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ABSTRACT 

The Distinct Expressions of Integrins αDβ2 and αMβ2 Differently Regulate Macrophage Migration 

in 3D Matrix in vitro and in Tissue during Inflammation 

by 

Kui Cui 

Chronic inflammation is an essential mechanism during the development of cardiovascular and 

metabolic diseases. The outcome of diseases depends on the balance between the migration and 

accumulation of macrophages in damaged tissues. Macrophage motility is highly regulated by 

adhesive receptors, integrins. Namely, intermediate expression of integrin supports macrophage 

migration, while a high integrin density inhibits it. Our studies are focused on evaluation of the 

contribution of related integrins αDβ2 and αMβ2 to macrophage migration and development of 

chronic inflammation. 

We found that integrin αDβ2 is upregulated on M1-macrophages in vitro and pro-inflammatory 

macrophages in atherosclerotic lesions. Interestingly, the expression of ligand-sharing integrin 

αMβ2 remains unaltered. Using in vitro three-dimensional migration and in vivo tracking of 

adoptively-transferred fluorescently-labeled macrophages during the resolution of inflammation, 

we found that robust adhesion of M1-activated macrophages translates to weak 3D migration, 

which depends on the high expression of αDβ2, since αD-deficiency decreases M1-macrophage 

adhesion and improves macrophage migration. In contrast, αD- and αM-knockouts decrease M2-

macrophages migration, demonstrating that moderate integrin expression supports cell motility.  

In model of high fat diet-induced diabetes, αD-deficiency prevents the retention of inflammatory 

macrophages in adipose tissue and improves metabolic parameters, while αM-deficiency does not 

affect macrophage accumulation.   

We detected a new ligand for integrins αMβ2 and αDβ2, 2-(ω-carboxyethyl)pyrrole (CEP). CEP is 

preferentially generated during inflammation-mediated oxidation and forms adduct with ECM 

proteins generating novel substrate for αMβ2 and αDβ2. Targeting CEP-dependent macrophage 

adhesion can be a useful approach to control αDβ2-mediated chronic inflammation. 

Using specially designed peptide library, protein-protein interaction and adhesion assay, we 

identified a peptide, called P5, which significantly inhibited αD-CEP binding. P5 peptide 

regulates macrophage migration in three-dimensional matrix in vitro and reduced macrophage 
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accumulation during thioglycollate-induced peritoneal inflammation. Effect of P5 is completely 

eliminated in αD-deficient macrophages. Tracking of adoptively-transferred fluorescently-labeled 

WT and αD
-/- monocytes in diabetic mice confirmed that αD-dependent inhibition of macrophage 

accumulation in adipose tissue is mediated by P5 peptide.  

 

Taken together, these results demonstrate the importance of αDβ2 and αDβ2-CEP interaction for 

the accumulation of infiltrating macrophages during inflammation and propose P5 peptide as a 

potential inhibitor of atherogenesis and diabetes.  
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CHAPTER 1 

 

INTRODUCTION 

 

Leukocyte Migration 

 

Cell migration is a basic and essential process in cell growth and development. It is also a 

ubiquitous form of movement in living cells. Leukocyte migration is one of the most essential 

types of cell migration in immune response and pathological conditions. Embryonic development 

(Reig et al. 2014), angiogenesis (Graupera et al. 2008; Kurosaka and Kashina 2008), wound 

healing (Qin et al. 2019), immune response(Luster et al. 2005), inflammation (Chavakis 2012), 

atherosclerosis (Koelwyn et al. 2018; Wang et al. 2018), and cancer metastasis (Yamaguchi et al. 

2005) all require the orchestrated leukocyte migration (including monocytes, neutrophils and 

lymphocytes) to the injury, infected and stressful sites in a proper time with a proper direction. 

Aurora and co-authors found macrophage are requisite for neonatal heart regeneration (Aurora et 

al. 2014). The failure of leukocyte migration to appropriate locations or removal of retained cells 

in specific regions can result in serious consequences, such as chronic inflammation, 

atherosclerotic diseases (Zernecke et al. 2008) and tumor invasion (Jacquemet et al. 2015). 

Generally, eukaryotic cell movements consist of different migration modes, such as 

mesenchymal, amoeboid or collective migration, which are much more complicated than that of 

prokaryotic organisms (Verollet et al. 2011). To decipher the mechanism of leukocyte migration 

through various tissues and leukocyte retention within the inflamed sites may lead to potentially 

therapeutic strategies for preventing immune diseases and invasive signals.  

 

Cell Migration in 2D and 3D Matrix 

 The ability of leukocytes to infiltrate through tissues in response to chemoattractant 

stimuli is of considerable importance to fulfill their various functions such as immune cell 

development, immune surveillance and effector function. Appropriate in vitro models are one of 

the prerequisite steps to reveal the mechanisms of cell migration. Diverse models of cell 

migration have been performed in 2D and 3D environments during the last three decades (Even-
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Ram and Yamada 2005; Jacquemet et al. 2015; Zhong et al. 2012). Typically, on 2D surfaces, 

cells migrate based on lamellipodia. This circular process mainly consists of the formation of 

large protrusions at the leading edge, attachment to the matrix context, forward flow of cytosol, 

and retraction of the rear of the cell (Meyer et al. 2012; Wiesner et al. 2014) (Fig.1-1A). 

However, in vivo, cell migration primarily requires complex interactions among extracellular 

matrix (ECM), integrins and intracellular signaling molecules. Cells display dramatically 

different migration strategies in 3D matrices (Fig.1-1B). For instance, macrophages, dendritic 

cells and neurons employ quite different ways during migration through 3D matrix. Even the 

same cell will use a variety of migration strategies in different environments. For example, 

during vascularization, both the attachment of macrophages to the endothelial wall of blood 

vessels and the movement of macrophages along the lumen of organs are 2D situations in vivo. 

Whereas, depending on the extracellular circumstances, macrophages employ different modes 

(amoeboid and mesenchymal) for infiltrating through interstitial space (Wiesner et al. 2014). 

However, each kind of models has its disadvantages and advantages. On the one hand, 2D 

migration assays defined as cell movement on flat plates without any cross-link network have 

been extensively utilized for studying cell migration. Their simplicity helps the investigators 

better understand individual cellular behaviors. Nevertheless, not only the morphology during 

migration in 2D substrates but also adhesion and cell signaling are reported other than the in vivo 

scenario (3D) (Baker and Chen 2012; Petrie et al. 2009). On the other hand, 3D matrices supply 

valuable biological responses and structures which might not be observed or vary from that in 

2D matrices (Huebsch et al. 2010). But it is usually difficult for 3D modes to mimic natural 

physical parameters of ECM such as gel density, pH value, gel crosslinking and pore size (Doyle 

et al. 2015; Even-Ram and Yamada 2005; Lanir et al. 1988). The development of imaging 

analysis and computational methods largely facilitate 3D matrices visual inspection and 

interpretation (Driscoll and Danuser 2015; Zaman et al. 2005). It is therefore necessary to 

consider both advantage and weaknesses based on the real physical properties before performing 

a specific process for cell migration.  

There are several protein sources for the generation 3D matrix in vitro such as: 1) 

Collagen gel, which comprised of collagen type I (Hesse et al. 2010); 2) fibrin gel, which is 

formed after the cleavage of fibrinogen (Fg) by thrombin (Ciano et al. 1986; Ye et al. 2000); 3) 

cell-derived matrix (CDM) produced from fibroblasts, consisting of fibronectin fibrils (Kutys et 
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al. 2013) and 4) commercial basement membrane extract (BME) (Kleinman and Martin 2005) 

(e.g. Matrigel), which is mixed of collagen IV and laminin. Hakkinen and  colleagues have 

demonstrated that fibroblasts have more spindles shaped with fewer lateral protrusions and 

substantially reduced actin stress fibers in 3D than on 2D matrices, and cells failed to spread in 

3D BME (Hakkinen et al. 2011). A number of studies use different assays to investigate 

macrophage migration on 2D matrices (including random migration, directional migration, 

scratch wound assay, insert removal assay and 2D cell tracking assay) (Justus et al. 2014; 

Moutasim et al. 2011). However, migration on 2D rigid substrates such as plastic plates always 

lacks fiber networks which will affect the cell motility. Controlling cell spreading by using 2D 

ECM-coated plates can influence cell proliferation, apoptosis and differentiation (Mendes 2013; 

Sun et al. 2006). Methods to perform cell migration and adhesion assay in 3D matrices are in 

their infancy. Trans-well/Boyden chamber migration assay (Cui et al. 2018; Van Goethem et al. 

2011), circular invasion assay (Yu and Machesky 2012) and μ-slide chemotaxis migration assay 

(Zengel et al. 2011) are three of the commonly used macrophage migration assays in 3D matrix. 

These methods can be valuable models to mimic cell trans-barrier of interstitial tissues, and 

further allow the investigators to measure the distance of cell migration and quantify the number 

of transmigrated cells within a 3D environment (Soman et al. 2012). However, in trans-well 

migration assay, a considerable number of cells still remain on the chamber membranes (2D) 

embedded in 3D systems. Compared to former stated 3D assays, spheroid invasion assay, vertical 

gel invasion assay, 3D cell tracking assay and spheroid gel invasion are considered as genuine 

3D models (Wiesner et al. 2014). In these situations, cells are pre-seeded in the gels at the gel 

making process. The preponderances of these models are that the addition of chemokines or 

inhibitors can be operated at the step of gel polymerization and there is no need to transfer 2D 

matrix to 3D models.  Furthermore, these modes are useful to study co-culture cells (Guiet et al. 

2011) and cell-cell interactions during cell migration. 
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Fig. 1-1. The migration of macrophage in 2D and 3D environments (used with the permission 

from Dr. Stefan Linder (Wiesner et al. 2014)). (A) In vitro, macrophages exhibit a rounded 

morphology and migrate through a classical 5-step model on 2D surfaces. The red dots represent 

the adhesion receptors on cell surface. (B) In vivo, macrophages may encounter both 2D (B, 

bottom) and 3D (B, middle and top) environments.  

 

Migration of Different Subsets of Leukocytes 

Leukocytes migration is such a critical, complicated process that multiple mechanisms 

are involved simultaneously. Mesenchymal migration is characterized by integrin-dependent and 

proteinase-dependent slow migration. This migration consists of actin protrusions, attachment 

with extracellular matrix, and retraction to achieve moving forward (Pals et al. 2007). Fibroblasts 

in both 2D and 3D modes as well as some tumor cells (Liu et al. 2015) display mesenchymal 

movement to fulfill their migration. In contrast, amoeboid migration, rapid and non-proteolytic 

fashion, is the basic movement mode for leukocytes including neutrophils, monocytes, 

lymphocytes, dendritic cells, eosinophils and basophils (Friedl et al. 2001; Friedl and Weigelin 
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2008; Pals et al. 2007; Wolf et al. 2003). Depending on different extracellular contexts in vivo, 

leukocyte subsets employ different strategies to move along or infiltrate most tissues. 

Lymphocytes and neutrophils primarily utilize the amoeboid mode to migrate to the infection or 

injury sites in an integrin-independent manner (Friedl et al. 2001). In other studies, neutrophils 

migrate across ECM accompanied with pericellular proteolysis and adhere to endothelial cells 

mediated by tightly binding to β2 integrins (Hanlon et al. 2014; Luo et al. 2015). Dendritic cells 

flow and squeeze through 3D matrix do not require the engagement of functional β1and β2 

integrins (Lammermann et al. 2008). However, macrophages can migrate in both 2D substrates 

such as vessel walls or peritoneum, and 3D matrix such as fibrillar extracellular matrix with 

either the amoeboid or mesenchymal manner respectively (Wiesner et al. 2014). Furthermore, 

there are basically three dynamic states in leukocyte migration and adhesion to tissues, thus 

composing of rapid movement (3 to 30 µm/min), restricted condition (1 to 3 µm/min) and 

migration arrest (less than 1 µm/min) (Friedl and Weigelin 2008). These dynamic states are 

orchestrated by balancing migration and attachment through the interaction between adhesion 

receptors and ECM. For example, Lymphocyte function-associated antigen 1 (LFA-1), a member 

of the integrin family, bind to its counterpart ligand intercellular cell adhesion molecule-

1 (ICAM-1) to induce the migration of T-lymphocyte at a speed of around 15 μm/min (Smith et 

al. 2007). These adhesion receptors and ECM together associate leukocyte subsets–specific 

recruitment to infected sites.  

 

Integrins on Leukocytes  

Cell-cell interactions and cell–ECM interactions are critical for assembling cells into 

tissues, controlling cell shape and function and determining the development fate of cells. To 

defense infection and remove injured tissues, leukocyte subsets (neutrophil, lymphocyte or 

macrophage) must move rapidly to reach the sites of infection or inflammation (Chavakis 2012; 

Nourshargh and Alon 2014). The recruitment of leukocyte through bloodstream to the sites of 

inflammation is termed extravasation, which requires accurate association of adhesive molecules 

and constant establishment and breaking of cell-cell interactions (Fig.1-2). The sequential steps: 

activation, binding, rolling, adhesion and extravasation are defined as the leukocyte-adhesion 

cascade (Ley et al. 2007). Various adhesion molecules and receptors facilitate these processes and 
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they are essential for efficacious leukocyte recruitment. Among these complex steps, integrins are 

the primary adhesion receptor families.  

 
Fig. 1-2 The Recruitment of Leukocyte. The recruitment of leukocyte through blood stream to the 

sites the inflammation involved multiple steps including capture, rolling, adhesion and spreading, 

trans-endothelial migration and migration through extracellular matrix. Fig.1-2 is adapted from 

https://commons.wikimedia.org/wiki/File:Esquema_diapedesis.png, and (Ley et al. 2007). 

 

Integrins are widely distributed type I transmembrane receptors that mediate a series of 

crucial functions such as cell signaling, adhesion, migration, dynamic interactions between actin 

cytoskeleton and ECM (Evans et al. 2009). Each integrin is composed of a non-covalently linked 

α/β heterodimers. To date, 18 α-subunits and 8 β-subunits form at least 24 different integrins in 

vertebrates have been identified (Barczyk et al. 2010). Depending on specific integrin-ligand 

binding or heterodimer compositions, integrins can be paired and divided into four categories: 

RGD receptors, collagen receptors, laminin receptors and leukocyte-specific receptors (Fig.1-3). 

Generally, each β subunit can associate with several α subunits to compose an integrin subfamily, 
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but αV and α4 are the two exceptions. The α-subunit determines integrin ligand specificity and β 

subunit connects to cell cytoskeleton to affect various signaling pathways (Barczyk et al. 2010). 

The α-I-domain is an inserted domain composed of about 180 amino acids (Luo et al. 2007; Qu 

and Leahy 1995). Integrin β2 subfamily presents highly homogenous among α I-domain containing 

integrins αLβ2 (CD11a/CD18), αMβ2 (CD11b/CD18), αXβ2 (CD11c/CD18) and αDβ2 

(CD11d/CD18). Particularly, we are focused on β2 leukocyte specific integrins. They are all 

leukocyte-specific receptors associating with multiple ligands and receptors during leukocyte 

recruitment.  

The expression of integrins presents in a leukocyte-specific manner. Integrin αLβ2 is present 

primarily on neutrophils, monocytes and lymphocytes (Smith et al. 2007; Weber et al. 1999), 

Integrin αLβ2 (LFA-1), binding to Ig superfamily ligands (e.g. ICAMs), mediates the arrest of 

leukocytes rolling on vascular endothelial cells. Ser/thr-rich domain of thrombomodulin acts as a 

new ligand for Integrin αLβ2 and αMβ2 (Kawamoto et al. 2016). Integrin αLβ2 can modulate the 

recruitment of regulatory T-lymphocytes and facilitate Tregs migration into the CNS during CNS 

autoimmunity (Glatigny et al. 2015).  

 

While αMβ2 (Mac-1, CD11b/CD18) is primarily expressed on neutrophils and monocytes/ 

macrophages (Li 1999; Lim and Hotchin 2012; Pluskota et al. 2008). Integrin αXβ2 (CD11c/CD18, 

CR4) is expressed on macrophages and dendritic cells (Bilsland et al. 1994). Integrin αMβ2 and 

αXβ2 have been extensively studied for its functions in facilitating leukocytes firm adhesion to 

vessel walls, promoting the succeeding diapedesis, and mediating neutrophil infiltration (Cao et 

al. 2005; Dunne et al. 2003; Van der Vieren et al. 1999). Numerous of neutrophil responses such 

as phagocytosis, homotypic aggregation, degranulation, and adherence to microorganisms, also 

depend on Mac-1 (Ding et al. 1999; Pluskota et al. 2008; van Spriel et al. 2001). Over 30 proteins 

or non-proteins have been reported serving as αMβ2 ligands including fibronectin, laminin, and 

collagens (Dunne et al. 2003; Kawamoto et al. 2016; Lishko et al. 2004). Because of its broad 

ligand binding properties, the role of Mac-1 is in leukocyte migration has still not found a 

consensus relative to mechanism. Peptides P2 and P1, two Fg γC domains, are efficient binding 

sites of integrin αMβ2 (Lishko et al. 2004). By employing surface plasmon resonance, D fragment 

of Fg was proved to be able to interact with multiple αM I-domain molecules. Mutations of βD-α5 

can significantly diminish the binding affinity αMβ2 to P2-C peptide of Fg. Insertion of residues 
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Lys245 - Arg261 from the αM I-domain of αMβ2 to αL I-domain converted αLβ2 into a Fg-binding 

integrin (Yakubenko et al. 2002). 

 

Interestingly, in contrast to the other three β2 subfamily members, integrin αDβ2 is 

significantly upregulated on macrophages in atherosclerotic lesions, but rarely on peripheral blood 

leukocytes (el-Gabalawy et al. 1996; Noti 2002; Noti et al. 2000). In addition, most of the papers 

(there are less than 80 papers about integrin αDβ2 on PubMed search results) just simply record its 

presence rather than its functions on cells. Although the functions of integrin αDβ2 during the 

inflammatory response are still not well known, its unique expression pattern suggests that it may 

play a role in the process of atherosclerosis (Noti 2002). 

 

Integrin αDβ2 is a novel but largely undefined member of integrin family (Takada et al. 

2007). Unlike its other two homologous integrins αXβ2 and αMβ2, it is preferentially expressed on 

macrophages foam cells in atherosclerotic lesions or rheumatoid arthritis but seldom found on 

peripheral circulating leukocytes. However, whether and how integrin αDβ2 is involved in 

leukocytes recruitment to infectious or inflammatory sites is not yet clear. The αD I-domain of 

integrin αDβ2 has a high homology (70%) to αM I-domain of αMβ2. Previous findings indicate that, 

similar to integrin αMβ2, integrin αDβ2 is also a multi-ligands receptor (Yakubenko et al. 2006). 

Intercellular adhesion molecule 3 (ICAM-3) and vascular cell adhesion molecule (VCAM-1) are 

capable to bind to αD I- domain of integrin αDβ2 (Grayson et al. 1998; Van der Vieren et al. 1995). 

By using αD-specific antibody, the interaction between VCAM-1 and αDβ2 can be blocked. This 

blocking reduced the inflammatory response of leukocytes migration to the injured spinal cord, 

which will largely attenuate inflammation caused secondary damage to neurons and glia (Mabon 

et al. 2000).   
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Fig. 1-3 The Superfamily of Integrins (adapted from reference (Niu and Chen 2011)). 24 

different integrins have been identified in human consisting of 18 α subunits and 8 β subunits. 

Leukocyte-specific integrins have distinct ligand-binding specificity and tissue and cell 

distribution. Integrin β2 subfamily presents highly homogenous among α I-domain containing 

integrins αLβ2, αMβ2, αXβ2 and αDβ2. 

 

 

Inflammatory Diseases 

 

Inflammation is a crucial part of the body’s response to injury and infection. The purpose 

of inflammation is to eliminate the damaged tissues, irritant and pathogens (Eming et al. 2017). 

Inflammation can be classified as either acute or chronic. Acute inflammation occurs after the 

affection of harmful bacteria or injured tissue, which starts rapidly and have a short-term process 

(Kumar et al. 2004). Unlike acute inflammation, chronic inflammation can have long-term and 

whole-body effects. It is also called persistent, low-grade inflammation because it produces a 

steady, low-level of inflammation throughout the body (Lowe and Storkus 2011). There are many 

diseases associated with inflammation, such as atherosclerosis (Frostegard 2013; Woollard and 

Geissmann 2010), obesity (Johnson et al. 2012), diabetes (Lontchi-Yimagou et al. 2013), arthritis 
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(Young et al. 2013), Alzheimer’s disease (Apostolova 2016; Watson and Craft 2006) and others. 

The development of chronic inflammation is characterized by excessive accumulation of 

macrophages at inflammatory sites (Parisi et al. 2018).  

 In this thesis, we study the role of macrophage integrins during inflammation and its associated 

diseases. 

 

Atherosclerosis  

Atherosclerosis, a leading cause of morbidity and mortality in western society, is a 

multifactorial and chronic inflammatory disease (Falk 2006; Lusis 2000). It is characterized by 

low-density lipoprotein (LDL) cholesterol deposition and macrophage accumulation in the arterial 

intima (Bobryshev et al. 2016; Charo and Taubman 2004; Hilgendorf et al. 2015). The massive 

uptake of oxidized LDL (oxLDL) and excessive cholesterol esterification result in the formation 

of foam cells and subsequently create plaques (Chistiakov et al. 2016; Moore et al. 2013; Yu et al. 

2013). These plaques may eventually ruptures and causes hemorrhages, which leads to severe 

conditions such as stroke, heart attack and other cardiovascular diseases (Swirski and Nahrendorf 

2013). Recent studies suggest that macrophages play an important role in the development of 

atherosclerotic lesions because they participate in all stages of plaque formation and progression 

(Bories and Leitinger 2017; Groh et al. 2018). In the early stage, circulating monocytes migrate 

from the blood stream to the intimal layer, locally polarized into macrophage subsets, engulf the 

accumulated oxidized lipids and become foam cells, which is a key step of the formation of 

atherosclerosis (Shapiro and Fazio 2017). Foam cells accumulate at the lesions and eventually 

cause the failure of the resolution. During immune responses, T helper (Th) cells are capable to 

influence macrophage phenotypes which contribute to the process of atherosclerotic lesions. Th1 

cytokines, including IFN-γ and TNF-α, mediate a pro-inflammatory activation of macrophage in 

the lesion sites. While Th2 cytokines, IL-4 and IL-10, may suppress various of cytokines including 

IL-2 and IFN-γ in Th cells and macrophages, which attenuates macrophage-mediated 

inflammation and facilities the tissue remodeling (Jenkins et al. 2011; Verreck et al. 2004). 

The phenotype of accumulated macrophages in the lesions regulates the fate of 

atherosclerosis. In our previous study, we found that integrin αDβ2, significantly up-regulated in 

atherosclerotic lesions (Aziz et al. 2017), suggesting an important function of integrin αDβ2 within 
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the sites of the lesions. To understand the role of the highly-expressed integrin αDβ2 on macrophage 

during the migration and retention of inflammation may facilitate the therapeutic intervention 

against atherosclerosis.  

 Obesity and Diabetes  

Diabetes is characterized by metabolic disorders with high blood sugar levels over the 

prolonged period (Shirin et al. 2019). It is an increasing global epidemic and remains the 7th 

leading cause of death in the United States in 2015 with enormous social and healthcare costs 

according to World Health Organization database. There are mainly three types of diabetes: Type 

1 diabetes (T1D) is referred as a failure to produce enough insulin due to the defective function of 

pancreas (de Ferranti et al. 2014). Type 2 diabetes (Baxter et al. 2016) (T2D) is an obesity-

associated chronic metabolic inflammation and characterized by insulin resistance and relative 

lack of insulin. Gestational diabetes (Coustan 2013) occurs when a woman without diabetes 

develops high blood sugar levels during pregnancy and usually resolves after the baby is born. 

Here, we will focus on obesity-associated T2D making up about 90% of cases of diabetes among 

these three types.  

Diabetes is associated with serious health complications, such as atherosclerosis, heart 

disease ischemia, diabetic retinopathy and impaired wound healing (Haberka et al. 2019; Jenkins 

et al. 2015; Jin et al. 2016; Lejay et al. 2016; Tellechea et al. 2016). During obesity, immune cells 

such as macrophages accumulate in visceral adipose tissue which is a major mechanism leading 

to the low-grade inflammation (Engin 2017; Jing et al. 2018). Adipose tissue is composed of the 

white adipose tissue (WAT) and brown adipose tissue (BAT). Compared to BAT, WAT appears 

to be a major site for production of inflammatory cytokines, including TNF-α, IL-1, IL-6, IL-10 

and many other biomarkers involved in the inflammatory pathways (Shoelson et al. 2006). 

