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             ABSTRACT   

CHARACTERIZATION OF DNA INTERSTRAND CROSS-LINKING AGENTS  

BY LIQUID CHROMATOGRAHY-MASS SPECTROMETRY 

 

          by  

 

              Anahit Marina Campbell 

 

      The University of Wisconsin – Milwaukee, 2020 

      Under the Supervision of Professors Xiaohua Peng and Joseph H. Aldstadt III 

 

  This study is to characterize novel reactive oxygen species (ROS)-activated nitrogen 

mustard analogues and UV-activated alkylating agents by Liquid Chromatography-Mass 

Spectrometry (LC-MS). First, we optimized the instrument conditions  to successfully ionize a few 

novel binapthalene analogues and methoxybenzene analogues by MS. The highest signal intensity 

for compounds 3-10 was observed when atmospheric pressure chemical ionization (APCI) with 

an optimized corona needle position of 5mm or 10 mm was used, which led to successful analysis 

of compounds 3-10 by MS. Second, we determined pharmacokinetic properties of a drug 

compound (FAN-NM-CH3), including animal study, assay development, optimization of MS/MS 

instrumental parameter and the development of a calibration model, and finally quantification of 

FAN-NM-CH3 in different tissues, including blood, liver, and brain by LC-MS/MS. The results 

indicated that the methyl analogue FAN-NM-CH3 showed a t1/2 of 8.84 min that is two times of 

the parent compound CWB-20145 with a t1/2 of 4.92 min. The results suggested that introduction 

of an alkyl group (CH3) greatly increases in vivo duration, which is an important guide for further 

modification. The rate of elimination for the parent compound CWB-20145 in the blood is two 

times faster (Erate = 0.141 min−1) than that of FAN-NM-CH3 (Erate = 0.078 min−1). FAN-NM-CH3 

showed an area under the curve (AUC) of 16.25 µg•min/mL, which is significantly higher than 
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that of CWB-20145 (10.88 µg•min/mL). Further in vitro microsomal stability studies revealed that 

FAN-NM-CH3 is significantly more stable in human (t1/2 = 77.06 min) than in mouse (t1/2 = 33.0 

min). The human microsomal stability of FAN-NM-CH3 supports its design as a human 

therapeutic.  
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CHAPTER 1. INTRODUCTION 

 

   Mass spectrometry (MS) is perhaps the most widely used analytical method in the 

pharmacological context of drug development. It is an analytical technique where ions are 

separated and then detected by means of their mass to charge ratio (m/z). The popularity of MS 

is due to the fact that it is highly sensitive, selective, and can be hyphenated to other techniques 

such as liquid chromatography (LC), ultra violet (UV) absorption spectroscopy, nuclear 

magnetic resonance (NMR) spectroscopy, and several others. This work will focus on the 

application of single quadrupole (MS) and triple quadrupole (MS/MS) mass spectrometry for 

analysis of DNA alkylating agents.  

  LC-MS analysis of the drug compounds consists of sample pretreatment, separation, and 

detection. Each component has effects on factors such as accuracy, precision, selectivity, and 

sensitivity of the results (1). While sample preparation and separation are generally similar 

processes among various drug compounds, the difficulty lies in the detection of the compounds 

because of the fact that the compounds must be ionized for detection to occur with MS. This 

work will describe the challenges pertaining to the ionization of alkylating agents containing 

halogens, experimental design for in vitro and in vivo MS/MS analysis, and finally the design of 

a novel LC-NMR/MS method that will allow for the high-throughput determination of drug 

compounds while providing complimentary structural information by NMR as well as MS.  

 

1.1 Halogenated ROS-Activated DNA Interstrand Cross-linking Agents 

 

1.1.1 Background 
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   During WWI, alkylating agents were used not as therapeutic drug compounds but as a 

warfare agent known as nitrogen mustard gas. Nitrogen mustard reacts with the N7 position of 

purine bases guanine and adenine in the double strands of DNA and induces DNA interstrand 

cross-links (ICLs), thus preventing the separation of DNA double helix. Nitrogen mustard has 

been used as a chemotherapy drug in the 1940s. Early examples of such drugs had been modified 

for decreased toxicity including chlorambucil and busulfan, which have been approved by the 

FDA to treat various types of cancer (2).  

 Most cancer diseases have to be treated with systematic chemotherapy or radiotherapy, 

which has negative adverse effects for the patient due to its lack of selectivity towards the tumor 

cell. Targeting tumor-specific conditions, such as reactive oxygen species (ROS), can result in a 

drug that is more selective to tumor cells and reduce adverse effects. Many tumor cells are under 

oxidative stress and have higher level of ROS than healthy cells (3). Recently, Peng’s group has 

developed a series of H2O2-activated DNA interstrand cross-linking agents that showed selective 

cytotoxicity towards cancer cells but spared the normal cells. For example, compound 1 (CWB-

20145) and compound 2 (FAN-NM-CH3) (Scheme 1) are activated by H2O2 to induce DNA 

interstrand cross-link (ICL) formation. Moreover, the compounds discussed are neutrally 

charged, thus improve cell membrane diffusion and drug efficacy (4-7). Peng’s group also 

developed a series of photo-activated DNA ICL agents. For example, compounds 3 and 4 

(Scheme 2) can be activated by 350 nm light (hv) to generate free radicals that are then oxidized 

to the carbocations directly producing DNA ICLS (7). Regardless, both types of triggers result in 

the compounds with better DNA cross-linking efficiency (4-7). 
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Scheme 1: The structures of Modified Nitrogen Mustard Analogues 1 (CWB-20145) and 2 

(FAN-NM-CH3). 

   

 

Scheme 2: The structures of Binapthalene Analogues 3, 4, 5, and 6 (including naphthalene 

precursors 5 and 6). 

 

  The general mechanism of function for these DNA ICL agents is to block DNA 

transcription and replication by cross-linking the DNA double helix strands. This in turn results 

in the death of cancer cells (8). Compounds 1 and 2 consist of a H2O2-responsive moiety (a 

trigger, boronic acid or ester) that reacts with H2O2 and an effector that acts as DNA cross-linker 

(e.c. nitrogen mustard). The effector is deactivated by the electron withdrawing boronate ester 

      3              4         5        6  

                                                                  1     2  
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group. However, this deactivation can be reversed if the boron group is replaced by a donating 

OH group in the presence of H2O2, therefore increasing the electron density of the aromatic ring 

and activating the nitrogen mustard. This facilitates DNA ICL formation.   

 

 

    

Figure 1. Activation Mechanism of 1 by H202 to form DNA ICLs, where OR = OH (5).  

 

 

 Although there are many examples of FDA-approved ICL prodrugs, many still contain 

low selectivity (and thus adverse effects), poor efficacy, among other shortcomings. In the case 

of the compounds developed by previous collaborators in our group, it was found that compound 

1 and compound 2 hold promising potential for cancer cell lines such as SR (leukemia), NCI-

H460, (non-small-cell lung cancer), and MDA-MB-468 (breast cancer). It was also 

determined that the aromatic substituents on compound 1 greatly affected the ICL efficiency. 

The results suggested that avoiding a bulky protecting group and introduction of a weak electron 

donating group is beneficial for selectivity (5). 
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Scheme 3: The structure of Methoxybenzene Analogues 7, 8, 9, and 10. 

 

  In addition, compound 1 and compound 2 show potential as being a more effective 

treatment option for triple negative breast cancer (TNBC) than FDA approved drugs such as 

chlorambucil (7). Furthermore, while there have been great strides in the development of ROS 

activated prodrugs, especially towards their in vitro cytotoxicity and selectivity, little work has 

been done on the in vivo efficacy as well as selectivity. Lastly, in vivo studies provide that there 

are no adverse effects from the therapeutic dosing of compound 1 and compound 2, which is not 

the case for the FDA approved drugs such as chlorambucil or melphalan. Lastly, 7, 8, 9, and 10  

(Scheme 3) are precursors for some new novel photo-activated DNA cross-linking agents (5), the 

mass of which were confirmed by mass spectrometry, during this study. Further information on 

ROS-activated prodrug analogues developed by group collaborators can be found in the 

references (4-7).  

 

 1.2 Research Approach 

 

  This study presents the LC-MS quantification of several alkylating agents synthesized by 

       7                   8                                    9                                         10  
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collaborators in the group. We describe the analytical challenges associated with compounds 1 

and 2 and present solutions that enable ionization to occur. Additionally, we present 

pharmacokinetic data of compound 2 that showed advantages over the parent compound 1, such 

as longer duration time, slower elimination rate, and higher absorption. Lastly, this work will 

describe in detail a proposed hyphenated instrumental design that allows for the high-throughput, 

convenient, and information-rich analysis of such drug compounds using LC, NMR, and MS.  

 

1.2.1 Liquid Chromatography (LC) 

 

  LC is the most common and versatile method of separation for biological analysis in the 

context of drug development due to its orthogonality. Although HPLC methods are commonly 

used, UPLC (ultra-high pressure liquid chromatography) is becoming more common because it 

is more efficient. The most common type of LC used in pharmaceutical investigations is 

reversed-phase liquid chromatography (RPLC). This type of separation involves the elution of 

the liquid sample which is pumped at high pressures through an injection port that leads the 

sample into a heated column where it is separated. The detector then processes the signal and 

displays the peaks in a spectrum by the order of elution which for RPLC, more polar compounds 

elute first and more non-polar compounds elute last. RPLC-MS mobile phases typically consist 

of water, methanol, or acetonitrile and often times additives that promote positive ionization, 

such as ammonium acetate, ammonium formate, acetic acid, and formic acid or additives that 

promote negative ionization such as ammonium hydroxide (9). It is the ionization of these 

compounds that is key to mass spectrometry and a challenge that will be discussed in this work.  

 

1.2.2 Quantitation by Mass Spectrometry (MS) 
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  MS detection is well suited to function with reversed-phase UPLC (hereafter referred to 

as LC), due to the fact that compatible solvents to elute the sample and additives in the solvent 

assist the ionization process (9). A mass spectrometer is a detector that is selective, sensitive, and 

can be used to analyze a variety of compounds. In addition to single quadruple mass 

spectroscopy (see Figure 1-1), tandem mass spectrometry (see Figure 1-2) is one of the most 

powerful tools for the analysis of drug compounds. A single quadrupole MS has four parallel 

rods, two positive and two negative. The opposing rods are attracted to one another and when a 

radio frequency (RF) voltage and direct current (DC) are applied to a pair of opposing rods, the 

charged ions travel between the rods. Ions of a particular m/z will make it to the detector for a 

certain voltage to RF ratio. Other ions will collide with the rods ad not reach the detector. Triple 

quadruple MS (MS/MS) includes three sets of the quadruples, the first set (Q1) serving as a mass 

filter, the collision cell (Q2) where the ions collide with neutral gas for fragmentation, which 

then enter the second (Q3) serving to filter fragment ions based on the parent peak selected in the 

first set. Other components include sample separation (HPLC) and a detector The instrument is 

operated in multiple reaction monitoring (MRM) mode which can determine the molecular mass 

of the ion as well as the fragment ions. Because of this additional layer of information, the 

instrument has higher sensitivity as well as selectivity than just a single MS (9).  

  For quantitation, an internal standard is typically used to correct for instrument variations. 

A suitable internal standard (IS) is one that is structurally similar and in the same mass range as 

the analyte, so that the IS undergoes a similar ionization process as the analyte. One major issue 

that plagues mass spectrometry is ion suppression, which is caused by less volatile compounds 

that affect the droplet formation and evaporation process. This phenomenon thus varies the 
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amount of charged ions that are produced and therefore causes errors in the analysis. Ion 

suppression can be avoided by carefully selecting various additives to use in the LC mobile 

phase. Weaker acids (acetic, formic, etc.) can be used in the place of stronger acids (TFA), for 

example (10).  

