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ABSTRACT 

Investigating the Interaction of Monoamines and Diel Rhythmicity on Anti-Predator Behavior in 

an Orb-Weaving Spider, Larinioides cornutus (Araneae: Araneae) 

by 

Rebecca Jane Wilson 

Circadian rhythms are ubiquitous among organisms, influencing a wide array of physiological 

processes and behaviors including aggression. While many neurophysiological mechanisms are 

involved in the regulation of aggressive behaviors, relatively few studies have investigated the 

underlying components involved in the interplay between circadian rhythms and aggression. 

Spiders are an ideal model system for studying circadian regulation of aggression as they are 

ecologically both predators and prey. Recent studies have revealed a nocturnal orb-weaving 

spider Larinioides cornutus exhibits a diel and circadian rhythm in anti-predator behavior (i.e. 

boldness) that can be manipulated by administration of octopamine (OA) and serotonin (5-HT). 

Dosing of OA increases boldness of an individual while 5-HT decreases boldness levels. Thus, it 

appears the serotonergic and octopaminergic system are playing a key role in the daily 

fluctuations of boldness. This study took a holistic approach to investigate OA and 5-HT levels 

of head tissue and hemolymph (i.e. blood) as well as the genes involved in synthesis, signaling, 

and degradation of these monoamines throughout the day (0100, 0700, 1300, and 1900 hours) 

using HPLC-ED and RNA-sequencing. Although endogenous and circulating levels of OA did 

not significantly fluctuate, putative transcripts involved in synthesis and signaling did increase in 

relative expression levels at dusk when L. cornutus begins to actively forage for prey. 

Endogenous and circulating levels of 5-HT also did not significantly change at the four different 

time points, but clear patterns of upregulation of 5-HT synthesis enzymes as well as some 
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receptor transcripts were upregulated during the day when L. cornutus would be mostly inactive 

in its retreat. Lastly, monoamine oxidase, a major catabolic enzyme of monoamines in 

vertebrates and some invertebrates, was identified in L. cornutus and exhibited substrate 

specificity for OA compared to 5-HT. Together with the higher enzymatic activity at mid-day 

compared to dusk, MAO appears to be playing a significant role in regulating the OA and 5-HT 

signaling in L. cornutus.  In conclusion, these results allow a unique preliminary perspective on 

how OA and 5-HT are influencing the diel shifts in aggression-related behaviors in an 

ecologically dynamic arthropod. 
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CHAPTER 1 

INTRODUCTION 

 

“There is no such thing as a failed experiment, only experiments with unexpected outcomes.” 

 – Richard Buckminster Fuller 

 

Preface 

 Most organisms rely on an endogenous time keeping system to keep them in tune with 

their surroundings. This internal clock not only aids in allowing the organism to anticipate 

changes in their external environment, but also maintains an equilibrium within the body in 

terms of physiological processes. While there are huge implications in how this clock impacts 

the organismal health, the influence of the clock on behavior, particularly aggression levels, is 

vital to an organism’s fitness and survival. Our lab uses spiders as a model system to study the 

neurophysiology, ethology, and chronobiology of an organism in order to answer both proximate 

and ultimate questions about how this internal timekeeping system impacts daily behavior. 

Although spiders are a relatively novel system to some of these fields of study, they offer a 

unique perspective on how an organism carefully regulates its behavior as both a predator and 

prey. 

 

Circadian Rhythms 

A circadian clock has been identified to regulate the majority of organisms through their 

metabolism, physiology, and behavior (Marcheva et al. 2013). While this circadian clock has 
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evolved across multiple phyla based on external cues, the circadian rhythm is defined by its 

entrainment to external cues ( i.e. light, humidity) and endogenous 24-hour cycle even in the 

absence of such cues (Dunlap 1999; Bhadra et al. 2017; Kumar 2017). This internal timekeeping 

system arises at the most basic molecular levels from “clock” genes that influence downstream 

processes through a transcriptional-feedback loop (Reppert and Weaver 2001). While these 

individual components may diverge, this genetic circuitry that regulates the internal pacemaker 

or clock are conserved from bacteria to plants (Aschoff 1965; Bell-Pedersen et al. 2005; 

McClung 2006). 

 The global influence these internal clocks have on organisms is exemplified in diel 

rhythms of behavior in many arthropods. In Drosophila, diel rhythms are seen in locomotion, 

egg-laying, courtship, and learning and memory (Aschoff 1966; Shaw et al. 2000; Chatterjee et 

al. 2010; Gilestro 2012). These rhythms promote better fitness for an organism in  order to 

inform the individual when to venture for consuming prey, when to seek shelter from predation, 

and even when to reproduce (Panda et al. 2002). Daily patterns in aggression and aggressive 

behaviors have been studied quite extensively in several taxa, including fruit flies, crickets, 

crayfish (Lema et al. 2010; Suzaki and Miyatake 2014; Watts et al. 2014). While these 

behavioral studies of aggression in arthropods are quite numerous, many of the underlying 

mechanisms of these behaviors are still not well documented or understood (Kravitz and Huber 

2003). 

Evolutionary pressures and natural selection have helped shape underlying genetic 

circuitry to allow an organism to anticipate changes in their environment as to adapt to daily 

changes in temperature and light (Panda et al. 2002). It is often assumed that these circadian 

rhythms have adaptive value to an organism as circadian rhythms have intrinsic value (Hurd and 
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Ralph 1998; Johnson 2005). Circadian rhythms have allowed temporal organization of internal 

events in coordination with one another. In cyanobacteria, species that have clocks most closely 

match their external environment are the most successful in adapting and surviving (Woelfle et 

al. 2004; Johnson 2005). In mammalian species, activity of voles has not only diel rhythms, but 

these patterns vary among species and across seasons (Pita et al. 2011). In spiders, diel patterns 

in behavior have been identified and shown to influence form environmental cues in terms of 

web building activity and aggression (Watts et al. 2014; Moore et al. 2016).   

Aggression and Foraging Theory 

All animals must forage for food to survive, whether that entails grazing or actively 

hunting prey. However, as organisms attempt to forage or consume nutrients, there are a number 

of selection pressures that are apparent, including internal and external factors. External factors 

include the most obvious influence of environment, i.e. habitat structure, time of day, weather 

and climate, prey abundance, predator abundance. Internal factors can include characteristics of 

the foraging organism itself, such as physiological and neurochemical influences. Ultimately, 

these selection factors shape when, where, and how an animal pursues obtaining food to survive. 

As these factors are quite numerous and innately variable, several theories have emerged to aid 

in predicting how an organism will behave in terms of foraging strategy. Optimal foraging theory 

assumes the most economically advantageous foraging pattern will be selected for an organism 

through natural selection (Werner and Hall 1974; Charnov 1976; Pyke 1984). Thus, there is a 

relationship in risks and rewards and theoretically an organism will forage when the risks are 

minimal and rewards are the highest. Classic studies of optimal foraging theory have been done 

in honey bees (Wolf and Schmid-Hempel 1989) , starlings (Tinbergen 1981; Kacelnik 1984; 

Bautista et al. 1998), and mussels (Meire and Ervynck 1986; Sinervo 2006). 
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Arthropods are exceptional organismal systems to study foraging pattern and aggression 

due to their wide array of behaviors and relatively simple nervous systems. Aggressive behaviors 

are imperative for survival and reproduction, however they are energetically expensive and there 

must likely be a balance between energy and risk (Georgiev et al. 2013). Much of the work 

investigating neurobiology and genetics of aggression in arthropods has focused on establishing 

a role of neurotransmitters and modulating levels of aggression. Monoamines and the genes that 

affect their biosynthesis and metabolism have been associated with aggressive behavior in 

invertebrates and have been a major area of research (Jacobs 1978; Edwards and Kravitz 1997; 

Huber et al. 1997a; Baier et al. 2002; Miczek et al. 2003; Certel et al. 2007; Dierick and 

Greenspan 2007; Hoyer et al. 2008).  

Monoamines: Neurotransmitters, Neurohormones, and Neuromodulators 

What are monoamines? 

 
Monoamines are small nitrogenous compounds that contain one amine group and are 

derived from amino acids. They include tyrosine-derived compounds like norepinephrine, 

epinephrine, and dopamine as well as tryptophan-derived compounds like serotonin. These 

compounds act as critical neurotransmitters, neuromodulators, and neurohormones across the 

animal world. From a cellular to a whole organismal system, they have been found to influence 

physiology and behavior through excitatory or inhibitory effects. In vertebrates, they are well 

recognized to influence flight-or-fight response with the adrenergic system, inducing a 

physiological and behavioral reaction to a stimulus. In the invertebrate world, they are crucial for 

maintaining metabolism, mobility, and behaviors.  
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Octopamine: A master manipulator 

 Octopamine is present in both vertebrates and invertebrates. While it is at minimal 

concentrations and acts in a limited fashion on lipolysis in mammals, other additional roles are 

not known (Fontana et al. 2000). OA, on the other hand, is ubiquitously present and essential 

across invertebrates, often being characterized as the equivalent to the noradrenaline in the 

vertebrate world (Roeder et al. 2003a). OA influences locomotion and flight in many insects 

including locusts and flies (Linn et al. 1992; Saraswati et al. 2004; Roeder 2005a). It has been 

associated with vision in crayfish (Rodríguez-Sosa et al. 2017). While OA is also associated with 

aggression and aggression-related behaviors, its effects can often be contradicting across 

arthropod taxa.  In crayfish, OA lowers aggressive fighting tactics (Kravitz et al. 1980; Huber et 

al. 1997b), but it increases aggression in crickets, fruit flies, and stalk-eyed flies (Adamo et al. 

1995; Baier et al. 2002; Hoyer et al. 2008; Bubak et al. 2013). Although the collection of studies 

is much more limited in arachnids, OA has been associated with aggressive mounting tactics and 

agonistic encounters in wolf spiders and tarantulas (Grega 1978; Widmer et al. 2006; Torkkeli et 

al. 2011; Hebets et al. 2015). 

Octopamine Synthesis, Transport, and Signaling 

 Octopamine is synthesized in a two-step process, originating from the amino acid 

tyrosine. Tyrosine undergoes a decarboxylation event via the enzyme tyrosine decarboxylase 

(TDC). Tyrosine decarboxylase produces the monoamine tyramine. The OA intermediate 

tyramine is an important signaling molecule of its own in invertebrates (Roeder 2005b). 

Tyramine is then further hydroxylated on the fourth carbon by tyramine-beta hydroxylase 

(TBH). While both of these enzymes are needed to synthesize octopamine, the rate-limiting step 
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of this synthesis is TBH. This synthesis is somewhat analogous to the vertebrate synthesis of 

catecholamines in regard to multiple enzymatic steps modifying the amino acid tyrosine into 

biologically active intermediates like dopamine before being further modified into 

norepinephrine. Like all other enzymes, the major synthesis steps to produce octopamine can be 

sites of regulation of this compound. In fact, tyrosine decarboxylase has been implicated in 

aggression in arthropods while tyramine beta-hydroxylase has been implicated in development 

(Lehman et al. 2000; Baier et al. 2002).  

 

 

Figure 1.1. Synthesis of OA from tyrosine via TDC and TBH enzymes.  
 

