chemicals in the vial can be cleaned by freeze-pump-thaw cycles using pumps

connected to the gas line to remove any dissolved volatile contaminants.
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2.4 Design, Construction, and Operation of a UHV Cham-

ber

The chambers used in these experiments consisted of a 304 stainless-steel vessel hav-

ing a 6.0" (tribochamber) or 8.0" (X-ray photoelectron spectroscopy chamber) diam-

eter, machined with several sized ports that are terminated by Conflat R© flanges on

the outside of the vacuum vessel in order to mount UHV-based spectroscopic or non-

spectroscopic tools to allow a wide range of experiments to be performed. Several

windows are mounted on the Conflat R© flanges and are used to see inside the cham-

ber while manipulating the sample. A schematic diagram of a typical UHV chamber

is shown in Figure 2.6. Once the mechanical, turbomolecular and ion pumps are op-

erated to create a vacuum, the chamber is required to be baked out to remove water

vapor and other volatile contaminants from the wall of the chamber that can limit the

ultimate pressure of the system, and to enable pressures in UHV range to be attained.

Heating tapes are mounted on the external walls of the chamber and it is covered by

aluminum foil which insulates the chamber by trapping a layer of air and also helps to

heat the chamber evenly. Normally chambers are baked for ∼36-42 hours at 100-200oC.

After baking the chamber, before the chamber cools to room temperature, it is neces-

sary to outgas any filaments of UHV-based equipment inside the chamber which helps

to attain a better vacuum.
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FIGURE 2.6: Schematics of typical UHV chamber.

2.5 UHV Tools and Techniques

To build a fully functioning UHV system, it is necessary to have several UHV-based

analytical and experimental tools mounted inside the chamber. The equipment and

techniques used during the work presented in this dissertation are described below.
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2.5.1 Sample Manipulators

In order to conduct experiments in the vacuum chamber, it is generally necessary to

move samples in vacuum to various positions to either clean or analyze the sample or

to perform other experiments. This is accomplished by a sample manipulator which is

mounted on 6.0”-diameter flange. It can move the sample in the X, Y and Z directions

with precision of 0.002 mm over a maximum distance of 25.0 mm in either direction.

FIGURE 2.7: Schematics of sample manipulator.

Also, sample can be rotated around the main axis (see Figure 2.7) by 360o. On the

manipulator flange, 11⁄3” Conflat R© flanges are used to mount feedthroughs which can
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be used, for example, for resistive heating of the sample, installing a (K-type) thermo-

couple for monitoring sample temperature or for introducing refrigerants to cool the

sample.

2.5.2 Sample Preparation, Mounting and Cleaning

Two different polycrystalline metal samples were used in this work. Iron samples

were used for temperature-programmed desorption (TPD), X-ray photoelectron spec-

troscopy (XPS) and tribological measurements. For these experiments, 0.1 mm thick

iron foils (99.999%) with ∼17 mm x 17 mm dimension were cut, and spot welded over

a 0.45 mm steel base after polishing the iron foil with 1.0 µm diamond paste to give

it a mirror finish. The sample comprising the iron on a steel base was mounted by

spot welding to tantalum rods attached to the manipulator. Iron foils were cleaned

by a number of annealing and sputtering cycles, where foils were heated to ∼ 1000 K

and Ar ion bombarded using a 2.0-keV beam energy with a 3.5 µA/cm2 sample cur-

rent. The cleanliness of the iron sample was monitored using Auger spectroscopy (see

section 2.5.6).

Another type of sample used in this work was a polycrystalline copper foil, where

surface-to-bulk sulfur transport, methyl thiolate decomposition and carbon removal or

carbon transport rates were measured. The 1.0-mm thick copper foils with a dimension

of ∼17 mm x 17 mm were polished with silicon grit and diamond paste, where 1.0-µm
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diamond paste was used as a final step to give a mirror finish. Then the sample was

cleaned with acetone and mounted to the tantalum rods by spot welding. These copper

foils were cleaned at different temperatures i.e. 500, 850, or 1020 K with 1.0 keV ion-

beam energies with a 2.0 µA/cm2 sample current. The cleanliness of both iron and

copper samples were monitored by Auger electron spectroscopy (see section 2.5.6).

2.5.3 Mass Spectrometer

The mass spectrometers used in this work are Ametek Dycor and UTi quadrupole gas

analyzers. These mass spectrometers were used for checking the purity of gaseous

chemicals, leak checking the vacuum system, and residual gas analysis during the tri-

bological experiments in the vacuum chamber. The Ametek Dycor was used for TPD

analysis and the UTi mass spectrometer was used for measuring the rates of product

evolution during shear-induced methyl thiolate decomposition. A mass spectrometer

head mainly consists of an ion source, analyzer, and detector. The ion source generates

the ions, where a hot filament generates electrons with a kinetic energy of 70 eV which

are used to ionize the gas molecules. These ions are then accelerated towards the en-

trance of the quadrupole analyzer, where the applied combined AC and DC voltages

between the quadrupoles helps to differentiate the ions with respect to their charge-to-

mass (m/z) ratios and allows the mass-filtered ions to reach the detector to read and

record the ions current as a function of the mass of the fragment. The detectors can
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FIGURE 2.8: Schematics of mass spectrometer.

either be a Faraday cup or an electron multiplier, where the detector of interest can be

used depending upon the nature of experimental design. The Faraday cup is less sen-

sitive than the electron multiplier and is used in cases in which the gas pressures are

high. Data were collected by using LabView software to plot the ion intensity versus

its mass or to monitor the intensity of a particular fragment mass as a function of time.

A schematic of a quadrupole mass spectrometer is given in Figure 2.8.
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2.5.4 Temperature-Programmed Desorption

The temperature-programmed desorption (TPD) experiments for the 7-octenoic acid,

octanoic acid, 6-heptenoic acid and heptanoic acid were carried out on copper sam-

ple. The carboxylic acids were exposed to cleaned copper foil via a Knudsen dosing

source at room temperature. A sample heating rate of 2.9 K/s was maintained, and

the sample temperature was ramped to ∼815 K and intensities of six different mass-

fragments were collected. The TPD experiments for triethyl and trimethyl phosphites

were carried out on the iron sample. The cleaned iron sample was cooled to ∼ 180 K

and dosed with 0.5, 1, 2, or 4 Langmuir exposures of the phosphite ester as explained

in Chapter 6. Liquid nitrogen for sample cooling an iron sample was supplied from

a 5 L liquid-nitrogen filled Dewar. A sample heating rate of 4.2 K/s was used for the

TPD experiments of phosphite esters. A LabView program was used for controlling

the temperature ramp of the sample to a maximum of ∼950 K and for collecting six

different mass spectrometer fragments.

The liquid samples used for the TPD experiments were transferred to glass bot-

tles and attached to the gas-handling systems of the vacuum chambers, where it was

subject to several freeze-pump-thaw cycles.

The TPD results were analyzed using a Redhead analysis, where the desorption

activation energy of an adsorbed compound could be calculated [5] using the equation:
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FIGURE 2.9: Schematics of TPD system.

Ed = RTp [ln (ATp

β
)− 3.64] (2.1)

where, Ed is activation energy of desorption, R is gas constant, A is pre-exponential

factor, Tp is sample temperature and β is heating rate [K/s].

The TPD system was also equipped with an X-ray photoelectron spectroscopy (XPS)
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system (see Section 2.5.7), where the base pressure of ∼ 2.0× 10−10 Torr can be obtained

after baking. Leak valves were connected to the gas-line for dosing reactants, and con-

tained an ion gun for sample cleaning, a LN2 sample cooling system that allowed the

sample to be cooled to ∼100 K, and a Dycor quadrupole mass spectrometer for collect-

ing TPD data, leak checking and gas analysis. The design of the TPD system is shown

in Figure 2.9.

2.5.5 Cylindrical Mirror Analyzer

The cylindrical-mirror analyzer (CMA) is an electron analyzer and is used to measure

the number of electrons as a function of the kinetic energy for measuring photoelec-

tron and Auger spectra. The CMA consists of two concentric cylinders arranged one

inside the other, where the inner cylinder is at ground potential and outer cylinder is at

some negative potential. The potential applied across the cylinders allows the passage

of impinging electrons having a specific kinetic energy, which depends linearly on the

potential energy difference between the inner and the outer cylinder, and to reach the

detector [6]. The electron gun is placed coaxially, and an electron detector or channel-

tron is placed behind an aperture in line with the focal plane of the CMA. Electrons

ejected from samples enter the entrance slit of the analyzer and reach the channeltron,

where secondary electrons are generated to create a current pulse. The CMA has the
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FIGURE 2.10: a. Outline of typical cylindrical mirror analyzer (CMA) b. Internal optics of
double pass CMA.

geometrical advantage of collecting electrons uniformly around a 360o azimuth. As in-

dicated above, the kinetic energy of the electrons that pass through the CMA is directly

proportional to the potential energy difference between the outer and inner cylinder.

However, the energy resolution of the CMA is also proportional to the kinetic energy

of the electrons. High-resolution detection is not required for Auger spectroscopy (see

Section 2.5.6), but is needed for XPS (see Section 2.5.7). Consequently, Auger spectra

are collected by varying the potential energy difference between the inner and outer

cylinders. However, to collect XPS data, the CMA is operated as an energy filter with a

constant potential energy difference between the inner and outer cylinders. The fixed

kinetic energy of the electrons traversing the CMA is known as the pass energy, EP,
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and effectively allows the spectral resolution to be tuned. To obtain a spectrum, a re-

tarding voltage ER is applied to the CMA to decelerate the electrons so that electrons

with a kinetic energy EK given by EK = EP + ER can reach the detector. The spectrum

is collected by varying ER.

The schematics shown in Figure 2.10 is of double-pass CMA design. In this work,

both single- and double-pass CMAs were used. For the experiments carried out in

the XPS or TPD chambers, a double-pass CMA was used, while for the experiments

carried out in tribometer chamber a single-pass CMA was used.

2.5.6 Auger Electron Spectroscopy

Auger electron spectroscopy (AES) is a surface-sensitive technique, which can probe

approximately the top five layers of the surfaces of solids [7]. Auger electrons are pro-

duced when a high-energy electron beam hits the surface of the material. During the

Auger process, as shown in Figure 2.11, an electron hole is created by the impact of

high-energy electrons while, at the same time, the electron hole is filled by an electron

from a higher energy level. During the process of the electron transition from a higher

energy level to a lower energy level, energy is released, and this released energy ejects

a third or Auger electron from the higher energy level. For example, if first electron

is ejected from a K shell and the second and third electrons are from higher-energy L2
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and L3 shells, this Auger process is labeled KL2L3. The measured Auger electron in-

tensities at different kinetic energies are useful to identify the different types of atoms

because different elements have different characteristic Auger kinetic energies. For

this spectroscopic technique, the suggested background vacuum pressure is lower than

∼ 5.0 × 10−8 Torr. In this work, two types of electron gun were used as a source of the

FIGURE 2.11: Auger process a. ejection of K electron by the impact of incident electron beam
b. generation of auger electron after internal transition [8].

electron beam. For monitoring the cleanliness of samples, an electron gun mounted

inside the CMA was used. Another type of high spatial-resolution electron gun was

used for measuring the surface-to-bulk sulfur and carbon transport rates. This electron

gun was a Staib model EK050M2 Microfocus electron gun, which can produce a ∼100

µm electron beam spot size with a relatively high beam current for collecting Auger
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spectra, or small beams spots with lower currents for obtaining scanning electron mi-

croscopy images of the sample surface. This sized spot was necessary for analyzing

the wear track during the tribological experiments.

2.5.7 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive technique that can be

used to characterize and analyze a sample to a depth of ∼2 - 10 nm. XPS requires

high vacuum to operate and a vacuum of ∼5.0 ×10−8 Torr or less must be maintained

because this vacuum level allows the electron to travel to the detector. To produce X-

rays, high-energy source electrons are produced from a hot filament to strike an anode

to produce X- rays. The X-rays incident on the sample surface ejects photoelectrons

[9] from the atoms in the sample as shown in the Figure 2.12. The intensities of these

photoelectrons are measured as a function of the binding energy of the electrons in

the sample which is characteristic of the type of element and nature of the chemical

binding if the atoms in the surface region of the sample and can detect all elements

except H and He. The equation for calculating the binding energy Ebinding from the

electron kinetics energy measured by the double-pass CMA, Ekinetic is [6].

Ebinding = hν − (Ekinetic + φ) (2.2)
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where, φ is the work function difference between the sample and spectrometer and hν

is the X-ray photon energy.

FIGURE 2.12: XPS process a. incident photon b. ejection of K electron followed by X-ray
emission.

For generating X-rays, a twin anode X-ray source, as shown in Figure 2.13, is used,

which has aluminum (to produce AlKα radiation at 1486.6 eV) and magnesium (to

produce MgKα radiation at 1253.6 eV) twin anodes. The heated thoria-coated iridium

filaments emit electrons, and these electrons are accelerated towards the anode to pro-

duce X-rays. A large amount of power is dissipated by the anode during the X-ray

production, so that the anodes are water-cooled. A thin aluminum window of 0.2 µm

in thickness is used to prevent secondary electrons from being emitted from the X-ray
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source and reaching the analyzer.

FIGURE 2.13: Schematics of twin X-ray source.

For the work described in this thesis, the X-ray source control was a SPECS XRC

1000 system. The XPS data were collected using an X-ray power of 250 W (12.5 kV × 20

mA) and a 100 eV pass energy for the CMA. The sample was positioned approximately

with a 45o glancing angle to the CMA while operating the XPS system.

2.5.8 Scanning Electron Microscopy

In this work, the purpose of using secondary electron microscopy (SEM) is to precisely

locate the wear track by imaging the sample and to then use a microfocused electron

beam for Auger analysis of the wear track. The microfocused electron beam is gener-

ated by the optical Staib EK050M2 electron gun which has an alignment and focusing
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FIGURE 2.14: a. SEM Optical alignment system b. Beam size vs Beam current.

system as shown in Figure 2.14 (a) [10]. The hairpin type W filament is heated by a

current of 1.7 A to emit the electrons and the electron beam can be demagnified in the

range from 3/1 down to a 1/10 ratio. The spot size of the beam can be adjusted from

50 µm to 3 µm and the beam current ranges between 10 µA to 0.1 nA. A typical vari-

ation in beam current with spot sizes is shown in Figure 2.14 (b) and there is a clear

compromise between spatial resolution (spot size) and sensitivity (beam current). For

the sulfur and carbon surface-to-bulk transport experiments, a TV screen was used to

display SEM images of the surface of the sample and was used to locate the wear track.

The SEM gun was mounted on the top of the tribometer chamber which was slightly
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FIGURE 2.15: SEM schematics for locating wear track for AES analysis.

tilted towards the CMA by 13o from the normal position as shown in Figure 2.15. For

locating and analyzing the wear track, the sample was rotated horizontally towards

the CMA by ∼54o. It was essential to adjust the SEM e-gun position by using the bel-

lows stage in order to exactly direct the electron beam at the wear track created at a

tribopin position of X = -19.5 mm. Secondary electrons that we used to provide the

SEM images, which were collected using a channeltron placed close to the sample.
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2.5.9 UHV-compatible Tribometer and Tribology System

An instrument to measure the friction coefficient, a so-called tribometer, was used in

this work and is pin-and-flat type tribometer, where a moving pin (comprising a spher-

ical ball) is attached to an arm that slides against the stationary flat sample during the

experiment. The pin was moved using an arm that contained strain gauges to enable

the normal and lateral forces to be measured. The position of the tip of the UHV-

compatible tribometer is controlled by micro-stepper motors, which can move linearly

for locating pin at a desired rubbing position on the flat sample. It slides reciprocally

during the rubbing experiments, and for unidirectional sliding experiments, it has to

be started repeatedly with a set value of 1 stroke per step for a desired number of

passes. This tribometer is equipped with spherical tungsten carbide tribopin with ball

diameter of 1.27 × 10−2 m. Tungsten carbide was selected because it is very hard and

will not wear between experiments. For all experiments in this work, a sliding speed

of 4.0 × 10−3 m/s was used but could be varied if necessary. Also, the tribo-arm as-

sembly can be rotated so that it faces towards an ion gun for Ar+ bombardment or the

CMA to acquire Auger spectra of the tribopin. This tribometer is also capable of mea-

suring the contact resistance between the pin and the sample and a schematic diagram

of triboarm is shown in Figure 2.16.

The UHV-compatible tribometer was mounted to a 23⁄4” flange and it was fitted
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FIGURE 2.16: Schematics of tribo-arm and mounted sample.

with an axial rotator so it can be manually rotated to face the CMA or the ion gun. The

planar sample can also be manipulated in the X, Y and Z directions and can be rotated

by 3600. The tribometer chamber was also equipped with single-pass CMA, which

was used for characterizing the surface of the tungsten carbide tribopin, to monitor

cleanliness of the samples and to analyze the wear track created on the flat sample.

This tribology system also includes a leak valve for dosing sample and for introducing

gaseous chemicals into the chamber. In addition, a Knudsen dosing source was used

for dosing chemicals with lower vapor pressures.

Other tools incorporated into tribology system were a UTi mass spectrometer, a

SEM electron-gun paired with secondary-electron detector and an aluminum evapora-

tion source used to deposit a protective aluminum layer on wear tracks created on a Cu
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FIGURE 2.17: Tribological system with SEM microfocus e-gun used during S-transport experi-
ments for AES analysis of wear track.

foil for preparing focused-ion beam (FIB) samples for scanning transmission electron

microscopy (STEM) analysis at the Sandia National Laboratory. Depending upon the

experiment, the system was reconfigured from time to time. For example, to analyze

the wear track, it was required to mount the SEM microfocus e-gun and secondary-

electron detector on the top of the UHV chamber on a four-port flange and ion gun

(opposite to the CMA) on the front of the chamber at three-port flange as shown in Fig-

ure 2.17. Also, this type of configuration was used for measuring friction and contact
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resistance during the experiments with phosphite esters. Using this set of experimental

tools, S- and C-surface-to-bulk transport rates were measured during the tribological

experiments. The SEM microfocus e-gun was adjusted in such a way that the wear

track created by tribopin at a position of X = -19.5 mm could be focused under an

electron beam to collect elemental information only from the wear track. For precisely

locating the wear track, the SEM image was displayed on a TV screen and a bellows

stage mount for the microfocus e-gun was adjusted whenever necessary to direct the

electron beam at the wear track.

In the second type of configuration, a UTi mass spectrometer was mounted on

the front of the chamber using a 6.0" flange (opposite the CMA), and a ion-gun was

mounted on the top of the chamber on a four-port flange. This configuration was used

for analyzing the gas-phase products formed during rubbing of adsorbate-covered

samples. A leak valve was always mounted on the top of the tribo-chamber on the

four-port flange as depicted in Figure 2.18. A third configuration of the tribology sys-

tem was used for coating protective aluminum layers on the Cu foil after creating the

wear track for subsequent STEM analysis of FIBed samples. For coating a sample by

depositing a thin aluminum layer on a foil containing wear tracks created on the cop-

per sample, an evaporation cell containing an aluminum evaporation source was used.

During the Al vapor deposition, the gate valve placed between the transfer arm and

main chamber was closed, so that no Al could enter the tribology chamber. An O-ring
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FIGURE 2.18: Tribological system with UTi 100 mass spectrometer for gas phase product anal-
ysis during tribochemical experiments.

seal is located between the bellow region of transfer arm and the Al vaporization cell

as shown in Figure 2.19 to allow the transfer arm to be moved between the main UHV

chamber and the cell used for aluminum coating. The evaporation cell with the trans-

fer arm are attached to the main tribology chamber by a Conflat R© flange coupled by a

flexible bellow. An angle valve was fitted at the end of flexible bellow to separate the

transfer arm and vaporization cell whenever necessary.
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FIGURE 2.19: Tribological system with Al evaporation cell. The wear track created Cu foils
during the DMDS exposure are coated with Al protective layer using this configuration for

STEM analysis of FIBed samples taken from inside the wear track.

The fourth type of configuration used for tribological-based experiments was sim-

ilar to first type of configuration (Figure 2.17). Here an additional Knudsen dosing

cell was mounted on the top right port of the three-port-flange, above the ion gun, as

shown in the Figure 2.20. This configuration was used for the experiments performed

with carboxylic acids for measuring the tribochemistry and C-surface-to-bulk trans-

port rates on copper.

During the wear track analysis experiments (both S-transport and C-transport), the

sample’s Y-axis (across the manipulator to tribometer arm) motion was restricted to

avoid backlash effects. It was essential to precisely repeatedly rub over the same spot
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FIGURE 2.20: Schematics of tribology vacuum system configured for carboxylic acid experi-
ments for measuring the C-removal rate. The figure in the rectangular inset is a design of a

Knudsen dosing cell used for dosing carboxylic acids.

or on the same wear track and to collect the Auger spectra only from the wear track.

The X, Z and Θrotation motions were adjusted to allow the sample to face towards the

CMA for Auger analysis and to be able to move back to the rubbing position for ad-

ditional rubbing cycles. During these experiments, the sample remains flat when rub-

bing, but is tilted by ∼ 54o from horizontal such that it faces towards the CMA and the

microfocus e-gun when the Auger spectrum is collected from the wear track, as shown

in Figure 2.15.

For performing surface-to-bulk transport experiments under shear, using a tung-

sten carbide tribopin on a copper surface, the tribopin was cleaned by e-beam heating
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FIGURE 2.21: a) Circuit diagram for e-beam heating of tungsten carbide tribopin b) Auger
spectra of the tungsten carbide tribopin: untreated and e-beam heated.

before the experiment to remove any carbon contamination. The e-beam heating was

performed by supplying 1.2 kV (from a Keithley 247 high voltage power supply) be-

tween the tribopin and ground (UHV Chamber), and another power supply (0-8 V, 0-

10A) was used to heat the filament which was located close to and below the tungsten

carbide tribopin for generating the electron beam. E-beam heating was carried for 7-12

minutes until the tribopin showed a dull red color. Figure 2.21 (a) shows the circuit dia-

gram of e-beam heating and Figure 2.21 (b) shows the AES spectra of tungsten carbide

tribopin before and after e-beam heating. In order to acquire the AES spectra of tung-

sten carbide tribopin, it was positioned at X = -18.6 mm (note that this could change if
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tribometer fitting position is changed) and Z = 0.0 mm by using the tribometer-control-

software, and the triboarm was rotated by 90o to face the CMA. Then the tribopin was

moved towards CMA by using the "JOG" function of the tribometer-control software

to adjust the value of Z to be -2.5 mm to collect an Auger spectrum of the pin. After col-

lecting the Auger spectrum of the tungsten carbide tribopin, the following three steps

were performed; i) JOG the pin position back to Z = 0.0, ii) rotate the tribo-arm back to

0o and, iii) retract tribo-arm to position of ∼X = 19.00 mm so that the tribo-arm can be

safely parked after completing these three steps.