  Other considerations include the fact that sample, especially biological samples, cannot 

be injected directly into the LC-MS instrument and instead must undergo sample preparation to 

remove matrix effects, preconcentrate the sample, and otherwise ensure that the sample that can 

be analyzed. Of the methods available, solid-phase extraction (SPE), is commonly used because 

it is versatile a wide range of cartridges and solvent systems are commercially available. Another 

option is liquid–liquid extraction (LLE) followed by rotoevaporation to remove the organic 

phase. A detailed discussion of sample preparation for the analysis of alkylating agents is 

discussed in the next section. sample preparation for the analysis of alkylating agents is 

discussed in the next section.  

 

1.3 Characterization of Novel Halogenated Alkylating Compounds by Mass Spectrometry  

 

  Alkylating agents, as expressed previously, bind to nucleophilic moieties and are 

cytotoxic to cancer cells once they cross-links DNA strands. Literature has demonstrated a 

variety of sample preparation and analysis conditions for particular types of alkylating agent. For 

example, SPE (C18 cartridges) were used to extract cyclophosphamide and its metabolites from 

human plasma in a study. A faster and simpler method of LLE (methanol‐acetonitrile) was used 

for protein precipitation and resulted in high recoveries (89%–100%) of cyclophosphamide and 

4‐hydroxycyclophosphamide from plasma samples. Limits of detection of 0.2 ng/mL of agents 
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(cyclophosphamide and ifosfamide) have been achieved in urine (11-14). When it comes to 

analysis of an unstable compound as well as one that lacks chromophores, oxazaphosphorines, 

LC-MS was the appropriate choice for the analysis as compared to GCMS or LC-UV (15). In the 

case of chlorambucil, a nitrogen mustard derivative, although several LC-UV methods have been 

presented, LC‐MS/MS methods have proven to be not only more rapid, but at least 10x more 

sensitive in plasma and urine samples (1).  

  In the case of our group’s novel alkylating agents, another issue needed to be considered- 

is ionization. Even after adequate sample preparation, solvent system optimization, and 

instrument consideration, the challenge was achieving ionization of the compounds. 

Experimental design for alkylating agents requires the careful selection and corona needle 

optimization, as described in the following section on ESI, APCI, and DUIS ionization modes.  

 

1.3.1 Electrospray Ionization (ESI) 

 

 Electrospray ionization (ESI) (see Figure 1-3) is an ionization technique for MS where a 

liquid sample is converted into nebulized aerosol composed of tiny charged droplets which are 

then charge separated. The droplets undergo high electric potential between the liquid sample (in 

a capillary) and the counter electrode. In this stage the radius of the droplets will decrease as the 

solvent evaporates, and due to the Rayleigh limit, Coulombic forces overcome the surface 

tension of the droplet resulting in “Coulombic fission.” In this manner, the ions enter the gas-

phase. Advantages of ESI include the “soft” ionization (resulting in multi-charging and thus an 

advantage for large molecules), high ion transmission, and high sensitivity even at low flow rates 

(16). 
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  The basis of ESI was first described in the context of MS in the 1960s by Dole in his 

group’s analysis of polystyrene. Variations of the method evolved, but in the 1980s, Fenn  

successfully developed an efficient ESI interface to MS for the first time, earning him the Nobel 

Prize in Chemistry in 2002 (16). Further advances included Bruins’ addition of a nebulizing gas 

to create a charged aerosol in 1987 (17) and most recently, the coupling of APCI with ESI (18). 

 

1.3.2 Atmospheric Pressure Ionization (APCI) 

 

  Atmospheric pressure chemical ionization (APCI), see Figure 1-4, is an ionization 

technique for MS consisting of an inlet capillary within a nebulizer capillary. It is in this heated 

capillary that nebulization occurs with the auxiliary gas serving to prevent interactions between 

the wall and the analyte. A corona discharge needle causes the ionization process to occur. The 

ionization can occur in positive mode where a proton transfer, charge transfer, or adduct 

formation can occur. The ionization can also occur in negative mode where proton abstraction, 

electron capture or anion attachment can occur (9). There are advantages and disadvantages to 

the APCI mode of ionization. One advantage is that since APCI is a “soft” ionization technique 

in that the mass spectra are relatively simple (16). In addition, matrix effects are not as 

pronounced as is the case in ESI. However, selection of a solvent system to use with APCI can 

be difficult because of preferential ionization of solvents with high proton affinity (19). 

  Shahin was the first to utilize APCI as an ionization source for MS in the 1960s, where a 

platinum wire was used as the anode in a discharge chamber (20). In the 1970s, Horning and co-

workers developed the corona discharge needle when the LC was coupled to MS (21) which is 

the interface familiar today (the heated tube nebulizer was introduced later). Finally in the 1990s, 
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dual ionization mode (ESI and APCI) was achieved by switching between the two ionization 

modes in the same experiment (22). Recent advancements in APCI include various interface 

heating methods. Such designs include gradient heating to prevent the ion source from 

recirculating the atmosphere (23).  

 The theory of APCI is that the most stable reagent ion will be formed, which in turn will 

ionize the analytes of interest. If the reagent ion is more stable than the ionized analyte, the 

analyte ion will not form because the reaction will not be favored. In positive mode, RH+ is the 

reagent ion and B denotes an analyte:  

      RH+ + B ⇌⇌⇌⇌ BH+ + R 

  The protonation of the analyte will only proceed if the gas phase basicity (GB) for B is 

higher than the GB for the reagent ion RH+ . The gas phase basicity is defined as the change in 

Gibbs free energy for the reaction (16): 

             B + H+ ⇌⇌⇌⇌ BH+ 

  Thus the solvent system can influence ion stabilities and therefore ionization efficiency. 

For example, in reference to proton affinities (positive mode) or gas-phase acidity (negative 

mode) of solvents (and additives), methanol has a lower proton affinity than acetonitrile (754 kJ 

mol-1 vs 779 kJ mol-1, respectively. Therefore, methanol would be a more suitable choice as an 

LC solvent if the proton affinity of the analyte is low (24). 

 

1.3.3 Dual Mode Ionization 

 

  Different types of samples require different ionization modes. For example, for non-polar 

compounds, APCI is a better choice because in ESI, the non-polar compounds tend to not 
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evaporate and thus will not undergo the ionization process. For polar compounds, ESI is a more 

appropriate ionization choice because APCI occurs in the gas-phase, and thus the solvent does 

not need to be polar for ionization to occur as in ESI. A diagram of the polarity regions most 

appropriate for each ionization source is depicted in Figure 1-5 as well as Table I (1), depicting 

various studies with their respective ionization conditions. Some compounds or mixtures require 

dual-mode ionization, i.e., both ESI and APCI simultaneously, as illustrated in Figure 1-6 and 

depicted in Figure 1-7 as described from a case study (25). The disadvantage however is that the 

degree of sensitivity is less than when they are used individually (26). 

 

1.4 Theory of In Vitro Microsomal Stability Studies and Pharmacokinetic 

Studies  
 

 

1.4.1. In Vitro Microsomal Stability Study of Drug Compound 2 (FAN-NM-CH3) 

 

 

  In-vitro stability studies allow for the prediction of a drug compound's potential 

metabolic clearance by liver enzymes, but without the cost and demands of an in vivo animal 

study (2). To calculate first-order rates, we calculate the half-life (t0) using the following 

equation: 

         (t0)min = ln(2)/k = 0.693/k 

where k is the first-order rate constant. We then linearize the data with the following 

transformation: 

        (t0) 

In the case of first-order half-life, the half-life decay is constant, as seen in Figure 1-8 in an 

example diagram (27). The hepatic metabolism is a key initial step as it is a good indicator of in 
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vivo pharmacokinetics. The assumption is that hepatic metabolic clearance is the major 

mechanism of clearance (28), as in the case shown below with 2. 

 

1.4.2 In Vivo Pharmacokinetic Study of Compound 2 (FAN-NM-CH3) 

 

  The experiments after the in-vitro stability study dealt with in-vivo pharmacokinetics 

(PK), or the determination of how the in-vivo model handles a drug compound in the context of 

absorption, distribution, metabolism, and elimination. In the case of compounds derived from 

nitrogen mustard drugs, a slower clearance of the drug is desired (28). Such studies can help 

assess the concentration-time curve using the following ratio: 

       AUC/MIC 

where AUC is "area under the curve" and MIC is the "minimal inhibitory concentration". This 

ratio is a key measure of drug efficacy (29).   

 

1.5 Instrumental Hyphenation  

 

1.5.1 Analysis of HPLC-UV-NMR-MS Interfacing Scheme   

 

   As this work has already presented, MS is a critical tool in the drug development process. 

It allows for compounds to be accurately determined. However, MS has the disadvantage of 

lacking structural data. On the other hand, proton NMR is also a powerful tool for drug 

development as it a non-destructive method to provide structural information to allow distinguish 



14 

 

stereo-isomers however NMR has limitations as it is a tool that cannot compare to the sensitivity 

and selectivity that MS can offer and is not a suitable method if the analyte's functional groups 

are NMR-silent (i.e., lacking protons or able to exchange protons with the solvent) (30). It can be 

concluded then that NMR and MS are complimentary techniques, and both are necessary in the 

study of drug compounds. Yet drug development requires high-throughput capabilities and adds 

an additional challenge because of the complexity of the samples. Therefore, much research has 

occurred in the past several decades to interface NMR and MS.  

  More recently, splitting the flow to the NMR and MS while coupling preconcentration 

methods (e.g., SPE) upstream, and in-parallel analysis (31). There are two types of methods of 

hyphenation, the first being in-series hyphenation, which is one detector after another, while in-

parallel hyphenation introduces the sample to the detectors simultaneously. With in-series 

hyphenation, the disadvantages include greater difficulty in ascribing the results to a given 

detector and more frequent leaks because of the large pressure difference between the NMR and 

MS. With in-parallel hyphenation, advantages include that the analysis can occur simultaneously 

although there is a delay with completing the NMR measurement (32-33). Examples of both 

coupling method schematics are found in Figure 1-9 from work by Gebretsadik et al (34). 

Summarizing timelines (Figure 1-10 (a) and (b)) of the historical developments of hyphenated 

NMR are presented (31). 

  LC-NMR has several advantageous when compared to conventional NMR. Proton NMR 

spectra can be acquired quickly and without spectral interferences if the analyte is isolated in 

pure form. There are however, obvious concerns about a hyphenated LC-NMR method (35). One 

major concern with coupled NMR and MS is that there can be significant solvent suppression of 

the NMR signal if either non-deuterated solvents are used or if the suppression is not mitigated 



15 

 

through some other means such as preconcentration. Additionally, if the solvent contains solvent 

additives, there may be adverse effects such as the deposition of salts in the NMR flow cell, e.g., 

with the use of sodium phosphate or TFA (trifluoroacetic acid) which may result in ion 

suppression for acidic compounds. Formic acid is an additive that avoids these issues because it 

promotes positive ionization. Simply using deuterated solvents holds issues as well because H/D 

exchange with the analyte may occur, which would result in inaccurate measurements (32). 

 

1.5.2:  LC-NMR Past Improvements  

 

   Coupling LC to both NMR and MS, whether in-series or in-parallel, offers the potential 

for an immense amount of information to be gathered in a single experiment. In reality however, 

there are difficulties because of the large sensitivity difference (103 – 106) between the two 

detectors, because the MS is far more sensitive than the NMR. In addition, the acquisition time 

for the MS is far shorter than for the NMR (36). Furthermore, there are trade-offs to choosing an 

in-series or an in-parallel instrumental design. Lommen et al. were able to overcome these 

challenges in an experiment, the data for which is shown in Figure 1-11 (37). In this experiment, 

the parent mass as well as the fragments were determined selectively by MS as compared to UV. 