Inflammatory cytokines and chemokines can be markedly increased during hyperglycemia through 

the activation of nuclear factor-κB, which can further result in an increasing expression of various 

adhesion molecules (Antonov et al. 2011; Sheikh et al. 2005). The upregulated expression of 

adhesion molecules and chemokines can not only aggravate the pathological state of diabetes 

(Devaraj et al. 2010), but also affects the infiltration, recruitment and retention of immune cells in 

different organs (Lammermann et al. 2008; Yakubenko et al. 2008). In particular, macrophages as 
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a critical subset of immune cells are attracted to an inflamed site by chemoattractant, act as effector 

immune cells in pathogens killing, tissue remodeling, initiation of inflammation and insulin 

resistance (Parisi et al. 2018; Thomas and Apovian 2017). The recruitment and accumulation of 

monocytes/macrophages at the inflammatory sites depends on macrophage adhesive receptors (Shi 

and Pamer 2011). The mechanism of macrophage retention is an important subject that has a strong 

therapeutic potential. 

Macrophages and Inflammatory Diseases 

Macrophages are cells of the innate immune system that populate every organ. They 

display great functional plasticity and are required for maintenance of tissue homeostasis, 

immunity against invading pathogens, and tissue repair (Kierdorf et al. 2015; Lavin et al. 2015; 

Wynn and Vannella 2016). In response to different microenvironmental stimulus, macrophage 

may polarize into several phenotypes (pro-inflammatory M1 or anti-inflammatory M2 subsets) at 

the sites of inflammation and exhibit different morphology and functional properties after 

activation (Chinetti-Gbaguidi et al. 2015). Classically activated-M1 macrophages can be induced 

by interferon (IFN)-γ and lipopolysaccharides (LPS). It has pro-inflammatory, microbicidal, 

phagocytic and tissue damage functions and releases a broad proinflammatory cytokines, such as 

interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase 

(iNOS). Unlike M1 macrophages, the alternative activated-M2 macrophages are induced by IL-4 

and IL-13 expresses high levels of IL-10, IL-1β and low levels of IL-12 (McNelis and Olefsky 

2014). From a functional view, M2-activated macrophages can scavenge debris and promote tissue 

repair and healing during resolution of inflammation (Roszer 2015). Moreover, recent studies 

indicate that anti-inflammatory M2 macrophages induced by IL-4 are associated with the 

activation of signal transducer and activator of transcription 6 (STAT6) and PPARγ-coactivator-

1β (PGC-1β), and involved in lipid oxidative metabolism to the anti-inflammatory program of 

macrophage activation (Vats et al. 2006). 

In addition, macrophages are plastic and can adapt their phenotypes based on the 

microenvironment they encountered. Evidence of phenotype switching in neuroinflammatory 

disease like multiple sclerosis suggests that monocytes enter the central nervous system (CNS) and 

polarize into M1 macrophages. Over the course of the disease, the conversion from M1 phenotype 



29 

 

to M2 macrophage were observed in the lesion. Also, macrophage phenotypes are reversible under 

the stimulating by inflammatory cytokines (Locatelli et al. 2018). Carey’s study demonstrated that 

diet-induced obesity can result in a M1 proinflammatory state contributing to insulin resistance. 

Upon high-fat feeding, a switch from M2 polarized macrophage to an M1-activated state lead to 

the loss of protective potential under lean conditions (Lumeng and Saltiel 2011).  

The apolipoprotein E knockout (ApoE−/−) mouse lacks the glycoprotein apolipoprotein E, 

which is essential for lipid transport and metabolism (Getz and Reardon 2016). These mice have 

a poor ability to clear lipoprotein, making it a useful mouse model to study human atherosclerosis 

when placed on a high-fat diet. Macrophage from the blood circulation to the inflammatory sites 

is an important part of the innate immune response. According to the physical conditions, 

macrophages are able to migrate in different modes. They may encounter 2D surfaces, such as the 

endothelial monolayers of blood vessels or basement members using classical five-step migration 

model (Wiesner et al. 2014). However, in vivo, 3D environments, macrophages can migrate 

through most tissues or ECM using at least two distinct migration modes (Sridharan et al. 2019). 

The amoeboid migration mode which is characterized by a movement of spherical or ellipsoid 

cells that squeeze along the porous ECM, such as fibrillar collagen I, and with a relatively high 

speed (Liu et al. 2015; Pals et al. 2007). Another migration mode, mesenchymal migration, 

displays an elongated morphology with multiple long protrusions and a low migration speed to 

infiltrate high dense matrices, such as matrigel or fibrin gel (Doyle et al. 2015; Driscoll and 

Danuser 2015). In heterogeneous environments, macrophage combines the two migration modes 

to get to the destination. Importantly, mesenchymal migration strongly depends on the 

involvement of integrins. 

Our published results and others indicate that cell migration has a bell-shape pattern based 

on the cell adhesiveness (Lishko et al. 2004; Palecek et al. 1997; Yakubenko et al. 2008). The low 

adherent property is insufficient for macrophage migration, the intermediate level of adhesiveness 

generates good cell migration, but very high adhesiveness will prevent cells releasing from the 

extracellular matrix, which inhibit cell motility. 

However, the mechanism of the retention of macrophage at the site of inflammation is still 

under debate. Our work demonstrated that the expression of integrin αDβ2 on classically activated 
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macrophage is significantly upregulated and the high expression of integrin αDβ2 increases cell-

substratum adhesiveness, which causes macrophage retention at the inflammatory sites of the 

lesions.  

Questions to be Answered in These Studies 

The migration, accumulation and retention of macrophages in the inflammatory sites are 

critical steps during the process of many devastating diseases including arthritis, diabetes, obesity 

and atherosclerosis (Libby 2002; Mallat 2014; Moore and Tabas 2011; Tabas and Bornfeldt 2016; 

Weber et al. 2008). Adhesion molecules such as β2 integrins are extensively involved in the 

recruitment of leukocytes from the bloodstream to the damaged peripheral tissues and the retention 

of macrophage within the lesions (Herter and Zarbock 2013; Mitroulis et al. 2015). However, a 

typical ECM has a limited availability of ligands for β2 integrins. One of the possible mechanisms 

of directing macrophage migration is the modification of existing ECM during inflammation.  

2-(ω-Carboxyethyl)pyrrole (CEP) is formed through adduction of the end products of DHA 

oxidation with the -amino groups of protein lysyl residues. CEP generation was reported to 

contribute to a number of inflammation-associated diseases, including macular degeneration, 

hyperlipidemia, atherosclerosis, thrombosis, and tumor progression (Kim et al. 2015; Panigrahi et 

al. 2013). However, the pro-inflammatory mechanism of CEP function is not clear. So far, the 

accumulation of CEP in the damaged tissue and induction of pro-inflammatory cytokines from 

macrophages in response to CEP represents the data that may explain the contribution of CEP to 

the augmentation of inflammatory responses (Cruz-Guilloty et al. 2014; Kettle et al. 1995; 

Schneider and Issekutz 1996; Stelmaszynska et al. 1992; Zerouga et al. 1996). The first section of 

my studies is to seek a possible link between CEP and β2 integrins-mediated macrophage 

migration/accumulation at the site of inflammation. This section of my work is partial of our 

published paper in Blood and is highlighted in Chapter 2, demonstrating a novel mechanism of 

macrophage migration during inflammation mediated by integrins αDβ2 and αMβ2. 

In the first section, we found that both integrins (αDβ2 and αMβ2) are involved in the 

migration of macrophages during inflammation. However, the expression levels of integrin αDβ2 

and αMβ2 are significant different on macrophages within the atherosclerotic lesions. Integrin αMβ2 
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is a major β2 integrin on macrophages, while integrin αDβ2 (CD11d/CD18) is the most recently 

discovered, but largely undefined, member of β2 integrins. Unlike the other three members of β2 

integrins (αMβ2, αLβ2 and αXβ2), it is poorly expressed on peripheral blood leukocytes but 

significantly up-regulated in the atherosclerotic lesions (Noti 2002; Van der Vieren et al. 1995). 

Moreover, our publication in Journal of Immunology indicates that αD-deficiency on an ApoE-/- 

background reduces the development of atherosclerosis (Aziz et al. 2017). This specific expression 

pattern of integrin αDβ2 indicates that it is likely to have important functions within the sites of 

inflammation. The goal of the second section is to determine the role of β2 integrins, particularly 

αDβ2 and αMβ2, in regulating the migration of macrophage to the inflammatory sites and the 

retention of macrophage within the lesions (Cui et al. 2018). This part of work is published in 

Frontiers in Immunology and is highlighted in Chapter 3, entitled “Distinct migratory properties 

of M1, M2 and resident macrophages are regulated by αDβ2 and αMβ2 integrin-mediated adhesion.”  

Based on our publications and current studies, we suggest that 1) integrin αDβ2 is a multi-

ligand receptor, which is strongly expressed on macrophages in atherosclerotic lesions (Yakubenko 

et al. 2006), and αD-deficiency on an ApoE-/- background reduces the development of 

atherosclerosis. 2) Low expression of integrin αDβ2 facilitates macrophage migration whereas a 

high density of αDβ2 integrin promotes macrophage retention within the site of inflammation (Aziz 

et al. 2017; Yakubenko et al. 2008). Our studies suggest that integrin αDβ2 is not only involved in 

macrophage migration, but also may play a critical role in regulating macrophage retention at 

inflammatory sites. Therefore, targeting integrin αDβ2 could potentially reduce the retention of 

macrophages in the inflamed lesions and may provide a new therapeutic approach for the treatment 

of macrophage mediated-chronic inflammatory diseases. 

In Chapter 4, we propose a new strategy for the treatment of chronic inflammation by 

targeting macrophage retention in the inflamed tissue by focusing on the development of the 

inhibitor, which is exclusively specific for αDβ2-CEP interaction. The advantage of CEP as a new 

therapeutic target resides in its unique formation in inflamed tissue.  
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Abstract 

Early stages of inflammation are characterized by extensive oxidative insult by recruited 

and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, 

leads to the generation of reactive oxygen species. We show that this oxidative insult leads to 

polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-

(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP 

is generated predominantly at the inflammatory sites in macrophage-rich areas. During 

thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced 

macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early 

recruitment of neutrophils, suggesting a role in the second wave of inflammation. On macrophages, 

CEP adducts were recognized by cell adhesion receptors, integrin αMβ2 and αDβ2. Macrophage 

migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, 

and was reduced by β2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant 

polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive 

ligands for αMβ2- and αDβ2-dependent macrophage migration. The presence of a carboxyl group 

rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or 

immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-

dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMβ2- 

and αDβ2-mediated migration/retention of macrophages during inflammation. 

 

Introduction 

Understanding the mechanism of leukocyte migration is essential for the treatment of 

chronic inflammation, which is a major factor contributing to many devastating diseases including 

arthritis, diabetes, obesity and atherosclerosis1-3. Neutrophil recruitment is the first wave of 

immune response directed to fight inflammation4 primarily by secreting peroxidases, which, in 

turn, generate an excess of reactive oxygen and nitrogen species to facilitate a speedy inactivation 

of pathogens while releasing chemotactic signals to promote a second wave of immune response, 

monocyte/macrophage migration5, 6. Arrived macrophages play a central role in the resolution of 

acute inflammation, essentially by removing the debris and promoting tissue healing. However, 

excessive or uncontrolled macrophage accumulation contributes to chronic inflammation and a 

number of pathologies7.  
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To date, the mechanisms controlling the transition between first and second wave of 

inflammation are not fully understood. While chemokine gradients seem to be critical for 

macrophage migration, the importance of adhesive receptors and their respective ligands remains 

questionable. Macrophage receptors, integrins, are the major players in adhesion-mediated 

migration. Prominent among the leukocyte adhesion receptors are the four members of the integrin 

β2 subfamily: αLβ2 (CD11a/CD18, LFA-1), αMβ2 (CD11b/CD18, Mac-1), αXβ2 (CD11c/CD18, 

p150, 95) and αDβ2 (CD11d/CD18)8. Although αX is an important marker of pro-inflammatory 

macrophage activation, its expression on monocytes/macrophages is low, which reduces the 

contribution of αX to macrophage migration9. In contrast, αMβ2 is a major β2 integrin on 

macrophages and αDβ2 is upregulated during pro-inflammatory macrophage activation10. In our 

previous studies, we found that αMβ2 and αDβ2 are highly homological multiligand receptors that 

share common ligands11, 12 and participate in macrophage migration and retention at the site of 

inflammation10. However, a typical extracellular matrix (ECM) has a limited availability of ligands 

for β2 integrins. What types of adhesive ligands are able to mediate inflammation-specific and 

directed macrophage migration that remains to be determined.   

One of the possible mechanisms of directed macrophage migration is the modification of 

existing ECM during inflammation. Oxidation of polyunsaturated phospholipids (PUFA) by 

reactive oxygen species produced in inflamed tissues, might generate protein modifications, which, 

in turn, might provide macrophages with inflammation-specific ligands. As oxidation substrates, 

PUFAs are readily available as a part of cellular membranes as well as from dietary sources, and 

their products were shown to exhibit a wide spectrum of biological activities13; 14; 15. Despite widely 

advertised opinion regarding the beneficial role of 3-PUFA (particularly docosahexaenoate (DHA)) 

for overall health, current results of clinical trials are questioning its protective role for the 

cardiovascular system16; 17; 18; 19. Apparently, DHA derived products generated in vivo may have 

effects distinct from DHA itself.   

2-(ω-Carboxyethyl)pyrrole (CEP) is formed through adduction of the end products of DHA 

oxidation with the -amino groups of protein lysyl residues20, 21 (Fig.2-1).  To develop tools for 

testing CEP function, ω-carboxyethylpyrrole-modified proteins were synthetized using Paal-Knorr 

reactions of γ-dicarbonyl compounds (DOHA) with the ϵ-amino group of lysyl residues of 

proteins22. DOHA was used to prepare CEP-modified keyhole limpet hemocyanin (CEP-KLH), 

bovine serum albumin (CEP-BSA) and human serum albumin (CEP-HSA). Using these proteins, 
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highly specific monoclonal and polyclonal antibodies against CEP were generated and tested for 

specificity20. Notably, a structurally similar protein modification, ethylpyrrole (EP), is generated 

through the alternative oxidative cleavage of DHA (Fig. 2-1). Compared to CEP, this modification 

lacks a carboxyl group, which makes it an excellent control for CEP functional studies23. 

CEP generation was reported to contribute to a number of inflammation-associated 

diseases, including macular degeneration, hyperlipidemia, atherosclerosis, thrombosis, and tumor 

progression24,25,23, 26. However, the pro-inflammatory mechanism of CEP function is not clear. So 

far, the accumulation of CEP in the damaged tissue and induction of pro-inflammatory cytokines 

from macrophages in response to CEP represents the data that may explain the contribution of 

CEP to the augmentation of inflammatory responses27; 28; 23; 29; 30. The goal of our investigation was 

to seek a possible link between CEP and macrophage migration/accumulation at the site of 

inflammation. 

 

Materials and Methods 

Materials 

Reagents were purchased from Sigma-Aldrich (St. Louis, MO). Human fibrinogen and 

thrombin were obtained from Enzyme Research Laboratories (South Bend, IN). Fibronectin and 

plasmin were purchased from Millipore. Myeloperoxidase (MPO) was from Sigma-Aldrich (St. 

Louis, MO). Anti-CD68 mAb was from eBioscience. Anti-Fg antibody was from LifeSpan 

Biosciences (Seattle, WA). The mAb IB4 directed against the β2 integrin subunit and mAb 44a 

directed against the human αM integrin (CD11b) subunit was purified from the conditioned media 

of the hybridoma cell line obtained from American Type Culture Collection (ATCC, Manassas,VA) 

using protein A agarose (GE Healthcare, Piscataway, NJ). Anti-human integrin αD mAb (clone 

240I) was generously provided by Eli Lilly Corporation (Indianapolis, IN).  Purified rabbit, mouse 

and rat IgG were purchased from Sigma-Aldrich (St. Louis, MO). Polyclonal antibody against 

CEP and monoclonal IgM anti-CEP antibody were obtained as described previously31, 32. Blocking 

IgG anti-CEP antibody (Clone 3C9) was generated in Dr. Tatiana Byzova’s laboratory33. Rabbit 

polyclonal antibody against αD I-domain was generated in Dr. Tatiana Ugarova’s laboratory and 

produced as described previously34. 
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Mice 

Wild type (C57BL/6J) mice, β2-deficient mice (B6.129S7-Itgb2 tm2Bay/J) and MPO-

deficient mice (B6.129X1-Mpotm1Lus/J) were bought from Jackson laboratory (Bar Harbor, ME). 

All procedures were performed according to animal protocols approved by the Cleveland Clinic 

and East Tennessee State University IACUC. 

 To generate macrophage-depleted mice, a Clodrosome macrophage depletion kit was 

used according to the manual. In brief, mice were injected with 0.15 ml of control or Coldronate-

liposome intravenously (1st day) and intraperitoneally (2nd and 3rd days) for 3 consecutive days. 

For neutrophil depletion, mice were injected intraperitoneally with anti-Ly-6G antibody (100 

µg/ml) following 24 hours of incubation. The depletion was evaluated by a marked reduction of 

neutrophils or macrophages in the peritoneal cavity after thioglycollate injection.  

 

Peritoneal model of inflammation and macrophage isolation 

Peritonitis was induced by intraperitoneal injection of 1 ml 3% Brewer thioglycollate 

medium (Sigma-Aldrich, St. Louis, MO) in C57BL/6 mice (Jackson Laboratories, Bar Harbor, 

ME). It has been shown that sterile inflammation, mediated by thioglycollate, leads to the 

accumulation of leukocytes in the peritoneal cavity with neutrophils peaking at 6-18 hours and 

macrophages at 72-96 hours after thioglycollate injection. After 18 or 72 hours, the mice were 

euthanized by isoflurane inhalation and the peritoneal cavities were lavaged with 5 ml PBS. In 

experiments with antibodies, 5 µg of purified anti-CEP monoclonal IgM antibody per gram of 

body weight or the same concentration of normal mouse IgM diluted in PBS were injected 

intraperitoneally 30 min before thioglycollate injection. Peritoneal cells were counted in a 

hemocytometer followed by FACS with anti-macrophage antibody (F4/80).   

For macrophage isolation, peritoneal cells at 72 hours after thioglycollate injection were 

isolated from the cavity and plated on a 10 cm petri dish for 2 hours at 37 oC in humidified air 

containing a 5% CO2 atmosphere. After incubation, petri dishes were washed with PBS to 

remove non-adherent cells. Adherent cells were collected with 5 mM EDTA in PBS, then 

centrifuged to change the media to Hank’s balanced salt solution supplemented with 1 mM 

MgCl2 and 1 mM CaCl2. These cells were then used for adhesion or migration assays.  

https://www.jax.org/strain/004265
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Immunostaining 

Cryosections (10 μm) of peritoneal tissue were warmed to room temperature for 30 minutes 

prior to immunofluorescence staining. Tissue sections were fixed in ice-cold acetone for 

10 minutes, followed by permeabilization with 0.2% Tween-20 for 10 minutes to increase the 

signal of intracellular binding sites. Tissue sections were washed in PBS and incubated with 

SuperBlock (PBS) Blocking buffer (Thermo Scientific, Rockford, IL, USA) for 45 min to block 

nonspecific binding. Tissues were then incubated at 4 oC overnight with the primary antibodies 

(rabbit polyclonal anti-CEP and rat anti-mouse CD68 (macrophage marker)). After washing 

several times with PBS, the sections were incubated with Alexa Fluor 488-conjugated donkey anti-

rabbit IgG and Alexa Fluor 568-conjugated donkey anti-rat for 1 hour at room temperature. The 

sections were subsequently washed and sealed. The tissue sections were examined with a 

fluorescence microscope (EVOS, Thermo Fisher Scientific, Waltham, MA USA). Control sections 

without primary antibody were also generated at the same time. 

 

Immunoprecipitation and Western blot 

Mouse peritoneal exudate at 72 hours after injection of thioglycollate was incubated with 

anti-CEP or anti-fibrinogen antibodies (10 µg) for 4 hours at 4 C. The mAb-specific complex was 

captured by incubating with 50 µl of Protein G Sepharose (Amersham Biosciences, Inc., 

Piscataway, NJ) for 12 h at 4C. The immunoprecipitated proteins were eluted with SDS-PAGE 

loading buffer and analyzed by (4-15%) SDS-PAGE electrophoresis or Western blotting. The 

Immobilon-P membranes (Millipore) were incubated with rabbit polyclonal anti-CEP antibody, 

followed by incubation with goat anti-rabbit secondary antibody conjugated to horseradish 

peroxidase and developed using enhanced SuperSignal Chemiluminescent Substrate (Pierce). 

 

Isolation of human neutrophils and CEP formation assay 

The protocol for isolation of human neutrophils complied with all relevant federal 

guidelines and institutional policies regarding the use of human subjects.  Neutrophils were 

isolated by centrifugation as described before 35. Eosinophils were removed by sorting 36. 
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Neutrophils were isolated and incubated in phenol-free RPMI 1640 medium. 106 neutrophils 

were activated with IL1β (200 ng/ml) and LPS (100ng/ml) from Difco (Voigt Global 

Distribution Inc, Lawrence, KS), and incubated for 2 hours in media supplemented with 5% FCS 

and L-arginine (100 μM) as described before 37. MPO inhibitor 4-ABH (BioVision, Milpitas, 

CA) was used at 1 µM. Resorcinol (Sigma-Aldrich) was used at 10 µM (at this concentration it 

was shown to affect Eosinophil peroxidase but to a lower extent MPO 38). Supernatant samples 

were collected, and 100 µM (final concentration) of butylated hydroxytoluene (Sigma) was 

added. CEP and EP production was measured by competitive ELISA as described previously 31.  

 

Generation of CEP-modified fibrinogen by recombinant MPO 

Human fibrinogen was coated on a 96-well plate at a concentration of 50 μg/ml for 

overnight incubation at 40C. Wells were post-coated with 0.5% polyvinyl alcohol for 1 h at 370C. 

2 μM DHA and 0.5mU/ml MPO in 20mM Hepes, 150 mM NaCl, 0.01% H2O2, and 1mM CaCl2 

were added to the wells and incubated in an oxygen-free environment (under argon atmosphere) 

for 18 hours at 370C. After incubation, the plate was washed out with PBS supplemented with 

0.05% Tween 20 and incubated with anti-CEP polyclonal antibody (0.9 μg/ml) for 2 hours at 

370C. After washing, wells were incubated with goat anti-rabbit HRP conjugated antibody for 1 

h at 370C and the binding was developed using TMB-ELISA substrate solution (Pierce). The 

result was detected by a plate reader using a wavelength of 450 nm. 

In a parallel experiment, 100 μg/ml fibrinogen was incubated with 2 μM DHA and 0.5 

mU/ml MPO in 20 mM Hepes, 150 mM NaCl, 0.01% H2O2, a 1mM CaCl2 buffer in a microtube 

in an oxygen-free environment (under argon atmosphere) for 18 hours at 370C. After incubation, 

the samples were analyzed by Western Blot with anti-CEP polyclonal antibody as described 

above.  

 

Neutrophil and macrophage 3-D migration in fibrin gel 

Neutrophils or macrophages were labeled with PKH26 red fluorescent dye or 

PKH67 green fluorescent dye. Cell migration assay was performed for 24h (neutrophils) or 48h 
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(macrophages) at 37 °C in 5% CO2 under sterile conditions. Labeled leukocytes were plated on the 

membranes of transwell inserts of a Boyden chamber with a pore size of 8 μm and 6.5 mm in 

diameter (Costar, Corning, NY), precoated with fibrinogen (Fg). Fibrin gel in the transwell (100 

µl/sample) was made using 0.75 mg/ml Fg containing 1% FBS and 1% P/S and activated by 0.5 

U/ml thrombin. Before the experiment, the gel was analyzed for the presence of autofluorescence 

/non-specific signal using a Leica Confocal microscope (Leica-TCS SP8). 100 nM FMLP or 30 

nM MCP-1 were added on the top of the gel to initiate the migration. Migrating cells were detected 

by Leica Confocal microscope (Leica-TCS SP8) using a 3x3 area (9 fields of view per sample) 

with magnification 100x; up to a depth of 1000 μm with a step size of 5 µm. The results were 

analyzed by IMARIS 8.0 software.  

