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ABSTRACT 

Role of ATM in T Cell Dysfunction During Chronic Viral Infection 

by 

Juan Zhao 

Hepatitis C virus (HCV) or human immunodeficiency virus (HIV) infection leads to a 

phenomenon of inflammaging, in which chronic infection or inflammation induces an immune 

aged phenotype with T cell dysfunction. Thus, HCV or HIV infection has been deemed as a 

model to study the mechanisms of T cell infammaging and viral persistence in humans. In this 

dissertation, T cell homeostasis, DNA damage and repair machineries were investigated in 

patients with chronic HCV or HIV infection at risk for inflammaging. We found a significant 

depletion in CD4 T cells, which was correlated with their apoptosis in chronically HCV/HIV-

infected patients, compared to age-matched healthy subjects. In addition, virus-infected patients’ 

CD4 T cells were prone to DNA damage that extended to chromosome ends (telomeres), leading 

to accelerated telomere erosion - a hallmark of senescence. Mechanistically, the DNA double-

strand break (DSB) sensor MRE11, RAD50, and NBS1 (MRN) remained intact, but the DNA 

damage checkpoint kinase ataxia telangiectasia mutated (ATM) and its downstream checkpoint 

kinase 2 (CHK2) were significantly suppressed in T cells from HCV/HIV-infected individuals. 

Consistently, ATM/CHK2 activation, DNA repair, and cellular functions were also impaired in 

primary CD4 T cells following ATM knockdown, or exposure to the ATM inhibitor (KU60019), 

as well as in CD4 T cells co-cultured with HCV-infected hepatocytes, or a T cell line infected 

with HIV-1 in the presence of raltegravir in vitro, which recapitulates the biological effects 

observed in T cells in the setting of HCV/HIV infection in vivo. Importantly, ectopic expression 
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of ATM was essential and sufficient to reduce the DNA damage, survival deficit, and cellular 

dysfunction in T cells from both HCV and HIV-infected individuals. These results demonstrate 

that failure of DSB repair due to ATM deficiency leads to unrepaired DNA damage and renders 

virally infected patients’ T cells prone to senescence and apoptosis, thus contributing to CD4 T 

cell loss or dysfunction during chronic HCV or HIV infection. This study reveals a novel 

mechanism by which ATM deficiency promotes telomeric DNA damage and premature T cell 

aging, and provides a new therapeutic target for inflammaging-induced immune dysfunction 

during chronic viral infection. 
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CHAPTER 1 

INTRODUCTION 

HCV Infection - An Excellent Model for Studying Viral Persistence in Humans 

HCV is a parenterally-transmitted, hepatotropic virus that often causes inflammation of 

liver (hepatitis). Currently, there is approximately 170-200 millions of people worldwide and 4 

millions of United States (U.S.) citizens are infected by HCV. Upon exposure, 15-25% of HCV-

infected subjects can spontaneously resolve the acute infection, and 75-85% of infected subjects 

progress to chronic infection1,2. Chronic HCV infection is associated with an increased risk of 

developing liver cirrhosis and hepatocellular carcinoma (HCC) (as showed in Fig.1.1), and is 

now the leading infectious cause of liver transplantation in the US3. According to CDC 

reporting4, the number of HCV-related deaths has reached an all-time high, surpassing 60 other 

nationally reported infectious conditions combined. Thus, hepatitis C is the number one 

infectious disease leading to death in the U.S. Over the past 7-8 years, the successful 

development of highly effective direct-acting antiviral agents (DAAs) has led to a significant 

paradigm change in the treatment of HCV infection. While DAA has significantly improved the 

outcome of HCV treatment, these therapeutic cocktails are facing new issues such as viral 

mutation, relapse, and reinfection following therapy5,6. Additionally, the lack of a vaccine for 

this virus is a major hurdle to control this global infection.  

Since HCV is highly efficient at establishing chronic infection via evasion of host 

immunity, it has become an excellent model to study the mechanisms of viral persistence in 

humans. Similar to the issues inherent to HCV infection, the failures to successfully manage 

many chronic infectious diseases and to effectively respond to vaccines stem from an incomplete 
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understanding of the host and pathogen interactions that may dampen the host immunity, thus 

this research is significant in that the mechanisms we will study may ultimately be applicable to 

multiple chronic infectious diseases.  

HIV Infection - An Excellent Model for Studying Inflammaging in Humans 

HIV-1 was first discovered in 1983, and is the cause of the acquired immunodeficiency 

syndrome (AIDS)7,8. There were approximately 36.9 million peoples worldwide living with 

HIV/AIDS in 2017. More than 1.1 million peoples in the U.S. are living with HIV today. Since 

1997, highly active combined Antiretroviral Therapy (ART) has been used to treat HIV 

patients9,10. It is extremely effective at suppressing HIV replication, increasing CD4 T cell 

counts, and decreasing the HIV/AIDS-related morbidity and mortality11-13. However, current 

ART can only suppress, not eliminate, the HIV infection. Also, HIV patients on ART with 

undetectable viremia and reasonable CD4 T cell counts still harbor impaired immune functions, 

as evidenced by the shortened telomeres, low IL-2 production, poor cellular proliferative 

capacity, and blunted vaccine responses14-24. Importantly, ART-controlled HIV patients often 

Fig.1.1 Natural history of HCV infection. (Modified from Osna NA 2017) 
Chronic hepatitis develops among 75%-85% of HCV-infected subjects. HCV can cause repeated 
hepatocyte damage and result in cirrhosis with a rate of 15%-25% after 10-40 years. Among 
patients with liver cirrhosis, there is 2-7% annual risk of hepatocellular carcinoma. 
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exhibit a state of chronic, low grade inflammation that can activate the immune system, and 

subsequently, drive T cell premature aging or senescence, a phenomenon called inflammaging25-

28. Inflammaging is a major driver of increased susceptibility to infections, reduced responses to 

vaccines, increased incidences of cancers, cardiovascular disease, and neurodegeneration, similar 

to those often seen in the elderly29-31. The mechanisms regarding how inflammaging is developed 

and persists in virus suppressed, latent HIV infection, however, remain poorly understood. 

Multiple factors may be involved in the mechanisms underlying inflammaging in ART-

controlled, latent HIV infection. Specifically, HIV latency in the era of ART is characterized by 

the existence of viral reservoirs that prevent HIV-1 eradication and likely drive 

inflammaging32,33. Thus, HIV-mediated inflammaging could result from a myriad of insults 

(Fig.1.2) , including viral particles or viral proteins released from HIV-1 reservoirs, cell-secreted 

pro-inflammatory cytokines/chemokines, HIV-enhanced gut permeability or altered gut 

microbiota, frequent cytomegalovirus (CMV), Epstein–Barr virus (EBV), hepatitis B virus 

(HBV), and HCV coinfections, ART regimens, and other closely associated comorbidities 

including malignancies, or even social, personal stresses, and environmental factors34-37. 

Additionally, cumulative evidence has indicated a tight link between oxidative stress and 

inflammaging38. Oxidative stress refers to elevated intracellular levels of reactive oxygen species 

(ROS) that cause damage to lipids, proteins and DNA, which may shape the homeostasis at 

various disease conditions39-42. In the setting of latent HIV infection, ROS within the cellular 

milieu during viral infection may also play an important role in driving inflammaging. The 

inflammaging imposed by HIV exposes the immune system, particularly, HIV-infected and 

bystander CD4 T cells, to unique challenges that lead to T cell exhaustion and senescence, 

similar to that observed in the elderly. Therefore, the virus-suppressed, latent HIV infection 
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can be deemed as an excellent model to study inflammaging in humans. 

T Cell Aging or Senescence - A Phenomenon Often Seen in Chronic Viral Infection 

Aging is associated with, and may be caused by, low-grade inflammation 

(inflammaging), which is a common denominator in the majority of age-related diseases43-45. 

Inflammaging is a major driver of increased susceptibility to infections, reduced responses to 

vaccines, increased incidences of cancers, cardiovascular diseases, and neurodegeneration, all of 

which contribute to comorbidity and mortality in the elderly29-31. The aged immune system, 

typically hypo-responsive to specific infection and vaccination, can be hyper-responsive or 

aberrant under non-specific inflammatory conditions. In human immune system, lymphocytes 

including CD4 helper T cells are long-lived, and thus are exposed to extensive genomic insults 

and replication pressure, making them vulnerable to aging-associated abnormalities. Recent 

Fig.1.2. Multiple factors involve in the mechanisms underlying HIV-mediated 
inflammaging. (Modified from Hearps A 2016)  



16 

 

studies, including those reported by our lab, now link changes in immune aging directly to 

chronic DNA damage responses (DDR), which can lead to remodeling of immune responses43-45. 

In studying the role of CD4 T cell dysfunction in viral persistence, our lab, along with 

others have found that chronic viral (HCV, HIV) infection can accelerate premature T cell aging, 

as evidenced by overexpression of aging markers (such as KLRG1, CD57, p16ink4a, and β-

galactosidase), differential regulation of age-associated microRNA-21/-181a, and, notably, an 

accelerated loss of telomeres (Fig.1.3.), when compared to age-matched healthy subjects 

(HS)17,46-58. Accelerated telomere loss is indicative of excessive cell proliferative turnover or 

inadequate telomeric DNA maintenance. Telomeres are repeating hexameric sequences of DNA 

(GGGATT) that are found at the ends of linear chromosomes in association with a complex of 

proteins. Because of the enrichment of guanine (G) in telomeres, they are extremely sensitive to 

DNA damage, especially to the oxidative ROS-induced DDR. Telomere integrity is a key feature 

of the linear chromosomes that preserve genome stability and function; conversely, telomere 

erosion is a hallmark of cell aging or senescence(a quiescent, non-replicative state) that drives 

cell dysfunction or apoptosis59,60. While the telomere length is maintained in most cases by the 

telomerase that prolongs telomeric sequence61-64, a telomere-bound protein complex (Shelterin) 

is required to protect telomeres from unwanted DDR65-69. Notably, several DNA repair 

pathways, including ATM (ataxia telangiectasia-mutated protein), ATR (ataxia telangiectasia 

and Rad3-related protein), and DNA-PKCs (DNA-dependent protein kinase catalytic subunit) 

are involved in the DDR43,70-73; however, how the telomeric DNA damage and repair signaling 

pathways are dysregulated in the context of viral infection remain largely unknown. It is thus 

important to elucidate the mechanisms underlying T cell senescence and inflammaging that is 

characterized by telomere erosion in individuals with chronic viral infection. 
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ATM - A Kinase Involves in Regulating DDR and Multiple Cellular Functions 

Because DNA damage can cause telomere erosion, leading to premature cell senescence 

and/or apoptosis59,74, we hypothesized that progressive CD4 T cell loss and failure of immune 

recovery during chronic viral infection could be, at least in part, due to a deficiency in the DNA 

repair that alters telomere integrity. Human CD4 T cells have a relatively long life span (150-160 

days) and thus are exposed to a multitude of genotoxic stresses, leading to ~1% out of a pool of 

300 billion T cells to be replaced daily75. To maintain genomic stability and cell survival, cells 

continuously recognize and respond to DNA damage by either activation of DNA damage 

checkpoints to arrest cell cycle progression and allow for repair, or, if the damaged DNA is 

beyond repair, to undergo apoptosis76. Notably, a major sensor of DSB is the MRN complex, 

Fig.1.3. Relationship between cell division and changes in telomere length. (Modified 
from Richard J. Hodesa 1999)  
The rate of telomere loss has been measured as 50–100 bp per cell division from in vitro 
analysis of cultured human lymphocytes. Under chronic HCV/HIV infection, the telomere 
loss can be as high as 250 bp per cell division and lead to T cell premature aging. 
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which subsequently recruits the protein kinase ATM, an enzyme critically involves in repairing 

DNA damage for cell survival (Fig.1.4)77,78.  

ATM was originally identified in individuals with ataxia telangiectasis (AT), an 

autosomal recessive disorder that manifests with progressive ataxia, telangiectasia, 

immunodeficiency, genomic instability, and cancer predisposition79. It is a key kinase within the 

Fig.1.4. ATM protein kinase response to double stranded breaks. (Modified from Van Gent, 
D. C. 2001) 
A major sensor of DSB is the MRN complex, which subsequently recruits the ATM protein 
kinase. Downstream targets of ATM phosphorylation include CHK2 and p53. By this process, 
ATM can influence DSB repair and cell-cycle progression, in addition to cell death through 
apoptosis. Because the ATM protein is one of most widely studied components in the cellular 
response to DNA damage, it has been placed in the center of this figure. However, numerous 
other factors, including ATR and DNA-PKc protein kinases, are essential for cell-cycle 
modulation after the presence of DNA damage, and some of its functions might be redundant 
with ATM. (The red bars indicate the three main cell-cycle checkpoints and dashed lines show 
that the effect is not a principal pathway). 
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DDR signaling cascade80,81, and plays a unique role in lymphocyte biology, as programmed 

DDR participates in the gene remodeling process necessary for formation of a highly diverse 

TCR repertoire. ATM requires a signal for activation (usually a DNA damage signal), which 

promotes intermolecular auto-phosphorylation of ATM via the serine residue at position 1981, 

resulting in its inactive dimer to dissociate into active monomers82. Accumulation of damaged 

DNA activates the ATM cascades, along with ATR and DNA-PKc, all of which belong to the 

PI3K-related kinase (PIKK) family and are important for DNA reprogramming and T cell 

rearrangement 79-82. However, how ATM is dysregulated in CD4 T cells in the setting of chronic 

viral infection remains unknown. 

 

Specific Aims 

The overall goal of this study is to elucidate the mechanisms by which chronic viral 

infection mediates DNA damage and telomere erosion that may lead to T cell dysfunction. To 

this end, we will employ a large cohort of individuals with chronic HCV or HIV infection 

because they have been deemed as great models to study inflammaging and T cell dysregulation 

in humans.  

To explore the mechanisms of T cell dysfunction in virally infected individuals, we have 

recently focused on identifying biomarkers for T cell aging in HCV- or HIV-infected subjects. 

We found that HCV- or HIV-infected individuals exhibit a profound impairment in CD4 T cell 

responses, concomitant with overexpression of exhaustion and aging markers, such as 

programmed death 1 (PD-1), T cell immunoglobulin domain 3 (Tim-3), killer cell lectin-like 

receptor subfamily G 1 (KLRG-1), and dual specific phosphatase 6 (DUSP-6) in CD4 T cells  
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when compared to age-matched HS. These findings suggest that T cell dysfunction during 

HCV/HIV infection may be a result of profound, virus-mediated, premature T cell aging. 

Notably, this aging process, as in the elderly, not only involves antigen-specific effector and 

memory T cells, but also extends to naïve T cells that are the primary subsets responding to neo-

antigens (vaccines). Importantly, these dysfunctional T cells also suffer telomere erosion - a 

hallmark of cell aging - indicating excessive proliferative pressure or telomeric DNA damage in 

chronic viral infection.  

Telomere integrity is a key feature of linear chromosomes that preserves genome stability 

and function; whereas telomere erosion is a hallmark of cell aging or senescence that leads to cell 

dysfunction or apoptosis; thus telomeric DNA repair is essential to cell survial. While the 

telomere length is maintained in most cases by a telomerase that prolongs telomeric DNA, we 

found that telomerase activity is intact, whereas ATM, a DNA repair enzyme, is inhibited in CD4 

T cells during HCV and HIV infection. How DNA damage repair signaling pathways are 

dysregulated in T lymphocytes in the context of HCV/HIV infection, and their roles in T cell 

aging and dysfunction, remain largely unknown.  

In this study, we hypothesize that i) DNA damage and telomere loss play a pivotal role in 

T cell aging and dysfunction in HCV/HIV-infected subjects; and ii) lack of ATM-dependent 

DNA damage repair accelerates T cell aging and dysfunction in HCV/HIV infection, and as 

such, restoring this DNA repair machinery may open new avenues to protecting T cells from 

aging and maintaining immune competence. To test this hypothesis, we propose the following 

two independent but interrelated aims: 
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Aim 1. Determine the role of ATM in DNA damage and T cell dysfunction in 

chronic HCV infection.  

A) Compare T cell homeostasis, apoptosis, and DNA damage in HS and HCV 

chronically-infected individuals. 

B) Evaluate the role of ATM in regulating DNA damage repair and maintaining T cell 

functions during HCV chronic infection. 

The objectives of these studies are to determine the relationship of DDR with T cell 

apoptotic death and the role of ATM in preserving DNA integrity and T cell function during 

HCV infection. 

Aim 2. Investigate the role of ATM in telomeric DNA damage and T cell dysfunction 

during latent HIV infection.  

A) Characterize T cell homeostasis, apoptosis and their relationships with telomeric DNA 

damage in HIV+/- subjects.  

B) Explore the role of ATM in repairing telomeric DNA damage and maintaining T cell 

functions in HIV+/- subjects. 

The objectives of these studies are to evaluate the role of ATM in regulating telomeric 

DNA damage repair and T cell function during latent HIV infection. 

These translational studies are significant and timely in that they will provide a working 

model to explore mechanisms that may be fundamental to diminishing immune responses that 
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are observed in multiple chronic infectious diseases, including but not limited to HCV and HIV 

infection. Understanding such mechanisms is critical for developing approaches to improve 

immune responses in the setting of immunocompromised conditions. 
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Abstract 

T cells have a crucial role in viral clearance and vaccine response; however, the 

mechanisms regulating their responses to viral infections or vaccinations remain elusive. In this 

study, we investigated T-cell homeostasis, apoptosis, DNA damage, and repair machineries in a 

large cohort of subjects with hepatitis C virus (HCV) infection. We found that naive CD4 T cells 

in chronically HCV-infected individuals (HCV T cells) were significantly reduced compared 

with age-matched healthy subjects. In addition, HCV T cells were prone to apoptosis and DNA 

damage, as evidenced by increased 8-oxoguanine expression and γH2AX/53BP1-formed DNA 

damage foci - hallmarks of DNA damage responses. Mechanistically, the activation of DNA 

repair enzyme ataxia telangiectasia mutated (ATM) was dampened in HCV T cells. ATM 

activation was also diminished in healthy T cells exposed to ATM inhibitor or to HCV (core 

protein) that inhibits the phosphoinositide 3 kinase pathway, mimicking the biological effects in 

HCV T cells. Importantly, ectopic expression of ATM was sufficient to repair the DNA damage, 

survival deficit, and cell dysfunctions in HCV T cells. Our results demonstrate that insufficient 

DNA repair enzyme ATM leads to increased DNA damage and renders HCV T cells prone to 

apoptotic death, which contribute to the loss of naive T cells in HCV infection. Our study reveals 

a novel mechanism for T-cell dysregulation and viral persistence, providing a new strategy to 

improve immunotherapy and vaccine responses against human viral diseases.  