The first inset chromatograph depicts a spectrum by UV analysis. Directly below is a mass 

spectrum of the m/z = 301 of only quercetine fragments (below),  

              

selected by an NMR measurement. The last inset depicts the loss of an ion of m/z = 162, thus 

only peaks with a C6 sugar appear in the spectrum. It can be concluded that NMR and MS data 
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are complimentary, and by following up with further NMR analysis post MS analysis, co-eluting 

peaks such as those of compounds glucopyranosid and galactopyrandosid, was determined (37). 

  Nevertheless there have been successful applications of LC-NMR-MS in drug studies. 

For example, Paracetamol (acetomeaphen) (below) 

        

was determined in urine using RPLC-UV-NMR-MS, where NMR and MS spectra were collected 

in parallel. The mobile phase solvents were non-deuterated acetonitrile in D2O with deuterated 

trifluoroacetic acid and the LC eluent was split 98:2 to the NMR:MS. A schematic of the in-

parallel instrumental coupling including NMR and MS can be seen in Figure 1-12 (33). The 

authors used a combination of two measurements to deduce information about the endogenous 

drug metabolites. These experiments included an initial run with identification of the pseudo-

molecular ion (MD+) at m/z 334 and then a second run with the addition of methanol:acetic acid 

to enable the deuterons to exchange with the hydrogen atoms. MH+ ions were produced for all of 

the fragments of the analyte and the exchanged hydrogens distinguished by the mass difference 

(33). 

  There have also been studies of dihydroquinoxalinecarboxylate (below),  

                                                        

a drug used to treat HIV, in urine. The method used gradient elution RPLC (acetonitrile in D2O 

with acetic acid), and LC fractions were collected on-line in a loop collector, and run in-series to 

a proton NMR and then to an ion trap MS. The schematic diagram depicting in-series NMR and 
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MS with a fraction collector down-stream is presented in Figure 1-13 (38). The same group also 

carried out the measurement in reverse, i.e., RPLC-ion trap MS-NMR (Figure 1-14) (39). The 

LC-MS-NMR design was studied with a drug used to treat bipolar disorder called 

triazolopyridine. By determining the masses of the peaks of interest, the fractions could then be 

stored for stopped-flow analysis with the NMR, on-line (39). 

   LC-NMR-MS/MS has also been reported by Scarfe and co-workers. Once again, a 

solvent gradient of acetonitrile in D2O with acetic acid was employed along with an ion trap and 

ESI MS/MS. The authors determined the major metabolite in the urine sample to be a sulphate 

conjugate, which are considered "NMR-silent" (due to a lack of protons) and in addition MS 

could not determine the actual position of substitution of the aromatic ring of the metabolite, that 

NMR could if the compound was not silent. This case proves clearly how beneficial hyphenated 

methods can be because neither HPLC-NMR nor HPLC-MS alone were able to determine the 

metabolites. Instead it was the complimentary information from the HPLC-NMR-MS method 

that allowed for accurate determination (30). Another study showed how stereochemistry could 

be determined by the NMR in a hyphenated system, in which ibuprofen in urine was metabolized 

to glucuronide diastereomers, which were not distinguishable by MS but were by NMR, the 

results of which can be found in Figure 1-15 (40) and the in-parallel schematic diagram for this 

work is shown in Figure 1-16 (40).   

  NMR is a powerful analytical tool that provides vital information to aid in the prediction 

of the chemical structure of a compound (9). LC-NMR was first described in the 1970s, and 

there has been an increasing interest in it over the last two decades because of improvements 

made to NMR instruments. For example, Watanabe and Niki first reported a successful LC-

NMR design in 1978 (Figure 1-17) (41) by using a thin-walled Teflon tube (1.4 mm in inner 
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diameters) to serve as a continuous-flow cell. The authors used deuterated solvents to evade 

solvent suppression to measure various drug compounds. The study also presented various areas 

that needed improvement including sensitivity, as the sample had to be run hundreds of times to 

achieve an equivalent signal to noise ratios for samples of different concentration (41). Two 

years later, the first design of on-flow LC-NMR was reported by Dorn et al. using a novel NMR 

flow cell insert (Figure 1-18) (42) to analyze jet fuel sample mixtures. The optimized insert had a 

vertical orientation to prevent air bubbles from becoming trapped in the cell. The cell was also 

tapered at both ends of the insert to prevent eddy diffusion by minimizing particle size (42). 

Building upon this work, Laude and Wilkins (1984) further optimized the insert design by 

incorporating a stainless-steel column, minimizing the transfer line and thus increasing resolution 

and sensitivity due to the minimization of dead volume, as seen in Figure 1-19 (43).  

  Another problem that had to be resolved that of the mobile phase, which earlier had been 

fairly non-complex in order to avoid potential interfere with the sample with the use of two 

solvent resonance changes during a gradient elution, and of course the detection limit. 

Smallcombe in 1995 reported a technique to overcome these issues by  WET (“water suppression 

enhanced through T1 effects”), where selective pulses are applied at the solvent's resonance and 

then this is followed by field gradients that are pulses to diphase (or minimize) the residual 

magnetization produced by the solvent. This allows for the selection of a particular 

magnetization and not of others. This can be seen in the spectra results in Figure 1-20 (44), with 

the unsuppressed and suppressed resonance of acetonitrile solvent (44).  

  Low sensitivity and issues with solvent complexity was also addressed through the 

implementation of smaller flow cells and the use of cryogenic probes. This was reported by 

Sweedler et al. in the late 1990’s with their development of a microcoil flow cell probe, which is 
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depicted in Figure 1-21 (45). For the cryogenic microcoil probes, the NMR cell was cooled to 

20° C, thereby improving sensitivity (Figure 1-22) (45). This first demonstration of continuous-

flow technique was used to analyze an amino acid and peptide mixture and was able to detect 

analyte concentrations of 750 ng/mL (ppb). In addition, separation was achieved in under 10 min 

and NMR spectra were collected with 12 s of time resolution. Lastly, the authors also performed 

stopped-flow experiments to collect 2D COSY spectra (45).  

  Not only are there various instrument coupling methods, but the connection of the LC 

component to the NMR or other instrument is much more than just connecting some capillary 

tubing from the LC column, but instead requires an automated way to ensure the most 

reproducible and reliable results in addition to ease of use. A switching value interface can 

involve continuous flow of the sample through the NMR as the signal is acquired, or “on-flow,” 

or it can be measured while the flow is stopped and the sample is in the NMR cell. There are two 

types of designs for this purpose: “(direct) stop-flow” and “loop storage/loop transfer”. In “stop-

flow,” the chromatographic separation is interrupted for an NMR measurement whereas with 

“loop storage/loop transfer,” the chromatographic peaks are stored as they elute into a loop 

system until a measurement is taken with the NMR. In the case of the design research reported 

herein, we combine “on-flow,” “stop-flow,” and a “loop transfer” to capture the eluted sample in 

the NMR flow cell, and then acquire the spectra while the sample is static within the NMR cell 

and divert the rest of the LC eluent to waste (36). 

 

1.5.3 Brief Overview of NMR Theory 

 

 Nuclei spin at an angular momentum “p” and thus this charged nucleus creates a 
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magnetic field. A magnetic moment “µ” is positioned along the spin’s axis and is equal to p:. 

        µ = γp 

where γ is the proportionality constant specific to the nucleus. If a magnetic field “B0” is applied 

to a spinning nucleus, µ becomes oriented in either of the directions of the field. When B0 is 

absent, the quantum states of the nucleus are the same. Thus the strength of the magnetic field is 

a principle component to NMR and its strength dictates the strength of the observed signal:  

             (Nj/N0) = 1 - (vhB0)/(2πkT) 

where Nj and N0 are the number of protons present in the higher and lower energy states, 

respectively, v is the frequency, h is Plank’s constant, B0 is the applied field strength, k, again, is 

Boltzmann’s constant, and T is absolute temperature. A depiction of the nuclei under the 

conditions described above can be found in Figure 1-23 (9).  

  The advantages of using NMR are plentiful. First, NMR is non-destructive and can detect 

low molecular weights of molecules. In addition, NMR provides complimentary information to 

the MS such as chemical shifts, multiplicity, integrals, intermolecular relationships, and dynamic 

processes (46). The disadvantages include the sensitivity of NMR, which means that large 

amounts of analyte are required as compared to MS. For example, NMR would require at least 

µg/mL concentrations whereas MS only requires ng/mL concentrations to produce an adequate 

signal. As noted above, this issue can be addressed by splitting the flow from the LC to separate 

tubing of different diameter to direct > 99% of the eluting volume to the NMR while 1% would 

be directed to the MS (34). 

 

1.5.4 NMR Spectra 
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  One advantage of proton NMR is that the peak area can be directly quantified as the 

amount of nuclei that produce the peak, provided of course that this peak does not overlap with 

another peak. The solvent plays the role of a standard shift, since the rest of the peaks can be 

standardized to that of the known solvent peak, for the purpose of quantification.  

  Chemical shifts arise from the fact that hydrogens have different environments and 

number of hydrogens that belong to each signal can be determined by the integration of the 

peaks. 

       

For example, the molecule shown has two different proton environments and thus two distinct 

For a simple example, consider Methyl Glyoxal shown above, which has two different proton 

environments and thus two distinct signals in its NMR spectrum — one for the hydrogens on the 

CH3 and one for the terminal CH. Following the “n+1 rule,” the neighboring carbon to the CH3 is 

a C with no hydrogens. Thus the signal produced for the CH3 would be a 0+1 or a singlet “s” 

with an integration of 3 hydrogens. The other signal from the CH would also be a singlet, 

however with an integration of 1 hydrogen. Both signals would be found down-field on the 

spectrum because the electronegatively of their environments are high from the nearby oxygens, 

and therefore different magnetic fields are necessary to achieve resonance at a set frequency (9). 

 

1.6 Research Goals 

 

The goals of this project were to: 



22 

 

1.Develop an LC-MS method to analyze the novel FAN-NM-CH3 compound. 

2. Modify the method for the analysis of pharmacokinetic samples. 

3. Design an on-line LC-NMR-MS system.  
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1.7 Figures and Tables 

 

 

 

 

Figure 1-1. Schematic diagram of a single quadrupole MS (48).  
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Figure 1-2. Schematic diagram of a triple quadruple MS (MS/MS) (47).  
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Figure 1-3. The electrospray ionization process (18).  
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Figure 1-4. Schematic diagram of an atmospheric pressure chemical ionization source (49).  
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Figure 1-5. A guide to the polarity regions most appropriate for each ionization source (51). 
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Figure 1-6. A schematic showing the DUIS ionization source (29).  
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Figure 1-7. Comparative data of DUIS mode ionization (25).  
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Figure 1-8. A graphical depiction of first-order half-life (29). 