2.5.10 Aluminum Evaporation Source

For coating a thin aluminum protective layer on the Cu foils prepared for scanning

transmission electron microscopy (STEM) analysis of the wear track on FIBed samples,

an evaporation source was designed. Two 1-mm thick Mo wires were twisted together

to hold a graphite crucible to contain the aluminum as shown in Figure 2.22 (a). The

aluminum was vaporized by heating the source resistively in a cell located between

transfer arm and main chamber which was separated by a gate-valve from tribometer

chamber, as shown in Figure 2.19. The required mass of aluminum for coating the

desired film thickness was placed inside the crucible and it was heated until all the

aluminum had evaporated. The required mass of the aluminum for developing a thin

film was calculated by using the equation 2.3 [11].
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FIGURE 2.22: a. Schematic diagram of Al evaporation source mounted on power supply
feedthrough b. surface source evaporation geometry for film thickness calculation.

d =

MAlh
2

π(h2 + l2)2ρAl

(2.3)

where h is distance between substrate and source in m (3.5 × 10−2 m for this work), l is

half the length of sample in m (1.0 × 10−2 m for this work), ρ is density of Al in g/m
3, d

is the resulting film deposition thickness in meters, MAl is mass of aluminum in grams.

2.5.11 Scanning Transmission Electron Microscopy

Principally, in scanning transmission electron microscopy (STEM), an electron source

emits a finite-sized e-beam which is steered through the condenser lenses which are

aligned in series. Scans coils are placed in the beam path to raster the atomic-sized
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FIGURE 2.23: Schematic diagram of STEM showing the different elements.

e-beam. During this process, scattered electrons are detected; a magnified image is

produced when the scattered signals are plotted with respect to probe position [12, 13].

Figure 2.23 shows the optical configuration of STEM. The wear track created on the

copper samples had been annealed to 500-, 850- or 1020-K during tribological exper-

iments by reaction with gas-phase DMDS were coated with a protective Al layer for
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STEM analysis. The atomic-resolution imaging and nanoscale elemental analysis of

the wear track created on copper samples were analyzed by STEM on FIB-prepared

samples. This work was carried out by Daniel Long and Paul Kotula who prepared

the FIB samples and collected the STEM images and carried out the EDX analyses at

Sandia National Laboratory.

2.6 Non-UHV Tools

The various non-UHV tools and techniques which were used in this work are described

below.

2.6.1 Nano Indenter

For the mechanical characterization of copper foils that had been annealed to different

temperatures (500, 850, or 1020 K) during cleaning in UHV, instrumented-indented

testing (IIT) was carried out by using an Agilent G200 nano-indenter. In this testing

method, indents can be positioned within ∼1 µm which provides the ability to map

the spatial distribution of surface mechanical properties with good resolution. For

example, mechanical properties can be mapped within the wear track of width of ∼200

µm or less.

50



2.6. Non-UHV Tools

During the nanoindentation experiment, the indenter tip is driven into the mate-

rial. Both elastic and plastic deformation during the motion of the tip cause the for-

mation of indentation to some contact depth conforming to the shape of the indenter.

A Berkovich geometry nanoindenter tip [14–17] was used for the characterization of

the copper samples, and this type of tip is generally preferred for the measurement

of hardness. This tip has a three-sided pyramidal structure that produces plasticity at

very low loads and minimizes the influence of friction. The indenter’s tip has a radius

of ≤ 20 nm when newly supplied. The residual impression of the Berkovich tip on the

sample leaves a three-sided pyramidal residual shape as shown in Figure 2.24 [18].

FIGURE 2.24: a. Indentation and Residual impression b. Residual impression from a Berkovich
indenter.

The hardness of the test surface (H) is determined using the equation-

H =

P

A
(2.4)
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where, P is the load applied to the test surface and, A is the projected contact area at

that load.
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Chapter 3

Kinetic Mechanism for the Mechanochem-

ical Formation of Metastable Phases from

the Reaction between Sulfur and Cop-

per

3.1 Introduction

Mechanochemical processes are often induced either by agitation in a ball mill or by

shock waves to induce novel solid-state reactions and, in particular, the formation

of metastable materials that are not accessible through thermal processes [1–5]. In-

deed, such solid-state reactions have long been known and the mechanical reduction

of cinnabar to mercury in a copper pestle and mortar was reported by Theophrastus

of Eresos in ∼315 BC [6], and Michael Faraday studied the mechanochemistry of solids

in the 19th century [7]. Little is known about the mechanism by which such solid-

state mechanochemical reactions occur and the way in which metastable materials are
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formed, but it has been suggested that they are caused by the energy dissipated at col-

lision sites that increase local temperatures, through the formation of defect sites [8–11]

or by a dislocation glide mechanism [12–14]. Significant structural changes have also

been found for sheared copper-copper interfaces, which form nanocrystalline struc-

tures in the subsurface region [15–21].

Part of the lack of progress in understanding solid-state mechanochemical reaction

mechanisms arises from a lack of simple, well-characterized model systems of sliding

interfaces that produce metastable phases. This is addressed in the following by inves-

tigating the mechanically induced reaction between dimethyl disulfide (DMDS) and

copper in ultrahigh vacuum. In the absence of an external force, DMDS reacts stoichio-

metrically with copper at room temperature via S–S bond scission to form adsorbed

methyl thiolate species, which are thermally stable at room temperature. However,

two distinct mechanochemical processes are induced by rubbing the methyl thiolate-

covered surface with a tungsten carbide ball. The first is the decomposition of the sta-

ble, adsorbed methyl thiolate species to form small gas-phase hydrocarbons [22–28].

The second shear-induced process, relevant to the study of the mechanochemical for-

mation of novel phases, is the surface-to-bulk transport of the adsorbed sulfur to pro-

duce a metastable CuSx phase. Note that the sliding conditions for these experiments

are sufficiently mild that the temperature rise is negligible (≪ 1 K), thus allowing the

influence of thermal effects to be excluded [23]. In this case, the adsorbed sulfur formed
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by methyl thiolate decomposition was lost from the surface by being transported into

the subsurface region of the copper substrate to form a metastable phase. The sul-

fide phase was shown to be metastable by demonstrating that the subsurface sulfur

diffused to the surface once again when the sample was heated [23, 28].

The first-order rate constants for the elementary-step reactions have been measured

and used to construct a kinetic model that accurately predicts the variation in friction

as a function of the number of rubbing cycles for the gas-phase reaction of DMDS

with copper measured in vacuum. Note that this reaction could be viewed as either

a mechanocatalytic reaction or a tribochemical processes depending on whether the

focus is on the formation of gas-phase products or the deposition of a friction reducing

film [29]. In addition to being able to reproduce the evolution in friction force as a

function of the number of passes, the model correctly predicts both the depth profile

of the sulfur in the bulk of the sample and the variation in the total amount of sulfur in

the bulk of the copper [28]. Here, the surface-to-bulk transport kinetics were modeled

by assuming that the distance that an initial, adsorbed layer of sulfur moves into the

copper substrate is proportional to the number of times that it has been rubbed. This

produces an effectively first-order rate constant for the sulfur surface-to-bulk transport

[27]. This result is consistent with molecular dynamics (MD) simulations of sliding

interfaces which reveal shear-induced vortices in the surface region, allowing surface

atoms to be transported into the bulk [30, 31]. The resulting patterns formed in the
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near-surface region of the sample resemble those produced in shear by classical Kelvin-

Helmholtz (K-H) instabilities, despite the differences in effective viscosity values [32–

37]. The resulting crystalline subsurface structures of copper depend on the sliding

condition and can lead to surprisingly low friction of metal-metal sliding [3, 38, 39].

An analytical model proposed by Karthikeyan and Rigney [40] described a sliding

metal interface by assuming a material flow law given by the Herschel-Bulkley model,

where the shear stress τxy = τo + C (du
dy
)m

[41], where, τo and C are parameters of the

model, m is strain-rate sensitivity, which can take values between 0 and 1, and du
dy

is the

shear strain rate. The Karthikeyan-Rigney model showed that the time dependence t of

the variation in the characteristic width of the deformed zone, y
∗, depends critically on

the value of m. However, metals and, in particular copper, have m ≪1 [42, 43], leading

to y
∗
∝ t (see below). Since, at a constant sliding speed and load, the contact time

is proportional to the number of passes p, this suggests that the intermixing should

depend linearly on the number of times that the sample has been rubbed, in accord

with experiment.

As also demonstrated below, the value of y
∗ also depends on the strain-rate sensi-

tivity, m which, for metals in general, and for copper in particular, often decreases with

the size of the nanocrystallites [2, 19, 42–47]. However, the initial crystallite size of

the copper sample will also depend on the temperature at which it had been annealed

during the cleaning process (see Experimental section). If the size of the crystallites
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formed during rubbing correlate with the size of the initial crystallites, the surface-to-

bulk transport kinetics will depend on the initial crystallite size. Since the hardness

also depends on crystallite size through the Hall-Petch effect [48, 49], this postulate

implies that the surface-to-bulk transport kinetics should correlate with the hardness

of the copper sample. This idea is tested in the following by measuring the nanohard-

ness of copper samples that had been annealed at different temperatures (500, 850,

and 1020 K) during cleaning in UHV. Hardness measurement made in regions on the

sample with and without rubbing, reveal that the hardness in regions that had been

rubbed does depend on the initial hardness and therefore the temperature at which

the copper had been heated. The postulate that the surface-to-bulk transport kinetics

depend on the strain-rate sensitivity is tested by measuring the rate of shear-induced

transport of sulfur into the copper bulk. The surface-to-bulk transport mechanism is

explored by studying the depth profile of focused-ion-beam (FIBed) prepared samples

that had been rubbed in the presence of DMDS to identify whether the sulfur was lo-

cated at grains (in which case, the transport is grain-boundary mediated) or uniformly

distributed throughout the sample (in which case, the mechanically induced transport

kinetics are mediated by dislocations).
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3.2 Experimental

Tribological measurements were carried out in a stainless-steel, ultrahigh vacuum (UHV)

chamber operating at a base pressure of ∼2×10−10 Torr following bakeout, which has

been described in detail elsewhere [50]. Briefly, the chamber was equipped with a

UHV-compatible tribometer, which simultaneously measures normal load, lateral force

and the contact resistance between the tip and substrate. All tribological measurements

were made using a sliding speed of ∼4×10−3 m/s at a normal load of 0.44 N. Previous

work has shown that the maximum interfacial temperature rise for a copper sample

under these conditions is much less than 1 K [23]. The spherical tribopin (∼1.27×10−2

m diameter) was made from tungsten carbide containing some cobalt binder and could

be heated by electron bombardment in vacuo or by Argon ion bombardment in order to

clean it. The pin was attached to an arm that contained strain gauges to enable the nor-

mal and lateral forces to be measured. The arm was mounted to a rotatable Conflat R©

flange to allow the pin to be rotated to face a cylindrical-mirror analyzer (CMA) to

enable Auger spectra of the pin surface to be obtained. Additional experiments were

carried out by analyzing the tungsten carbide pin by X-ray photoelectron spectroscopy

(XPS) after Argon ion bombardment using a spectrometer containing a hemispheri-

cal analyzer built by ThermoFisher (220i) with a focused Al Kα monochromatic X-Ray

source.
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The copper samples (Alfa Aesar, 99.99% pure, 1 mm thick) were polished to a mir-

ror finish using 1 µm diamond paste and then rinsed with deionized water and de-

greased ultrasonically in acetone before mounting in the UHV chamber. The copper

was cleaned using a standard procedure which consisted of Argon ion bombardment

(∼1 kV, ∼2 µA/cm2) and annealing cycles up to ∼500, 850, or 1020 K to result in differ-

ent mechanical properties of the sample. The cleanliness of the samples was monitored

using Auger spectroscopy.

The samples were either mounted in UHV either to a precision x, y, z manipula-

tor for measuring the sulfur depth profiles across a rubbed region of the sample, or

to a transfer arm that allowed the sample to be moved from the UHV chamber to

a small cell attached to the main UHV chamber, which was isolated by a gate valve

[51]. The transfer arm slid though a differentially pumped seal and the copper sample

was attached to the end of the transfer arm and could be resistively heated and the

temperature measured via thermocouple attached to the sample. A 1-µm thick film of

aluminum was deposited to coat the surface of the copper sample when enclosed in the

cell to protect it from atmospheric contamination during transport to Sandia National

Laboratories for additional analysis.

The tribometer chamber contained a single-pass CMA for Auger analysis, and an

Argon ion bombardment source for sample cleaning and depth profiling. Auger spec-

tra were either collected using the coaxial electron gun in the CMA with an electron
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beam energy of 3 kV or with a Staib model EK050M2 Microfocus electron gun. The

chamber is also equipped with a channeltron secondary electron detector which al-

lowed scanning electron microscopy (SEM) images of the wear scar to be collected

using the high-resolution electron gun. Auger elemental profiles were obtained across

the rubbed regions to measure the loss of sulfur from the surface as a function of the

number of times that the sample had been rubbed. In order to ensure that the sulfur

signal was being measured only in the rubbed region and did not include signals from

the unrubbed part of the sample, calibration experiments were carried out to focus the

electron beam on a 100 µm-diameter silver wire and by detecting Auger signals due

only to silver. Concentration profiles across the rubbed region were measured either

by moving the sample laterally by translating the precision manipulator to which the

copper sample was mounted, or by deflecting the electron beam by using capacitor

plates incorporated in the high-resolution electron gun. Both methods yielded identi-

cal results for the variation in Auger signal as a function of the number of times that

it had been rubbed. Finally, the chamber also included a quadrupole mass spectrome-

ter for leak checking and for gauging reactant purity. Nanoindentation measurements

were made using a Nanoindenter G200 (KLA/Agilent) with a ∼130 nm Berkovich tip.

All experiments were performed by initially rubbing the tribopin against the clean

copper sample (∼1.7×1.7 cm2 by ∼1 mm thick) until a constant friction coefficient was

obtained. This resulted in the formation of a wear track. DMDS was dosed through a
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leak valve connected to a dosing tube (with an internal diameter of 4×10−3 m) directed

towards the sample so that the pressure at the sample is enhanced compared to the

background pressure, which was set at ×10−8 Torr during DMDS dosing (pressures

are not corrected for ionization gauge sensitivity).

In the first experiment, the loss of sulfur from a saturated overlayer of methyl thi-

olate formed by dosing the rubbed sample with DMDS was measured by Auger spec-

troscopy as a function of the number of times that it had been rubbed for samples that

had been cleaned by annealing to 500, 850, or 1020 K.

In a second experiment, samples were prepared by rubbing copper sample that

had been annealed at 500, 850, or 1020 K during the cleaning process in a background

pressure of 5∼10−8 Torr of DMDS for 80 cycles at a load of 0.44 N to cause sulfur to

continually penetrate the subsurface region. The sulfur depth distribution for this gas-

phase lubrication experiment has been measured by angle-resolved XPS and compared

with the kinetic model described above [28]. This protocol provided high subsurface

sulfur concentrations for subsequent ex-situ analyses at Sandia National Laboratories.

Electron-transparent lamella (11 µm × 6.7 µm × 16 µm deep) were prepared from

these aluminum-coated copper samples at the Center for Integrated Nanotechnolo-

gies (CINT) at Sandia National Laboratories using a Thermo Scientific Scios 2 Dual-

Beam focused-ion beam (FIB) apparatus. Scanning-transmission electron microscopy

(STEM) and energy-dispersive X-ray spectroscopy (EDXS) were done with a FEI (now

64



3.3. Modified Rigney Model for Interfacial Mixing at a Sliding Interface

Thermo Fisher Scientific) Titan G2 80-200 electron microscope equipped with a spheri-

cal aberration corrector on the probe-forming optics and four silicon-drift X-ray detec-

tors operating at 200 kV electron energy.

The DMDS (Aldrich, 99.0% purity) was transferred to a glass bottle and attached

to the gas-handling system of the vacuum chamber, where it was subjected to several

freeze-pump-thaw cycles. The purity of the DMDS was monitored using mass spec-

troscopy.

3.3 Modified Rigney Model for Interfacial Mixing at a

Sliding Interface

The following outlines a modification of the analysis by Karthikeyan-Rigney [40] for

the mixing at a sliding interface to specifically investigate the dependence on strain-

rate sensitivity. The model assumes that the flow properties of copper are described by

the Herschel-Bulkley model [41] where:

τxy = τo + C (du

dy
)m

(3.1)

where τo and C are strength parameters, and m is the strain-rate sensitivity. Writing

u(y, t) = U(λ) where, λ = yt
α where α = −

1
m+12 , and using the Cauchy’s equation of
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motion gives the following differential equation for the velocity Uλ as:

λ (dU

dλ
)2−m

= − (Cm(1 + m)
ρ ) d

2
U

dλ2 (3.2)

where ρ is the density. We derive a solution for the case in which m ≪1, typical of

a metal such as copper [17, 21, 43, 44, 52, 53], so that λ = yt
−1 so that equation (3.2)

simplifies to:

λ (dU

dλ
)2

= − (Cm
ρ ) d

2
U

dλ2 (3.3)

A general solution to this equation is given by:

U(λ) = c2 −

√
2A
c1

arctan( λ√
2Ac1

) (3.4)

where A =
Cm
ρ

and c1 and c2 are constants of integration, which are determined from

the boundary conditions. Using the no-slip boundary conditions of Karthikeyan and

Rigney [40] at λ = 0 gives U(0)=0, so that c2=0, and at ±∞ give U(±∞) = ±U and

dU(λ)
dλ

= 0. The second condition is automatically obeyed from the form of the function

in Eqn. 4. Applying the first boundary condition gives:

√
2A
c1

= −
2U
π (3.5)
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where
√

2Ac1 =
πA
U

=
Cπm
ρU

≡ B, to give the full solution as:

U(λ) = 2U
π arctan (λ

B
) (3.6)

However, the sliding conditions for copper in the experiments carried out in this work

involve a stationary copper substrate and a pin sliding at a velocity U. This now gives

boundary conditions λ = 0, U(0) = U, and at +∞, U = 0 and dU(λ)
dλ

= 0, so that now:

U(λ) = U −
2U
π arctan (λ

B
) (3.7)

The slope at the origin is given by:

dU

dλ

»»»»»»λ=0
= −

2U

πB
(3.8)

Taking the average value of λ
∗ to be that at which the linear extrapolation of U(λ)

becomes zero gives:

1 −
2U

πB
λ
∗
= 0 (3.9)

Substituting λ
∗
=

y
∗

t
gives: y

∗
∝ mt, and predicts that the surface layer moves a con-

stant distance per pass is constant as found experimentally [23, 24, 26–28] and that it is

proportional to the strain-rate sensitivity, m. Since the strain-rate sensitivity and hard-

ness depend on crystallite size [54], the hardness of the copper samples is measured
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after heating to various temperatures to control the crystallite size, and the results cor-

related with the surface-to-bulk transport kinetics of sulfur to form a metastable copper

sulfide.

3.4 Results

In order to explore the proposed dependence of the shear-induced formation kinetics

of a metastable copper sulfide phase on the mechanical properties of the copper, the

nanohardness was measured on the rubbed and unrubbed areas of the samples. The

nature of the tribopin surface and the effect of e-beam heating and Argon ion bom-

bardment are then discussed. The hardness data are then compared with the surface-

to-bulk transport kinetics measured for copper samples annealed at 500, 850, or 1020

K using a pin that has been electron-beam heated to form a predominantly tungsten

carbide surface. Note that repeated rubbing forms a graphitic surface for which the

surface to bulk-to-transport properties are different and will be reported elsewhere. A

correlation is found between the surface-to-bulk transport rate and the strain-rate sen-

sitivity (m) and dislocation density of the copper samples that are prepared at different

temperatures. These samples are further analyzed by imaging the subsurface structure

and measuring the composition of the FIB-prepared samples that have been heated

to 500, 850, or 1020 K and rubbed in the presence of a DMDS atmosphere to investi-

gate how the sulfur penetration depends on the annealing temperature and mechanical
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properties of the copper.

FIGURE 3.1: Optical microscope images of a copper foil showing the variation in grain size with
increasing annealing temperature. Image a) shows a 700 µm × 520 µm image of the initial,
unannealed foil, image b) shows a 2600 µm × 2000 µm image that has been annealed at 500
K and image c) shows a 4000 µm × 3000 µm image that has been annealed at 850 K. Images
d) to e) show the depth profile electron microscope images of FIBed samples of copper that
had been annealed to various temperatures and the rubbed at a load of 0.44 N at a sliding
speed of 4×10−3 m/s in a background pressure of 5×10−8 Torr of DMDS for 80 cycles: d) a
High-angle annular dark-field (HAADF) image of a sample annealed at 500 K (200 keV, 160000
magnification), where the red square indicates the analyzed regions shown in Fig. 3.11, e) a
HAADF TEM image of a sample annealed at 850 K (200 keV, 200000 magnification) and f) FIB
SEM image of a sample annealed at 1020 K (5 keV, 6500 magnification). Figure a, b, and c

courtesy of Yufu Xu, Hefei University of Technology, China.
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3.4.1 Mechanical Properties and Structure of Annealed Copper Sam-

ples

Experiments were carried out on pure copper foils that had been cleaned and annealed

at 500, 850, or 1020 K to modify their grain sizes. This is illustrated in Figures 3.1 (a)-(c)

which show optical images of an as-received etched copper sample (Fig. 3.1(a)) and

after heating to 500 (Fig. 3.1(b)) and 850 (Fig., 3.1(c)) K. This reveals that, as expected,

cleaning and annealing the samples at higher temperatures increases the size of the

crystallites. Since the differences in crystal size are expected to influence the mechani-

cal properties [48, 49], the copper hardness was measured as function of depth inside

and outside the rubbed region using a Berkovich tip diameter of ∼130 nm. The results

are displayed in Figure 3.2, where the measurements taken outside the rubbed regions

are shown in Figs. 3.2A (500 K), 3.2B (850 K) and 3.2C (1020 K). This shows a variation

in the nano-indentation hardness with indentation depth. Such behavior has been ob-

served previously and modeled by Nix and Gao [55] in which the hardness varies with

depth as:

H = Ho

√
1 +

ho

h
(3.10)

where Ho is the limiting hardness at large depths and ho is a scale parameter that

depends on the statistically stored dislocation density. The data fit reasonably well to
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the Nix/Gao model, except for depths where there are positive excursions from the

Nix/Gao formula, ascribed to crystallites in the sample that are of the order of the

size of the Berkovich tip [56], which are particularly apparent for samples annealed

at 500 K. The resulting hardness values are summarized in Fig.3.3 (■), which shows

that samples annealed at higher temperatures have hardness values close to that of

single-crystal copper, consistent with larger crystals having formed at higher annealing

temperatures.

Similar measurements were made in regions of the sample that had been annealed

at various temperatures and that had also been rubbed in a background of DMDS (Figs.

3.2 D-E) where the variation of hardness with depth is also analyzed by the Nix and

Gao model. This results in an increase in a hardness of the rubbed regions (Fig. 3.3 (●)).

The hardness of the rubbed regions depends on the temperature at which the sample

had been heated during the cleaning cycle. This is proposed to be due to the Hall-

Petch effect because of the shear-induced formation of smaller crystallites. In order to

test this idea, the grain sizes were estimated from the limiting hardness H0 from the

equation:

H = Ho =
K√
d

(3.11)

where Hr is the limiting hardness for infinitely large crystals and K is a constant [54, 57].
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This leads to estimated grain sizes of ∼115, ∼250, and ∼1400 nm for samples that had

been annealed at 500, 850, and 1020 K, and these values are summarized, along with

the hardness values in Table 3.1.