 

FACS analysis 

FACS analyses were performed to assess the expression of receptors on the surface of the 

cells transfected with αDβ2, αMβ2, and αLβ2 integrins. The cells were incubated with anti-αD (Clone 

1566) 8, anti-αM (clone M1/70), anti-αL (clone 38) and anti-β2 (clone IB4) antibodies and analyzed 

using a FACScan (Beckton Dickinson) or Fortessa X-20 (Beckton Dickinson) as described 

previously.10 

For the binding assay, 1x106 αMβ2- and αDβ2-HEK293 cells were incubated with 400 nM 

CEP-BSA or 400 nM EP-BSA for 30 min at 370C followed by incubation with 10 μg/ml blocking 

anti-αM (clone 44a) and anti-αD (clone 240I) antibody. After incubation, cells were analyzed with 

a Fortessa X-20 (Beckton Dickinson).  

 

Cell adhesion and 2D migration 

The adhesion assay was performed as described previously39, with some modifications. 

Briefly, 96-well plates (Immulon 2HB, Cambridge, MA) were coated with different concentrations 

of CEP-BSA, EP-BSA, fibrinogen or other ligands for 3 h at 37 C. The wells were post-coated 

with 0.5% polyvinyl alcohol for 1 h at 37 C. Mouse peritoneal macrophages or HEK 293 cells 

transfected with αLβ2, αMβ2, or αDβ2 integrins were labeled with 10 µM Calcein AM (Molecular 

Probes, Eugene, OR) for 30 min at 37 °C and washed with DMEM and resuspended in the same 
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medium at a concentration of 1 × 106 cells/mL. Aliquots (50 µL) of the labeled cells were added 

to each well. For inhibition experiments, cells were mixed with antibodies and incubated for 

15 minutes at 22 °C before they were added to the coated wells. After 30 minutes of incubation at 

37 °C in a 10% CO2 humidified atmosphere, the nonadherent cells were removed by washing with 

HBSS. The fluorescence was measured in a Synergy H1 fluorescence plate reader (BioTek, 

Winooski, VT), and the number of adherent cells was determined from a labeled control. 

2D cell migration assays with calcein-labeled cells were performed under sterile conditions 

using uncoated Transwell inserts with a pore size of 8 µM and that were 6.5 mm in diameter 

(Costar, Corning, NY). Briefly, the lower chambers contained 600 µl of CEP or EP. Cells (150 µl) 

in DMEM/F-12 at a concentration of 2.5 x 106/ml were placed in the upper chamber and allowed 

to migrate for 18 h at 37 C in 5% CO2. 2 hours prior to the completion of the migration assay, 

calcein AM was added to the lower chamber in order to label cells. Assays were stopped by 

removing cells from the upper surface of the polycarbonate membrane. Cells migrating to the 

bottom of the filter were detected using a Synergy H1 fluorescence plate reader Synergy H1 

fluorescence plate reader (BioTek, Winooski, VT). 

 

Isolation of recombinant αD, αM and αL I domains in the active and non-active conformation 

The construct for αD I domains, αM I domains and αL I domain were generated and 

recombinant proteins were isolated as described in our previous paper 34. Briefly, αD in non-active 

conformation (Pro128-Ala323), αM in active conformation (E123-K315), αM in non-active 

conformation (Q119-E333) and αL in active conformation (Gly128-Tyr307) were inserted into a 

PGEX4T-1 vector. In αL I domains, two lysines, Lys287 and Lys294, were substituted to cysteins to 

create a disulfide bond and thus lock the protein in the active conformation as described before 40. 

In “active” αM I domains, the unpaired Cys128 was substituted to Ser to prevent I domain 

dimerization 41.  Proteins were expressed in E. Coli and purified using affinity chromatography on 

glutathione agarose and its fusion part removed by thrombin. αD in active conformation (Pro128-

Lys314) was inserted into a pET15b vector, expressed in E. Coli as a His-tag fusion protein and 

purified using affinity chromatography on Ni-chelating agarose (Qiagen Inc., Valencia, CA).  
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 Statistical analysis 

Statistical analyses were performed using Student’s t-test or Student's paired t-tests, as 

indicated in the text, using SigmaPlot 13. A value of p<0.05 was considered significant. 

 

Results 

CEP is involved in macrophage accumulation in the peritoneal cavity.  

Numerous data demonstrate the involvement of CEP in the inflammatory process 27; 28; 23; 

29; 30.  We tested CEP and EP accumulation during acute inflammation in the peritoneal tissue after 

thioglycollate-induced peritoneal inflammation. Normal tissue is characterized by strong 

deposition of EP, but was devoid of CEP completely. However, induction of inflammation led to 

the marked accumulation of CEP in the peritoneal wall (Fig. 2-2 A, B). Interestingly, CEP staining 

often overlaps with macrophage staining, which suggests a link between CEP and macrophage 

accumulation during peritoneal inflammation. It has been shown that sterile inflammation 

mediated by thioglycollate leads to the accumulation of leukocytes in the peritoneal cavity with 

neutrophils peaking at 6-18 hours and macrophages at 72-96 hours after thioglycollate injection 42.  

Anti-CEP monoclonal antibody was injected into the peritoneal cavity of mice one hour before 

and 24 hours after injection of thioglycollate. We found that thioglycollate-induced accumulation 

of macrophages in the peritoneal cavity after 72 hours was dramatically reduced in the presence 

of anti-CEP antibody, while neutrophil accumulation after 18 hours was not affected (Fig. 2-2C). 
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Figure 2-1. Schematic representation CEP and EP formation. PLA2-catalyzed hydrolysis of 

DHA generates HOHA, which, in turn, produces CEP–protein derivatives through condensation 

with the primary amino groups of protein lysyl residues, as was described previously.18 A 

structurally similar protein modification, EP, is generated through the alternative oxidative 

cleavage of DHA to give 4-hydroxyhex-2-enal followed by condensation of 4-hydroxyhex-2-enal 

with the e-amino group of lysyl residues. Compared with CEP, this modification lacks a carboxyl 

group. HHE, 4-hydroxyhexenal; HOHA, 4-hydroxy-7-oxo-hept-5-eonate. 
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Fig. 2-2. A, B. Deposition of EP (A, left panels) and CEP (A, right panels) in the normal and 

inflamed peritoneal tissues. Peritoneal tissues were isolated from mice at 72 hours after 

thioglycollate-induced inflammation (A, lower panels) or from non-treated mice as a control (A, 

upper panels). Immunofluorescent staining demonstrates EP or CEP (green fluorescence) and 

CD68 (red fluorescence). Magnifications 200x. B. CEP and EP staining was analyzed using Fiji 

software. C. Neutrophil and macrophage accumulation in the peritoneal cavity during 

thioglycollate-induced peritoneal inflammation after anti-CEP mAb treatment. Mice were 

injected twice with anti-CEP mAb or IgM control (30 min before and 24 after the injection of 1 

ml of 3% thioglycollate). Neutrophils were isolated at 18 hours and macrophages were isolated at 

72 hours after thioglycollate injection. Statistical analysis was performed using Student's t-test 

(n=5 per group for neutrophils and n=9 per group for macrophages). 

 

αMβ2 and αDβ2, but not αLβ2-transfected cells, adhere to CEP. 

The subfamily of b2 integrins consists of 4 members, αMβ2, αDβ2, αLβ2, and αXβ2. Although 

αMβ2, αDβ2, and αLβ2 demonstrate strong expression on macrophages, the level of integrin αXβ2 is 

low, which reduces its potential role in integrin-mediated adhesion and migration. To further 
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confirm the role of β2 integrins, we used αMβ2-, αDβ2-, and αLβ2-transfected HEK293 cells 

previously generated in our laboratory (Figure 2-3C).11,12 We tested their ability to bind CEP-BSA 

and found that αDβ2- and αMβ2-transfected, but not αLβ2-transfected or control mock-transfected 

cells, strongly adhered to CEP (Figure 2-3B). In contrast, adhesion to BSA or EP was not detected 

for αDβ2- and αMβ2-transfected cells (Figure 2-3B-D). HEK 293 cells express endogenous β1 

integrins including α1β1, α2β1, α4β1, and α5β1; therefore, the lack of adhesion of mocktransfected 

HEK293 cells to CEP confirmed integrin β2 specificity for CEP. The adhesion of αDβ2- and αMβ2-

transfected cells was significantly inhibited by anti-CEP, anti-β2, and anti- αD (or anti- αM) 

antibodies, but not by anti-β1 antibody (Figure 2-3C-D). In addition, we demonstrated that 

preincubation of αMβ2 and αDβ2 cells with CEP in solution decreased the binding of blocking anti- 

αM and anti-αD antibodies more than twofold (Figure 2-4). These data prove the hypothesis that 

integrin αMβ2 and αDβ2 are receptors for CEP-modified proteins. 

 

Fig. 2-3. Adhesion of HEK 293–transfected cells to CEP. A-D. (A) αMβ2, αDβ2, and αLβ2-HEK 

293-transfected cells were generated as described in the “Materials and methods” section and 
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tested by flow cytometry analysis. The mock-transfected cells are shown only with anti-αM mAb. 

A similar result was obtained with anti- αL and anti- αD antibodies. Ninety-six-well plates were 

coated with CEP (B) or different ligands (C-D) for 3 hours at 37°C. αMβ2, αDβ2, αLβ2, or mock-

transfected cells were labeled with 10 mM Calcein AM. (C-D) For some experiments, cells were 

preincubated with anti-integrin blocking antibodies. In separate wells, immobilized CEP-BSA was 

preincubated with anti-CEP mAb. After incubation, cells were added to the wells and cell adhesion 

was determined after 30 minutes in a fluorescence plate reader. Statistical analyses were performed 

using Student t test. Fn, fibronectin. 

 

Fig. 2-4. The effect of CEP on the binding of blocking anti-αM (A, C) and anti-αD (B, D) 

antibodies to αMβ2-and αDβ2-HEK293 transfected cells. Cells were preincubated with 400 nM 

CEP-BSA for 30 min at 370C followed by incubation with blocking anti- αM (or anti- αD) antibody 

for 30 min. Bound antibody was detected with FITC conjugated donkey-anti-mouse antibody and 

analyzed by FACS using a BD FortessaX-20. The results are shown as representative 

experiments(A,B)from four executed. Statistical analyses were performed using Student's pairedt-

tests.(C,D). *, P<0.05. 
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CEP stimulates migration of macrophages via β2 integrin. 

To characterize CEP as a migratory substrate for αMβ2 and αDβ2 integrins, we first 

demonstrated that β2 deficiency significantly reduced macrophage adhesion to CEP (Figure 2-5A). 

Then, we compared the migration of WT and β2-deficient macrophages within 3D CEP-enriched 

fibrin matrix. WT cells and β2-deficient cells were labeled with green fluorescent dye PKH67 and 

red fluorescent dye PKH26, respectively. Macrophages were mixed at a ratio of 1:1 (Figure 2-5B), 

placed on the bottom of a fibrin gel in a Boyden chamber, and then migration against gravity was 

initiated by MCP-1 added to the top surface of the gel. The migration was evaluated after 48 hours 

(Figure 2-5C-D) and revealed that β2 deficiency dramatically reduced the 3D migration of 

macrophages into the CEP-enriched matrix (Figure 2-5E). To exclude the contribution of a 

particular dye, the experiment was repeated with the opposite labeling conditions and revealed a 

similar result (Figure 2-6). To demonstrate that the difference between WT control and β2-deficient 

macrophages was due to mesenchymal rather than amoeboid migration, this experiment was 

performed in the presence of ROCK inhibitor (Y-27632), known to block the amoeboid (adhesion-

independent) component of cell migration. The presence of ROCK inhibitor did not alter the 

pattern of migration and the difference between WT control and β2-deficient macrophages 

remained. This confirms that macrophage migration in 3D CEP-enriched matrix was integrin-

dependent, or mesenchymal type (Figure2-7). The quality of ROCK inhibitor was verified using 

M2-activated macrophages that strongly depend on amoeboid motility (data not shown). 

To rule out the potential interplay between WT and β2
-/- cells in 3D gel, we tested the 

migration of individual subsets of macrophages in CEP- and EP-enriched fibrin matrices (Figure 

2-8A-B). The migration of WT macrophages involving CEP was substantially stronger in 

comparison with EP. In contrast, the migration of β2-deficient macrophages was similar between 

CEP and EP (Figure 2-8B), which clearly indicates the critical role of β2 integrins, primarily αMβ2 

and αDβ2 (Figures 2-3), in CEP-mediated migration. Because neutrophils also express αMβ2 and 

αDβ2 integrins, neutrophil migration might also depend on the presence of CEP within the matrix. 

We evaluated the migration of human neutrophils within CEP-enriched fibrin gel; however, no 

additional effects of CEP on neutrophil migration were detected (Figure 2-8C). These results 

correspond to the published data showing that, in contrast to macrophages, neutrophil 3D 

migration is exclusively mediated by the amoeboid mode.43 
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Fig. 2-5. CEP-dependent macrophage migration in a 3D matrix. (A) Thioglycollate-induced 

peritoneal macrophages were isolated from WT or β2
-/- mice and their adhesion to CEP was 

evaluated as described for Figure 4. (Bi) Isolated WT and β2
-/- macrophages were labeled with 

green (WT) or red (β2
-/-) fluorescent dyes. Cells were mixed in equal number and the similar 

amounts of cells were verified by cytospin of mixed cells. Bar represents 400 mm. (Bii) The cell 

number was calculated by Image Analysis Software (EVOS, Thermo Fisher) using 5 random fields. 

(C-E) Thrombin-treated fibrinogen forms a 3D polymerized gel in a Boyden chamber. (Ci) 

Labeled cells were plated on 3D polymerized fibrin in transwell inserts. Migration of macrophages 

was stimulated by 30 nM MCP-1 added to the top of the gel. (Cii and D) After 48 hours, migrating 

cells were detected by a Leica Confocal microscope. The first 30 mm of the gel from the starting 

point (where many nonmigrated cells reside) is not shown to reduce a gradient of brightness 

intensity for the sample. (E) The results were analyzed by IMARIS 8.0 software and plotted. 

Statistical analyses were performed using Student paired t tests (n=4 samples per group). Bar 

represents 500 mm. 
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Fig. 2-6. Setup for the macrophage 3-D migration in Fibrin matrix supplemented with CEP. 

Cells were labeled with the opposite dyes to compare with Fig.2-5. WT and integrin β2-/- 

macrophages were labeled with red PKH26 and green PKH67 fluorescent dyes, respectively.  Cells 

were mixed in equal amounts before the experiment. The similar number of cells were verified by 

the cytospin of mixed cells (not shown) and by analysis of macrophage starting points before 

migration (A). The background fluorescence of fibrin gel was verified by scanning samples with 

a confocal microscope before the initiation of migration (B, upper panel) and (C, left panel). 

Migration of macrophages was stimulated by 30 nM MCP-1 that was added to the top of the gel. 

After 48 hours, migrating cells were detected by a Leica Confocal microscope (Leica-TCS SP8) 

(B, lower panel) and (C, right panel). The results were analyzed and calculated by IMARIS 8.0 

software (D). First 30 μm of the gel from the starting point (where many non-migrated cells reside) 

is not shown to reduce a gradient of brightness intensity for the sample. Statistical analyses were 

performed using Student's paired t-tests (n=4). 
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Fig. 2-7. Migration of macrophages in the presence of ROCK inhibitor (Y-27632) in 3-D 

Fibrin matrix supplemented with CEP. WT and integrin β2
-/- macrophages were labeled with 

green PKH67 and red PKH26 fluorescent dyes, respectively.  Cells were mixed in equal amounts 

before the experiment and preincubated with ROCK inhibitor, Y-27632 (20µM). The ROCK 

inhibitor was also added to the matrix. Migration of macrophages was stimulated by 30 nM MCP-

1 that was added to the top of the gel. After 48 hours, migrating cells were detected by a Leica 

Confocal microscope (Leica-TCS SP8) (A, B). The results were analyzed by IMARIS 8.0 software 

(C). First 30 μm of the gel from the starting point (where many non-migrated cells reside) is not 

shown to reduce a gradient of brightness intensity for the sample. Statistical analyses were 

performed using Student's paired t-tests (n=4). 
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Fig. 2-8. CEP supplemented in 3D fibrin matrix increases macrophage migration, but not 

neutrophil migration. Thrombin-treated fibrinogen forms a 3D polymerized gel in a Boyden 

chamber. Thioglycollate-induced WT (A) or β2
-/- (B) peritoneal macrophages were labeled with 

PKH67 green fluorescent dye and plated on the gel. Macrophage migration was stimulated with 

30 nM MCP-1. A total of 9 mMEP (left) or CEP (right) was incorporated in the gel during 

polymerization. Results were evaluated in 4 to 6 samples per group (9 field of view per sample), 

analyzed by IMARIS 8.0 software, and plotted. (C) Neutrophils were labeled with PKH26 red 

fluorescent dye and plated on fibrin matrix with incorporated CEP or EP. The migration was 

detected after 24 hours as described for macrophages. The first 30 mm of the gel from the starting 

point (where many nonmigrated cells reside) is not shown to reduce a gradient of brightness 

intensity for the sample. Statistical analyses were performed using Student paired t tests (n=4 per 

group). Bar represents 500 mm. 

To assess whether MPO is able to directly contribute to CEP–protein adduct formation, 

human fibrinogen was incubated with active recombinant MPO and DHA.44 Resulting CEP 

formation was quantified by enzyme-linked immunosorbent assay (Figure 2-9A). As anticipated,45 

the formation of CEP–protein adducts required the presence of all 3 main components: DHA (as a 

lipid substrate), MPO (as a source of oxidation), and a protein (eg, fibrinogen, as a source of 
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lysines). Incubation of fibrinogen with MPO or DHA alone was not sufficient for CEP generation. 

The presence of CEP adducts on fibrinogen was confirmed by western blot with monoclonal anti-

CEP antibody (Figure 2-9B). These results clearly demonstrate that MPO-mediated DHA 

oxidation is one of the main mechanisms for CEP generation. Based on the results with MPO-

deficient mice, MPO seems to be a clear source of CEP generation in vivo; however, it appears 

that other oxidative enzymes might participate in this process. 

 

Figure2-9. Generation of CEP-modified fibrinogen by recombinant MPO. A. Human 

fibrinogen was coated on 96-well plate at concentration 50 μg/ml for overnight at 40C. Wells were 

post-coated with 0.5% polyvinyl alcohol for 1 h at 370C. 2 μM DHA , 0.5mU/ml MPO, alone or 

together, were added to the wells coated with Fg or only with polyvinyl alcohol in 20 mM Hepes, 

150 mM NaCl, 0.01% H2O2, 1mM CaCl2 and incubated in oxygen-free environment (under argon 

atmosphere) for 18 hours at 370C. After incubation the plate was washed out with PBS 

supplemented with 0.05% Tween 20 for 3 times and incubated with anti-CEP polyclonal antibody 

(0.9 μg/ml) for 2 hours at 370C. After washing, wells were incubated with goat-anti-rabbit HRP 

conjugated antibody for 1 h at 370C and the binding was developed using TMB-ELISA substrate 

solution (Pierce). The result was detected by plate reader using wavelength 450 nm. Statistical 

analyses were performed using Student's paired t-tests from 3 independent experiments.  B. In 
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parallel experiment the 100 μg/ml fibrinogen was incubated with 2 μM DHA and 0.5mU/ml MPO 

in 20 mM Hepes, 150 mM NaCl, 0.01% H2O2, 1mM CaCl2 buffer in the microtube in oxygen-free 

environment (under argon atmosphere) for 18 hours at 370C. After incubation the samples (in non-

reduced conditions) were analyzed by Western Blot (4-20% gradient PAAG) with anti-CEP 

polyclonal antibody. The molecular weight of fibrinogen is 340 kDa.  

 

Discussion 

In the present study, we demonstrated that recruited neutrophils by the means of MPO are 

able to modify existing components of ECM by CEP adducts, which, in turn serve as adhesive 

ligands for macrophage integrins. The following conclusions are drawn from this study: 1) While 

CEP is not present in healthy tissues, its levels are dramatically increased at the sites of 

inflammation. 2) Inhibition of CEP does not affect the response of neutrophils to inflammation, 

but prevents the consequent macrophage recruitment. 3) Neutrophil activation and migration 

through ECM results in the generation of CEP-modified proteins. 4) CEP-modified proteins 

promote macrophage adhesion and migration. 5) Integrins αMβ2 and αDβ2 are specific macrophage 

receptors for CEP-mediated adhesion and migration. Thus, CEP is a natural inflammatory product 

generated during the first phase of inflammation by recruited neutrophils to facilitate the second 

wave of inflammation, namely, the recruitment of macrophages. By the means of oxidation, 

neutrophils seem to “pave the road” for future macrophage invasion by modifying ECM with CEP.  

  CEP was initially described in the retina of patients with age-related macular degeneration  

20. However, later the link between inflammation and CEP was demonstrated in several pathologies 

associated with chronic inflammation including atherosclerosis, tumor progression, aging and 

others 46; 47; 26; 48; 24. Several groups reported the secretion of pro-inflammatory mediators from 

macrophages after its engagement with CEP-modified proteins. Particularly, the increased 

expression of TNFα, IL-6, IL-1β and IL-12 was reported 28; 23; 29; 30. In agreement with this, CEP 

induced M1 macrophage polarization27. Therefore, CEP function is closely related to the 

development of inflammation.  

Previously, several receptors were detected for the CEP on the surface of macrophages 

including TLR2, CD36, TLR1 and TLR6 23; 46. While these receptors contribute to macrophage 

activation and reprogramming by CEP, they do not directly mediate macrophage migration. Our 
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data demonstrated that CEP is not able to serve as a chemoattractant for macrophages or their 

integrin activation agonist. These results suggest that macrophages use another receptor for CEP 

that can mediate migration. 

A subfamily of β2 integrins are the major adhesive receptors on the surface of macrophages. 

Since αLβ2 interacts only with cell-counter receptors ICAMs and the expression of αXβ2 on 

macrophages is low 9, two other members of subfamily, αMβ2 and αDβ2 are the best candidates for 

the macrophage migration and retention in the extracellular matrix. αDβ2 and αMβ2 recognize a 

wide range of ligands, including fibronectin, thrombospondin and vitronectin 11, 12. CEP 

modifications seem to generate the new inflammation-specific substrate for αMβ2 and αDβ2 

macrophage migration or retention. Importantly, even known β2 integrin ligands such as 

fibrinogen, can be “improved” by CEP modification. Inflammation promotes the leak of fibrinogen 

from blood to the inflamed tissue. Importantly, while the affinity of soluble fibrinogen for β2 

integrins is low, it increases substantially upon immobilization or partial digestion due to the 

exposure of carboxyl groups of glutamic and aspartic acid 49,50. Acidic side chains of ligands are 

required for the binding to Mg2+ in MIDAS motif within the integrin I-domain, which is critical 

for integrin ligand recognition 51. Likewise, the modification of fibrin with CEP (via the side-chain 

of lysine) reduces the positive charge on the fibrin surface and at the same time increases the 

number of negatively charged carboxyl groups, which are a major active element within the CEP 

structure (Fig.2-1). Thus, CEP adducts modify fibrinogen into the high affinity ligand for αMβ2 and 

αDβ2 integrins. Indeed, we show that CEP but not EP, which modifies proteins in a similar manner 

but lacks a carboxyl group, is able to create an adhesive β2 ligand out of many proteins, possibly 

imitating bacterial ligands by exposed carboxyl groups as proposed previously.  In general, the 

high Kd for the αM-CEP and αD-CEP interactions demonstrate a strong affinity that exceeds the 

affinity for the binding of αM or αD I-domains to previously identified proteins 12. This makes CEP-

modified proteins a preferential ligand for the macrophages. We found that the affinity for αD-CEP 

interaction surpasses the affinity for αM-CEP approximately 10-fold. We suggest that this effect is 

mediated by a difference in the electrostatic surfaces between the αD I-domain and αM I-domain 52. 

Therefore, it is possible that integrin αDβ2 plays a more significant physiological role in the CEP-

mediated macrophage adhesion and migration. Further studies are required to clarify this question. 

  It is well accepted that strong integrin-mediated adhesion often antagonizes or limits  

migration 53, 54. Since CEP-modified proteins serve as strong ligands for β2 on macrophages, CEP 
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might serve as a cell migration signal for cells with moderate integrin expression, and as a 

retention/arrest signal for cells with the high expression of integrins. We recently demonstrated 

that expression of αDβ2 is upregulated on M1 macrophages in vitro and within atherosclerotic 

lesions. We showed that high expression of αDβ2 mediates the retention of macrophages at the site 

of inflammation 10. Thus, CEP-modified proteins are the likely ligands responsible for these 

phenomena.  