 

Introduction 

Hepatitis C virus (HCV) is a blood-born pathogen characterized by a high rate (> 80%) of 

chronic infection, which can progress to liver cirrhosis and hepatocellular carcinoma - a leading 

cause for liver transplantation 1. Notably, HCV has evolved numerous strategies to evade host 
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immunity and harness virus persistence 1, providing an excellent model to study the mechanisms 

of virus-mediated host immune dysfunction in humans.We and others have previously reported 

that patients with chronic HCV infection, exhibit premature T cell aging, as demonstrated by 

overexpression of aging markers and telomere attrition- indicating excessive proliferative 

turnover or inadequate telomeric maintenance 2-6. However, the molecular mechanisms that 

control T cell homeostasis and virus persistence in humans remain unclear. 

 T-cell homeostasis is tightly controlled, requiring a fine balance between influx of newly 

generated T cells from thethymus and efflux by consumption via T-cell apoptosis, and self-

replication within the existing pools of T lymphocytes 7, 8. With de ficient thymic influx in aging 

adults, the immune system responds to in vivo and in vitro challenges by expanding existing T 

cells, leading to increased proliferative turnover, telomere attrition, and cell apoptosis 7, 8. We 

hypothesize that premature T cell aging not only involves virus-specific effector and memory T 

cells engaging in chronic viral infection, but may also extend to the compartment of naïve T cells 

that are unprimed by antigens. In support of this notion, broad regulatory anomalies, including 

the markers for T cell exhaustion and senescence, are found not only expressed on virus-specific 

T cells, but also on unprimed naïve T cells that have not yet engaged in immune responses2-6, 9-14. 

This notion is also supported by the observations that individuals with chronic viral (HCV or 

HIV) infection often have blunted vaccine responses, suggesting a broad and shared mechanism 

of immune dysregulation, particularly naïve CD4 T cell dysfunction, and vaccine non-

responsiveness in virally infected individuals 2, 3, 15-19.  

Human naïve T cells have a relatively long life span (150~160 days) and thus are 

exposed to a multitude of genotoxic stressors, leading to 1% of a pool of 300 billion T cells to be 
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replaced daily 7, 8. Notably, naïve T cells are typically resistant to death receptor/ligand (Fas/Fas-

L)-mediated apoptosis, pointing toward cell-internal signals as apoptosis initiators 20. One of the 

internal stressors linked to apoptosis is damaged DNA, which is particularly important in 

senescent cells that have been chronically exposed to the endogenously generated reactive 

oxygen species (ROS) 21. To maintain genomic stability and cell survival, cells continuously 

recognize and respond to this DNA damage which will either activate DNA damage checkpoints 

to arrest cell cycle progression and allow for repair, or, if the damaged DNA is beyond repair, 

undergo apoptosis 22.  

A major sensor of DNA breaks is the MRN complex (MRE11, RAD50, and NBS1), 

which subsequently recruits the protein kinase ataxia telangiectasia mutated (ATM), an enzyme 

critically involved in repairing DNA double strand breaks (DSBs) for cell survival 23, 24. ATM 

was originally identified in individuals with ataxia telangiectasis, an autosomal recessive 

disorder exhibiting progressive ataxia, telangiectasia, immunodeficiency, genome instability, and 

cancer predisposition 25. ATM, accompanied by ataxia telangiectasia Rad3-related (ATR) and 

DNA-dependent protein kinase catalytic subunit c (DNA-PKc), is the pinnacle kinase of the 

DNA repair signaling cascade, and belongs to the phosphoinositide 3 kinase (PI3K)-related 

kinase family 26. Accumulation of DNA DSBs activates ATM cascades, along with other DNA 

damage repair machineries, which are important for DNA reprogramming and cell remodeling.   

To identify factors that perturb T cell homeostasis during HCV infection, we investigated 

the mechanism that controls T cell survival and DNA damage repair capabilities in primary CD4 

T cells. We demonstrate that insufficiency of ATM leads to accumulation of DNA damage, 

rendering naive CD4 T cells sensitive to apoptosis and T cell loss, contributing to viral 
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persistence and vaccine non-responsiveness in chronic HCV infection. 

 

Materials and Methods 

Subjects 

The study protocol was approved by the institutional review board (IRB) of East 

Tennessee State University and James H. Quillen VA Medical Center (ETSU/VA IRB, Johnson 

City, TN, USA). The study subjects were composed of two populations: 148 chronically HCV-

infected individuals and 72 age-matched HS. Written informed consent was obtained from all 

participants. HCV patients were virologically positive for HCV RNA, prior to the antiviral 

treatment. Healthy subjects, derived from Physicians Plasma Alliance, Gray, TN, USA were 

negative for HBV, HCV, and HIV infection. 

 

Cell Isolation and Culture 

PBMCs were isolated from whole blood by Ficoll (GE Heathcare, Piscataway, NJ, USA) 

density centrifugation. Naïve and memory CD4+ T cells were isolated from PBMCs using the 

Naïve or Memory CD4+ T Cell Isolation Kit and a MidiMACS™ Separator (Miltenyi Biotec 

Inc., Auburn, CA). The isolated T cells were cultured in RPMI 1640 medium containing 10% 

FBS (Atlanta Biologicals, Flowery Branch, GA, USA), 100 IU/ml penicillin and 2 mM L-

glutamine (Thermo Scientific, Logan, UT, USA) without mitogenic stimulation for 4 days at 

37°C and 5% CO2 atmosphere. Cells were collected at day 0, day 2, or day 4 for detection of cell 

apoptosis and DNA damage. To test the role of pATM in repairing DNA damage and apoptosis, 

10μM pATM inhibitor (KU60019, Abcam, Cambridge, MA) or dimethyl sulphoxide were added 

to the cultures for 48 h, followed by apoptosis and DNA damage analysis. To consolidate the 
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role of HCV in inhibiting ATM activation, purified naïve CD4 T cells were co-cultured with 

Huh7.5 cells with or without HCV infection, or 1μg/ml recombinant HCV core protein (Virogen, 

watertown, MA, USA) or control protein β-galactosidase (Virogen), in the presence or absence 

of 20 μM PI3K inhibitor (LY294002, Sigma) for 4 days, followed by flow cytometry or Western 

blot analysis for ATM/pATM expression, DNA damage, and cell apoptosis. 

 

Flow Cytometry 

For phenotypic analysis of naïve CD4 T cells, PBMCs were stained with CD4-APC, 

CD45RA-FITC (BioLegend, San Diego, CA, USA) antibodies or isotype controls. To quantify 

cell apoptosis, naïve or memory cells were purified, cultured, and collected at indicated days and 

stained with Av and 7-AAD using BD Pharmingen™ PE Av Apoptosis Detection Kit I (BD 

Biosciences, San Jose, CA, USA). For intracellular staining, the cells were fixed and 

permeabilized with Foxp3 Transcription Factor Staining Buffer Set (eBioscience, San Diego, 

CA, USA), and stained with pATM (Ser1981)-PE antibody(BioLegend), ATM antibody 

(Abcam) and anti-Rabbit-IgG-Alexa Fluor 488 (Santa Cruz Biotechnology, Dallas, TX, USA), 

pCHK2 (Thr68)-PE antibody (eBioscience), 8-oxoguaine-FITC probe (OxyDNA Assay Kit, 

EMD Millipore, Billerica, MA).The stained cells were analyzed on AccuriTM C6 flow 

cytometer (BD, Franklin Lakes, NJ), and data were analyzed by FlowJo software (Tree Star, Inc., 

Ashland, OR). Isotype control antibodies (eBioscience) and fluorescence minus one controls 

were used to determine the background levels of staining and adjust multicolor compensation as 

gating strategy. 
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RNA Isolation and Real-time RT-PCR 

Total RNA was extracted from 1.0 × 106 cells with PureLink RNA Mini Kit (Invitrogen, 

Carlsbad, CA), and cDNA was synthesized by using High Capacity cDNA Reverse Transcription 

Kit (Applied Bio systems, Foster city, CA) per manufacturer’s instruction. Quantitative PCR 

were completed in triplicates following the conditions 95 °C, 10min and then 95°C, 15s; 60°C, 

60s with 40 cycles. Gene expression was normalized to 18S ribosomal RNA and expressed as 

fold changes using the 2-ΔΔct method. Primer sequences were shown in Table2.1. 

 

Western Blotting 

Naïve CD4 T cells purified from HCV-infected individuals and HS were lysed on ice 

in RIPA lysis buffer (Boston BioProducts Inc, Ashland, MA) in the presence of protease 

inhibitors (Thermo Scientific, Rockford, IL). The protein concentrations were measured by 

Pierce BCA protein assay kit (Thermo Scientific). Proteins were separated by SDS-PAGE, 

transferred to polyvinylidene difluoride membranes, which were blocked with 5% nonfat 

milk, 0.5% Tween-20 in Tris buffered saline, and incubated with the pATM (Ser1981) 

(D6H9), pBRCA1, pCHK1, and pCHK2 (Thr68) (C13C1) antibodies and βActin (8H10D10) 

antibodies (Cell Signaling, Danvers, MA). Appropriate horseradish peroxide-conjugated 

secondary antibodies (Cell Signaling) was then used and proteins were detected using 

Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare BioSciences, 

Pittsburgh, PA). Membranes were stripped and re-probed with MRE11, RAD50, NBS1, 

BRCA1, ATM (D2E2), γH2AX, PARP, CHK1, and CHK2 (D9C6) antibodies (Cell 

Signaling). Protein bands were captured and quantitatively analyzed by Chemi DocTM MP 

Imaging System (Bio-Rad System). 
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Table 2.1 Primer sequences to be used in the chapter 2 

Name of the amplified genes Primer sequences 

ATM F: 5'-TGGATCCAGCTATTTGGTTTGA-3' 

 R: 5'-CCAAGTATGTAACCAACAATAGAAGAAGTAG-3' 

p53 F: 5'-TCAACAAGATGTTTTGCCAACTG-3' 

 R: 5'-ATGTGCTGTGACTGCTTGTAGATG-3' 

MRE11 F: 5'-CTTGTACGACTGCGAGTGGA-3' 

 R: 5'-TTCAC CCATCCCTCTTTCTG-3' 

NBS1 F: 5'-TTGGTTGCATGCTCTTCTTG-3' 

 R: 5'-GGCTGCTTCTTGGACTCAAC-3' 

RAD50 F: 5'-CTTGGATATGCGAGGACGAT-3' 

 R: 5'-CCAGAAGCTGGAAGTTACGC-3' 

BRCA1 F: 5'-GGCTATCCTCTCAGAGTGACA-3' 

 R: 5'-CTGATGTGCTTTGTTCTGGA-3' 

CHEK1 F: 5'-GGTGAATATAGTGCTGCTATGTTGACA-3' 

 R: 5'-TTGGATAAACAGGGAAGTGAACAC-3' 

CHEK2 F: 5'-CCCAAGGCTCCTCCTCACA-3' 

 R: 5'-AGTGAGAGGACTGGCTGGAGTT-3' 

18S ribosomal RNA F: 5'-CCTGGATACCGCAGCTAGGA-3' 

 R: 5'- GCGGCGCAATACGAATGCCCC-3' 
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Confocal Microscopy 

Naïve CD4+ T cells were isolated and cultured as described above. Immunofluorescence 

staining was performed according to the reported method 39. In brief, the cells were fixed in 2% 

paraformaldehyde for 20 min, permeabilized with 0.3% Triton X-100 in PBS for 10 min, 

blocked with 5% BSA in PBS for 1 h, and then incubated with rabbit anti-53BP1 antibody (Cell 

Signaling) and mouse anti-γ-H2AX (Ser139) antibody (Biolegend) at 4 °C overnight. The cells 

were washed with PBS with 0.1% Tween-20 for three times, and then stained with anti-rabbit 

IgG-Alexa Fluor 488 and anti-mouse IgG- Alexa Fluor 555 (Invitrogen) at room temperature for 

1 h, washed and mounted with DAPI Fluoromount-G (SouthernBiotech, Birmingham, AL). 

Images were acquired with a confocal laser-scanning inverted microscope (Leica Confocal, 

Model TCS sp8, Germany). 

 

ATM Transfection 

Purified naïve CD4+ T cells from HCV patients were transfected with 2.5 µg pcDNA3.1 

(a gift from Adam Antebi 48, Addgene plasmid # 52534), or pcDNA3.1(+)Flag-His-ATM wt (a 

gift from Michael Kastan 49, Addgene plasmid # 31985), or hATMS1981A mutant (a gift from 

Michael Kastan 31, Addgene plasmid # 32300), using the Human T Nucelofector Kit and 

Nucleofector I Device (Lonza, Allendale, NJ). 24 h post transfection, GFP fluorescence was 

observed under microscope and the GFP expression level was measured by Flow Cytometry. 48 

h post transfection, transfection efficiencies were monitored by flow cytometry measuring the 

frequency of His+ cells. Ectopic ATM expression was detected by western blot. Active caspase-

3, γH2AX, and IL-2 expressions were assessed in the His-positive cells by Flow Cytometry. 
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Statistical Analysis 

The data were summarized as mean ± SEM or median with interquartile range and 

analyzed using Prism 7 software. Comparisons between two groups were made using 

independent Student's t test or Mann Whitney test, paired T test or Wilcoxon matched-pairs 

signed rank test. Multiple groups were analyzed by one-way ANOVA test. P-values <0.05, 

<0.01, or <0.001 were considered statistically significant or very significant, respectively. 

 

Results 

Naïve CD4 T Cell Apoptosis and Loss in HCV-Infected Patients 

As an initial approach to identify factors that perturb T cell homeostasis in HCV 

infection, we characterized the frequencies of primary T cells and their survival rate or 

susceptibility to apoptosis in individuals with chronic HCV infection (n=68) versus age-matched 

healthy subjects (HS) (n=38). We first analyzed total CD4+, CD45RA+CD4+ (naïve), and 

CD45RA-CD4+ (memory) T cell frequencies in the peripheral blood mononuclear cells (PBMCs) 

using flow cytometry. As shown in Fig.2.1A (representative dot plots and summary data), while 

the total CD4 T cell numbers in PBMCs were slightly lower in HCV patients, the compartment 

of naïve CD4 T cells was significantly reduced (P<0.0001), whereas memory CD4 T cells were 

expanded in chronically HCV-infected subjects compared to HS. To exclude the possibility that 

the gated PBMCs may include some CD4-expresing monocytes, we further gated on CD3+ T 

cells, followed by analyzing CD45RA+CD3+CD4+ (naïve) and CD45RA-CD3+CD4+ (memory) T 

cell populations, which produced similar results; i.e., chronic HCV subjects exhibited a 

significant contraction of naïve T cell pools and expansion of memory T cells in their peripheral 

blood (data not shown). Notably, the loss of naïve CD4 T cells from chronically HCV-infected 
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subjects did not correlate with HCV genotype, viral load, or hepatic transaminase levels (data not 

shown). This observation is in line with the previous reports showing a reduced naïve CD4 T cell 

number - reflecting a state of immune activation and exhaustion in patients with chronic HCV 

infection9, 10. 

Apoptosis represents a major mechanism for controlling T cell homeostasis in adults 7. 

The vast majority of CD4 T cells in vivo are in a resting state and, accordingly, do not undergo 

apoptosis. When removed from their natural resources and kept ex vivo, human T cells 

spontaneously and progressively go through the programmed cell death (spontaneous apoptosis). 

To explore whether apoptosis contributes to the naïve T cell loss in HCV-infected individuals, 

we purified CD4+CD45RO- naïve and CD4+CD45RA- memory T cells from HCV+/- subjects and 

cultured the cells without stimulation for 0, 2, 4 days, followed by measuring the Annexin V 

(Av) / 7-Aminoactinomycin D (7AAD) expressions.  As shown in Fig.2.1B and C, although 

healthy T cells showed signs of apoptosis/death accrual, an increased T cell apoptosis and 

decreased cell survival rate were observed in HCV-infected patients, especially in the naïve CD4 

T cell pools. By day 4 in culture without stimulation, 90% of healthy naïve T cells were alive, 

whereas only 75% of the HCV naïve T cells still remained survival. Notably, increased apoptotic 

propensity (Av expression) was inversely associated with cell survival rate, with HCV naïve T 

cells more prone to spontaneous apoptosis compared to the HS. By day 4 in culture without 

stimulation, HCV naïve T cells exhibited significant apoptosis compared with HS (~40% vs. 

~20%, P<0.05), which negatively correlated with the cell numbers present in the peripheral 

blood from the same individuals (data not shown). These results suggest that apoptotic 

susceptibility of T cells from HCV-infected subjects may be one mechanism contributing to the 

disproportionate T cell loss, , whereas lack of thymic influx in aging adults and increase of naïve 
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T cell differentiation into antigen specific effector and memory T cells during persistent viral 

infection may be other mechanisms for the different outcomes of the two T-cell subsets. 

 

Fig.2.1. T cell homeostasis and apoptosis in HCV-infected patients versus age-matched HS. 