 Octopamine is produced in the cytosol of the cell and is sequestered in vesicles until 

release. After release, octopamine can be recycled using specific sodium-dependent transporters 

(Caveney et al. 2006). Octopamine dependent transporters have been implicated in circadian 

rhythms and behaviors in many invertebrates. These transporters can fluctuate in expression 

(Gallant et al. 2003). The binding capability of octopamine also has been shown to vary under 

certain circumstances. Octopamine receptors have been studied quite extensively in some 

invertebrates (Balfanz et al. 2005; Lim et al. 2014; Awata et al. 2016). They show a high 

similarity to other G-protein coupled receptors such as adrenergic receptors in vertebrates (Li et 

al. 2016).  
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Serotonin (5-HT) : Influence on aggression 

 Serotonin, or 5-hydroxytyramine, is a well-known neurotransmitter in plants and animals, 

in both vertebrates and invertebrates alike (Barker et al. 1994; Edwards and Kravitz 1997; 

Gatellier et al. 2004; Curran and Chalasani 2012). The evolutionarily ancient monoamine is vital 

for many physiological processes in many bilaterians. In crustaceans, serotonin is implicated in 

suppressing escape response in crayfish (Glanzman and Krasne 1983). In addition, exogenous 

amounts of serotonin increase and lengthen aggressive interactions (Huber et al. 1997a; Kravitz 

and Huber 2003).  However, relatively few studies have examined the role of 5-HT outside of 

crustaceans (Stevenson et al. 2000; Baier et al. 2002; Dierick and Greenspan 2007; Bubak et al. 

2013; Dyakonova and Krushinsky 2013).  

Serotonin Synthesis, Transport, and Signaling  

 The molecular machinery involved in serotonin signaling has been well characterized in 

several invertebrate systems. Serotonin is synthesized from the amino acid tryptophan by the 

enzyme tryptophan hydroxylase (TPH) in the cytoplasm of serotonergic neurons. TPH belongs to 

a superfamily of bipterin-dependent aromatic L-amino acid hydroxylases (AAAH) and requires 

iron as a cofactor. In vertebrates, two isoforms of TPH have been identified, each differentiated 

based on localization in the central nervous system or gastrointestinal tract (Sakowski et al. 

2006). Similar to the serotonergic neural circuitry in vertebrates, some invertebrate species 

appear to have two different isoforms of TPH, with localization in serotonergic neurons in the 

nervous system or in the peripheral organ systems (Coleman and Neckameyer 2005).  Serotonin 

is then stored via vesicular monoamine transporters and transported to the synapse. After its 

release into the synapse, serotonin can bind to specific receptors or be cleared from the synaptic 
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cleft via reuptake by sodium-dependent serotonin-specific transporters. High-affinity transporters 

of serotonin (SERTs), like other monoamine transporters are members of the solute-linked 

carrier family 6 membrane transporters family. Transporters of serotonin can be found through 

bilaterians as it is one of the most ancient monoamines (Caveney et al. 2006). 

 

 

Figure 1.2. Synthesis of serotonin from tryptophan via tryptophan hydroxylase (TPH) and 5-
hydroxytryptophan decarboxylase enzymes.  
 

Catabolism Pathways of Monoamines in Invertebrates 

 While reuptake of monoamines from the synapse by transporters is an important aspect of 

monoamine signaling, the ultimate catabolism or breakdown of monoamines is necessary in all 

organisms. Although many of the synthesis enzymes are relatively conserved across 

invertebrates and vertebrates, the degradation pathways of monoamines utilized among 

invertebrates and vertebrates are quite divergent (Kaufman and Sloley 1996; Sloley 2004). In 

vertebrates, it is generally recognized that majority of neurotransmitters and circulating 

monoamines are metabolized by monoamine oxidase (MAO). Thus, many studies have reflected 

the production of corresponding acidic metabolites of serotonin (Sloley and Juorio 1995). In 

contrast, monoamine catabolism can result in many different products in invertebrates including 
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N-acetylated , y-glutamyl-conjugated, sulphated, B-alanyl conjugated and sugar conjugated 

amines as well as MAO-derived amines mentioned earlier (Sloley and Downer 1990; L.R.C. 

Kempton et al. 1992; Zhou et al. 1993; Sloley 2004; Hiragaki et al. 2015).  In insects alone, there 

are a multitude of ways OA is degraded as seen below in Figure 3. In arachnids, only a few 

studies have investigated catabolism of monoamines with some conflicting results among the 

different taxonomic orders (Meyer and Jehnen 1980; L. R.C. Kempton et al. 1992; Kaufman and 

Sloley 1996; Roeder et al. 2003b). Some studies have documented MAO activity in spiders 

(Meyer and Jehnen 1980), but have not seen the presence of the enzyme in ticks (L.R.C. 

Kempton et al. 1992). Studies have clearly documented acetylated products of octopamine in tick 

species, yet genes for arylalkylamine n-acetyltrasnferases were not detected in several arachnid 

genomes (Sloley 2004; Hiragaki et al. 2015).  

 

 

 

Figure 1.3. Enzymatic inactivation of OA in insects. The arrows indicate an individual enzymatic 
pathway with the enzyme utilized listed.  
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Monoamines, Behavior, and Spiders 

Although there is a large body of research on the influence of monoamines on behavior 

and physiology of insects and crustaceans, there is a paucity of research investigating this topic 

in arachnids. In spiders, the distribution of OA neurons has been mapped out in one species of 

wandering spider Cupiennius salei. This study eludes to the compound potentially having dual 

action as both a neurotransmitter and neurohormone (Seyfarth et al. 1993). This was further 

corroborated with studies revealing increased amplitude of skeletal muscle contraction in 

tarantulas (Grega 1978) and enhanced mechanosensory sensitivity in C. salei (Höger et al. 2005; 

Torkkeli et al. 2011). Decreased OA levels were also identified in the tarantula Aphonopelma 

hentzi after aggressive interactions with a conspecific (Punzo and Punzo 2001). Both OA and 5-

HT have been associated with social behavior in colonial web-building spiders (Price 2010). 

Lastly, increasing 5-HT levels decreased overall activity and aggression levels in the black 

widow spider Latrodectus hesperus (DiRienzo et al. 2015).  

The furrow orb-weaver Larinioides cornutus 

 The common furrow orb-weaver Larinioides cornutus is a holartic species commonly 

found throughout North America, Europe and West Asia (Marusik and Koponen 2005).  

L.cornutus is a nocturnal forager, constructing its web at dusk preferably near a body of water 

and foraging throughout the night. Not only is this nocturnal behavior documented in terms of 

activity pattern (Jones, unpublished), but this species also exhibits a circadian anti-predator 

behavior or “huddle” response (Thomas C. Jones et al. 2011). When exposed to a predator 

stimulus, such as a puff of air as if a predator (i.e. flying bird) is swooping upon the web, the 

spider will pull in all of its limbs to form a tight ball and proceeds to drop form the web. The 

occurrence and frequency of this huddle response has been identified as a part of a larger 
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behavioral syndrome related to aggression and personality (Pruitt et al. 2008; Pruitt et al. 2010). 

This “death-feigning” behavior correlates with its foraging strategy and has been associated with 

an individual’s level of boldness and aggression. The spider is bolder, breaking its huddle 

response sooner, at night when it would otherwise be actively hunting prey in its web and more 

wary, holding its huddle posture much longer during the day, when the spider would otherwise 

be in retreat (Thomas C. Jones et al. 2011). This huddle response can also be manipulated with 

the monoamines octopamine and serotonin. When dosed with serotonin, the spider will maintain 

the huddle position for a much longer period of time, while octopamine decreases its duration 

(Thomas C Jones et al. 2011). Presumably, there are underlying controls of this behavioral 

response and they are under circadian regulation.  

 

Questions and Hypotheses 

Overarching Concept  

 Based on the previous studies on the diel rhythms in aggression-related behaviors in 

L.cornutus, it appears there are underlying mechanisms at work that influence the oscillation in 

behavior. Due to the OA and 5-HT capacity to manipulate this behavior, an over-arching 

question arises: How are OA and 5-HT’s influences maintained throughout the day in 

L.cornutus? Our over-arching hypothesis is that either overall levels of OA and 5-HT are 

changing or components of the octopaminergic and/or serotonergic system change throughout 

the day to produce behavioral shift in L.cornutus. Within the context of these two monoaminergic 

systems, components involved in synthesis, transport, signaling, and/or degradation may be 

changing to produce a shift in behavioral state. 
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Experimental Foci 

In order to focus on separate components of the over-arching question, we asked several specific 

questions: 

Q1: Do OA and/or 5-HT levels fluctuate at different times of day? 

Q2: Do components involved in synthesis, transport, and/or signaling of OA fluctuate at different 

times of the day? 

Q3: Do components involved in synthesis, transport and/or signaling of 5-HT fluctuate at 

different times of day? 

Q4: Do components involved in the degradation or catabolism of OA and/or 5-HT oscillate at 

different times of the day? 

 

Specific Aims and Hypotheses 

From the experimental foci, two main hypotheses were designed to be tested within specific 

aims: 

 

H1: Oscillations of monoamine levels underlie changes in aggressive behavior in L. cornutus. 

 Specific Aim 1: To characterize circulating/brain levels of monoamines over a 24-hour 

period using high performance liquid chromatography (HPLC-ED). 

 

OA and 5-HT Levels (Q1). Previous studies in other arthropods have demonstrated direct 

changes in monoamine levels in different behavioral states (Huber et al. 1997b; Hoyer et al. 

2008). Because dosing of 5-HT decreased boldness while OA increased boldness in L.cornutus, 

we hypothesized  5-HT levels in the head tissue and hemolymph would be higher during the day 

when the boldness was lower and OA levels would be higher in the head tissue and hemolymph 

at night when the boldness was higher. 
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H2: Oscillations in expression of monoamine-related proteins underlie diel changes in aggressive 

behavior in L. cornutus. 

 Specific Aim 2: Analyze levels of transcripts involved in synthesis, transport, and 
degradation over a 24-hour period using RNA sequencing. 
 

 Sub Aims: 

2.1 The components of synthesis, transport, and signaling of OA and 5-HT 

systems will be analyzed. Chapter 2 and 3 are comprised of the OA system 

and 5-HT system, respectively. 

 

Components of octopaminergic system (Q2).  Proteins involved in OA 

synthesis, transport, and/or signaling have been implicated in aggression-

related behaviors in many arthropods (Roeder 2005b). As OA increases 

boldness in L.cornutus, we predicted there would be an upregulation of the 

components involved in OA synthesis, transport, and signaling at night 

when boldness levels were increased. However, as transporter and 

synthesis proteins can vary on temporal upregulation prior to utilization, 

the upregulation of these components may not be uniform.  

 

Components of serotonergic system (Q2).  Proteins involved in 5-HT 

synthesis, transport, and/or signaling have been implicated in aggression-

related behaviors in many arthropods (Haselton et al. 2009; Giang et al. 

2011; Dyakonova and Krushinsky 2013). As 5-HT decreases boldness in 

L.cornutus, we predicted there would be an upregulation of the 

components involved in 5-HT synthesis, transport, and signaling during 

the day when boldness levels were decreased. 

 

 

 2.2 The components involved in the degradation of OA and 5-HT were 

analyzed. Chapter 4 discusses both OA and 5-HT degradation.  
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Catabolic pathways of OA and 5-HT (Q4). Due to previous studies 

demonstrating MAO activity in spiders(Meyer and Jehnen 1980), we 

predict to find MAO homologs in L.cornutus. As selectivity of this 

enzyme in the presence of 5-HT and OA as substrates has not been 

established in spiders, it is difficult to postulate how the gene functions. 

However, based on previous selectivity of MAO in some invertebrates 

(Sloley 2004), we predict there will be a selectivity difference between 5-

HT and OA. In addition, MAO activity is directly influenced by clock 

genes in some organisms (Hampp et al. 2008), therefore we predict the 

enzymatic activity of MAO will vary throughout the day.  