 Recent studies indicate that rapid migration of neutrophils is mediated in an integrin-

independent manner by an amoeboid mode of motility 55. Therefore, based on these observations, 

neutrophils do not need to use CEP as substrate for their migration. Importantly, it has been 

demonstrated that macrophages can use both mechanisms, amoeboid and mesenchymal migration, 

depending on environment and macrophage subset 56. This, again, implies the selectivity of CEP 

ligands towards macrophages.  

In summary, our data introduce a new mechanism for macrophage migration during 

inflammation. The recruitment of neutrophils and subsequent neutrophil activation generates CEP-

modified proteins along the neutrophil path. CEP-modified proteins provide a track for future 

migration (or accumulation) of macrophages via αMβ2 and αDβ2-mediated processes. 

The information obtained in our studies not only establishes the foundation for a new model 

of inflammation but also provides a new strategy for treatment of chronic inflammatory diseases. 

The advantage of CEP as a new therapeutic target resides in its unique formation in inflamed tissue. 

Therefore, the blocking of CEP in peripheral tissues during different inflammatory diseases can 

prevent macrophage accumulation and further development of chronic inflammation.  
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Abstract 

Chronic inflammation is essential mechanism during the development of cardiovascular 

and metabolic diseases. The outcome of diseases depends on the balance between the 

migration/accumulation of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in 

damaged tissue. The mechanism of macrophage migration and subsequent accumulation is still 

not fully understood.   

 Currently, the amoeboid adhesion-independent motility is considered essential for 

leukocyte migration in the three-dimensional environment.  We challenge this hypothesis by 

studying the contribution of leukocyte adhesive receptors, integrins αMβ2 and αDβ2, to three-

dimensional migration of M1-polarized, M2-polarized and resident macrophages. The expression 

of integrin αDβ2 was significantly upregulated on macrophages in atherosclerotic lesions and M1 

macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin αMβ2 was not 

altered. This difference defines their distinct roles in the regulation of macrophage migration. αD-

deficiency reduced macrophage accumulation in atherosclerotic lesions and does not have effects 

on macrophage apoptosis or proliferation. Both integrins have a moderate expression on M2 

macrophages and αMβ2 demonstrates high expression on resident macrophages.  

The level of integrin expression determines its contribution to macrophage migration. 

Namely, intermediate expression supports macrophage migration, while a high integrin density 

inhibits it.  Using in vitro three-dimensional migration and in vivo tracking of adoptively-

transferred fluorescently-labeled macrophages during the resolution of inflammation, we found 

that strong adhesion of M1-activated macrophages translates to weak 3D migration, while 

moderate adhesion of M2-activated macrophages generates dynamic motility.  

Reduced migration of M1 macrophages depends on the high expression of αDβ2, since αD-

deficiency decreased M1 macrophage adhesion and improved migration in fibrin matrix and 

peritoneal tissue. Similarly, the high expression of αMβ2 on resident macrophages prevents their 

amoeboid migration, which is markedly increased in αM-deficient macrophages.  In contrast, αD- 

and αM-knockouts decrease the migration of M2 macrophages, demonstrating that moderate 

integrin expression supports cell motility.  The results were confirmed in a diet-induced diabetes 

model. αD deficiency prevents the retention of inflammatory macrophages in adipose tissue and 

improves metabolic parameters, while αM deficiency does not affect macrophage accumulation.   
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Summarizing, β2 integrin-mediated adhesion may inhibit amoeboid and mesenchymal 

macrophage migration or support mesenchymal migration in tissue, and, therefore, represents an 

important target to control inflammation.  

 

Introduction 

Monocyte/macrophage migration to, and accumulation within the site of inflammation are 

critical steps in the development of the inflammatory response. While acute inflammation is 

usually generated as a defensive mechanism, the development of chronic inflammation is an 

essential step in the initiation or progression of many devastating diseases including 

atherosclerosis, diabetes, obesity, arthritis and others 1-4. Macrophage accumulation at the damaged 

tissue is a hallmark of inflammation5, 6.  However, the particular subset of accumulated 

macrophages is critical for the further development or resolution of chronic inflammation. 

Classically activated (M1) macrophages produce a harsh pro-inflammatory response, while 

alternatively activated (M2) macrophages may have anti-inflammatory functions 7, 8. The balance 

between the accumulation of pro-inflammatory and anti-inflammatory macrophages regulates the 

fate of inflammation. So far, the mechanism of macrophage accumulation is not fully understood.  

Macrophage accumulation at the site of inflammation depends upon monocyte recruitment, 

macrophage retention and emigration.  Monocyte recruitment includes activation, diapedesis 

through the endothelial monolayer (2D migration) 9, 10 and migration through the extracellular 

matrix to the site of inflammation (3D migration). While the role of leukocyte adhesive receptors 

in 2D migration is well established 9, 11, their contribution to macrophage migration through 3D 

extracellular matrix (ECM) is still unclear. Macrophages utilize two types of motility in a 3D 

environment – amoeboid and mesenchymal. Amoeboid migration is adhesion-independent 

movement that is based on flowing and squeezing. This migratory mode was shown to be dominant 

for neutrophils, dendritic cells and lymphocytes 12. Mesenchymal migration involves the classical 

adhesion-mediated mechanism that includes cell protrusion and adhesion of the leading edge, 

followed by detachment of the trailing edge and retraction of the contractile cell rear 13. It has been 

shown that cell-substratum adhesiveness regulates the fate of mesenchymal cell migration. Namely, 

an intermediate level of adhesiveness generates the optimal conditions for cell migration 14. Low 

adhesiveness does not support cell motility, while a very high level of adhesiveness thwarts cell 
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locomotion because it inhibits cell detachment from the substrate 15, 16. The density of adhesive 

receptors on the cell surface is one of the most critical parameters of cell-substratum adhesiveness. 

Therefore, a high density of cell adhesion receptors that generate a high adhesiveness may lead to 

the retention of cells 15, 17. 

Integrins are the most important cell adhesive receptors that are involved in 

monocyte/macrophage migration. Of particular note is the subfamily of β2 integrins that are 

exclusively expressed on leukocytes and consist of 4 members: αLβ2 (CD11a/CD18), αMβ2 

(CD11b/CD18), αXβ2 (CD11c/CD18) and αDβ2 (CD11d/CD18) 18. Integrins αMβ2 and αDβ2 are the 

most interesting members with regard to cell migration, since αLβ2 has no ligands in ECM 19 and 

αXβ2 demonstrated a very low expression on macrophages 20. In contrast, αM and αD have marked 

macrophage expression and share many ECM ligands 21, 22. 

Different subsets of macrophages have a diverse expression of integrins 23 and, most 

importantly, possess different migratory characteristics 24. We hypothesize that integrin expression 

regulates the distinct migratory properties of M1-polarized, M2-polarized and resident 

macrophages.  We realize that in vitro activated M1 and M2 macrophages do not fully represent 

the varieties of pro-inflammatory and anti-inflammatory macrophages in vivo; however, these cells 

are appropriate models that can help us to understand the migratory mechanisms of different 

macrophage subsets during inflammatory diseases. 

In our previous project, we found that the pro-atherogenic role of integrin αDβ2 depends 

upon the upregulation of αD on pro-inflammatory M1 macrophages in vitro and on macrophages 

in atherosclerotic lesions, which apparently mediates macrophage retention 23. In agreement with 

this, αD-deficiency reduced the development of atherosclerosis and released the migration of M1 

macrophages in vitro 23. 

In this paper we further develop this project by analyzing the role of β2 integrins on 

different subsets of macrophages and attempt to depict the mechanisms that stimulate cell 

migration/retention based on the analysis of integrin expression, cell adhesion, secretion of 

proteases, and mode of cell migration. We found a strong correlation between macrophage 

migration and expression of αMβ2 and αDβ2. A moderate expression of αMβ2 and αDβ2 on M2 

macrophages supports cell movement, while the upregulation of αDβ2 on M1 macrophages and αM 

on resident macrophages prevents mesenchymal and/or amoeboid migration. These results were 
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verified by using αM- and αD-deficient macrophages in 3D in vitro migration and by using an in 

vivo model for the resolution of peritoneal inflammation and diet-induced diabetes. 

Therefore, the regulation of β2 integrin expression may help to shift the pro-/anti- 

inflammatory balance at the site of inflammation and reduced the pathophysiological outcome. 

 

Materials and Method 

Reagents and antibodies 

Reagents were purchased from Sigma-Aldrich (St. Louis, MO) and Thermo Fisher 

Scientific (Waltham, MA). Rock inhibitor (Y27632) and aprotinin were from Sigma-Aldrich. 

Recombinant human and mouse IFNγ, IL-4, MCP-1 and FMLP were purchased from Invitrogen 

Corporation (Carlsbad, CA). Anti-human αD mAb (clone 240I) was generously provided by Eli 

Lilly Corporation (Indianapolis, IN). Polyclonal antibody against the αD I-domain was described 

previously (10). The antibody recognizes both human and mouse αD I-domains and has no cross-

reactivity with recombinant human and mouse αM, αX and αL I-domains. The antibody was isolated 

from rabbit serum by affinity chromatography using αDI-domain-Sepharose. Mouse PE-cy7 and 

APC- conjugated anti-αM mAb (clone M1/70) and F4/80 mAbs were from eBioscience (San Diego, 

CA). The mAb 44a directed against the human αM integrin subunit was purified from the 

conditioned media of the hybridoma cell line obtained from American Type Culture Collection 

(ATCC, Manassas,VA) using protein A agarose (GE Healthcare, Piscataway, NJ).  

 

Animals. 

Wild type (C57BL/6J, stock # 000664) and integrin αD-deficient (B6.129S7-Itgad tm1Bll/J, 

stock # 005258 and integrin αM-deficient (B6.129S4-Itgam tm1Myd/J, stock # 003991) mice were 

bought from Jackson Laboratory (Bar Harbor, ME). αD-deficient and αM-deficient mice have been 

backcrossed to C57BL/6 for at least ten generations. All procedures were performed according to 

animal protocols approved by East Tennessee State University IACUC. 

 

 Flow cytometry analysis. 

Flow cytometry analysis was performed to assess the expression of αD and αM on mouse 

peritoneal macrophages. Cells were harvested and pre-incubated with 4% normal goat serum for 

30 min at 4°C, then 2x106 cells were incubated with specific antibody for 30 min at 4°C. Non-
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conjugated antibodies required additional incubation with Alexa 488 or PE-cy7-donkey anti-

mouse IgG (at a 1:1000 dilution) for 30 min at 4°C. Finally, the cells were washed and analyzed 

using a Fortessa X-20 (Becton Dickinson).  

 

Generation of classically activated (M1) and alternatively activated (M2) mouse and human 

macrophages. 

Peritoneal macrophages from 8-12 week old mice (WT and αD
-/-, n = 3 mice per group) 

were harvested by lavage of the peritoneal cavity with 5 ml of sterile PBS 3 days after 

intraperitoneal (IP) injection of 4% thioglycollate (TG; 0.5ml). The cells were washed twice with 

PBS and resuspended in complete RPMI media. The cell suspension was transferred into 100mm 

petri dishes and incubated for 2h at 37oC in humidified air containing 5% CO2 atmosphere. 

Nonadherent cells were washed out with RPMI media, and the adherent macrophages were 

replenished with RPMI media. The macrophages were differentiated to M1 and M2 phenotypes 

by treatment with recombinant mouse interferon-γ (IFN-γ) (100 U/ml, Thermo Fisher) and 

interleukin 4 (IL-4) (2nM, Thermo Fisher), respectively, for 4 days. Medium with IFN-γ and IL-4 

were changed every 2 days or as required. The M1 phenotype macrophages from WT and αD
-/- 

were labeled with red fluorescent marker PKH26 and green fluorescent marker PKH67, 

respectively, according to the manufacturer’s instructions (Sigma-Aldrich). The fluorescently-

labeled cells were dissociated from the plates using 5mM EDTA in PBS and used for the 

experiments thereafter. 

 

Cell adhesion assay. 

The adhesion assay was performed as described previously 22 with modifications. Briefly, 

96-well plates (Immulon 2HB, Cambridge, MA) were coated with different concentrations of 

fibrinogen or Matrigel for 3 h at 37 C. The wells were post-coated with 0.5% polyvinyl alcohol 

for 1 h at 37 C. Mouse peritoneal macrophages or HEK 293 cells transfected with αMβ2, or αDβ2 

integrins were labeled with 10 µM Calcein AM (Molecular Probes, Eugene, OR) for 30 min at 

37 °C and washed with DMEM and resuspended in the same medium at a concentration of 1 × 106 

cells/mL. Aliquots (50 µL) of the labeled cells were added to each well. For inhibition experiments, 

cells were mixed with antibodies and incubated for 15 minutes at 22 °C before they were added to 

the coated wells. After 30 minutes of incubation at 37 °C in a 5% CO2 humidified atmosphere, the 
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nonadherent cells were removed by washing with HBSS. The fluorescence was measured in a 

Synergy H1 fluorescence plate reader (BioTek, Winooski, VT), and the number of adherent cells 

was determined from a labeled control. 

 

Migration of macrophages in 3D fibrin gel and matrigel. 

The migration assay was performed as described previously 25. WT and αD
-/- or WT and 

αM
-/- peritoneal macrophages activated to M1 or M2 phenotype as described above were labeled 

with PKH26 red fluorescent dye and PKH67 green fluorescent dye, respectively. Cell migration 

assay was performed for 24 hours at 37°C in 5% CO2 in a sterile condition. An equal number of 

WT and αD
-/- macrophages was evaluated by cytospin of mixed cells before the experiment and at 

the starting point before migration. Labeled WT (1.5x105) and αD
-/- (1.5x105) 

activated macrophages were plated on the membranes of transwell inserts with a pore size of 

8 μm and 6.5 mm in diameter (Costar, Corning, NY) precoated with fibrinogen (Fg). Fibrin gel 

(100 µl/sample) was made by 0.75mg/ml Fg containing 1% FBS and 1% P/S and activated by 0.5 

U/ml thrombin. Matrigel (50%) was diluted by RPMI-1640 supplemented with 1% FBS and 1% 

P/S. 30 nM of MCP-1 (or 100 nM FMLP) were added on the top of the gel to initiate the migration. 

Migrating cells were detected by Leica Confocal microscope (Leica-TCS SP8) and the results 

were analyzed and reconstructed using IMARIS 8.0 software.  

 

Adoptive transfer in the model of resolution of peritoneal inflammation.  

           Adoptive transfer was performed as described previously 23. Briefly, fluorescently-labeled 

WT (red PKH26 dye) and αD
-/- or αM

-/- (green PKH67 dye) M1- or M2-activated macrophages 

were mixed in a 1:1 ratio and further injected intraperitoneally into wildtype mice at 4 days after 

thioglycollate (TG)-induced inflammation. 3 days later, peritoneal macrophages were harvested 

with 5 ml PBS supplemented with 5 mM EDTA. The percentages of red and green fluorescent 

macrophages in the peritoneal exudate were assessed by fluorescence microscopy, multi-color 

flow cytometer (Fortessa X-20) and imaging flow cytometry (ImageStream Mark II, Amnis). 

  The PKH26 and PKH67 dyes were switched in one experiment to verify the effect of dye 

on cell migration. We did not detect any difference between two dyes. The quantification of the 

data was analyzed by using Image Analysis Software (EVOS, Thermo Fisher).  
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Adoptive transfer in the model of diet-induced diabetes. 

 The approach is based on previously published method 26 with some modifications. 

Monocytes were isolated from the bone marrow progenitors of WT and αD-deficient mice using 

magnetic bead separation kit (Miltenyi Biotec, Gaithersburg, MD). Monocytes were labeled with 

red, PKH26 (WT) or green, PKH67 (αD
-/-) fluorescent dyes. Red (1.5x106) and green (1.5x106) 

cells were mixed together and injected in tail vein of wild type C57BL6 mice fed high fat diet (45% 

kcal/fat) for 8 weeks. After 3 days adipose tissue was isolated, digested as described previously 26 

and analyzed using FACS (Fortessa X-20, BD) and imaging flow cytometry (ImageStream Mark 

II, Amnis). 

 

Glucose tolerance and insulin sensitivity tests. 

Wild type and αD
-/- mice fed a high fat diet for 16 weeks were fasted overnight in a new 

cage containing water but no food, (approximately 16 hours). The following morning mice were 

weighed, and an initial blood glucose level was measured using a glucometer and blood from the 

tail vein. Glucose (2 grams/kg body weight of 20% D-glucose) was administered IP and at 15, 30, 

60, and 120 minutes post injection blood glucose was again measured. 

For Insulin sensitivity test, Mice fed a high fat diet were fasted for 5 hours, starting at 7 

AM (lights on). After fasting, mice were weighed, and the initial level of blood glucose measured 

as described above. Insulin (0.75mU/g) was injected I.P. and the level of blood glucose was 

evaluated at 15, 30, 45 and 60 min.  

 

Quantitative RT-PCR 

Cellular mRNA was extracted from macrophages using the Qiagen Oligotex mRNA Midi 

Kit. mRNA was reverse transcribed with the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, 

Inc., Hercules, CA) and real-time quantitative PCR was performed using SYBR Green Supermix 

(Bio-Rad) on an MyIQ2 two color real-time PCR detection system (Bio-Rad), with the thermal 

cycler conditions suggested by the manufacturer. The sequences of integrin primers are shown 

below: αD forward, 5’-GGAACCGAATCAAGGTCAAGTA-3’, and reverse, 5’-

ATCCATTGAGAGAGCTGAGCTG-3’. αM forward, 5’-TCCGGTAGCATCAACAACAT-3’ 

and reverse, 5’-GGTGAAGTGAATCCGGAACT-3’. α4 forward, 5′-

AAGGAAGCCAGCGTTCATATT-3′, and reverse, 5′-TCATCATTGCTTTTGCTGTTG-3′. α5 
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forward, 5′-CAAGGTGACAGGACTCAGCA-3′, and reverse, 5′-

GGTCTCTGGATCCAACTCCA-3′. αX forward, 5’-CTGGATAGCCTTTCTTCTGCTG-3’, and 

reverse, 5’-GCACACTGTGTCCGAACTCA-3’. GAPDH or 5S rRNA were used as an internal 

control (Ambion/Life Technologies, Grand Island, NY). 

 

Statistical analysis 

Statistical analyses were performed using Student’s t-test or Student's paired t-tests where 

indicated in the text using SigmaPlot 13. A value of p<0.05 was considered significant. 

  

Results 

Integrin αDβ2 is upregulated on M1 macrophages in vitro and in atherosclerotic lesions.  

Despite a detected role of αDβ2(CD11d) in neutrophil accumulation, the role of αDβ2 in 

macrophage function seems to be more significant. This assumption is based on the critical role of 

macrophages in atherogenesis and on the dominant expression of αDβ2 on macrophages. Moreover, 

most of identified cytokines are expressed by macrophages and related to macrophage functions.  

Various studies have highlighted IL-6 as an upstream inflammatory cytokine that plays an 

important role in the development of atherosclerosis 27. The high level of IL-6 found in such 

conditions has multiple functions, including activation of endothelial cells, increased coagulation, 

and promotion of lymphocyte proliferation and differentiation. Fractalkine is a chemokine which 

is involved in macrophage recruitment during inflammation 28. IL-12 contributes to atherosclerosis 

by mediating the differentiation of naive T cells into Th1 cells. It stimulates the production of IFN-

γ and TNF-α from T cells and natural killer cells, and also reduces IL-4 mediated suppression of 

IFN-α 29. Therefore, IL-12 is involved in classical, pro-inflammatory activation of macrophages 

(M1). In contrast, IL-13, which is upregulated in αD
-/-/ApoE-/- mice, is responsible for the 

alternative macrophage activation 30.    

Taken together these data indicate a link between pro-inflammatory macrophages and αDβ2. 

Accordingly, we tested the regulation of αDβ2 expression on M1 and M2 macrophages and 

compared its expression with its related integrin αM(CD11b). Peritoneal macrophages were 

incubated 3 days in the presence of 100 U/ml IFN-γ (M1) or 2 nM IL-4 (M2) and integrin 
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expression was evaluated by q-PCR. Macrophage polarization was verified by q-PCR using 

markers for M1 (iNOS) and M2 (Arg1) subsets (Data not shown). αDβ2 was significantly 

upregulated on mouse peritoneal macrophages activated to the M1 phenotype (Fig.3-1A), while 

the density of αMβ2 remained relatively unchanged. To confirm this result, αDβ2 and αDβ2 

expressions on M1 macrophages were verified by FACS (Fig.3-1B). To demonstrate similar 

pattern of expression for human αDβ2, we also tested M1 and M2 activation of human monocyte-

derived macrophages using 100 U/ml IFN-γ and 2 nM IL-13. We found that the generation of the 

M1 phenotype significantly upregulated αDβ2 expression, while the M2 phenotype markedly 

decreased the αDβ2 level. In contrast, the expression of αMβ2 was not affected by macrophage 

polarization (Fig.3-1C). These data clearly demonstrate the association of αDβ2 with pro-

inflammatory M1 macrophages in both mice and humans.   

The progression of chronic inflammation depends on excessive accumulation of M1 

macrophages in the subendothelial space during atherogenesis 31. We sought to test whether αDβ2 

expression was elevated on macrophages in atherosclerotic lesions. Flow cytometry of digested 

mouse atherosclerotic aortas identified a high expression of αDβ2 on macrophages in the lesion and 

confirmed a moderate expression of αMβ2 
32 (Fig. 3-1D). Remarkably, this pattern of expression is 

specific to chronic inflammation, since the level of αDβ2 is similar or lower on other subsets of 

monocytes/macrophages compared to αMβ2 (Fig. 3-1E) 17. Therefore, αDβ2 is upregulated on M1 

macrophages and within the site of inflammation, while αMβ2 expression is not regulated by 

macrophage activation and is expressed at moderate levels at inflammatory sites.  

These data demonstrate a dramatic difference in αDβ2 expression on monocytes and 

macrophages during inflammation and suggest a potential regulatory role of αDβ2 in 

migration/accumulation of M1 macrophages in tissue. 
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Fig.3-1 Integrin αD(CD11d) is upregulated on M1 macrophages in vitro. Mouse peritoneal 

macrophages, isolated after the intraperitoneal injection of 4% thioglycollate, were plated and 

stimulated with 100 U/ml IFN-γ or 2 nM IL-4 for 3 days. After incubation integrin expression was 

evaluated by real-time quantitative PCR (A) and by FACS (B) (n=5).  C. Human primary 

monocytes were stimulated with IFN-γ (M1) or IL-13 (M2) for 5 days and integrin expression was 

evaluated by FACS. Mean fluorescence values are plotted based on 5 independent experiments. D. 

Integrins αD (CD11d) and αM (CD11b) expression in atherosclerotic lesions. Aortas of ApoE-/- mice 

were isolated, digested and subjected to multi-color FACS with macrophage marker mAb F4/80 

and integrin specific antibodies. Data are from a representative experiment of three with similar 

results. E. αD and αM expression on murine circulating monocytes; thioglycollate-induced 

peritoneal, resident peritoneal and atheroma macrophages. Data were plotted as the meanSEM. 
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αD deficiency reduced macrophage accumulation in atherosclerotic lesions and does not have 

effects on macrophage apoptosis or proliferation.  

The analysis of aorta sinuses with anti-macrophage Mac-3 antibody demonstrated an 

attenuated accumulation of macrophages in the atherosclerotic lesions of αD
-/-/ApoE-/- mice that 

cannot be explained by reduced level of cholesterol in circulation or decreased foam cell formation 

and indicates a potential role of αD in macrophage migration (Fig.3-2A). However, the recent data 

demonstrate a significant role of apoptosis and proliferation on macrophage accumulations in the 

atherosclerotic lesions as well as on development of atherosclerosis. Our cytokine assay screening 

detected a reduced concentration of FAS ligand in αD
-/-/ApoE-/- mice that indicates potential role 

of αD in apoptosis. The aorta root samples from ApoE-/- and αD
-/-/ApoE-/- mice were stained with 

ApopTag peroxidase in Situ apoptosis kit (EMD Millipore), but demonstrated no difference 

between control and experimental groups (Fig.3-2B). In addition, to test the effect of CD11d-

deficiency on macrophage apoptosis and proliferation, WT and αD
-/- peritoneal macrophages were 

isolated and incubated with oxidized lipids and GM-CSF for 5 days. There was no effect of αD-

deficiency on the macrophage number and survival using Annexin V apoptosis assay (Fig. 3-2C) 

and CyQuant direct proliferation assay (Fig. 3-2D). 