 

 

 

 

 

 



31 

 

                                                     
                                               

                                                                   

A                                                          

 

                                             

                                
                                                                  

B                                               

 

 

                                               

Figure 1-9 (a) and (b). Schematics of in-series (LC-NMR-MS) and in-parallel LC-NMR/MS 

hyphenation (Adapted from Gebretsadik, T, et al) (34).  
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Figure 1-10 (a) and (b). Timeline of historical developments with hyphenated NMR techniques 

(31).  
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Figure 1-11. LC-NMR/MS work by Lommen et al. to measure glycosides (37). 
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Figure 1-12. A schematic demonstrating in-series and in-parallel hyphenation (33).  
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Figure 1-13. A schematic of LC-NRM coupled with ion-trap MS detection (38). 
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Figure 1-14. A schematic of LC- ion-trap MS coupled with NMR (39). 
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Figure 1-15. A study depicting information obtained from NMR and MS to determine the 

structure of a drug metabolite. A. is a 500 MHz proton NMR spectrum, B. is a spectrum obtained 

ESI MS, and finally C. is MS/MS (40).  
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Figure 1-16. A schematic of LC-NRM-MS/MS detection (40). 
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Figure 1-17. The first novel example of LC-NMR (41). 
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Figure 1-18. A diagram of a novel NMR Teflon probe (42). 
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Figure 1-19. A diagram of a stain-less steel NMR probe (43). 
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Figure 1-20. A schematic diagram of an on-line flow system developed for the LC-NMR 

method (45). 
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Figure 1-21. A schematic diagram of a novel microcoil NMR flow probe (45). 
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Figure 1-22. Spectra of a WET stopped-flow experiment involving a 10 mM sucrose in 

CH3CN:D2O (50:50). While the spectrum at the stop depicts unsuppressed spectrum with 

significant solvent resonance at 1.95 ppm, the bottom spectrum includes the WET technique of 

solvent suppression (44). 
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Figure 1-23. A depiction of a spinning nuclei under an applied field (9).   
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Table I: Studies of anti-cancer drug metabolites using ESI MS (1). 
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CHAPTER 2. EXPERIMENTAL 

 

 

2.1 Experimental Conditions of Halogenated Aromatic Compounds as 

UV/ROS-Activated DNA Interstrand Cross-linking Agents by Liquid 

Chromatography Single Quadruple Mass Spectrometry  
 

2.1.1 Chemical Reagents and Compounds  

 

   All solvents used in this work (including water) were LC-MS grade and were used 

without further purification. Water, acetonitrile (MeCN), methanol (MeOH), and formic acid 

(HCOOH) were obtained from Fisher Scientific (Pittsburgh, PA, USA). Lastly, 2 mL glass MS 

autosampler vials were purchased from (Shimadzu Corp., Kyoto, Japan). 

 

2.1.2 Sample Preparation 

 

 All compounds analyzed were provided by other group members. 

 

Binapthalene Analogues 3, 4, 5, and 6 (including naphthalene precursors 5 and 6) 

 A concentration of ~0.5 mg/mL sample of 3 and 4 was prepared for LC-MS 

analysis. This was done by dissolving the respective compound in a 2:1 ratio of LC-MS grade 

MeCN:MeOH and vortexing the solution for 10 s, then sonicating the solution for 10 min and 

vortexing for another 10 s. A dilution of the100 µM sample was prepared for LC-MS analysis. 

After the samples were prepared in vials, the vials were wrapped in aluminum foil to prevent 

photodegradation of the compound. 

           A 1.0 mM sample of 5 and 6 was prepared for LC-MS analysis. This was done by 

dissolving the compound in LC-MS grade acetonitrile and vortexing the solution for 10 s, then 
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sonicating the solution for 10 min and vortexing again for 10 s. Dilutions of 250 µM and 100 µM 

were prepared from the stock. 

   

 

 

Methoxybenzene Analogues 7, 8, 9, and 10 

  A 1.00 mM sample of 7, 8, 9, and 10 was prepared for LC-MS analysis. This was 

done by dissolving the compound in LC-MS grade MeOH and vortexing the solution for 10 s, 

then sonicating for 10 min and then vortexing again for 10 s. Dilutions of 100 µM and 10 µM 

were also prepared, however they were not concentrated enough to achieve a distinct signal on 

the MS instrument.  

 

 

2.1.3 Mobile Phases for LC-MS 

 

       

      7                  8                                   9                                          10  

       

      3              4                                        5                                        6 
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Naphthalene precursors 5 and 6 

  The mobile phase was composed of water with 0.1% HCOOH (v/v) (A) and MeCN 

(B). The gradient programming was the following: 50% B (0.0 min) → hold at 100% MeCN B 

(6 min) → return to 50% B (2.5 min) → hold at 50% MeCN B (3.5 min). The column 

ttempérature was 40 °C. 

 

Binapthalene Analogues 3, 4 

  The mobile phase was composed of water with 0.1% HCOOH (v/v) (A) and MeCN 

(B). The gradient programming was the following: 10% B (0.0 min) → 100% MeCN (8.0 min) 

→ hold at 100% B (12.0 min) → return to 10% B (20.1 min) → hold at 10% B (18 min). The 

column temperature was 40 °C. 

 

2-Methoxy Analogues and Starting Material 7, 8, 9, and 10 

  The mobile phase was composed of water with 0.1% HCOOH (v/v) (A) and MeOH 

(B). The gradient programing was the following: 20% B (0.0 min) → 40% MeOH (1.0 min) → 

60% B (2.0 min) → 80% MeOH (3.0 min) → hold at 90% B (2.0 min) → return to 20% B (7.0 

min). The column temperature was 40 °C. 

 

2.1.4 Instrumentation 

 

Naphthalene precursors 5 and 6 

  Qualitative LC-MS (Shimadzu Model 2020, Shimadzu Corp., Kyoto, Japan) (Figure 2-1 

(a)) analysis was employed to confirm the identity of the compounds. An Agilent TC-C18 
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column (4.6 mm x 250 mm, 5 µm particle size, Agilent Technologies, Santa Clara, CA, USA) 

was used for separation. The ionization sources for the 2020 model include ESI, APCI, and dual 

mode (DUIS), as seen in Figure 2-1b. The sample (10 µL) was injected into the LC-MS 

instrument in APCI mode, with the corona discharge needle set to an optimal position of 5 mm. 

Images of the corona discharge needle setting can be seen in Figure 2-2  (a) and (b). The MS was 

operated with the following method factors: 

  ● heat block temperature at 400 °C 

  ● drying gas flow rate of 15 L/min 

  ● desolvation line temperature of 250 °C 

  ● nebulizing gas flow rate of 1.5 L/min 

  ● interface voltages of 4.5 kV 

  ● positive or negative: APCI modes 

The LC and column were operated with the following factors:  

  ● gradient elution flow rate of 0.7 mL/min 

  ● column oven temperature of 40 °C 

  ● 200-400 nm UV-VIS molecular absorption detection 

All experiments were conducted in duplicate with blank solvent injections in between each set of 

duplicate trials.  

 

Binapthalene Analogues 3 and 4 

  Qualitative LC-MS (Shimadzu 2020, Shimadzu Corp., Kyoto, Japan) analysis was 

employed to confirm the identity of the compounds. 10 μL of the sample was injected into the 

LC-MS instrument. The ionization mode was ESI. The MS was operated with the method 
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parameters as described for Brominated and Chlorinated Naphthalene Analogues. 

 

2-Methoxy Analogues and Starting Material 7, 8, 9, and 10 

  Qualitative LC-MS (Shimadzu 2020, Shimadzu Corp., Kyoto, Japan) analysis was 

employed to confirm the identity of the compound. An ultra-high pressure column, (ACQUITY 

CSH C18, 2.1 mm × 50 mm, 1.7 µm particle size, Waters Corp, Milford, MA, USA), was used 

for separation. The sample (5 μL) was injected into the LC-MS instrument. The ionization mode 

was optimized to be dual ESI/APCI mode with the corona discharge needle set to an optimized 

position of 10 mm.  

  ● heat block temperature at 400 °C 

  ● drying gas flow rate of 15 L/min 

  ● desolvation line temperature of 250 °C 

  ● nebulizing gas flow rate of 1.5 L/min 

  ● interface voltages of 4.5 kV 

  ● positive or negative: DUIS (dual mode ionization)  

The LC and column were operated with the following factors: 

 ● gradient elution at a flow rate of 0.5 mL/min  

 ● column oven temperature of 40 °C 

  ● 190-700 nm UV-VIS molecular absorption detection 

All experiments were conducted in triplicate with blank solvent injections in between each set of 

triplicate trials.  
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2.2 Experimental Conditions of Microsomal Stability Assay  

 

2.2.1 Chemical Reagents   

                                          

  The solvents were LC-MS grade and were used without further purification. Water, 

acetonitrile (MeCN), methanol (MeOH), formic acid (HCOOH), and potassium phosphate buffer 

were obtained from Fisher Scientific (Pittsburgh, PA, USA). The NADPH (Nicotinamide 

adenine dinucleotide phosphate) Regenerating System Solution A and B were purchased from 

Corning Life Science (Corning, NY, USA). Human and mouse (CD-1) microsomes were 

purchased from Thermo Fisher Scientific (Waltham, MA, USA). Dimethyl sulfoxide (DMSO) 

was purchased from Cambridge Isotope Laboratories (Tewksbury, MA, USA). Spin-X HPLC 

filter tubes (0.22 ‐m) were purchased from Corning Inc. (Corning, NY, USA). Lastly, 2 mL 

glass MS autosampler vials were purchased from (Shimadzu Corp., Kyoto, Japan). 

 

2.2.2 Sample Preparation 

      

 

  A stock mix was prepared containing 282 µL of deionized water (18.2 mΩ-cm, 80 

µL of potassium phosphate buffer (0.5 M, pH 7.4), 20 µL of NADPH Regenerating System 

                                                                  1     2  
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Solution A, 4 µL of NADPH Regenerating System Solution B, and 10 µL of human or mouse 

microsomes (for a final microsomal concentration of 0.5 mg/mL). The stock mix was pre-

incubated at 37 oC for 5 min. Directly after pre-incubation, 4 µL of the drug compound (1 mM in 

DMSO) was added to initiate the reaction and upon the addition of the drug compound, the 

duration of the reaction was recorded.  The reaction mixture was then allowed to incubate at 37 

oC. After the incubation was complete, aliquots of 50 uL of the reaction mixture were retrieved at 

various time intervals (without compound): 0, 10, 20, 30, 40, 50, and 60 min. These aliquots 

were added to 100 µL of ice-cold MeCN that contained 3 µM of internal standard (IS), and then 

the mixture was immediately sonicated for 10 s and centrifuged at 10,000 rpm for 5 min. 

Compounds 1 and 2 served as the IS for each other, thus when 1 was the target analyte, 2 was the 

respective IS, and vice versa. Next 100 µL aliquots of the supernatant were transferred to Spin-X 

HPLC filter tubes and centrifuged at 13,000 rpm for 5 min. Finally, 50 µL of the filtrate was 

diluted 1:20 with MeOH (950 µL) and transferred to a 2 mL 

l glass auto sampler vial for analysis. 

  Standards for the assay were prepared to establish a calibration model. Standard 

concentrations for the analysis were: 1, 10, 50, 100, 200 nM, and the IS compounds were each at 

a concentration of 10 nM. To minimize solvent effects, the diluent was composed of a 1:1 ratio 

of water with 0.1% (v/v) HCOOH and MeCN.  

 

2.2.3 Mobile Phases for LC-MS/MS 

 

  The mobile phase was composed of water with 0.1% HCOOH (v/v) (A) and MeOH 

(B) (to prevent the formation of adducts). The gradient programming was the following: 30% B 
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(0 min) → 40% MeCN (1.5 min) → 90% B (2.0 min) → hold at 90% B (0.5 min) → return to 

35% B (0.5 min) → hold at 35% B (2 min). The column temperature was 40 °C.  

 

2.2.4 Instrumentation  

    

 The samples prepared as described above were analyzed by quantitative LC-

MS/MS (Shimadzu 8040, Shimadzu Corp., Kyoto, Japan) (Figure 2-3) to monitor product ion 

values and establish a calibration model. The sample (10 μL) was injected into the LC-MS 

instrument equipped with an ACQUITY CSH C18 column (2.1 mm × 50 mm with 1.7 µm 

particle size) obtained from Waters Corp. (Milford, MA, USA). The ionization mode was APCI 

mode with the corona discharge needle set to an optimal position of 5 mm. The MS was operated 

with the following method parameters: 

  ● heat block temperature at 400 °C 

  ● drying gas flow rate of 15 L/min 

  ● desolvation line temperature of 250 °C 

  ● nebulizing gas flow rate of 2.0 L/min 

  ● interface voltages of 4.5 kV 

  ● positive ESI modes 

 The LC and column were operated with the following factors: 

  ● gradient elution at a flow rate of 0.6 mL/min 

  ● column oven temperature of 40 °C 

  ● 254 nm UV-VIS detection 

All experiments were conducted in triplicate with blank solvent injections in between each set of 
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triplicate trials.  