 

General Research Methods 

 Individuals of L. cornutus were collected from multiple populations along waterways in 

Washington County, TN and maintained in our laboratory facility in 12:12 light: dark conditions 

at 20-22 degrees Celsius. Spiders were housed in individual containers, were misted every 2-3 

days, and fed twice a week. Prior to experiments listed in the following chapters, spiders were 

weighed (body mass, g), and were sacrificed according to the individual procedure either by 

liquid nitrogen or carbon dioxide (CO2). Statistical analysis of data collected in the following 

chapters were performed using GraphPad Prism 7 or Microsoft Excel. Bioinformatics analysis 

discussed in the following chapters was performed using NCBI BLAST, Geneious 8 Software, or 

CLC Genomics Workbench. 
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ABSTRACT 

 
 The biogenic amine octopamine (OA) is widely accepted as a key regulator of aggression 

in invertebrates. While many studies have identified how OA can directly influence an 

aggressive behavior or suite of behaviors, few investigations have analyzed how diel rhythms 

influence OA synthesis, signaling, and overall endogenous levels in regard to aggressive 

behaviors.  Recent studies have shown that the species Larinioides cornutus, a nocturnal orb-

weaving spider, exhibits a diel and circadian rhythm in anti-predator behavior that can be 

manipulated by exogenous levels of OA. Thus, it appears the octopaminergic system may be 

playing a key role in the organism shifting between heightened levels of boldness. This study 

took a holistic approach to investigate OA levels and genes involved in synthesis, transport, and 

signaling of OA at four time points throughout the day (0100, 0700, 1300, and 1900 hours) using 

HPLC-ED and RNA-seq. Although OA and 5-HT levels did not significantly fluctuate in the 

cephalothorax or hemolymph, several orthologs of genes involved in OA synthesis, transport, 

and signaling fluctuate throughout the day.  

 

INTRODUCTION 

 
 An organism’s level of aggression and ability to successfully forage for food is vital for 

its survival. Ideally, an organism should actively forage when prey is the most abundant and 

predation risk is minimal[1]. However, to ensure complex behaviors like foraging and 

aggression-related behaviors occur in a timely manner, many underlying neurochemical or 

physiological events must take place. Biogenic amines (BA), or simple nitrogenous compounds 

derived from amino acids like tyrosine and tryptophan, have been widely accepted as master 

regulators in the physiology and behavior of organisms[2–4]. These compounds, which include 
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noradrenaline, dopamine, and serotonin, are ubiquitous in both vertebrate and invertebrates[5]. In 

invertebrates, the biogenic amine octopamine (OA) is implicated in moderating not only many 

physiological processes in arthropods such as flight and locomotion, but it is also a key 

component to how an organism tightly controls its aggression level [6–11]( Reviews : [2,11]). 

While OA is implicated in aggression, its effects can vary, sometimes having opposite outcomes 

among different groups of arthropods[11]. In some crayfish, OA is associated with lowering 

aggressive fighting tendencies [12], while it increases boldness in crickets[6,13] and fruit 

flies[14,15]. Another aspect of OA that is not well understood is how its levels or signaling are 

influenced by or even optimized temporal and seasonal shifts[16,17].  

 As OA is a key regulator in many critical behaviors and physiological processes, OA 

levels and signaling must be carefully regulated[17]. Regulation of octopaminergic signaling can 

occur at many levels, modulation of transcription, translation, and degradation of the enzymes 

involved in OA biosynthesis are major components to its control[18]. In arthropods, OA is 

produced in a three-step process, with the first step being the conversion of phenylalanine to 

tyrosine[19]. The conversion of tyrosine to octopamine involves two enzymes: tyrosine 

decarboxylase (TDC) which converts tyrosine to the compound tyramine, and tyramine beta-

hydroxylase (TBH), which converts tyramine to octopamine (Figure 2.1).  While this synthesis 

process can directly influence behavior and physiology of an organism, relatively few studies 

have rigorously analyzed proximal regulatory mechanisms in the context of aggression or 

temporal shifts[15,20,21]. Thus, further studies are needed to understand how these two enzymes 

are expressed in conjunction with one another in reference to temporal shifts in aggression-

related behaviors. 
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While regulation of synthesis enzymes like TDC and TβH can directly influence OA 

levels, other components involved in OA’s effect at the synapse can also be potential sites of 

regulation[22]. OA-dependent transporters which reabsorb/recycle and clear OA from the 

neuronal synapse can attenuate the OA effect. In addition, the expression of OA receptors at the 

synapses can influence the actual signaling ability of the OA, irrespective of changing OA 

levels[23]. Although neither of these potential areas of diurnal regulation have been studied 

previously in reference to OA, many studies have shown diurnal variation in biogenic amine 

receptors like serotonin [24] and other monoamine transporters like dopamine [25].Thus, while 

extracellular levels of biogenic amine compounds may or may not fluctuate, the tone or level of 

impact this concentration of compounds can have can be finely tuned with regulation of re-

uptake or signaling receptors[25]. 

 Recent research in our lab has investigated how ecologically dynamic organisms, 

specifically spiders, modify their behavior throughout the day to optimize foraging while 

avoiding predation. One spider species, Larinioides cornutus, has revealed circadian control on 

locomotor activity and aggression[26]. A nocturnal forager, L. cornutus, is mostly active at night 

and this pattern in locomotor activity persists in constant conditions (DD). When threatened by a 

Figure 2.1. Synthesis of OA from tyrosine via TDC and TBH enzymes.  
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predator stimulus, the spider will form a tight-ball formation and exhibit a death-feigning 

behavior, or a “huddle” response. This huddle response reflects a diel and circadian pattern, with 

the spider huddling longer during the day while in a less aggressive state, and breaking out of 

this huddle more rapidly at night while in an apparent more aggressive state when the spider 

would otherwise be actively hunting prey[26]. These varied aggressive states can also be induced 

using exogenous amounts of the biogenic amines, serotonin and octopamine. When octopamine 

levels were artificially increased, the boldness level of the individual increased[27]. Thus, it 

appears the octopaminergic system is playing a key role in the organism shifting between 

heightened levels of boldness. 

To test the hypothesis that the octopaminergic system is involved in the diurnal changes 

of aggression levels in L.cornutus, we first investigated endogenous and circulating levels of 

octopamine in the head tissue and hemolymph at four times throughout the day (01:00 – mid 

scotophase, 07:00- onset of photophase, 13:00-mid photophase, and 19:00- onset of scotophase). 

A shot-gun transcriptome approach was then utilized to identify orthologs of octopamine 

synthesis enzyme, octopamine transporter, and octopamine receptor genes in this species: 

tyrosine decarboxylase (TDC), tyramine β hydroxylase (TβH), octopamine receptor (OAR), and 

octopamine-dependent transporter (OAT). We next examined gene expression of the orthologs at 

four different times throughout the day (01:00 – mid scotophase, 07:00- onset of photophase, 

13:00-mid photophase, and 19:00- onset of scotophase). We predicted that the components of the 

octopaminergic system should be upregulated at night when aggression levels are the highest. 

Thus, overall levels of octopamine would be elevated at night and the enzymes involved in 

biosynthesis of OA would be upregulated, succeeded by an increase in expression of transporters 

and OA receptors. This is the first study to analyze the gene expression profile of a spider over a 
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time course. Furthermore, the design of this study sheds light on the potential downstream 

influence of transcriptional regulation of aggression or aggression related behaviors. 

 

METHODS 

Samples for High Performance Liquid Chromatography with Electrochemical Detection (HPLC-

ED): Hemolymph and Cephalothorax Collection 

Modified from methods used in a previous study[28], hemolymph and cephalothoraxes 

were collected at 01:00, 07:00, 13:00, and 19:00 hours. Each spider was anesthetized in a clean 

plastic chamber using CO2. Using a pair of dissecting shears, the right second walking leg of 

each individual was cut approximately in the middle of the tibia with dissecting scissors. 5uL of 

hemolymph was collected using a micropipette and transferred to an appropriately labeled 

Eppendorf tube from the cut leg (pre-labeled with each spider's unique identification number) 

with buffer solution (0.1 M perchloric acid with 1 μg/ ml synephrine as an internal standard for 

OA and 2ug/ml alpha methyl serotonin as an internal standard for 5-HT). Prior to analysis, all 

hemolymph samples were filtered using Costar Spin-X Centrifuge tube with a 0.22um cellulose 

acetate filter (13,000RPM for 6 minutes). This filtered hemolymph sample was stored at -20 °C 

until analysis was performed. 

After the hemolymph was collected, the abdomen, pedipalps, and remaining walking legs 

were removed from the cephalothorax using dissecting shears. The cephalothorax was 

immediately flash frozen using liquid nitrogen and weighed (g) on a balance before being placed 

in a labeled Eppendorf tube (with buffer solution (0.1 M perchloric acid with 10 μg/ ml 

synephrine as an internal standard for OA and 20ug/ml alpha methyl serotonin as an internal 

standard for 5-HT). Cephalothorax samples were then homogenized using ceramic beads and a 
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bead grinder system for 2 minutes before a 10-minute centrifugation at 13,000 RPM to pellet all 

physical debris. The supernatant was then filtered using a Costar Spin-X Centrifuge tube with a 

0.22um cellulose acetate filter (13,000RPM for 6 minutes). This filtered cephalothorax sample 

was stored at -20 °C until analysis was performed. 

HPLC-ECD Analysis 

Cephalothorax and haemolymph samples were analyzed using high-performance liquid 

chromatography with electrochemical detection using parameters to a previous study[28] 

(HPLC-ECD; Alexys Monoamines Analyzer). The mobile phase consisted of 10% MeOH with 

50 mM phosphoric acid, 50 mM citric acid, 500 mg/ml 1-octane sulphonic acid sodium salt, at a 

pH of 3.25 (Antec, Boston, MA, USA 180.7050A rev 02). Samples were injected using an 

AS110 autosampler at a rate of 50ul/min at 191.7kg/cm through an ALF-115 microbore column 

(150 x 1mm) with porous silica C(18) 3 um particle size at 4 C. Biogenic amine detection in 

haemolymph samples was acquired at a 5 nA range for 90 min with a VT-03 cell set at 850 mV. 

Peaks were confirmed against known standards. Chromatogram analysis was performed with 

Clarity software (Solihull, U.K.). Peak heights of each monoamine were normalized against 

internal standard peak for statistical analysis. Cephalothorax samples were normalized initially 

by mass of the tissue sample and protein concentration[29]. 

Sample preparation and RNA sequencing 

Female specimens of L. cornutus were collected from Johnson City, Washington County, 

Tennessee (Coordinates for Lakeview Marina) during the summer of 2016. Individuals were 

housed in plastic containers for a minimum of 7 days prior to sacrifice and were fed once a week 

with water ad libitum. Specimens were entrained to 12:12 light:dark cycle with constant 
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humidity. 4 individuals were sacrificed via flash-freezing at -80°C every 6 hours for 24 hours for 

a total of 4 time points (0100, 0700, 1300, and 1900 hours).  Cephalothoraces (head tissue) were 

removed from each specimen and were homogenized over ice and RNA was extracted using 

Maxwell ® 16 LEV simplyRNA Tissue Kit (Promega, Lot #082114).  Cephalothoraces from 

four individuals were pooled at each time point. 

De novo transcriptome assembly, read mapping, and sequence annotation  

Four RNA libraries were constructed with indexing using unique molecular barcodes. 