Therefore, despite reduced concentration of Fas ligand we did not find changes in the 

apoptosis of αD
-/-/ApoE-/- mice. These results are in agreement with published data that 

overexpression of Fas ligand during development of atherosclerosis increased lesion progression, 

but did not affect cell apoptosis. Rather, Fas ligand-mediated atherogenesis relates to increased 

lesion cellularity. Hence, αD-mediated macrophage accumulation most likely depends on the 

regulation of macrophage migration. 
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Fig. 3-2. Macrophage accumulation, apoptosis and proliferation in the mouse aortic sinus. 

A. Macrophage staining in the aortic sinus from ApoE-/- and αD
-/-/ApoE-/- mice: Upper panel. 

Representative images of a cross section of the aortic sinus stained with Mac3 (40× magnification). 

The intima of vessel wall is surrounded by dash line.  Lower panel, the graph represents the 

quantification of the surface area positive for Mac3. The data represent the mean  SEM of Mac3 

positive areas in 6 sections of each group. *p<0.05. Integrin αD-deficiency does not affect 

macrophage apoptosis (B, C) or proliferation (D). B. Apoptosis was evaluated on aorta sinuses 

isolated from ApoE-/- and αD
-/-/ApoE-/- mice using ApopTag peroxidase in Situ apoptosis kit. C. 

Peritoneal macrophages were isolated from WT and αD
-/- mice and incubated in vitro in different 

conditions. Macrophage apoptosis was assessed after 24 hours incubation on plates and an 

additional 18 hours incubation in the presence of 15 mg/ml OxLDL using  Annexin V assay. D. 

Macrophage proliferation was evaluated after 5 days in culture in the presence of 50 mg/ml 

OxLDL or 60 ng/ml GM-CSF using CyQUANT® Direct proliferation assay kit. Black bars – wild 

type macrophages, open bars – αD -deficient macrophages. Data were plotted as the mean  SEM. 

Statistical analysis was performed using Student's t-test.  
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Strong adhesion of classically-activated (M1) macrophages is converted in weak migration 

in contrast to well-migrated, but low-adherent alternatively-activated (M2) macrophages.   

To evaluate the adhesive and migratory properties of M1 and M2 macrophages, we 

stimulated thioglycollate-induced peritoneal macrophages with IFNγ (M1-activated) or IL-4 (M2-

activated) and evaluated the adhesion of these cells to fibrinogen and their migration in 3D fibrin 

matrix. The adhesion assay revealed a much stronger attachment of M1 macrophages 

(28.68±5.33%) when compared to M2 macrophages (9.12±2.79%) (Fig.3-3A). Moreover, M1 and 

M2 adherent cells possess different morphologies. While M1 macrophages have a rounded, flat, 

pancake-like shape after adhesion assay, M2 macrophages were elongated and less spread out (Fig. 

3-3B). The development of M1 and M2 phenotypes were verified by upregulation of iNOS and 

ArgI, respectively (Fig. 3-4A). 

We tested how different adhesive properties affect macrophage cell migration (Fig.3-3C-

F). Fluorescently labeled M1 (red, PKH26) and M2 (green, PKH67) macrophages were mixed in 

an equal number (Fig. 3-5A) and placed on a 3D fibrin gel where cell migration was stimulated 

via a MCP-1 gradient (Fig. 3-3C, E). After 48 hours, we detected a robust migration of M2 

macrophages, which markedly exceeded the locomotion of M1 macrophages (Fig. 3-3D-F). It has 

been shown previously that M1 and M2 macrophages demonstrate a similar chemotaxis to MCP-

1 in 2D transwell assay (no ligand coated on membrane) 33. These data proved that the different 

migration of M1 and M2 macrophages in our 3D chemotaxis/haptokinesis assay does not regulated 

by different expression of CCR2 (chemotaxis), but by distinct adhesion-mediated migration 

(haptokinesis). To additionally verify it, the migration was repeated using a gradient of N-

Formylmethionine-leucyl-phenylalanine (FMLP) and revealed similar results (Fig.3-5B), 

therefore the adhesive receptors are potential cause of different migratory properties of M1 and 

M2. 
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Fig.3-3. M1-activated macrophages demonstrate much stronger adhesive properties but 

weaker migration in comparison to M2-activated macrophages. A. Adhesion assay of WT M1 

and M2-activated macrophages to Fg. 96-well plate was coated with 4 µg/ml Fg for 3 h at 37C. 

Fluorescently labeled M1 and M2 macrophages were added to the wells and cell adhesion was 

determined after 30 min in a fluorescence plate reader. Data are presented as mean ± SEM. *, P < 

0.05. B. Morphologies of M1 (Left panel) and M2 (right panel) activated macrophages, scale 

bar=200 μm. C-F. 3-D migration assay in Fibrin matrix using M1 and M2 activated macrophages 

labeled with PKH26 (Red) and PKH67 (Green) fluorescent dyes, respectively. C. Sketch diagram 

of the migrating cells in Boyden transwell chamber. Before migration (upper panel) and after 48h 

migration (lower panel). D. 3-D view of the migrating cells in Fibrin matrix after 48 hours. E. 

Labeled Cells were mixed in equal amounts and verified by scanning samples with confocal 

microscope before the initiation of migration (E. left and middle panels). Migration of 

macrophages was stimulated by 30 nM MCP-1 added to the top of the gel. After 48 hours, 

migrating cells were detected by a Leica Confocal microscope (E. right panel). F. The results 

were analyzed by IMARIS 8.0 software and statistical analyses were performed using Student's 

paired t-tests (n=4 per group). Scale bar= 500 μm. Data are presented as mean ± SEM. *, P < 0.05.  



78 

 

 

Fig.3-4.  The expression of markers and fibrin-binding integrins on M1 and M2 stimulated 

macrophages. A.The expression of M1 (iNOS ) and M2 (Arg I) markers on IFN-γ (M1) and IL-4 

(M2) stimulated macrophages using Real Time-PCR. Statistical analyses were performed using 

paired Student t-tests (n=3 per group). Data are presented as mean ± SEM. **, P< 0.01, compared 

to non-activated (n/act). B. The expression of fibrin-binding integrins during M1 and M2 

polarization. Open bars – non-activated; black bars M1-polarized, grey bars M2-polarized 

macrophages. Statistical analyses were performed using Student's paired t-tests (non-activated to 

activated) (n=3 per group). Data are presented as mean ± SEM. *, P < 0.05. 
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Fig.3-5. A-B. 3D migration assay of macrophages in Fibrin matrix. WT M1 and M2 

macrophages were labeled with PKH26 and PKH67 fluorescent dyes, respectively.  Cells were 

mixed in equal amounts before the experiment. Similar cell numbers were verified by cytospin of 

mixed cells (A) and by analysis of macrophage starting points before migration. The background 

fluorescence of fibrin gel was verified by scanning samples with confocal microscope before the 

initiation of migration (B, left panel). Migration of macrophages was stimulated by 100 nM 

FMLP added to the top of the gel. After 48 hours, migrating cells were detected by a Leica 

Confocal microscope (B. middle panel-original). The results were analyzed and reconstructed 

by IMARIS 8.0 software (B, right panel).  

 

The levels of integrin expression determine the effects on macrophage migration.  

Recently, we demonstrated that integrin αD is upregulated on M1-polarized macrophages 

but does not change on M2-polarized macrophages 23. We evaluated the potential changes in the 

expression of other fibrin-binding macrophage adhesive receptors during M1 and M2 polarization 

(Fig. 3-4A). The RT-PCR results demonstrated that αD is the only adhesive receptor that 

upregulates during M1 macrophage activation to compare with M2 subset (Fig. 3-4B). We also 

detected the increased expression of integrin αX on M2 macrophages; however, the total expression 
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of αX on macrophages is very low 20, which quashes its potential effect on macrophage migration. 

Therefore, the upregulation of integrin αD is the most significant modification that may affect the 

migratory properties of M1 and M2 macrophages. 

 Based on these data, further analysis was focused on integrin αD and related integrin αM, 

that possess similar ligand binding properties, but distinct surface expressions. The contributions 

of integrin αD and αM to M1 and M2 migration were evaluated using αD- and αM-deficient 

macrophages. αD deficiency reduced the adhesion of M1 macrophages to fibrinogen (Fig. 3-6A), 

but significantly increased cell migration (Fig. 3-6C, left panel; 3E). In contrast, integrin αM 

deficiency has very limited effect on adhesion, due to its moderate expression on M1 macrophages 

23, (Fig.3-4B) and did not demonstrate a significant effect on cell locomotion (Fig. 3-6C right panel; 

3-6E). Both integrins, αD and αM, have moderate expression on M2 macrophages 23, (Fig. 3-4B). 

The adhesion of M2 macrophages depends on both integrins, which is demonstrated in the 

presence of antibodies and integrin-deficient cells (Fig.3-6B). In parallel assays, the reduced 

migration of αM- and αD-deficient macrophages verified that both integrins help to support the 

mesenchymal migration of M2 macrophages (Fig.3-6D, F). 

The deficiency of αD or αM may also modify the expression of other fibrin-binding integrins 

that can affect cell migration. To test this possibility, we evaluated the expression of α4, α5, αX, 

and αM on αD
-/-, as well as αD on αM

-/- macrophages activated to M1 and M2 phenotypes using RT-

PCR. We did not detect any marked changes, except for the reduced expression of α5 and αX on 

αD-deficient M1 macrophages (Fig.3-7). Clearly, these changes cannot significantly modify 

migration.  
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Fig.3-6. The level of integrin expression determines the effect on macrophage migration. A-

B. Adhesion assay to fibrinogen of WT, αD
-/- and αM

-/- macrophages activated to M1 (A) and M2 

(B) phenotypes. Some samples in (B) were pre-incubated with anti-αM and anti-αD blocking 

antibodies before the adhesion assay. Data are presented as mean ± SEM. *, P < 0.05. C-D. 

Migration assay of αD- and αM-deficiency M1 (C) and M2 (D) macrophages in 3D fibrin matrix. 

After 48 hours, migrating cells were detected by a Leica Confocal microscope and the results were 

analyzed by IMARIS 8.0 software, scale bar= 500 μm. E-F. Statistical analyses were performed 

using Student's paired t-test (n=4 per group). Data are presented as mean ± SEM. *, P < 0.05.  
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Fig.3-7. The expression of fibrin-binding integrins on αD
-/- and αM

-/- macrophages activated 

to M1 and M2 phenotypes using Real Time-PCR. Statistical analyses were performed using 

paired t-tests (n=3 per group). Data are presented as mean ± SEM. *, P< 0.05. 

 

αD-mediated adhesion is critical for the retention of M1 macrophages. 

 Inflamed extracellular matrix contains different β2 ligands, including fibronectin, 

vitronectin, thrombospondin, fibrinogen and others. Moreover, we recently showed that oxidative 

stress during inflammation may form ECM protein modifications with carboxyethylpyrole, which 

is also a ligand for β2 integrins 25.  To verify the role of αD-mediated adhesion on cell migration, 

we performed macrophage migration in Matrigel, the model of basement membrane matrix, which 

consists of laminin, collagen IV and proteoglycans. Notably, these proteins are not ligands for 

integrin αDβ2 or αMβ2. To confirm this, we tested the adhesion of αDβ2- and αMβ2-transfected 

HEK293 cells to a plate coated with Matrigel (Fig. 3-8A). Both cell lines demonstrated strong 

adhesion to Matrigel, but this adhesion was independent of αD and αM, since anti-αD and anti-αM 

antibodies did not inhibit this binding. In contrast, the adhesion of αMβ2 and αDβ2-transfected cells 

to fibrinogen was significantly inhibited by these antibodies 21, 34 (Fig.3-8B). Apparently, the 

adhesion to Matrigel is mediated by integrins α1β1 and α2β1, which are receptors for laminin and 

collagen, and are expressed endogenously on HEK293 cells 35-37. To verify this hypothesis, we 

evaluated the adhesion of MOCK-transfected HEK293 cells to Matrigel and fibrinogen. These 

cells did not support the adhesion to fibrinogen, but demonstrated the same level of adhesion to 
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Matrigel as αDβ2 and αMβ2 transfected cells (Fig.3-8A, B). Therefore, cells do not use αDβ2 for the 

adhesion to Matrigel. Accordingly, we detected a similar level of wild type and αD-deficient 

macrophage migration through Matrigel, which is distinct to our data in αD-dependent fibrin matrix. 

Therefore, this result is in agreement with our hypothesis regarding the critical role of αD-mediated 

adhesion for macrophage retention during 3D migration (Fig.3-8C).  

However, one of the mechanisms that affects mesenchymal migration is the secretion of 

MMPs that degrade Matrigel. To test the potential effect of αM or αD deficiency on MMP secretion, 

M1 and M2 macrophages were incubated in 48-well plates for 24 hours and the media was tested 

using gelatin zymography as we described previously 38 (Fig.3-8D). First, we found a much 

stronger secretion of MMPs (specifically MMP-9) in M2 macrophages in comparison to M1 

macrophages. Second, we did not detect any significant effect of αD- or αM-knockout on MMPs 

secretion, particularly in regard to M1-polarized macrophages.  

Interestingly, the robust secretion of collagen-specific MMP-9 by M2 macrophages can be 

responsible for the strong migration of these cells in Matrigel. The migration of M1 and M2 

macrophages was performed in separate gels to avoid the effect of M2-released MMP-9 on the 

migration of M1 macrophages (Fig.3-9). In contrast, similar secretion of MMPs in WT and αD-

deficient M1 macrophages allowed us to compare these two cell types in one sample. Therefore, 

the similar migration of WT and αD macrophages in Matrigel was not regulated by a different level 

of MMP secretion, but by the lack of αD-mediated adhesion.  
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Fig.3-8. Matrigel does not support integrin αD-mediated adhesion and retention of M1 

macrophages. A-B. Adhesion of αDβ2- and αMβ2-transfected and mock-transfected HEK293 cells 

to Matrigel (A) and fibrinogen (B). The adhesion was performed as described above. Data are 

presented as mean ± SEM. *, P < 0.05. C. 3-D migration assay of WT and αD-deficient M1 

macrophages in Matrigel. Migration was stimulated by 30 nM MCP-1 added to the top of the gel. 

After 48 hours, migrating cells were detected by a Leica Confocal microscope (Leica-TCS SP8) 

(C, left panel). Scale bar= 500 μm. The results were analyzed by IMARIS 8.0 software. (C, right 

panel). D. Evaluation of MMPs in culture media after macrophage adhesion. WT, αD
-/- and αM

-/- 

M1- and M2-activated macrophages were plated on fibrinogen. Media was collected after 

overnight incubation and analyzed by gelatin-zymography (D, right panel). The intensity of 

gelatin degradation was evaluated by Fuji software (D, left panel).  Statistical analyses were 

performed using Student's paired t-tests (n=4 per group). Data are presented as mean ± SEM. *, P 

< 0.05.  
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Fig.3-9. Migration of M1 and M2-activated macrophages in Matrigel. After 48 hours, 

migrating cells were detected by a Leica Confocal microscope and the results were analyzed by 

IMARIS 8.0 software, scale bar= 500 μm. Statistical analyses were performed using Student's 

paired t-tests (n=4 per group). Data are presented as mean ± SEM. *, P< 0.05.  

 

A high expression of αM on resident macrophages reduces their amoeboid migration.  

To test the effect of high expression of other integrins on cell locomotion, we evaluated 

αM-dependent migration of resident macrophages. αM has a very high expression on peritoneal 

resident macrophages (Fig. 3-10A). A comparable analysis of 3D migration in fibrin matrix 

between WT and αM-deficient resident peritoneal macrophages revealed a strong improvement in 
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the migration of the αM
-/- subset (Fig. 3-10B, C right panel). Notably, αD-deficiency, which has a 

very low expression on resident macrophages (Fig. 3-10A), did not affect macrophage migration 

(Fig. 3-10B, C left panel). These results demonstrated that αM at high density on the cell surface 

can also prevent migration.  It has been shown that resident macrophages apply the amoeboid 

migratory mode 24. Accordingly, the migration of WT and αM
-/- in the presence of ROCK inhibitor, 

the inhibitor of amoeboid migration 39, resulted in a dramatic reduction in both the number of 

migrated cells and migratory distance. Therefore, macrophage adhesion-independent amoeboid 

migration can be reduced by integrin-mediated strong adhesion.  

 

Fig.3-10. A high expression of αM on resident macrophages reduces their amoeboid migration. 

A. The expression of integrin αD and αM on resident macrophages was detected with anti-αD and 

anti-αM antibodies, respectively, and tested by flow cytometry analysis. B. Migration of peritoneal 

resident macrophages in 3-D fibrin matrix. Migrating resident macrophages from WT and αD
-/- 

mice are shown in the left panel. The middle and right panels represent the migrating resident 

macrophages from WT and αM
-/- mice with or without Rock inhibitor (Y27632). Migrating cells 
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were detected by a Leica Confocal microscope (Leica-TCS SP8). Scale bar= 500 μm. C. The 

results were analyzed by IMARIS 8.0 software. Statistical analyses were performed using 

Student's paired t-tests (n=4 per group). Data are presented as mean ± SEM. *, P < 0.05.  

 

In vivo migration of M1, M2 and resident macrophages confirmed the results of the 3D 

migration assays. 

 To verify our in vitro results, we performed in vivo migration using the model of resolution 

of peritoneal inflammation as we have done previously 23. After the development of thioglycollate-

induced peritoneal inflammation, macrophages migrate to, and accumulate within, the peritoneal 

cavity. The resolution of inflammation is started after 96 hours and is characterized by the intensive 

emigration of macrophages from the peritoneal cavity to the lymphatics 40. We injected adoptively 

transferred M1 and M2 macrophages to assess their migratory properties in the in vivo environment 

(Fig. 3-11A). In vitro-activated M1 and M2 macrophages were labeled with PKH26 and PKH67 

fluorescent dyes, respectively. The recipient mice were first injected with thioglycollate and then, 

96 hours later, with an equal number of fluorescently labeled M1 and M2 macrophages. After an 

additional 72 hours, the cells from the peritoneal cavity were collected and the number of M1 and 

M2 adoptively transferred macrophages was evaluated. The cytospin of harvested samples 

demonstrated the preferential accumulation of M1 macrophages (red fluorescence) in the 

peritoneal cavity (Fig. 3-11B and Fig. 3-12), which corresponds to our in vitro migration assays 

(Fig.3-3D-F). Our FACS data confirmed these results, since mostly M1 macrophages reside in the 

peritoneal cavity, while M2 macrophages emigrate during resolution (5.02±0.31% versus 

2.57±0.41%) (Fig. 3-11C). The Amnis imaging flow cytometry verified the size and morphology 

of fluorescently labeled macrophages in the peritoneal cavity (Fig. 3-11D).  

According to our in vitro results and previous data 23 we demonstrated that αD-deficiency 

on an M1 background stimulated the emigration of macrophages from the peritoneal cavity, while 

αM-knockout had no effect (Fig. 3-11E). In contrast, we detected an increased accumulation of αM-

deficient M2 macrophages in the cavity, which demonstrates the supportive role of αM in the 

migration of M2 macrophages and remained consistent with our in vitro results. Surprisingly, we 

did not detect the same effect for αD
-/- macrophages. The difference between the migrations of WT 

and αD
-/- M2 macrophages was not significant (Fig. 3-11E, lower panel). 
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WT and αM
-/- resident macrophages were isolated and tested using the same resolution of 

inflammation assay.  After 72 hours, we detected predominantly wild type cells in the peritoneal 

cavity, while αM-deficient macrophages emigrated (Fig. 3-13A). This result was verified by flow 

cytometry. The number of red-fluorescent WT cells isolated from the peritoneal cavity 

significantly exceeded the number of green-fluorescent αM
-/- cells (Q4 versus Q1), (Fig. 3-13B). 

Based on this result, we suggest that αM serves for the supporting resident macrophage 

accumulation in the tissue, and αM-deficiency increases the efflux of resident macrophages.  

To confirm this conclusion, we evaluated the number of macrophages in the non-inflamed 

peritoneal cavity of wild type and αM
-/- mice. Isolated peritoneal cells were stained with F4/80 

antibodies and analyzed by flow cytometry to detect the percentage of macrophages. We found 

that αM-deficiency resulted in a twofold reduction in the number of resident macrophages in the 

cavity (Fig. 3-13C). In contrast, αD-deficiency on resident peritoneal macrophages did not affect 

macrophage number. These data are in agreement with our in vitro and in vivo migration assays.  

 

 

Fig.3-11. In vivo migration of M1 and M2 macrophages confirmed the results of the 3D 

migration assays. A. The model of in vivo resolution of peritoneal inflammation. Peritoneal 

macrophages were isolated from WT mice at 3 days after injection of thioglycollate (TG) and 

placed on petri dish for 3 days incubation with 100U/ml IFNγ or 2nM IL-4 to generate M1 and 

M2 activated macrophages, respectively. Collected M1 and M2 macrophages were labeled with 
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PKH26 or PKH67 fluorescent dyes. Labeled M1 and M2 macrophages were mixed in a 1:1 ratio 

and further injected intraperitoneally into WT mice with 4 days predisposed TG-induced peritoneal 

inflammation. B. The equal ratio of red and green macrophages before the injection was verified 

by sample cytospin preparation (B, upper panel). 3 days later, peritoneal macrophages were 

harvested, and the percentages of red and green fluorescent macrophages were assessed by 

cytospin (B, lower panel) and flow cytometry (C, D). The quantification of the data was analyzed 

by using Image Analysis Software (EVOS, Thermo Fisher) at least 4 fields of view per sample 

(n=4) (B, right panel). C. Flow cytometry. Live isolated cells were selected with live/dead kit and 

analyzed using 488 and 567 channels (Fortessa X-20). The results were analyzed with Diva 

software and statistical analysis was performed using Student’s t-test. Data are presented as mean 

± SEM. *, P < 0.05. D. Imaging flow cytometer. The population of single, alive cells was analyzed 

on red and green channels and individual cells were evaluated in green and red positive areas 

(ImageStream Mark II, Amnis). Channel 1- Brightfield (BF). Channel 2- 488 wavelength (PKH67). 

Channel 3 – 566 wavelength (PKH26), channel 6 – side scattering (SSC). E.  M1- and M2-

activated macrophages in the peritoneal cavity during the resolution of peritoneal 

inflammation. The quantification of the data was analyzed by using Image Analysis Software 

(EVOS, Thermo Fisher) 4-6 fields of view per sample (n=4). Data are presented as mean ± SEM. 

*, P < 0.05.  

 

Fig.3-12. Adoptive transfer assay to test the resolution of peritoneal inflammation using WT, 

αD
-/- or αM

-/- macrophages activated to M1 and M2 phenotypes. A.The equal number of labeled 
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red and green cells were verified by cytospin of the mixed cells before intraperitoneal injection to 

the recipient mice. B. After 3 days, peritoneal macrophages were harvested and cytospun, and the 

percentages of red and green fluorescent macrophages were assessed by fluorescence microscopy. 

The quantification of the data was analyzed by using Image Analysis Software (EVOS, Thermo 

Fisher) at least 4 fields of view per sample (n=4) and presented on Fig. 3-9E. 

 

Fig.3-13. αM deficiency improve efflux of resident macrophages. A. Fluorescently-labeled 

resident peritoneal macrophages isolated from WT and αM
-/- mice were mixed in equal numbers 

and confirmed by cytospin (A, upper panel). Labeled cells were injected introperitoneally into 

WT mice four days after TG-induced inflammation. After 3 days, the harvested peritoneal cells 

were cytospun (A, middle panel). The quantification of the data was analyzed using t-test at least 

4 fields of view per sample (n=4) by Image Analysis Software (EVOS, Thermo Fisher) (A, lower 

panel). Data are presented as mean ± SEM. *, P < 0.05. B. The harvested macrophages were also 

assessed by flow cytometry and the percentages of red (Q4) and green (Q1) fluorescent cells were 

assessed. Data are presented as mean ± SEM. *, P < 0.05. C. The amount of resident WT, αM
-/- and 

αD
-/- macrophages was evaluated by assessing the number and percentage of macrophages in non-

inflamed peritoneal cavity of mice. Isolated peritoneal cells were counted and the number of WT, 

αM
-/- and αD

-/- resident macrophages were calculated based on the percentage of F4/80 positive 

population in flow cytometry analysis. Data are presented as mean ± SEM. *, P < 0.05.  
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αD deficiency reduces macrophage accumulation in adipose tissue and improves metabolic 

parameters. 