  The following ion pair transitions are monitored in multiple reaction monitoring 

(MRM) mode for 1 and 2 (IS), respectively: m/z 275.90 —> 164.10, m/z 275.90 —> 213.10, m/z 

275.90 —> 146.10 and m/z 262.10 —> 150.10, m/z 262.10 —> 199.10, m/z 262.10 —> 132.10. 

Collision energies were optimized for each transition for sensitivity.  

  The system control and data acquisition for the LC-MS/MS was performed on a 

Dell desktop computer (Round Rock, TX, USA)  and using LabSolutions software version 6.2 

SP1 (Shimadzu Corp, Kyoto, Japan). All experiments represent two independent days in 

triplicate.  

 

2.3 Experimental Conditions of Pharmacokinetic Studies  

 

2.3.1 Animal Model and Experimental Practices  

 

  Female CD-1 mice (Charles River Laboratory, Wilmington, MA, USA ) that were 

four-six weeks old were used for the determination of the drug compound’s pharmacokinetic 

properties. Each trial of the study was performed in triplicate. All animal experiments were 

performed in compliance with the University of Wisconsin−Milwaukee or Columbia University 

Institutional Animal Care and Use Committees (IACUC). Such a protocol stipulated that the 

animals were housed in conditions that are free of specific pathogens and under controlled 

standard environmental conditions such as humidity, temperature, and lighting (a 12 hr light and 

dark cycle). The lab animals also had free access to both food and water. Before the commencing 

of the experiment, the animals were allowed to adapt to their caging environment for a period of 
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~5 days, to ensure their comfort.  

 

2.3.2 Chemical Reagents  

 

  The solvents used were LC-MS grade and were used without further purification. 

Water, methanol (MeOH), and formic acid (HCOOH), were obtained from Fisher Scientific 

(Pittsburgh, PA, USA). The phosphate-buffered solution (PBS) and PEG400 were acquired from 

Fisher Scientific (Pittsburgh, PA, USA). Dimethyl sulfoxide DMSO was purchased from 

Cambridge Isotope Laboratories (Tewksbury, MA, USA). Herapin was purchased from Fisher 

Scientific (Pittsburgh, PA, USA). Spin-X HPLC filter tubes were purchased from Corning 

Incorporated (Corning, NY, USA). 384-well optical bottom plates and 96-well plates were 

purchased from Nunc (Roskilde, Denmark). Lastly, 2 mL glass MS autosampler vials were 

purchased from Shimadzu Corp. (Kyoto, Japan). For organs, the hand held LabGEN 7b Series 

Portable Homogenizer; 220 VAC was obtained from Cole-Palmer (Vernon Hills , IL, USA). 

CellTiter-Glo® Luminescent Cell Viability Assay was purchased from Promega (Madison, WI, 

USA). Matrigel® solution (protein mixture of type IV collagen, laminin, and heparan sulfate 

proteoglycan) was obtained from Corning Life Science (Corning, NY, USA).  

 

2.3.3 Sample Preparation  

 

Blood Plasma Pharmacokinetics 

  Female CD-1 mice (~20 -22 g) were dosed with either drug compound 1 or 2, at a 

concentration of 10 mg/kg, that was formulated in PBS/PEG400/DMSO (19:19:2) and 
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administered intraperitoneally (IP), with three mice to a group. After the drug administration and 

after the animal was placed under terminal CO2, blood was periodically drawn by cardiac 

puncture and collected into tubes containing 50 μL of herparin (1 mg/mL in water) to prevent 

coagulation. The blood samples were then stored in liquid nitrogen until analysis was performed.  

  To prepare the samples for LC-MS/MS analysis, the blood samples were thawed 

slowly on ice and vortexed for 10 s. Next, a 100 μL aliquot was taken and added to 300 μL cold 

MeOH that was premixed with 133.3 ng/mL of internal standard (IS). This mixture was then 

vortexed again for 30 s and centrifuged at 14,000 rpm for 5 min. The supernatant layer was then 

spin-filtered through Spin-X HPLC filter tubes. Finally 150 µL samples of the filtrate was 

transferred to a 2 mL glass autosampler vials for analysis. 

 

Liver Pharmacokinetics 

  Female CD-1 mice (~20 -22 g) were dosed with either drug compound 1 or 2, at a 

concentration of 10 mg/kg, that was formulated in PBS/PEG400/DMSO (19:19:2) and 

administered by IP, with three mice to a group. Samples were then treated as described above. 

  The samples were removed from the liquid nitrogen and thawed slowly on ice. The 

organ was then removed from the vial and placed on a tray, where it was rinsed with water to 

remove excess blood, gently dried, and placed in a new vial. The organ was then homogenized 

for 10 s on a setting that did not allow the homogenizer probe to get too hot. Careful rinsing of 

the homogenizer probe was done between each sample to minimize contamination.  

  In the next step, 300 μL of cold MeOH containing 133.3 ng/mL of IS was added to 

the homogenized organ. This mixture was then vortexed for 30 ss and centrifuged at 14,000 rpm 

for 5 min. The supernatant layer was then spin-filtered through Spin-X HPLC filter tubes and the 
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remaining contents of the vial were discarded. Finally, 150 µL samples of the filtrate were 

transferred to a 2 mL glass autosampler vials for analysis. 

 

Brain Pharmacokinetics 

   The preparation of the sample for the brain pharmacokinetics was the same as 

described for the Liver Pharmocokinetics section. Note that the brain was the harvested organ. 

 

2.3.4 Mobile Phases for LC-MS/MS  

 

Blood Plasma Pharmacokinetics, Liver Pharmacokinetics, Brain Pharmacokinetics 

  The mobile phase was composed of water with 0.1% HCOOH (v/v) (A) and MeOH 

(B). The gradient programing was the following: 35% B (0) → 35% MeOH (0.5 min) → 40% B 

(1.0 min) → hold at 40% B (1.5 min) → 90% MeOH (2.0 min) → hold at 90% B (2.5 min) → 

return to 35% B (3.0 min) → hold at 35% B (4.0 min). The column temperature was 40 °C. 

 

2.3.5 Instrumentation  

 

Blood Plasma Pharmacokinetic Analysis 

  Quantitative LC-MS/MS (Shimadzu 8040, Shimadzu, Kyoto, Japan), analysis 

employed to monitor product ion values, as depicted in Figure 2-1. 10 μL of the sample was 

injected into the LC–MS/MS (Shimadzu 8040, Shimadzu Corp., Kyoto, Japan) instrument 

equipped with ACQUITY CSH C18 column (2.1 mm × 50 mm, 1.7 µm particle size) (Waters 

 Corp, Milford, MA, USA. The MS was operated with the following method parameters: 
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  ● heat block temperature at 400 °C 

  ● drying gas flow rate of 15 L/min 

  ● desolvation line temperature of 250 °C 

  ● nebulizing gas flow rate of 2.0 L/min 

  ● interface voltages of 4.5 kV 

  ● positive ESI mode 

 The LC and column were operated with the following factors: 

  ● gradient elution at a flow rate of 0.6 mL/min 

  ● column oven temperature at 40 °C 

  ● 254 nm UV-VIS detection 

All experiments were conducted in triplicate with blank solvent injections in between each set of 

triplicate trials.  

  The following ion pair transitions are monitored in multiple reaction monitoring 

(MRM) mode for 1 (IS) and 2, respectively: m/z 275.90 > 164.10, m/z 275.90 > 213.10, m/z 

275.90 > 146.10 and  m/z and 262.10 > 150.10, m/z 262.10 > 199.10, m/z 262.10 > 132.10. 

Collision energy was optimized for each transition to obtain optimal sensitivity, via the 

instrument computer software.  

  The system control and data acquisition for the LC-MS/MS was performed on a 

Dell desktop computer (Round Rock, TX, USA) using LabSolutions software version 6.2 SP1 

(Shimadzu Corp., Kyoto, Japan). All experiments represent two independent days in triplicate.  

 

Liver Pharmacokinetic Analysis 

   The preparation of the sample for the liver pharmacokinetic analysis was the same 
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as described for the Blood Plasma Pharmacokinetic Analysis section.  

 

Brain Pharmacokinetic Analysis 

  The preparation of the sample for the brain pharmacokinetic analysis was the same 

as described for the Blood Plasma Pharmacokinetic Analysis section. 

 

2.4 Experimental Conditions of HPLC-UV-NMR Interfaced Scheme   

 

2.4.1 Chemical Reagents  

 

  The solvents were LC-MS grade and were used without further purification. Water, 

acetonitrile (MeCN), and formic acid (HCOOH), were obtained from Fisher Scientific 

(Pittsburgh, PA, USA). Chloroform-d was purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA, USA). Lastly, LC-MS grade toluene was purchased from Sigma-Aldrich (St. 

Louis, MO, USA). 

 

2.4.2 Mobile Phases used in Interfaced System 

 

   The mobile phase was composed of water with 0.1% HCOOH (v/v) (A) and MeCN 

(B). The gradient programing was the following: 0% MeCN B (0.0 min) → 15% MeCN (5.0 

min) → 30% MeCN B (3.0 min) → 45% MeCN B (3.0 min) → return to 0% MeCN (3.0 min) → 

hold at 0% MeCN B (6.0 min). 
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2.4.3 Sample Preparation 

 

  A 100 µM sample solution of toluene in chloroform-d was prepared from a 1 mM 

stock solution.  The sample was transferred to a 2 mL glass autosampler vial for analysis. Lastly, 

2 mL glass MS autosampler vials were purchased from (Shimadzu Corp., Kyoto, Japan). 

 

2.4.4 Instrumentation 

 

NMR  

  PicoSpin Model 45 and Model 80 benchtop NMR instruments (Thermo Fisher 

Scientific, Madison, WI) were used. A diagram of the components of the NMR instrument is 

found in Figure 2-4. The instrument was shimmed with LC-MS grade water twice weekly and 

water was injected in the instrument holding cell, during storage. All samples, including those 

for shimming, were injected via the inlet port, a diagram of which is depicted in Figure 2-5. 

Digital Valve Sequence Programmer 

  The Digital Valve Sequence Programmer (Model DVSP-4, Valco Instruments, 

Houston, TX, USA) (Figure 2-6) was wired as described in the manual (4). The depicting of the 

terminals and their wiring can be found in Figure 2-7a (4) with an image in Figure 2-7b. The six-

port, two -position valve (Figure 2-8) was connected to the DVSP (three wires — black, red, and 

green). Next, the black (INJECT) wire was corrected to the NO (“normally open") terminal of 

the A relay. The red (LOAD) wire was connected to the NO terminal of the C (“common”) relay. 

Lastly, the green (GROUND) wire was connected to the C terminal of the C relay. Times were 

set on the DVSP to synchronize the elution time of the analyze from the column, i.e., to 



66 

 

automatically switch the FIA from LOAD to INJECT.  

 

HPLC 

  A separation of the sample was performed using the Agilent 1100 HPLC (Santa 

Clara, CA, USA) (Figure 2-9) (5). The sample (10 μL) was injected into the HPLC instrument. 

The HPLC was operated with the following method parameters: 

  ● Agilent TC-C18 column (4.6 mm x 250  mm, 5 µm particle size) (Agilent 

  Technologies, Santa Clara, CA, USA) 

  ● gradient elution at a flow rate of 0.3 mL/min 

  ● column oven temperature at 40 °C 

  ● 190-700 nm UV-VIS detection 
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2.5 Figures and Tables: 

 

 

 

  Figure 2-1a. Schematic diagram of Shimadzu 8020 LC-MS/MS (adapted from Shimadzu) 

            (1).   

    Figure 2-1b. Schematic diagram of Shimadzu 8040 LC-MS/MS (1). 
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Figure 2-2a. Image of the corona 

discharge needle setting on the MS 

instrument. 1 = distance intervals 

(mm) for the adjustment of the 

corona discharge needle. 2 = the 

corona discharge needle sample 

inlet.  