The libraries were quantified using Real Time PCR. A single library pool was generated by 

combining all 4 libraries and loaded into one lane of a flowcell for cluster generation and 

sequencing. The flowcell was then sequenced on a paired-end, 100 base pair run using the 

Illumina Hiseq2500 platform (Illumina, San Diego, CA, USA). Quality assessment of the raw 

sequencing reads was performed using CLC Genomics Server (v 7.5.1) using ENCODE2 

guidelines for sequencing quality (mean>Q30) and throughput (100 million 

reads/transcriptome)[30]. The raw reads were trimmed in CLC to remove any sequencing 

artifacts and low-quality end base pairs. All reads from each time point were then pooled for de 

novo assembly of the L. cornutus reference transcriptome using the Trinity transcriptome 

software suite (v 2.1.1)[31]. The de novo assembly was annotated using the Trinotate annotation 

suite (v 3.0)[32]. The first step in this pipeline generated most likely ORF (open reading frame) 

peptide candidates using Transdecoder (v 2.0.1)[33]. HMMR/PFAM are then used to identify 

potential protein domains from the Transdecoder output[33]. BLASTp and BLASTx searches 

were performed on the Transdecoder annotated assembly for known homologous 

annotations[34].  
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RNASeq differential expression between time points 

A limited differential expression analysis was performed on the annotated assembly.  The 

experimental design does not include individual biological replicates per time point. This lack of 

replication places strong limitations on the ability to make statistical inferences with respect to 

differential expression (DE) since biological and experimental coefficients of variation cannot be 

estimated. Consequently, estimates of differential expression presented here must be treated 

cautiously. 

 Differential expression analysis was performed within the CLC Genomics Server using 

its RNASeq expression pipeline.  Reads from each time point were aligned; expression values 

were calculated and normalized.  Statistical analyses were performed on all pairwise 

comparisons; any transcript that exhibited an absolute fold change over 2x and a FDR-corrected 

p-value less than 0.05 was determined to be a potential differentially expressed transcript. 

Putative Transcript Identification 

The de novo assembled transcriptome was mined for transcripts encoding proteins 

involved in octopamine biosynthesis, transport, and signaling. Using known arthropod proteins 

as templates, putative Larinioides cornutus homologs of tyrosine decarboxylase (TDC), tyramine 

beta-hydroxylase (TBH), octopamine transporter (OAT), and octopamine receptors were 

identified. Accession numbers of the query sequences are reported in the figures. Transcripts 

were then analyzed for reading frames and domains as well as reverse BLASTed against the 

NCBI database to confirm identity. This process ensured proteins deduced from these transcripts 

possessed sequence homology and structural hallmarks of their respective enzyme families. 

Transcripts were then aligned with homologous proteins from other arthropod species using 
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ClustalW alignment algorithm on the Geneious  software. After the first protein alignment, 

transcripts or protein homologs were analyzed and removed if there was poor alignment or the 

protein was a partial fragment of the protein. A second protein alignment was then performed 

using Consensus Alignment tools using Geneious  software. Phylogenetic trees were 

constructed from the protein alignments via Neighbor-Joining and maximum-likelihood with 

bootstrapping with 1000 replicates using Geneious  software (Version 8.0). For each 

phylogenetic tree produced for each protein of interest (TDC, TBH, OAT, and OA-receptor), the 

respective protein sequence from Drosophila melanogaster was utilized as the root. 

 

Validation of Transcriptome Analysis by Quantitative Real-Time PCR analysis  

Quantitative real-time PCR (qPCR) was performed to verify the transcriptome results of 

L. cornutus. Total RNA was extracted from cephalothoraces of female L. cornutus at four 

defined time points (0100, 0700, 1300, and 1900 hours) as described in a previous section. RNA 

was primed with oligo (dT) primer and reverse transcription was carried out using Omniscript 

reverse transcriptase kit (Qiagen, cat #205113). Quantitative measurements were performed in 

triplicate on an ABI 7300 system (Applied Biosystems) using the GoTaq qPCR Master Mix 

(Promega) and gene-specific primers (TDC, TBH, OAT, OAR). Primers were designed using 

Geneious   software (Version 8.0). Transcript abundance was normalized to the internal control 

Actin for each sample. As a housekeeping gene, actin has been used as an endogenous reference 

gene in qPCR analysis in a number of studies with arthropods, including spiders[35–39]. All 

qPCR primers were designed using Geneious  software (Table 2.1). 
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Table 2.1. Primers used for qPCR validation of transcriptome analysis 

Putative Gene Name 
Primer Name Nucleotide Sequence 5' --> 3' 

                                                                 

       Transcript ID 

Actin 
Forward_Actin_L.cor CATTACAGTGAGTGGGCGC 

Trinity_DN_56919_c0_g2_i8 
Reverse_Actin_L.cor TCCACCTTCCAGCAGATGTG 

Octopamine Receptor 
Forward_OAR_L.cor ATCGTGAACCTAGCAGTGGC 

Trinity_DN_58054_c0_g1_i3 
Reverse_OAR_L.cor CAAAGGGCGTCTCCAAACAC 

Octopamine-dependent 

Transporter 

Forward_OAT_L.cor GGAGCGATATGTCTTGCAGC 
Trinity_DN_55723_c3_g1_i1 

Reverse_OAT_L.cor GCATACGAAAAGAGCTAGCGC 

Tyramine Beta 

Hydroxylase 

Forward_TBH_L.cor CCACCACGTGTTGCTTTACG 
Trinity_DN_58971_c1_g2_i2 

Reverse_TBH_L.cor GCATCTGGCATGTTGGAACG 

Tyrosine Decarboxylase 
Forward_TDC_L.cor TAGCCGACTACTTGGAGTCC 

Trinity_DN_54328_c2_g2_i5 
Reverse_TDC_L.cor CGTCCCAGTCTTCTCCCTTC 

Statistical Analysis 

 All statistical analysis was performed using GraphPad Prism 7. All data sets were initially 

tested for normal distribution using Shapiro-Wilkes test for normality. Based on distribution, an 

ANOVA or a non-parametric Kruskal-Wallis test was performed to analyze the data for 

significance. 

 

RESULTS 

HPLC-ECD Analysis of octopamine levels in cephalothorax and hemolymph of L. cornutus 

 Levels of OA in the cephalothorax appear to vary throughout the day, however, not 

significantly (Figure 2A; Kruskal-Wallis, p-value = 0.13; K.W. statistic (4, 57) = 5.527). The 

median levels were lowest during the day at 1300hours, with similar levels maintained at the 

other three time points in the day. There was quite a large amount of variation in the octopamine 

measurements in the cephalothorax, perhaps due to individual variation in these levels in the 
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head tissue. Levels of OA in the hemolymph did not vary among the four time points 

significantly (Figure 2B; Kruskal-Wallis, p-value = 0.72; K.W. statistic (4, 60) = 1.347).  

A      B 

                   

Figure 2.2. A. Boxplot of peak height of OA normalized to internal standard at four time points 
in cephalothorax (0100 hours, 0700 hours, 1300 hours and 1900 hours). B. Boxplot of peak 
height of OA normalized to internal standard at four time points in hemolymph (0100 hours, 
0700 hours, 1300 hours and 1900 hours). 
 

Sequencing and de novo assembly of L. cornutus transcriptome 

 Over 500 million initial reads were generated using Illumina RNA-seq. The 

transcriptome was assembled from Illumina RNA-seq short-read data. The transcriptome 

assembly file is available as Additional File 1 (L.cornutus transcriptome). The TRINITY –

derived assembly produced a large number of contigs clustered into a number of genes. The 

number of reads and contigs at each step in the assembly process are listed in Table 2.2. The 

assembly for L. cornutus consisted of 201,350 contigs in 153,812 components (Butterfly; 42,264 

components via Transdecoder). The maximum contig length was 27,195 bp. The mean contig 

length for L. cornutus was 769.92 bp and the N50 contig length was 1441 bp.  The mean and 

N50 coding contig length were 613.54 bp and 904 bp, respectively. The GC content of the 
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coding regions of the assembled transcriptome was 34.83%. This is comparable to other 

sequenced spider transcriptomes, with Parasteatoda tepidariorum at 35.9%[40], Theridion 

californicum at 36.43%[41], and Theridion grallator at 35.17%[41]. 

 

Table  2.2.  L. cornutus transcriptome sequencing and assembly statistics 

Initial reads1 RNA-seq 553,813,388 

Total initial reads1 553,813,388 

Preprocessed reads 541,004,868 

Combined reads 541,004,868 

Reads entering assembly 541,004,868 

Inchworm Kmers 274,041,238 

Butterfly Contigs 201,350 

Butterfly Components (genes) 153,812 (Butterfly); 42,264 (Transdecoder CDS/BLAST) 

Mean contig length (bp) 769.92 

Median contig length (bp) 373 

N50 contig length (bp) 1441 

Maximum transcript length (bp) 27195 

Mean coding contig length (bp) 613.54 

N50 coding contig length (bp) 904 

Coding Transcriptome %GC 34.83 

Total Transcripts 201,350 
1all counts are expressed as “single” reads 

 

 

Annotation of the L. cornutus transcriptome 

 The L. cornutus transcriptome was annotated using CLC Genomics Workbench 

software and several gene and protein databases including SwissProt, BLAST2GO, and NCBI 

BLAST. Of the 153,812 genes sequenced, 50.65% BLASTed without hits, 21.2% had positive 

BLAST hits, 18.7% were annotated using GO Mapping, and 9.3% were BLAST2GO annotated. 

Due to a large number of short length contigs (<100 or 200 bp), BLAST annotation from protein 
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databases can be difficult. The transcripts that had positive hits for GO annotation were further 

analyzed for GO term differentiation (Figure 2.3B). 

A 

 

B 

 

Figure 2.3. A. Venn diagram of differentially expressed transcripts across the four time points via EdgeR using CLC Genomics 
Workbench analysis software. B. Gene ontology analysis of the Larinioides cornutus assembly. The bar graph charts show the 
distribution of the number of transcripts of each GO type.  
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Differential gene expression of all transcripts at four time points 

 When pairwise comparisons were performed among the sequenced cDNA libraries at the 

four time points (01:00vs. 07:00H,01:00vs. 13:00H, 01:00 vs. 19:00H, 07:00vs. 13:00H, 07:00H 

vs. 19:00H, 13:00vs. 19:00H) using EdgeR software, 1,648 transcripts had a significant fold 

change absolute value over 1.5 over the course of all four time points (Figure 2.3A; FDR correct 

p-value <0.05). Among the pairwise comparisons, 4,968 transcripts had a significant fold change 

absolute value between 13:00H and 01:00H, 3,215 transcripts had a significant fold change 

absolute value between 19:00H and 01:00H and 2,797 transcripts had a significant fold change 

absolute value between 07:00H and 01:00H (Figure 2.3A).    