A) Naive CD4 T-cell loss in HCV patients vs. agematched HS. PBMCs isolated from HCV-
infected patients and HS were analyzed using flow cytometry for T cell homeostasis. 
Representative dot-plots and summary data of the flow cytometry for the percentages of total 
CD4+, CD45RA+CD4+ (naïve), and CD45RA-CD4+ (memory) T cell frequencies are shown. 
Each symbol represents one particular subject; the mean ± SE and p value of the statistical 
analysis are shown, NS = no significance. (continued on the next page).  B) & C) 
Susceptibility of T cells to spontaneous apoptosis and death in HCV patients vs. HS. Naïve and 
memory CD4 T cells were purified from PBMCs of the subjects, cultured in vitro without 
stimulation for 0, 2, and 4 days, followed by flow cytometric analysis of Annexin V and 7AAD 
expression. Representative dot plots for the cell purity, gating strategy, and summary data for the 
percentages of survival cells as well as apoptotic cells are shown. n = the number of subjects 
studied in each group. NS = no significance. P value with significant changes are shown. 
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Fig.2.1 (continued) 
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DNA Damage in Naïve CD4 T Cells from HCV-Infected Patients 

Why naïve CD4 T cells are susceptible to apoptosis and loss in virally-infected individuals 

is unclear. Unlike activated or memory T cells, resting naïve T cells typically do not express Fas 

surface receptor(Fig.2.1SA). In addition, blocking the extrinsic death pathways by disrupting 

Fas-Fas ligand, TNFα-TNF receptor, and TRAL-TRAIL receptor interactions in CD4 T cells did 

not affect cell apoptosis or death rates (data not shown), indicating they are resistant to the 

exogenous apoptotic pathway-mediated cell death, but sensitive to endogenous oxidative stress 

(particularly ROS-mediated genotoxicity) 20. To assess endogenous DNA damage as a possible 

cause of impaired T cell survival, CD4+CD45RO- naïve and CD4+CD45RA- memory T cells 

were isolated from HCV-infected patients and age-matched HS, cultured in vitro without 

stimulation for 0-4 days, followed by DNA integrity anaysis by measuring the expression of 8-

oxogunine (8-oxoG), a marker for DNA DSBs that are caused by excessive oxidative stress 21. 

As shown in Fig.2.2A and B (representative overlaid histogram and summary data of flow 

cytometry), resting naive CD4 T cells derived from HCV-infected patients had significantly 

higher expression of 8-oxoG DNA bases compared to HS, indicating an accumulation of DNA 

lesions during chronic viral infection. After culturing cells without mitogenic or antigenic 

stimulation, both HCV and HS T cells showed increases in the expression of 8-oxoG. However, 

the extent of this increase in HCV naïve T cells was less than that in HS.  This could be 

attributed to (i) the relatively high baseline 8-oxoG level in HCV naïve T cells at day 0, and (ii) 

the test saturation of 8-oxoG load in T cells under these culture conditions with oxidative DNA 

stress which could limit the 8-oxyG differences between HCV and HS T cells at day 4 in culture. 

In contrast, memory T cells from HCV and HS exhibited an overload of 8-oxoG at baseline. 

After culturing cells without stimulation, 8-oxoG levels only slightly increased, although HCV 
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memory T cells exhibited marginally higher DNA lesions than HS at baseline (day 0) and 4 days 

in culture. These data indicate that naïve T cells from HCV patients exhibit oxidative DNA 

DSBs that remains unrepaired during viral infection. 

Following genotoxic insult, histone variant H2AX is recruited to the site of DNA-DSB and 

becomes phosphorylated at its C-terminal Ser-139 residue to form the γH2AX complex, which 

subsequently acts as a docking site for other mediators or adaptor proteins, such as 53BP1, to 

form microscopically visible nuclear focus (DNA damage foci) - a hallmark of DNA damage 

response (DDR) 27, 28. To confirm that DNA damage occurs in T cells during HCV infection, we 

purified naïve and memory CD4 T cells from HCV+/- subjects, and compared DNA damage foci 

by examining the colocalization of γH2AX/53BP1 per nuclei using confocal microscopy. As 

shown in Fig.2.2C (representative imaging and summary data of confocal microscopy), the 

number of DNA damage foci was significantly higher in the naïve CD4 T cells freshly isolated 

from HCV patients compared with the HS. We also observed an increase in DNA damage foci in 

memory CD4 T cells derived from HCV patients versus HS (Supplementary Fig 2S1B). When 

the cells were cultured without stimulation for 4 days, the DNA damage foci increased, and were 

significantly higher in the naïve CD4 T cells from HCV patients compared with the HS. These 

results, in conjunction with the changes in T cell frequency and apoptotic death, suggest that 

unrepaired DNA damage is associated with T cell apoptosis and loss in individuals with chronic 

HCV infection, emphasizing the role of DNA damage repair to secure T cell survival.  
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Fig.2.2 DNA damage in CD4 T cells from HCV-infected patients versus age-matched HS. 

A) & B) 8-oxyguanine expression in CD4 T cells. Naïve and memory CD4 T cells were purified 
from PBMCs of HCV-infected patients and HS, followed by flow cytometric analysis of 8-
oxyguanine expression. Representative overlaid histogram and summary data for mean 
florescence intensity (MFI) of 8-oxyguanine expression are shown. (continued on the next 

page). C) Co-localization of 53BP1 and γH2AX in CD4 T cells. Naïve CD4 T cells were isolated 
from PBMCs of HCV patients and HS, cultured in vitro without stimulation for 0-4 days, 
followed by confocal microscopic analysis of 53BP1 and γH2AX co-localization in the nuclei. 
100 cells were counted per subjects. N=number of subjects studied. P values of the DNA damage 
foci per nuclei in the two groups are shown in the summary data. 
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Fig.2.2 (continued) 

 

DNA Damage Sensing and Repairing Machineries in Naïve CD4 T Cells from HCV-

Infected Individuals 

Accumulation of DNA-DSBs in CD4 T cells from HCV patients indicates that the DNA 

damage sensing and repairing machinery is disrupted. Essential components of this machinery 

include DNA damage sensors, such as MRN complexes (MRE11, RAD50, and NBS1), which 

recruit and mediate the DNA repair kinase ATM that can phosphorylate several downstream 

checkpoint proteins (such as p53, BRCA1, CHK1 and CHK2) 22-24. To investigate the cellular 

machineries that contribute to the DNA damage repair, we examined mRNA transcripts and  
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protein expressions of these DDR molecules in CD4 T cells from HCV-infected patients and HS 

using realtime RT-PCR and western blotting or flow cytometry. As shown in Fig.2.3A, the 

mRNA levels of MRN complexes showed no difference or higher levels of MRE11, RAD50, and 

NBS1. In parallel, the protein levels of these DNA damage sensors in naïve CD4 T cells were 

also unchanged or slightly higher in HCV compared with HS (Fig.2.3B). Intriguingly, altrough 

the mRNA level of ATM was higher (Fig.2.3C), its protein level was lower; particularly, ATM 

phosphorylation (pATM) was significantly lower in HCV naïve CD4 T cells in the 4-day culture 

compared to the HS, as measured by flow cytometry (Fig.2.3D) and western blot (Fig.2.3E). 

Similarly, the mRNA expressions of ATM signaling molecules, P53, 53BP1, BRCA1, CHK1, 

and CHK2 remained unchanged or even higher in naïve CD4 T cells from HCV patients when 

compared to the HS (Fig.2.3F). However, pp53 protein was undetectable in resting naïve CD4 T 

cells without stimulation, whereas BRCA1 and CHK1 total and phosphorylated proteins 

remained unchanged (Fig.2.3G); CHK2 protein, especially pCHK2, was significantly suppressed 

in HCV T cells compared to HS as demonstrated by western blot and flow cytometry (Fig.2.3H). 

These results suggest that the DNA damage sensing machinery is intact, but the DNA repair 

(ATM/CHK2) pathway is inhibited, at the post-transcriptional levels, especially the 

phosphorylation process essential for its activation and function. 
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Fig.2.3. DNA damage repair ATM signaling pathway in T cells of HCV-infected patients vs 

age-matched HS.  

A) DNA damage sensor MRN complex expressions in CD4 T cells. Naïve CD4 T cells were 
isolated from 6 HCV-infected patients and 6 age-matched HS, cultured in vitro without 
stimulation for 4 days, followed by real-time RT-PCR assay for MRE11, RAD50, and NBS1 
mRNA expression. B) MRN protein expression detected by Western blot in naïve CD4 T cells 
derived from HCV patients vs. HS. Representative imaging and summary data from multiple 
subjects are shown. C) ATM mRNA expressions in CD4 T cells. Naïve CD4 T cells were 
isolated from the study subjects as indicated, cultured in vitro without stimulation for 4 days, 
followed by RT-PCR analysis for ATM mRNA level. D&E) Flow cytometry and western blot 
analysis for ATM total and phosphorylated protein expression in naïve CD4 T cells from HCV 
patients vs HS. (continued on the next page). F-H) ATM signaling molecule mRNA and 
protein expressions in CD4 T cells. Naïve CD4 T cells were isolated from the study subjects, 
cultured in vitro without stimulation for 4 days, followed by RT-PCR analysis for P53, BRCA1, 
CHK1 and CHK2 mRNA level, western blot assay for their total and/or phosphorylated protein 
levels. pCHK2 expression was confirmed by flow cytometry analysis. 
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Fig.2.3. (continued) 
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Role of HCV in Dampening ATM Activation and Its Effects on DNA Damage and Cell 

Apoptosis 

As chronically HCV-infected patients often have other co-morbidities that may cause 

immune dysregulation, we examined the specific role of HCV in triggering DDR and promoting 

cellular senescence or apoptosis. We incubated naïve CD4 T cells with Huh7.5 cells with or 

without HCV infection, followed by measuring ATM activation. As shown in Fig.2.4A 

(immunofluorescence staining of Huh7.5 cells with or without infection by HCV JFH-1 strain), 

hepatocytes transfected with HCV RNA at 48 h showed positive expression of HCV core 

protein, whereas cells with mock transfection exhibited negative staining. Moreover, we detected 

HCV RNA in the supernatant of HCV-transfected cells (at 24 h as well as 48 h) but not mock-

transfected cells (data not shown). Importantly, similar to the observations in HCV patients 

(Fig.2.3B), wherase the total ATM protein expression was not significantly decreased, the 

phosphorylation of ATM was markedly inhibited in the naïve CD4 T cells that were incubated 

with HCV+ Huh7.5 cells compared with cells co-cultured with HCV- Huh7.5 hepatocytes 

(Fig.2.4B). In addition, T cells exposed to HCV-expressing hepatocytes were more apoptotic, as 

demonstrated by a significant increase (P=0.0357) in Av/7AAD expression in CD4 T cells 

exposed to HCV compared with the negative control (data not shown).   

We have previously shown that primary T cells treated with HCV core protein exhibited 

a senescent state, as evidenced by a higher level of the aging marker β-Galactosidase expression 

and shortened telomeres 5. To further investigate whether HCV core-treated T cells have 

impairment in the DNA damage repair enzyme ATM, we exposed healthy naïve CD4 T cells to 

HCV core protein, which is secreted by virally infected hepatocytes and circulates in the 
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peripheral blood of HCV-infected patients and can dampen T cells through its interaction with 

the globulin head of C1q receptor expressed on the surface of T cells, thus delivering inhibitory 

signaling 29,. As shown in Fig.2.4C, compared to the β-gal control, treatment with HCV core 

protein for 5 days significantly inhibited the phosphorylation of ATM, but not total ATM protein 

in naïve CD4 T cells. In addition, HCV core-treated T cells exhibited an increased level of 

γH2AX (a marker of DNA damage), suggesting that insufficient pATM is associated with an 

increased DNA damage in HCV core-treated T cells.  

ATM belongs to the PI3K family, and we have previously shown that HCV can induce T 

cell senescence by inhibiting the AKT/PI3K pathway 3. To further explore the mechanisms that 

might be involved in inhibiting ATM activation, we treated naïve CD4 T cells with LY294002 (a 

potent PI3K-specific inhibitor) in the presence or absence of HCV core protein. As shown in 

Fig.2.4D, compared with the DMSO-treated control, T cells treated with 20μM LY294002 

exhibited remarkable inhibition of pATM, along with decreases in pAKT. Moreover, the cleaved 

form of Poly (ADP-ribose) polymerase (PARP), an enzyme that catalyzes the transfer of ADP-

ribose onto target proteins and plays an important role in DNA repair and cell survival, was 

significantly increased in T cells treated with the PI3K inhibitor. In addition, we assessed the 

effect of LY294002 on ATM inhibition in CD4 T cells co-cultured with HCV+/- Huh7.5 cells. As 

shown in Fig.2.4E, pATM expression in CD4 T cells in the presence of Huh7.5 hepatocytes 

without HCV infection was significantly inhibited by the PI3K inhibitor. pATM expression was 

further inhibited in naïve CD4 T cells incubated with HCV+ Huh7.5 cells, especially in the 

presence of PI3K inhibitor. These results suggest that HCV (core protein) can induce T cell DNA 

damage that is associated with impaired ATM via inhibition of the PI3K. 
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Fig.2.4. HCV inhibits ATM/pATM expressions via dampening PI3K pathway. A) HCV 
infection of Huh7.5 hepatocytes. Immunostaining of HCV core protein is positive in HCV-
infected cells, but negative in HCV-uninfected cells. B) ATM/pATM is inhibited in naïve CD4 T 
cells co-cultured with Huh7.5 cells with HCV infection compared with those incubated with 
Huh7.5 cells without HCV infection. C) HCV core protein inhibits ATM/pATM and enhances 
γH2AX expressions in naïve CD4 T cells compared to the β-Gal control. D) PI3K inhibitor 
(LY294002) inhibits pATM/pAKT and enhances PARP expressions in naïve CD4 T cells 
compared to those treated with DMSO control. E) PI3K inhibitor (LY294002) inhibits pATM 
expressions in naïve CD4 T cells co-cultured with HCV+/- Huh7.5 cells compared to the cells 
without inhibitor treatment. Representative flow cytometry dot plots and summary data (n=8) 
with p value between the groups are shown. 
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Inhibition of ATM Phosphorylation in Naïve CD4 T cell Leads to DNA Damage and 

Apoptosis 

The ATM signaling pathway is pivotal to the maintenance of genome integrity and cell 

survival 26. To test the functionality of this DNA repair machinery in T cell survival, freshly 

isolated healthy naïve (CD4+CD45RO-) T cells were treated with a specific ATM inhibitor 

(KU60019, 10μM) for 48 h, followed by measuring DNA damage and cell apoptosis or death. As 

shown in Fig.2.5A, naïve T cells exposed to KU60019 showed an inhibition in ATM, in 

particular pATM, compared with the DMSO control. In addition, the phosphorylation of CHK2 

protein, a downstream effector of ATM signaling pathway, was significantly inhibited by the 

treatment (Fig.2.5B). Importantly, T cells exposed to the ATM inhibitor exhibited an elevated 

γH2AX expression, suggesting an increase in DNA damage (Fig.2.5C). In addition, T cells 

treated with the ATM inhibitor exhibited an increase in DNA damage foci (γH2AX/53BP1 co-

localization) compared with the control (Fig.2.5D). Moreover, ATM inhibition in naïve CD4 T 

cells resulted in considerately increased T cell apoptosis and death, as demonstrated by an 

increase in Av and 7ADD expression, as well as activated caspase-3 following treatment 

(Fig.2.5E). In essence, an insufficiency of ATM leads to greater DNA damage and cell apoptotic 

death, which may necessitate compensatory homeostatic proliferation and lead to telomere loss 

and premature senescence, particularly in the naive T-cell pool, a mechanism that can potentially 

contribute to the naïve T cell loss and poor immune (vaccine) responses in chronic HCV 

infection.  
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Fig.2.5. KU60019, an ATM inhibitor, induces DNA damage and cell apoptosis via inhibiting 

ATM pathway. A) KU60019 inhibits ATM/pATM expressions in naive CD4 T cells. 
Representative imaging and summary data show Western blot analysis for ATM/pATM 
expressions in naïve CD4 T cells treated with 10 μM KU60019 or DMSO for 48 h. B) KU60019 
inhibits CHK2/pCHK2 expressions in naïve CD4 T cells. C) KU60019 enhances γH2AX 
expression in naïve CD4 T cells. (continued on the next page). D) KU60019 increases DNA 
damage foci (γH2AX/53BP1 co-localization) in naïve CD4 T cells. E) KU60019 increases T cell 
apoptosis in naïve CD4 T cells. Av, 7AAD, and active caspase-3 expressions are shown in naïve 
CD4 T cells treated with KU60019 vs. DMSO control at 48 h. 
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Fig.2.5. (Continued) 

Reconstitution of ATM in HCV CD4 T Cells Repairs DNA Damage, Survival Defect, and 

Cellular Functions 

Given the critical role of ATM in repairing DNA-DSBs, we hypothesized that 

reconstitution of ATM could protect HCV-derived T cells from DNA damage and restore the 

signaling network required for repairing DNA breaks. To test this, we transfected CD4 T cells 
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derived from HCV-infected individuals with Flag-His-ATM constructs or controls, including an 

empty vector without ATM insert (Mock), and an ATM mutant (ATM-S1981A) in which the 

serine (S) phosphorylation site at  residue number 1981 was substituted by alanine (A), using the 

Lonza transfection system. Despite high transfection efficiency (70%) with GFP transfection by 

this system, fluorescence-activated cell sorting analysis revealed intracellular His-ATM 

expression in only 20-40% of the T cells transfected with Flag-His-ATM or control constructs 

(Fig.2.6A). Western blotting confirmed an increase in ATM expression in the wild-type, as well 

as mutant ATM-S1981A-transfected T cells (Fig.2.6B). Although ectopic overexpression of 

ATM had broad biological consequences, we focused our investigation on the DNA repair, cell 

survival, and cell function, by assessing γH2AX, caspase-3, and IL-2 expression levels as 

readout. As shown in Fig.2.6C, compared to mock transfection, ATM reconstitution reduced 

γH2AX expression after 48 h, whereas transfection of the non-phosphorylated form with an 

ATM-S1981A mutant was unable to restore the level of DNA repair, indicating the importance 

of ATM phosphorylation at serine 1981 in protecting cells from excessive DNA breaks. In 

parallel, transfection of wildtype ATM significantly reduced T cell apoptosis, whereas mock- or 

ATM-S1981A-transfected cells exhibited relatively higher levels of active caspase-3 expression 

(Fig.2.6D), suggesting that ectopic ATM expression exerts immediate effects in determining T 

cell fate by securing cell survival.  Most importantly, implementing ATM significantly improved 

T cell function, as shown by the increase in IL-2 expression in ATM-transfected cells, whereas 

ATMS1981A transfection could not induce such an effect (Fig.2.6E). Taken together, these 

results suggest that restoring an adequate ATM level in naïve CD4 T cells from chronic HCV 

infection is sufficient to ameliorate DNA damage, survival defects, and cell dysfunctions. 
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Discussion  

We and others have previously shown that T cells derived from patients with chronic 

viral infections prematurely reach senescence, characterized by the shortening of telomeres and 

expression of aging markers 2-6. In this study, we further demonstrate that homeostatic 

remodeling of the T cell repertoire during HCV infection primarily affects the naïve T cell 

compartment, characterized by an accumulation of DNA damage (owing to insufficient 

Fig.2.6. Ectopic ATM expression repairs DNA damage, cell apoptosis, and cellular 

dysfunctions from HCV infection. A) Representative histogram of His Expression (Blue) in 
Mock-, ATM, and ATM-S1981A-transfected naïve CD4 T cells derived from HCV-infected 
patients. Isotype control (Red) was used for gating the His+ cells in flow cytometry analysis. B) 

ATM expression in Mock, ATM, and ATM-S1981A-transfected naïve CD4 T cells from HCV-
infected patients, measured by western blot. C) Representative dot plots and summary data of 
flow cytometric analysis for the expression of γH2AX (n=10), active caspase-3 (n=9), and IL-2 
(n=3) in Mock, ATM, and ATM-S1981A-transfected naïve CD4 T cells derived from HCV-
infected patients. 
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activation) of the DNA repair ATM enzyme, which leads to naive T-cell apoptosis and loss. 