Annealing
Tempera-

ture/K

H/GPa Estimated
Grain

Size∗/nm

Measured
Grain

Size†/nm

h∗/nm Dislocation
Density/m2

× 1013

k2/pass

500 1.35±0.02 115 97±13 284 3.95 4±1
850 1.15±0.05 250 350±70 465 2.4 2.5±0.2

1020 0.72±0.01 1400 1200±120 1178 0.95 0.051±0.004

TABLE 3.1: Parameters for copper annealed and cleaned in vacuo at various temperatures.
∗Values estimated from the Hall-Petch equation. †Measured from electron microscope images

in Figures 3.1 (d-f).

These results are compared with the images of similar copper samples that had

been annealed at 500, 850, or 1020 K that have been rubbed in a background pressure

of DMDS for which FIBed samples had been removed from the rubbed region and the

results are shown in Fig. 3.1(d-f). The crystallite sizes were estimated from the images

by simply counting the number of crystallites that intersected a line of a given length

measured using ImageJ [58] and by dividing the line length by the number of crystals.

This process was repeated several times and the results are also displayed in Table 3.1

and the values are in reasonable agreement with those obtained from the mechanical

properties.

It has also been proposed that the total dislocation density of the samples annealed

at various temperatures can be estimated from the value of h
∗ [59] using:
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FIGURE 3.2: Plots of hardness of the sample measured using a Berkovich tip as a function of
depth into the sample for copper foils that had been annealed at (a) 500, (b) 850 and (c) 1020 K
and after having been rubbed at a load of 0.44 N at a sliding speed of 4×10−3 m/s in a back-
ground pressure of 1×10−8 Torr of DMDS for 80 cycles for the same annealing temperatures

(d-f).
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FIGURE 3.3: Measured values of hardness for copper foils that had been annealed at 500, 850,
and 1020 K (■) and after having been rubbed at a load of 0.44 N at a sliding speed of 4×10−3

m/s in a background pressure of 1×10−8 Torr of DMDS for 80 cycles (●), summarizing the data
shown in Fig. 3.2.

ρS =

3 tan2
θ

2 f 3bh∗
(3.12)

where ρS is the density of dislocations, θ is the angle between the surface of the material
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and the surface of the indenter, b is the Burgers vector and f is a correction factor for

the size of the plastic zone (taken to be 1.9). For a Berkovich tip, tan2
θ = 0.128164, and

b = 2.5 nm for copper [60], and Eqn. 12 yields dislocation densities that are given in

Table 3.1, where the value for the sample annealed at 1020 K is close to that previously

measured for single crystal copper [61], although higher values dislocation densities

have been reported for copper at high strain rates [62, 63].

Values of the elastic modulus E
∗ for the various samples annealed at 500, 850, and

1020 K were also measured, and the results are summarized in Fig. 3.4. This reveals

that, although the hardness of the copper in influenced by rubbing, the elastic modulus

is not strongly affected.

3.4.2 Analysis of the Surface of the Tribopin

The tungsten carbide pin is routinely cleaned by electron-beam heating using a fila-

ment located inside the UHV chamber. It can also be cleaned by Argon ion bombard-

ment, although the latter strategy may also change the surface microstructure. The

effect of e-beam heating on the pin is illustrated in Fig. 3.5A, which shows an Auger

spectrum of the pin indicating that the untreated pin is covered by carbon immedi-

ately after inserting it into the UHV chamber. Heating briefly until the sample glows

red causes a change in the Auger spectrum and the appearance of features due to tung-

sten, and is consistent with the presence of tungsten carbide in the pin [64]. Note that
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FIGURE 3.4: Measured values of elastic modulus E∗ for copper foils that had been annealed at
500 (■), 850 (●), and 1020 (▲) K and after having been rubbed at a load of 0.44 N at a sliding

speed of 4×10−3 m/s in a background pressure of 1×10−8 Torr of DMDS for 80 cycles.

repeatedly rubbing the copper surface in DMDS causes the eventual deposition of car-

bon on the sample to produce an Auger spectrum similar to that in Fig. 3.5A. The

presence of tungsten carbide was confirmed from the XPS spectrum in Fig. 3.5B, ob-

tained after ion bombarding, which shows peaks characteristic of tungsten carbide.

Cobalt has a characteristic feature at ∼800 eV binding energy [65] and no features are
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detected at this energy in the spectrum indicating that there is little cobalt binder on

the surface of the pin.

FIGURE 3.5: Analyses of the surface of the tungsten carbide tribopin. Figure A, lower trace
shows an Auger spectrum of the initially contaminated pin showing predominantly carbon on
the surface and the upper trace shows the effect of e-beam heating now revealing the presence
of tungsten. Figure B shows an Al Kα X-ray photoelectron spectrum of the tungsten carbide
pin that has been Argon ion bombarded. Figure B courtesy of Jules Galipaud and Thierry

LeMogne, Ecole Centrale de Lyon, France.

3.4.3 Measurement of the Kinetics of Sulfur Surface-to-Bulk Trans-

port in Copper as a Function of Sample Annealing Temperature

The rate of surface-to-bulk transport was measured for copper samples that had been

annealed at 500, 850, or 1020 K. The concentration of sulfur on the surface was obtained

by using a small-spot size electron gun that enabled the variation in the sulfur Auger

signal to be measured as a function of position in the wear track [66]. However, this

signal includes contributions from the methyl thiolate species and adsorbed sulfur as
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well as subsurface sulfur [27]. Disentangling these contributions requires a measure-

ment of the rate of shear-induced methyl thiolate decomposition, which is obtained

from the rate of methane formation during sliding [26].

In all experiments, a wear track was initially created by rubbing the clean sample

50 times to ensure that the contact conditions remained the same for subsequent scans.

During this process, the friction coefficient dropped from an initial value of ∼0.8 to

a final, constant value of ∼0.45 [24]. The surface, including the wear track, was then

dosed with DMDS at a sample temperature of 300 K to form a saturated methyl thiolate

overlayer [67]. An Auger signal profile was obtained by scanning the electron beam

across the wear track while monitoring the S KLL Auger signal at 151 eV kinetic energy.

The full Auger spectrum was collected within the wear track and the amount of sulfur

on the surface was gauged from the ratio of the peak-to-peak intensities of the S KLL

to the Cu LMM Auger features. The surface was then rubbed several times under a

normal load of 0.44 N at a sliding speed of 4×10−3 m/s. Auger spectra were collected

at various sliding intervals until no sulfur was detected on the surface. The resulting

plots of the normalized S/Cu Auger ratios as a function of the number of passes are

displayed in Fig. 3.6 for samples that had been annealed to 500 (●), 850 (▲), or 1020 (■)

K, The experiments were repeated several times and were very reproducible and show

that there are significant differences in the rate at which sulfur is lost from the surface.

Shown for comparison are the results obtained previously for a sample that had been

78



3.4. Results

heated to 850 K (▼) [23], where the agreement with the current results is good.

FIGURE 3.6: Plot of the relative sulfur to copper (S/Cu) Auger ratio measured inside the wear
track as a function of the number of times that the copper samples had been rubbed in a back-
ground pressure of 1×10−8 Torr of DMDS at an applied normal load of 0.44 N and a sliding
speed of 4×10−3 m/s after being cleaned and annealed at 500 (●), 850 (▲), and 1020 (■) K .
Shown for comparison are the results obtained previously for a sample that had been heated to

850 K [23].

Previous work has shown that methyl thiolate species react by two distinct shear-

induced processes, the first being C–S bond scission, with a first-order rate constant

k1 and a second process, investigated in this work, consists of sulfur surface-to-bulk
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transport with a first-order rate constant k2. These rate constants have been used to

construct a kinetic model that reproduces the experimental reaction kinetics [27, 28, 68].

Because the time that the tip stays in contact with the surface is not precisely known,

reaction rates are not described as function of reaction time, but more conveniently

described as a function of the number of passes over the surface, which for the surface-

to-bulk transport is given by k
′

2. The results in Fig. 3.6 are analyzed to yield values

of k
′

2 for samples that had been annealed to various temperatures and the resulting

fits are shown as solid lines through the data. The resulting best-fit values of k
′

2 are

given in Table 3.1. The value of k
′

2 also controls the characteristic distance that the

sulfur penetrates the bulk of the sample. In the case of the experiments carried out

in this work, the distance over which the sulfur concentration is predicted to decrease

to ∼50% of the value at the surface is very small (∼0.3 nm) for the sample annealed to

∼1020 K with the largest crystallites, increasing to ∼10 nm for a sample heated to 850 K,

and ∼35 nm for a sample heated to 500 K. The values of k
′

2 can also be used to calculate

a sulfur subsurface sulfur depth profile for gas-phase lubrication of copper by DMDS

and to analyze the electron microscopy data described below.
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3.4.4 Subsurface Structure and Composition of Copper Samples af-

ter Rubbing in Dimethyl Disulfide as a Function of Sample An-

nealing Temperature

Similar experiments were carried out in which an initial wear track was created dur-

ing a run-in period of 50 scans. The previously rubbed portion of the surface was

then rubbed repeatedly at an applied normal load of 0.44 N and a sliding speed of

4×10−3 m/s while the sample was continuously exposed to gas-phase DMDS from a

dosing tube with a background pressure of 5×10−8 Torr for a total of 80 scans. The sam-

ples were then coated with a film of aluminum to provide a protective layer and FIB

samples were extracted from the rubbed regions and analyzed. Figures 3.1(d-e) show

high-angle annular dark-field (HAADF) transmission electron microscopy (TEM) im-

ages, and Fig. 3.1(f) shows a FIB scanning electron microscope (SEM) image, of the

subsurface regions of the copper samples and show crystallite sizes that are in accord

with the Hardness measurements (Table 3.1).

Energy-dispersive X-ray (EDX) spectral images (comprising a full X-ray spectrum

at each pixel in an array) were acquired from selected areas of each sample close to

the surface of the copper to investigate the depth distribution and location of sulfur

in the subsurface region of the sample. Fig. 3.7 shows a 100 nm × 50 nm region of a

sample that had been cleaned and annealed at 1020 K and then reacted in DMDS while
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rubbing. The X-ray spectral images were analyzed with Sandia’s Automated eXpert

Spectral Image Analysis (AXSIA) software [69, 70]. The results of this analysis pro-

duce an image of the component distribution (the location and quantity are shown in

a color overlay) and the corresponding X-ray spectra, which indicate which elements

are present at a particular location. The component image and corresponding spec-

tral shape matrices then represent a reduced-rank and de-noised model of the original

spectral image. The X-ray energies of the lines are indicative of the elements present

in the sample, where copper has a characteristic Kα energy at 8.040 keV, a Kβ energy at

8.905 keV and an Lα energy at 0.928 keV, and is clearly evident in the Cu component

spectral shape (red) and is uniformly distributed throughout the sample as seen in the

color overlay with corresponding Cu component image in red. The dark region at the

top of the image is the aluminum capping layer (component spectral shape not shown).

Sulfur is clearly evident in the Cu–S spectral shape (green) from the Kα peak at 2.307

keV, and is localized at the copper surface, consistent with the small k
′

2 value (Table

3.1). A small amount of oxygen contamination is evident in the Cu–S component from

its characteristic Kα energy at 0.525 keV.

The large crystallite size for the sample that had been annealed to 1020 K (Table 3.1)

leads to a low rate of surface-to-bulk transport (Figure 3.6) and a small value of k
′

2. This

rate constant is proportional to the distance that the sulfur moves into the subsurface

region per pass, and the kinetic model for the reaction of DMDS with copper can be
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FIGURE 3.7: A 100 nm × 50 nm EDX image of a copper foil that had been cleaned and annealed
in UHV at 1020 K and then reacted while rubbing at an applied normal load of 0.44 N and a
sliding speed of 4×10−3 m/s in 5×10−8 Torr of DMDS. The interface between the copper and
the aluminum capping layer is at the top of the image and the X-ray spectra are displayed for

various points in the image as indicated by colored arrows.

analyzed to yield the sulfur depth distribution as a function of the number of passes

[28]. Such an analysis predicts that the sulfur should only penetrate a few Ångstroms

into the subsurface of a sample annealed at 1020 K, consistent with the narrow sulfur-

containing band seen in Fig. 3.7. An integrated profile of the sulfur signal as a function

of distance into the sample, collected from region defined by the yellow box in Fig. 3.7,

is displayed in Fig 3.8 (■) and has a width of ∼2 nm, with a maximum at ∼0.5 nm below

the surface. This implies that the spatial resolution of the instrumental and experimen-

tal configuration is ∼1 nm primarily due to broadening of the electron beam (initially
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FIGURE 3.8: Plot of the intensity of the sulfur Kα X-ray signal at 2307 eV as a function of
distance from the surface of a copper foil that had been cleaned and annealed in UHV at 1020
K and then reacted while rubbing at an applied normal load of 0.44 N and a sliding speed of
4×10−3 m/s in 5×10−8 Torr of DMDS, where the origin of the abscissa represents the surface,
where negative values are within the copper sample (■). The line through the data is a fit to the
theoretical depth profile [28] which has been broadened by 1 nm to take account of the spatial

resolution of the instrument.

smaller than ∼0.12 nm) as it interacts with the sample. The solid line through the data

in Figure 3.8 show the theoretically predicted profile broadened by numerically convo-

luting it with a 1-nm wide Gaussian function using Origin software, leading to good

agreement with the experimental profile.
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Similar results are presented in Figure 3.9 for a sample that had been cleaned and

annealed at 850 K and then reacted with DMDS while rubbing. In this case, the crys-

tallite size is ×250 nm, on the same order as the 200 nm × 100 nm field of view of the

X-ray spectral image acquired here. Again the green component X-ray spectrum shows

the presence of copper and sulfur, where the sulfur is located near the surface of the

sample (indicated by the green component in the color overlay), but penetrates further

into the bulk than the sample annealed at 1020 K (Fig. 3.8), in accord with the larger

value of k
′

2 for a sample annealed to 850 K (Fig. 3.6 and Table 3.1). The sulfur intensity

for the near-surface region is larger for the sample annealed to 850 K than one heated

to 1020 K. Note that the sample consists predominantly of a single copper grain over

the analyzed region in Fig. 3.9 so that the larger penetration for this sample cannot be

dominated by grain-boundary diffusion [71–73].

An integrated profile of the Cu–S EDXS signal is shown plotted as a function of

distance into the sample for a localized region defined by the yellow rectangle in Fig.

3.9 and the results are displayed in Fig. 3.10 (■). Here the sulfur signal peaks at ∼4 nm

below the surface but penetrates 10’s of nanometers into the bulk. Note that previous

angle-resolved XPS results measured for a sample that had been annealed at 850 K and

reacted for various times in DMDS yielded results that were in excellent agreement

with the depth profile calculated using the kinetic model described above [28]. A sulfur

depth profile calculated using the kinetic model using k
′

2 = 2.5/scan (Table 3.1) that was
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FIGURE 3.9: A 200 nm × 100 nm EDX image of a copper foil that had been cleaned and annealed
in UHV at 850 K and then reacted while rubbing at an applied normal load of 0.44 N and a
sliding speed of 4×10−3 m/s in 5×10−8 Torr of DMDS. The interface between the copper and
the aluminum capping layer is at the top of the image and the X-ray spectra are displayed for

various points in the image as indicated by colored arrows.

broadened by convoluting it with a 1-nm wide Gaussian is plotted as a solid line in Fig.

3.10. The agreement with the experiment is reasonable, although there are significant

differences between theory and experiment, likely due to local concentration variations

due to the small sampling region. In addition, the sample surface may not be exactly

parallel to the electron beam due to roughness.

A similar spectral image analysis is shown for a sample that had been cleaned and

annealed at 500 K in Figure 3.11. In this case the image size is 480 nm × 320 nm, while
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FIGURE 3.10: Plot of the intensity of the sulfur Kα X-ray signal at 2307 eV as a function of
distance from the surface of a copper foil that had been cleaned and annealed in UHV at 850
K and then reacted while rubbing at an applied normal load of 0.44 N and a sliding speed of
4×10−3 m/s in 5×10−8 Torr of DMDS, where the origin of the abscissa represents the surface,
where negative values are within the copper sample (■). The line through the data is a fit to
the theoretical profile [28] which has been broadened by 1 nm to take account of the spatial

resolution of the instrument.

the crystallite size for this sample is ∼100 nm (Table 3.1). A line is included in the image

to indicate the location of the surface and a calculated sulfur depth profile is shown as

an inset to the figure. The spectral image shows a region adjacent to the surface that

is rich in sulfur over a distance of ∼65 nm from the surface, but with less sulfur at
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larger distances away from it. This region is somewhat heterogeneous and will thus

yield depth profiles that will depend significantly on the measurement position. How-

ever, the depth profile calculated using k
′

2’= 4.0/scan (Table 3.1) is shown as an inset

to the figure and indicates that the width of the sulfur-rich region near the surface is in

agreement with the theoretically predicted value. These results indicate that the exper-

imental variation in the sulfur depth distribution with sample annealing temperature

is in agreement with the calculated depth profiles using the measured surface-to-bulk

transport rate constants (Fig. 3.6). In particular, the sulfur depth profiles and surface-

to-bulk transport rate constants correlate with dislocation densities (Table 3.1).

In addition. however, there are linear sulfur-rich regions deeper into the sample

that are separated by ∼100 nm, close to the grain size in the sample. Fig. 3.1(d) shows

a HAADF TEM image of this sample, where the red square highlights the region an-

alyzed in Fig. 3.11, indicating that the linear sulfur-rich regions correspond to grain

boundaries and this result implies that sulfur transport along grain boundaries can

also facilitate the surface-to-bulk transport of sulfur in copper [71–73].

3.5 Discussion

The modified Karthikeyan-Rigney theory described above predicts that the shear-induced

rate of sulfur transport into the bulk of copper to form a metastable copper sulfide film
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FIGURE 3.11: A 480 nm × 320 nm EDX image of a copper foil that had been cleaned and
annealed in UHV at 500 K and then reacted while rubbing at an applied normal load of 0.44 N
and a sliding speed of 4×10−3 m/s in 5×10−8 Torr of DMDS. The interface between the copper
and the aluminum capping layer is at the top of the image and is dedicated by a white line and
the X-ray spectra are displayed for various points in the image as indicated by colored arrows.
The inset to the spectra shows the predicted depth profile [28] which has been broadened by 1

nm to take account of the spatial resolution of the instrument.

depends on (i) the strain-rate sensitivity of the substrate and (ii) that the distance that

a sulfur overlayer penetrates the bulk is proportional to the number of times that the

sample has been rubbed. The second prediction has been confirmed experimentally

[66] and has been used to model the gas-phase lubrication of copper by DMDS [28].

The model correctly predicts both the sulfur depth profile and the total amount of sul-

fur that is accumulated in the copper bulk as a function of the number of times that the
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sample has been rubbed. It should be noted that the model applies to the initial rate of

reaction because the inclusion of large concentrations of sulfur in the copper subsur-

face will itself eventually influence the surface-to-bulk transport kinetics. However,

as the experiments are carried out for rubbing in a relatively low pressure of DMDS,

initial kinetics are measured.

The predicted strain-rate sensitivity dependence was tested by using samples that

had been cleaned and annealed at different temperatures (500, 850, or 1020 K) to pro-

duce copper with different grain sizes (Figure 3.1, Table 3.1). Measurements of the

surface-to-bulk transport kinetics of a methyl thiolate overlayer on copper by analyz-

ing the amount of sulfur in the rubbed region as a function of the number of times that

it had been rubbed yielded significantly different values of rate constant of surface-to-

bulk transport, k
′

2 (Figure 3.6, Table 3.1). Since hardness of copper depends on grain

size through the Hall-Petch effect [54], and the strain-rate sensitivity also depends on

the size of the crystallites (Figure S1, modified from Ref, [54]) [74], this enables the

dependence of the rate of surface-to-bulk transport of sulfur into copper (k
′

2) on strain-

rate sensitivity m to be measured. The measured values of k
′

2 are plotted against strain-

rate sensitivity m in Fig. 3.12, showing good linearity in accord with the prediction of

the model.

In order to identify the origin of the strain-rate sensitivity dependence of the rate of

sulfur surface-to-bulk transport, the elemental depth distribution was measured using
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EDXS and the results are displayed in Figures 3.7, 3.9 and 3.11. The results of Fig. 3.7

for a sample that had been annealed at 1020 K show that the sulfur is located very

close to the surface (Fig. 3.8) consistent with the measured value of k
′

2 ∼0.05 per pass.

Here the crystallite sizes are large (∼1400 nm, Table 3.1) and the dislocation density

is low (∼9.5 × 1012 /m2). The rate of surface-to-bulk transport increases to k
′

2 ∼2.5

per pass as the sample preparation temperature decreases to 850 K (Figs. 3.9 and 3.10),

where the crystallite size (∼250 nm, Table 3.1) is sufficiently large that there are likely no

dislocations in the image in shown in Fig. 3.9, while the dislocation density increases

to ∼2.4 × 1013 /m2 (Table 3.1). This clearly implicates the participation of dislocations

in the transport of sulfur into the subsurface region of copper.

The sample that had been prepared at a lower temperature (500 K, Fig. 3.11) con-

tains smaller grains (∼115 nm, Table 3.1) and has a higher dislocation density (∼3.95 ×

1013 /m2). The sulfur penetrates still more rapidly into the bulk of the copper (k
′

2 ∼4

per pass, Table 3.1), and the distance that the sulfur penetrates the copper is in agree-

ment with predictions from measurements of the surface-to-bulk transport kinetics

(Fig. 3.11, Inset). Thus, the surface-to-bulk transport rate of sulfur in crystalline re-

gions of the copper sample scales with the dislocated density as evidenced by the plot

of k
′

2 versus dislocation density in Figure 3.13, implying that strain-rate sensitivity de-

pends on the dislocation density [75]. Note that dislocation glide has been proposed as

a mechanism for plastic deformation during high-energy ball milling [12–14].
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FIGURE 3.12: Plot of the rate constant for the shear-induced transport of sulfur into the sub-

surface region of copper, k
′

2, as a function of the strain-rate sensitivity for samples modified by
heating the copper sample to various temperatures.

However, in the case of a sample that had been annealed at 500 K (Fig. 3.11), some

sulfur is detected even deeper into the copper in linear regions that coincide with the

presence of grain boundaries that are identified by electron microscopy (Fig. 3.1(d)),

suggesting that sulfur also diffuses along grain boundaries. The linear regions are ∼20

nm wide, much wider than expected for grain boundaries in copper [76], and may
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FIGURE 3.13: Plot of the rate constant for the shear-induced transport of sulfur into the subsur-

face region of copper, k
′

2, as a function of dislocation density for samples modified by heating
the copper sample to various temperatures.

be due to the boundaries being tilted with respect to the incident electron beam. An

alternative possibility is that, because the width of the linear regions are relatively inde-

pendent of depth into the substrate, the sulfur diffuses rapidly along grain boundaries

when they are present, but much more slowly via dislocations, where it moves laterally

from the grain boundaries to form EDXS features that are ∼20 nm wide. These results
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suggest that both the presence of grain boundaries and dislocations can facilitate the

shear-induced surface-to-bulk transport of sulfur.