 

Identification of Putative Orthologs for TDC, TBH, OAT, and OA-Receptor in L. cornutus 

transcriptome 

Putative Orthologs of TDC 

Homolog sequences of L. cornutus TDC were isolated from the transcriptome assembly 

using a TBLASTX query of known TDC protein sequences from other organisms (list of query 

sequences in figure legend). Using the ClustalW alignment program in Geneious, multiple 

alignments were performed and the result revealed amino acid sequences of TDC was highly 

conserved among the arthropod species (Fig. 2.4A). The transcripts isolated all had several 

conserved residues for all TDC proteins in addition to a pyridoxal-phosphate attachment site. In 

addition, a phylogenetic tree, constructed by neighbor-joining method, showed the grouping of 

the identified homologs in L. cornutus among two different nodes separated TDC subtype 1 and 

TDC subtype 2 (Fig. 2.4B). Within TDC subtype 1, it appears the arachnid homologs of TDC-1 
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are more derived while the L. cornutus isoforms for transcript DN54328_c2_g2 appears to be 

more similar to the insect TDC-subtype 2 of Drosophila and Orchesella (Fig. 2.4B). The 

relatively high bootstrap value for each node support these results. Mr. Bayes plug-in was used 

to construct Bayesian trees in Geneious Software[42] . 
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Figure 2.4. A.   Box shade of tyrosine decarboxylase (Tdc) protein regions in alignment. Proteins were aligned with the ClustalW alignment 

algorithm on the Geneious  soeftware with default settings and the box shade was produced with Unipro Ugene. Shading is determined by the 
conservation of a residue at a position by percentage; dark blue = 100% of residues share identity, medium blue = 75% of residues share identity, 

light blue = 50% of residues share identity. The number at the end of each line of each protein sequence is the number of residues that a protein 
has up to the end of that line. Species abbreviations: Os, Orchesella species  ;Dm, Drosophila melanogaster; Lh, Latrodectus hesperus ; Sm: 

Stegodyphus mimasarum; B. Phylogenetic tree constructed in Geneious  using Neighbor-Joining Maximum-likelihood analysis with 
bootstrapping values (1000 replicates). Accession numbers: Os(ODM96945.1), Os(ODN03498.1), Os (ODM94615.1), Dm (NP_610226.2), Dm 
(NP_724489.1), Sm (KFM81141.1, KFM68904.1), Lh (ADV40184.1). 

Putative Orthologs of TBH 
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Homolog sequences of L. cornutus TBH were isolated from the transcriptome assembly 

using a TBLASTX query of known TBH protein sequences from other organisms (list of query 

sequences in figure legend). Using the ClustalW alignment program in Geneious, multiple 

alignments were performed and the result revealed amino acid sequences of TBH was highly 

conserved among the arthropod species (Fig. 2.5A). While the L. cornutus transcript 

DN58971_c1_g2 isoforms isolated for TBH identification appear to share homology in the 

regions shown in the figure, there are several sites of polymorphisms in the region AA position 

332 -341.  In addition, a phylogenetic tree, constructed by neighbor-joining method, shows the 

transcripts of L. cornutus, along with protein sequences from the spiders Parasteatoda 

tepidariorum and Stegodyphus mimasarum appear more derived (Fig. 2.5B). The relatively high 

bootstrap value for each node support these results.  
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Figure 2.5. A.  Box shade of tyramine beta hydroxylase (TBH) protein regions in alignment. Proteins were aligned with the ClustalW alignment 

algorithm on the Geneious  software with default settings and the box shade was produced with Unipro Ugene. Shading is determined by the 
conservation of a residue at a position by percentage; dark blue = 100% of residues share identity, medium blue = 75% of residues share identity, 

light blue = 50% of residues share identity. The number at the end of each line of each protein sequence is the number of residues that a protein 

has up to the end of that line.  B. Phylogenetic tree constructed in Geneious  using Neighbor-Joining Maximum-likelihood analysis with 
bootstrapping values (1000 replicates). Species abbreviations: Dm, Drosophila melanogaster ; Pa, Periplanta americana ; Tm, Tropilaelaps 

mercedesae; Sm, Stegodyphus mimasarum; Pt, Parasteatoda tepidariorum; Em, Euroglyphus maynei ; Dpm: Daphnia magna ;Gm, Gryllus 

bimaculatus; Tu, Tetranychus urticae. Accession numbers: Dm (TAAO41640, CAA94391.2), Gm (BAO52001), Pa (AFO63079), Bm 
(BAK09201), Tu(XP_015783011), Tm(OQR67915), Sm (KFM67340), Em (OTF80724), Dpm (JAN71135), Pt (XP015917689, XP_015922088). 
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Putative Orthologs of OAT 

Homolog sequences of L. cornutus OAT were isolated from the transcriptome assembly 

using a TBLASTX query of known OAT protein sequences from other organisms (list of query 

sequences in figure legend). Using the ClustalW alignment program in Geneious, multiple 

alignments were performed and the result revealed amino acid sequences of OAT was highly 

conserved among the arthropod species (Fig. 2.6A). Although there is a very high level of 

conservation of the protein sequences among the L. cornutus transcripts isolated and the 

arthropod queries, it appears there may have been a duplication of this gene and one transcript in 

particular, DN 53562_c1_g1_i1, showed a high degree of polymorphisms (Fig. 2.6A). In a 

phylogenetic tree, constructed by neighbor-joining, the five different L. cornutus transcripts do 

no cluster in the same node (Fig. 2.6B). Rather, two transcripts (DN59028 and DN55221) group 

with other arachnid TBH homologs, while the remaining L. cornutus homologs of OAT appear 

more ancestral among the OAT sequence of Drosophila (Fig. 2.6B). The relatively high 

bootstrap value for each node support these results.  
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Figure 2.6. A. Box shade of octopamine-dependent transporter (OAT) protein regions in alignment. Proteins were aligned with the ClustalW 

alignment algorithm on the Geneious  software with default settings and the box shade was produced with Unipro Ugene. Shading is 
determined by the conservation of a residue at a position by percentage; dark blue = 100% of residues share identity, medium blue = 75% of 

residues share identity, light blue = 50% of residues share identity. The number at the end of each line of each protein sequence is the number of 

residues that a protein has up to the end of that line.  B. Phylogenetic tree constructed in Geneious  using Neighbor-Joining Maximum-
likelihood analysis with bootstrapping values (1000 replicates). L.cornutus transcripts in bold. Species abbreviations and accession numbers: Dm 
, Drosophila melanogaster (Q7K4Y6.1), S sp. Spirostreptus species (DQ903861.1),  Sc sp., Scolopendra species (DQ903860.1) , O sp. 
Opistophthalmus species (DQ903865.1, DQ903856.1), Tn, Trichoplusia ni (AF388173) , Cs, Cupiennius salei (AKL78870), Sv Sympetrum 

vicinum (DQ903858.1) , Aj Anax juniius (DQ903857.1),  Ll Limulus limulus (DQ903864.1, DQ903859.1), Gr Grammostola rosea (DQ903862.1, 
DQ903863.1). 
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Putative Orthologs of OA-Receptors 

Homolog sequences of L. cornutus OA receptors were isolated from the transcriptome 

assembly using a TBLASTX query of known OA receptor protein sequences from other 

organisms (list of query sequences in figure legend). In arthropods, there are two subtypes of OA 

receptors, alpha and beta subtypes, based on similar structural and molecular characteristics of 

adrenergic receptors[43].For identification of potential subtypes in L.cornutus, sequences from 

both alpha and beta subtypes were used. Using the ClustalW alignment program in Geneious, 

multiple alignments were performed and the result showed amino acid sequences of OA 

receptors were not as highly conserved as other proteins investigated in this paper. Rather, while 

there is some degree of highly homologous residues, the subtypes of OA receptors do appear 

among the query sequences and the isolated L. cornutus transcripts (Fig. 2.7A). This is also 

reflected in the phylogenetic tree, constructed using neighbor-joining with a Drosophila 5-HT 

receptor as a root, in which alpha and beta OA receptors characterized in other arthropod species 

separate into different nodes. Interestingly, several transcripts of L. cornutus cluster 

independently (Fig. 2.7B). The relatively high bootstrap value for each node support these 

results.  
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Figure 2.7. Box shade of octopamine receptor (OA-R) protein regions in alignment, labeled with alpha or beta subtype. Proteins were aligned 

with the ClustalW alignment algorithm on the Geneious  software with default settings and the box shade was produced with Unipro Ugene. 
Shading is determined by the conservation of a residue at a position by percentage; dark blue = 100% of residues share identity, medium 

blue = 75% of residues share identity, light blue = 50% of residues share identity. The number at the end of each line of each protein sequence is 
the number of residues that a protein has up to the end of that line. Species abbreviations and accession numbers: Dm, Drosophila melanogaster 
(AAF57104, Q4LBB9.2, ACC17442.1); Hi, Haemaphysalis longicornis  (AEE60826);Ac, Aplysia californica (XP012937854.1); Cs, Cupiennius 

salei (JAA93013, JAC59324); Py,  Platynereis dumerilii (KU886229.1); Pt, Parasteatoda tepidariorum (XP021003274); Am, Apis mellifera 
(CC013924.1, CCO13925.1, CAD67999.1); Dpm, Daphnia magna (EFX87996.1); Is, Ixodes scalpularis (XP002408812) ; Ll, Limulus limulus 

(XP013772246.1,XP013790352.1); Sm: Stegodyphus mimasarum (KFM57654); B. Phylogenetic tree constructed in Geneious  using Neighbor-
Joining Maximum-likelihood analysis with bootstrapping values (1000 replicates). 
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Normalized expression levels of L. cornutus homologs of TDC, TBH, OAT, and OA-Receptors 

 The transcripts isolated as putative homologs of TDC (DN54328, DN58602, DN50546) 

and all the isoforms of these transcripts were analyzed for expression values among the four 

different time points (Fig. 2.8A). Some of the transcripts had very low expression at all-time 

points which can be expected that some genes are not constitutively expressed in all tissues. 

DN58602 and DN50546 shared more homology with Drosophila TDC subtype 1, which is 

expressed in a tissue-specific manner in non-neuronal tissues[44].   However, the transcript 

DN54328 was expressed at its lowest levels in the middle of the day and appears to increase 

again at dusk (Fig. 2.8A). DN54328 is more similar to TDC-subtype 2 in Drosophila, identified 

to be highly expressed in neuronal tissue. Because the cephalothorax contains the central nervous 

system, this transcript could be exhibiting similar tissue-specific expression. It is interesting to 

note that when analyzing the nucleotide sequence for all the isoforms of DN54328, some 

isoforms had alternate start codons (isoform 3 and isoform 5), however, they were still expressed 

at high levels. The transcript DN59701 isolated as putative homolog of TBH appears to have 

significant changes in expression levels throughout the day, however the diurnal patterns of 

expression were quite different among the isoforms of this transcript (Fig. 2.8B).  Overall, the 

expression values of TBH transcripts were much lower than TDC transcripts. Putative transcripts 

of OA-receptors of L. cornutus (DN52832, DN39488, DN51207, DN7370, DN54148, DN58054) 

fluctuate across the four time points, however the transcript DN39488 appears to be expressed at 

relatively high levels throughout the day, with its highest expression level at dusk (Fig. 2.8C). 

Lastly, some of the transcripts isolated as putative homologs of OAT (DN5221, DN59028, 
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DN55723) demonstrated fluctuations in expression levels, with one transcript (DN55723) having 

nearly a 2-fold increase at 13:00H (Fig. 2.8D). 

A           B 

         

C           D 

            

Figure 2.8. Normalized gene expression values for putative ortholog protein sequences of L. cornutus of TDC, TBH, 
OAT, and OA Receptor (labeled A, B, C, D, respectively) over time (01:00H, 07:00H, 13:00H, 19:00H). 

 

 

Quantitative PCR validation of transcriptome analysis 

In order to verify the accuracy of the differential expression analysis of L. cornutus 

transcriptome, tyrosine decarboxylase (putative TDC ortholog, Transcript ID: 

Trinity_DN_54328_c2_g2_i5), tyramine beta-hydroxylase (putative TBH ortholog, Transcript 
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ID: Trinity_DN58971_c1_g2_i2), octopamine transporter (putative OAT ortholog, Transcript 

ID: Trinity_DN55723_c3_g1_i1), and octopamine receptor (putative OAR ortholog, Transcript 

ID: Trinity_DN_58054_c0_g1_i3) genes were selected for qPCR validation. Relative expression 

of these selected genes was quantitatively measured over four time points (1,7,13, and 19 hours) 

and the results were analyzed considering scotophase (1hr) as the control time point (Figure 2.9. 