Indeed, phosphorylation of ATM in T cells exposed to HCV (core protein) is inhibited through 

dampening the PI3K pathway, resulting in an increase in DNA damage and cell apoptosis. 

Moreover, pharmacological inhibition of ATM phosphorylation leads to more DNA damage and 

apoptosis in naive T cells. Most importantly, reconstitution of ATM repairs the DNA damage, 

cell apoptosis, and functional defects in naïve CD4 T cells derived from HCV-infected patients. 

Based on these novel findings, we propose a model, depicted in Fig.2.7, where HCV-induced 

ATM deficiency leads to accumulation of DNA damage and cell apoptosis. The excessive T cell 

loss necessitates high homeostatic proliferation and imposes replicative stress on unprimed naïve 

T cells; this represents a novel molecular mechanism underlying T cell senescence in the setting 

of chronic viral infection. Importantly, ectopic overexpression of ATM is necessary and 

sufficient to repair the DNA damage, survival defect, and cell dysfunctions in HCV-derived T 

cells, thus providing a new strategy to improve immunotherapy and vaccine responses against 

human viral diseases.  

We and others have observed poor vaccine responses in the setting of chronic viral 

(HCV, HIV) infections 2, 3, 15-19, but the underlying mechanisms for vaccine failure in virally-

infected individuals remain unclear. Data presented in this study indicate that naïve helper T 

cells in chronically HCV-infected patients have abnormalities that jeopardize their ability to 

mount effective immune (vaccine) responses. Specifically, we demonstrate that naïve CD4 T 

cells have accumulation of damaged DNA and fail to repair their DNA-DSB owing to deficiency 

of the ATM pathway. Accumulated DNA damage renders HCV-derived T cells prone to 

apoptotic death, imposing replicative stress and premature aging on naïve T cell pools. These 
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Fig.2.7. A novel model of HCV-induced ATM deficiency in T cell cycle arrest, DNA damage 

repair, cell senescence, and apoptosis. HCV infection triggers a DNA damage response (DDR) 
in the early phase via activation of MRN-ATM-CHK2 and P53 signaling pathways in naive CD4 
T cells, prompting cell cycle arrest and allowing for DNA damage repair; or, if the infection is 
overwhelming and causes unrepairable DNA damage, the cell will commit suicide and initiates 
apoptosis. Persistent antigenic and inflammatory stimulation, however, drives ATM exhaustion 
and insufficiency, leading to impaired DNA damage repair and accumulation of DNA DSB, 
which results in constant cell apoptosis and naïve T cell loss. Excessive T cell loss necessitates 
high homeostatic proliferation and imposes replicative stress on unprimed naïve T cells, 
emerging as a novel molecular mechanism underlying T cell senescence in the setting chronic 
viral infection. Importantly, ectopic overexpression of ATM is necessary and sufficient to repair 
the DNA damage, survival deficit, and cellular dysfunction in HCV-derived T cells, providing a 
new strategy to improve immunotherapy and vaccine responses against human viral diseases. 
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findings are important because naïve T cells represent the reserve pool of the immune system, 

and their survival critically determines the cellular yield of homeostatic proliferation, a process 

that generates new T cells in response to neo-antigens, including vaccines.  

Insufficient activation of ATM would be expected to affect both unprimed and primed T 

cells. Indeed, we observed unrepaired DNA damage and cell apoptosis in both naive and 

memory T-cell populations. However, ongoing antigenic stimulation during chronic viral 

infection could drive naive T-cell differentiation and turnover of antigen-reactive T cells. In this 

regard, memory T cells would expand and compromise the size and survival of naive T cells. 

Eventually, the entire T-cell pool would be comprised by antigen-reactive T cells at the expense 

of naive T cells. In the setting of chronic viral infection, however, memory T cells could be 

functionally biased as a result of chronic antigenic stimulation; as such, we focused our studies 

on the T-cell population that has yet to be recruited for immune responses. With the decrease in 

newly generated naive thymic T cells in adults, chronic infection or inflammation might force 

the immune system to restore equilibrium by replicating the available or existing naive T cells, 

thereby driving telomere shortening and senescence in naive T-cell populations. Thus, the ability 

to generate immune response to new antigens, such as HBV vaccine, could be compromised. 

ATM has a unique role in lymphocyte biology, as programmed DNA damage repair is 

part of the gene rearrangement necessary for formation of a highly diverse T cell receptor 

repertoire. Under non-stress conditions, ATM is inactive and exists in the form of a dimer-(like 

other PI3Ks). It requires a signal for activation (usually a DNA damage signal), signaling 

through intermolecular autophosphorylation at ATM residue S1981, and resulting in the dimer 

dissociation into monomers 31. In our study, a mutant of S1981A rendered ATM a dominant-

negative protein, triggering more severe DNA damage (γH2AX expression), cell apoptotic death 
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(Av/7AAD expression), and cellular dysfunction (IL-2 inhibition) - underscoring the importance 

of ATM phosphorylation for its biological functions. ATM is predominantly localized in the 

nucleus, and undergoes activation once the MRN complex senses and binds to DNA-DSB ends, 

providing a platform for ATM recruitment and autophosphorylation 32, 33. Phosphorylation of 

S1981 also stabilizes ATM at the damaged DNA sites and recruits more downstream effector 

proteins to participate in the DDR 34. Among the multiple substrates phosphorylated by ATM is 

the checkpoint kinase 2 (CHK2), which is phosphorylated at residue T62 following DSB 

formation and prevents cells from progressing from G1 to S phase or, alternatively, leads to cell 

apoptosis. The discovery of these DNA damage response proteins has shed light on the cellular 

machinery that contributes to DNA repair and cell homeostasis. 

Recently, Li et al. 35 identified prematurely aged T cells with damaged telomeres in 

patients with rheumatoid arthritis resulting from defective activity of the DNA break sensor 

MRE11A. In patients with chronic HCV infection, however, we find that the DNA damage 

sensor MRN complex is intact in naïve T cells. Rather, the DNA damage repair enzyme ATM is 

inhibited at a posttranscriptional level by HCV infection. Interestingly, Guo et al. 36, 37 reported 

that ATM activation in response to ROS was independent of the MRN complex. ROS mediated 

ATM signaling represses mTORC1 signaling and therefore cell growth and proliferation through 

activation of TSC2 (a negative regulator of mTOR) by liver kinase B1 (also known as STK11) 

and AMP-dependent protein kinases38. ATM engagement of the TSC2/ mTORC1 signaling 

pathway can also regulate autophagy39, and differential localization of ATM is correlated with 

activation of distinct downstream signaling pathways40. We have previously reported that T cells 

treated with HCV core protein exhibit G1/S cell cycle arrest, which was associated with the 

dysregulation of cell cycle regulatory proteins CDKs/Cyclins and P27kip1 41. Here, we 
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demonstrate that concomitant with the insufficiency of ATM activation, the phosphorylation of 

CHK2 is defective in naïve T cells from HCV-infected patients. Moreover, pharmacological 

inhibition of ATM in healthy T cells also leads to a CHK2 defect, accompanied by a marked 

increase in DNA damage and cell apoptosis - resembling the biological effects characteristic of 

HCV-derived naive T cells. These results establish that in human T cells, CHK2 is targeted by 

ATM and that the overall defect of this pathway can be attributed to ATM insufficiency due to 

chronic HCV infection.  

A typical feature of CD4 T cells in chronically HCV-infected patients is the shortening of 

telomeres compared with age-matched healthy controls 5, 6. Several mechanisms may contribute 

to this age associated loss of telomeres. Increased proliferative turnover can cause cell division-

induced telomeres shortening. In addition, telomeric DNA is highly susceptible to DNA damage, 

even more so than non-telomeric DNA. Plasmid-inserted human telomeres accumulate sevenfold 

higher strand breakage than control sequences 42. Also, the frequency of single-strand breaks is 

several-fold higher in telomeres than in the bulk genome when cells are treated with alkylating 

agents or exposed to oxidative stress 43. In line with these findings, we have recently found that 

the expression of the telomere shelterin TRF2 is significantly inhibited at the protein level in 

naïve CD4 T cells derived from HCV-infected individuals, which renders the uncapped 

telomeres prone to DNA damage (unpublished observations). Thus, telomere loss in HCV T cells 

is triggered by DDR and the inability of timely repair by the ATM signaling pathway. In 

addition, we have also discovered that KML001, a telomere-targeting drug, can induce telomeric 

DNA damage and T cell apoptosis by impairing the ATM pathway (unpublished observations). 

Notably, ATM is widely expressed in human T cells at an extremely high level to ensure 

integrity of the genomic DNA in replicating lymphocytes. ATM activation represents the 
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initiation of DDR, but its inhibition in persistently stimulated T cells indicates insufficiency of 

this DNA repair enzyme and cell exhaustion and senescence in the setting of chronic viral 

infection. This notion is supported by our observation in an in vitro stimulated T cell system that 

ATM phosphorylation is increased in the early phase of KML001-treated T cells (3~6 h) and 

decreased in persistently treated cells (24~48 h), along with increases in DNA damage, cell 

apoptosis and functional impairment (unpublished observations).  

In summary, accumulation of DNA damage and failure to repair the DNA-DSBs owing 

to deficiency of the ATM-dependent DNA repair machinery during chronic viral infection may 

have broader implications through impairing diverse cellular functions. As interferon (IFN)-

mediated T-cell apoptotic death has been well-studied in persistent viral infections 44-47, this 

virus-induced DNA damage-mediated T-cell loss represents a new mechanism of immune 

evasion. How HCV induces DNA-DSBs, and its relationship to the IFN-signaling pathway, are 

under further investigation. As counteracting ATM deficiency may restore T-cell competency 

during viral infection and prevent premature immune aging, these studies may provide new 

strategies to improve immunotherapy and vaccine responses against human viral diseases. 
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Supplement Data  

Supplementary Figure S2.1 A) Flow cytometric analysis of Fas receptor expression on resting 
naïve and memory CD4 T cells in PBMCs derived from HCV patients and HS. B) Confocal 
microscopic analysis of 53BP1/γH2AX co-localization in memory CD4 T cells isolated from 
HCV-infected patient and HS. Data were reproducible in cells derived from multiple subjects.  
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Abstract 

HIV infection leads to a phenomenon of inflammaging, in which chronic inflammation 

induces an immune aged phenotype. Here, we investigated T cell homeostasis, telomeric DNA 

damage and repair machineries in patients with virus-suppressed, latent HIV infection at risk for 

inflammaging. We found a significant depletion in CD4 T cells, which was correlated with 

apoptosis in latently HIV-infected individuals compared to age-matched healthy subjects (HS). 

In addition, HIV CD4 T cells were prone to DNA damage that extended to chromosome ends 

(telomeres), leading to accelerated telomere erosion - a hallmark of cell senescence. 

Mechanistically, the DNA double-strand break (DSB) sensor MRE11, RDA50, and NBS1 

(MRN) remained intact, but the DNA damage checkpoint kinase ataxia telangiectasia mutated 

(ATM) and its downstream checkpoint kinase 2 (CHK2) were significantly suppressed in HIV T 

cells. Consistently, ATM/CHK2 activation, DNA repair, and cellular functions were also 

impaired in primary CD4 T cells following ATM knockdown or exposure to the ATM inhibitor 

KU60019, as well as in a CD4 T cell line infected with HIV-1 in the presence of an integrase 

inhibitor - raltegravir, which recapitulates the biological effects observed in HIV T cells in vivo. 

Importantly, ectopic expression of ATM was essential and sufficient to reduce the DNA damage, 

survival deficit, and cellular dysfunction in T cells from HIV-infected subjects. These results 

demonstrate that failure of DSB repair due to ATM deficiency leads to increased DNA damage 

and renders HIV T cells prone to senescence and apoptotic death, thus contributing to CD4 T cell 

loss/dysfunction during latent HIV infection. Our study reveals a novel mechanism by which 

ATM deficiency promotes T cell apoptosis/senescence, and provides a new therapeutic target for 

inflammaging-induced immune dysfunction during chronic viral infection.   
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Introduction 

Aging is associated with, and may be caused by, low-grade inflammation - a 

phenomenon known as inflammaging, which is a common denominator in the majority of age-

related diseases1-3. Inflammaging is a major driver of increased susceptibility to infections, 

reduced responses to vaccines, increased incidences of cancers, cardiovascular diseases, and 

neurodegeneration, all of which contribute to comorbidity and mortality in the elderly 1-3. In 

human immune system, CD4 T cells are long-lived, and thus are exposed to extensive genomic 

insults and replication pressure, making them vulnerable to aging-associated abnormalities. 

Notably, the progressive loss of T cell proliferative capacity during the aging process directly 

correlates with a gradually shortening of telomeres - a hallmark of cell senescence. Therefore, 

telomere length has been deemed as a biological clock controlling cell aging, survival or 

function, whereas telomere attrition has been considered as a faithful readout of inflammaging1-3. 

Growing evidence suggests that this aging phenotype is recapitulated in chronic viral 

infections 4, particularly in human immunodeficiency virus (HIV) infection, which is 

characterized by disrupting CD4 T cell homeostasis and accelerating premature immune aging. 

Many of the alterations that affect the immune system in HIV-infected individuals are 

reminiscent of the course of inflammaging in the elderly 5, 6. Notably, antiretroviral therapy 

(ART) does not always result in complete CD4 T cell recovery 7-10. Despite successful control of 

HIV replication, residual inflammaging persists, leading to significant immune dysfunction. 

Even with reasonable CD4 T cell numbers, ART-controlled individuals often experience a 

profound inflammaging, characterized by extremely short telomeres, low IL-2 production, poor 

cellular proliferation, and blunted vaccine responses 5-16. The inflammaging imposed by HIV 
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exposes the immune system to unique challenges that lead to T cell exhaustion and senescence, 

similar to that observed in the elderly. These alterations accelerate the decline of CD4 T cell 

competency and thus define the overall immune dysfunctions during HIV latency. Therefore, the 

virus-suppressed, latent HIV infection can be deemed as an excellent model of inflammaging in 

humans, and it is thus important to elucidate the mechanisms underlying T cell senescence and 

inflammaging that is characterized by telomere erosion in individuals with latent HIV infection. 

Because DNA damage can cause telomere erosion, leading to premature cell senescence 

and/or apoptosis 17, 18, we hypothesized that progressive CD4 T cell loss and failure of immune 

recovery during latent HIV-1 infection could be, at least in part, due to a deficiency in the DNA 

repair that alters telomere integrity. Indeed, we have previously shown that patients with chronic 

hepatitis C virus (HCV) infection exhibit premature T cell aging, evidenced by overexpressed 

aging markers and, particularly, shortened telomeres - indicative of excessive proliferative 

turnover or inadequate telomeric maintenance 19, 20. Notably, in healthy primary T cells, 

telomeres undergo shortening at a rate of 50-100 base pairs (bp) per cell division, and this 

predictable loss of telomeric DNA with cell replication allows telomeres to serve as molecular 

clock that controls the replicative capacity of human T cells before entering cell cycle arrest, 

senescence, or apoptosis 21, 22. However, telomere loss can increase up to 250 bp per cell division 

during viral infection and, in compensating for this, cell cycle arrest occurs when progressive 

telomere loss reaches a critical point - known as senescence (a quiescent, non-replicative state 

with decline in functional activities) 21, 22. Thus far, the precise mechanisms controlling telomeric 

DNA damage, T cell homeostasis, inflammaging and immune senescence, however, remain 

unclear.  
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In this study, we investigated the molecular mechanisms that perturb T cell homeostasis 

leading to inflammaging using a model of latent HIV infection in individuals on ART with 

undetectable viremia, the state in which the majority of our HIV patients exist. We demonstrate 

that deficiency of DNA damage checkpoint kinase ataxia telangiectasia mutated (ATM) 

promotes DNA damage, telomere erosion, T cell senescence and apoptosis in virus-suppressed, 

latent HIV infection. Specifically, we show that latent HIV infection is characterized by 

telomeric DNA damage that remains unrepaired due to the ATM deficiency, leading to telomere 

attrition, CD4 T cell senescence and apoptosis, a novel mechanism that controls T cell 

homeostasis and premature immune aging. Thus, restoring the impaired ATM machinery may 

provide a new strategy to improve T cell survival and functions during human viral diseases. 

 

Materials and Methods 

Ethics Statement 

The study protocol was approved by the institutional review board (IRB) of East Tennessee 

State University and James H. Quillen VA Medical Center (ETSU/VA IRB, Johnson City, TN). 

All participants were adults and signed the informed consent form. 

 

Subjects 

The study subjects were composed of two populations: 150 latently HIV-infected 

individuals and 166 age-matched HS. HIV subjects were virologically suppressed for HIV 

replication with ART, as evidenced by undetectable level of HIV-RNA. Healthy subjects 
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supplied by Physicians Plasma Alliance (Gray, TN) were negative for HBV, HCV, and HIV 

infection. 