To further confirm the contribution of αDβ2 to macrophage retention in the site of chronic 

inflammation, we used the model of diet-induced diabetes. The accumulation of pro-inflammatory 

(M1-like macrophages) in the inflamed adipose tissue is a hallmark of the inflammatory 

component of diabetes 26. It has been shown that αD is upregulated in the adipose tissue during 

diet-induced obesity 41, which concurs with the upregulation of αD on M1-activated macrophages 

in vitro and in atherosclerotic lesions 23. We also detected a strong expression of αDβ2 on adipose 

tissue macrophages of C57BL6 mice after 8 weeks of a high fat diet (45 kcal% fat). (Fig.3-14A,B).  

To assess the role of αDβ2 and αMβ2 in macrophage migration during chronic inflammation, 

monocytes isolated from WT and αD
-/- (or αM

-/-) mice were labeled with red (PKH26) or green 

(PKH67) dyes, respectively, mixed in equal number and injected intravenously into mice on a high 

fat diet (Fig. 3-14C). The accumulation of adoptively transferred WT and integrin-deficient 

macrophages in the adipose tissue of these mice was evaluated after 3 days.  The isolated adipose 

tissue was digested and analyzed by multi-color FACS.  We detected a 3-fold decrease in the 

number of αD-deficient macrophages (in comparison to WT) in the visceral adipose tissue (Fig.3-

15A,B). The result was verified by Imaging flow cytometry that confirmed the presence of labeled 

cells in the digested adipose tissue (Fig.3-15C). More importantly, it also demonstrates the 

maturation of labeled macrophages, since migrated cells expressed macrophage receptor F4/80 

(Fig.9C, Lower panels), while injected monocytes lack this expression (Fig. 3-15C, Upper panel). 

Interestingly, the deficiency of integrin αM, which did not significantly upregulate on M1 

macrophages 23 (Fig.3-4B) had no effect on macrophage accumulation in adipose tissue (Fig. 3-

15A, Lower panel). Our previous data demonstrate that αD deficiency does not affect monocyte 

recruitment from circulation during inflammation 23. Therefore, these results are in agreement with 

our in vitro and in vivo experiments and with recently published data that αM deficiency does not 

affect the accumulation of macrophages during diet-induced obesity 42, 43. 

The assessment of metabolic parameters of αD-knockout and WT mice after 16 weeks on 

a high fat diet confirm the physiological significance of our results by showing that a reduced 

number of macrophages in the adipose tissue of αD
-/- improved glucose tolerance and insulin 

sensitivity (Fig.3-15D). On the other hand, the recently published data did not reveal a change in 
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glucose tolerance test of αM-deficient mice in comparison to WT control after 20 weeks of high-

fat diet, but detected decreased insulin sensitivity in skeletal muscle and liver 37.  

Taken together, these results provide the link between integrin expression and potential 

pathophysiological functions. Apparently, the same integrin can support or inhibit 3D migration 

in tissue depending on the macrophage subset and the level of integrin expression on the cell 

surface.  

 

 

 

Fig. 3-14.  The population of adipose tissue macrophages in adoptive transfer assay A. The 

population of adipose tissue macrophages was detected in digested visceral adipose tissue using 

F4/80 antibody conjugated to allophycocyanin (APC). B. The expression of integrin αD on 

monocytes (blue) and adipose tissue macrophages (red) were detected by FACS. Statistical 

analyses were performed using t-test, Data are presented as mean ± SEM. **p<0.001. C. 

Schematic representation of adoptive transfer assay using bone marrow monocyte progenitors 

isolated from WT and αD
-/- (or αM

-/-) mice. The isolated WT and αD
-/- (or αM

-/-) monocyte 

progenitors will be labeled with PKH26 and PKH67, respectively, and intravenously injected into 

WT mice fed on a high fat diet for 8 weeks. After 3 days, the mice were sacrificed and fluorescently 

labeled cells were isolated from visceral adipose tissue and evaluated by FACS and Imaging Flow 

cytometry as shown on Fig. 3-11.  
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Fig. 3-15. αD deficiency reduces accumulation of monocyte-derived macrophages in adipose 

tissue and improves metabolic parameters during diet-induced diabetes.  A. WT and αD
-/-(or 

αM
-/-) monocytes were isolated from bone marrow, labeled with red (WT) or green (αD

-/-) 

fluorescent dyes, respectively, mixed in an equal amount and injected into the tail vein of WT mice 

fed for 8 weeks with high fat diet (45% kcal/fat). After 3 days visceral adipose tissue was isolated, 

digested and analyzed using flow cytometry. B. Statistical analyses were performed using 

Student’s paired t-tests (n=4 per group). Data are presented as mean ± SEM. *, P < 0.05. C. 

Imaging flow cytometry. Upper panel represents the injected monocytes, isolated from WT and 

αD
-/- (or αM

-/-) mice, labeled with red and green fluorescent dyes, respectively. Middle (Q4) and 

lower(Q1) panels represent the labeled cells in digested adipose tissue. Channel 11- F4/80 

represents macrophage staining. D. WT mice (black circles) and αD-knockout mice (white triangles) 

were fed with high fat diet for 16 weeks and glucose intolerance (left panel) and insulin resistance 

(right panel) were evaluated. n=6 for αD
-/- and n=9 for WT per group. A statistical analysis was 

performed using Student’s t-test. Data are presented as mean ± SEM. *, P < 0.05; **, P<0.01, 

compared to αD
-/- group. 
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Discussion 

The accumulation of macrophages at the site of inflammation is a complex physiological 

process that is critical for the development and resolution of inflammation. Macrophage apoptosis, 

proliferation and chemokine stimulation are important components of this mechanism, but the 

adhesive receptors that regulate the macrophage accumulation via cell migration and cell retention 

are the critical factors that generate the final outcome. 

During the last decade, the role of adhesive receptors, particularly integrins, in the three-

dimensional migration of immune cells in tissue has been questioned due to a new mechanism, the 

amoeboid mode of migration, being suggested 12, 44. However, recent data demonstrate that some 

immune cells, particularly macrophages, utilize adhesion-mediated mesenchymal migration in 3D 

matrices 13, 45. It has been shown that the migratory mode of macrophages depends on the 

environment and density of matrix 39. Previously, based on 2D models, it was suggested that cell 

migration is regulated by cell-substratum adhesiveness, which depends on substrate concentration, 

adhesive receptor density and affinity 15. This theory postulates that an intermediate level of 

adhesiveness (or intermediate expression of the adhesive receptors) is optimal for cell migration, 

while very low adhesiveness does not support cell locomotion and very high adhesiveness inhibits 

migration due to the prevention of the detachment of adhered cells. However, this theory was not 

evaluated during 3D migration in the tissue, which has more complex regulatory mechanisms and 

much stronger physiological implications. In this project, we tested integrins αMβ2 and αDβ2 as 

physiologically relevant models for studying the role of adhesive receptors during the migration 

of different subsets of macrophages. We discussed resident peritoneal macrophages and two 

subsets of monocyte-derived activated macrophages - classically activated (called M1), which can 

be generated by IFNγ/LPS or TNFα stimulation; and alternatively activated, which are produced 

by stimulation with IL-4 and/or IL-13 (called M2a) 7. For simplicity, we are calling the latter group 

M2. We realize that M1 and M2 activated macrophages are simplified models; and macrophages 

in the atherosclerotic lesion and adipose tissue may represent “mixed phenotypes”. However, these 

two subsets characterize the most variable difference in macrophage functional properties, and 

therefore, are an appropriate model for analyzing β2 integrin expression and functions in different 

macrophage subsets.  

Our experimental approach is based on several observations. First, αD and αM share similar 

ligands 21, 22; second, these two integrins form a complex with the same β2 subunit, thus leading to 
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similar integrin-mediated outside-in signaling during the interaction with the ligand; and third, the 

expressions of αD and αM are distinct on M1-polarized, M2-polarized and resident macrophages. 

We demonstrated that αD is upregulated on M1 macrophages, while the expression of αM is 

moderate (Fig.3-4)23. In contrast to these observations, the resident macrophages express a low 

level of αD, but have a high density of αM (Fig.3-10). At the same time, the expressions of both αD 

and αM integrins on M2 macrophages are intermediate (Fig.3-4). 

Using these three subsets of macrophages, we found that 1) M2 macrophages possess much 

stronger migratory ability within 3D matrix in comparison with M1. 2) Integrins αDβ2 and αMβ2 

are important receptors that regulate cell migration. 3) Similar to the 2D migration, integrins can 

support mesenchymal 3D cell migration at the intermediate density and prevent mesenchymal and 

amoeboid cell migration at high levels of expression. 4) Even the adhesion-independent amoeboid 

mode can be negatively-regulated by a high expression of β2 integrins. 

In this project, we show that strong adhesion via integrins is critical for cell retention that 

defines the different migratory properties of M1 and M2 macrophages. (Figs.3-6,3-10). The 

analysis of αM, αX, αD, α5, α4, integrins demonstrates that the upregulation of αD on M1 

macrophages is a major change in integrin expression during M1 activation. Therefore, αDβ2-

mediated adhesion is crucial for the prevention of M1 macrophage migration. In a parallel line of 

evidence, we found that the lack of αD-dependent substrate (exemplified in Matrigel) eliminates 

the effect of αD on cell migration in this matrix (Fig.3-8). Importantly, αD-deficiency does not 

significantly change the expression of other macrophage integrins and the levels of MMP 

expression, which rules out the possibility for an indirect effect of αD knockout on M1 macrophage 

migration.  

Taken together, these results propose that the accumulation of M1 macrophages at the site 

of inflammation is mediated by strong adhesion which promotes cell retention and the progression 

of chronic inflammation. In agreement with that, αD-deficiency prevents the accumulation of 

adoptively transferred fluorescently-labeled macrophage accumulation in adipose tissue during 

diabetes. The reduced number of macrophages is associated with reduced inflammation and 

improved glucose tolerance and insulin sensitivity in αD-knockout mice. These data correspond to 

our previous results, that αD-deficiency reduced macrophage accumulation in atherosclerotic 

lesions and the development of atherosclerosis 23. Therefore, the upregulation of αD on pro-

inflammatory macrophages during diabetes 41 or atherosclerosis 23 demonstrates a similar outcome, 
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which is manifested in the macrophage retention at the site of inflammation and disease 

development. Interestingly, αM deficiency has pro-atherogenic effect on female and no effect on 

male mice 46. In agreement with this result, it has been recently shown that αM deficiency elevates 

glucose level and decreased insulin sensitivity after 16 weeks on a high fat diet. Taken together, 

these data confirm the opposite role of αDβ2 and αMβ2 on pro-inflammatory M1 macrophages. 

In contrast, the stronger migratory properties of M2 macrophages indicate that these cells 

more easily leave the tissue toward the lymphatics. The increased phagocytic properties of M2 

macrophages, coupled with their high migratory abilities, confirm the major function of anti-

inflammatory macrophages – phagocytosis followed by efflux from the tissue. αD and αM support 

the motility of M2 macrophages, and therefore promote the emigration of M2 macrophages from 

the inflamed tissue. Interestingly, the role of αM in macrophage efflux during resolution was 

proposed previously 47.  

The published data demonstrates that M2 macrophages may apply both locomotion modes, 

amoeboid and mesenchymal, which is supported by our observations regarding the αM and partially 

αD-mediated mesenchymal migration of M2 macrophages (Fig.3-6). In contrast, resident 

macrophages use preferentially amoeboid motility. Using ROCK inhibitor, we confirmed the 

preferential amoeboid migration of resident macrophages, but also demonstrated that amoeboid 

migration can be increased after the knockout of αM integrin, which has a high density on these 

cells (Fig.3-10). Therefore, these data propose an anchoring role for integrin αMβ2 for resident 

macrophages in tissue. This mechanism may be important for the normal homeostasis and 

mobilization the initial immune defense, which is mediated by resident macrophages. We showed 

that αM-deficiency reduced macrophage numbers in the non-inflamed peritoneal cavity (Fig.3-10). 

Therefore, the different immune pathologies associated with αM-deficiency can be at least partially 

related to the impaired resident macrophage number. Most importantly, since integrins can block 

(or reduce) amoeboid migration, it suggests the potential role of integrins in the regulation 

(particularly, inhibition) of 3D migration of other immune cells that use only amoeboid movement 

(for example neutrophils or dendritic cells). 

In summary, our study demonstrates the important contribution of αDβ2 and αMβ2 to the 

locomotion of distinct macrophage subsets and proposes a β2-integrin dependent mechanism of 

macrophage retention in the tissue and efflux during the resolution of inflammation.  
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Abstract 

A critical step in the development of chronic inflammatory diseases is the accumulation of 

pro-inflammatory macrophages in the extracellular matrix (ECM) of peripheral tissues. The 

adhesion receptor, integrin αDβ2 promotes the development of atherosclerosis and diabetes by 

supporting macrophage retention in inflamed tissue. We recently found that the end-product of 

DHA oxidation, 2-(ω-carboxyethyl)pyrrole (CEP), serves as a ligand for αDβ2. CEP adduct with 

ECM is generated during inflammation-mediated lipid peroxidation.  The goal of this project was 

to identify a specific inhibitor for αDβ2-CEP interaction, that can prevent macrophage 

accumulation. 

Using a specially designed peptide library, biacore detected protein-protein interaction and  

adhesion of integrin-transfected HEK293 cells, we identified a sequence (called P5-peptide), 

which significantly and specifically inhibited αD-CEP binding. In the model of thioglycollate-

induced peritoneal inflammation, the injection of cyclic P5 peptide reduced 3-folds the 

macrophage accumulation into WT mice, but had no effect in αD-deficient mice. The tracking of 

adoptively transferred fluorescently-labeled WT and αD
-/- monocytes in the model of peritoneal 

inflammation, and in vitro two-dimensional and three-dimensional migration assays demonstrated 

that P5 peptide does not affect monocyte transendothelial migration or macrophage efflux from 

the peritoneal cavity, but regulates macrophage migration through the ECM. Moreover, the 

injection of P5 peptide into WT mice on a high-fat diet prevents macrophage accumulation in 

adipose tissue in αDβ2-dependent manner.  

Taken together, these results demonstrate the importance of αDβ2-mediated macrophage 

adhesion for the accumulation of infiltrating macrophages in the inflamed ECM and propose P5 

peptide as a potential inhibitor of atherogenesis and diabetes.  

 

Introduction 

Chronic inflammation is an essential mechanism during the development of cardiovascular 

and metabolic diseases. Monocyte recruitment and subsequent macrophage accumulation in the 

damaged tissue are critical steps that regulate inflammatory response and disease progression 1, 2. 



105 

 

While monocyte  recruitment during acute inflammatory response may have a protective effect, 

the excessive accumulation of macrophages at the site of inflammation can lead to strong pro-

inflammatory signaling, damage to healthy tissue and development of chronic inflammation 3. 

Leukocyte integrins are adhesive receptors that significantly contributes to the 

monocyte/macrophage migration and accumulation 4. Integrin αDβ2 (CD11d/CD18) is the most 

recently discovered leukocyte integrin with unique expression pattern and specific role in 

inflammation. Recently, we and others demonstrated that αDβ2 has a relatively low expression on 

neutrophils and monocytes in circulation, but upregulates on tissue macrophages, particularly in 

atherosclerotic lesions and adipose tissue during diabetes 5-7. We revealed that  high expression of 

αDβ2 on cell surface promotes a strong adhesion to ECM proteins that leads to the retention of pro-

inflammatory macrophages in inflamed tissue and supports atherogenesis and insulin resistance 8,9. 

Interestingly, αDβ2 shares a high level of homology and ligand binding properties with 

related integrin αMβ2 (CD11b/CD18, Mac-1)10. αMβ2 is well studied leukocyte receptor, which is 

involved in the regulation of many acute and chronic inflammatory diseases 11-14. αDβ2 and αMβ2 

shares many extracellular matrix ligands such as fibronectin, fibrinogen and vitronectin, however, 

the expression of these integrins is markedly different on distinct subsets of macrophages 8. 

Particularly, αDβ2 has a low expression on resident and alternatively activated (M2) macrophages, 

but dramatically upregulates on classically activated (M1) macrophages. αMβ2 demonstrates a high 

expression on resident macrophages, but is expressed moderately on M1 and M2 macrophages. 

This difference determines the distinct role of αDβ2 and αMβ2 in macrophage migration/retention 

and contribution to the development of inflammatory diseases 9. Particularly, recent data 

demonstrated that αMβ2 has a protective effect on the development of atherosclerosis and diabetes, 

which is opposite to the pathological role of αDβ2 in chronic inflammation 13,15.  

Ligand recognition, followed by specific intracellular signaling, is a critical step that 

determines integrin-mediated leukocyte migration and cellular responses. Most recently, we found 

that the end-product of DHA oxidation, 2-(ω-carboxyethyl)pyrrole (CEP) serves as a specific 

inflammatory ligand for integrins αDβ2 and αMβ2 
16. CEP is formed during the oxidation of DHA 

that leads to the formation of CEP adducts with ECM proteins 17,18. These CEP-modified proteins 

support αMβ2- and αDβ2-mediated macrophage migration to the site of inflammation. CEP is 

formed mostly during the inflammation and was abundantly detected in the atherosclerotic lesions 
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and adipose tissue during diabetes 19. Based on αDβ2-specific pattern of expression on M1 

macrophages, we hypothesized that CEP can be a critical ligand for αDβ2-mediated macrophage 

retention at the site of inflammation. Particularly because the affinity of αD to CEP surpasses the 

affinity to natural ECM proteins 16,20.   

Therefore, the inhibition of αDβ2-mediated adhesion of macrophages to CEP-modified 

proteins in the ECM may have a strong anti-inflammatory effect. However, the overlapping ligand 

binding properties of αMβ2 and αDβ2 complicate the development of an effective inhibitor 10,21.  

In this project, we developed a strategy to identify the amino acid sequences, which are 

specific only for integrin αDβ2 and has no effect on αMβ2. Using in vitro approaches, we selected 

the peptide, called P5, with strong blocking ability against αDβ2-CEP interaction. Applying the 

model of peritoneal inflammation, we demonstrated that P5 peptide significantly reduced the 

accumulation of macrophage in the peritoneal cavity and this effect directly related to the αDβ2-

dependent migration via ECM. Moreover, P5 does not interfere with monocyte transmigration 

through endothelium or macrophage efflux from the peritoneal cavity. Finally, using the model of 

diet induced diabetes, we demonstrated that P5 peptide markedly inhibits the accumulation of 

macrophages in the adipose tissue of mice, which demonstrates the effect of P5 on the development 

of chronic inflammation. 

Taken together, these data confirm the significant role of integrin αDβ2 during the 

inflammatory response, support the concept of αDβ2 as important anti-inflammatory target and 

propose P5 sequence as a potential inhibitor of inflammation. 

 

Materials and Method 

Reagents  

Reagents were purchased from Sigma-Aldrich (St. Louis, MO) and Thermo Fisher 

Scientific (Waltham, MA). Human fibrinogen and thrombin were obtained from Enzyme Research 

Laboratories (South Bend, IN). The synthesis of peptides P-con - WNGRTSTADYAMFKV, P3 – 

AGHLNGVYYQGGTYSKAS   P4 – TGTTEFWLGNEKIHL, P5 –GDAFDGFDFGDDPSD was 

ordered from Peptide 2.0 Inc (Chantilly, VA). Recombinant mouse IFNγ was purchased from 
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Thermo Fisher Scientific. Phorbol Myristate Acetate (PMA) was purchased from Sigma. 

Recombinant Murine JE/MCP-1 (CCL2) was purchased from Pepro Tech (Rocky Hill, NJ). Anti-

human αD mAb (clone 240I) was generously provided by Eli Lilly Corporation (Indianapolis, IN). 

Mouse FITC- and APC- conjugated anti-αM mAb (clone M1/70) and F4/80 mAbs were from 

eBioscience (San Diego, CA). The conformation-dependent antibody mAb 24 against β2 integrin 

was from Hycult Biotechnology (The Netherlands). The mAb 44a directed against the human αM 

integrin subunit was purified from the conditioned media of the hybridoma cell line obtained from 

American Type Culture Collection (ATCC, Manassas, VA) using protein A agarose (GE 

Healthcare, Piscataway, NJ). PKH26 (red) and PKH67 (green) fluorescent dyes were purchased 

from Sigma (St. Louis, MO). 

 

Animals 

Wild type (C57BL/6J), integrin αD-deficient (B6.129S7-Itgadtm1Bll/J) and integrin αM-

deficient (B6.129S4-Itgamtm1Myd/J) mice were bought from Jackson Laboratory (Bar Harbor, ME). 

αD-deficient and αM-deficient mice have been backcrossed to C57BL/6 for at least ten generations. 

To develop insulin resistant mice C57BL/6 WT mice were fed a high fat diet with 45% kcal from 

fat (TD08811, Envigo) for 8 weeks. All procedures were performed according to animal protocols 

approved by East Tennessee State University IACUC. 

 

Expression and isolation of recombinant αD and αM I domains in active and non-active 

conformation.  

The construct for αD I domains, αM I domains were generated and recombinant proteins 

were isolated as described in our previous papers10,16. Briefly, αD in non-active conformation 

(Pro128-Ala323), αM in active conformation (E123-K315) were inserted into a PGEX4T-1 vector. In 

“active” αM I domains, the unpaired Cys128 was substituted to Ser to prevent I domain dimerization.  

Proteins were expressed in E. Coli and purified using affinity chromatography on glutathione 

agarose and its fusion part removed by thrombin. αD in active conformation (Pro128-Lys314) was 

inserted in pET15b vector, expressed in E. Coli as a His-tag fusion protein and purified using 

affinity chromatography on Ni-chelating agarose (Qiagen Inc., Valencia, CA).  
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Analyses of the αDI-domain binding to CEP, Fg and P5 peptide by surface plasmon resonance and  

Bio-Layer Interferometry. 

The interaction between I domains and CEP or fibrinogen in the presence of P3, P4, and 

P5 peptides was measured using surface plasmon resonance (Biacore3000 instrument, Biacore, 

Uppsala, Sweden) as we described previously 10,19. Fibrinogen and CEP conjugated to albumin 

and were immobilized on the CM5 biosensor chip using the standard amine coupling chemistry 

(1000 RU/flow cell). Steady-state experiments were performed at room temperature in 10 mM 

HEPES (pH 7.4) buffer containing 150 mM NaCl, 1 mM MgCl2, 1 mM CaCl2 and 0.005% 

surfactant P20 at a flow rate of 20 μl/min. SPR sensograms were obtained by injecting various 

concentrations of αD and αM I domains. In some samples, analytes were preincubated with blocking 

peptides for 15 min at room temperature. All data were corrected for the response obtained using 

a blank reference flow cell that was activated with N-ethyl-N′-(dimethylaminopropyl) 

carbodiimide/N-hydroxysuccinimide and then blocked with ethanolamine. Nonspecific binding to 

the blank flow cell was subtracted. The chip surfaces were regenerated by injecting a short pulse 

of 25 mM NaOH. The resulting sensorgrams were analyzed in overlay plots using BIAevaluation 

software (version 4.01, GE Healthcare).  

The interaction between the αDI-domain (in active and non-active conformation) and P5 

peptide was measured using Bio-Layer Interferometry (ForteBio, Fremont, CA). N-terminal 

biotinylated P5 peptide was immobilized on streptavidin biosensor. Different concentrations of the 

I-domains in 20 mM HEPES (pH 7.4) buffer containing 150 mM NaCl, 1 mM MgCl2, 1 mM CaCl2 

and 0.05% Tween 20 were added to immobilized P5 peptide. For some experiments Mg2+ and Ca2+ 

was exchanged for 5 mM EDTA. All data were corrected for the response obtained using a blank 

reference biosensor. The biosensor surface was regenerated using 2 M NaCl and 50 mM NaOH. 

Data were analyzed using the ForteBio Data Analysis 11.0 program (ForteBio, Fremont, CA). 

 

Synthesis of cellulose-bound peptide library 

The γ-module of fibrinogen-derived peptide library assembled on a single cellulose 

membrane support was prepared by parallel spot synthesis as described previously 22,23. The 

libraries were synthesized as 9-mer overlapping peptides with a three-amino acid offset. Peptides 



109 

 

were C-terminally attached to the cellulose via a (β-Ala)2 spacer and were acetylated N-terminally. 