A-D). qPCR results displayed that during mid-photophase (13hr), the putative transcript of TDC 

(Figure 2.9A, Kruskal-Wallis, p = 0.001, Dunn’s test, p <0.0001) and the putative octopamine 

receptor transcript, OAR, expression were at their lowest level (Figure 2.9C, ANOVA, p = 

0.0375, Dunnett’s test, p = 0.0248) compared to scotophase (1hr). However, another octopamine 

synthesis enzyme, TBH expression exhibited a biphasic oscillation, decreasing at 7hr and 13hr 

(Figure 2.9B, Kruskal-Wallis, p = 0.0165). Lastly, the transcript level of OAT increased during  

mid-photophase (13hr) than the control time point (Figure 2.9C, ANOVA, p = 0.0927). Except 

for TBH, the qPCR results are consistent with those observed in the transcriptome analysis, 

validating the reproducibility of our transcriptome data.   

While BLAST homology retrieves several different transcripts with each query, the 

transcripts used in qPCR validation showed interesting patterns in relative fold change 

throughout the day (Figure 2.9). In qPCR validation, putative transcripts for both synthesis 

enzymes (TDC and TBH) appeared to increase at dusk and decrease in the morning or during the 

day. The putative transcript of an octopamine-like receptor used in qPCR validation also appear 

to be expressed at lower levels during the day with an increase at dusk. Lastly, the putative 

transcript of an octopamine-dependent transporter appears to increase expression during the 

middle of the day, allowing a potential mechanism of increasing turnover of OA from signaling. 
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Figure 2.9.  qPCR validation for selective genes of L. cornutus. Relative expression of TDC, TBH, OA Receptor, 
and OAT (labeled A, B, C, D, respectively) over time (01:00H, 07:00H, 13:00H, 19:00H) were measured in a group 
of three spider cephalothoraces. Results are the mean ± S.D. of three replicates (n = 3). Statistical analysis was 
conducted by ANOVA or Kruskal-Wallis (*,p<0.05; ****, p<0.0001).  

 

 

DISCUSSION 

In many arthropods, a tremendous amount of genes are up or down regulated in a diurnal or 

circadian pattern in relation to eye physiology, metabolism, or movement[45–49]. Majority of 

neurotransmitters, both excitatory and inhibitory, are directly influenced by an organism’s 
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internal timekeeping system which allow efficient sleep/wake cycles and allow metabolism to 

function effectively[50]. However, building upon these vital physiological roles, these same 

neurotransmitters, specifically serotonin and octopamine, are also heavily involved in complex 

behavioral states in arthropods[27,28,51–53]. While the octopaminergic system has been studied 

in terms of its individual components (synthesis, reception, metabolism, etc.) in reference to a 

specific behavior or physiological process[15,54], few studies have taken a holistic approach to 

understand how these components act in concert with one another to tune an organism’s 

behavioral state[55,56].  

There appeared to be no significant fluctuation in OA levels in the cephalothorax or 

hemolymph of L. cornutus individuals at the four different time points throughout the day. These 

results are in contrast to many studies investigating monoamine levels in brain tissue in other 

arthropods in relation to the circadian clock[57–63]. In the field cricket A. domesticus, 

fluctuations in OA occurred under LD (light:dark) and DD (dark:dark) conditions, with its 

highest levels being at night. In cabbage looper moths, you see a contrast from this with OA 

levels in hemolymph peaking during the day [60]. However, as the cephalothorax contains the 

brain, sucking stomach, venom glands, and some initial innervations to peripheral limbs, there 

could be more localized changes in octopamine levels. A similar analysis performed in 

honeybees revealed that while overall endogenous levels of OA did not fluctuate in the brain as a 

whole tissue, individual areas of the nervous system (i.e. mushroom bodies and antennal lobes) 

showed significant differences[64] .The shifts in monoamines could be much larger in specific 

ganglia types in spiders, for example sub esophageal versus supra esophageal ganglia. While 

extensive dissection has been done in arthropods, the cephalothorax of spiders is quite difficult to 

dissect due to its hard exoskeleton coupled with a hydrostatic pressure. However, future studies 
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involving fixations could help elucidate the individual tissues in efforts to stain or quantify 

changes in specific brain regions. In addition, fluctuations in OA levels could be occurring 

between the time points selected in this study (every 6 hours). While this study aimed at 

identifying significant fluctuations at the four major times of day in terms of position of 

scotophase and photophase, additional experiments could take a more frequent sampling of brain 

tissue and hemolymph (i.e. every 2 or 4 hours).  

Our results reflected a significant variation in expression levels of TDC-like transcripts 

across the different times of day. While we initially were investigating potential TDC transcripts 

in general, it appears there is evidence for two subtypes of this enzyme in the L. cornutus 

transcriptome. TDC plays a crucial role in tyramine production, and the subtype TDC-2’s role in 

neuronal tissue allows substantial increase of this biogenic amine across potential blood brain 

barriers[44]. Our findings support previous studies showing oscillations  in tyrosine 

decarboxylase protein in neural tissue of Drosophila [20] as well as studies reflecting diurnal 

variations in expression of amino acid decarboxylase enzymes[65]. It is important to note that 

diurnal variations have only been documented in the neural TDC-2 protein, but not the TDC-1 

protein in non-neuronal tissue[44] . Tyramine synthesis has been previously documented to be 

influenced by the internal clock, as period gene mutants showed a decrease in tyrosine 

decarboxylase activity[19]. While TDC-2 expression did not appear to be cycling in whole-head 

tissues analysis in Drosophila, we were able to detect significant shifts  in expression in spite of 

using a non-cell-specific technique [46,66–69]. Although we were interested in identifying TDC 

in reference to octopamine synthesis, the intermediate tyramine is implicated in a wide array of 

behavioral and physiological effects in arthropods including aggressive behaviors in termites and 

ants[70,71]. With such a marked increase in TDC transcript levels at dusk in L. cornutus, further 
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studies are needed to investigate the role of tyramine and its interaction with octopamine in 

modulating the anti-predator behavior. 

This study revealed diurnal variation in putative transcripts of TBH in the transcriptome 

analysis, however this was not able to be validated with qPCR. Unlike the other genes 

investigated in this study, all putative TBH orthologs identified in the L. cornutus transcriptome 

were all isoforms of a single transcript (Trinity_DN58971_c1_g2) and the primer for the isoform 

chosen for validation (Trinity_DN58971_c1_g2_i6) was not specific. Thus, there is some 

discontinuity in validating the expression levels across the time points. While TBH expression 

levels were not significant, there was a clear pattern of upregulation at dusk in conjunction with 

the putative TDC orthologues. Thus, this may be evidence of more specific regulation of OA 

levels or underlying interactions with its precursor tyramine. A similar pattern of diurnal 

variation was identified in the synthesis enzyme of dopamine, tyrosine hydroxylase, in rats[72]. 

It is important to note that synthesis enzymes do not always dictate the only form of regulation, 

and in many cases other factors must also be involved in the in vivo regulation of the 

neurotransmitters[73]. Although TBH is the rate limiting enzyme for octopamine synthesis, it has 

also been implicated in reproduction, stress response, learning, and aggression in 

invertebrates[14,15,74–77]. In Drosophila, aggressive behaviors are almost abolished in TBH 

mutants, independent of whether tyramine is increased or depleted[15]. Thus, TBH expression 

levels would presumably influence daily shifts in aggression. However, TBH has only been 

investigated for temporal regulation in relation to development [21].  

Putative octopamine dependent transporters appear to show variation in expression 

throughout the day in L. cornutus. Transporters are necessary for reuptake of compounds and 

offer a substantial level of regulation of a compound’s influence on physiology and behavioral 
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response of organisms[78,79]. While octopamine dependent transporter transcripts have not been 

investigated for diurnal fluctuations, our findings are similar to diurnal fluctuations in dopamine-

dependent transporters in rats[25]. It is important for transporter expression to be upregulated in 

anticipation of and during peak times of a compound or peptide being released. This has been 

reflected in several studies of oligopeptide transporters involved in ion, drug, and peptide 

transporters[80–82]. In many cases, mRNA expression of nutrient transporters peak in 

anticipation and ruing time of peak uptake[83]. In the case of monoamine-dependent 

transporters, dopamine-dependent transporters are key regulators in tone[25,84], with the amount 

of transporters expressed at cell surface increase during peak times of dopamine levels and 

fluctuate under circadian control[25,85]. In our results, while most transcripts did not increase in 

transcription significantly throughout the day, one transcript was upregulated throughout the 

daytime. Furthermore, this upregulation was validated and found to significantly increase to its 

highest level in mid-day. This may reflect transcription of these transporters in anticipation of an 

increase in monoamines being upregulated at dusk and nighttime when L. cornutus would be the 

most active and alert, building or re-building their web and actively hunting prey. Although OA 

transporters allow clearance of the monoamine form the synapse, OA clearance is still not very 

well understood in arthropods in general, and other alternate pathways could be used for 

metabolizing OA, including less selective cationic amino acid transporters[86–88].  

In L. cornutus, it appeared that some putative transcripts for octopamine receptors do 

fluctuate in their expression throughout the day.  Receptor sensitivity and expression is 

implicated in allowing organisms to perceive sensory information and physiologically tuned in 

different behavioral states[89,90]. In insects, OA receptors have been implicated in appetitive 

reinforcement[91,92], ovulation[93], memory storage and behavioral plasticity[94], and diel 
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fluctuations in antennal sensitivity detection of pheromones[95].  Similar to some vertebrate 

studies, this change in expression of mRNA coding for particular receptors seen in L. cornutus 

may influence daily foraging behavior[89]. Constitutive expression of some receptor transcripts 

for OA receptors among increases in one or two transcripts appear to give rise to the possibility 

that OA receptor signaling would be highest at dusk. As OA is implicated in aggression and 

activity[15,71,96], this increase in receptor expression would help modulate an increase of OA 

signaling when L. cornutus would be actively hunting prey.  

 

CONCLUSIONS 

 In this study, we took an initial step toward understanding the role the octopaminergic 

system plays in diurnal variation in anti-predator behavior in the spider L. cornutus through first 

identifying putative genes involved (TDC, TBH, OAT, and OAR) and how their expression 

levels fluctuate throughout the day. While L. cornutus is a novel system in studying aggression 

and its underlying mechanisms, it provides an opportunity to further elucidate how ecologically 

dynamic organisms carefully regulate their behavioral state. However, it is important to note the 

transcripts identified in this study were based on protein homology, and not fully characterized. 

In future studies, it would be important to characterize the transcripts identified in this study in 

terms of specificity of signaling molecules in the case of receptors and transporters, while 

quantifying activity of the synthesis enzymes. This study aimed at quantifying gene expression, 

but additional work would need to quantify how these levels influence downstream protein 

translation as well as how they are influenced by the internal time keeping system of L. cornutus. 