 

Cell Isolation and Culture 

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood by Ficoll 

density centrifugation (GE Heathcare, Piscataway, NJ). CD4+ T cells were isolated from PBMCs 

using the CD4+ T Cell Negative Selection Kit (Miltenyi Biotec Inc., Auburn, CA). T cells were 

cultured in RPMI 1640 medium containing 10% FBS (Atlanta Biologicals, Flowery Branch, 

GA), 100 IU/ml penicillin and 2 mM L-glutamine (Thermo Scientific, Logan, Utah) at 37°C and 

5% CO2 atmosphere. Cells were harvested at day 1 or day 4 in culture for detection of apoptosis 

and DNA damage. To test the role of ATM activation in repairing DNA damage and apoptosis, 

10 μM ATM inhibitor (KU60019, Abcam, Cambridge, MA) or DMSO were added to the 

cultures at day 1, and the cells were collected after 48 h for measuring apoptosis and DNA 

damage. To determine the role of the PI3K pathway in ATM activation, purified CD4 T cells 

were cultured in the presence or absence of 20 μM PI3K inhibitor (LY294002, Sigma) for 48 h, 

followed by flow cytometry or western blot analysis. 

 

Flow Cytometry 

For phenotypic analysis of CD4 T cells, PBMCs were stained with CD4-FITC, CD45RA-

PerCP710, CD57-APC (BioLegend, San Diego, CA), CD28-PE (Invitrogen, Carlsbad, CA), 

PD1-FITC (eBioscience, San Diego, CA), or isotype control antibodies. To quantify cell 

apoptosis, PBMCs were stained with CD4-A647 and CD45RA-FITC for naïve or memory cell 
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populations. In some experiments, CD4 T cells were cultured for the indicated times, and then 

stained with Annexin V-PE and 7-AAD using BD Pharmingen™ PE Annexin V Apoptosis 

Detection Kit I (BD Biosciences, San Jose, CA). CD4+ T cells were also stained for caspase-3 

expression following the protocol from CaspGLOW™ Fluorescein Active Caspase-3 Staining 

Kit (Invitrogen). Levels of reactive oxygen species (ROS) in CD4 T cells were measured using 

the DCFDA-based Cellular ROS Detection Kit (Abcam, Cambridge, MA) or CellROX Green 

ROS Detection kit (ThermoFisher Scietific, Waltham, MA) according to manufacturer’s 

protocol. For intracellular staining, the cells were fixed and permeabilized with Foxp3 

Transcription Factor Staining Buffer Set (eBioscience), and stained with pATM (Ser1981)-PE 

antibody (BioLegend), pCHK2 (Thr68)-PE antibody, γH2AX-PE (eBioscience), IL-2-PE , IFN-

γ-PE (Invitrogen), or KC57-FITC for HIV p24 (NIH-AIDS Reagent Program). Flow cytometry 

was carried out as described previously 19, 20. 

 

Flow-FISH 

Telomere length was measured by a modified Flow-FISH method as described previously 

20. Briefly, PBMCs were stained with CD4-A647 and fixed with Cell Fixation buffer 

(BioLegend) for 20 min. The cells were incubated with telomere probe TelC 

(CCCTAACCCTAACCCTAA)-FITC (0.3µg probe/mL, PNA Bio,Newbury Park, CA) at room 

temperature for 10 min in the dark, and then at 82 °C for 10 min. The cells were washed with 

post-hybridization buffer, followed by flow cytometry buffer, and then stained with CD45RA-

perCP/Cy5.5 and analyzed by flow cytometry. 
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RNA Isolation and Real-Time RT-PCR 

Total RNA was extracted from 1 x 106 cells with PureLink RNA Mini Kit (Invitrogen), 

and cDNA was synthesized using High Capacity cDNA Reverse Transcription Kit (Applied Bio 

systems, Fostercity, CA) per the manufacturer’s instruction. Quantitative real-time PCR was 

performed in triplicates using the following conditions: 95 °C 10 min and then 95°C, 15s; 60°C, 

60s with 40 cycles. Gene expression was normalized to GAPDH and values are expressed as fold 

changes using the 2-ΔΔct method. Primer sequences are shown in Table 3.1. 

 

Western Blotting 

Western blot was performed as described previously 19, 20, using pATM (Ser1981) 

(D6H9), MRE11, RAD50, NBS1, PARP-1, pAKT, pCHK2 (Thr68) (C13C1), γH2AX (Cell 

Signaling, Danvers, MA), p24 (NIH-AIDS Reagent Program), and β-Actin (8H10D10) 

antibodies (Cell Signaling). Appropriate horseradish peroxide-conjugated secondary antibodies 

(Cell Signaling) were used, and proteins were detected with the Amersham ECL Prime Western 

Blotting Detection Reagent (GE Healthcare Bio-Sciences, Pittsburgh, PA). The blotted 

membranes were stripped and re-probed with ATM (D2E2), AKT and CHK2 (D9C6) antibodies 

(Cell Signaling). Protein bands were captured and quantified by Chemi DocTM MP Imaging 

System (Bio-Rad System). 

 

Confocal Microscopy 

CD4+ T cells were isolated and cultured as described above, followed by 

immunofluorescence staining using a method described previously 19, 20. Primary antibodies 
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Table 3.1 Primer sequences to be used in the chapter 3 

Genes to be amplified  Primer sequences      

ATM F: 5'-TGGATCCAGCTATTTGGTTTGA-3' 

  R: 5'-CCAAGTATGTAACCAACAATAGAAGAAGTAG-3' 

MRE11A F: 5'-CTTGTACGACTGCGAGTGGA-3' 

  R: 5'-TTCACCCATCCCTCTTTCTG-3' 

RAD50 F: 5'-CTTGGATATGCGAGGACGAT-3' 

  R: 5'-CCAGAAGCTGGAAGTTACGC-3' 

NBN F: 5'-TTGGTTGCATGCTCTTCTTG-3' 

  R: 5'-GGCTGCTTCTTGGACTCAAC-3' 

CHEK2 F: 5'-CCCAAGGCTCCTCCTCACA-3' 

  R: 5'-AGTGAGAGGACTGGCTGGAGTT-3' 

TP53 F: 5'-TCAACAAGATGTTTTGCCAACTG-3' 

  R: 5'-ATGTGCTGTGACTGCTTGTAGATG-3' 

GAPDH F: 5'-TGCACCACCAACTGCCTTAGC-3' 

  R: 5'- GGCATGGACTGTGGTCATGAG-3' 

HIV-1 specific primers F: 5'-CAGATCCTGCATATAAGCAGCTG-3' 

 R: 5'- TTTTTTTTTTTTTTTTTTTTTTTTGAAGCAC-3' 

 

included: rabbit anti-53BP1, anti-RAD51, anti-KU70 (Cell Signaling) and mouse anti-γH2AX 

(Ser139) (Biolegend), or mouse anti-TRF1 (Thermo Fisher). Secondary antibodies included: 

anti-rabbit IgG-Alexa Fluor 488 and anti-mouse IgG- Alexa Fluor 555 (Invitrogen). The cells 
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were mounted with DAPI Fluoromount-G (SouthernBiotech, Birmingham, AL), and images 

were acquired using a confocal laser-scanning inverted microscope (Leica Confocal, Model TCS 

sp8, Germany). 

 

HIV-1 Plasmid Transfection and Virus Infection 

The pNL4-3 plasmid, which contains a full-length HIV-1 viral DNA inserted in pUC18 

vector, was obtained from NIH AIDS Reagent Program (originated from Dr. Malcolm Martin) 23. 

The NL4-3 mCherry Luciferase plasmid was a gift from Warner Greene (Addgene plasmid # 

44965) 24, and was used as a positive control for transfection. About 20 µg of the HIV-1 and 

HIV-1 mCherry plasmid were used for transfection of Human Embryonic Kidney 293 cell line 

transformed with SV40 large T antigen (HEK293T) using the polyethylenimine (PEI) method 25. 

Transfection efficiency and HIV-1 protein expression were confirmed by fluorescent microscopy 

examination of mCherry, real-time RT-PCR detection of HIV-RNA, and ELISA (Abcam kit 

#ab218268), or western blotting of p24. The supernatants of HIV-1-transfected 293T cells were 

used to infect human Sup-T1 cells (NIH AIDS Reagent Program, cat# 100; originally from Dr. 

Dharam Ablashi and was isolated from a 13-year old individual with Non-Hodgkin’s T cell 

lymphoma) using the spinoculation method 25. Briefly, 1.5 x 106 Sup-T1 cells were infected with 

supernatant containing 1~5 x 106 HIV-1 in culture plates using centrifugation at 1620 x g in a 

37°C incubator. After 2 h of spinoculation, the supernatants were removed, to discard the 

unattached viruses. Reltegravir (RAL, 66 mM, from NIH AIDS Reagent Program) was added to 

some cultures as an antiretroviral drug.  The media were changed every 3 days, and 

approximately 1.5 x 106 were maintained at each passage with or without adding RAL. Cells 

were harvested at days 3, 6, 9, 12 and 15 for flow cytometry, RT-PCR, and western blot analysis. 
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ATM Silencing 

Approximately, 1x 107 CD4 T cells were isolated from HS and transfected with 100 pmol 

of ATM-specific SMARTpool siGENOME siRNAs or scramble siRNAs (Dharmacon, Lafayette, 

CO) using the Human T Nucelofector Kit and Nucleofector I Device with program U-14 (Lonza, 

Allendale, NJ). After 48 h, the cells were harvested and analyzed by flow cytometry, western 

blot, and confocal microscopy. 

 

ATM Overexpression 

Purified CD4+ T cells from HIV patients were transfected with 2.5 µg of pcDNA3.1, or 

pcDNA3.1(+)Flag-His-ATM wt, or human mutant ATM (S1981A; Addgene plasmids), using the 

Human T Nucleofector Kit and Nucleofector I Device (Lonza, Allendale, NJ). After 48 h, 

transfection efficiency was monitored by flow cytometry to measure the frequency of His+ cells. 

Ectopic ATM expression was detected by western blot. Active caspase-3, γH2AX, and IL-2 

expressions were assessed in the His-positive cells by Flow Cytometry. 

 

Statistical Analysis 

The data were analyzed using Prism 7 software and are presented as mean ± SEM or 

median with interquartile range. Differences between two groups were analyzed by independent 

Student's t test or Mann Whitney test, paired T test or Wilcoxon matched-pairs signed rank test. 

Multiple groups were analyzed by one-way ANOVA test. P-values <0.05, <0.01, or <0.001 were 

considered statistically significant or very significant, respectively. 
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Results 

CD4 T Cell Homeostasis and Apoptotic Susceptibility in Latently HIV-Infected Individuals 

on ART 

Dysregulated T cell homeostasis is a characteristic of chronic viral infections; however, 

the precise mechanisms that control T cell homeostasis and virus persistence in humans remain 

unclear 26. As an initial approach to identify factors that perturb T cell homeostasis in latent HIV 

infection, we analyzed total (CD4+), naive (CD4+CD45RA+), and memory (CD4+CD45RA-) T 

helper cell frequencies within PBMCs isolated from latently HIV-infected individuals on ART 

with undetectable viremia (n=24) and age-matched HS (n=27). As shown in Fig.3.1A 

(representative dot plots and summary data of flow cytometry), total CD4+ T cells (p<0.0001) 

and naïve CD4 (p=0.0043), particularly memory CD4 T cell pools (p<0.0001), were 

significantly contracted in latently HIV-infected individuals compared to HS. To determine 

which subsets of memory CD4 T cells were most affected in latent HIV infection, we analyzed 

the central memory (CD4+CD45RA-CCR7+CD28+), effector memory (CD4+CD45RA-CCR7-

CD28+/-), and terminally differentiated memory (CD4+CD45RA+CCR7-CD28-) T cells for this 

patient group. We found that central memory CD4 T cell subsets were the most significantly 

contracted during HIV latency (data not shown). This contraction of CD4 T cells, particularly 

central memory CD4 T cell subsets, is consistent with previous studies 27, 28, which indicate a 

state of immune activation followed by T cell exhaustion and senescence in patients with latent 

HIV-1 infection. 

The T cell repertoire in peripheral blood is well-maintained by a fine balance between 

influx of newly generated T cells from the thymus, efflux by consumption via programmed cell 
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death, and self-replication within the existing pool of lymphocytes. With deficient influx from 

the thymus in adults, the immune system responds to challenges by expanding existing T cells, 

leading to increased proliferative turnover, telomere erosion, and ultimately, cell apoptosis, 

which represents a major mechanism for controlling peripheral T cell homeostasis in adults 29. 

To explore how apoptosis contribute to T cell homeostasis during HIV latency, we compared the 

Annexin V (Av) and 7-Aminoactinomycin D (7AAD) expressions in PBMCs derived from 

latently HIV-infected individuals (n=8) and age-matched HS (n=8). As shown in Fig.3.1B 

(representative dot plots and summary data of flow cytometry), Av/7AAD staining of CD4 T 

cells showed increases in the rate of early apoptotic cell death in latently HIV-infected 

individuals within the total CD4 (p=0.0050), as well as in naïve (p=0.0013) and, particularly, 

memory CD4 T cells (p=0.0006). Importantly, apoptosis-prone CD4 T cells, particularly 

memory CD4 T cells, appeared to be negatively correlated with their cell frequencies, analyzed 

by Pearson Correlation (Fig.3.1C; n=8 per group; r=-0.4981, p=0.0496). Also, the flow 

cytometry analysis of CD4 T cell frequencies faithfully correlated with the actual count of CD4 

T cell numbers (Fig.3.1D; n=20; r=0.6039, p=0.0048), suggesting that CD4 T cell apoptosis 

closely correlates with CD4 T cell loss during HIV infection. These results also indicate that the 

apoptotic susceptibility of CD4 T cells in virus-suppressed, HIV-infected individuals may 

necessitate compensatory homeostatic proliferation, leading to CD4 T cell exhaustion and 

senescence. 
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Fig.3.1. T cell homeostasis and apoptosis in HIV-infected patients versus age-matched HS.  
A) PBMCs were isolated from 24 HIV-infected patients and 27 HS and analyzed for T cell 
homeostasis by flow cytometry. Representative dot plots and summary data for percentages of 
total CD4+, CD45RA+CD4+ (naïve), and CD45RA-CD4+ (memory) T cell frequencies are 
shown. Each symbol represents an individual subject. The mean ± SE and p value are shown. B)  

PBMCs isolated from 8 HIV-infected patients and 8 HS were analyzed for T cell apoptosis by 
flow cytometry. Representative dot plots and summary data for percentages of Av and 7AAD 
expression in total CD4+, CD45RA+CD4+ (naïve), and CD45RA-CD4+ (memory) T cells are 
shown. Each symbol represents an individual subject. The mean ± SE and p value are shown. C) 
Pearson analysis of the correlation between total or memory CD4 T cell frequencies and early 
apoptotic cells in PBMCs isolated from HIV patients and HS. D) Pearson analysis of the 
correlation between CD4 T cell frequencies and the actual CD4 T cell counts in HIV-infected 
individuals. 
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CD4 T Cell Exhaustion and Senescence in Latent HIV Infection 

To determine the role of homeostatic proliferation in T cell exhaustion and senescence, 

we first compared relevant markers on CD4 T cells isolated from latently HIV-infected 

individuals versus age-matched HS. As shown in Fig.3.2A, the expression of programmed death-

1 (PD-1), a marker for cell exhaustion, was significantly upregulated on lymphocytes 

(p=0.0055), as well as on CD4+ T cells (p=0.0231) in HIV patients compared to HS, though the 

frequencies of PD-1+ CD4+ T cells in resting state were extremely low, whereas PD-1+ CD8+ T 

cells were relatively high (data not shown), in the peripheral blood of both HIV and HS. 

Since loss of CD28, a T cell receptor (TCR) co-stimulatory molecule required for T cell 

activation and survival, is regarded as an unequivocal marker of T cell senescence 30, we 

examined the CD28- populations within CD4+ T cells. As recently reported by the AGEhIV 

Study Group 9, we observed a slight increase in the CD28- CD4+ T cells in latently HIV-infected 

individuals; however, these increases were not significantly different (p=0.2829) compared to the 

age-matched HS in our cohort (Fig.3.2B).  

We have previously reported that CD57, also known as human natural killer 1 (HNK1) 

that is expressed on the senescent NK or T lymphocytes 31, is highly expressed on CD4 T cells 

derived from chronically HCV-infected individuals 20. We found that the percentage of CD57+ 

CD4+ T cell subsets was significantly increased in HIV patients versus HS (Fig.3.2C; p=0.0059). 

This significant upregulation of CD57 expression was also observed in CD4 T cells isolated from 

HIV and HS that were cultured in vitro for 3 days with or without TCR stimulation (n=12 per 

group; p=0.0003 and p=0.0002, respectively), suggesting that HIV CD4 T cells are senescent.  
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Telomere Attrition and Telomeric DNA Damage in CD4 T Cells During Latent HIV 

Infection 

Telomeres are repeating hexameric sequences of DNA found at chromosome ends in 

association with a complex of shelterin proteins. Telomere integrity is a key feature of linear 

chromosomes that preserve genome stability and function, whereas telomere attrition is a 

hallmark of cell aging or senescence that drives cell dysfunction or apoptosis 17, 18. Given the 

importance of telomere attrition in cell senescence, we further investigated T cell aging in HIV 

latency by measuring telomere length in total CD4+, CD4+CD45RA+ naïve and CD4+CD45RA- 

memory T cells by Flow-FISH. As shown in Fig.3.2D (representative plots for gating strategy 

and pooled data of flow cytometry), telomere length was significantly shortened in HIV-derived 

total CD4 T cells (p=0.0423) and, particularly, memory CD4 T cells (p=0.026), compared to age-

matched HS (n=24 per group). Most importantly, telomere length appeared to be inversely 

correlated with the cell apoptotic rate in total, naïve and memory CD4 T cells from HIV and HS, 

as determined by Pearson correlation (Fig.3.2D lower panel; n=8 per group; r=-0.3318, 

p=0.0212), indicating that telomere erosion is associated with apoptosis of CD4 T cells in HIV 

latency. 