The membrane-bound peptides were tested for the ability to bind the αMI-domain and αDI-

domain. In brief, membranes were blocked with 1% BSA and incubated with 5 μg/mL 125I-

labeled αM I-domain or αD I-domain in TBS containing 1 mM MgCl2, 0.1% BSA, and 2 mM 

dithiothreitol. Membranes were washed with TBS containing 0.05% Tween 20 and dried, and αM- 

and αD- I-domain binding was visualized by autoradiography and analyzed by densitometry. 

Flow cytometry analysis 

Flow cytometry analysis was performed to assess the expression and activation of receptors 

on the surface of the cells transfected with αDβ2, αMβ2, αLβ2 integrins and to evaluate the number 

of fluorescently labeled mouse macrophages isolated from the peritoneal cavity or adipose tissue. 

HEK 293 transfected cells were incubated with anti-αD (clone 240I), anti-αM (clone M1/70) and 

anti-β2 (clone IB4) antibodies and analyzed using a Fortessa X-20 (Beckton Dickinson) as 

described10,21. The isolated pre-labeled WT (red PKH26) bone marrow derived macrophages, 

peritoneal macrophages or adipose tissue macrophages (WT-red and αD
-/--green) were washed with 

PBS, counted and analyzed by flow cytometry (Fortessa X-20) and imaging flow cytometry 

(ImageStream Mark II, Amnis). Macrophage numbers were calculated based on the percentage of 

F4/80 positive population in flow cytometry.   

 

Cell adhesion assay 

The adhesion assay was performed as described previously with modifications 10,21. Briefly, 

96-well plates (Immulon 2HB, Cambridge, MA) were coated with fibrinogen, CEP, P5 or 

vitronectin for 3 h at 37 C. The wells were post-coated with 0.5% polyvinyl alcohol for 1 h at 37 

C. HEK 293 cells transfected with αMβ2, αXβ2 or αDβ2 integrins were labeled with 10 µM Calcein 

AM (Molecular Probes, Eugene, OR) for 20 min at 37 °C and washed with DMEM and 

resuspended in the same medium at a concentration of 1 × 106 cells/ml. Aliquots (50 µl) of the 

labeled cells were added to each well. For inhibition experiments, cells were mixed with various 

concentration of peptides (P3, P4, and P5) and incubated for 20 minutes at 37 °C before they were 

added to the ligand-coated wells. After 30 minutes of adhesion at 37 °C in a 5% CO2 humidified 

atmosphere, the nonadherent cells were removed by washing with HBSS. The fluorescence was 
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measured in a Synergy H1 fluorescence plate reader (BioTek, Winooski, VT), and the number of 

adherent cells was determined from a labeled control. 

 

Isolation of peritoneal macrophage and activation of M1 macrophages  

WT and αD
-/-, 8-week-old, mice were intraperitoneally injected with 1ml of 4% 

thioglycollate (TG), 3 days later, peritoneal cells were harvested with 5 ml of sterile PBS by lavage 

of the peritoneal cavity. The cells were washed with PBS and resuspended in RPMI media. The 

cell suspension was transferred into 100mm Petri dishes and incubated for 2h at 37oC in humidified 

air containing 5% CO2 atmosphere. Non-adherent cells were washed out with RPMI media, and 

the adherent macrophages were replenished with RPMI media. The macrophages were 

differentiated to M1 phenotype by treatment with recombinant mouse interferon-γ (IFN-γ) (100 

U/ml, Thermo Fisher) for 4 days. Medium with IFN-γ was changed every 2 days or as required. 

The M1 phenotype macrophages from WT and αD
-/- mice were labeled with red fluorescent marker 

PKH26 and green fluorescent marker PKH67, respectively, according to the manufacturer’s 

instructions (Sigma-Aldrich). The fluorescently-labeled cells were dissociated from the plates 

using 5mM EDTA in PBS and used for the experiments thereafter. 

 

Adoptive transfer in the recruitment of macrophages to the peritoneal cavity  

The approach is based on our previous publication with some modifications 8. Bone 

marrow monocytes were isolated from WT mice using magnetic bead separation kit (Miltenyi 

Biotec, Gaithersburg, MD). Monocytes were labeled with red, PKH26 (WT) fluorescent dyes. 

Recipient WT mice were intraperitoneally injected with 100 µg/mouse P5 peptide. After 20 min, 

1 ml of 4% thioglycollate was intraperitoneally injected to all mice to induce inflammation.  Then 

fluorescently labeled WT (red PKH26 dye) bone marrow monocytes were injected into the tail 

vein of the recipient mice. After 72 hours, the peritoneal macrophages were harvested and assessed 

by fluorescence microscopy and flow cytometry (BD Fortessa X-20). 
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Adoptive transfer in macrophage efflux from the peritoneal cavity  

The adoptive transfer was performed as described previously with some modifications 8. 

Briefly, recipient and donor WT mice were intraperitoneally injected with 4% thioglycollate. After 

48 hours, macrophages were isolated from the peritoneal cavity of donor mice, labeled with 

PKH26 red fluorescent dye and injected into the peritoneal cavity of the recipient mice (1x106 

cells per mouse). Immediately, the recipient mice were intraperitoneally injected with 200 µg/ml 

P5 peptide or control. After an additional 24 hours, macrophages were harvested from the 

peritoneal cavity, counted and the number of fluorescently labeled macrophages was assessed by 

fluorescence microscopy and flow cytometry (BD Fortessa X-20). 

 

Adoptive transfer in the model of diet-induced diabetes 

The adoptive transfer was performed as described previously 9. Briefly, WT and αD
-/- bone 

marrow monocytes were isolated and purified by magnetic bead separation kit (Miltenyi Biotec, 

Gaithersburg, MD), labeled with red PKH26 (WT) or green PKH67 (αD
-/-) fluorescent dyes, 

respectively, mixed in an equal amount (1x106 cells per color per mouse) and injected into the tail 

vein of WT mice fed a high fat diet (45% kcal/fat) for 8 weeks. The experimental group were 

intraperitoneally injected with 200 µg/ml P5 peptide 20min before the injection of labeled cells. 

After 3 days, visceral adipose tissue was isolated, digested and analyzed using flow cytometry 

(Fortessa X-20) and imaging flow cytometry (ImageStream Mark II, Amnis). 

 

Trans-endothelial migration assay 

Human umbilical vein endothelial cells (HUVEC) were seeded at 105 cells per well in the 

upper chamber of Transwell inserts (diameter: 6.5 mm, pore size: 5.0 μm, Corning), labeled with 

PKH67 green fluorescence and cultured overnight in Vascular Cell Basal Medium with VEGF 

(ATCC). On the next day, isolated bone marrow monocytes were labeled with PKH26 red 

fluorescent dye and added to the top of endothelial cells, MCP-1 was added to the lower chamber 

of the wells to stimulate the migration of monocytes. In some experiments, the monocytes were 

pre-incubated with 200 µg/ml P5 peptide for 20 min. After 3h incubation at 37°C, the number of 
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migrated cells was determined by Leica Confocal Microscope and the results were reconstructed 

and analyzed using IMARIS 8.0 software.  

 

Migration of macrophages in 3D fibrin gel 

Migration assay was performed as described previously 9,22. WT and αD
-/- peritoneal non-

activated macrophages were labeled with PKH26 red fluorescent dye and PKH67 green 

fluorescent dye, respectively. Cell migration assay was performed for 48 hours at 37°C in 5% CO2 

in a sterile condition. An equal number of WT and αD
-/- macrophages was evaluated by cytospin 

of mixed cells before the experiment and at the starting point before migration. Labeled WT 

(1.5x105) and αD
-/- (1.5x105) activated macrophages were plated on the membranes of transwell 

inserts with a pore size of 8 μm and 6.5 mm in diameter (Costar, Corning, NY) precoated with 

fibrinogen (Fg). Fibrin gel (100 µl/sample) was generated by mixing 0.75mg/ml Fg containing 1% 

FBS and 1% P/S and 0.5 U/ml thrombin. 30 nM of MCP-1 was added on the top of the gel to 

initiate the migration. Migrating cells were detected by Leica Confocal microscope (Leica-TCS 

SP8) and the results were analyzed and reconstructed using IMARIS 8.0 software.  

 

Statistical analysis 

Statistical analyses were performed using Student’s t-test or Student's paired t-tests where 

indicated in the text using SigmaPlot 13. A value of p<0.05 was considered significant. 

 

Results 

Screening the peptide library for the binding to αD and αM I-domains.  

To identify the sequences, which are unique for the αDβ2 binding and have no cross-

reactivity with αMβ2 binding, we synthesized a peptide library on the cellulose membrane spanning 

the sequence of γ-module of fibrinogen (Fig. 4-1). It has been shown that γ-module of fibrinogen 

contains multiple binding sites for αMβ2 integrin 22 and is critical for the αDβ2 binding to fibrinogen 

10. The peptide library consisting of 9-mer peptides with a 3-residue offset was tested for binding 
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of 125I-labeled active αDI- domain as described previously for αMI-domain 24 (Fig. 4-2). We 

detected 3 sequences, which are specific only for the binding of αD I-domain – (spots 27-29, 49-

51, and 67-70). The identified sequences AGHLNGVYYQGGTYSKAS, TGTTEFWLGNEKIHL, 

GDAFDGFDFGDDPSD were synthesized as soluble peptides and named P3, P4 and P5, 

correspondingly. 

 

Fig. 4-1 Synthetized peptide library based on the sequence of γ-module of fibrinogen. The 

peptide sequences identified as positive for the αDI-domain binding are shown in green. 
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Fig.4-2. Screening the peptide library for the binding to αD and αM I-domains. Peptide library 

was synthetized on the cellulose membrane spanning the sequence of γ-module of fibrinogen. The 

library was incubated with 125I-labeled αD I-domain or αM I-domain and binding was visualized by 

autoradiography. The numbers on the left and above each panel indicate the peptide (spot) numbers. 

The peptide numbers correspond to the numbering of spots in the panel. Spot-analysis indicates 

three peptides, called P3, P4, and P5 as unique sequences to bind to αDβ2.  

 

Evaluation of inhibitory abilities of identified sequences by surface plasmon resonance and 

adhesion assay.  

The abilities of detected peptides to inhibit αD I-domain binding to CEP was tested applying 

a surface plasmon resonance (Biacore 3000) (Fig. 4-3A, B). αD I-domain and αM I-domain were 

pre-incubated with 200 µg/ml P3, P4 and P5 peptides and added to the immobilized CEP using 

previously detected concentrations16. Two peptides (P4 and P5) demonstrated marked inhibition 

of αD I-domain binding, while inhibition of αM I-domain was not significant. To extend this result, 

we tested peptides in the adhesion assay using αDβ2 and αMβ2-transfected HEK 293 cells (Fig. 4-

3C). CEP was immobilized on the 96-well plate and integrin transfected cell lines were pre-

incubated with 200 µg/ml of peptides. Similar to direct protein-protein assay, P3 peptide does not 

have a blocking effect. However, the inhibitory ability of P4 peptide was reduced to compare with 

direct protein-protein interaction assay (Fig. 4-3A). Apparently, the binding region for the P4 

peptide is only exposed on isolated I-domain, but it is partially blocked on αDβ2 heterodimer, which 

is expressed on the cell surface. Therefore, P4 binding site is not natural region for the αDβ2-CEP 

interaction. In contrast to these data, P5 peptide inhibits 50% of αDβ2 adhesion to CEP that is 

similar to the biacore results. The effect of P5 peptide on adhesion of αMβ2 cells was not significant. 

We tested different concentration of P5 peptide in adhesion assay and find concentration-

dependent inhibition of αDβ2 binding to CEP (Fig. 4-3D).  

Integrin αDβ2 and αMβ2 are multiligand receptors 10,21. It has been shown that several 

integrin ligands have overlapping binding sites within I-domain 21,25-27. Based on this information, 

we tested if P5 peptide can inhibit αDβ2-mediated cell adhesion to other ligands. First, we evaluated 

the adhesion of αDβ2- and αMβ2-transfected HEK 293 cells to fibrinogen in the presence of P5 

peptide. We found that P5 peptide blocked only the adhesion of αDβ2 (Fig. 4-3E) in concentration-
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dependent manner (Fig.4-4A). Since integrin αXβ2, which is also expressed on macrophages, has 

high homology with αD and interacts with Fg, we tested this receptor in inhibition assay. The 

adhesion of αXβ2 transfected cells to immobilized fibrinogen was not affected in the presence of 

P5 peptide (Fig. 4-4B), that confirmed the specificity of selected inhibitor for integrin αD. 

We also tested the ability of P5 to block the adhesion of αDβ2 and αMβ2 to another ligand, 

vitronectin and received the similar result. Namely, P5 inhibits the adhesion of αDβ2-transfected 

cells, but has no effect on adhesion of αMβ2-transfected cells (Fig.4-3F). Taken together these data 

showed that P5 peptide can prevent the binding of αDβ2 to different ECM ligands without affecting 

the function of other macrophage integrins. 

 

  

 

 

Fig.4-3. P5 peptide is a specific inhibitor for integrin αDβ2. A, B. Representative profiles of the 

surface plasmon resonance measured by Biacore for αD (A) and αM (B) binding to the CEP-BSA 

coupled to the CM5 chip in the presence of 200μg/ml P3, P4 and P5 peptides.  C-E. Adhesion 

assay of αDβ2 and αMβ2 HEK 293 transfected cells in the presence of inhibitory peptides. C. 96-

well plate was coated with CEP for 3 h at 37C. Calcein AM labeled HEK293 transfected αMβ2 

and αDβ2 cells were added to the wells and cell adhesion was determined after 30 min in a 
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fluorescence plate reader. Some samples were pre-incubated with P3, P4 or P5 peptide for 20 min 

before the adhesion assay. Data are presented as mean ± SEM. *, P<0.05. D. Adhesion of HEK293 

transfected αMβ2 and αDβ2 cells to CEP in the presence of different concentrations of P5 peptide. 

Data are presented as mean ± SEM. *, P<0.05. E, F. Adhesion of HEK293 transfected αMβ2 and 

αDβ2 cells to fibrinogen (E) and vitronectin (F), some samples were pre-incubated with P5 peptide 

before the adhesion assay. Data are presented as mean ± SEM. *, P<0.05.  

 

 

Fig. 4-4. Adhesion assay of HEK293 transfected cells in the presence of P5 peptide. A. 

Adhesion of αMβ2 and αDβ2 - HEK293 transfected cells to fibrinogen in the presence of different 

concentration of P5. B. Adhesion of αXβ2 -HEK293 transfected cells to fibrinogen in the presence 

of 200µg/ml P5 peptide. Data are presented as mean ± SEM. *, P < 0.05. The experiment was 

repeated 3 times with the similar result. 

  

P5 peptide supports direct adhesion of αDβ2 cells and prevents receptor activation on the cell 

surface.   

The blocking peptide can bind directly to the binding site within αD or may have an 

allosteric effect. To detect the mechanism of P5 inhibition, we tested the direct binding of αDβ2 to 

P5 peptide. Using immobilized P5 in adhesion assay (Fig.4-5A), we found that P5 peptide can 

support a direct binding to αDβ2, while αMβ2 does not have this ability. The adhesion of both cell 

lines to Fg was used as positive control (Fig.4-5A).  
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The role of αD I-domain conformation for the binding to P5 peptide was assessed using 

Bio-interferometry. Particularly, we tested the interaction of αD I-domain in active and non-active 

conformation to the biotinylated P5 peptide, which was immobilized on streptavidin biosensor. 

We found that active form of αD I-domain has a similar binding to P5 in the presence of 1mM 

Mg2+ and 5 mM EDTA. At the same time, a non-active conformation of αD I-domain cannot 

interact with P5 (Fig. 4-5B). 

In parallel experiment, we tested how binding of P5 peptide affect the change in the 

conformation of entire αDβ2 heterodimer on the cell surface. Using activation-dependent antibody 

mAb24, we found that pre-incubation with P5 peptide, significantly reduced αDβ2 activation 

(Fig.4-5C). Therefore, the binding of P5 peptide is not required a fully active conformation of αDβ2 

and can prevent a conformational change from intermediate to the active stage. In agreement with 

our other data, P5 peptide did not have an effect on the activation of αMβ2 cells. 

 

 

Fig.4-5. Characterization of P5 peptide binding to integrin αDβ2. A. Direct adhesion of 

HEK293 transfected αMβ2 and αDβ2 cells to immobilized P5 peptide. Cells were added to the 

96-well plate coated with P5 peptide or with fibrinogen (Fg) as control and adhesion was 

performed as described in Fig.2.  B. Analysis of the activation stage of αD I-domain for the 

binding to P5 peptide. A representative binding curves of αD I-domain binding to P5 peptide 

measured by Bio-interferometry (ForteBio). N-terminally biotinylated P5 peptide was 

immobilized on streptavidin biosensor. 2 µM of αD I-domain in active conformation (solid line) 

and non-active conformation (dotted line) in the presence of 1 mM Mg2+ or αD I-domain in active 

conformation in the presence of 5 mM EDTA (dash line) were incubated with immobilized P5. 

The binding was analyzed using ForteBio Data Analysis 11.0 software. The experiment was 
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repeated 3 times with the similar result. C. P5 peptide inhibits the activation of integrin αDβ2 

on the cell surface. αDβ2 and αMβ2 transfected HEK 293 cells were pre-incubated with P5 peptide 

for 30 min at 37C, then cells were incubated with 100 nM PMA for 30 min at 37C to induce 

integrin activation. The activation stage of integrins were assessed using activation-dependent 

antibody mAb24. Fluorescently labeled cells were detected by FACS. Data are presented as mean 

± SEM. *, P< 0.05. 

 

Effect of P5 peptide on the macrophage accumulation in the peritoneal cavities of WT, αD
-/- 

and αM
-/- mice.  

The blocking effect of P5 peptide on αDβ2-mediated cell adhesion might interfere with 

macrophage migration in vivo. We used the model of thioglycollate-induced peritoneal 

inflammation to evaluate changes in macrophage migration after P5 treatment. WT mice were 

injected intraperitoneally with P5 peptide or control peptide 30 min before the injection of 

thioglycollate and the number of peritoneal macrophages was detected after 72 hours. We selected 

a control peptide from the same γ-module sequence based on the absence of binding to αDβ2 and 

αMβ2 and presence of negatively and positively charged amino acids. Accordingly, the sequence 

(WNGRTSTADYAMFKV), which corresponds to spots 37-40, was synthetized and tested. The 

adhesion assay in the presence of control peptide confirmed the lack of its effect on αDβ2-mediated 

adhesion (Fig. 4-6A). The injection of cyclic P5 peptide to WT mice reduced 3 folds the 

accumulation of macrophages in the peritoneal cavity, while the treatment with control peptide or 

PBS had no effect (Fig. 4-6B). Interestingly, the injection of P5 to αM-deficient mice demonstrated 

a reduction of macrophages in the peritoneal cavity similar to WT mice, while αD-deficiency 

completely eliminated a blocking effect of P5 peptide (Fig. 4-6C). These results demonstrate the 

specificity of P5 peptide in vivo. 
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Fig. 4-6. P5 peptide inhibits the accumulation of macrophages in the peritoneal cavity during 

sterile inflammation. A. Adhesion of αDβ2 and αMβ2 transfected cells to CEP in the presence of 

200 μg/ml control peptide. B-C. WT (B), αM
-/- and αD

-/- (C) mice were intraperitoneally injected 

with 200 μg/ml cyclic P5 peptide, control peptide or PBS.  20 min later, 4% thioglycollate was 

injected intraperitoneally to all mice to induce inflammation. After 3 days, the amount of WT, αM
-

/- and αD
-/- macrophages was evaluated by assessing the number and percentage of macrophages in 

the inflamed peritoneal cavity of mice. Isolated peritoneal cells were counted and the number of 

WT, αM
-/- and αD

-/- macrophages were calculated based on the percentage of F4/80 positive 

population in flow cytometry analysis. Data are presented as mean ± SEM. *, P < 0.05.  

 

Mechanism of P5 peptide inhibition during peritoneal inflammation.  

The model of peritoneal inflammation is a well-described model of acute inflammation, 

which is commonly used to evaluate monocyte/macrophage recruitment. Macrophage 

accumulation in the peritoneal cavity depends on several factors including monocyte progenitor 

translocation to the blood stream, monocyte transmigration via endothelium monolayer, 

macrophage migration through the interstitium to the peritoneal cavity, and  efflux from the cavity 

to the lymphatic. We sought to detect what step of macrophage accumulation is interfered by P5 

peptide.  

To clarify this question, we developed several assays. First, we isolated monocyte 

progenitors from WT mice, labeled cells with PKH26 red fluorescent dye and injected 

intravenously to the mice with initiated peritoneal inflammation (Fig.4-7A). One group of mice 

was treated with P5 peptide, second with the control. After 72 hours cells were isolated from the 

peritoneal cavity and the number of red-fluorescent adoptively transferred macrophages was 
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evaluated by FACS (Fig.4-7B). We found that according to our previous observations (Fig.4-6B) 

the total number of macrophages was significantly reduced after P5 treatment (Fig. 4-7C, left 

panel).  More interestingly, the number of labeled macrophages was also significantly decreased 

(Fig.4-7C, right panel). This result demonstrated that the effect of P5 peptide on macrophage 

recruitment. But, clearly, P5 does not affect translocation from bone marrow, since labeled cells 

were injected to the blood stream. Also, this result shows that the effect of P5 is mediated by 

monocyte-derived macrophages and is not related to the proliferation of resident macrophages. 

 

 

Fig.4-7. P5 peptide regulates the recruitment of macrophages. A. Schematic representation of 

experiment. WT mice were intraperitoneally injected with P5, 20 min later, TG were 

intraperitoneally injected to all the mice to induce inflammation, then fluorescently labeled WT 

bone marrow monocytes were injected into the tail vein of the recipient mice. After 72h, the 

harvested macrophages (labeled macrophages and total macrophages) were also assessed by flow 

cytometry (B) and the percentages of red fluorescent cells were assessed (C). Macrophages were 

calculated based on the percentage of F4/80 positive population in flow cytometry analysis. Data 

are presented as mean ± SEM. *, P < 0.05.  

Second, we tested the potential role of P5 in the macrophage efflux from the peritoneal 

cavity (Fig. 4-8A). Macrophages were isolated at 72 hours after thioglycollate injection and labeled 

with PKH 26 fluorescent dye. The labeled macrophages were injected intraperitoneally to the mice 
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at 48 hours after thioglycollate-induced inflammation. One group was treated immediately with 

P5 peptide, another with control. After an additional 24 hours, cells from the peritoneal cavity 

were collected and the number of labeled macrophages was compared in both groups using FACS 

(Fig.4-8B) and cytospin (Fig. 4-9). Again, the number of recipient macrophages was affected by 

P5 peptide (Fig. 4-8C). However, the amount of fluorescently-labeled macrophages in the 

peritoneal cavity was not changes in the presence of P5 peptide that demonstrates that P5 treatment 

did not affect efflux of macrophage during peritoneal inflammation (Fig. 4-8C).  

Based on these experiments, we concluded that P5 interferes with the recruitment of 

monocyte/macrophages from the bloodstream to the peritoneal cavity. Therefore, the contribution 

of P5 peptide may affect endothelial transmigration or migration through the ECM.  

 

Fig.4-8. P5 peptide does not affect the efflux of macrophages from the peritoneal cavity. A. 

Schematic representation of experiment. Recipient and donor mice WT mice were 

intraperitoneally injected with thioglycollate (TG). After 48 hours, macrophages were isolated 

from the peritoneal cavity of donor mice and labeled with red fluorescent dye (PKH26). The 

recipient mice were intraperitoneally injected with labeled macrophages and P5 peptide. After 

additional 24h, the total macrophage number and percentage of labeled macrophages were 

evaluated by flow cytometry as described for Fig.4-7. (B,C). Data are presented as mean ± SEM. 

*, P < 0.05.  
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Fig.4-9. P5 peptide does not affect the efflux of macrophages from the peritoneal cavity. The 

experiments were performed as described in Fig. 4-8. The harvested peritoneal cells were cytospun 

and evaluated using fluorescent microscope (upper panel). The quantification of the data was 

analyzed using t-test at least 9 fields of view per sample (n=3) by Image Analysis Software (EVOS, 

Thermo Fisher) Data are presented as mean ± SEM. *, P < 0.05 (lower panel).  

 

P5 peptide has no effect on 2D trans-endothelial migration but inhibits 3D migration in the 

matrix.  