It should be emphasized that the formation of nanostructured materials at the slid-

ing interface by Kelvin-Helmholtz instabilities proposed by Rigney [34, 35, 77, 78] are

not directly captured by the analytical Karthikeyan-Rigney model and, in principle

should not mimic the experimental mixing behavior and reproduce both the kinetics

and the strain-rate sensitivity dependence found experimentally, yet it does. However,

finite-element simulations that have been performed using a non-linear viscosity of

copper analogous to the Herschel-Bulkley model revealed deformation, material fold-

ing and the occurrence of vortices while rubbing [3].

3.6 Conclusions

The previously identified shear-induced transport of sulfur into the subsurface region

of copper is investigated by modifying the material properties of the copper sample

by using different annealing temperatures (500, 850, and 1020 K) during the vacuum

cleaning procedure. The surface-to-bulk transport kinetics are modeled by an adapta-

tion of a theory first proposed by Karthikeyan and Rigney that predicts that the dis-

tance that an adsorbed overlayer penetrates the bulk of the sample is proportional to

the number of times that the sample is rubbed, and that the rate should be proportional
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to the strain-rate sensitivity of the substrate. Previous work has verified that the linear

dependence of penetration depth on the number of rubbing cycles is correct. It is found

here by measuring the hardness of the copper after it has been rubbed that the temper-

ature at which the copper sample was annealed during its preparation influences its

hardness and therefore its strain-rate sensitivity, m. This enables the second prediction

of the Karthikeyan-Rigney model to be tested by measuring the surface-to-bulk trans-

port rate by monitoring the loss of sulfur from the surface as a function of the number

of times that the sample had been rubbed. This demonstrated that the surface-to-bulk

transport rate does vary linearly with m, in accord with the theoretical prediction.

The mechanism for this process is investigated by preparing thin samples of the

bulk of copper sample that had been annealed at 500, 850, or 1020 K during the cleaning

procedure using a focused-ion beam. Electron microscopy images of the samples indi-

cated that the copper crystallites were larger for the samples that had been annealed

at high temperatures, as expected. Energy-dispersive X-ray spectroscopy (EDXS) mea-

surements as a function of depth into the sample revealed that the sulfur was highly

localized on the surface for a sample that had been heated to 1020 K, penetrated a

moderate distance (∼10 nm) into the surface for a sample that had been annealed to

850 K, and∼35 nm for a sample that had been heated to 500 K. For the samples that

had been annealed to 1020 and 850 K, the crystallite size was sufficiently large that

there were no grain boundaries in the analyzed region, while sulfur still penetrated
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into the bulk, implying the surface-to-bulk transport if sulfur is facilitated by the pres-

ence of dislocations in the copper. This observation is in accord with previous studies

of mechanical mixing (alloy formation) by ball milling, which implicates a dislocation

glide mechanism in the mixing [12–14].

It was noted that the Karthikeyan and Rigney model does not specifically include

Kelvin-Helmholtz-type instabilities that would lead to intermixing near the surface

and the transport of adsorbates into the subsurface region. However, more detailed

finite-element calculations for copper using similar shear properties as the Karthikeyan

and Rigney model by Pouryazdan et al [3] identifies the presence of flow features that

resemble those formed by Kelvin-Helmholtz instabilities.

Finally, it found in the case of copper samples with smaller crystallites which have

been cleaned by annealing at a lower temperature (∼500 K), additional subsurface cop-

per is found deeper into the subsurface in places that electron microscopy identifies as

grain boundaries. It appears that rate of surface-to-bulk transport of sulfur into copper

is facilitated by the presence both of dislocations and grain boundaries.
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Chapter 4

Reaction between Dimethyl Disulfide and

Copper by Sliding Graphitic Carbon Cov-

ered Tungsten Carbide Tribopin: Influ-

ence of the Counterface on Mechanochem-

istry

4.1 Introduction

Chemical changes can occur at the interface between a sliding pair of materials caused

by interfacial shear. The mechanical force destabilizes the electronic structure of pre-

existing bonds to facilitate a chemical reaction. Processes such as mechanical alloy-

ing, tribochemistry and wear are dominated by mechanical phenomena [1] and it is

observed that antiwear films are formed from the surface reaction of additives that

are included in the lubricant during the rubbing process [2, 3]. This was illustrated
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in the previous chapter for the gas-phase lubrication of copper by dimethyl disulfide

where the sulfur formed by methyl thiolate decomposition reacts with copper to form

a metastable CuSx film. This reaction is initiated by surface-to-bulk transport of sul-

fur under the influence of mechanical shear [4], where a tungsten carbide tribopin is

used for shearing. The sulfur transport kinetics on copper samples annealed at dif-

ferent temperature (500, 850, or 1020 K) were observed to be influenced by the grain

sizes in the copper substrate during rubbing experiments conducted by a tungsten car-

bide tribopin cleaned by e-beam heating to remove any carbonaceous deposits from

the surface (Chapter 3).

The different grain sizes for copper samples annealed at different temperatures as

reported in Chapter 3 are expected to be correspondingly similar for different sam-

ples used in the work described in this Chapter, where copper samples are rubbed

with an untreated tungsten carbide tribopin. Since the tribopin was used multiple

times for rubbing the DMDS dosed copper surface, the untreated tungsten carbide tri-

bopin will have a carbonaceous carbon layer deposited on its surface. Previous studies

have shown that a graphitization of amorphous carbon occurs during the shearing at

a sliding interface [5], so that it is expected that the untreated tribopin is covered by

a graphitic layer if it is not cleaned periodically. The presence of graphitic carbon on

surface of the tribopin can play significant role in reducing the friction coefficient (CoF)

[6–8] so that it is anticipated that the nature of the tribopin surface can influence the
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rate of mechanochemical reactions caused by shearing.

To investigate the possible effect of the nature of tribopin on the surface-to-bulk

transport of sulfur on DMDS-covered copper, experiments to measure the sulfur trans-

port rate, methyl thiolate decomposition rate and friction were performed and dis-

cussed further in this chapter.

4.2 Experimental

Tribological measurements were carried out in a stainless-steel, ultrahigh vacuum (UHV)

chamber operating at a base pressure of ∼ 2× 10−10 Torr following bakeout, which has

been described in detail elsewhere [9]. Briefly, the chamber was equipped with a UHV-

compatible tribometer, which simultaneously measures normal load, lateral force and

the contact resistance between the tip and substrate. All tribological measurements

were made with sliding speed of ∼ 4 × 10−3 m/s at a normal load of 0.44 N. Previous

work has shown that the maximum interfacial temperature rise for a copper sample

under these conditions is much less than 1 K [4]. The spherical tribopin (∼ 1.27 × 10−2

m diameter) was made from tungsten carbide containing some cobalt binder. Although

the pin could be heated by electron bombardment in vacuo or by Argon ion bombard-

ment in order to clean the surface, the experiments described here were performed

without cleaning the pin to allow a carbonaceous layer to be deposited on the surface
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of the pin. The pin was attached to a tribo-arm that contained strain gauges to enable

the normal and lateral forces to be measured. The tribo-arm was mounted to a rotat-

able 23⁄4” Conflat R© flange to allow the pin to be rotated to face the cylindrical mirror

analyzer (CMA) to enable Auger spectra of the pin surface to be obtained.

The chamber contained a single-pass CMA for Auger analysis, and an Argon ion

bombardment source for sample cleaning and depth profiling. Auger spectra were

collected using an electron beam energy of 5 kV. A high-resolution electron gun and

a channeltron secondary electron detector were also incorporated into the vacuum

chamber to allow scanning electron microscopy (SEM) images of the sample, and in

particular of the wear track, to be collected. It also enabled Auger elemental profiles

to be obtained across the rubbed regions to measure the loss of sulfur from the surface

as a function of the number of times that the sample had been rubbed. To ensure that

the sulfur signal was being measured only in the rubbed region and to exclude any

influence from the signals from the unrubbed region, calibration experiments were

carried out to test the spatial resolution by attaching a 100-µm diameter silver wire to

the copper sample and by detecting Auger signals due to silver. Since the wear tracks

formed during rubbing the copper sample are ∼100 µm across, this experiment pro-

vides information on the spatial resolution of electron beam [4]. Auger concentration

profiles across the rubbed region were measured either by moving the sample laterally

by translating the precision manipulator to which the copper sample was mounted,
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or by deflecting the electron beam by using capacitor plates incorporated in the high-

resolution electron gun. Both methods yielded identical results for the variation in

Auger signal as a function of the number of times that it had been rubbed. Finally, the

chamber also included a quadrupole mass spectrometer for leak checking, for gauging

reactant purity and to collect the gas-phase products produced during the unidirec-

tional sliding of pin away from the mass spectrometer.

Experiments were performed by initially rubbing the tribopin against the clean cop-

per sample (∼ 1.7 × 1.7 cm2 by ∼ 1 mm thick) until a constant friction coefficient was

obtained. This resulted in the formation of a wear track. The DMDS was dosed through

a leak valve connected to a dosing tube (with an internal diameter of 4 × 10−3 m) di-

rected towards the sample so that the pressure at the sample is enhanced compared

to the measured background pressure, which was set at 1 × 10−8 Torr during DMDS

dosing (where pressures are not corrected for ionization gauge sensitivity). During the

unidirectional sliding of the pin over the DMDS-dosed wear track, the 16 amu mass

spectrometer fragment of the evolving gas-phase products was monitored by using

a UTi quadrupole mass spectrometer located inside the vacuum chamber and placed

close to and in-line-of-sight of the rubbing interface.

The copper samples (Fisher Scientific, 99.99% pure, 1 mm thick) were polished to a

mirror finish using 1 µm diamond paste and then rinsed with deionized water and de-

greased ultrasonically in acetone. The copper samples were cleaned using a standard
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procedure which consisted of Argon ion bombardment (∼ 1 kV, ∼ 2 µ A/cm2) and an-

nealing cycles up to various temperatures of ∼ 500, 850 or 1020 K. As discussed in chap-

ter 3, this resulted in different grain sizes and thus in different mechanical properties of

the sample. The cleanliness of the samples was monitored using Auger spectroscopy.

FIGURE 4.1: Comparison of the Auger spectra of the tribopin; the red (top) spectrum is col-
lected after e-beam heating and the black (lower spectrum) is for the untreated tibopin. Less W
is detected in untreated tribopin and graphitic carbon is profoundly dominant in the untreated

tribopin.
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4.3 Results

4.3.1 Analysis of the surface of the tribopin

Irradiating a surface with an electron beam excite surface atoms to produces ener-

getic electrons and the kinetic energy (eV) of these electrons is measured to produce

an Auger spectrum [10]. Auger spectra of a treated and untreated tribopin are shown

in Figure 4.1, where it is clear that the cleanliness of the untreated tribopin is different

from the e-beam-heated tribopin. The Auger spectrum of the untreated tribopin shows

a very small W (NNN) peak at ∼163 eV [11–13] kinetic energy (KE) compared with the

cleaned tribopin. The C (KLL): W163 (NNN) ratio of an untreated tribopin is ∼33.3,

but for e-beam heated tribopin it is reduced to ∼6.2. This indicates that the untreated

tribopin is abundantly covered with graphitic carbon, where the graphitic carbon is

formed on shearing the tungsten carbide tribopin on a DMDS-dosed copper surface

[5].
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4.3.2 Methyl thiolate decomposition rate on copper samples annealed

at 500, 850, and 1020 K with graphitic carbon-covered tribopin

To understand the surface-to-bulk sulfur transport mechanism, the rate of shear-induced

methyl thiolate decomposition was measured from the rate of methane evolution dur-

ing sliding (Figure 4.2). The tribopin was slid away from the mass spectrometer, while

the 16 amu mass spectrometer fragment signal was monitored until the 7th pass of

the pin over the sample. Rates of methyl thiolate decomposition were calculated by

plotting n − 1 against ln(Methane Yield), where the methane yield was measured from

the 16 amu mass spectrometer intensity and n is the number of passes [14]. The inset

in Figure 4.2 shows that the rate of methyl thiolate decomposition obeys first-order

kinetics. The first-order rate constants are summarized in Table 4.1 as a function of

dimethyl disulfide doses and copper sample annealing temperatures, where the rates

vary slightly. A slightly decreased rate was observed for an increased dose within the

same copper sample, and the methyl thiolate decomposition rate slightly increased in

the order of sample annealing temperatures: 500<850<1020 K, for the annealed copper

samples.
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FIGURE 4.2: The desorption of methane from a methyl thiolate overlayer (formed from 5 L
exposure to DMDS) on copper that had been annealed to 1020 K. The inset shows a plot of
ln(Methane Yield) versus n − 1, where n is the number of passes, indicative of a first-order

reaction.

Annealing
Temperature/K

500 850 1020

Dose/L Rate/pass Rate/pass Rate/pass
1 0.52±0.04 0.58±0.07 -
2 0.42±0.03 0.51±0.05 0.45±0.03
5 0.35±0.06 0.41±0.04 0.41±0.05

10 0.36±0.03 0.40±0.03 0.41±0.03

TABLE 4.1: Rate constants for shear-induced methyl thiolate decomposition on copper.

117



Chapter 4. Reaction between Dimethyl Disulfide and Copper by Sliding Graphitic

Carbon Covered Tungsten Carbide Tribopin: Influence of the Counterface on

Mechanochemistry

FIGURE 4.3: Plot of the relative friction coefficient measured with 10 Langmuir of DMDS on
the copper samples that had been rubbed at an applied normal load of 0.44 N and a sliding

speed of 4 × 10−3 m/s after being cleaned and annealed at 500 (■), 850 (●), or 1020 (▲) K.

4.3.3 Friction coefficient and average roughness of copper samples

The friction coefficients (CoF) of copper samples annealed at different temperatures

during cleaning were measured by sliding the tribopin against the DMDS-covered

copper samples. For a sample dosed with 10 L of DMDS, the measured CoF increases

monotonically with the number of times that the sample was rubbed until the 5th pass
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FIGURE 4.4: Plot of the relative friction coefficient measured at 5th scan with 1, 2, 5, and 10
Langmuir of DMDS exposure on the copper samples that had been rubbed at an applied normal
load of 0.44 N and a sliding speed of 4 × 10−3 m/s after being cleaned and annealed at 500 (■),

850 (●), or 1020 (▲) K.

as illustrated in Figure 4.3. The trend in CoF as a function of the number of scans as

illustrated in Figure 4.3 is maintained for all copper samples for that have been dosed

with 1, 2, or 5 L of DMDS (Table 4.2). Similarly, for 500, 850, or 1020 K annealed copper

samples exposed to 1, 2, 5, or 10 L of DMDS, the measured friction coefficients after the

5th pass (Figure 4.4) show that the CoF decreases with increased DMDS exposure, and
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the lowest CoF was observed in the 500-K annealed copper samples. Also, the average

roughness (Ra) measured for copper samples after being cleaned and annealed at 500,

850, or 1020 K shows that roughness increases with sample annealing temperature as

depicted in Figure 4.5.

FIGURE 4.5: Plot of average roughness (Ra) measured on copper samples after being cleaned
and annealed at 500, 850, or 1020 K measured using a confocal laser microscope (⧫).
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500 K

Scan Number CoF (1 L) CoF (2 L) CoF (5 L) CoF (10 L)

1 0.43±0.01 0.38±0.01 0.30±0.01 0.29±0.01
2 0.53±0.04 0.43±0.04 0.39±0.01 0.39±0.02
3 0.56±0.05 0.47±0.05 0.42±0.01 0.43±0.04
4 0.60±0.05 0.50±0.05 0.44±0.01 0.45±0.04
5 0.63±0.05 0.54±0.05 0.48±0.02 0.47±0.05

850 K

Scan Number CoF (1 L) CoF (2 L) CoF (5 L) CoF (10 L)

1 0.55±0.01 0.40±0.01 0.41±0.01 0.35±0.01
2 0.69±0.01 0.53±0.01 0.55±0.01 0.49±0.02
3 0.73±0.01 0.58±0.02 0.60±0.01 0.54±0.04
4 0.76±0.02 0.61±0.03 0.64±0.03 0.58±0.05
5 0.78±0.02 0.64±0.04 0.62±0.04 0.60±0.04

1020 K

Scan Number CoF (1 L) CoF (2 L) CoF (5 L) CoF (10 L)

1 0.39±0.03 0.36±0.03 0.38±0.01 0.37±0.03
2 0.51±0.05 0.49±0.03 0.54±0.02 0.50±0.02
3 0.64±0.05 0.60±0.03 0.63±0.02 0.56±0.02
4 0.66±0.05 0.65±0.03 0.67±0.03 0.60±0.03
5 0.70±0.05 0.69±0.04 0.71±0.03 0.64±0.04

TABLE 4.2: Friction coefficients measured for first 5 scans after dosing with 1, 2, 5, or 10 Lang-
muir of DMDS on the copper samples that had been rubbed at an applied normal load of 0.44
N and a sliding speed of 4 × 10−3 m/s after being cleaned and annealed at 500, 850, or 1020 K.

4.3.4 Measurement of the kinetics of surface-to-bulk sulfur transport

with graphitic carbon-covered tribopin

The sulfur transport experiments were conducted by rubbing a carbonaceous- (graphitic)

film-covered tungsten carbide tribopin on a copper sample dosed with a low coverage

(2 Langmuir(L) exposure) of DMDS (Figure 4.6) and revealed that the rates of surface-

to-bulk sulfur transport are essentially identical for all copper samples annealed to 500,
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FIGURE 4.6: Plot of the relative sulfur to copper (S/Cu) Auger ratio measured inside the wear
track as a function of the number of times that the copper samples had been rubbed at an
applied normal load of 0.44 N and a sliding speed of 4 × 10−3 m/s after being cleaned and

annealed at 500 (■), 850 (●), and 1020 (▲) K.

850 and 1020 K. Note that this result is different from that obtained with a cleaned tri-

bopin (Chapter 3). Similar experiments were conducted with a copper sample dosed

with a higher exposure (10 L) of DMDS and now different surface-to-bulk sulfur trans-

port rates were measured on copper samples annealed at different temperatures. The

results are displayed in Figure 4.7 and the transport rates vary in the order of sample
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FIGURE 4.7: Plot of the relative sulfur to copper (S/Cu) Auger ratio measured inside the wear
track as a function of the number of times that the copper samples had been rubbed at an
applied normal load of 0.44 N and a sliding speed of 4 × 10−3 m/s after being cleaned and

annealed at 500 (■), 850 (●), and 1020 (▲) K.

annealing temperature as 500<850<1020 K. The observed variation in sulfur signal as a

function of the number of scans depends not only on the surface-to-bulk diffusion rate

but also on the methyl thiolate decomposition rates, which were also measured using

the graphitic carbon-covered tribopin. Since the transport rate may also depend on the

adsorbate, the friction coefficients were also measured, and the results are described in
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section 4.3.3.

4.4 Discussion

The experiments performed with a tribopin cleaned by e-beam heating leaves very

little or no graphitic-carbon on the counter surface of the tribopin as evidenced by the

measured C (KLL): W163 (NNN) Auger ratio (Fig 4.1). Here experiments were carried

out using graphite-covered tribopin.

The measured kinetics of sheared-induced formation of a metastable copper sulfide

phase on copper annealed at 500, 850, or 1020 K did not follow the trend that was

observed previously with a cleaned tribopin as discussed in Chapter 3. The mechanical

properties of the copper sample substrates used in this experiment are identical to

those reported in Chapter 3 because the copper samples were treated to 500, 850, or

1020 K during the sample cleaning procedure in both sets of experiments. Therefore, it

is believed that the nature of the pin plays a significant role in influencing the surface-

to-bulk sulfur transport rates.

Graphitic carbon present on the tribopin plays a significantly different role from

an electron-beam heated tungsten carbide tribopin on the surface-to-bulk transport

of sulfur into the copper. This graphitic layer is developed from the repeated rub-

bing of the tribopin on DMDS-dosed copper samples and the graphitic carbonaceous
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layer remains if not cleaned by heating or ion bombardment. The graphitic carbon

plays a significant role in the reduction of the friction coefficient [6–8]. The measured

friction coefficients for the three different copper samples with the same methyl thi-

olate coverages on the copper surface revealed that highest CoF was observed in a

1020-K annealed copper sample, where the trend of CoF was observed to be in the

order: CoF1020>CoF850>CoF500 K, (Figures 4.3 and 4.4). The methyl thiolate decom-

position rates and surface-to-bulk sulfur transport rates are the most rapid on the

high-temperature annealed copper samples because of the severe contact between the

graphitic carbon-covered tungsten carbide tribopin and copper sample. Further, it is

evident that, from Figure 4.5, the average roughness of the copper substrate increases

with increasing annealing temperature. The increased roughness on the copper sam-

ples contributes to induce higher friction coefficients. It is reported that the CoF in-

creases as roughness increases, where asperity interlocking occurs [17, 18]. The in-

creased CoF on high-temperature-annealed copper samples indicates that the contact

conditions are more severe at the interface of copper samples that had been annealed to

higher temperature annealed samples, so that for high DMDS-dose (10 L DMDS dose)

the methyl thiolate decomposition and surface-to-bulk sulfur transport rates vary in

the order of copper annealing temperatures as: 1020>850>500 K.

For a 2 L DMDS dose, the sulfur transport rates are similar for all sample as shown

in Figure 4.6. Differences in sulfur transport rates are observed for a 10-L DMDS dosed
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sample where the surface-to-bulk sulfur transport experiments show that the rates

vary with sample annealing temperature as in the order of annealing temperature as

1020>850>500 K. This indicates that the methyl thiolate coverage plays a significant

role in the sulfur transport rates. After the 5th pass over the surface, a higher friction

coefficient was observed for a 2-L-DMDS dosed sample (as shown in Fig. 4.4), where

the methyl thiolate coverage is low. On the other hand, the sulfur transport rates ob-

served for a higher methyl thiolate coverage (for a 10 L DMDS dose), are influenced

by the methyl thiolate coverage in the wear track, which helps to decrease the friction

and leads to differences in the sulfur transport rates for the different copper samples

(Table 4.1), where the methyl thiolate decomposition rates are faster with a low methyl

thiolate coverage, where faster surface-to-bulk sulfur transport rates are observed in

2 L DMDS-dosed copper samples compared to 10 L DMDS-dosed copper samples.

For a high methyl thiolate coverage (10 L DMDS-dose), the methyl thiolate decom-

position rates are slower in low-temperature-annealed copper samples compared to

high-temperature-annealed copper samples. This suggests that, in high-temperature-

annealed copper samples, sulfur becomes readily available to be transported as soon

as the methyl thiolate decomposition reaction is complete, and sulfur is transported

into the bulk [14–16].
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4.5 Conclusions

Measurements of the rates of the surface-to-bulk transport of sulfur and methyl thio-

late decomposition were carried out by rubbing a graphitic carbon-covered tribopin on

different-temperature-annealed-copper samples. It is found that the roughness of the

samples increases with annealing temperature, where methyl thiolate decomposition

rates increase with higher roughness on the surface of the samples. Faster surface-to-

bulk sulfur transport rates are accompanied by higher methyl-thiolate decomposition

rates. Thus, the overall order of sulfur transport rates, methyl thiolate decomposition

rates and the roughness of the copper samples are observed to be in the order of anneal-

ing temperature as: 500<850<1020 K. The results show that the surface-to-bulk sulfur

transport rates are influenced by the nature of the tribopin since the rates measured

using a graphitic-carbon-covered tribopin are different from the sulfur-transport rates

measured by using the tungsten carbide tribopin, where the results are discussed in

Chapter 3.
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Chapter 5

Tribochemical Reaction Pathways of Car-

boxylic Acid Monolayers on Copper in

Ultrahigh Vacuum

5.1 Introduction

Fatty acids are often used as so-called friction modifiers to lubricants to reduce friction

by forming an adsorbed overlayer on the surface [1–4] and often consist of long-chain

carboxylic acids (fatty acids) in which the carboxylate group binds to the substrate,

thereby exposing a weakly interacting carbonaceous outer surface. This overlayer can

be removed during the sliding process but is then replenished from the lubricant and

thus has the advantage of providing a self-healing film.