Since HIV replication is well-controlled by ART in our cohort, an important question is: 

what drives telomere erosion and T cell apoptosis during latent HIV infection? We and others 

have previously shown that naïve CD4 T cells are typically resistant to death receptor/ligand 

(Fas/Fas-L)-mediated apoptosis 19, 20, 32, 33. Indeed, resting CD4 T cells typically do not express 

Fas on their cell surface, and blocking the exogenous death pathways such as Fas-Fas ligand, 

TNFα-TNF receptor, and TRAIL-TRAIL receptor interactions in CD4 T cells did not affect the 
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KML001 (NaAsO2, an arsenic telomere targeting drug)-induced cell apoptosis (unpublished 

observations), which points to cell internal signals as apoptosis initiators. Notably, one internal 

stressor linked to cell apoptosis is damaged DNA, which is particularly prominent in senescent T 

lymphocytes that have been chronically exposed to oxidative stress, such as endogenously 

generated ROS 34.  

To determine whether ROS might be an offender causing DNA damage and cell 

apoptosis during latent HIV infection, CD4 T cells were isolated from latently HIV-infected 

patients and HS, and cultured in vitro without stimulation for 1~4 days (to generate endogenous 

ROS). Then ROS levels were measured by flow cytometry using the Cellular ROS Detection Kit 

based on the absorption of cell permeable 2’,7’-dichloroflurescin diacetate (DCFDA), a 

fluorogenic dye that measures hydroxyl, peroxyl and other ROS activity within the cell 35. As 

shown in Fig.3.2E, the MFI of DCFDA was significantly increased in CD4 T cells derived from 

HIV-infected patients compared to age-matched HS (n=10 per group; p=0.0939 at day 1 and 

p=0.0035 at day 4 in culture, respectively). Interestingly, when these cells were cultured in vitro 

without stimulation for 1~4 days, the MFI of DCFDAhigh cells remained high in HIV T cells, 

whereas the percentage of DCFDAhigh cells decreased along with an increase in Av+ apoptotic 

cells in HIV versus HS (data not shown). Because cell apoptosis can affect the DCFDA 

measurement, we used another fluorescence-based method (CellROX Green) to measure ROS 

production and assessed their relationship with apoptosis in cultured CD4 T cells derived from 

HIV and HS for 4 days, and we found the same phenomena. As shown in Fig.3.2F, depending on 

the levels of ROS and Av, CD4 T cells from both HIV and HS were gated into two major 

populations: Av+ ROSlow and Av- ROShigh. Notably, in both HIV and HS, apoptotic dying cells 
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(Av+) produced less ROS (MFI ROSlow), and live cells (Av-) produced more ROS (MFI 

ROShigh). While the MFI of both Av- ROShigh and Av+ ROSlow subsets remained higher in HIV 

than HS, the percentage (%) of Av- ROShigh cells was lower, whereas the % of Av+ ROSlow cells 

was much higher, in HIV than HS. These data suggest that the intracellular ROS generated 

during HIV infection may play an important role in triggering cell apoptosis, and the apoptotic, 

dying cells produce less ROS. 

Cells are equipped with DNA damage surveillance and repair machineries to prevent cell 

death associated with genomic instability. Since mammalian telomeres consist of triple guanine 

repeats (TTAGGG) that are very sensitive to oxidative DNA damage, particularly vulnerable to 

ROS, we hypothesized that telomere sequences in HIV-derived T cells are not only shortened, 

but more importantly, DNA damaged. Notably, following genotoxic insult, 53BP1 is recruited to 

the DNA damage site on chromosomes (including telomeres), and acts as a docking site for other 

mediator, transducer and DNA repair proteins to form microscopically visible nuclear foci (DNA 

damage foci) 36. Thus, identifying damaged telomere induced foci (TIF) is typically considered 

as a hallmark of telomeric DNA damage response (DDR) 37. To determine telomeric DDR in T 

cells during latent HIV infection, we compared the number of TIFs per nucleus, as well as the 

percentage of cells with > 3 TIFs, by examining co-localization of 53BP1/TRF1 using confocal 

microscopy. As shown in Fig.3.2F (representative imaging and summary data), the number of 

TIF per nucleus (p=0.0209) and the percentage of T cells with > 3 TIFs (p=0.0340) were 

significantly higher in CD4 T cells derived from HIV patients compared to HS. Moreover, the 

percentage (p=0.0383) as well as the mean fluorescence intensity (MFI) of phosphorylated 

H2AX (γH2AX), a marker of DNA damage, were significantly upregulated in total (p=0.0192), 
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naïve (p=0.0087) and memory (p=0.0148) CD4 T cells from HIV patients compared to HS, as 

determined by flow cytometry (Fig.3.2G). These results suggest that telomeric DNA damage 

may cause cell apoptosis and T cell loss in patients with latent HIV infection, emphasizing the 

role of telomere integrity in securing T cell survival.  

Fig.3.2. CD4 T cell exhaustion, senescence, telomere attrition and DNA damage in 

latent HIV infection. A) Percentage of PD-1 expression on total lymphocytes (left panel) 
and CD4 T cells isolated from HIV patients versus HS, as determined by flow cytometry 
(n=number of subjects). B) Percentage of CD28- population in CD4 T cells from HIV 
patients versus HS. Number of subjects examined (n) and p value are shown. C) Percentage 
of CD57 expression on CD4 T cells from HIV patients versus HS. (continued on  page 91) 

D) Representative dot plots, histogram and summary data from 24 HIV patients and 24 HS 
by Flow-FISH analysis of telomere length in total, naïve and memory CD4 T cells. Pearson 
correlation analysis of the telomere length (MFI) and the percentage of early apoptotic cells 
(Av+7AAD-) are shown below. . E) Flow cytometry analysis of the mean fluorescence 
intensity (MFI) of DCFDA level in CD4 T cells isolated from PBMCs of 10 HIV patients 
and 10 HS, and cultured in vitro without stimulation for 1~4 days.  F) Flow cytometry 
analysis for the percentage (%) and MFI of CellROX Green as well Av levels in cultured 
CD4 T cells derived from HIV and HS for 4 days ex vivo. Representative dot plots and 
summary data of the MFI as well as % of the two gated cell populations (AV- ROXhigh and 
Av+ ROXlow) from three subjects in each group are shown. (continued on  page 92) G) 
Confocal microscopy analysis of 53BP1 and TRF1 co-localization in the nuclei of CD4 T 
cells isolated from HIV patients versus HS. 100 cells were counted per subjects (n=number 
of subjects examined). Summary data of dysfunctional telomere-induced foci (TIF) number 
per nuclei, and the percentage of cells with > 3 TIFs in the two groups are shown. H) 
Representative dot plots and summary data of the percentage of γH2AX expression in CD4 
T cells (n=16 per group), as well as the MFI in total, naïve and memory CD4 T cells from 
HIV patient versus HS (n=8 per group). 
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Fig.3.2 (Continued)  
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Fig.3.2 (Continued)  
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ATM Expression and Activity Are Inhibited in CD4 T Cells During Latent HIV Infection 

Accumulation of damaged DNA in CD4 T cells indicates that the DNA damage sensing 

and repairing machinery are impaired during HIV infection. Essential components of this 

machinery include DNA damage sensors, such as the MRE11, RAD50, and NBS1 (MRN) 

complex, which recruits and mediates activation of DNA damage checkpoint kinase ATM that 

can phosphorylate several downstream checkpoint proteins, including checkpoint kinase 2 

(CHK2) and p53 38-40. To investigate the cellular machineries that promote the DNA damage 

during HIV infection, we examined mRNA transcripts and protein expression of these DDR 

proteins in CD4 T cells.  As shown in Fig.3.3A, real-time RT-PCR analysis of the MRN 

complex transcripts showed no alterations in the level of MRE11 (p=0.1830), RAD50 

(p=0.7124), and NBS1 (p=0.7920). In parallel, the protein levels of these DNA damage sensors 

in CD4 T cells remained unchanged in HIV patients and HS, detected by western blotting 

(Fig.3.3B). Intriguingly, while the mRNA level of ATM was unchanged (p=0.2103, Fig.3.3C), 

ATM protein level (p=0.0107) and  phosphorylation on Ser1981 (p=0.0031), an indicative of its 

activity, were significantly reduced and inhibited, respectively, in CD4 T cells from HIV patients 

compared to HS (Fig.3.3D; representative imaging and summary data of western blotting). The 

inhibition of ATM protein phosphorylation was confirmed by flow cytometry in total (p=0.006), 

naïve (p=0.0254), and memory (p=0.0091) CD4 T cells from the studied subjects (Fig.3.3E). 

Concurrently, while the mRNA levels of the ATM downstream signaling molecule CHK2 and 

p53 remained unchanged (Fig.3.3F), phosphorylation of CHK2 (pCHK2), measured by flow 

cytometry, was significantly inhibited in HIV T cells (Fig.3.3G). CHK2 inhibition, but not p53 

expression, was also detected by western blot in HIV T cells compared to HS (Fig.3.3H). 

Moreover, in line with the increased DNA damage and cell apoptosis in HIV T cells, the total 
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level of Poly ADP-Ribose Polymerase 1 (PARP-1, an apoptosis marker) 41 was decreased, 

whereas the caspase 3-dependent cleaved PARP-1 was increased in HIV T cells. Taken together, 

these results indicate that the DNA damage sensing machinery remains intact, but the protein 

expression and activation of ATM/CHK2, two key components critically involved in repairing 

DSB during DDR for cell survival, are significantly suppressed, at the post-transcriptional level, 

during latent HIV infection.   

 
 

 

Fig.3.3. DNA damage repair ATM signaling pathway in T cells of HIV-infected patients 

versus HS.  

A) MRE11, RAD50, and NBS1 mRNA expression, measured by real-time RT-PCR, in CD4 T 
cells isolated from HIV-infected patients and age-matched HS (n=number of subjects to be 
examined). B) Western blot showing MRN protein expression in CD4 T cells derived from HIV 
patients versus HS. Representative imaging and summary data from 8 subjects in each group are 
shown. (continued on the next page) C) ATM mRNA expression, measured by RT-PCR, in 
CD4 T cells isolated from the study subjects (n=8 in each group). D) Western blot analysis of 
ATM protein expression and phosphorylation in CD4 T cells derived from HIV patients versus 
HS. Representative imaging and summary data from 16 subjects in each group are shown. E) 
Flow cytometry analysis of pATM expression in total, naïve and memory CD4 T cells from 8 
HIV patients versus 8 HS. F) CHK2 and p53 mRNA expressions, measured by RT-PCR, in CD4 
T cells from 9 HIV patients and 9 HS. G) Flow cytometry analysis of pCHK2 expression in CD4 
T cells from 8 HIV patients versus 8 HS. H) Western blot analysis of CHK2, p53, and cleaved 
PARP-1 protein expressions in CD4 T cells derived from HIV patients versus HS. 
Representative imaging and summary data from the indicated subjects in each group are shown. 
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Fig.3.3 (Continued)  
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ATM Protects T Cells from DNA Damage, Cell Apoptosis and Dysfunction via the PI3K 

Pathway 

The ATM signaling pathway is pivotal to the maintenance of genome integrity and cell 

survival 42. To determine its role in T cell function and survival, we knocked down ATM 

expression in healthy CD4 T cells using specific siRNAs, and measured cell apoptosis and 

cytokine expression. As shown in Fig.3.4A, healthy CD4 T cells transfected with siRNA specific 

to ATM (siATM) exhibited a significant decrease in ATM and pATM protein levels compared to 

those treated with control siRNAs (siCON). Concurrently, CHK2 and pCHK2 expressions were 

also diminished in ATM-silenced T cells. In addition, the frequencies of Av+ and caspase-3+ 

apoptotic cells were markedly increased, whereas the IFN-γ-producing CD4 T cells was 

significantly decreased (Fig.3.4B) with the ATM knockdown.  

To further investigate the role of ATM in maintaining T cell survival and normal 

function, primary CD4 T cells isolated from HS were treated with a specific ATM inhibitor 

(ATMi, KU60019) for 48 h, followed by measuring expression and activation of the 

ATM/CHK2 pathway and cell apoptosis. As shown in Fig.3.4C, healthy CD4 T cells exposed to 

KU60019 showed a marked decrease in the expression of ATM, in particular pATM, compared 

to the DMSO-treated control. Concurrently, the levels of ATM downstream signaling molecule 

CHK2, and particularly pCHK2, were significantly suppressed by this treatment. In addition, T 

cells exposed to the ATMi exhibited an elevated level of cleaved PARP-1, suggesting increased 

caspase 3-dependent, DNA damage-mediated cell apoptosis.  

Since ATM belongs to the phosphoinositide 3-kinase (PI3K) family, which plays a key 

role in cell survival and function 42, 43, we examined whether the expression and activation of 
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AKT could be suppressed by the ATM inhibition. As shown in Fig.3.4C, both AKT and pAKT 

were inhibited in CD4 T cells exposed to the KU60019 treatment. Conversely, we also examined 

whether ATM expression and activation could be blocked by the PI3K inhibitor (PI3Ki). To this 

end, we incubated CD4 T cells with or without the PI3Ki (LY294002) for 48 h, followed by 

examination of ATM/pATM, CHK2/pCHK2, AKT/pAKT, as well as cleaved PARP-1 

expressions by western blot. As shown in Fig.3.4D, compared to the DMSO control, T cells 

treated with 20 μM of LY294002 exhibited a significant inhibition of ATM/pATM and 

CHK2/pCHK2 expressions, along with suppression of AKT/pAKT levels, and an increase in the 

level of cleaved PARP-1. These results indicate that ATM deficiency is mediated via inhibition 

of the PI3K pathway.  

 

The NHEJ Pathway Is Involved in the ATM-Mediated DNA Repair and Telomere 

Maintenance 

We next examined the role of ATM in protecting T cells from DNA damage, and found 

that T cells treated with the ATMi exhibited an increase in the expression of γH2AX, a marker 

for DNA damage (Fig.3.4E). These T cells also had increases in DNA damage foci 

(γH2AX/53BP1 co-localization), measured by confocal microscopy (Fig.3.4F). It is well-known 

that Ku70 and Ku80 make up the Ku heterodimer, which bind to DSB ends and is required for 

the non-homologous end joining (NHEJ) pathway of DNA repair. It is also required for V(D)J 

recombination, which utilizes the NHEJ pathway to promote antigen diversity in the mammalian 

immune system. In addition to its role in NHEJ, Ku is involved in telomere maintenance 44. It has 

been reported that mutant mice deficient Ku70 exhibit premature aging 45, suggesting that Ku70 
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plays an important role in longevity assurance and that reduced ability to repair DSB or maintain 

telomere integrity causes early aging. To determine the role of ATM in Ku70-mediated telomeric 

DNA damage repair, we measured the Ku70-dependent, damaged telomere induced foci (TIF) in 

CD4 T cells exposed to ATMi for 48 h by confocal microscopy. As shown in Fig.3.4G, 

Ku70/TRF1-formed TIFs were clearly found increased in cells treated with the ATMi compared 

to the DMSO control. We also examined possible involvement of the ATM pathway in 

homologous recombination (HR) of DNA during DSB repair. Since RAD51 is involved in the 

search for homology and strand pairing process 46, 47, we used confocal microscopy analysis for 

the RAD51/TRF1-dependent TIF in CD4 T cells exposed to ATMi or DMSO for 48 h, but found 

no significant difference between the two treatments (Fig3.4H). These results suggest that the 

NHEJ, rather than the HR, pathway appear to be involved in the ATM-mediated telomeric DNA 

repair.   

Moreover, we examined the role of ATM in protecting T cells from cell apoptosis and 

cellular dysfunction. We demonstrated that ATM inhibition in CD4 T cells increased T cell 

apoptotic death, and HIV T cells appeared to be more vulnerable to the ATMi-mediated 

apoptosis, as evidenced by the higher baseline and the slope of increase in Av/7ADD (Fig.3.4I), 

as well as caspase-3 expressions (Fig.3.4J) in CD4 T cells derived from HIV patients versus HS. 

Meanwhile, these ATMi-treated CD4 T cells exhibited diminished IL-2 (Fig.3.4K) and IFN-γ 

(Fig.3.4L) expressions compared to the controls. Taken together, these results demonstrate that 

ATM inhibition can lead to increased DNA damage, cell apoptosis, and cell dysfunction, which 

potentially contribute to the CD4 T cell loss and poor immune responses observed in latent HIV 

infection.  
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Fig.3.4. ATM plays a key role in protecting T cells from DNA damage, cell apoptosis and 

cellular dysfunction. A) Western blot analysis of ATM, pATM, CHK2, and pCHK2 expressions 
in CD4 T cells transfected with ATM siRNA (siATM) or control siRNA (siCON). 
Representative imaging from repeated experiments is shown. B) Apoptosis and functional assays 
of CD4 T cells with ATM knockdown. Representative dot plots and summary of the percentage 
of Av (n=7), caspase-3 (n=7), and IFN-γ (n=4) expressions in CD4 T cells transfected with 
siATM or siCON. C) Western blot analysis of ATM, pATM, CHK2, pCHK2, cleaved PARP-1, 
AKT, and pAKT expressions in CD4 T cells treated with the ATM inhibitor (KU60019) or 
DMSO control for 48 h. D) Western blot analysis of ATM, pATM, CHK2, pCHK2, AKT, 
pAKT, and cleaved PARP-1 expressions in CD4 T cells treated with the PI3K inhibitor 
(LY294002) or DMSO control for 48 h. Representative imaging from repeated experiments is 
shown. E) Flow cytometry analysis for the MFI of γH2AX expression in CD4 T cells treated 
with KU60019 or DMSO for 48 h. (continued on page 100) F-H) Representative imaging of 
confocal microscopy examination of co-localization of 53BP1 and γH2AX, Ku70 and TRF1, 
RAD51 and TRF1, in CD4 T cells treated with KU60019 or DMSO for 48 h (n=6). I-J) Flow 
cytometry analysis of Av% and caspase-3% in CD4 T cells from HIV and HS exposed to 
KU60019 or DMSO for 48 h. (continued on page 101) I-J) Flow cytometry analysis of Av% 
and caspase-3% in CD4 T cells from HIV and HS exposed to KU60019 or DMSO for 48 h. K-L) 

Representative dot plots and summary data of IL-2 and IFN-γ productions in healthy CD4 T cells 
stimulated with PMA and inomycin in the presence of KU60019 or DMSO for 48 h. 
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Fig.3.4 (Continued)
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Fig.3.4 (Continued)  
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HIV Infection of CD4 T Cells in Vitro Promotes Telomere Loss and Cell Apoptosis 

Because chronically HIV-infected patients often have co-morbidities that may contribute 

to immune dysregulation, we sought to examine the role of HIV infection in promoting telomere 

loss and CD4 T cell apoptosis without cofounding factors. To this end, we established an in vitro 

HIV-1 cell culture system by employing a pNL4-3 plasmid that contains a full-length HIV-1 

viral genome 23. A NL4-3 mCherry Luciferase plasmid was used as a positive control for cell 

transfection 24. Successful transfection of HEK293T cells was confirmed by fluorescence 

microscopy to examine HIV-1 mCherry cassette in red color, whereas mock transfected cells 

show negative fluorescence signal (Fig.3.5A). HIV-RNA and p24 antigen were detected in the 

supernatant of transfected 293T cells by real-time RT-PCR and ELISA (data not shown). Since 

0.1 ng/ml p24 protein is equivalent to 1 x 106 HIV-1 virus particles 48, culture supernatants 

containing 1~5 x 106 HIV-1 virions were employed to infect 1.5 x 106 human Sup-T1 CD4 T 

cells using the spinoculation method 25. As shown in Fig.3.5B, p24 antigen was detected in HIV-

1-infected Sup-T1 cells by flow cytometry, with p24+ cells increase in a time-dependent manner. 