Accordingly, we tested the role of P5 in monocyte transmigration via endothelial 

monolayer in vitro. Boyden chamber was coated overnight with HUVEC cells, which were labeled 

with green PKH67 fluorescent dye. Monocytes, labeled with red fluorescence (PKH26), were 

added to the upper chamber (Fig. 4-10A). Monocyte migration was stimulated with MCP-1 added 

to the lower chamber. One group of monocytes was pre-treated with P5 peptide 20 min before the 

experiment. The transmigration was evaluated after 3 hours by confocal microscopy and analyzed 
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by IMARIS software (Fig.4-10B). We did not detect the effect of P5 on transmigration that 

corresponds to the relatively low level of integrin αDβ2 on the circulatory monocytes (Fig.4-10C).  

 

 

 

Fig.4-10. P5 peptide does not affect the trans-endothelial migration of monocytes A. PKH67-

fluorescently labeled (green) HUVEC cells were coated on the membrane of the upper chamber of 

transwell. Monocytes were labeled with PKH26 red fluorescent dye and added on the top of 

endothelial cells. MCP-1 was added to the lower chamber of the transwells to stimulated monocyte 

migration. After 3h, monocyte transmigration was detected by the Leica Confocal microscope. B. 

Side view of the transwell. In P5 group, the monocytes were preincubated with P5 peptide for 20 

min. The results were analyzed by IMARIS 8.0 software and plotted (C). Statistical analyses were 

performed using Student's paired t-tests (n=5 per group). Scale bar= 100 μm. Data are presented 

as mean ± SEM. *, P<0.05. 

To test a contribution of P5 peptide to macrophage migration in the matrix, we used in vitro 

3D migration assay in fibrin gel (Fig. 4-11A). Thioglycollate-induced peritoneal macrophages 

were isolated from WT and αD
-/- mice and labeled with green (PKH67) or red (PKH26) fluorescent 

dyes, respectfully. The equal number of cells was loaded on one side of 3D fibrin gel and MCP-1 

was added to the opposite side to stimulate the migration. One group of samples was pretreated 

with P5 peptide. P5 was also added to the fibrin matrix. The migration was evaluated after 48 hours 

by confocal microscopy (Fig.4-11B, C). The pre-incubation with P5 peptide markedly reduced 
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migration of non-polarized macrophages. Therefore, this experiment confirmed that P5 peptide 

affects migration of macrophages through ECM during acute peritoneal inflammation.  

Usually, the further development of inflammation promotes the polarization of 

macrophages to the pro-inflammatory M1 phenotype. We recently showed that expression of αDβ2 

is upregulated on M1-polarized macrophages and αDβ2’s high expression generates a strong 

adhesion, following by macrophage retention 8,9. Therefore, we hypothesized that P5 peptide 

treatment may have the opposite effect on the migration of M1-activated macrophages. WT and 

αD
-/- peritoneal macrophages were stimulated with IFN-γ for 4 days and tested in 3D migration 

assay in the fibrin matrix. As we have shown previously, M1-polarized WT macrophages 

demonstrate significantly lower migration to compare with non-activated macrophages, however, 

αD
-/- M1 macrophages demonstrates enhanced migration to compare with WT (Fig. 4-11D, left 

panel). Accordingly, the addition of P5 peptide improved migratory properties of WT M1 

macrophages (Fig. 4-11D, right panel). Apparently, P5-mediated inhibition of αDβ2 adhesion 

releases macrophage migration. Notably, the migration of αD
-/- macrophages is not significantly 

changed after P5 peptide treatment, which is in agreement with our previous observations (Fig. 4-

6C). Based on these results we can predict that the effect of P5 peptide on the development of 

chronic inflammation would be more complex and will include the inhibition of macrophage 

migration to the site of inflammation and inhibition of macrophage retention at the site of 

inflammation.  
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Fig.4-11. 3D migration of macrophages was regulated by P5 peptide. A. Schematic 

representation of experiment. Labeled cells were mixed in equal amounts and added to the 

transwell. Before the initiation of migration, the background was verified by scanning samples 

with confocal microscope. The migration was stimulated by the adding 30 nM MCP-1 to the 

opposite side of fibrin gel. B. After 48 hours the migration was evaluated using Leica Confocal 

microscope. 3-D view of the migrating cells in Fibrin matrix. C-D. Side view of migration of non-

activated (C) and M1-activated (D) macrophages. The results were analyzed and reconstructed by 

IMARIS 8.0 software. Statistical analyses were performed using Student's paired t-tests (n=4 per 

group). Scale bar= 500 μm. Data are presented as mean ± SEM. *, P<0.05.  

 

Inhibition of macrophage accumulation in the adipose tissue of diabetic mice by P5 peptide. 

To test P5 effect on chronic inflammation, we analyzed an accumulation of macrophages 

in adipose tissue of pre-diabetic mice.  Mice after 8 weeks on a high-fat diet were injected with 

fluorescently labeled WT (PKH26 red) and αD
-/-(PKH67 green) monocytes. One group was 

injected with cyclic P5 peptide, another with control. After 48 hours the number of red and green-

labeled macrophages in the adipose tissue was evaluated using classical FACS (Fig. 4-12A) and 

imaging flow cytometry (Fig. 4-12B). We have previously shown that αD-deficiency reduced 
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macrophage accumulation in the adipose tissue. Now, we demonstrate that P5 peptide possesses a 

similar effect on WT macrophages. The accumulation of P5 treated WT macrophages was reduced  

by 2.5 folds. Interestingly, the migration of αD
-/- macrophages was not affected. Specifically, the 

ratio of WT to αD
-/- macrophages in adipose tissue of control mice was 3 folds, while this ratio was 

reduced to 1 after P5 peptide treatment (Fig. 4-12C, D). 

 

 

Fig. 4-12. P5 peptide inhibited accumulation of macrophages in adipose tissue of mice during 

diet-induced diabetes. Isolated WT and αD
 -/- bone marrow monocytes were labeled with red 

PKH26  (WT) or green PKH67 (αD
-/-) fluorescent dyes, respectively, mixed in an equal amount 

and injected into the tail vein of WT mice fed a high fat diet (45% kcal/fat) for 8 weeks. 

Experimental groups were intraperitoneally injected with 200 µg/ml P5 peptide 20 min before the 

injection of labeled cells. After 3 days, visceral adipose tissue was isolated, digested and analyzed 

using flow cytometry. A. Q1 and Q4 quadrants represent the labeled cells in digested adipose tissue. 

Statistical analyses were performed using Student’s paired t-tests (n=5 for con, n=4 for P5 group). 

Data are presented as mean ± SEM. *, P<0.05. B. Imaging flow cytometry. The upper panels 

represent the injected monocytes, isolated from WT and αD
-/- mice, labeled with red and green 
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fluorescent dyes, respectively. The lower panels represent macrophages isolated from adipose 

tissue. The population of single, alive cells was analyzed on red and green channels. Channel 1- 

Brightfield (BF). Channel 2- 488 wavelength (PKH67). Channel 3 – 566 wavelength (PKH26), 

channel 6 – side scattering (SSC). Channel 11- F4/80 represents macrophage staining. C. 

Macrophage number was calculated based on flow cytometry data and presented as mean ± SEM. 

*, P < 0.05. D. The ratio of WT and αD
-/- macrophage in each mouse was calculated and presented 

as mean ± SEM. *, P<0.05. 

Discussion 

Our previous results demonstrated that modification of ECM proteins with the product of 

DHA oxidation, CEP, generates new inflammation-specific substrates in the tissue 16. We found 

that CEP is a ligand for αDβ2 and αMβ2-mediated macrophage adhesion and migration 16. 

Importantly, we and others detected CEP modified proteins in different inflamed tissues such as 

atherosclerotic lesions, pathological angiogenesis, adipose tissue during diabetes and peritoneal 

tissue during sterile inflammation 16,19,28,29. Our other recent results demonstrated that the 

upregulation of integrin αDβ2 at the site of inflammation promotes  strong adhesion of macrophages 

to the substrate, related macrophage retention and disease progression 8.  

The proposed study was designed to develop the inhibitor of αDβ2-medited adhesion of 

macrophages to the inflamed ECM, focusing on CEP as an  inflammation-specific ligand. Since 

αMβ2 and αDβ2 have a different, rather opposite role during chronic inflammation 8,9,13,15, our goal 

was to identify the inhibitor that will work specifically only with integrin αDβ2. The lack of 

commercially available monoclonal antibodies against αDβ2 as well as focus on specific αDβ2 

ligand led us to the search for the peptide-based inhibitor. Based on different affinities between 

CEP - αD I-domain (KD 1.81x10-7) and CEP- αM I domain (KD 2.1x10-6)16, we hypothesized that 

ligand binding sites for CEP within αDβ2 and αMβ2 have a different structure.  

We selected γ-module of fibrinogen for the generation of a cellulose-bound peptide library, 

based on our earlier finding that γ-module contains several independent sites that can be recognized 

by integrin αMβ2 
22. We also showed that αDβ2 interacts with fibrinogen, via γ-module 10. Utilizing 

this library, we identify 3 unique peptides, which are specific only for binding to integrin αDβ2 (Fig. 

4-2). The inhibitory abilities of identified sequences were tested in the protein-binding assay 

(surface plasmon resonance) and adhesion assay, that narrowed our search to one peptide, called 
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P5 (Fig. 4-3). P5 peptide has a strong negative charge due to 6 aspartic acids. Since the critical 

molecular group of CEP is a carboxyl group 18, P5 peptide mimics the multiple CEP modifications 

on a protein surface. We cannot exclude that some other peptides with strong negative charge may 

have a similar effect on αDβ2-mediated macrophage adhesion. However, a number of tested 

peptides with several aspartic/glutamic acids in the structure do not interact with αD I-domain (Fig. 

4-1 and Fig. 4-2 spot 47, 48, 58 and 59).  

αDβ2 is a multi-ligand receptor. The previous data demonstrated that binding sites within 

αD for different ligands are overlapping 10. Accordingly, we found that P5 peptide can also block 

the binding to vitronectin and fibrinogen that broads the inhibitory ability of P5. However, the KD 

of αD binding to CEP surpasses the binding to Fg or vitronectin 10,16,30, therefore during 

inflammation CEP-modified proteins will be preferential ligands for αDβ2. Moreover, the 

formation of adducts between CEP and natural ligands of αDβ2 will promote the αDβ2 interaction 

with these ligands via CEP binding site. 

The integrin ligand binding requires the interaction of negatively charged amino acid of 

the ligand with the metal-ion-dependent adhesion site (MIDAS) in integrin I-domain structure 30. 

MIDAS is a binding site for Mg2+, which is coordinated by five side chains of amino acids from 

I-domain and acidic residue from the ligand.  Such coordination stabilizes the active conformation 

of I-domain and promotes ligand binding31. The ability of P5 peptide to interact with αD I-domain 

in the presence of EDTA demonstrates that P5 is not involved in the interaction with MIDAS via 

one of aspartic acid. Moreover, the lack of P5 peptide to interact with integrin αM (Fig. 4-2,4-5), 

that contains the same MIDAS structure, confirms that P5 binding site is located in the separate 

part of I-domain. Further studies are required to localize the binding motif for P5 peptide within 

αDβ2. One of the potential explanations of P5 mechanism can be a prevention of αDβ2 activation 

since the pre-incubation of αDβ2-cells with P5 peptide inhibit following activation/conformational 

change of αDβ2 (Fig.4-5C). It has been shown that integrin can interact with ligands in the 

intermediate affinity 32. The ligand docking can change integrin conformation to an active form 

and increase affinity of binding. Therefore, the effect of P5 peptide on αDβ2 binding to different 

ligands can be explained by prevention of conformational change from the intermediate to the 

active stage.  
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Mouse and human integrin αD have a high level of homology (identity 71%; positive 80%). CEP 

formation is similar in human and mouse tissues33. P5 peptide inhibited the binding of CEP to 

human αD I-domain, human αDβ2-transfected HEK 293 cells and mouse macrophages in vitro and 

in vivo. Therefore, P5 peptide represents the common inhibitor for human and mouse systems.  

To evaluate the effect of P5 peptide in vivo, a mouse peritoneal model of inflammation 

was applied. Thioglycollate-induced peritoneal inflammation represents a sterile acute 

inflammation. In contrast to chronic inflammatory diseases, the expression of integrin αDβ2 on 

peritoneal macrophages is intermediate7. However, this model is commonly used to study the 

mechanism of neutrophil and macrophage migration and provided an important information 

regarding the effect of P5 peptide inhibition in vivo. The macrophage accumulation in the 

peritoneal cavity at 72 hours after injection of sterile thioglycollate allows tracking monocyte 

recruitment and macrophage efflux during inflammation 34-36.  We demonstrated the specificity of 

P5 peptide-mediated inhibition, since P5 peptide significantly blocked accumulation of WT and 

αM
-/- macrophages, but had no effect on the accumulation of αD-deficient macrophages in the 

peritoneal cavity (Fig. 4-6).  

The monocyte/macrophage recruitment to and efflux from the peritoneal cavity is a 

complex process that can be divided into several stages: translocation of monocytes from bone 

marrow/spleen, monocyte transmigration through the endothelium, migration via ECM and efflux 

from the cavity to lymphatics. Since each step is regulated by leukocyte integrins, we tested a 

potential role of P5 on these processes. Using adoptively transferred macrophages, we found that 

P5 peptide has no effect on macrophage efflux from the peritoneal cavity (Fig. 4-9). It corresponds 

to the previous results that macrophage efflux is regulated by integrin α4β1 
35,36 and αMβ2 

34.  In 

contrast, the injection of fluorescently labeled monocytes to the blood stream in the presence of 

P5 peptide significantly reduced the accumulation of labeled macrophages in the peritoneal cavity 

(Fig. 4-7). This result demonstrated that P5 peptide inhibits monocyte endothelial transmigration 

or/and migration via ECM (peritoneal wall) toward the cavity. Also, this result indicated that the 

P5 effect is not related to monocyte translocation from the bone marrow. These data are in 

agreement with the facts that αDβ2 has a low expression on monocyte progenitors that reduced 

potential contribution of αDβ2 to this step 37.  
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To further determine the role of P5 peptide in the recruitment, we tested P5 in monocyte 

transmigration (Fig. 4-10) and migration through the extracellular matrix in vitro (Fig. 4-11). We 

did not detect a difference in monocyte transmigration via endothelial monolayer in the presence 

of P5 peptide. It corresponds to the previous results that monocyte diapedesis depends on integrin 

αLβ2, α4β1 and to some extend αMβ2 
38,39, 40.  It also in agreement with our previous data that αD-

deficiency do not change transmigration of monocytes during atherogenesis 8. 

In contrast to these data, P5 had a strong effect on the migration of WT macrophages in 3D 

matrix. Macrophages can apply mesenchymal (adhesion-dependent) or amoeboid (adhesion-

independent) migration mode in the 3D environment 41-45. We recently found that integrin αDβ2 

can regulate mesenchymal migration 9, and the density of αDβ2 on macrophage surface is important 

for the outcome. The interplay between integrin density and cell migration is based on the theory 

of cell migration, which postulates that intermediate adhesion supports migration, while very 

strong adhesion will inhibit cell locomotion 46,47. In our current experiment, we used non-activated 

peritoneal macrophages, which have a moderate level of αDβ2 expression 7. Clearly, αD-deficiency 

reduced migration of non-activated macrophages (Fig. 4-11C, left panel (αD
-/- green fluorescence 

versus WT red fluorescence)), that confirmed a supportive role of αDβ2 in migration. Accordingly, 

P5 peptide reduced the migration of WT non-activated macrophages (Fig. 4-11C, right panel), but 

does not have an effect on migration of αD-deficient macrophages.  

In our previous project, we found that  high expression of αDβ2 on M1 macrophages serves 

to inhibit cell migration due to strong adhesion 8,9. We verified this result by demonstrating a 

reduced migration of αD-deficient M1-activated macrophages (green fluorescence) (Fig. 4-11D, 

left panel). Accordingly, the migration of WT M1-activated macrophages in the presence of P5 

peptide was improved, since αDβ2-mediated adhesion was reduced (Fig.4-11D, right panel). The 

migration of αD-deficient macrophages (green fluorescence) surpasses WT (red fluorescence) in 

the control sample but had a similar level after P5 treatment (Fig. 4-11C,D). These data 

demonstrate that P5 peptide may differently affect macrophage migration depending on subset of 

macrophages and level of αDβ2 expression on the surface. The obtained result is in agreement with 

our previous data that integrin αDβ2 has a different role during migration depending on receptor 

density on the cell surface 7,9. The intermediate expression of αDβ2 during acute inflammation 
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supports macrophage migration to the site of inflammation, while upregulation of αDβ2 on pro-

inflammatory macrophages promotes macrophage retention at the site of chronic inflammation. 

To further confirm that P5 may affect macrophage accumulation during chronic 

inflammation we applied the model of diet-induced insulin resistance. Recently, we demonstrated 

that αD-deficiency reduced glucose tolerance and insulin resistance in C57BL6 mice 9. Using 

adoptive transfer of fluorescently labeled WT and αD
-/- monocytes, we demonstrated that ratio WT 

to αD
-/- macrophages in the adipose tissue reduced after P5 peptide treatment (Fig. 4-12). 

Macrophage accumulation in adipose tissue is a critical marker of inflammation and development 

of diabetes. This result confirmed the important role of integrin αDβ2 in the development of 

inflammation and proposes P5 peptide as a potential approach for the development of an anti-

inflammatory treatment that can prevent macrophage accumulation and development of different 

inflammatory diseases, particularly type 2 diabetes. 
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CHAPTER 5 

SUMMARY 

The major findings of our research were: 

1. CEP is not present in healthy tissues and its levels are dramatically increased at the sites 

of inflammation.  

2. Inhibition of CEP does not affect the response of neutrophils to inflammation but 

prevents the consequent macrophage recruitment.  

3. Neutrophil activation and migration through ECM results in the generation of CEP-

modified proteins. 

4. CEP-modified proteins promote macrophage adhesion and migration. 

5. Integrins αMβ2 and αDβ2 are specific macrophage receptors for CEP-mediated adhesion 

and migration. 

6. The expression of integrin αDβ2 was significantly upregulated on macrophages in 

atherosclerotic lesions and M1 macrophages in vitro. 

7. αD-deficiency reduced macrophage accumulation in atherosclerotic lesions and does not 

have effects on macrophage apoptosis or proliferation. 

8. Strong adhesion of M1-activated macrophages translates to weak 3D migration, while 

moderate adhesion of M2-activated macrophages generates dynamic motility. 

9. The high expression of αMβ2 on resident macrophages prevents their amoeboid migration, 

which is markedly increased in αM-deficient macrophages. 

10. αD deficiency prevents the retention of inflammatory macrophages in adipose tissue and 

improves metabolic parameters, while αM deficiency does not affect macrophage 

accumulation. 

11. P5 peptide is a specific inhibitor for integrin αDβ2. 

12. P5 peptide inhibits the accumulation of macrophages in the peritoneal cavity. 

13. P5 peptide inhibits the recruitment of non-activated macrophages to the peritoneal cavity. 

14. P5 peptide neither affects trans-endothelial migration of monocytes nor the efflux of 

macrophages from the peritoneal cavity. 

15. In vitro 3D migration of macrophages was inhibited by P5 peptide. 

16. P5 peptide inhibits macrophage accumulation in the adipose tissue of diabetic mice. 
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Inflammation is a critical part of the body's immune response. Normally, inflammatory 

response is to protect our body from the bacteria or virus infection and to repair damaged tissues. 

Neutrophil recruitment is the first wave of immune response directed to fight inflammation. The 

followed migration of monocyte/macrophage to the inflamed sites are considered as second wave 

of immune response. However, the mechanisms controlling the transition between the first and 

second wave of inflammation are not fully understood. In chapter 2, we found a lipid oxidation 

product, called 2-(ω-carboxyethyl)pyrrolle (CEP) (Yakubenko et al. 2018), generated by 

neutrophils migration to the inflamed sites serves as a ligand for integrins αMβ2 and αDβ2 during 

the second wave of immune response, namely, the recruitment of macrophages. In this process, 

neutrophils seem to “pave the road” for future macrophage invasion by modifying ECM with 

CEP. We also detected the levels of CEP were markedly increased in the peritoneal tissues after 

72 hours of the injection of thioglycolate to the peritoneal cavity. In addition, the blocking of 

CEP does not affect neutrophil extravasation, but significantly reduced the subsequent 

infiltration of macrophages. Using HEK293 cells transfected with β2 integrins, we found that 

integrins αMβ2 and αDβ2 can bind to CEP, but not αLβ2. We also used 3D migration assay in vitro 

to investigate the migration of thioglycolate-induced peritoneal macrophages in the presence or 

absence of CEP. Interestingly, we found that in vitro 3D migration of neutrophils was not 

affected in the presence of CEP, however, β2 integrin-mediated macrophages migration in fibrin 

matrix was strongly supported by CEP. In summary, CEP generation may have pro-inflammatory 

as well as protective functions, depending on type of inflammation. The information obtained in 

our studies not only establishes the foundation for a new model of inflammation but also 

provides a new strategy for treatment of chronic inflammatory diseases. 

In the chapter 3, we are interested in how β2 integrins, especially αMβ2 and αDβ2, are 

involved in the migration and retention of macrophages during chronic disease (Cui et al. 2018). 

In this study, we first stimulated TG-induced peritoneal macrophages into M1 and M2 

macrophage phenotypes using IFN-γ and IL-4 respectively to study their adhesive and migratory 

properties. We used two methods which are adhesion assay and 3D migration assay and found 

M1-activated macrophages demonstrate much stronger adhesive properties but weaker migration 

in comparison to M2-activated macrophages. In addition, using WT, αM
-/- and αD

-/- mouse, we 

studied the adhesive and migratory properties of M1 and M2 activated or resident macrophages. 

We found that the level of integrin expression determines the effect on macrophage migration 
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and adhesion, namely, the high expression of integrin αDβ2 on M1 macrophage strongly reduced 

their migration through fibrin matrix, while the moderate expression of integrins αMβ2 and αDβ2 

on M2 macrophage are both involved in their migration. In in vivo studies, we used the model of 

resolution of peritoneal inflammation to confirm our in vitro studies.  We found that M1-

activated macrophages perform a higher retention during the resolution of peritoneal 

inflammation compared to M2-activated macrophages. These results are corresponding to in 

vitro studies. We also found M1 macrophages may apply mesenchymal migratory mode, while 

M2 phenotypes utilize both locomotion modes, amoeboid and mesenchymal. In summary, this 

part of our study demonstrates the important contribution of αMβ2 and αDβ2 to the locomotion of 

distinct macrophage subsets and proposes a β2-integrin dependent mechanism of macrophage 

retention in the tissue and efflux during the resolution of inflammation. 

We recently found that CEP serves as a ligand for αDβ2 and strongly upregulated in the 

inflamed tissues in chapter 2. Integrin αDβ2, which also has a significant increased expression on 

pro-inflammatory macrophages and in atherosclerotic lesions, promotes the development of 

atherosclerosis and diabetes by supporting macrophage retention in inflamed tissue in chapter 3. 

In chapter 4, we were trying to identify a specific inhibitor for αDβ2-CEP interaction, which can 

prevent the excessive macrophage accumulation. Using a specially designed peptide library, 

biacore detected protein-protein interaction and adhesion of integrin-transfected HEK293 cells, 

we identified a sequence (called P5-peptide), which significantly and specifically inhibited αD-

CEP binding. The injection of cyclic P5 peptide reduced 3-folds the accumulation of 

macrophages at 72 hours after thioglycollate-induced peritoneal inflammation model into WT 

mice, but had no effect in αD-deficient mice. The tracking of adoptively transferred 

fluorescently-labeled WT and αD
-/- monocytes in the model of peritoneal inflammation, and in 

vitro two-dimensional and three-dimensional migration assays demonstrated that P5 peptide does 

not affect monocyte transendothelial migration or macrophage efflux from the peritoneal cavity, 

but regulates macrophage migration through the ECM. Moreover, the injection of P5 peptide into 

WT mice on a high-fat diet prevents macrophage accumulation in adipose tissue in αDβ2-

dependent manner.  

Taken together, we identify new inflammation-specific ligand for integrin αDβ2, 

carboxyethyl pyrrole (CEP). We demonstrate that αDβ2 promotes chronic inflammation by 

mediating strong macrophage adhesion to CEP at the site of inflammation. We identify the short 
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peptide, called P5, that can prevent αDβ2 binding to CEP, and as result, can prevent the 

development of chronic inflammation. Therefore, our studies propose a new therapeutic 

approach for the treatment of atherosclerosis and other chronic inflammatory diseases by 

focusing on inhibition of αDβ2-mediated adhesion to inflammatory substrate using short blocking 

peptide. 
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