In some cases, tribochemical reactions of the adsorbed layer can form low-friction

carbonaceous surfaces [1, 3, 5–7] and thus, in this case, act as chemically reactive addi-

tives. The mechanism of operation of such fatty acid lubricant additives on tetrahedral
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amorphous carbon (ta-C) and the role of carbon-carbon double bonds on the reaction

pathway have been investigated theoretically using a combination of molecular dy-

namics (MD) simulations with a reactive potential, combined with first-principles den-

sity functional theory (DFT) calculations [2]. These simulations reveal that carboxylic

acid binds via the -COOH functionality, but the presence of a vinyl group in the car-

bonaceous chain can influence the tribochemical reactivity by binding to the moving

counterface. Interestingly, the conformation of the chain and the resulting steric ability

of the vinyl group to interact with the counter-surface is found to influence the rate

of tribofilm formation. Thus, the adsorbed reactant (the fatty acid) can bind both to

the substrate via an attachment point (AP) and to the moving counterface at a pulling

point (PP) where the strengths of AP and PP binding relative to the activation energy

of tribochemical reaction is likely to control the reactivity [8]; for example, interactions

with the counterface have recently been suggested to play a role in the mechanochemi-

cal etching of silicon [9]. These ideas are tested in the following by selecting molecules

that tune the PP functionality while keeping the AP interaction constant using car-

boxylic acids adsorbed on a copper substrate, which bind strongly to the surface a

bidentate η
2 configuration as a carboxylate [10, 11], while sliding against a tungsten

carbide counterface that can bind to a terminal vinyl group.

This mechanochemistry is investigated by adsorbing various carboxylic acids onto

copper; 7-octenoic acid (a C8 hydrocarbon with a terminal C=C group), octanoic acid
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(with a C8 alkyl chain), heptanoic acid (with a C7 alkyl chain), and 6-heptenoic acid

(with a C7 terminal vinyl group). As will be shown below, the carbon chain length in-

fluences the orientation of the terminal vinyl group relative to the surface and thereby

its potential ability to interact with the (tungsten carbide) counterface. In addition to

the hardness of tungsten carbides that will not wear when rubbed against copper, tung-

sten and molybdenum carbides have been suggested to have catalytic properties akin

to those found for noble metals (platinum and palladium) [12–14], and this concept

has been borne out by UHV surface studies [15, 16], implying that the vinyl groups

will bind to the surface of the tribopin.

Carboxylic acids bind to copper via the formation of acetate species [10] and decom-

pose via the evolution of carbon dioxide with the simultaneous formation of hydrocar-

bon fragments at temperature between 570 and 580 K in temperature-programmed

desorption [17–20]. The MD simulations referred to above indicate that fatty acids

react during sliding by the acid group interacting with the surface and subsequently

undergoing cross-linking reactions with the counterface to enable high forces to be

exerted on the molecule, leading to its rapid decomposition. Note that this process dif-

fers from the copper-tungsten carbide interface investigated here because, in this case

the carboxylic acid is pre-adsorbed on copper rather than being allowed to react at the

sliding interface. The simulations indicate that the reaction is initiated by the decompo-

sition of the carboxylate group to form carbon monoxide and adsorbed atomic oxygen,
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in contrast to the thermal chemistry found on copper. The repeated rupture and cross-

linking of the resulting carbonaceous fragments lead to the formation of shorter-chains

hydrocarbons and the eventual passivation of the surface.

5.2 Experimental

Experiments were carried out in two stainless-steel, ultrahigh vacuum (UHV) cham-

bers operating at a base pressure of ∼ 2× 10−10 Torr following bakeout, one for surface

analyses of the carboxylic acids [21] and the second for tribological measurements [22].

Briefly, the tribology chamber was equipped with a UHV-compatible tribometer, which

simultaneously measures normal load, lateral force and the contact resistance between

the tip and substrate. All tribological measurements were made using a sliding speed

of ∼ 4 × 10−3 m/s at a normal load of 0.44 N. Previous work has shown that the maxi-

mum interfacial temperature rise for a copper sample under these conditions is much

less than 1 K [23]. The spherical tribopin (∼ 1.27 × 10−2 m diameter) was made from

tungsten carbide containing some cobalt binder and could be heated by electron bom-

bardment in vacuo or by Argon ion bombardment in order to clean it. The pin was

attached to an arm that contained strain gauges to enable the normal and lateral forces

to be measured. The arm was mounted to a rotatable 23⁄4” Conflat R© flange to allow

the pin to be rotated to face the cylindrical mirror analyzer (CMA) to enable Auger

spectra of the pin surface to be obtained. Additional experiments were carried out by
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analyzing the tungsten carbide pin by X-ray photoelectron spectroscopy after Argon

ion bombardment using a spectrometer containing a hemispherical analyzer built by

ThermoFisher (220i) with a focused monochromatic X-Ray source.

The copper samples (Alfa Aesar, 99.99% pure, 1 mm thick) were polished to a mir-

ror finish using 1 µm diamond paste and then rinsed with deionized water and de-

greased ultrasonically in acetone before mounting in the UHV chamber. The copper

was cleaned using a standard procedure which consisted of Argon ion bombardment

(∼1 kV, ∼2 µA/cm
2) and annealing cycles and the cleanliness of the samples was mon-

itored using Auger spectroscopy.

The tribometer chamber contained a single-pass CMA for Auger analysis, and an

Argon ion bombardment source for sample cleaning and depth profiling. Auger spec-

tra were either collected using the coaxial electron gun in the CMA with an electron

beam energy of 3 kV or with a Staib model EK050M2 Microfocus electron gun. The

chamber is also equipped with a channeltron secondary electron detector which al-

lowed scanning electron microscopy (SEM) images of the wear scar to be collected

using the high-resolution electron gun, which also enabled Auger elemental profiles to

be obtained across the rubbed regions.

Experiments were performed by initially rubbing the tribopin against the clean cop-

per sample (∼1.7 × 1.7 cm2 by ∼1 mm thick) until a constant friction coefficient was
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obtained. This resulted in the formation of a wear track. The carboxylic acids were

dosed through a Knudsen source connected to a dosing tube (with an internal diam-

eter of 4.0 × 10−3 m) directed towards the sample so that the pressure at the sample

is enhanced compared to the measured background pressure, where pressures are not

corrected for ionization gauge sensitivity.

Infrared spectra and temperature-programmed desorption (TPD) data were col-

lected in a chamber operating at base pressures of ∼ 1 × 10−10 Torr following bakeout

and has been described in detail elsewhere [21]. RAIRS data were collected with a

Bruker Equinox spectrometer, typically for 1000 scans at a resolution of 4 cm−1. TPD

experiments were carried out in another chamber that was equipped with a Dycor

quadrupole mass spectrometer interfaced to a computer that allowed up to six masses

to be sequentially monitored in a single experiment. The sample could be cooled to 80

K in both chambers by thermal contact to a liquid-nitrogen-filled reservoir and resis-

tively heated to ∼1200 K.

The 7-octenoic acid (Aldrich, ≥97.0% purity), octanoic acid (Aldrich, ≥98.0% pu-

rity), 6-heptenoic acid (Aldrich, ≥99.0% purity), and heptanoic acid (Aldrich, ≥99.0%

purity) were transferred to glass bottles and attached to the gas-handling system of the

vacuum chamber, where it was subjected to several freeze-pump-thaw cycles.

Density functional theory (DFT) calculations were performed with the projector
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augmented wave (PAW) method [24, 25] as implemented in the Vienna ab initio simu-

lation package, VASP [26–28]. The exchange-correlation potential was described using

the generalized gradient approximation (GGA) of Perdew, Burke and Ernzerhof [29].

A cutoff of 400 eV was used for the plane wave basis set, and the wavefunctions and

electron density were converged to within ∼ 1 × 10−5 eV. The first Brillouin zone was

sampled with a 4×4×1 Γ-centered k-point mesh. Geometric relaxations were consid-

ered to be converged when the force was less than 0.02 eV/Å on all unrestricted atoms.

5.3 Results

5.3.1 Surface Structure Determination

Reflection-absorption infrared spectra (RAIRS) were collected for the various carboxylic

acids adsorbed on a Cu(100) substrate (Fig. 5.1). The acid group can bind strongly in

a bidentate η
2 configuration to metal surfaces as a carboxylates [10, 11], and the pres-

ence of an intense feature at ∼1440 cm−1 for all carboxylic acids following adsorption

at room temperature indicates that they all form strongly bound carboxylates and thus

these model systems provide a strong attachment points.

The organic acids are identical in their surface bonding but differ only in the length

of the carbon chain and the nature of the terminal groups. The most stable structures

for each of the carboxylic acids, predicted by DFT, are shown in Fig. 5.2 for bidentate η
2
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FIGURE 5.1: Reflection-absorption infrared spectra of (a) 7-octenoic acid and (b) octanoic acid
adsorbed on a Cu(100) single crystal surface at room temperature. Courtesy of Robert Vincent

Bavisotto, UW-Milwaukee, USA.

structures on a Cu(100) surface. The carbon chain length and the presence of a terminal

vinyl group strongly influences the terminal group orientation and thus potentially the

strength of the pulling-point interaction. In the case of the saturated hydrocarbons,

both octanoic and heptanoic acids have hydrocarbon groups that are terminated by

an ethyl group which, in the case of octanoic acid has a C–C bond that is oriented

close to perpendicular to the Cu(100) surface plane, while in heptanoic acid, it is tiled

with respect to the plane. The number of carbon atoms in the chain also influence the

orientation of the terminal vinyl group. In the case of 6-heptenoic acid, the lobes of the

π-electron density of the terminal CH=CH2 group are oriented parallel to the surface,

and therefore not easily accessible to the counterface, while in 7-octenoic acid, the lobes

protrude from the surface and should therefore be more easily accessible.
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FIGURE 5.2: Structures of various carboxylic acids adsorbed on a Cu(100) surface in a (2×2)
units cell, assuming that the carboxylic acids adsorb on the surface via the carboxylate group
as suggested by infrared spectroscopy (Figure 5.1). Courtesy of Robert Vincent Bavisotto, UW-

Milwaukee, USA.

Auger and X-ray photoelectric spectroscopic analyses of the tungsten carbide pin

are shown in Figure 5.3. The tungsten carbide pin is routinely cleaned by electron-

beam heating from a filament located inside the UHV chamber. It can also be cleaned
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by Argon ion bombardment, although the latter strategy may also change the surface

microstructure so that e-beam heating was used. The effect of e-beam heating on the

pin is illustrated in Fig. 5.3A, which shows that that the untreated pin immediately

after inserting into the UHV chamber is covered by carbon. Heating briefly until the

sample glows red causes a change in the spectrum and the appearance of features

due to tungsten, and consistent with the presence of tungsten carbide in the pin [30].

The presence of tungsten carbide was confirmed from the XPS spectrum in Fig. 5.3B,

obtained after ion bombarding, which shows peaks characteristic of tungsten carbide.

Cobalt has a characteristic feature at ∼800 eV binding energy [31] and no features are

detected at this energy is the spectrum indicating that there is little cobalt binder on

the surface of the pin.

Tungsten and molybdenum carbides have been suggested to have catalytic prop-

erties akin to those found for noble metals (platinum and palladium) [12–14] and this

has been borne out by UHV surface studies [15, 16], indicating that vinyl groups could

bind to the surface of the tribopin. If binding to the counterface is important to the

tribochemical reaction kinetics [2], 7-octenoic acid should react the most rapidly.

5.3.2 Thermal Decomposition of Carboxylic Acids on Copper

As indicated above, both the thermal and tribochemical reactions on Cu(100) are ex-

pected to occur in a two-step process initiated by scission of the bond between the
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FIGURE 5.3: Analyses of the surface of the tungsten carbide tribopin. Figure A shows the
initially contaminated pin showing predominantly carbon on the surface and the upper trace
shows the effect of e-beam heating now revealing the presence of tungsten. Figure B shows
an Al Kα X-ray photoelectron spectrum of the tungsten carbide pin that has been Argon ion
bombarded. Figure B courtesy of Jules Galipaud and Thierry LeMogne, Ecole Centrale de

Lyon, France.

carboxylate group and the hydrocarbon moiety to form CO and/or CO2, with the sub-

sequent decomposition of the alkyl group to form gas-phase products and deposit car-

bonaceous species on the surface. In order to clarify the thermal chemistry, TPD data

were collected for 7-octenoic, octanoic, 6-heptenoic and heptanoic acids adsorbed on a

clean copper foil at room temperature. The carbon dioxide (44 amu) signal was mon-

itored to monitor the onset of molecular decomposition. The most intense molecular

fragment of the adsorbed carboxylic acid was monitored as well as 18 amu (water),

28 amu (carbon monoxide and ethylene), 27 amu (ethylene) and 16 amu (methane).

We note that the product distribution for fragments that are formed tribochemically at

300 K and likely to be different from those formed thermally at higher temperatures.
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However, the reaction data will provide mechanistic information on the decomposi-

tion pathway of these carboxylic acids on copper. All experiments were carried out for

a saturated overlayer formed at 300 K.

FIGURE 5.4: Temperature-programmed desorption profiles of 6.3×10−6 Torr.s of 7-octenoic acid
adsorbed on a copper foil at 300 K monitored at various masses using a heating rate of 2.9 K/s,

where the monitored masses are displayed adjacent to the corresponding spectrum.

The results are displayed in Figs. 5.4 to 5.7 where all desorption profiles show an in-

tense 44 amu (carbon dioxide) signal just above 600 K, higher temperatures than those
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FIGURE 5.5: Temperature-programmed desorption profiles of 1.8×10−5 Torr.s of octanoic acid
adsorbed on a copper foil at 300 K monitored at various masses using a heating rate of 2.9 K/s,

where the monitored masses are displayed adjacent to the corresponding spectrum.

found for the desorption of shorter-chain carboxylic acids on copper [17–20]. The CO2

desorbs at slightly lower temperatures for carboxylic acids containing a terminal vinyl

group (∼625 K) than saturated carboxylic acids (∼640 K). The difference in reactivity is

also evidenced by the desorption of molecular species, where octanoic and heptanoic

acids (60 amu) desorb at 545 (Fig. 5.5) and 555 K (Fig. 5.7), while no desorption is found

for the carboxylic acids with carbon-carbon double bonds in Fig. 5.4 for 7-octenoic acid
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FIGURE 5.6: Temperature-programmed desorption profiles of 8.7×10−6 Torr.s of 6-heptenoic
acid adsorbed on a copper foil at 300 K monitored at various masses using a heating rate of 2.9

K/s, where the monitored masses are displayed adjacent to the corresponding spectrum.

at 55 amu, and Fig. 5.6 for 6-heptenoic acid at 41 amu. Finally, while no attempt was

made to fully characterize the nature of the resulting hydrocarbon fragments, small

hydrocarbons form coincidentally with or at slightly higher temperatures than the for-

mation of CO2. Methane seems to be formed at the same temperature as CO2, while C2

hydrocarbons desorb at ∼700 K. However, the results collectively indicate that molec-

ular decomposition is initiated by the formation of a CO2 fragment from the anchoring

144



5.3. Results

FIGURE 5.7: Temperature-programmed desorption profiles of 1.05×10−5 Torr.s of heptanoic
acid adsorbed on a copper foil at 300 K monitored at various masses using a heating rate of 2.9

K/s, where the monitored masses are displayed adjacent to the corresponding spectrum.

carboxylate group, followed by the decomposition of the hydrocarbon fragments. The

reactivity of the fragments is also influenced by the presence of a terminal vinyl group

in the chain.
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5.3.3 Tribochemical Reactions of Carboxylic Acids on Copper

Tribochemical experiments were carried out by rubbing a carboxylate-covered surface

with a cleaned tungsten carbon ball at a sliding speed of 4× 10−3 m/s at a normal load

of 0.44 N. The rubbed region was then analyzed using Auger spectroscopy. Attempts

were made to monitor the gas-phase products formed during sliding as done previ-

ously [32–34] but the residual background signal after sample dosing precluded such

experiments from being carried out. Figure 5.8 shows the results of experiments car-

ried out for a saturated overlayer of 7-octenoic acid on copper. Here the surface was

first rubbed to create a wear track and then dosed with 7-octenoic acid, where the satu-

ration dose was gauged by measuring the C KLL Auger spectral intensity as a function

of exposure. This yields a C/Cu peak-to-peak intensity ratio of ∼0.65. The decrease in

the amount of carbon on the surface as the surface is rubbed (■) indicates that the ad-

sorbed 7-octenoate undergoes a tribochemical reaction. The signal decreases to a final

C/Cu Auger ratio of ∼0.12 after ∼35 passes and a fit to an exponential decrease yields a

number of passes to reduce the signal by 1/e of 7.9 ± 1.1 scans. The exponential decay

in carbon Auger signal suggests a first-order decomposition rate, but the surface signal

does not account for any products lost into the gas-phase so that caution must be used

in assuming a reaction order from these data.

The experiment was repeated without cleaning the substrate or the pin (Fig. 5.8, ●)
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FIGURE 5.8: Plot of the C/Cu Auger ratio in the wear track of a saturated overlayer of 7-
octenoic acid on a copper foil as a function of the number of passes at a normal load of 0.44 N
and a sliding speed of 4×10−3 m/s, for 7-octenoic acid on a clean surface (■) and after a second

dose of 7-octanoic acid on the previously rubbed surface.

to assess how the presence of carbonaceous product influenced the reaction kinetics.

The results are also plotted on the figure, where the signal decay rate is approximately

identical to the first experiment, but there is a slight increase in the amount of carbon

on the surface (to a C/Cu ratio of 0.14 after the second scan). In order to investigate
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this further, the surface was repeatedly dosed and rubbed until the carbon Auger sig-

nal intensity remained constant. The results are displayed in Figure 5.9 for 7-octenoic

acid adsorption. Here, the amount of carbon on the surface increases significantly after

that surface has been dosed and rubbed 4 times to yield a S/Cu ratio of 0.26 at a rate of

0.047 ± 0.008 C/Cu per scan, and then does not change. The amount of carbon initially

on the surface after dosing the sample with 7-octenoic acid decreases (note that this is

the sum of the carbon deposited during the previous cycles plus the 7-octenoic acid

then adsorbed on the surface) as the surface becomes covered by carbon. However,

the blocking is not complete, implying that some of the carbon has penetrated the bulk

(see below). The results also imply that the tribochemical reaction for a surface that

accumulates sufficient carbon to yield a S/Cu ratio of 0.26 results in the deposition of

no more additional carbon on the surface, suggesting that 7-octenoate decomposition

on this surface yields only gas-phase products or that the loss of carbon by diffusion

into the bulk equals that formed on the surface by the decomposition of 7-octenoic

acid. Since a saturated overlayer of 7-octenoic acid has a C/Cu Auger ratio of 0.66,

the additional carbon after ≥5 doses (the difference between the signal for the satu-

rated overlayer with a C/Cu Auger ratio of 0.59 and the surface after rubbing with

a C/Cu Auger ratio of 0.26) corresponds to a relative coverage of ∼0.56 monolayer of

7-octenoate species. The Auger spectrum of the pin (data not shown) indicates that car-

bon is also deposited on the counterface as evidence by the relatively weaker tungsten
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signal.

FIGURE 5.9: Plot of the initial (indicated as 0 scan) and final (indicated as 50 scans) carbon to
copper Auger ratio measured in the wear track after rubbing a copper surface saturated with
7-octenoic acid at a normal load of 0.44 N at a sliding speed of 4×10−3 m/s. Neither the copper
surface nor the tungsten carbide pin was cleaned between scans so that each consecutive scan

is for an interface that includes the accumulated carbon from previous scans.

A similar sequence of experiments was carried out on a copper surface dosed with

octanoic acid. Because of the lack of any unsaturation in the chain to bind strongly

to the tungsten carbide pin, this is anticipated to be the least tribochemically reactive

surface species. The variation in C/Cu Auger ratio with the number of rubbing cycles
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is shown in Figure 5.10. Some carbon is deposited onto the surface at the end of 50

rubbing cycles with a C/Cu Auger ratio of ∼0.11, and the curve yields a number of

passes to 1/e of the original intensity of 1.8 ± 0.2 scans; much faster than for 7-octenoic

acid (Fig. 5.8). The effect of repeated dosing is shown in Fig. 5.11, where there is a

significant blocking of the surface by the reaction products, although the final amount

of carbon 1.8 (corresponding to a C/Cu ratio of 0.27) is the same as for 7-octenoic acid.

The amount of carbon on the surface increases at a rate of 0.042 ± 0.004 C/Cu per dose,

similar to that found for 7-octenoic acid (Fig. 5.9).

A similar series of experiments was carried out for C7 hydrocarbons. The results for

6-heptenoic acid are displayed in Figure 5.12 where the amount of carbon remaining

after 50 scans is slightly less that for the C8 hydrocarbons and the number of scans

to decrease the signal to 1/e of its original value is 11.3 ± 1.8 scans and is therefore

the least reactive of all carboxylic acids tested. The results of experiments in which

the sample is repeatedly dosed and rubbed is shown in Fig. 5.13, where the carbon

accumulation rate is 0.048 ± 0.01 C/Cu per dose. Finally the relative coverage that

can be accommodated after ≥5 scans is ∼0.25 ML. Similar results are displayed for

the corresponding saturated C7 hydrocarbon, heptanoic acid (Figure 5.14), where the

remaining carbon has a C/Cu Auger ratio of ∼0.08 and the carbon removal rate is 4.1 ±

0.4 scans to reduce the carbon signal to 1/e of its original value. The effect of repeated

dosing and rubbing in shown in Figure 5.15, where the rate of carbon accumulation
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FIGURE 5.10: Plot of the C/Cu Auger ratio in the wear track of a saturated overlayer of octanoic
acid on a copper foil as a function of the number of passes at a normal load of 0.44 N and a
sliding speed of 4×10−3 m/s, for octanoic acid on a clean surface (■) and after a second dose of

octanoic acid on the previously rubbed surface.

is 0.036 ± 0.001 C/Cu per scans and the coverage of the heptanoic acid that can be

accommodated onto the surface after ≥4 scans is ∼0.38 ML.