Although the cephalothorax tissue was used to analyze more nervous system related changes in 

the octopaminergic system, additional studies will be needed to analyze individual components 
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of the brain and if transcripts of interest are tissue-specific. Lastly, this study allowed a broad 

perspective of how different components of the octopaminergic system are transcribed in 

reference to the time of day and perhaps more behavioral or physiological studies will take a 

holistic approach to studying these genes in concert with each other in organisms. 
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ABSTRACT 

 
The biogenic amine serotonin (5-HT) is widely utilized signaling molecule in organisms 

for many physiological and behavioral processes. While 5-HT is both influential in regulating 

circadian rhythms and aggression, few studies have investigated the interplay between these 

areas of research with attention to individual components of the serotonergic system. Recent 

studies have demonstrated the species Larinioides cornutus, a nocturnal orb-weaving spider, 

displays a diel and circadian rhythm in anti-predator behavior that can be manipulated by 

exogenous levels of 5-HT. Thus, it appears the serotonergic system may be playing a key role in 

the organism shifting between heightened levels of boldness. This study took a holistic approach 

to investigate 5-HT levels and genes involved in synthesis, transport, and signaling of 5-HT at 

four time points throughout the day (0100, 0700, 1300, and 1900 hours) using HPLC-ED and 

RNA-seq. Although 5-HT levels did not significantly fluctuate in the cephalothorax or 

hemolymph, several orthologs of genes involved in 5-HT synthesis, transport, and signaling 

appear to fluctuate throughout the day. 

 

INTRODUCTION  

 

 The biogenic amine serotonin (or 5-hydroxytryptamine, 5-HT) is an evolutionarily 

ancient signaling molecule found across metazoan organisms. In the invertebrate nervous 

system, 5-HT acts as a neurotransmitter, neurohormone, and neuromodulator of a wide array of 

physiological and behavioral processes[1]. While this compound has quite a ubiquitous presence, 

it has been strongly associated with mediating aggression-related behaviors in mammals, birds, 

and arthropods[2–4]. In crustaceans, infusion of 5-HT elicits a socially dominant posture in 
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lobsters, while the rate of 5-HT application in crayfish can determine individual social status[5–

7]. Similar studies investigating the impact of 5-HT on aggression have been conducted in 

insects, but the effects of 5-HT on aggression are not uniform. In stalk-eyed flies, 5-HT 

decreases aggression levels of males and reduces the success of fighting outcomes[8].  In 

contrast, activation of the serotonergic system in fruit flies resulted in faster escalation of fights 

with a higher level of intensity among individuals[9]. Thus, while the effects of 5-HT have been 

studied in many arthropods extensively, the way in which the molecule elicits these behavioral 

responses in terms of individual components of the serotonergic system is still unclear. 

 The serotonergic system is comprised of several components including biosynthetic 

enzymes, transporters, and receptors. 5-HT is first synthesized in the cytoplasm by tryptophan 

hydroxylase in a rate-limiting fashion (Fig. 3.1) [10]. After synthesis, the compound can be 

stored in a vesicle until its eventual release. After its release into the extracellular space, the 

molecule can bind to a receptor (5-HTR), be reabsorbed into the cell by serotonin-dependent 

transporters (SERTs), or be degraded. In mammals, many aspects of this serotonin system 

including synthesis, metabolism, and receptor inactivation, have been implicated in modulated 

aggressive behaviors [4]. Similar work has been done in arthropods, particularly crustaceans. 

When synthesis enzymes were inhibited, an increase in aggressive tactics was observed in 

crayfish[11]. SERTs, the smallest and most conserved structure of the three known monoamine 

transporters, have been implicated in modulating tone of serotonin signaling in reference to 

aggression[4]. Lastly, 5-HT receptors demonstrate a role in a wide range of physiological and 

behavioral processes, including aggression, in both invertebrates and vertebrates alike, however, 

the degree of this effect varies based on type of receptors and location[12,13]. 
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Figure 3.1. Synthesis of serotonin from tryptophan via tryptophan hydroxylase (TPH) and 5-
hydroxytryptophan decarboxylase enzymes. 5-hydroxy-L-tryptophan is an intermediate product. 
 

Spiders are ecologically dynamic organisms as both a predator and prey, making them 

ideal systems to study the components of 5-HT and aggression-related behaviors. Serotonin 

levels have been involved with more docile, social individuals of the species Anelosimus, as well 

as less aggressive mating displays and agonistic encounters in tarantulas[14,15].  Recent research 

in our lab revealed locomotor activity and aggression-related behavior in the orb-weaver 

Larinioides cornutus is under circadian control [16]. A nocturnal forager, L. cornutus, is mostly 

active at night and this pattern of locomotor activity persists under constant conditions (constant 

darkness). When threatened by a predator stimulus, the spider will display a death-feigning 

behavior or “huddle” response, pulling in all of its legs to form a tight-ball formation. This 

huddle response exhibits a diel and circadian pattern, with the spider huddling longer during the 

day while in a less aggressive state, and breaking out of this huddle more rapidly at night while 

in an apparent more aggressive state when the spider would otherwise be actively hunting 

prey[16]. These varied aggressive states can also be induced using exogenous amounts of 

serotonin. When serotonin levels were artificially increased, the boldness level of the individual 
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decreased[17]. Thus, it appears the serotonergic system is playing a key role in the organism 

shifting to lower levels of boldness. 

To test the hypothesis that the serotoninergic system is involved in the diurnal changes of 

aggression levels in L. cornutus, we first investigated endogenous and circulating levels of 

serotonin in the head tissue and hemolymph at four times throughout the day (01:00 – mid 

scotophase, 07:00- onset of photophase, 13:00-mid photophase, and 19:00- onset of scotophase). 

These four time points represent different times throughout the day in which the behavioral state 

fluctuates, with L. cornutus individuals becoming bolder at dusk and during nighttime (1900 and 

0100 hours) and warier or less aggressive during the day (0700 and 1300 hours). A shot-gun 

transcriptome approach was then utilized to identify orthologs of serotonin synthesis enzyme, 

serotonin transporter, and serotonin receptor genes in this species: tryptophan hydroxylase 

(TPH), serotonin receptor (5-HTR), and serotonin-dependent transporter (SERT). We next 

examined gene expression of the orthologs at four different times throughout the day (01:00 – 

mid scotophase, 07:00- onset of photophase, 13:00-mid photophase, and 19:00- onset of 

scotophase). We predicted that the components of the serotonergic system should be upregulated 

during the day when aggression levels are the lowest. Thus, turnover levels of serotonin would 

be elevated during the day and the enzymes involved in biosynthesis of 5HT would be 

upregulated.  
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METHODS 

Samples for High Performance Liquid Chromatography with Electrochemical Detection (HPLC-

ED): Hemolymph and Cephalothorax Collection 

Modified from methods used in a previous study[18], cephalothoraces were collected at 

01:00, 07:00, 13:00, and 19:00 hours. Each spider was anesthetized in a clean plastic chamber 

using CO2. Using a pair of dissecting shears, the right second walking leg of each individual was 

cut approximately in the middle of the tibia with dissecting scissors. 5uL of hemolymph was 

collected using a micropipette from the cut leg and transferred to an appropriately labeled 

Eppendorf tube (pre-labeled with each spider's unique identification number) with buffer 

solution (0.1 M perchloric acid with 1 μg/ml synephrine as an internal standard for 5-HT and 

2ug/ml alpha methyl serotonin as an internal standard for 5-HT). Prior to analysis, all 

hemolymph samples were filtered using Costar Spin-X Centrifuge tube with a 0.22um cellulose 

acetate filter (13,000RPM for 6 minutes). This filtered hemolymph sample was stored at -20 °C 

until analysis was performed. 

After the hemolymph was collected, the abdomen, pedipalps, and remaining walking legs 

were removed from the cephalothorax using dissecting shears. The cephalothorax was 

immediately flash frozen using liquid nitrogen and massed (g) on a balance before being placed 

in a labeled Eppendorf tube (pre-labeled with each spider's unique identification number) with 

buffer solution (0.1 M perchloric acid with 20ug/ml alpha methyl serotonin as an internal 

standard for 5-HT). Cephalothorax samples were then homogenized using ceramic beads and a 

bead grinder system for 2 minutes before a 10-minute centrifugation at 13,000 RPM to pellet all 

physical debris. The supernatant was then filtered using a Costar Spin-X Centrifuge tube with a 
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0.22um cellulose acetate filter (13,000RPM for 6 minutes). This filtered cephalothorax sample 

was stored at -20 °C until analysis was performed. 

 

HPLC-ECD Analysis of Serotonin 

Cephalothorax and haemolymph samples were analyzed using high-performance liquid 

chromatography with electrochemical detection using parameters to a previous study[18] 

(HPLC-ECD; Alexys Monoamines Analyzer). The mobile phase consisted of 10% MeOH with 

50 mM phosphorc acid, 50 mM citric acid, 500 mg/ml 1-octane sulphonic acid sodium salt, at a 

pH of 3.25 (Antec, Boston, MA, USA 180.7050A rev 02). Samples were injected using an 

AS110 autosampler at a rate of 50ul/min at 191.7kg/cm through an ALF-115 microbore column 

(150 x 1mm) with porous silica C(18) 3 um particle size at 4 C. Biogenic amine detection in 

haemolymph samples was acquired at a 5 nA range for 90 min with a VT-03 cell set at 850 mV. 

Peaks were confirmed against known standards. Chromatogram analysis was performed with 

Clarity software (Solihull, U.K.). Peak heights of each mon5-HTmine were normalized against 

internal standard peak for statistical analysis. Cephalothorax samples were normalized initially 

by mass of the tissue sample and protein concentration[8]. 

 

Putative Transcript Identification 

 The de novo assembled transcriptome of L. cornutus (Wilson et al., unpublished) was 

mined for transcripts encoding proteins involved in serotonin biosynthesis, transport, and 

signaling. Using known arthropod proteins as templates, putative Larinioides cornutus homologs 

of tryptophan hydroxylase (TPH), serotonin-dependent transporter (SERT), and serotonin 
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receptors (5-HTR) were identified. Accession numbers of the query sequences reported in the 

figures. Transcripts were then analyzed for reading frames and domains as well as reverse 

BLASTed against the NCBI database to confirm identity. This process ensured proteins deduced 

from these transcripts possessed sequence homology and structural hallmarks of their respective 

enzyme families. Transcripts were then aligned with homologous proteins from other arthropod 

species using ClustalW alignment algorithm on the Geneious  software. After the first protein 

alignment, transcripts or protein homologs were analyzed and removed if there was poor 

alignment or the protein was a partial fragment of the protein. A second protein alignment was 

then performed using Consensus Alignment tools using Geneious  software. Phylogenetic trees 

were constructed from the protein alignments via Neighbor-Joining and maximum-likelihood 

with bootstrapping with 1000 replicates using Geneious  software (Version 8.0). 

 

Validation of Transcriptome Analysis by Quantitative Real-Time PCR analysis  

Quantitative real-time PCR (qPCR) was performed to verify the transcriptome results of 

L. cornutus. Total RNA was extracted from cephalothoraces of female L. cornutus at four 

defined time points (1,7,13, and 19 hours). Cephalothoraces (head tissue) were removed from 

each specimen and were homogenized over ice and RNA was extracted using Maxwell ® 16 

LEV simplyRNA Tissue Kit (Promega, Lot #082114). RNA was primed with oligo (dT) primer 

and reverse transcription was carried out using Omniscript reverse transcriptase kit (Qiagen, cat 

#205113). Quantitative measurements were performed in triplicate on an ABI 7300 system 

(Applied Biosystems) using the GoTaq qPCR Master Mix (Promega) and gene-specific primers 

(TPH, SERT, 5-HTR). Primers were designed using NCBI Primer 3 and Primer-BLAST[19]. 
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Transcript abundance was normalized to the internal control Actin for each sample. As a 

housekeeping gene, actin has been used as an endogenous reference gene in qPCR analysis in a 

number of studies with arthropods, including spiders[20–24]. All qPCR primers were designed 

using Geneious  software (Table 3.1). 