Also, HIV-RNA and p24 protein were found in the supernatants of HIV-1-infected Sup-T1 cells, 

but not in the supernatants of uninfected cells, measured by RT-PCR and ELISA (data not 

shown). To mimic the clinical settings of HIV-infected patients on ART, we added 66 nM of 

RAL, an integrase inhibitor, after 2 h spinoculation infection. As shown in Fig.3.5C, HIV-RNA 

detection remained negative in uninfected Sup-T1 cells, but was positive in HIV-1-infected cells 

(lane 2, 6 at day 3, 6 after infection), and was undetectable in HIV-1-infected cells treated with 

RAL, as well as in uninfected cells in the presence of RAL. These results demonstrate that Sup-

T1 cells can be infected by HIV-1 and that RAL potently inhibits HIV-1 replication. Thus this 
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cell culture system represents an in vitro model mimicking the active and suppressed HIV 

infection on ART in vivo. 

We then asked whether HIV infection in vitro, with or without RAL treatment, can cause 

T cell apoptotic death. Interestingly, T cell apoptosis, measured by the Av/7AAD expression, 

was not observed in the early phase (1~3 days) of HIV infection, and apoptotic death was 

measured at 6 days after HIV-1 infection (representative dot plots of Av and 7AAD expression 

in Sup-T1 cells, with or without HIV-1 infection and RAL treatment; and summary data of Av+ 

7AAD- early apoptotic cells as well as Av+ 7AAD+ late apoptotic cells at day 3, day 6, and day 9 

after infection were shown in Fig.3.5D). Notably, uninfected Sup-T1 cells cultured for 6 days 

showed baseline levels of early apoptotic (Av+7AAD-, 10.0%) and late apoptotic (Av+7AAD+, 

2.6%) cells. Low (1 x 106 virions) ~ high (5 x 106 virions) concentrations of HIV-1 infection 

increased the number of early apoptotic (Av+7AAD-, 23.4 ~ 36.5%) and late apoptotic 

(AV+7AAD+, 9.1 ~ 23.3%) cells in an infection dose-dependent manner. The presence of RAL 

had no effect on apoptotic death in uninfected cells (early and late apoptotic cells were 9.5% and 

2.9%, respectively). However, compared to the infected cells without RAL, RAL treatment 

significantly reduced HIV-1-induced cell apoptotic death, as evidenced by remarkable decreases 

in the Av+7AAD+ late apoptotic cells from 9.1 ~ 23.3% to 3.3 ~ 2.2%, and the Av+7AAD- early 

apoptotic cells reduced from 23.4 ~ 36.5% to 9.9 ~ 17.5% at day 6 after infection. We also 

observed the same trend at day 9 after HIV-1 infection, i.e., RAL treatment significantly reduced 

the Av+7AAD+ late apoptotic cells from 43.2 ~ 47.1% to 2.4 ~ 1.9%, but the Av+7AAD- early 

apoptotic cells remained high (39.9 ~ 46.3% and 36.0 ~ 42.7%, respectively) in an HIV-1 dose-

dependent manner in the absence or presence of RAL treatment.  
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In parallel, we also counted the actual cell numbers with or without HIV-1 infection 

and/or RAL treatment. To this end, Sup-T1 cells were cultured with 1.5 x 106 cells/3 ml on day 0 

of HIV-1 infection. The cells were counted every 3 days and then seeded with 1.5 x 106 cells/3 

ml per well at each passage. As shown in Fig.3.5E, the number of Sup-T1 cells increased rapidly 

in the uninfected group, and HIV-1 infection clearly reduced the cell proliferation and killed the 

cells in a virus dose- and time-dependent manner. However, no such effects were observed in the 

RAL-treated cells. These data support the Av/7AAD assay results showing that RAL can reduce 

the cell death of HIV-1 infected cells, although they remain in an early apoptotic state 

(Fig.3.5D). These results are also in line with a previous report showing that HIV-1 can induce 

formation of syncytia that kill CD4 lymphocytes 49.  

We next asked whether HIV-1-induced T cell apoptosis is related to the DNA damage at 

telomeres. We used Flow-FISH to measure the telomere length in Sup-T1 cells with or without 

HIV-1 infection. As shown in Fig.3.5F (representative overlaid histogram and summary data 

from 3 independent experiments), T cells infected with HIV-1 at 3 days, and particularly, at 6 

days showed a significantly shortened telomere length compared to uninfected cells (P=0.0148 

and P=0.0288, respectively). These results are in line with the observations of shortened 

telomere in CD4 T cells derived from HIV-infected patients (Fig.3.2D), indicating that telomere 

erosion is associated with cell apoptosis in HIV infection. 

 

ATM Is Dysregulated in HIV-Infected T cells in Vitro, which Promotes DDR and Cell 

Apoptosis. 

To determine whether telomeric DNA damage and cell apoptosis is associated with the 
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ATM alteration induced by HIV-1 infection, we measured ATM, CHK2, and AKT expressions, 

along with the DNA damage marker γH2AX and apoptosis marker PARP-1, in Sup-T1 cells with 

varying concentrations of HIV-1 or without infection for 3~6 days. As shown in Fig.3.5G, 

kinetic measuring of p24 expression in Sup-T1 cells by western blot showed HIV-1 infection in a 

virus dose- and time-dependent manner. Interestingly, the amount of ATM and its downstream 

signaling kinase CHK2 were increased in the early phase (day 3) and then decreased in the late 

phase (day 6) of HIV-1 infection. Also, the level of PI3K/AKT showed the same trend as the 

ATM/CHK2 alteration. Correspondingly, the γH2AX and caspase 3-dependent cleavage of 

PARP-1, which plays an important role in DNA damage-mediated cell apoptosis 39, was 

increased at day 6, but not at day 3 that has no apoptosis detectable yet, after HIV-1 infection.  

Based on these observations, we chose the day 6 time-point after HIV-1 infection, with or 

without RAL treatment, to get more insight into the role of the ATM pathway that is critically 

involved in the DDR and DSB repair during viral infection. As shown in Fig.3.5H, p24 was only 

detected in HIV-1-infected Sup-T1 cells, but not in uninfected or HIV-1-infected + treated with 

RAL. Intriguingly, compared to the uninfected control (lane 1), HIV-infected cells (lane 2) 

exhibited a slightly inhibited ATM, but pATM was increased, likely reflecting HIV-1-induced 

DDR. In parallel, CHK2 and AKT were inhibited, but pCHK2 and pAKT were significantly 

upregulated by the HIV-1 infection, along with upregulation of DDR-mediated apoptotic 

markers, such as γH2AX and PARP-1. Interestingly, RAL treatment alone (lane 3) did not 

significantly alter the ATM, pATM, CHK2, pCHK2, AKT, pAKT, γH2AX, and PARP-1 levels 

in Sup-T1 cells when compared to the uninfected cells without RAL treatment (lane 1). 

However, RAL treatment of HIV-1-infected cells (lane 4) inhibited p24 expression and resulted 
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in lower expression levels of ATM/pATM, CHK2/pCHK2, and AKT/pAKT. We also found 

similar inhibition of ATM/pATM, CHK2/pCHK2, and AKT/pAKT expressions in Sup-T1 cells 

at day 12 after HIV-1 infection and RAL treatment (data not shown), which recapitulated the 

findings in patients with latent HIV-1 infection on ART. Taken together, these results suggest 

that the ATM signaling pathway is dysregulated in CD4 T cells by HIV-1 infection that is 

associated with the DDR-mediated cell apoptosis.  

Fig.3.5. Mechanisms involved in inhibition of ATM expression and activation. A) 
Fluorescence microscopy examination of 293T cells transfected with no plasmid (mock) or HIV-
1 mCherry plasmid for 48 h. B) Representative dot plots of flow cytometry analysis of HIV-1 
p24 antigen expression in Sup-T1 cells (CD4 T lymphoblast isolated from a 13 year old 
individual with Non-Hodgkin’s T cell lymphoma) with or without HIV-1 infection for 3 and 6 
days. C) RT-PCR detection of HIV-RNA in Sup-T1 cells with or without HIV-1 infection and 
RAL treatment for 3 and 6 days. (continued on the next page)  D) Flow cytometry analysis of 
apoptosis in Sup-T1 cells with escalating concentrations of HIV-1 inoculation dose. 
Representative dot plots and summary data of early (Av+ 7AAD-) as well as late (Av+ 7AAD+) 
apoptotic cells at different time point (3, 6, 9 days) after HIV-1 infection with or without RAL 
treatment are shown. E) Cell number counts of Sup-T1 cells infected with HIV-1 and treated 
with or without RAL for different time points (0, 3, 6, 9 days after HIV-1 infection). F) 
Representative overlaid histogram and summary data of Flow-FISH analysis for telomere length 
in Sup-T1 cells infected with or without HIV-1 at 3 and 6 days. The data are summarized from 
three repeated experiments, and telomere length (MFI) in HIV-infected cells are normalized by 
those in uninfected cells. G) Western blot analysis of p24, ATM, CHK2, AKT, γH2AX, and 
PARP-1 expressions in Sup-T1 cells infected with escalating concentrations of HIV-1 for 
different time points (3 and 6 days). H) Western blot analysis of p24, ATM, pATM, CHK2, 
pCHK2, AKT, pAKT, γH2AX, and cleaved PARP-1 expressions in Sup-T1 cells with or without 
HIV-1 infection and RAL treatment for 6 days. 
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      Fig.3.5 (Continued)  
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Reconstitution of ATM in HIV CD4 T Cells Reduces DNA Damage, Survival Defects, and 

Cellular Dysfunctions 

Given the critical role of ATM in repairing DNA damage, we hypothesized that 

reconstitution of ATM could recover HIV T cells from DNA damage and restore the signaling 

network required for repairing DNA-DSB. To test this, we transfected CD4 T cells derived from 

HIV-infected, ART-treated individuals with Flag-His-ATM expression construct or control 

plasmids, an empty vector without ATM insert (Mock) and an ATM kinase-dead mutant (ATM-

S1981A) in which the serine residue at 1981 was substituted by an alanine residue. As shown in 

Fig.3.6A, western blot analysis confirmed the increases in ATM and pATM expressions in the 

ATM-transfected T cells compared to the control. Additionally, protein expression and 

phosphorylation (pCHK2) of the ATM downstream signaling molecule CHK2 were increased in 

ATM-transfected cells (Fig.3.6B). Although ectopic overexpression of ATM could have broad 

biological consequences, we focused our investigation on DNA repair, cell survival, and cell 

function by assessing PARP-1, caspase-3, γH2AX, IL-2, and IFN-γ expressions as readouts. 

Specifically, the caspase-3-dependent cleavage of PARP-1 was decreased in T cells transfected 

with the wild-type ATM, but not the ATM kinase-dead mutant (Fig.3.6C). Concurrently, level of 

the active form of caspase-3 was reduced in T cells with ATM reconstitution, but not with the 

ATM-S1981A transfection, though such decrease was not significant (data not shown). 

Compared to the mock transfection, overexpression of ATM significantly reduced γH2AX level 

in transfected (His+) CD4 T cells, whereas transfection of the ATM-S1981A mutant did not elicit 

such an effect, indicating the importance of ATM kinase activity in protecting cells from 

excessive DNA damage (Fig.3.6D). These results are in line with the data showing that 

transfection of wild-type ATM significantly reduced cleaved PARP-1, whereas mock- or ATM-
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S1981A-transfected cells exhibited relatively higher levels of cleaved PARP-1 (Fig.3.6C). Thus, 

these results suggest that ectopic ATM expression exerts immediate effects on repairing DNA 

damage and regulating T cell fate to secure cell survival. Importantly, reconstituting ATM 

eventually restored T cell function, as demonstrated by the significant increase in IL-2 (Fig.3.6E) 

and the partial recovery of IFN-γ expression (Fig.3.6F) in ATM-transfected cells, whereas 

ATM-S1981A transfection could not induce such an effect. Taken together, these results 

demonstrate that restoring an adequate wild-type ATM level in CD4 T cells from latent HIV 

infection is necessary and sufficient to reduce the DNA damage, survival defects, and cell 

dysfunctions. 

Fig.3.6. Ectopic expression of ATM reduces DNA damage, cell apoptosis and dysfunction of 

CD4 T cells from HIV patients. A-C) Western blot analysis of ATM/pATM, CHK2/pCHK2, 
and cleaved PARP-1 expressions in CD4 T cells derived from HIV-infected patients with or 
without ATM overexpression (n=9). (continued on the next page) D~F) Representative dot 
plots and summary data of flow cytometry analysis of the expression of γH2AX (n=4), IL-2 
(n=5) and IFN-γ (n=5) in Mock, ATM, and ATM-S1981A-transfected (His+) CD4 T cells 
derived from HIV-infected patients. P values between each group are shown. 
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Fig.3.6 (Continued)  

 

Discussion  

T cells play a pivotal role in controlling viral infection and vaccine responses. However, 

the mechanisms that dysregulate T cell functions during viral infections, particularly in latent 

phase, remain incompletely understood. In this study, we investigated the mechanisms that 
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perturb T cell homeostasis, apoptosis, DNA damage and repair machineries in CD4 T cells from 

patients with virus-suppressed, latent HIV infection.  We found a significant depletion of CD4 T 

cells, which was inversely correlated with cell apoptosis in HIV-infected individuals. 

Additionally, HIV-derived T cells exhibited accumulation of DNA damage that extended to 

telomeres, leading to accelerated telomere attrition. Mechanistically, the DNA damage sensor 

MRN complex remained intact, but the expression and activation of PI3K family member ATM 

and its downstream checkpoint kinase CHK2 were significantly suppressed in HIV T cells. 

Consistently, ATM/CHK2 activation and cellular functions were impaired in primary healthy 

CD4 T cells following ATM silencing, or exposure to an ATM inhibitor, and also in a CD4 T 

cell line infected with HIV-1 in the presence of RAL, which recapitulates the biological effects 

we observed in vivo in HIV-infected patients on ART. Importantly, ectopic expression of ATM 

was essential and sufficient to reduce the DNA damage, survival deficit, and cell dysfunctions in 

HIV-derived T cells. These results demonstrate that ATM deficiency may lead to accumulation 

of telomeric DNA damage, rendering CD4 T cells prone to apoptosis in the setting of latent HIV 

infection.  Based on these novel findings, we propose a model, as depicted in Fig.3.7, in which 

HIV infection-induced ATM deficiency drives accumulation of telomeric DNA damage, 

premature T cell senescence, and apoptosis. This constant, excessive CD4 T cell depletion would 

necessitate high homeostatic proliferation and impose replicative stress on naïve and particularly 

memory CD4 T cells, leading to further cell senescence or apoptosis - a malicious cycle for CD4 

T cell dysregulation during chronic HIV infection.  
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Fig.3.7. A working model depicting the role of HIV-induced ATM deficiency in T cell cycle 

arrest, telomeric DNA damage, cell senescence, and apoptosis. HIV infection triggers a DNA 
damage response (DDR) during the early phase of infection via the activation of MRN-ATM-
CHK2/P53 signaling pathways in CD4 T cells, prompting cell cycle arrest (through the p21/p27-
regulated CDK/Cyclins) and allowing DNA damage repair. If the infection persists and causes 
unrepairable DNA damage, the cell will commit suicide and undergo apoptosis. Persistent 
antigenic and inflammatory or ROS stimulation in the setting of latent HIV-1 infection in 
individuals on ART, however, drives T cell exhaustion (PD-1) and senescence (telomere 
attrition) by inducing ATM (PI3K-like kinase) deficiency (low protein expression and 
phosphorylation, likely via a miRNA181-mediated DUSP6/SIRT1 dysregulation), leading to 
inflammaging and impaired DNA damage repair, which results in constant DNA damage 
(γH2AX, 53BP1 accumulation), cell apoptosis (caspase-3-dependent cleavage of PARP-1), and 
thus CD4 T cell loss. Excessive CD4 T cell loss necessitates high homeostatic proliferation and 
imposes replicative stress on reactive memory CD4 T cells and unprimed naïve T cells, leading 
to accelerated, premature T cell aging or senescence. This represents a novel molecular 
mechanism underlying the T cell dysfunction and immune (vaccine) non-responsiveness seen in 
the setting of latent HIV infection.  
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The mechanisms underlying inflammaging development in ART-controlled, latent HIV 

infection remain elusive, but multiple factors may be involved. Specifically, HIV latency in the 

era of ART is characterized by the existence of viral reservoirs that prevent HIV-1 eradication 

and likely drive inflammaging 50, 51.  Thus, HIV-mediated inflammaging could result from a 

myriad of insults, such as viral particles or viral proteins released from the reservoirs, cell-

secreted pro-inflammatory mediators, HIV-enhanced gut permeability and altered gut microbiota 

or dysbiosis, frequent cytomegalovirus (CMV), Epstein–Barr virus (EBV), and HCV 

coinfections, ART regimens, as well as other closely associated comorbidities including 

malignancies, or even social, personal stresses and environmental factors 52-55. As demonstrated 

in this study, ROS generated within the cellular milieu during viral infection might also drive 

inflammaging.  