The rates of the removal of carbon are summarized in Table 5.1 for the various car-

boxylic acids. It is evident that the carbon signal decreases much more rapidly as a
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FIGURE 5.11: Plot of the initial (indicated as 0 scan) and final (indicated as 50 scans) carbon to
copper Auger ratio measured in the wear track after rubbing a copper surface saturated with
octanoic acid at a normal load of 0.44 N at a sliding speed of 4×10−3. Neither the copper surface
nor the tungsten carbide pin was cleaned between scans so that each consecutive scan is for an

interface that includes the accumulated carbon from previous scans.

function of the number of times that the sample had been rubbed for alkyl-group con-

taining carboxylic acids (octanoic and heptanoic acids) compared to those containing

a terminal vinyl group (7-octenoic and 6-heptenoic acids). However, the surface chem-

istry experiments indicate that the thermal reaction involves the formation of carbon
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FIGURE 5.12: Plot of the C/Cu Auger ratio in the wear track of a saturated overlayer of 6-
heptenoic acid on a copper foil as a function of the number of passes at a normal load of 0.44
N and a sliding speed of 4×10−3 m/s, for 6-heptenoic on a clean surface (■) and after a second

dose of 6-heptenoic on the previously rubbed surface.

dioxide from the carboxylate group followed by the reaction of the resulting hydrocar-

bon fragment so that the removal of carbon is the result of several reaction steps. To

disentangle these effects, the loss of oxygen from the surface as a function of the num-

ber of passes was also monitored and the results are displayed in Figure 5.16. Note that

the oxygen Auger signal is much small than the carbon signal because there is much
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FIGURE 5.13: Plot of the initial (indicated as 0 scan) and final (indicated as 50 scans) carbon to
copper Auger ratio measured in the wear track after rubbing a copper surface saturated with 6-
heptenoic acid at a normal load of 0.44 N at a sliding speed of 4×10−3 m/s. Neither the copper
surface nor the tungsten carbide pin was cleaned between scans so that each consecutive scan

is for an interface that includes the accumulated carbon from previous scans.

more carbon than oxygen in the adsorbed layer and the oxygen is buried at the surface,

while the carbon is in the outermost layer. The amount of oxygen decreases identically

for all carboxylate overlayers at a rate of 2.0 ± 0.1 O/Cu per scan, similar to the rate

of carbon removal from octanoic acid (Table 5.1). This implies that there is little effect

of varying the nature of the outermost functionality and thus the nature of the pulling
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FIGURE 5.14: Plot of the C/Cu Auger ratio in the wear track of a saturated overlayer of hep-
tanoic acid on a copper foil as a function of the number of passes at a normal load of 0.44 N and
a sliding speed of 4×10−3 m/s, for heptanoic on a clean surface (■) and after a second dose of

heptanoic on the previously rubbed surface.

point on the overall shear-induced rate of decomposition of the carboxylic acids. As

a result, this implies that differences in the rates of carbon removal are caused by the

rates at which the resulting hydrocarbon fragments react. Furthermore, if differences

in the terminal functionality do not influence the shear-induced reactivity, this should
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FIGURE 5.15: Plot of the initial (indicated as 0 scan) and final (indicated as 50 scans) carbon to
copper Auger ratio measured in the wear track after rubbing a copper surface saturated with
heptanoic acid at a normal load of 0.44 N at a sliding speed of 4×10−3 m/s. Neither the copper
surface nor the tungsten carbide pin was cleaned between scans so that each consecutive scan

is for an interface that includes the accumulated carbon from previous scans.

also be evident from the friction coefficient of the various carboxylic acid covered sur-

faces. Such measurements will also provide information on the frictional properties of

the various tribochemically formed surfaces and are discussed in the next section.
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Compound Carbon Removal Sliding
Number/Scan

Friction Coefficient

7-Octenoic Acid 7.9 ± 1.1 0.23 ± 0.08
Octanoic Acid 1.8 ± 0.2 0.22 ± 0.06

6-Heptenoic Acid 11.3 ± 1.8 0.18 ± 0.08
Heptanoic Acid 4.1 ± 0.4 0.21 ± 0.08

TABLE 5.1: The number of scans at a load on 0.44 N at a sliding speed of 4×10−3 m/s to decrease
the C KLL Auger intensity to 1/e of its original value for the adsorption of each of the carboxylic
acids on copper, compared with the initial friction coefficient of the saturated overlayer of each

compound.

5.3.4 Frictional Behavior of Carboxylic Acids on Copper

The evolution of the friction coefficient as a function of the number of passes for a

7-octenoic acid overlayer on clean copper is shown in Figure 5.17. The presence of

the 7-octenoic acid on the surface significantly reduces the initial friction coefficient to

∼0.23 ± 0.08 (■, Table 5.1), but this rises as the surface is rubbed in accord with the

loss of carbon from the surface (Fig. 5.8). The corresponding scan after the surface

has been dosed and rubbed for 50 scans with 7-octenoic acid six times is also shown

(●). Here the initial friction coefficient is identical to that on clean Cu saturated with

7-octenoic acid but the friction coefficient increases but then forms a plateau due to the

carbonaceous species previously formed on the surface.

Similar behavior is seen for an octanoic acid overlayer on copper (Figure 5.18)

where the initial friction coefficient it 0.22 ± 0.06 (■), and increases as the overlayer

is removed from the surface. The overlayer on a substrate that has been dosed with
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FIGURE 5.16: Plot of the O/Cu Auger ratio in the wear track of a saturated overlayer of 7-
octenoic acid (■), octanoic acid (●), 6-heptenoic acid (▲), and heptanoic acid (▼) as a function

of the number of passes at a normal load of 0.44 N and a sliding speed of 4×10−3 m/s.

octanoic acid and rubbed six times again has a similar initial friction coefficient and

reaches a lower plateau after rubbing due to the presence of carbon on the surface.

Identical behavior is seen for 6-heptenoic acid (Fig. 5.19), where the friction coef-

ficients for the initial overlayer on both surfaces is 0.17 ± 0.08 and for heptanoic acid
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FIGURE 5.17: Plot of the evolution in the friction coefficient of a 7-octenoic acid overlayer on
copper rubbed at a normal load of 0.44 N and a sliding speed of 4×10−3 m/s for an overlayer
formed on a clean surface (■) and on a surface that has been dosed and rubbed six times (●).

(Fig. 5.20), where the initial friction coefficient it 0.21 ± 0.08. Thus the friction behav-

ior mimics the surface analyses, where the friction is initially low due to the presence

of the organic overlayer. The initial friction coefficient are essentially identical for both

the carboxylic acids on the clean and carbon-covered surfaces. This indicates that some

blocking of the copper by carbon, which reduces the coverage of the carboxylate, but

does not significantly influence the friction. More significant is the similarity between
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FIGURE 5.18: Plot of the evolution in the friction coefficient of a octanoic acid overlayer on
copper rubbed at a normal load of 0.44 N and a sliding speed of 4×10−3 m/s for an overlayer
formed on a clean surface (■) and on a surface that has been dosed and rubbed six times (●).

the friction coefficients of all carboxylic acids irrespective of the nature of the terminal

group, indicating that this does not lead to larger forces acting on the adsorbate. This

is consistent with the observed similarity in initial tribochemical reaction rates.

These experiments involve the accumulated adsorption of a significant amount of

carbon on the surface, which then undergoes shear-induced reactions, yet the surface
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FIGURE 5.19: Plot of the evolution in the friction coefficient of a 6-heptenoic acid overlayer on
copper rubbed at a normal load of 0.44 N and a sliding speed of 4×10−3 m/s for an overlayer
formed on a clean surface (■) and on a surface that has been dosed and rubbed six times (●).

can still adsorb a significant amount of carboxylic acid. This implies that the sliding

interface has induced the transport of carbon from the surface into the subsurface re-

gion in a similar way to the shear-induced surface-to-bulk transport of sulfur on cop-

per [23, 32–34]. This is explored in the next section for the tribochemical reaction of

6-heptenoic acid on copper.
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FIGURE 5.20: Plot of the evolution in the friction coefficient of a heptanoic acid overlayer on
copper rubbed at a normal load of 0.44 N and a sliding speed of 4×10−3 m/s for an overlayer
formed on a clean surface (■) and on a surface that has been dosed and rubbed six times (●).

5.3.5 Surface-to-Bulk Transport of Carbon into the Copper Subsur-

face Region

The possibility of carbon having diffused into the bulk of the sample to form a metastable

carbide is investigated by heating the sample to ∼780 K to cause the subsurface carbon
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to diffuse to the surface on heating [32]. This however requires that all carbon be se-

lectively removed from the surface by ion bombardment. This experiment was carried

out for a copper sample that had been saturated with 6-heptenoic acid and rubbed 50

times and was then redosed without cleaning for a total of six times. The results of

the experiment are shown on Fig. 5.21, where the rubbed region is indicated. The top

trace (black line) shows the initial carbon KLL Auger signal intensity as a function of

position across the wear track. The region outside the wear track is due to adsorbed 6-

heptenoic acid and the slightly lower signal is due to the removal of the adsorbed layer

to reveal the carbonaceous film formed by the tribochemical reaction as shown in Fig

5.13. The sample was then bombarded with Argon ions to remove the majority of the

molecular overlayer to produce the bottom trace shown (blue line). Note that not all

the carbon outside the wear track has been removed by this process, but was stopped at

this point to avoid removing subsurface carbon. The sample was then heated to 780 K,

resulting on the red profile (red line), where there is an enhanced carbon Auger signal

in the region that was rubbed thereby confirming that carbon has penetrated the bulk

of the carbon. There is also a significant increase in the C CLL Auger intensity well out-

side the wear track. Note that this experiment involved the deposition of equivalent

of up to ∼40 monolayers of carbon (six repeated doses of 6-heptenoic acid overlayers).

Some of the carbon may have been removed by the tribochemical formation of small
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hydrocarbons, but a significant proportion must have penetrated the bulk after a to-

tal of 300 rubbing cycles to still leave vacant sites for 6-heptenoic acid to adsorb. The

subsurface carbon will diffuse isotropically until it reaches the surface to form a stable

carbonaceous overlayer. The fact that it moves several hundred microns laterally as it

diffuses toward the surface implies that it must have penetrated a similar distance into

the bulk of the copper.

5.4 Discussion

These results indicate that relatively long-chain carboxylic acids adsorbed on copper

undergo tribochemical reactions to deposit carbonaceous species on the surface and in

the subsurface region. In addition to carboxylic acids functioning as friction modifiers

by forming protective adsorbed molecular overlayers [4], they can react at the inter-

face to form lubricious carbonaceous films [1, 5, 6] and thus also function as friction-

reducing additives. An important conclusion from this work is that this reaction is

mechanochemically induced rather that the rate being accelerated by some other pro-

cess such as interfacial heating since the temperature rise during sliding on copper un-

der the conditions used here is negligible. This is in accord with the predictions from

simulations [2] and appears to be a common feature that the chemistry of lubricant ad-

ditives is mechanochemically driven as, for example, for zinc dialkyl dithiophosphate

(ZDDP) and phosphate esters [35–37].
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FIGURE 5.21: C CKK Auger profiles across a wear track for a tribochemical reaction of 6-
heptenoic acid on copper following 50 scans over the surface for six doses of 6-heptenoic acid
(black line) showing the Auger signal of the 6-heptenoate overlayer outside the rubbed region
and the reduction in Auger signal in the rubbed region due to the tribochemical reaction. The
sample was then Argon ion bombarded to remove the majority of the surface carbon (blue
line) and the sample was then heated to 790 K to cause any subsurface carbon to diffuse to the

surface once again (red line).

This work shows that the tribochemical reaction is initiated by the cleavage of the

bond between the carboxylate anchoring group and the hydrocarbon chain likely form-

ing carbon dioxide that will rapidly desorb from the surface, along with a hydrocarbon

radical, which then undergoes subsequent reactions on the surface. This pathway is
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similar to the thermal reaction as identified by TPD (Figs. 5.4-5.7), where the reaction

is initiated above 600 K, while the tribochemical reaction takes place at room tempera-

ture. In this case, the subsequent reaction of the side chain are likely to differ in some

details between the thermal reaction (where they occur at ∼600 K) and for tribochemi-

cal reactions (when they occur at 300 K).

It was postulated that the interaction between the terminus of the hydrocarbon

chain and the moving counterface (the pulling point) might influence the tribochem-

ical reaction rate where the stronger binding of a vinyl than an alkyl group to the

tungsten carbide surface (Fig. 5.3) should result in higher forces being exerted for

vinyl-terminated surfaces, resulting in higher reactivity. The stereochemistry of this

interaction was also investigated by using C7 and C8 chains. However, no dependence

was found on the rate of oxygen removal from the surface while rubbing (Fig. 5.16)

for carboxylic acids on changes in the nature of the terminus of the chain. In addition,

the initial friction coefficients of the overlayers were independent of the nature of the

hydrocarbon (Table 5.1).

There are various possibilities for this effect. First, it may be that a reaction does oc-

cur with different rates on the initially clean tungsten carbide surface, thereby rapidly

forming a carbon-covered surface which forms van der Waals bonds with the adsorbed

molecule that masks the difference between the alkyl and vinyl terminations. It may

also be that the interface is sufficiently rough that such steric effects are obscured. In
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any case, this result implies that any differences in the reaction kinetics is not con-

trolled by the initial decomposition step, but is instead controlled by the tribochemical

decomposition of the hydrocarbon fragment that is formed. This results in the rate of

the removal of carbon from alkyl chains being much more rapid than for chains with

terminal carbon-carbon double bonds (Table 5.2). Alkyl species adsorbed on copper

either undergo a β-hydride elimination reaction to form an alkene or hydrogenates to

form an alkane, both of which occur below room temperature [38, 39]. This accounts

for the rapid rate of carbon removal for alkyl functionalized carboxylic acids, where the

rate of carbon removal is similar to the rate that oxygen in removed. This conclusion is

in accord with the observation that hydrocarbon are formed at the same temperature

as carbon dioxide in TPD; the rate-limiting step is the formation of carbon dioxide and

the rates of the subsequent reactions are fast.

Compound Carbon Ratio after
Rubbing(1st dose)/%

Carbon Ratio after
TPD/%

7-Octenoic Acid 18% 67%
Octanoic Acid 17% 81%

6-Heptenoic Acid 25% 76%
Heptanoic Acid 22% 60%

TABLE 5.2: The proportion of carbon on the surface after Rubbing and TPD experiments.

It is likely that the carboxylic acids with terminal C=C groups react more slowly

because the terminal vinyl group can also interact with the surface to lower the rate

that it is removed (Table 5.1). The effectiveness of this process will depend on the
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length of the carbon chain and the location of the carbon-carbon double bond within

it.

5.5 Conclusions

The tribochemical reaction of the carboxylic acid is initiated by the cleavage of the

bonds between the carboxylate anchoring group and the hydrocarbon chain likely to

form carbon dioxide that will rapidly desorb from the surface, and a hydrocarbon rad-

ical, which then undergoes subsequent reaction. The reaction kinetics is not controlled

by the initial decomposition step but is instead controlled by the tribochemical de-

composition of the hydrocarbon fragment that is formed. The carboxylic acids with

terminal C=C groups react more slowly because the terminal vinyl group can also in-

teract with the surface to lower the rate that it is removed. The effectiveness of reaction

depends on the length of the carbon chain and the location of the carbon-carbon double

bond within a carboxylic acid.
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Chapter 6

Tribochemical Mechanisms of Trimethyl

and Triethyl Phosphite on Oxidized Iron

in Ultrahigh Vacuum

6.1 Introduction

Commercial lubricants comprise a base oil whose properties are tailored by adding a

wide range of compounds including, for example, antioxidants, detergents, corrosion

inhibitors, anti-foaming agents and viscosity index improvers, as well as those that

react at the sliding interface to form friction- or wear-reducing films [1], and often

contain elements such as sulfur, phosphorus or halogens [2]. In particular, phosphate

and phosphite esters are extensively used as lubricant additives where Fe(III) surfaces

were found to be the most reactive for film formation [3, 4]. It is generally accepted

that phosphate esters react to form a phosphate film in the oxide surface layer [5–9].

The chemistry of tributyl phosphate has been investigated previously on clean iron
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surfaces in ultrahigh vacuum (UHV) [10]. It has been suggested that the surface re-

action could be initiated either by cleavage of the P–O bond to yield a surface alkoxy

species or alternatively by the cleavage of the C–O bond to yield surface alkyl groups.

It was found on clean iron that the formation of alkyl species dominated the surface

reaction [11–14]. In contrast, the surface chemistry of tributyl phosphite (TBPi) and

phosphate on oxidized iron were found to occur by P–O scission to predominantly

form butoxide species on the surface [15, 16]. In this case, a depth profile of the oxide

surface heated to high temperatures after reaction with the phosphite ester revealed

the presence of subsurface phosphorus in the film.

A number of investigations have been carried out to measure the friction coefficient

of surfaces lubricated by phosphate and phosphite esters. A relatively low friction co-

efficient of ∼0.2 was obtained for gas-phase lubrication of trimethyl phosphite (TMPi)

with a gas-phase pressure of >10−2 hPa (1 hPa = 0.75 Torr) at a sample temperature

of ∼300 K, or with 5 hPa at 373 K [17, 18]. Work has also compared the gas-phase lu-

brication behavior of TMPi, dimethyl phosphite and trimethyl phosphate and found

limiting values of the friction coefficients that depended on the nature of the gas-phase

lubricant, reaching a steady-state value of ∼0.23 for TMPi, ∼0.34 for dimethyl phos-

phite and ∼0.46 for trimethyl phosphate, close to the value for these lubricant additives

in the liquid phase [17, 19]. The observed friction found using phosphites compared to

phosphates was correlated to the type of the tribofilm formed [19]. Low-friction films
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were found for tricresyl phosphate (TCP) and trioctyl phosphate (TOP) in a four-ball

machine, where the friction of TOP stabilized ∼0.126, while using TCP showed a final

friction value of ∼0.14 [6, 20]. These results indicate that, while the alkyl groups in

phosphate and phosphite esters allows them to dissolve in the base oil, the nature of

the side groups can influence the resulting tribological behavior.

Since the oxidation state of the substrates influences the friction of the tribofilm,

the following compares the surface chemistry of TMPi and triethyl phosphite (TEPi)

on oxidized iron measured in UHV and the results are compared with the gas-phase

lubrication behavior of TEPi measured using a UHV tribometer.

6.2 Experimental Section

Surface chemistry experiments were carried out in a UHV chamber where the base

pressure after the bakeout is ∼ 2× 10−10. An iron foil (0.1 mm thick, Alfa-Aesar, 99.99%

pure) was mounted onto a UHV-compatible sample manipulator via a ∼0.45 mm thick

steel plate to ensure that the sample was rigid, in particular for subsequent tribologi-

cal experiments, and a K-type thermocouple was attached to the back of the steel base

to monitor the temperature of the sample. The sample was in contact with a liquid-

nitrogen filled reservoir that allowed it to be cooled to ∼180 K and it could also be

resistively heated to ∼950 K. The analysis chamber was equipped with an X-ray source
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with both Al and Mg anodes and a double-pass cylindrical mirror analyzer (CMA) for

electron energy analysis. Experiments were carried out using an X-ray source energy of

250 W and collected with an analyzer pass energy of 100 eV. After a Shirley background

subtraction [21], the energy profiles were fit using XPSPEAK with a fixed Gaussian-to-

Lorentzian ratio. The analysis chamber also contained a Dycor quadrupole mass spec-

trometer for temperature programmed desorption (TPD) measurements, leak checking

and for monitoring the purity of chemicals that were used in the experiments.

The tribological studies of TEPi on an oxidized surface were carried out in an UHV-

compatible tribometer with a tungsten carbide pin (diameter of 1.27 × 10−2m), which

reciprocates with the sliding speed of 4 × 10−3m/s [22]. The friction coefficient (µ)

and contact resistance (Ω) were continually monitored while sliding. The tribometer

is controlled by micro stepper motors, which can move linearly for locating the pin at

the desired rubbing position on the flat, and reciprocates during the friction test. The

tribo-arm can be rotated towards the ion gun for cleaning the tungsten carbide pin

by Ar ion bombardment, or towards the CMA for monitoring the cleanliness of the

tungsten carbide tip surface by Auger electron spectroscopy (AES).

The iron foil was cleaned in UHV by Ar ion bombardment with a 3.5 µA/cm
2 sam-

ple current using a 2 keV beam energy and then annealed at ∼1000 K to remove any

remaining surface contaminants predominantly consisting of sulfur. This cycle was
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repeated until the sample was clean by AES except for a small amount of oxygen re-

maining on the surface that was not completely removed as the surface would later

be oxidized. The clean iron foil was oxidized using a procedure describe previously

[15] by heating in a background pressure of 5 × 10−7 Torr of O2 (99.998% pure) for 30

minutes at 800 K. TPD experiments were carried out using a sample heating rate of 4.2

K/s with the front of the sample placed close to and in-line-of-sight of the quadrupole

mass spectrometer ionizer.

The trimethyl phosphite (TMPi, Sigma Aldrich, ≥99.0% purity) and triethyl phos-

phite (TEPi, Sigma Aldrich, 98.0% purity) were transferred to glass bottles and were

purified by several freeze-pump-thaw cycles. The purity of the phosphite esters was

checked by GCMS and by using a quadrupole mass spectrometer after introduction

into the UHV chamber.

6.3 Results

6.3.1 Formation, Characterization and Friction of Iron Oxide Films

on Clean Iron

The iron oxide film was grown on a clean iron substrate by heating in a background

pressure of 5.0 × 10−7 Torr of oxygen at a sample temperature of 800 K for 30 minutes
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(corresponding to a 900 L oxygen exposure, 1L (Langmuir) = 1.0 × 10−6 Torr.s). Previ-

ous work has shown that these oxidation conditions produce an Auger spectrum that

is consistent with the formation of an Fe3O4 film on the iron substrate [15, 16]. It has

also been shown that Fe3O4 films are found on iron after oxygen exposures above ∼400

L for reaction at 800 K [23]. The oxide film was monitored here using X-ray photoelec-

FIGURE 6.1: O 1s X-ray photoelectron spectrum of an iron foil oxidized in a background pres-
sure of 5×10−7 Torr of oxygen at 800 K for various times. The reaction times are indicated

adjacent to the corresponding spectrum.

tron spectroscopy (XPS) where Figure 6.1 displays the evolution in intensity of the O
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1s feature on the iron foil as a function of oxidation time at 800 K in a background

pressure of 5.0 × 10−7 Torr of oxygen. This shows the presence of a small O 1s signal

after initially cleaning the sample in oxygen and then heating the iron foil. Heating in

oxygen causes the O 1s intensity to increase with reaction time and then saturate after

600 s, consistent with the kinetics of oxide formation on an iron single crystal [23]. The

final O 1s binding energy of 530.2 ± 0.1 eV is also consistent with the formation of an

Fe3O4 surface film [24, 25].