Figure 2-2b. Image of the 

corona discharge needle (3) on 

the MS instrument. 

2 
1 

3 
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Figure 2-3. Schematic diagram of Shimadzu 8040 LC-MS/MS (Adapted from Shimadzu) (1). 
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Figure 2-4. Diagram of the picoSpin NMR components (3). 
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Figure 2-5. Diagram of the picoSpin NMR inlet port and components (3). 
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Figure 2-6. Schematic of the DVSP instrument (Adapted from Digital Valve Sequence 

Programmer Instruction Manual) (4). 
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Figure 2-7a. Diagram depicting 
the terminal strip connections  
used for the DVSP (Adapted from 

Digital Valve Sequence Programmer 

Instruction Manual) (4).  

Figure 2-7b. Image of the terminal 
strip connections used for the DVSP.  
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Figure 2-8. Diagram of the six-port valve that interfaced the HPLC and NMR.  
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Figure 2-9. Diagram of the Agilent 1100 HPLC instrument and components (5).  
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Table I. A comparison of the properties of picoSpin models 45 and 80 (Adapted from 

ThermoFisher Scientific) (3). 
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CHAPTER 3. RESULTS AND DISCUSSION  
 

 

 

3.1 Characterization of Novel Halogenated Alkylating Compounds by Liquid 

Chromatography Single Quadruple Mass Spectrometry 

 

3.1.1 Mass Spectrometry Ionization Sources – An Overview of the Theory & Practice 

 

  Although there are several types of ionization modes available to use with MS analysis,  

the two types of ionization sources available on the instrument models used were 

electrospray ionization (ESI) and atmospheric pressure ionization (APCI), in addition to a dual 

mode setting that allows the option of both ionization modes used simultaneously. A diagram of 

depicting compound property and ionization source compatibility is shown in Figure 3-1 (1).  

 

3.1.2 Method Optimization 

 

  Achieving ionization of halogenated compounds such as 1 and 2 requires the careful 

selection of ionization source as well as the optimization of the ionization source parameters, 

such as corona discharge needle distance from the corona needle. Typically, for ESI mode, it is 

favorable for ionization for the placement of the corona discharge needle to be further away from 

the cone while for APCI mode, it is more favorable to have the corona discharge needle closer to 

the cone. For dual ionization mode, a medium distance is best for a compromise between the two 

ionization settings, and though this allows for both ionization sources to be used simulatiously, 
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the signal produced by each respective ionization mode is weaker than if the ionization mode 

settings were optimized for individual ionization mode use.  

  Next the calculation for the gradient times (based on the column dimensions, column 

packing, and flow rate), is determined. This information is used to estimate the void volume and 

retention time to ensure that there is adequate time given for sample elution as well as column 

reequilibration. Figure 3-2a (2) defines the signals produced at critical time points of elution such 

as void time (tm) and retention time (tR) and Figure 3-2b shows these signals in an experimentally 

acquired chromatograph.  

 

3.1.3 Characterization of Novel Compounds  

      

                            

 

Naphthalene precursors 5 and 6 

  In order to qualitatively confirm a particular compound using MS analysis, it is important 

to determine the molecular mass/charge (m/z) as well as to predict the expected ionization and 

the peak ratio of isotopes. For example, in the case with 5, the expected isotope peak pattern for 

a Br is about a 1:1 peak ratio (of 79Br+:81Br+. For a compound with Br2, the pattern would be 

expected to be about a 1:2:1 ratio of 79,81Br+:79,79Br+:81,81Br+. Similarly, for chlorinated compound 

such as 6, the isotope peak pattern is about 3:1 of 35Cl and 37Cl. For a compound with Cl2, the 

pattern would be expected to be about a 9:6:1 ratio of 35,35Br+:35,37Br+:37,37Br+. 

Calcd. ([M+1]+): 138.0681   Calcd: ([M+1]+): 220.479             Calcd: ([M]+): 176.0280   Calcd. ([M+1]+): 292.01 

                     Found: ([M]+): 176.150 Found: ([M+1]+): 

292.10 
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  The signal of the first sample, 6, was detected on the PDA plot as seen on Figure 3-3a 

and the time point extracted on the MS spectrum (Figure 3-3b) based on the signal produced on 

the chromatogram. The results should have shown the ionization of the dimerized species at a 3:1 

ratio, however this was not the case as the compound did not ionize. Retrospectively, after the 

successful ionization of similar compounds analyzed later, the most likely issue with the 

experiment was the low concentration (250 µM) of the compound in the injected sample, which 

may not have been sufficiently concentrated to produce a signal by MS analysis. Increasing the 

concentration to 1 mM and in addition, using dual or APCI mode of ionization with optimized 

corona discharge needle positioning would likely have resolved the ionization issue with 6. 

  Upon making the described change in ionization mode (from ESI to APCI) and therefore 

also the corona discharge needle positioning (optimized to 10 mm), 6 was successfully ionized 

using simple flow injection (no column) and whist retaining the concentration of 250 µM used 

previously. In this manner, 6 was successfully detected in the MS spectrum Figure 3-3c (mass 

region of interest). After the ionization of 6 was established by flow injection, a column gradient 

method was executed once again confirming the compound as seen in the PDA plot and MS 

spectrum (Figures 3-4a and b, respectively).  

 As described above, for APCI analysis, the corona needle position was optimized to the 

10 mm through a series of runs of the sample compound at various corona discharge needle 

positions. Spectra of corona needle positions by intervals of 1 mm are depicted in Figure 3-5 a-i. 

The setting of 10 mm produced the strongest and most abundant signal for the isotopic ratio of 

interest, under APCI mode, as seen from Figure 3-6, which summaries the signal intensity vs. 

corona discharge needle positioning.  

  Currently compounds 3 and 4, which contain bromines, remain unsuccessfully analyzed 
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as mass spectrometry analysis was not successful with the brominated compound 5. Future work 

can continue with instrumental conditions optimized for the ionization of such brominated 

naphthalene compounds and hence 3, 4, and 5.  

       

Methoxybenzene Analogues 7, 8, 9, and 10

 

 

  Figure 3-7 a and b are the PDA plot and MS spectrum, respectively, of the uniodinated 10  

starting material. Figure 3-8 a and b on the other hand are the PDA plot and MS spectrum 

respectively of 9. Both the uniodinated and iodinated compounds ionize in the positive mode and 

lose an OH- as evidence from the m/z of 121 for the uniodinated 9 and 247 for the iodinated 9. 

Note that the I isotope peak produces a single peak and thus there is no peak ratio to evaluate. 

Lastly, both compounds ionized in APCI mode with the corona discharge needle optimized to 5 

mm.  

  Compounds 7 and 8 were analyzed by first achieving a signal on the PDA spectrum as 

seen in Figures 3-9a. This was completed by increasing the concentration of the sample injected 

to 1.0 mM. Relaying this to the LC chromatogram and analyzing the MS spectrum (Figure 3-9 b) 

at about 2.9 min produced a 3:1 abundant peaks (76%:24%) for Cl at m/z = 282 and 284. The 

spectrum was also confirmed as it matched the predicted spectrum for the compound as seen in 

  7 
  8                                        9                                        10 

Calcd: ([M+1]+): 138.0681      Calcd: ([M+]: 263.9637  Calcd: ([M+1]+): 281.9308   Calcd: ([M]+): 292.0120 

    Found: ([M-OH]+): 247.00      Found: ([M+1]+): 282.00   Found: ([M]+): 292.10 
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Figure 3-10 (3).  

  Lastly is the analysis of 10 and an unknown sample. Attempting ESI mode as expected 

did not produce ionization. Two changes were made to remedy this issue. First the sample was 

dissolved in MeOH rather than ACN (and the mobile phase was also changed to MeOH), to 

better assist with ionization. Initially MeOH was avoided as the sample solvent due to potential 

solubility issues as compared to ACN however it was determined compatible. Secondly, 

switching the ionization mode to dual ESI/APCI modes and optimizing the corona needle 

position to be at 10 mm produced successful ionization of both compounds in the positive mode 

(Figure 3-11 a and b). The N on 10 (m/z = 291) is proposed to be protonated. Based on the 

structure of 10, the unknown sample was determined to be a byproduct of the drug compound 

with an m/z = 221. Again, the I has a single abundant isotope (Figure 3-12 a and b).  

        

 

3.2 Analysis of In Vitro Microsomal Stability Assay  

 

3.2.1 Method Optimization  

 

                Found: ([M-1]-): 221.16       
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LC Gradient 

  First the transition ions are monitored in MRM mode for positive and negative ionization 

events (Figure 3-13 a and b) and the collision energy (CE) for these transition ions (Figure 3-14 a 

and b) in total and for positive mode, for 2 as determined by LabSolutions software. In addition, 

various LC gradient methods were attempted in order to balance both length of LC run as well as 

achieve sufficient separation and peak shape. These changes were established based on the 

determination of the void volume, which was calculated to be ~0.2 min (although the exact 

volume is difficult to calculate because the packing space is unknown). The spectrum for a blank 

ACN sample is depicted in Figure 3-3.This can be seen in Figures 3-(16-18) a-c with an 

improvement in peak resolution from gradient programming method 1 to 2 by amending the 

method to have a longer hold time and then a reduction in run time from 9 min to 4 min in 

gradient programming method 2 to 3 by delaying the gradient. Attempts shorter than 4 min 

resulted in a reduction in peak resolution so it was determined that method 3 was the optimized 

gradient programming method.  

 

LC Peak Shape  

  As MeOH may cause adducts to form, seen in Figure 3-17a as the cause of tailing in the 

1, 2,
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spectra presented. Thus switched to an ACN as solvent system, while the sample solvent 

remained MeOH to assist with solubility, improved the peak shape distortion, this improvement 

seen in Figure 3-18 a and b. Also, peak shape distortions also appeared once again, as seen in 

Figure 3-19a, depicting the analysis of a 5 nM concentration of IS and 500 nM concentration of 6 

in pure ACN. To resolve these peak, it was determined to be caused by solvent effects in the 

sample, therefore water was added to minimize these solvent effects. A clear improvement can 

be seen when the water:MeOH ratio of the same sample in a 1:3 water:MeOH, as seen in Figure 

3-19b. However, one consideration worth noting for such a change is the stability of the 

compound in water. It was determined from previous studies by other investigators that 2 is not 

stable in water due to hydrolyzation, and so to prevent this, the samples were prepared the day of 

analysis.  

 

Calibration Curve  

  For the calibration curve, initially standard samples were prepared of 5, 50, 500, 1000, 

and 5000 nM CP + 500 nM IS concentration, to encompass the calibration curve concentration 

requirements for both the microsomal stability assay as well as the pharmacokinetic study to 

come later. Such intervals of standard concentration to IS concentration proved to be too large 

and as a result the IS drowned the signal of the lower concentration CP, as seen in in the poor 

calibration curve fit in Figure 3-20 a-c. For this reason, it was decided to create two separate 

calibration curves, with the microsomal stability assay calibration curve using the concentrations 

of 1, 10, 50, 100, and 200 nM CP + 10 nM IS, the integration and manual calculations displayed 

for three trials of each standard concentration and the corresponding calculations as acquired 

from LabSolutions software in Figure 3-21a and the calibration curves displayed in Figure 3-21 
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b-d. The manual calculations that were completed confirmed the validity and accuracy of the 

calculations acquired from LabSolutions software for this particular calibration curve.  

 

Concentrations/Injection Volume 

 Tailing was also present in the spectra and caused by injection volume (concentration). 

To amend this issue, the sample injection volume was increased from 20 µL to 50 µL, using the 

optimized sample preparation mentioned previously at concentrations of both 125 nM and 5 nM 

of CP. The peak shape improved from this concentration change as evidence in Figure 3-22 and 

24, a-b. Most likely such tailing is due to poor signal resolution as a factor of sensitivity.   