This residual chronic, low-grade inflammation-mediated inflammaging during latent HIV 

infection appears to trigger immune activation that may increase the risk of developing 

comorbidities, similar to those observed in the elderly. For example, individuals living with HIV 

have accentuated risks for age-associated comorbidities; a 2-fold higher risk of cardiovascular 

disease, a 3-fold increased risk of fracture, and a risk of developing kidney disease that is 

comparable to those with diabetes 8. Some comorbidities may present at younger ages compared 

to the general population, suggesting an accelerated, premature aging in the setting of well-

controlled but latent HIV infection 56.  

An important question is why and how do CD4 T cells accumulate DNA damage and fail 

to repair telomere defects during HIV infection? Human CD4 T cells have a relatively long life 

span (~150~160 days) and thus are exposed to a multitude of genotoxic stresses, leading to ~1% 
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out of a pool of 300 billion T cells to be replaced daily 29. To maintain genomic stability and cell 

survival, cells continuously recognize and respond to DNA damage by either activation of DNA 

damage checkpoints to arrest cell cycle progression and allow for repair, or, if the damaged DNA 

is beyond repair, to undergo apoptosis 38. Notably, a major sensor of DSB is the MRN complex, 

which subsequently recruits the protein kinase ATM, an enzyme critically involved in repairing 

DNA damage for cell survival 39, 40. Our results revealed that while the MRN complex was 

intact, ATM was dramatically affected by HIV even in the setting of a robust viral suppression in 

both in vitro and in vivo models, and was associated with significant DNA damage at telomeres. 

Accumulation of damaged DNA activates the ATM cascades, along with ataxia telangiectasia 

Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit c (DNA-PKc), which 

all belong to the PI3K-related kinase (PIKK) family and are important for DNA reprogramming 

and T cell rearrangement 42, 43.  

ATM was originally identified in individuals with ataxia telangiectasis (AT), an 

autosomal recessive disorder that manifests with progressive ataxia, telangiectasia, 

immunodeficiency, genomic instability, and cancer predisposition 57. It is a key kinase within the 

DDR signaling cascade 42, 43, and plays a unique role in lymphocyte biology, as programmed 

DDR participates in the gene remodeling process necessary for formation of a highly diverse 

TCR repertoire. ATM requires a signal for activation (usually a DNA damage signal), which 

promotes intermolecular auto-phosphorylation at ATM residue at serine 1981, resulting in its 

inactive dimer dissociation into active monomers 58. In the current study, a mutant of S1981A 

rendered ATM a dominant-negative protein and triggered distinct DNA damage-mediated cell 

apoptosis and cellular dysfunction (IL-2 inhibition), which underscored the importance of ATM 
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phosphorylation for its biological functions. ATM is predominantly localized in the nucleus, and 

is activated once the MRN complex senses and binds to DSB ends, thus providing a platform for 

ATM recruitment and auto-phosphorylation 59, 60. Phosphorylation of S1981 also stabilizes ATM 

at the damaged DNA sites and recruits more downstream effector proteins to participate in the 

DDR 61. Among the multiple substrates phosphorylated by ATM is CHK2, which is 

phosphorylated at residue T62 following DSB formation and prevents cells from progressing 

from G1 to S phase or, alternatively, leads to cell apoptosis.  

Our results demonstrated that, concomitant with the ATM deficiency, the 

phosphorylation of CHK2 was defective in CD4 T cells during HIV infection. Moreover, 

siRNA-mediated silencing or pharmacological inhibition of ATM in healthy T cells also led to 

the CHK2 defect, which was accompanied by dramatic DNA damage and cell apoptosis - 

mimicking the biological defects we observed in HIV-derived CD4 T cells. These results 

establish that in human T cells, CHK2 is targeted by ATM and that the overall defect of this 

signaling pathway can be attributed to ATM insufficiency, driven by chronic HIV infection. 

Further investigations of the molecular mechanisms regulating the posttranscriptional expression 

and phosphorylation/dephosphorylation of these DDR kinases will shed new lights onto the 

cellular machinery that contributes to DNA repair and cell homeostasis.     

Recently, Li et al. 62 identified prematurely aged T cells with damaged telomeres in 

patients with rheumatoid arthritis resulting from defective activity of the DNA break sensor 

MRE11A. In patients with latent HIV infection, however, we found an intact DNA damage 

sensor MRN complex in CD4 T cells. However, ATM was inhibited at the posttranscriptional 

level in these cells, which produced considerable amounts of ROS. Interestingly, Guo et al. 63, 64 
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similarly reported that ATM activation in response to ROS was independent of the MRN 

complexes. ROS-mediated ATM signaling represses mTORC1 signaling, and therefore cell 

growth and proliferation through the activation of TSC2 (a negative regulator of mTOR) by liver 

kinase B1 (LKB1) and AMP-dependent protein kinases (AMPKs) 65. ATM engagement of the 

TSC2/mTORC1 signaling node can also regulate autophagy 66, and differential localization of 

ATM correlates with activation of distinct downstream signaling pathways 67. We have recently 

reported that T cells derived from chronic HCV infection also exhibit pronounced telomeric 

DNA damage due to remarkably elevated ROS, with intact DNA damage sensors MRN complex 

but impaired ATM/CHK2 signaling pathway 19, 20. Investigation is underway in our laboratory to 

detail the mechanisms of ROS-mediated ATM deficiency during latent HIV infection.  

It should be pointed out that ATM, as a key kinase in DDR, can be activated in the early 

phase of DNA damage, as observed in our in vitro model, in which pATM, pCHK2, and pAKT 

were upregulated, whereas their total protein levels were downregulated in CD4 T cells 

following active HIV infection. These changes led to a global loss of ATM, CHK2, and AKT, 

which suggests an activation and a subsequent exhaustion or senescence process. Notably, ATM 

is widely expressed in human T cells at an extremely high level to ensure integrity of genomic 

DNA in replicating lymphocytes. Its activation may represent the initiation of DDR process, but 

its inhibition and insufficiency in persistently activated T cells indicate deficiency in DNA repair 

that can promote cell exhaustion and senescence in the setting of chronic viral infection. This 

notion is also supported by our observation in the in vitro stimulated T cell system in which 

ATM phosphorylation was elevated in the early phase of KML001 (a telomere targeting drug)-

treated T cells (3~6 h), but decreased with the treatment for longer periods (24~48 h), and 
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associated with increases in DNA damage, cell apoptosis and functional impairment 

(unpublished observations).  

As noted above, our data demonstrated that both ATM and CHK2 expression and 

activation were ultimately diminished in the setting of latent HIV infection on ART.  This was 

present in T cells from our in vivo population of HIV-infected subjects on ART and matched our 

in vitro T cells infected with HIV in the presence of an integrase inhibitor, RAL.  Interestingly, 

this drug was added very early (2 h) after HIV was introduced into the cells, but led to dramatic 

reduction in ATM, CHK2 and their phosphorylated moieties when compared to uninfected T 

cells exposed to RAL. These data beg the question of whether it is even feasible to avoid 

disruption of telomeric DDR signaling and cellular senescence/apoptosis in the HIV-infected 

host without actually targeting the repair machinery itself. Consistent with our findings, 

Rossiello and Fumagalli et al. 68, 69 reported that telomeric DNA damage in mammalian cells is 

irrepairable and occurs preferentially at telomeres in linear genomes. Their studies suggested a 

paradigm in which cellular senescence and organismal aging resulting from persistent DNA 

damage signaling and accumulated, irrepairable telomeric DNA damage could be permanent via 

a shared causative mechanism; i.e., once damaged, they remain damaged. Other data suggested 

that persistent DDRs may trigger senescence-associated inflammatory cytokine secretion, 

facilitating communication of a compromised state to the surrounding cells 70. Similarly, a 

bystander effect in which senescent cells induce DDR via cell-cell contact and generate ROS to 

proximate cells within the milieu, a senescence-induced senescence 71. These could certainly 

occur in our model, given that we observed DDR effects after a short period despite the 

treatment with ART. Importantly, latently HIV-infected cells are more susceptible to DDR-
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inducing agents, and thus are vulnerable to DDR-induced cell apoptosis 72. Sensitivity to DDR 

highlights a unique vulnerability of latently infected cells, a new feature that could potentially be 

exploited in developing therapeutics to eliminate HIV-1 reservoirs. Further studies to explore the 

DDR triggers are underway in our laboratory. 

We and others have shown poor vaccine (HAV, HBV, Influenza, and Pneumovax) 

responses in the setting of chronic viral (HCV, HIV) infections 11-16, 73-79, but the underlying 

mechanisms for vaccine failure in virally-infected individuals remain elusive. Our new findings 

herein indicate that CD4 helper T cells in chronically HIV-infected patients have abnormalities 

that jeopardize their ability to mount effective immune (vaccine) responses. The immune system 

is in constant turnover during viral infection, with high demands for lymphocyte replenishment 

to maintain the equilibrium of the T cell compartment. In this regard, insufficient activation of 

ATM would be expected to affect both unprimed and primed T cells, but memory T cells would 

over-expand rapidly with greater DNA damage and cell apoptosis, which could compromise the 

size and survival rate of the naïve T cell repertoire. Indeed, ongoing antigenic and/or 

inflammatory stimulation during chronic viral infection induces continuous differentiation of the 

naïve T cells and turnover of antigen-reactive T cells, resulting in telomere erosion and cell 

senescence or apoptosis, which we observed more prominently in the memory T cells. 

Eventually, the majority of the T cell pool would be comprised of antigen-expanded T cells at 

the expense of naïve T cells. With the decrease in newly generated naïve thymic T cells in adults, 

chronic inflammation or infection might force the immune system to restore equilibrium by 

replicating the existing naïve T cells, thereby driving telomere shortening and senescence in 
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naïve T cell populations in the peripheral blood. Thus, the ability to generate immune response to 

new antigens, such as vaccines, would be compromised.  

In summary, accumulation of DNA damage and failure of repair due to deficiency of the 

ATM-dependent DNA repair machinery during chronic viral infection may broadly impair diverse 

cellular functions. Counteracting ATM deficiency may restore T cell homeostasis and competency 

during chronic viral infection and prevent premature immune senescence. This study reveals a 

novel molecular mechanism underlying T cell senescence, and provides a new strategy to correct 

an aberrant immunopathology, to avoid the untoward consequences of immunosenescence, and to 

improve immunotherapy and vaccine responses against human viral diseases. 
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CHAPTER 4 

SUMMARY AND FUTURE DIRECTION 

Summary 

T cells play a crucial role in viral persistence and vaccine responses; however, the 

mechanisms regulating their responses to viral infection or vaccinations remain elusive. We and 

others have previously shown that T cells derived from patients with chronic viral infections 

prematurely reach senescence, characterized by the overexpression of aging markers, such as 

p16ink4a, p21cip1, CD57, and KLRG1, differential regulation of aging-associated microRNA-21/-

181a, and particularly, shortened telomeres. In this study, we investigated T cell homeostasis, 

apoptosis, DNA damage and repair machineries in a large cohort of subjects with chronic HCV 

or HIV infection. we demonstrate that: 

1) Homeostatic remodeling of CD4 T cells during HCV infection primarily affects 

the naïve T cell compartment, whereas HIV infection mainly depletes memory CD4 T cell 

pool, characterized by an accumulation of DNA damage due to insufficient activation of the 

DNA repair kinase ATM, leading to CD4 T cell apoptosis and loss.   

2) Phosphorylation (activation) of ATM in T cells exposed to HCV or HIV is 

inhibited through dampening the PI3K pathway, resulting in an increase in unrepaired DNA 

damage and cell apoptosis.  

3) Silencing ATM expression or pharmacological inhibition of ATM 

phosphorylation leads to more DNA damage and apoptosis in CD4 T cells. Conversely, 

reconstitution of ATM repairs the DNA damage, cell apoptosis, and functional defects in 

CD4 T cells derived from both HCV- and HIV-infected individuals.  
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Based on these novel findings, we propose a model, as depicted in Fig.2.7 and Fig 3.7, 

where HCV- or HIV-induced ATM deficiency leads to accumulation of DNA damage and cell 

apoptosis. The excessive naïve and/or memory CD4 T cell loss necessitates high homeostatic 

proliferation and imposes replicative stress on unprimed naïve T cells, further accelerates 

premature T cell aging and cellular dysfunction. This study reveals a novel mechanism by which 

ATM deficiency promote T cell apoptosis and senescence, and provides a new therapeutic target 

for virus-induced immune dysfunction during chronic infection.  

 

Future direction 

Mechanisms Involved in ATM Inhibition in T Cells During Viral Infection 

While we have demonstrated ATM deficiency in T cells from HCV and HIV 

infection, how ATM expression and activity are inhibited by the viral infection is yet 

elucidated. We will define which specific proteins from HCV and HIV virus are responsible 

for suppressing ATM expression and activation. In addition, since ATM inhibition is 

primarily found at the posttranscriptional level, the role of microRNA-21/-181s, which had 

been shown to be differentially regulated in T cells from individuals with HCV or HIV 

infection, in translational suppression of ATM protein expression will be investigated in 

future. Also, the role of protein ubiquitin degradation, the role of AKT/PI3K in 

phosphorylation, and the role of DUSP6/PP2A in dephosphorylation of ATM in senescent T 

cells, will be further studied in the setting of chronic viral infections.   
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Mitochondrial Dysfunction and ROS Production in T Cells During Viral Infection 

An emerging paradigm in human immunology indicates that cellular metabolic 

reprogramming is tightly linked with the immune activation and function. Specifically, T cell 

activation results in an increase in mitochondrial respiration, which is associated with an 

increase in the production of ROS during chronic viral infection. Overproduction of ROS 

may directly decrease mitochondrial membrane potential and lead to a lower ATP supply, 

causing mitochondrial network fragmentation and subsequent, cell apoptosis, or cell 

senescence. Thus in future, we will determine ROS metabolism in dysregulated T cells 

during chronic HCV or latent HIV-1 infection. Specifically, we will compare the ROS levels 

in naïve and memory CD4 T cells derived from virally infected patients versus HS.  We will 

also characterize the mechanisms of ROS production by determining the non-enzymatic 

antioxidant GSH and enzymatic antioxidants SOD, NAPDH and Catalase levels during 

chronic viral infections. 

 

The Interplay between ROS and ATM in TV Cells During HIV-1 Infection 

Besides functioning as a master regulator of the DDR, ATM also responds directly to 

the oxidative stress and regulates multiple cellular signaling pathways. For example, ATM 

kinase has been shown to negatively regulate ROS production. In addition, blocking ATM-

mediated DDR during oxidative stress resulted in deficiencies in mitochondrial function and 

autophagy. The interplay between ROS and ATM during chronic viral infection has not been 

studied yet. Understanding how ROS contribute to the telomeric DDR and promote 

premature T cell aging via dysregulating the ATM  pathway, and whether ATM can feedback 
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regulate ROS metabolism, may raise the possibility of developing novel therapeutic targets 

for inflammaging-induced immune dysfunction during chronic viral infection.  
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APPENDIX 

ABBREVIATIONS 

53BP1 p53-binding protein 1 

7AAD 7-Aminoactinomycin D 

8-oxoG 8-oxogunine 

AIDS Acquired immune deficiency syndrome 

AKT Protein Kinase B 

AMPKs AMP-dependent protein kinases 

ART Antiretroviral therapy 

AT Ataxia telangiectasis 

ATM Ataxia telangiectasia mutated 

ATR Ataxia telangiectasia Rad3-related 

Av Annexin V 

bp Base pairs 

CHK1 Checkpoint kinase 1 

CHK2 Checkpoint kinase 2 

CMV Cytomegalovirus 

DAA Direct acting antiviral 

DAPI 4′,6-diamidino-2-phenylindole 

DCFDA Dichloroflurescin diacetate 

DDR DNA damage response 

DMSO Dimethyl sulfoxide 
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DNA-PKc Protein kinase catalytic subunit c 

DSB Double strain breaks 

DUSP6 Dual specificity phosphatase 6 

EBV Epstein-Barr virus 

FMO Fluorescence minus one 

GFP Green fluorescent protein 

GSH Glutathione 

H2AX Histone family member X 

HCC Hepatocellular carcinoma 

HCV Hepatitis C virus 

HIV Human immunodeficiency virus 

HNK1 Human natural killer 1 

HS Healthy subjects 

IL-2 Interleukin-2 

INF-γ Interferon gamma 

IRB Institutional review board 

KLRG1 Killer cell lectin-like receptor subfamily G member 1 

LKB1 Liver kinase B1 

MFI Mean florescence intensity 

miR MicroRNA 

MRE11 Double-strand break repair protein  

MRN  MRE11, RAD50 and NBS1 
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mTOR mammalian target of rapamycin 

NAPDH Nicotinamide adenine dinucleotide phosphate hydrogen 

NHEJ Non-homologous end joining 

NS No significance 

PARP-1 Poly ADP-Ribose Polymerase 1 

PBMC Peripheral blood mononuclear cell 

PD-1 Programmed cell death protein 1 

PEI Polyethylenimine 

PIKK Phosphatidylinositol 3-kinase-related kinase 

PI3K Phosphatidylinositol 3-kinase 

RAL Reltegravir 

ROS Reactive oxygen species 

RT-PCR Reverse transcription polymerase chain reaction 

SOD Superoxide dismutase 

STK1 Serine/threonine kinase 11 

TBS Tris buffered saline 

TCR T cell receptor 

TIF Telomere induced foci 

Tim-3 T-cell immunoglobulin and mucin-domain containing-3 

TRF1 Telomeric repeat-binding factor 1 

TRF2 Telomeric repeat-binding factor 2 

TSC2 Tuberous sclerosis complex 2 
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