Since experiments are carried out to study the friction of the oxide film on iron in

the presence of background pressures of phosphite esters, it is necessary to ensure that

the oxide film is not removed during rubbing. Accordingly, a freshly oxidized film,

formed using the procedure described above, was rubbed in vacuo at a load of 0.29

N at a sliding speed of 4.0 × 10−3 m/s and the resulting values of contact resistance

(■) and friction coefficient (●) are displayed as a function of the number of passes

in Figure 6.2. Note that the initial contact resistance of ∼1.2 Ω is consistent with the

presence of an oxide film as the contact resistance of a clean iron substrate is ∼0.5

Ω. In addition, the initial friction coefficient of ∼1.6 reduces over the first ∼20 passes

to a stable value of 1.0 ± 0.2 (●), which is within the range found for oxidized steel

surfaces in vacuum [18, 19, 26, 27]. The friction data are noisy due to the large stick-

slip amplitude during sliding. The contact resistance (■) also decreases slightly during

the initial run-in period to stabilize at 1.17 ± 0.01 Ω after approximately 20 cycles,
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FIGURE 6.2: Friction coefficient (●) and contact resistance (■) of an oxide film grown on iron
as a function of the number of passes at a sliding speed of 4×10−3 m/s at a normal load of 0.29

N.

consistent with the variation in friction coefficient. This suggests the formation of a

wear track in the oxide layer. However, this does not remove the film to expose the

metal beneath because the steady-state contact resistance remains much higher than

that found for the clean metal. This indicates that tribochemical reactions carried out

on thin Fe3O4 films will reflect the chemistry occurring on the oxide film.
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6.3.2 Surface Chemistry of Trimethyl Phosphite on Fe3O4 Films on

Iron

The surface chemistry of TMPi is followed using TPD and XPS on a thin Fe3O4 film

grown on a polycrystalline iron as described above [15] by oxidizing the iron at 800 K

for 30 minutes in a background of oxygen at 5 × 10−7 Torr. The surface chemistry was

followed by monitoring the desorption products after exposure to the phosphite ester

at a sample temperature of 180 K, and heating at 4.2 K/s while monitoring the desorp-

tion products at various masses. Figure 6.3 shows the 63 amu desorption profile, due

to molecular TMPi, as a function of TMPi exposure in Langmuirs. Note that the expo-

sures are not corrected for the ionization gauge sensitivity. This reveals a broad feature

centered at ∼280 K with a tail extending to ∼500 K. Spectra collected at other masses

confirms that this feature is due to the desorption of molecular TMPi. A Redhead anal-

ysis [28] using a pre-exponential factor of 1 × 1013 s−1 yields an estimated desorption

activation energy of ∼71 kJ/mol, which is a measure of the heat of adsorption of TMPi

on the oxide surface. No TMPi desorbs for an exposure of 0.5 L, and little desorption is

found for a 1 L exposure, suggesting that all the TMPi reacts for exposures below ∼1L.

Significant TMPi molecular desorption is observed for exposures greater than 2 L.

TPD (Figs. 6.4 and 6.5) reveals that the major desorption products are consistent

with TMPi reacting by P–O bond scission as found for tributyl phosphite [15] where,
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FIGURE 6.3: 63 amu TPD profiles as a function of exposure, in Langmuirs, of trimethyl phos-
phite on a Fe3O4 film on iron collected using a heating rate of 4.2 K/s. The trimethyl phosphate

exposures are indicated adjacent to the corresponding spectrum.

in the case of TMPi, the resulting methoxy group can hydrogenate to form methanol

or dehydrogenate to produce formaldehyde. This is illustrated by the 31 amu signal

(Fig. 6.4), which is the most intense in the mass spectrum of methanol, while formalde-

hyde contains no 31 intensity, as a function of TMPi exposure. The intensity increases

rapidly up to an exposure of ∼1 L, and more slowly thereafter, coincident with the
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FIGURE 6.4: TPD data collected at 31 amu as a function of exposure, in Langmuirs, of trimethyl
phosphite on a Fe3O4 film on iron collected using a heating rate of 4.2 K/s. The trimethyl

phosphite exposures are indicated adjacent to the corresponding spectrum.

desorption of molecular TMPi (Figure 6.3). The profile consists of three distinct des-

orption states centered at ∼350, ∼510 and ∼590 K, which grow equally as the TMPi

coverage increases. This implies that methanol is formed in sequential steps from the

decomposition of TMPi on the surface, presumably arising from each of the methoxy

species in TMPi (see below). In order to explore whether TMPi decomposes to form

exclusively methanol, the desorption spectra obtained by simultaneously monitoring
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FIGURE 6.5: TPD data collected at various masses (indicated adjacent to the corresponding
spectrum) following the exposure of 4 L of trimethyl phosphite on oxidized iron at 180 K.

signals at 29, 31, 28 and 16 amu are displayed in Fig. 6.5 for a 4 L TMPi exposure.

These spectra show the same desorption states as in Fig. 6.4, but now with differ-

ent relative intensities. Here, the 28 amu signal also corresponds to carbon monoxide

desorption producing a rising background above ∼800 K due to the reaction of some

adsorbed carbonaceous species with the oxide film. This implies that a portion of the

phosphite ester completely decomposes on the Fe3O4 surface. In addition, no methane

(16 amu) is formed and thus confirms that TMPi decomposes by P–O bond scission.
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The mass spectrum for methanol has a low 28 amu intensity so that the absence of

any significant intensity at 28 amu for the ∼350 K desorption states suggests that it

is primarily due to the formation of methanol. However the ∼510 and 590 K desorp-

tion states contain a significant 29 and 28 amu intensity showing that they arise from

a combination of methanol and formaldehyde desorption and the relative intensities

of the two states at various masses can be reproduced by a linear combination of the

fragmentation patterns of methanol and formaldehyde, although their stoichiometric

ratios cannot be obtained in this way because their absolute mass spectrometer sensi-

tivities are not known. However, it is plausible that they desorb in equimolar amounts

where the hydrogen required to form methanol from methoxy species is supplied by

methoxy dehydrogenation to produce formaldehyde. This conjecture is corroborated

from measurement of the integrated areas of the ∼510 and 590 K desorption profiles

where the ∼510 K state comprises 0.49 ± 0.02 of the total yield for all exposures (from

the data in Fig. 6.4).

Thus, TMPi decomposes on Fe3O4 in a sequential demethoxylation reaction to de-

posit phosphorus on the surface. Assuming that the product formation rates are con-

trolled by P–O scission yields activation energies of ∼90, ∼132 and ∼153 kJ/mol for

the three steps. That is, as each methoxy group is removed, the subsequent reaction

step becomes less energetically favored. The evolution in the nature of a Fe3O4 surface

exposed to 30 L of TMPi is followed using XPS collected as a function of temperature.
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FIGURE 6.6: C 1s XPS spectra collected at various temperatures (indicated adjacent to the cor-
responding spectrum) following the exposure of 30 L of trimethyl phosphite on Fe3O4 at 180

K.

The resulting C 1s spectra are displayed in Fig. 6.6, showing a broad feature centered

at ∼286.9 eV binding energy (BE). The amount of carbon on the surface decreases as

the sample is heated, where the C 1s signal has almost disappeared on heating to ∼650

K in accord with the TPD data shown in Figs. 6.4 and 6.5. Very little carbon remains

on heating to ∼800 K and the small amount of remaining carbon reacts with the oxide
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substrate to desorb CO at high temperatures (Fig. 6.5). The corresponding P 2p pho-

toelectron spectra are displayed in Fig. 6.7, where the resolution is not sufficient to re-

solve the spin-orbit splitting so that the spectrum appears as a single feature. However,

FIGURE 6.7: P 2p XPS spectra collected at various temperatures (indicated adjacent to the cor-
responding spectrum) following the exposure of 30 L of trimethyl phosphite on Fe3O4 at 180

K.

unlike the C 1s results, the phosphorus signal intensity remains essentially constant in

accord with the demethoxylation chemistry described above. The spectrum for TMPi

adsorbed at 180 K shows a P 2p peak with a binding energy (BE) of 133.6 eV. Since this

temperature is below that at which any reaction takes place, it is assigned to adsorbed
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molecular TMPi on the Fe3O4 surface [19]. However, TMPi condensed on a Fe(110)

single crystal at 100 K shows a C 1s feature at 286.9 eV BE, identical to that found for

TMPi on Fe3O4 (Fig. 6.6), but a P 2p peak at 133.9 eV BE [10]. The binding energy of

TMPi adsorbed directly onto the metal decreases to 132.5 eV, having a greater chemical

shift (to 133.6 eV BE) than for TMPi adsorbed on Fe3O4 (Fig. 6.7). The C 1s intensity

deceases as the sample is heated and the carbon is essentially completely removed af-

ter heating to ∼650 K, coincident with the completion of the reaction (Figs. 6.4 and 6.5).

In the case of TMPi on Fe(110), the C 1s peak shifts to ∼286.2 eV BE on heating and is

assigned to methoxy species [29] formed during TMPi decomposition. However, no

significant intensity is detected at this binding energy for TMPi on Fe3O4, suggesting

that the methoxy species react as soon as they are formed in accord with the previous

discussions. As the sample is heated, the P 2p intensity remains essentially constant,

while there is a slight increase in binding energy to ∼133.3 eV (Fig. 6.7), where the

shift is highlighted by the solid line in the P 2p spectra. This is consistent with previ-

ous work that showed the presence of surface phosphorus after TBPi adsorption and

heating, where a depth profile measured after reaction with an Fe3O4 film at ∼800 K

revealed that the phosphorus had diffused into the oxide film [15]. The 133.3 eV-BE

feature is not due to remaining TMPi as it has all decomposed at this temperature, and

a phosphide would appear at a binding energy of ∼129 eV [17, 19, 30] clearly indicating
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FIGURE 6.8: Proportion of phosphate and phosphite species on oxidized iron as a function of
temperature following the exposure of 30 L of trimethyl phosphite at 180 K.

that the phosphorus in the film is oxidized. Polyphosphate films have a binding en-

ergy of ∼133.6 eV [19, 31–33], slightly higher than that shown in Figure 6.7. However,

since the films are formed in UHV, the phosphorus content is relatively low and this

has been suggested to lead to a decrease in P 2p binding energy [34]. Consequently,

the XPS feature at ∼133.3 eV BE energy is assigned to the formation of a phosphate-

containing film. Fits to the XPS profile in Fig. 6.7 enable the relative proportion of

trimethyl phosphite (at ∼133.6 eV BE) and the phosphate film (at ∼133.3 eV BE) to be

measured. The fits to the two features were constrained by fixing the positions and
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widths of the combined Gaussian/Lorenztian profiles of the components and by only

allowing the relative intensities to vary. The results are displayed in Figure 6.8.

6.3.3 Surface Chemistry of Triethyl Phosphite on Fe3O4 Films on Iron

Based on the results described above on the surface chemistry of TMPi on Fe3O4, anal-

ogous chemistry is expected for TEPi on oxidized iron in which the phosphite ester

reacts by P–O bond scission to form ethoxy species that can either react to produce

ethanol or dehydrogenate to yield acetaldehyde. In contrast to TMPi, TEPi can also

undergo a β-hydride elimination reaction to form ethylene. The mass spectrum of

ethanol has a parent peak at 31 amu, while acetaldehyde also has measurable intensity

at this mass. The 31 amu desorption profiles of TEPi adsorbed on the Fe3O4 film as a

function of exposure are displayed in Fig. 6.9. TEPi shows similar behavior as TMPi

on the oxide film (shown in Figs. 6.4 and 6.5), exhibiting peaks at 350, 470 and 550

K. Note that the peak temperatures are lower than those found after TMPi adsorption

which appear at 350, 510 and 590 K, suggesting that P–O bond scission is more facile

as the alkyl chain length increases. The corresponding reaction activation energies,

estimated from the Redhead equation [28], are ∼90, 120 and 143 kJ/mol. Again, the

yields measured from the integrated intensities of each desorption state are essentially

the same.

The corresponding desorption profiles obtained while simultaneously monitoring
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FIGURE 6.9: TPD data collected at 31 amu function of exposure, in Langmuirs, of triethyl phos-
phite on a Fe3O4 film on iron collected using a heating rate of 4.2 K/s. The triethyl phosphate

exposures are indicated adjacent to the corresponding spectrum.

several masses are displayed in Fig. 6.10 for 4 L of TEPi on a Fe3O4 film. The pro-

files show intense features at 29 amu, indicating the formation of substantial amounts

of acetaldehyde and the ratio of the 31 to 27 amu fragments is in accord with the 31

amu signal being due to ethanol. The 28-amu profile again shows the onset of carbon

monoxide desorption above ∼800 K due to oxidation of some adsorbed carbon by the

oxide film. Note that there is a slight difference between the positions of the 31 and
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29 amu features with the 29 amu (acetaldehyde) peak appearing at a slightly lower

temperature than the 31 (ethanol) feature, in accord with the idea that ethoxy dehy-

drogenation to form acetaldehyde produces the hydrogen required to form ethanol.

FIGURE 6.10: TPD data collected at various masses (indicated adjacent to the corresponding
spectrum) following the exposure of 4 L of triethyl phosphite on oxidized iron at 180 K.

The C 1s spectra collected following the adsorption of 30 L of TEPi on the oxide

film are displayed in Figure 6.11, which shows the removal of the ethoxy species in
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FIGURE 6.11: C 1s XPS spectra collected at various temperatures (indicated adjacent to the
corresponding spectrum) following the exposure of 30 L of triethyl phosphite on oxidized iron

at 180 K.

TEPi, which has a C 1s BE of 287.0 eV, similar to that found for TMPi. However, in

this case, additional carbonaceous species remain on the surface (with a C 1s BE of

286.0 eV) after TEPi has reacted implying that, while P–O bond scission is more facile

for TEPi than TMPi, the removal of the resulting alkoxy species is less efficient as the

chain lengths increase, presumably because of the possibility of β-hydride elimination

pathways. Note that the C 1s binding energy is not due to the formation of elemental
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carbonaceous species on the surface, which should appear at ∼285.5 eV BE [35] and

implies that the carbon is oxidized, presumably due to interaction with the iron oxide

substrate. Finally, there is some evidence of ethylene desorption in a broad state cen-

tered at ∼750 K in the 28 and 27 amu profiles. The corresponding P 2p XPS spectra

FIGURE 6.12: P 2p XPS spectra collected at various temperatures (indicated adjacent to the
corresponding spectrum) following the exposure of 30 L of triethyl phosphite on oxidized iron

at 180 K.

collected as a function of sample temperature are displayed in Figure 6.12 and show

the same evolution as found for trimethyl phosphite, with a P 2p feature found at low
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FIGURE 6.13: Proportion of phosphate (●) and phosphite (■) species on oxidized iron as a
function of temperature following the exposure of 30 L of triethyl phosphite at 180 K. Reduction
in friction during gas-phase lubrication of oxidized iron at various temperatures (▲, see text).

temperatures due to the phosphite ester shifting with increasing annealing tempera-

ture to indicate the formation of a phosphate. This is emphasized in the data plotted

in Figure 6.13, which shows the proportion of phosphate and phosphite species on the

surface as a function of annealing temperature again showing the formation of iron

phosphate over the temperature at which ethanol and acetaldehyde desorb.
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6.3.4 Gas-Phase lubrication of Fe3O4 Films on Iron by Triethyl Phos-

phite

In order to correlate the surface chemistry of TEPi with its tribological properties, the

evolution in friction of a Fe3O4 film was measured in the presence of 1 × 10−7 Torr of

TEPi with the sample held at 300, 420 and 650 K while rubbing under a load of 0.29 N at

a sliding speed of 4× 10−3 m/s. The decrease in friction relative to that of the initial ox-

ide film is shown in Figure 6.14 (a) for reaction at 300 K, (b) for reaction at 420 K and (c)

for reaction at 650 K, as a function of the number of times that the sample was rubbed,

which decreases to a steady-state value between 20 and 40 scans. Since each cycle takes

approximately 20 s, this corresponds to a total TEPi exposure of 40 to 80 L. The friction

reduction increases with increasing reaction temperature from ∆µ ∼0.7 at 300 K, ∼0.9

at 420 K and ∼1.4 at 650 K and arises from a combination of the initial run-in period

(Fig. 6.2) and the formation of a friction-reducing film. In addition, the number of

passes required for the friction coefficient to attain its minimum value increases as the

reaction temperature increases, likely due to a decrease in the TEPi coverage at higher

temperatures. These results correlate with the increase in phosphate coverage with

increasing reaction temperature (Figure 6.13), where the friction reduction is plotted

along with the XPS results for the film composition (▲) indicating that the formation

of a phosphate-containing film is responsible for the significant reduction in friction.
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FIGURE 6.14: Friction reduction of a Fe3O4 film formed by heating an iron foil at 800 K for 90
mins in 5×10−7 Torr of oxygen at a normal load of 0.29 N at a sliding speed of 4×10−3 m/s in
the presence of 1×10−7 Torr of triethyl phosphite at sample temperatures of (a) 300, (b) 420 and

(c) 650 K.

6.4 Discussion

Tribochemical processes consist of a series of elementary-step reactions that involve

the initial adsorption of an active component from the lubricant, followed by a thermal

reaction to form precursor adsorbates on the surface. These can then further decom-

pose under the influence of shear at the sliding interface to form a friction- and/or
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wear-reducing tribofilm [36, 37]. Thus, understanding of the initial thermal chemistry

of model lubricant additives on surfaces is central to fully understanding tribochemical

reaction pathways since changes in the structure of the precursor molecule can have a

profound influence on the friction and the nature of the film [38].

Molecular TMPi desorbs at ∼280 K (Fig. 6.3, where a Redhead analysis yields a

desorption activation energy of ∼71 kJ/mol), while TEPi desorbs molecularly at ∼267

K (data not shown), with an activation energy of ∼67 kJ/mol. A decrease in P 2p

binding energy of ∼1.4 eV following TMPi adsorption on Fe(110) [10] suggests that

electrons are donated to the phosphorus atom during adsorption, with a lower extent

of donation for TMPi on Fe3O4 than on Fe as evidenced by the smaller chemical shift

(of ∼0.3 eV). This result differs from predictions from density functional theory (DFT)

calculations of TMPi on Fe(110) [39], which suggests that it binds by electron dona-

tion to the metal. Electron donation to phosphite ester ligands has also been found

in organometallic compounds where the extent of electron donation has been gauged

from the CO frequency shift in metal carbonyls with various phosphorus-containing

ligands [40]. The higher CO stretching frequency for metal carbonyls with a TMPi lig-

and (2079.5 cm−1) compared to TEPi (2076.3 cm−1) indicates that TMPi is a slightly

better electron acceptor than TEPi, thus accounting for its slightly stronger adsorption

on Fe3O4. Furthermore, the calculated lowest-occupied molecular orbital (LUMO) en-

ergies for a number of phosphite esters [41] show that the TEPi LUMO energy (∼0.73
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eV) is higher than that for TMPi (∼0.65 eV) and will lead to less electron donation and

weaker binding, consistent with the above discussion. The LUMO for TBPi is located

at ∼0.44 eV, thus accounting for its stronger binding on Fe3O4 compared to TMPi and

TEPi [15].

The phosphate esters show similar chemistry, showing three distinct features initi-

ated by sequential P–O bond scission to form adsorbed alkoxy species, which primarily

react to form mixtures of the corresponding alcohol or aldehyde, suggesting that the

hydrogen required to form the alcohol derives from alkoxide dehydrogenation. A sim-

ilar behavior is found for tributyl phosphite on Fe3O4, where 1-butanol and butanal

are formed [15]. This behavior was also found for 1-butanol adsorbed directly on the

Fe3O4 surface where a mixture of 1-butanol and butanal were produced predominantly

in a feature centered at ∼250 K [15] and indicates that the higher-temperature features

from the decomposition of the trialkyl esters reflects the rates at which the sequential

P–O bond scission processes occur. The activation energies for the two highest alco-

hol+aldehyde desorption states for TMPi, TEPi and tributyl phosphite are plotted as

a function of the number of carbon atoms in the n-alkyl chain in Figure 6.15. This in-

dicates that the energy required to remove the final alkoxy group is the highest, and

that TEPi has the lowest activation energy of the studied phosphite esters. In the case

of TBPi, the higher activation energy for P–O bond scission leads to some C–O bond

scission, which results in the deposition of carbon on the surface as indicated by Auger
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spectroscopy. The XPS data in Figure 6.11 also indicate that some carbon forms on the

surface after decomposing TMPi. In the case of the surface formed after dosing and

heating tributyl phosphite, a depth profile indicated that the carbon was located pri-

marily on the surface. Interestingly, TMPi deposits very little carbon on the surface

(Fig. 6.6), likely because of the lack of a β-hydrogen in the alkyl group that would

allow an alkene to form.

In summary, phosphite esters adsorb relatively weakly on Fe3O4 to bind via elec-

tron donation to the phosphorus and then decompose on heating to deposit phospho-

rus and carbon on the surface. The phosphorus XPS data indicate that the original

phosphite converts into a phosphate (Figs. 6.7 and 6.12) over the range of temperatures

that the phosphite ester decomposes (Figs.6.8 and 6.13). This is in accord with the ob-

servation that the phosphorus penetrates a significant distance into the oxide film after

reaction with TBPi, where (poly)phosphates have been identified by NEXAFS [9] and

ToF-SIMS and infrared spectroscopy [42].

Gas-phase lubrication was measured in the presence 1 × 10−7 Torr of TEPi at a nor-

mal load of 0.29 N at a sliding speed of 4 × 10−3 m/s (Fig. 6.14). This shows that TEPi

does indeed act as a gas-phase lubricant where the friction coefficient reduces by ∼0.7

at sample temperature of 300 K, by ∼0.9 at a sample temperature of 420 K, and by ∼1.4

at a sample temperature of ∼650 K, indicating that the (poly)phosphate has relatively

low friction and is in the range found following gas-phase lubrication of oxidized steel

202



6.4. Discussion

in vacuum [18, 19, 26, 27]. The number of scans required to reach steady-state fric-

tion decreases with increasing temperature from ∼20 scans at 300 K, ∼30 scans at 420

K and ∼50 scans at 650 K, likely due to the lower coverage of the phosphite ester at

higher reaction temperatures. The friction reduction for each reaction temperature is

plotted with the proportion of phosphite and phosphate on the surface for a reaction

with TEPi (▲, Fig. 6.13), where the friction reduction correlates with the proportion

of (poly)phosphate on the surface, confirming that the presence of a phosphate film is

responsible for lubrication.

The tribochemical reactions of alkyl phosphite esters can be summarized by the fol-

lowing steps: First is the adsorption of the phosphite ester on the surface, where the

bonding shows a weak dependence on the nature of the alkyl group. The second step is

the removal of alkoxy groups that produce the corresponding alcohols and aldehydes,

and results in phosphorus transport into the subsurface region to form phosphates.