 

3.2.2 Calculations for the Determination of Drug Stability - An Overview of the Theory & 

Practice 

 

 

   The peak area ratios of the IS and test compound were calculated for every time point and 

the natural log of the ratio was then calculated and plotted as a function of time in order to 

determine the linear slope (k). The metabolic rate (k*C0/C), half-life (0.693/k), and internal 

clearance (V*k) were also calculated, where k is the slope, C0 is the initial concentration of test 

compound, C is the concentration of microsomes, and V is the volume of incubation (μL) per 

microsomal protein (mg). As the experiments were performed in triplicate, the values for each 

time point were averaged prior to the calculation. 

  For first-order kinetics, the slope eventually decreases to zero and the length of the half-

life is constant, independent of concentration. The rate law for first-order kinetics is defined as  

       [A] = [A]0e-kt  
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and rearranged to solve for the half-life (t1/2) = ln/2 = 0.693/k. 

  Figure 3-24 (4) shows a graphical distinction between each half-life for first-order 

kinetics and in Figure 3-25 a and b, the experimental data for the stability assay is correlated to 

each respective half-life, which from the data, it can be determined that the t1/2 exp for human 

microsomes was 77.06 min and the t1/2 ln was 75.34 min. Meanwhile the t1/2 exp for mouse 

microsomes was 33.00 min and the t1/2 ln was 33.32 min.  

 

3.3 Analysis of In Vivo Pharmacokinetic Studies  

 

3.3.1 An Overview of the Theory & Practice 

 

  To better evaluate the stability and clearance of a drug in vitro and in vivo, several 

experiments were conducted to compare the parameters of 1 to those of 2. Figure 3-26 a and b 

show the results of a pharmacokinetic study on plasma compound concentration (ng/mL) vs. 

time (min) for 1 and 2, finding that 2 had about twice the length of half-life as that of 1.These 

experiments for 1 were completed at an earlier time, therefore the analysis presented in this 

evaluation are primarily regarding 2, however previous data is used in this presentation in a 

comparative manner. Several organs of the mouse model were harvested to better understand the 

distribution and clearance of the drug compound 2. Although at this time not all information is 

conclusive, the data that has been established is promising.  

 

3.3.2 Blood Plasma Sample Analysis  
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  Figure 3-27 a and b plot the pharmacokinetic results for blood plasma in mice, and as 

shown with the two experimental trials, there is good reproducibility and in addition both 

compounds (1 or 2) were readily detected in plasma with a tmax value of ~3 min. Although both 

compounds showed rapid drug clearance, the introduction of a CH3 in 2 greatly increased the 

duration time of the drug in the plasma with a t1/2 of 8.84 min, which is almost two times that of 

1 (t1/2 = 4.92 min). The rate of elimination for 1 in the blood is considered fast (at a rate of Erate = 

0.141 min−1), while the rate of elimination of 2 takes about twice as long (Erate = 0.078 min−1). 2 

showed an area under the curve (AUC) of 16253 ng•min/mL, which is significantly higher than 

that of 1 (10883 ng•min/mL). These conclusions can be seen from Figures 31a and 31b.  

 

3.3.3 Liver Sample Analysis  

 

  Figure 3-28 shows the pharmacokinetics results for liver, plotting the compound 

concentration (ng/mL) vs. time (min). The results show excellent reproducibility as seen by the 

minimal error bars (not including the first time point which is difficult to experimentally 

administer precisely. The decay also closely follows that of the plasma pharmacokinetic data, so 

again confirming reproducibility. 

 

3.3.4 Brain Sample Analysis  

 

  Figure 3-29 shows the pharmacokinetics results for brain, plotting the compound 

concentration (ng/mL) vs. time (min). Interestingly, as there is a relatively high concentration of 

the CP in a non-targeted organ such as in this case, the brain, this brings into consideration 
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various adverse effects that may be a negative factor of the CP crossing the blood brain barrier 

(BBB). On the other hand, the ability of the CP to penetrate the BBB may bring rise to future 

studies on cancers that target the brain such as glioblastoma. Such a study could include similar 

stability and pharmacokinetic studies as well as the possibility for tissue imaging through MS-

imaging methods such as MALDI (matrix assisted laser desorption ionization) imaging to better 

understand the drug distribution in the organ as well as to apply quantifiable measurements to 

these areas of drug distribution within the tissue sample.  

 

3.4 Analysis of HPLC-UV-NMR Interfacing Scheme   

 

3.4.1 HPLC, UV, and NMR - An Overview of the Theory and Practice 

 

  Interfacing HPLC to NMR is a powerful combination, particularly for pharmaceutical 

applications. First, it condenses three different techniques into a single, automated system that 

requires minimal sample preparation. Furthermore, detectors such as MS can be incorporated 

into the system because the NMR measurement is non-destructive. Many pharmaceutical 

approaches that traditionally rely on LC-MS analysis are not adequate for highly reactive or 

volatile metabolites. Moreover, the interfacing system is complimentary and provides structural 

information that when assessed together, one method alone could not achieve (5).  

 

3.4.2 NMR Component Optimization 
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 To allow for the optimization of each component of the system, spectra can be verified 

after each interfacing instrument. In the case of the NMR instrument, it was shimmed once a 

week at a minimum, using water (Figure 3-30). Figure 3-31 a and b are spectra of toluene (10 

mM) in deuterated chloroform injected into the instrument after 64 and 512 scans, respectively. 

As expected, it can be seen from this scan study that more scans increase the S/N ratio. To 

confirm the acquired spectra, the shift values were compared to a table of published values. In 

Table I (3), shift values can be found for H-NMR for various solvents. In Figure 3-32, an 

impurity peak found in the spectrum (512 scans) is noted toluene in chloroform (10 mM). Based 

on Table I, it can be speculated that the peak defined in Figure 3-32 under the right arrow is most 

likely water (at a 4 ppm shift) and dichloromethane (at a 5.30 ppm shift). Lastly, the integrated 

spectrum (512 scans) of toluene (10 mM) in chloroform can be found in Figure 3-33 and matches 

the expected H ratio of 5:3 for CH3:C6H5.  

 

3.4.3 Interfacing LC-NMR: Flow Injection Manifold Design   

 

  Although there are several methods of coupling the various instruments, LC-NMR 

hyphenation typically includes capillary tubing, and a switching value interface (manual or 

automated). In addition, the interface may be a flow of the sample that is continuous, “on-flow,” 

or “(direct) stop-flow” or the more advantageous “loop storage/loop transfer.” The details of the 

various flow methods can be found in the Introduction chapter. And as mentioned previously, 

this work incorporates “on-flow,” “stop-flow,” a “loop transfer” in that the sample is captured 

the eluted from the NMR, the spectra is acquired in a static state while in the NMR cell, and the 
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remaining flow is diverted to waste (6). Such a LC-NMR system can allow for the analysis of a 

complex drug sample. Due to the efficient separation from the LC component, the NMR 

instrument can provide interference free data. In addition, NMR is non-destructive and it can also 

detect molecules with low molecular weights. NMR can provide both qualitative as well as 

quantitative information (as the spectral peaks can be integrated to the solvent shift) (7-8).  

  Adding an addition layer and coupling LC to both NMR and MS, whether in-series or in-

parallel, offers the advantage of two complimentary and powerful tools in one system. However 

although there are significant advantages of LC-NMR-MS, one of the major concerns with such 

a hyphenation is the potential solvent suppression from the NMR signal if non-deuterated 

solvents are utilized or if this suppression is no resolve. Additionally, NMR is far less sensitive 

than the MS detector and also cannot detect NMR silent functional groups. Therefore, much 

research has occurred in the past several decades to interface NMR and MS and establish 

experimental conditions compatible to run using both detectors.  

  In recent times, groups have utilized LC-NMR-MS for the determination of endogenous 

drug metabolites, multiple generations of ion fragments, determination of the parent drug, and 

many other applications (8). As described in detail in the Introduction section, nearly all the 

historical improvements of LC-NMR were aimed at improvements to parameters such as 

sensitivity. This was first done by way of component design (thin-walled Teflon tubes and 

inserts) (1970s and 1980s) (9-10). From this point, attention was focused on column 

improvements (1990s -2000s) to amplify the analyte signal (11-12). In addition, flow cells were 

optimized to be smaller and be enabled for temperature control. Finally continuous flow 

development and throughput was fine-tuned (13). 

  Although data for the interfaced LC-NMR system is not presented at this time, the 
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previous portions have described the initial steps of optimization for the concept. In addition, 

further work can be done on the optimization of the HPLC-UV detector, which requires solvent 

gradient programming as presented in previous portions of this work, and timing studies to 

ensure that the sample is held in the NMR sample holding coil at the correct time, shortly after 

elution from the column. Furthermore, along with NMR, other detectors such as MS can be 

interfaced both in parallel by varying the widths of the lines to accommodate for varied sample 

volume required due to varying instrument sensitivity (14).  

 LC-NMR-MS is beneficial in that allows significant tools that not only expands the 

analysis of the sample, but also allows for high throughput analysis. The main benefit of 

hyphenating LC-MS is to extrapolatory information such as the sensitivity that MS offers and the  

structural information from both instrumental methods in a single experiment. As mentioned in 

the Introduction chapter, there are many varieties of flow for LC-NMR-MS hyphenation, 

including splitting the flow and coupling in-series preconcentration methods (SPE) and in-

parallel analysis (LC-NMR coupled to UV, MS). In general, hyphenation presents issues such as 

ascribing results to a detector (if done in-series), pressure differences between detectors, and 

synchronization. 
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3.5 Figures and Tables  

 

 

  

Figure 3-1. A diagram depicting compatible ionization sources for particular compound 

characteristics such as size molecular mass and polarity (1).  
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Figure 3-2a: A labeled chromatogram defining the signals produced at critical time points (tm) 

and (tR) (2).   

 

 

 

 

 

 
 

 

Figure 3-2b. An experimentally acquired chromatogram that labels the terms (tm) and (tR) as 

noted above.  
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Figure 3-3a. PDA plot of compound 6 using a column, under APCI mode.  

 

 

 
 

Figure 3-3b. MS spectrum of compound 6 by flow injection, under APCI mode.  
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Figure 3-3c. MS spectrum region of interest for compound 6, depicting the Cl isotopic peaks of 

m/z = 176 and 178, at a 3:1 ratio, under APCI mode. 
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Figure 3-4a. PDA plot of compound 6 using a column, under APCI mode.  

 

 

Figure 3-4b. MS spectrum of compound 6 by flow injection, under APCI mode. 
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Figure 3-4c. MS spectrum region of interest for compound 6, depicting the Cl isotopic peaks of 

m/z = 176 and 178, at a 3:1 ratio, under APCI mode. 
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Figure 3-5a. Mass spectrum chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 2 mm. 
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Figure 3-5b. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 3 mm. 
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Figure 3-5c. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 4 mm. 
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Figure 3-5d. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 5 mm. 
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Figure 3-5e. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 6 mm. 
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Figure 3-5f. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 7 mm. 
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Figure 3-5g. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 8 mm. 
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Figure 3-5h. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 9 mm. 
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Figure 3-5i. Flow injection chromatograph and MS spectrum in APCI mode with corona 

discharge needle set to 10 mm. 
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Figure 3-6. A summary of the relative signals produced at different corona discharge needle 

settings in APCI mode for compound 6. 
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Figure 3-7a. PDA plot of uniodinated compound 7.  

 

 

 

 
 

Figure 3-7b. An MS spectrum of uniodinated compound 7, in APCI mode with the corona 

discharge needle set to 5 mm.  
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Figure 3-8a. PDA plot of iodinated compound 8. 
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Figure 3-8b. An MS spectrum of iodinated compound 8, in APCI mode with the corona 

discharge needle set to 5 mm.  
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Figure 3-9a. A chromatograph of compound 8.  