These processes occur thermally at relatively high temperatures and are not complete

until the sample has been heated to ∼650 K (Figs. 6.4, 6.5, 6.9 and 6.10), while signif-

icant friction reduction is observed even at 300 K (Fig. 6.14 a). This may imply that

the rates of these reactions are accelerated by the shearing interface [43, 44], in a tribo-

chemical reaction cycle that follows the general elementary reaction steps found for the

gas-phase lubrication of copper by dimethyl disulfide [37]. It has also been suggested

that shorter-chain alkyl groups provide the best anti-wear behavior [45], which may
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FIGURE 6.15: Plot of the formation activation energies for the removal of the second and third
alkyl groups for trialkyl phosphites on Fe3O4 for trimethyl, triethyl and tributyl phosphite
[15] as a function of the number of carbon atoms in the alkyl chain. Activation energies are
obtained using the Redhead equation [28] by assuming a pre-exponential factor of 1×1013

s
−1,

and using the experimental heating rate of 4.2 K/s for this work and a value of 10 K/s for
tributyl phosphite.

be related to the increased stability of longer alkyl chains (Fig. 6.15). However, phos-

phite esters with longer alkyl chains also produce more carbon, which could inhibit

the surface-to-bulk transport of phosphorus into the bulk. A carbon film may also be

lubricious so could influence the friction and this issue warrants further investigation.
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Aryl side chains can also influence the surface reaction and thus the resulting tribo-

logical properties. For example, diphenyl phosphate forms an iron(II) polyphosphate

on oxidized steel during heating, while triphenyl phosphate forms no film at 423 K

[46]. However, both phosphate esters formed polyphosphates while rubbing at 363 K

[9], suggesting that the reaction is indeed mechanically assisted.

Since the surface chemistry is strongly influenced by the nature of the substrate,

and because wear of the oxide film can expose the clean metal, the surface chemistry

of phosphate and phosphite esters has been studied on clean iron where the chemistry

is now dominated by C–O rather than P–O scission [10–14]. However, in the case of

tricresyl phosphate, which includes a methyl side group on the aryl ring [4, 5, 20], the

reaction on metallic iron is dominated by P–O bond scission to produce of aryloxy

species [14, 47] and this chemistry has recently be confirmed by DFT calculations [48].

6.5 Conclusions

Phosphite esters adsorb onto a thin Fe3O4 film grown on an iron substrate by elec-

tron donation into the phosphorus atom, leading to a binding energy that increases in

the order TBPi>TMPi>TEPi, and correlates well with the location of the vacant LUMO

energy. The phosphite esters decompose via sequential P–O bond scission to form ad-

sorbed alkoxy species, which then react on the surface either by hydrogen addition
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to form the corresponding alcohol or by hydrogen abstraction to yield an aldehyde.

Because the alcohol and aldehyde form simultaneously, this suggests that the hydro-

gen required to form the alcohol derives from the alkoxy dehydrogenation to form the

aldehyde. The stronger binding of TEPi compared to TMPi results in the formation of

a larger coverage of carbonaceous species after the adsorbates have completely ther-

mally decomposed. The surface carbon is oxidized, presumably due to an interaction

with the iron oxide substrate, and the reaction also results in the formation of a stable

phosphorus-containing film.

The friction coefficient during gas-phase lubrication with TEPi using a 0.29 N load

was significantly reduced for reaction at 300 (∆µ ∼ 0.7), 420 (∆µ ∼ 0.9) and 650 (∆µ ∼

1.4) K. The friction reduction correlates with the relative concentration of phosphorus

in the phosphate-containing tribofilm confirming that the formation of the film is re-

sponsible for the considerable reduction in friction. It seems that phosphorus can pen-

etrate the oxide film, even at ∼300 K, well below the temperature at which the alkoxide

species are thermally removed. This implies that interfacial shear can facilitate the

removal of alkoxy species in a tribochemical process as found for the formation of tri-

bofilms from dimethyl disulfide [36, 37, 49] and zinc dialkyl dithiophosphate (ZDDP)

[43, 44].
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Chapter 7

Adsorption and Reaction of Trimethyl and

Triethyl Phosphites on Fe3O4 by Density

Functional Theory

7.1 Introduction

Lubricant additives are mixed with a base oil of commercial lubricants to improve the

frictional and anti-wear properties of the sliding interface by forming a tribochemi-

cally formed layer [1]. Compounds containing phosphorus, such as phosphate and

phosphite esters are used to lubricate Fe (III) oxide surfaces where phosphate films

are formed during the tribological process [2–6]. The chemistry of triethyl phosphite

(TEPi) and trimethyl phosphite (TMPi) has been investigated previously on oxidized

iron surfaces in ultrahigh vacuum (UHV), Chapter 6. It is reported that the phosphite

esters adsorb onto a thin Fe3O4 film grown on an iron substrate by electron donation

from the substrate to the phosphorus atom, leading to a binding energy that increases

in the order TMPi>TEPi [7], and correlates well with the location of the vacant LUMO
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energy. Phosphite esters decompose on an iron oxide surface via a sequential P–O

bond scission to form adsorbed alkoxy species, which then react rapidly on the sur-

face either by hydrogen addition to form the corresponding alcohol or by hydrogen

abstraction to yield an aldehyde. Because the alcohol and aldehyde form simultane-

ously, this suggests that the hydrogen required to form the alcohol derives from the

alkoxy dehydrogenation to form the aldehyde. The phosphate esters desorb molecular

at relatively low temperatures (∼290 K) leading to estimated desorption energies from

a Redhead analysis of ∼67 (0.69 eV) for TEPi and ∼71 (0.73 eV) kJ/mol for TMPi [8].

Note that the decomposition products referred to above desorb at up to ∼600 K, so

that there are more strongly bound species on the surface that remain to much higher

temperatures. In this Chapter, adsorption energies of phosphite esters and their de-

composition products are theoretically calculated using density functional theory and

correlated with the experimental results. The calculations are performed on a Fe3O4

substrate to compare as closely as possible to the experimental conditions, where the

surface chemistry was studied on a film of this oxide grown on an iron substrate.

7.2 Theoretical Method

Vienna ab initio simulation package, VASP, density functional theory (DFT) calcula-

tions were performed using the projector augmented wave (PAW) method [9, 10]. The
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7.2. Theoretical Method

FIGURE 7.1: a) Top and b) side views of the Fe3O4 slab used for adsorption of phosphite ester
molecules, where the bottom shaded part of the iron oxide slab is constrained.

FIGURE 7.2: Geometric models of a) trimethyl phosphite, b) dimethyl phosphite and c)
monomethyl phosphite.
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FIGURE 7.3: Geometric models of a) triethyl phosphite, b) diethyl phosphite and c) monoethyl
phosphite.

exchange-correlation potential was described using the generalized gradient approx-

imation of Perdew, Burke and Ernzerhof (PBE). A cutoff of 400 eV was used for the

plane wave basis set [11–13], and the wave functions and electron density were con-

verged to within 1 ×10−5 eV. The Brillouin zone was sampled with a MonkhorstPack

grid of 1× 1× 1 for phosphite molecules in the vacuum and a 6× 6× 1 MonkhorstPack

grid was set for the Fe3O4 slab alone, and for molecules adsorbed on the Fe3O4 sur-

face. Geometric relaxations were converged when the force was less than 0.05 eV/Å

on all unrestricted atoms. The bottom two layers (Figure 7.1) of iron and oxygen of

Fe3O4 slab were held stationary in all calculations. Spin polarized calculations were

carried out whenever an iron oxide slab is in use. Also van der Waals (VDW) forces

were included in all calculations. The outermost octahedral Fe3+ [14] ions (Figure 7.1

(b)) on the Fe3O4 slab have equivalent charges, i.e. + 1.42 electron, which were calcu-

lated by a grid-based Bader analysis [15]. The phosphites molecules were adsorbed
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with the phosphorous atom located on top of a Fe ion. The initial trial structures of

the phosphite ester molecules were constructed using the coordinates from energy-

minimized 3-D structures obtained using ChemDraw 13.0, and the Fe3O4 (Materials

ID: mp-19306) POSCAR [16] file was downloaded from Materials Project. The initial

downloaded Fe3O4 cell was further enlarged by 2 × 2 × 1 in the X, Y, and Z directions.

Adsorption energies were calculated using the equation 7.1.

Eads = E(molecule + Fe3O4 slab) − EFe3O4 slab − Egas−phase molecule (7.1)

where, Eads is the adsorption energy, E(molecule + Fe3O4 slab) is the energy of the Fe3O4 slab

with a molecular adsorbate, EFe3O4 slab is energy of the Fe3O4 slab and, Egas−phase molecule

is energy of intact molecule or alkoxy group removed phosphite molecule.

7.3 Results

7.3.1 Adsorption of Trimethyl Phosphite on Fe3O4

The energies of trimethyl phosphite, dimethyl phosphite and monomethyl phosphite,

shown in Figure 7.2, were calculated using a Monkhorst-Pack grid of 1 × 1 × 1. The

energies of a Fe3O4 slab alone and these molecules adsorbed on a Fe3O4 slab were cal-

culated by using a Monkhorst Pack grid of 6× 6× 1. DFT calculations were performed
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using, VASP, and once the calculations were converged, Eqn. 7.1 was used to calcu-

late the adsorption energy of TMPi, dimethyl phosphite and monomethyl phosphite.

The final calculated adsorption energies, including van der Waals (VDW) forces are

summarized in Table 7.1. The adsorption geometries are depicted in Figure 7.4.

FIGURE 7.4: Geometric models of adsorbed trimethyl phosphite (a - top view, d - magnified
section of side view), dimethyl phosphite (b - top view, e - magnified section of side view), and

monomethyl phosphite (c - top view, f - magnified section of side view) on Fe3O4.

Since the trimethyl phosphite reacts to gives dimethyl phosphite and an adsorbed

methyl species, the energy of dimethyl phosphite and a co-adsorbed methoxy species

was calculated and was found to be 2.87 eV more stable than the trimethyl phosphite

alone. The calculated energy of monomethyl phosphite and a co-adsorbed methoxy

220



7.3. Results

Phosphite ester Binding Energy/eV
(Alkyl = CH3)

Binding Energy/eV
(Alkyl = C2H5)

Trialkyl phosphite -1.91 -1.72
Dialkyl phosphite -2.16 -2.15

Monoalkyl phosphite -2.72 -2.66
Phosphorus -3.61 -3.61

TABLE 7.1: Adsorption energies of trimethyl phosphite, dimethyl phosphite and monomethyl
phosphite adsorbed on Fe3O4 calculated by implementing the Vienna ab initio simulation pack-
age, VASP, density functional theory (DFT). The structures include van der Waals (VDW) forces.

species was found to be 2.78 eV more stable than dimethyl phosphite. A similar cal-

culation was carried out for adsorbed phosphorus and a methoxy, which was found

to be 2.81 eV more stable than monomethyl phosphite on Fe3O4. This indicates that a

co-adsorbed methoxy has a binding energy of ∼2.82 eV on the oxide surface.

Phosphite
ester

P (δ+) electron
(gas-phase)

P (δ+) electron
(adsorbed)

Fe (δ+)
electron

(gas-phase)

Fe (δ+)
electron

(adsorbed)
Trimethyl
phosphite

1.53 2.39 1.42 1.20

Dimethyl
phosphite

1.41 1.57 1.42 1.22

Monomethyl
phosphite

0.65 0.93 1.42 1.04

Phosphorus 0.00 0.11 1.42 1.04

TABLE 7.2: Grid-based Bader charge analysis of P and Fe atoms calculated for trimethyl phos-
phite, dimethyl phosphite and monomethyl phosphite in vacuum and when adsorbed on

Fe3O4.

The grid-based Bader charges of the atoms were calculated for the gas-phase and

adsorbed structures shown in Fig. 7.4 The partial electronic charges (δ+) on the P and

Fe atoms are summarized in the Table 7.2. A decrease in δ
+ on the P atom is observed
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Phosphite
ester

O (δ−) electron
(gas-phase)

O (δ−) electron
(adsorbed)

C (δ+) electron
(gas-phase)

C (δ+) electron
(adsorbed)

Trimethyl
phosphite

-1.03±0.00 -1.25±0.02 0.23±0.01 0.37±0.02

Dimethyl
phosphite

-1.25±0.00 -1.24±0.02 0.41±0.00 0.34±0.07

Monomethyl
phosphite

-1.19±0.00 -1.22±0.00 0.35±0.00 0.37±0.00

TABLE 7.3: Grid-based Bader charge analysis of O and C atoms calculated for trimethyl phos-
phite, dimethyl phosphite and monomethyl phosphite in vacuum and when adsorbed on

Fe3O4.

when there are fewer methoxy groups on the gas-phase molecules where, by defini-

tion, the charge on an isolated phosphorus atom is zero. This due to the large elec-

tronegativity of the oxygen in the alkoxy group that tends to withdraw electrons from

the phosphorus. A similar trend is seen for molecular fragments adsorbed on Fe3O4

where the value of δ
+ on P increases are the methyl groups are removed, but the posi-

tive charges are larger than for the corresponding gas-phase fragments. The δ
+ charge

on the Fe ion on the bare oxide is +1.42 electrons, but δ
+ of Fe atom decreases after the

fragments in the same order as the increase in positive charge on the phosphorus. This

indicates that there is charge transfer to the iron from the phosphorus which contra-

dicts the hypothesis mentioned in Chapter 6 [8], where the predicted charge transfer

was from iron to phosphorus. The charge on oxygen and carbon atoms were calculated

and are summarized in Table 7.3. Again, some charge is transferred from the carbon to

the more electronegative oxygen.

222



7.3. Results

7.3.2 Adsorption of Triethyl Phosphite on Fe3O4

Similar DFT calculations were carried out of ethoxy-containing phosphite esters, start-

ing with triethyl phosphite and then calculating the energies of the reaction products

found experimentally, namely diethyl phosphite, monoethyl phosphite, and phospho-

rus. Note that the binding of phosphorus was discussed in the previous section and is

the common final product for all phosphite esters on iron oxide surfaces. The equilib-

rium structures of triethyl phosphite (TEPi), diethyl phosphite and monoethyl phos-

phite are shown in Figure 7.3, where the structures and energies of the free molecules

were calculated VASP with a Monkhorst Pack grid of 1× 1× 1 in vacuum. The energies

and structures of triethyl phosphite (TEPi), diethyl phosphite and monoethyl phos-

phite adsorbed on a Fe3O4 slab calculated using VASP using a 6 × 6 × 1 Monkhorst-

Pack grid. After convergence, Eqn. 7.1 was used to calculate the adsorption energies.

The calculated binding energies are summarized in Table 7.1 and the final adsorption

geometries are shown in Figure 7.5. The final structures are very similar to those found

for TMPi-derived species, discussed in the previous section.

Since the triethyl phosphite reacts to give diethyl phosphite and an adsorbed ethyl

species, the energy of diethyl phosphite and a co-adsorbed ethoxy species was calcu-

lated and was found to be 2.63 eV more stable than the triethyl phosphite alone. The

calculated energy of monoethyl phosphite and a co-adsorbed ethoxy species was found
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FIGURE 7.5: Geometric models of adsorbed triethyl phosphite (a - top view, d - magnified
section of side view), diethyl phosphite (b - top view, e - magnified section of side view), and

monoethyl phosphite (c - top view, f - magnified section of side view) on Fe3O4.

to be 2.93 eV more stable than diethyl phosphite. A similar calculation was carried out

for adsorbed phosphorus and an ethoxy, which was found to be 2.86 eV more stable

than monoethyl phosphite on Fe3O4. This indicates that a co-adsorbed ethoxy has a

binding energy of ∼2.80 eV on the oxide surface.

The grid-based Bader charges of atoms were calculated for triethyl phosphite (TEPi),

diethyl phosphite, and monoethyl phosphite where the molecules were adsorbed via

the phosphorus to Fe ions in the top layer of the Fe3O4 slab, in a similar way to the

methoxy-containing phosphite esters. The partial electronic charge (δ+) of the P atoms

and Fe ions are summarized in the Table 7.4. A decrease in δ
+ on the P atom is as the
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ethoxy groups are removed and the charges on the adsorbate and the substrate are es-

sentially identical to those found for methoxy-containing phosphite esters. The charge

on oxygen and carbon atoms were calculated and are summarized in Table 7.5. Where,

some charge is transferred from the carbon to the more electronegative oxygen.

Phosphite
ester

P (δ+) electron
(gas-phase)

P (δ+) electron
(adsorbed)

Fe (δ+)
electron

(gas-phase)

Fe (δ+)
electron

(adsorbed)
Triethyl

phosphite
2.14 2.35 1.42 1.21

Diethyl
phosphite

1.40 1.58 1.42 1.23

Monoethyl
phosphite

0.64 0.92 1.42 1.04

Phosphorus 0.00 0.11 1.42 1.04

TABLE 7.4: Grid-based Bader charge analysis of P and Fe atoms calculated for triethyl phos-
phite, diethyl phosphite, and monmethyl phosphite in vacuum and when adsorbed on Fe3O4.

no. of
ethoxy
groups

O (δ−)
electron

(gas-
phase)

O (δ−)
electron

(ad-
sorbed)

C1 (δ+)
electron

(gas-
phase)

C1 (δ+)
electron

(ad-
sorbed)

C2 (δ−)
electron

(gas-
phase)

C2 (δ−)
electron

(ad-
sorbed)

3 -
1.25±0.00

-
1.25±0.00

0.41±0.01 0.39±0.03 -
0.06±0.03

-
0.04±0.01

2 -
1.24±0.00

-
1.23±0.02

0.43±0.02 0.40±0.00 -
0.06±0.05

-
0.02±0.02

1 -
1.19±0.00

-
1.21±0.00

0.37±0.00 0.46±0.00 -
0.02±0.00

-
0.03±0.00

TABLE 7.5: Grid-based Bader charge analysis of O, C1 and C2 atoms calculated for a for triethyl
phosphite, diethyl phosphite, and monoethyl phosphite on Fe3O4.
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Phosphite
ester

TMPi
Experimental

Eact/eV

TMPi ∆H/eV TEPi
Experimental

Eact/eV

TEPi ∆H/eV

Trialkyl
phosphite

0.93 3.10 0.93 3.23

Dialkyl
phosphite

1.34 3.38 1.24 3.31

Monoalkyl
phosphite

1.59 3.68 1.48 3.75

TABLE 7.6: Activation energies estimated by Redhead analysis from experimentally observed
data [Chapter 6] and the calculated change in enthalpy (∆H) trialkyl phosphite, dialkyl phos-
phite, and monoalkyl phosphite adsorbed on Fe3O4 calculated by implementing Vienna ab
initio simulation package, VASP, density functional theory (DFT). The structures are converged

by considering Van der Waals (VDW) forces.

7.4 Discussion

The surface chemistry of phosphite esters has been studied on Fe3O4 films in ultrahigh

vacuum so that the experimental and theoretical systems are essentially identical, and

it should therefore be possible to compare them directly. It was found that trimethyl

phospite reacted sequentially to form methanol and formic acid while triethyl phospite

reacted to form ethanol and acetic acid. The simultaneous formation of the alcohol

and aldehyde was interpreted as being limited to the rate at which alkoxy group was

thermally removed from the phosphite ester. This, therefore enabled the activation

energy of each of the steps to be measured from the peak desorption temperature of

the simultaneous formation of the alcohol and aldehyde using the Redhead equation

[17] from the experimental data [8] and the results are summarized in Table 7.6.
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FIGURE 7.6: Bronsted-Evans-Polanyi plot for alkoxy group removal elementary reaction (ther-
mally induced) of TMPi (■) and TEPi (●), the change in P-O bond scission activation energies
(Eact) are estimated from Redhead analysis from the experimental results and enthalpy changes

(∆H) are calculated from the DFT calculated adsorption energies.

Some molecular desorption of TMPi and TEPi was found on thin Fe3O4 films grown

on polycrystalline iron at relatively low temperatures desorption activation energies

estimated to be ∼71 kJ mol−1 (0.74 eV) and ∼67 kJ mol−1 (0.69 eV) respectively us-

ing a Redhead analysis [17] with a usual value of the pre-exponential factor of 1 × 1013

s−1. Since they correspond to molecular desorption, the desorption activation energy is
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likely to be close to the heat of adsorption, but these values are much lower than the cal-

culated heat of adsorption values (Table 7.1). This implies that these low-temperature

desorption states are not isolated molecular species. It may be that the lateral interac-

tion at high coverage sufficiently lowers the heat of adsorption to allow the molecules

to desorb at low temperatures. This may be due to direct intermolecular interactions.

However, binding of the phosphite esters to the surface results in significant charge

transfer between the adsorbate and substrate. This will also influence the change on

iron ions at adjacent sites and reduce the heat of adsorption. It is also noted that the

heat of adsorption of the trialkyl phosphite must be larger than the reaction energy,

otherwise it would desorb before reacting and thus implies that the heat of adsorption

must be larger than ∼0.93 eV.

However it has been found that reaction activation energies and heat of reaction are

often linearly correlated and are known as Evans-Polanyi relations [18–20], where the

activation energy, Eact, varies with heat of reaction, ∆H, as Eact = Eact(0) - α ∆H, where

0<α<1. The heats of reaction can be calculated from the heats of adsorption, assuming

that the reaction sequences is P(OR)3 → P(OR)2 + OR → P(OR)+ OR → P+OR, where R

= CH3- or C2H5-. As indicated above, the heat of adsorption of a co-adsorbed methoxy

and ethoxy group on the Fe3O4 surface are 2.82 and 2.80, which yield the reaction en-

ergies given in Table 7.6. The resulting plots of the experimental activation energy

versus the heats of reaction calculated from density functional theory is shown in Fig.
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FIGURE 7.7: DFT calculated adsorption energy profiles of TMPi (top) and TEPi (bottom), where
activation energy (†Eact), adsorption energy (Eads) and reaction enthalpy (∆H) are shown for the

reaction sequence found on Fe3O4 slab.
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7.6. This shows a good linear correlation, in accord with the Evans-Polanyi relations

and confirms that the phosphate esters decompose on an iron oxide surface by a se-

quential removal of the alkoxide groups, which react rapidly to give an approximately

equimolar mixture of the corresponding alcohol and aldehyde. The DFT calculated ad-

sorption energy profiles of trialkyl phosphite, dialkyl phosphite, monoalkyl phosphite

and phosphorus atom adsorbed on Fe3O4 are shown in Figure 7.7, where alkyl = CH3-

(for TMPi) or C2H5- (for TEPi).

It is clear that the activation energy increases with the number of alkoxy species

removed from the surface that gives rise to a step-wise removal in a temperature-

programmed desorption experiment that enables the activation energy to be measured

for each step. The trend in surface charges provide some insights into this behavior; δ
+

on octahedral Fe3+ decreases when the alkoxy groups are removed and finally phos-

phorus is left on the surface to form iron phosphate tribofilm [8, 21, 22].

7.5 Conclusions

It is thus demonstrated that the adsorption energies of TMPi and TEPi molecules cal-

culated by implementing the Vienna ab initio simulation package, VASP, DFT are dif-

ferent, and observed adsorption energies are greater on TMPi compared to TEPi. Grid-

based Bader charge analysis suggests that phosphite esters adsorb on Fe3O4 surface
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via P atom by donating electrons to octahedral Fe3+ atom, where the P atom becomes

more electropositive when adsorbed. It is evident that P atom donates electrons to the

Fe atom, where Fe atom is attached to more electronegative oxygen atoms. The BEP

plot shows that the Eact and ∆H are linearly correlated and transition state resembles

to the final state.
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