 

 

 

 
 

Figure 3-9b. An MS spectrum of compound 9, in APCI mode with the corona discharge needle 

set to 10 mm.  
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Figure 3-10. An expected MS spectrum, with emphasis on the isotopic peak ratio for compound 

9 (3).  
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Figure 3-11a. A chromatograph of compound 10. 

 

 

 
 

 
 

Figure 3-11b. An MS spectrum of compound 10, in dual ionization mode with the corona 

discharge needle set to 10 mm. 
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Figure 3-12a. A chromatograph of unknown compound. 

 

 

 

 
 

Figure 3-12b. An MS spectrum of unknown compound, in dual ionization mode with the corona 

discharge needle set to 10 mm. 
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Figure 3-13a. MRM spectrum for compound 2, in positive mode.  

 

 

 

 

 

Figure 3-13b. MRM spectrum for compound 2, in negative mode.  
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Figure 3-14a. Total CE optimization for compound 2 under MRM. 

 

 

 

 

 

 

Figure 3-14b. CE optimization for compound 2 under MRM, in positive mode.  
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Figure 3-15a. Chromatograph of first attempt at gradient programming, with an 8 min column 

run.  

 

 
 

Figure 3-15b. The gradient programing time events for the first method for gradient 

programming, with an 8 min column run. 

 

 

 

Figure 3-15c. Gradient conditions for the first method for gradient programming.  
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Figure 3-16a. Chromatograph of second method at gradient programming, with a 9 min column 

run. 

 

 
 

Figure 3-16b. The gradient programing time events for the first method for gradient 

programming, with a 9 min column run. 

 

 
 

Figure 3-16c. Gradient conditions for the second method for gradient programming. 
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Figure 3-17a. Chromatograph of third method at gradient programming, with a 4 min column 

run. 

 
 

 
 

Figure 3-17b. The gradient programing time events for the third method for gradient 

programming, with a 9 min column run. 

 

 
 

Figure 3-17c. Gradient conditions for the third method for gradient programming. 



120 

 

 

  

 

 

 

 

 

 

Figure 3-18a. Chromatograph depicting peaks detected using a MeOH organic mobile phase.  

 

 

 

 

 

 

 

 

Figure 3-18b. Chromatograph depicting peaks detected after switching to ACN as the organic 

mobile phase. 
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Figure 3-19a. 5 nM IS + 500 nM IS compound prepared in MeOH, no water.             

 

 

 

 

 

Figure 3-19b. 5 nM IS + 500 nM compound prepared in 1:3 water:MeOH.              
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Figure 3-20a. Precision of the IS concentration added to each standard for the microsomal 

stability assay calibration curve.  

 

 

 

 

 

 

 

 

 

Figure 3-20b. A calibration curve with compound 2 and no IS.   

       

 

 

 

 

 

 

 

 

 

 

Figure 3-20c. A calibration curve with compound 2 and 10 nM IS.  

 

 

 



123 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-21a. The microsomal stability assay calibration curve standard concentrations and 

respective concentrations for three trials, mean and standard deviation as determined by manual 

calculation by comparison of area integration and the calculations as acquired from LabSolutions 

software.  

 

 

 

Figure 3-21b. Precision of the IS concentration added to each standard for the microsomal 

stability assay calibration curve as established by using the amended standard concentrations.  

 



124 

 

 

 

Figure 3-21c. A microsomal stability study calibration curve with the amended standard 

concentrations with compound 2 and no IS.        

 

  

 

Figure 3-21d. A microsomal stability study calibration curve with the amended standard  

concentrations with compound 2 and 10 nM IS.        
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Figure 3-22a. 125 nM compound 2 + IS with an injection volume of 50 uL.  

 

 

 

 

 

 

 
 

Figure 3-22b. 5 nM compound 2 + IS with an injection volume of 50 uL. 
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Figure 3-23a. 125 nM compound 2 + IS with an injection volume of 20 uL.  

 

 

 

 

 

 

 

 

Figure 3-23b. 5 nM compound 2 + IS with an injection volume of 20 uL. 
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Figure 3-24. A depiction of graphical half-life determination for first-order kinetics (4).  
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Figure 3-25a. Microsomal stability assay for compound 2 results depicting concentration (ppb) 

at various time points min, for human and mouse microsomes.  

 

 

 
 

 

Figure 3-25b. Microsomal stability assay for compound 2 results depicting percentage ln 

concentration ratio at various time points min, for human and mouse microsomes. 
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Figure 3-26a and b. Graph of pharmacokinetic study on plasma compound concentration 

(ng/mL) vs. time (min) for compound 1 (A.) and compound 2 (B).  
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Figure 3-27a. Graph of pharmacokinetic study on plasma compound concentration (ng/mL) vs. 

time (min), experiment 1.  
 

 
 
Figure 3-27b. Graph of pharmacokinetic study on plasma compound concentration (ng/mL) vs. 

time (min), experiment 2. 
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Figure 3-28. Graph of pharmacokinetic study on liver compound concentration (ng/mL) vs. time 

(min). 
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Figure 3-29. Graph of pharmacokinetic study on brain compound concentration (ng/mL) vs. 

time (min). 
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Figure 3-30. An NMR spectrum of a water peak injected into the NMR instrument and analyzed 

at 62 scans.  
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Figure 3-31a. An NMR spectrum of a 10 mM sample of toluene in deuterated chloroform 

injected into the NMR instrument and analyzed at 62 scans. 

 

 
 

 

Figure 3-31b. An NMR spectrum of a 10 mM sample of toluene injected into the NMR 

instrument and analyzed at 512 scans. 
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Figure 3-32. An NMR spectrum (512 scans) of toluene (10 mM) in chloroform with two 

impurities defined.  
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Figure 3-33. An integrated NMR spectrum (512 cans) of chloroform (10 mM) in toluene.  
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Table I. A table of H-NMR shifts for various solvents (3). 

 
 

 
 

 

 

 



138 

 

3.6 References 

1.   Introduction to LC-MS. 

https://www.shimadzu.com/an/hplc/support/lib/lctalk/47/47intro.html (accessed 4AD). 

2.   Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of instrumental analysis; 

Cengage Learning: Boston, MA, 2018. 

3.   https://www.sisweb.com/mstools.htm (accessed 4AD). 

4.   Libretexts. Half-lives. 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps 

Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Kinetics/Reaction_Rates/Half-

lives_and_Pharmacokinetics (accessed 4AD). 

5.   Scarfe, G. B.; Wilson, I. D.; Spraul, M.; Hofmann, M.; Braumann, U.; Lindon, J. C.; 

Nicholson, J. K. Application of directly coupled high-performance liquid chromatography-

nuclear magnetic resonance-mass spectrometry to the detection and characterization of the 

metabolites of 2-bromo-4-(trifluoromethyl)aniline in rat urine. Anal. Commun. 1997, 34, 37-39. 

6.   Elipe, M. V. S. LC-NMR and other hyphenated NMR techniques overview and 

applications; Wiley: Hoboken, NJ, 2012. 

7.   Corcoran, O.; Spraul, M. LC–NMR–MS in Drug Discovery. Drug Discovery 

Today 2003, 8 (14), 624–631. 

8.   Down, S. A Primer on LC/NMR/MS. 

https://www.spectroscopynow.com/details/education/sepspec10145education/A-Primer 

on-LCNMRMS.html?1,1=& (accessed Nov 11, 2019). 

9.   Tabei, K.; Siegel, M. M. 47th ASMS Conference on Mass Spectrometry, 1999, 

Dallas, TX, June 13-17, 1999, NO 234. 

10.   Watanabe, N.; Niki, E. Direct-Coupling of FT-NMR to High Performance Liquid 

Chromatography, Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 1978, 54 194–199. 

11.   Haw, J.; Glass, T.; Dorn, H. Continuous Flow High Field Nuclear Magnetic 

Resonance Detector for Liquid Chromatographic Analysis of Fuel Samples. Analytical 

Chemistry 1981, 53 (14), 2327–2332. 

12.   Laude, D.; Wilkins, C. Direct-Linked Analytical Scale High-Performance Liquid 

Chromatography/Nuclear Magnetic Resonance Spectrometry. Analytical 

Chemistry 1984, 56 (13), 2471–2475. 

13.   Subramanian, R.; Kelley, W. P.; Floyd, P. D.; Tan, Z. J.; Webb, A. G.; Sweedler, J. 

V. A Microcoil NMR Probe for Coupling Microscale HPLC with On-Line NMR Spectroscopy, 

Anal. Chem. 1999, 71, 5335–5339. 

14.   Andes, D.; Marchillo, K.; Stamstad, T.; Conklin, R. In Vivo Pharmacokinetics and 

Pharmacodynamics of a New Triazole, Voriconazole, in a Murine Candidiasis 

Model. Antimicrobial Agents and Chemotherapy 2003, 47 (10), 3165–3169. 

 

 

 

 

 

 

 

 



139 

 

CHAPTER 4. CONCLUSION 

 

  There were several objectives of this thesis. The first was to successfully ionize the 

halogenated compounds in order to characterize them by mass spectrometry (MS) (single 

quadrupole). This allows for the compound to be confirmed during the synthesis process and 

allows for the quantification of the compound in later stages of research and development. The 

second goal included the quantification of a drug compound which included an animal study, 

assay development, and finally the optimization of MS/MS instrument parameters (triple 

quadrupole).  

   To achieve efficient ionization of the halogenated alkylating agents, electrospray 

ionization (ESI), atmospheric pressure chemical ionization (APCI), and dual mode ionization 

combining the two ionization modes (DUIS) were applied. It was determined that efficient 

ionization and highest signal intensity were obtained for the compounds when APCI mode was 

set at an optimized corona needle position of 10 mm. This work suggested that these halogenated 

alkylating agents could be best analyzed using APCI ionization mode and at the optimized 

instrumental conditions. Finally, we successfully analyzed compounds 3-10 by mass 

spectrometry.  

  For the pharmacokinetic study, we first optimized the instrument parameters for signal 

intensity and established calibration curve for the proceeding studies. Then, we carried out an in-

vitro stability assay where the samples were quantitatively characterized by MS/MS. Compound 

2 showed a t1/2 of 77.06 min in the presence of human microsomes and a t1/2 of 33.00 min in the 

presence of mouse microsomes.  
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         Followed by microsome stability study, we determined pharmacokinetic parameters of 

compound 2. The mice were injected with compound 2 at different time point, sacrificed, and 

their blood, liver, and brain organs harvested. The organs were then homogenized, samples 

processed, and quantified by MS/MS. Our data showed that introduction of a CH3 group (2) 

greatly increased the duration time of the drug in the plasma with a t1/2 of 8.84 min, which is 

almost two times that of the parent compound 1 (t1/2 = 4.92 min). The rate of elimination for 1 

(Erate = 0.141 min−1) in the blood is  faster  that of 2 (Erate = 0.078 min−1). Compound 2 showed an 

area under the curve (AUC) of 16253 ng•min/mL, which is significantly higher than that of 1 

(10883 ng•min/mL). The half-life of compound 2 in mice liver and brain is 17.769 min and 

13.86 min, respectively.  

  Future work includes modification of the parent compound 2 by introducing more 

lipophilic substituents to further improve the in vivo duration time and characterization of 

modified compounds with MS, including pharmacokinetic assays and quantifications. The 

pharmacokinetic data of compound 2 indicated a relatively high concentration of the compound 

in  mice brain, which suggested that 2 is able to cross the blood brain barrier (BBB). Thus, 2 can 

be a potential candidate for further research towards brain cancers, including glioblastoma. We 

would also consider tissue imaging through MS-imaging methods such as MALDI (matrix 

assisted laser desorption ionization) imaging to better understand the drug distribution in 

different organs as well as to apply quantifiable measurements to determine drug distribution 

within different tissue samples.  
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