 

 

Table 3.1. Primers used for qPCR validation of putative TPH, SERT, and 5-HTR transcripts. 

Putative Gene Primer Name Sequence 5'--> 3' Transcript ID 

Actin 
Forward_Actin_L.cor CATTACAGTGAGTGGGCGC 

DN56916_c0_g2_i8 
Reverse_Actin_L.cor TCCACCTTCCAGCAGATGTG 

Tryptophan Hydroxylase 
Forward_TPH_L.cor          TTTCACCCTCCGACCTGTAG 

DN55191_c2_g1_i3 
Reverse_TPH_L.cor         CGAAACTTGGATCTGCGAAT 

Serotonin-dependent 

transporter (SERT) 

Forward_SERT_L.cor CAATGTTGCCACGGATGGAC 
DN53562_c1_g1_i1 

Reverse_SERT_L.cor CCAGTCCACCAAACGTGCTA 

Serotonin-dependent 

transporter (SERT) 

Forward_SERT2_L.cor          TCTTTGAGTGCGGAGCAGTT 
DN51156_c5_g2_i1 

Reverse_SERT2_L.cor         CGTCACGGGCTTATACGTGA 

5-HT Receptor 
Forward_5HTR_L.cor GTGCCCCTGATGGTCATTCT 

DN12680_c0_g1_i1 
Reverse_5HTR_L.cor GCTTGTTTTGGCGGATCCAT 

5-HT Receptor 
Forward_5HTR2_L.cor          TCCGTCGCACCTCTTATTGG 

DN23475_c0_g1_i1 
Reverse_5HTR2_L.cor         GCCACTCGGAAGATTCTCCA 

5-HT Receptor 
Forward_5HTR3_L.cor TGTGGGTGCCACATGTAGTT 

DN43050_c0_g1_i1 
Reverse_5HTR3_L.cor CTTCGCGAAACGTCTCGTTC 

5-HT Receptor 
Forward_5HT4_L.cor          CTTATCGGAGCTGTTTGGGC 

DN9776_c0_g1_i1 
Reverse_5HT4_L.cor         CTGGTGCACGTGGCAAAAA 

 

Statistical Analysis 

 All statistical analysis was performed using GraphPad Prism 7. All data sets were initially 

tested for normal distribution using Shapiro-Wilkes test for normality. Based on distribution, an 

ANOVA or a non-parametric Kruskal-Wallis test was performed to analyze the data for 
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significance. If possible, multiple comparisons were performed using Dunnett’s multiple 

comparison statistical test. 

 

RESULTS 

HPLC-ECD Analysis of 5-HT levels in cephalothorax and hemolymph of L. cornutus 

Levels of 5-HT in the cephalothorax appear to vary throughout the day, however, no significant 

differences were detected between the time points (Figure 3.2A; Kruskal-Wallis, p-value=0.07; 

K.W. statistic (4,45) = 6.834; n = 9-16). Given the reduced power of non-parametric tests in 

addition to the significant amount of variation in the data, 5-HT may indeed be having a 

significant reduction in level at 0100 hours and increase at 1300 hours, but additional 

experiments are needed. Levels of 5-HT in the hemolymph did not vary throughout the day 

significantly (Figure 3.2B; Kruskal-Wallis, p=0.9, K.W. test statistic= 0.08391; n = 10-12). 

There appears to be relatively similar median values throughout the day with a large amount of 

variation among the samples. 
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Figure 3.2. Boxplot of peak height of 5-HT normalized to internal standard at four time points 
(0100 hours, 0700 hours, 1300 hours and 1900 hours) in cephalothorax (A) and hemolymph (B). 

Identification of Putative Orthologs for TPH, Transporters, and 5-HTRs in L. cornutus 

transcriptome 

Putative Orthologs of TPH 

Orthologs of L. cornutus TPH were isolated from the transcriptome assembly using a 

TBLASTX query of known TPH protein sequences from other organisms (list of query 

sequences in figure legend). Using the ClustalW alignment program in Geneious, multiple 

alignments were performed and the result revealed amino acid sequences of TPH was highly 

conserved among the arthropod species (Supplemental Fig. 3.1). 

Putative Orthologs of Non-selective 5-HT Transporters 

Orthologs of L. cornutus non-selective 5-HT transporters were isolated from the 

transcriptome assembly using a TBLASTX query of known protein sequences from other 

organisms (list of query sequences in figure legend). Using the ClustalW alignment program in 

A  B  
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Geneious, multiple alignments were performed and the result revealed amino acid sequences of 

SERT was highly conserved among the arthropod species (Supplemental Fig. 3.2). Two 

transcripts (DN53562 and DN51156) were selected to confirm expression levels using qPCR. 

Transcript DN53562 was selected based on potentially high selectivity for serotonin based on 

protein homology and transcript DN51156 was selected due to its significant increase in 

expression level during the day. Transcript DN51156 did share a higher homology with sodium-

dependent GABA symporters than serotonin-selective protein query sequences in the NCBI 

BLAST database. 

Putative Orthologs of 5-HT Receptors 

Orthologs of L. cornutus 5-HTR were isolated from the transcriptome assembly using a 

TBLASTX query of known serotonin receptor protein sequences from other organisms (list of 

query sequences in figure legend). Using the ClustalW alignment program in Geneious, multiple 

alignments were performed and the result revealed amino acid sequences of high similarity 

among some arthropod species (Supplemental Fig. 3.3). 

Normalized expression levels of L. cornutus homologs of TPH, Transporters, and 5-HT-

Receptors 

 When the L. cornutus transcriptome was BLAST’d with protein query sequences for 

TPH, several transcripts had positive homology scores (DN12283, DN46108, DN55191, 

DN71751, DN8209; Fig. 3.3A). However, most of these transcripts did not appear to have 

significant fluctuations in expression levels throughout the day. The transcript DN55191 

appeared to have significant fluctuations in all of its isoforms, though the patterns were not 

uniform (Fig. 3.3A). The transcripts isolated as putative homologs of non-selective serotonin-



 80 

dependent transporters (DN51156, DN53562, DN59457, DN53215, DN53235) and all the 

isoforms of these transcripts were analyzed for expression values among the four different time 

points (Fig. 3.4A). Some of the transcripts had very low expression at all-time points which can 

be expected that some genes are not constitutively expressed in all tissues. Putative transcripts 

for 5-HT receptors (DN12680, DN23475, DN43050, and DN9776) appeared to fluctuate in 

normalized expression levels across the four time points, however the overall expression levels 

of these receptors were much lower compared to the transcripts identified for synthesis and 

transport of serotonin (Fig. 3.5A). 

 

Figure 3.3 A. Normalized gene expression values for putative orthologous transcript sequences of L. cornutus 
transcriptome of TPH over time (01:00H, 07:00H, 13:00H, 19:00H). B. qPCR validation of relative fold change of 
transcript DN55191 over time (01:00H, 07:00H, 13:00H, 19:00H). Results are the mean ± S.E. of three replicates (n 
= 3). Statistical analysis was conducted by ANOVA and Dunnett’s multiple comparisons (**,p<0.005; ****, p = 
0.0001).  
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Figure 3.4. A. Normalized gene expression values for putative SERT orthologous transcript sequences of L. 

cornutus transcriptome over time (01:00H, 07:00H, 13:00H, 19:00H). B. qPCR validation of relative fold change of 
transcript DN51156 and DN53562 over time (01:00H, 07:00H, 13:00H, 19:00H). Results are the mean ± S.E. of 
three replicates (n = 3). Statistical analysis was conducted by Kruskal-Wallis and Dunnett’s multiple comparisons 
(**,p<0.005; ****, p = 0.0001). 
 
 

 

Figure 3.5. A. Normalized gene expression values for putative 5-HT receptor orthologous transcript sequences of L. 

cornutus transcriptome over time (01:00H, 07:00H, 13:00H, 19:00H). B. qPCR validation of relative fold change of 
5-HT receptor transcripts DN12680, DN43050, DN9776, and DN23475 over time (01:00H, 07:00H, 13:00H, 
19:00H). Results are the mean ± S.E. of three replicates (n = 3). Statistical analysis was conducted by ANOVA and 
Dunnett’s multiple comparisons (*, p <0.05). 
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Quantitative PCR validation of transcriptome analysis 

In order to verify the accuracy of the differential expression analysis of L. cornutus 

transcriptome, tryptophan hydroxylase (putative TPH ortholog, Transcript ID: Trinity_ 

DN55191_c2_g1_i3), serotonin-dependent transporter ( Transcript ID: Trinity_ 

DN53562_c1_g1_i1, TRINITY_DN51156_c5_g2_i1), serotonin receptor (putative 5-HTR 

orthologs, Transcript ID: Trinity_ DN12680c1_g1_i1, Trinity_DN43050_c0_g1_i1, 

Trinity_DN9776_c0_g1_i1, Trinity_DN23475_c0_g1_i1), genes were selected for qPCR 

validation.  Due to the TPH ortholog isoforms of DN55191 having significantly different 

patterns in expression, a non-specific primer was utilized in order to quantify total transcript 

expression. Relative expression of these selected genes was quantitatively measured over four 

time points (1,7,13, and 19 hours) and the results were analyzed considering mid-scotophase 

(1hr) as the control time point (Figure 3.3-3.5). Putative ortholog of TPH (Transcript ID: 

Trinity_ DN55191) appeared to have a biphasic oscillation, increasing at 0700 and 1300 hours 

compared to 0100 hours (Fig. 3.3B; One-Way ANOVA: p = 0.002; Dunnett’s multiple 

comparisons: 0100 vs. 0700 hours: p = 0.0051; 0100 vs 1300 hours: p = 0.0001;). The RNA-

sequencing data reflected a variety of fluctuations among the different isoforms of DN55191. 

Thus, while the qPCR data does not validate one isoform or another due to non-specific primers, 

this data is influential in identifying overall expression pattern of this putative serotonin 

synthesis enzyme. 

One of the putative transcripts isolated for serotonin transporters (Trinity_ 

DN51156_c5_g2_i1) had a significant increase in expression at 13 hours in the RNA-seq data, 

and this pattern was validated with qPCR revealing significant differences between 0100 hours 

and 0700 hours, and 0100 hours and 1300 hours (Fig. 3.4B; Kruskal-Wallis, P <0.001; Dunnett’s 
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multiple comparison: 1hr vs 7hr, p = 0.004, 1hr vs 13hr, p = 0.0001). When the transcript was 

reanalyzed through NCBI BLAST database, however, it showed a higher potential selectivity for 

GABA based on sequence identity. The other transcript selected DN53562_c1_g1_i1 had much 

lower level of expression in RNA-seq data, however, the transcript had the highest level of 

homology of the transcripts to other arthropods serotonin-selective transporter query sequences. 

The qPCR data revealed a significant fold decrease at 1300hours, which did not validate the 

lowest expression level at 0100 hours in the RNA-seq expression data (Fig. 3.4C; ANOVA p < 

0.001; Dunnett’s multiple comparisons, 1hr vs. 13hr p = 0.0014). Similar to other transcripts 

investigated in this study, low expressed transcripts tend to have less reliable values due to an 

inherent biasness in the process of sequencing [25]. Thus, the qPCR reveals a more accurate 

account of fluctuations of this particular transcript. It is interesting to note the relationship in 

relative expression pattern between these two transporter transcripts. Because there is a potential 

difference in selectivity of these two transporters based on protein homology, while DN53562 

only showed a slight, non-significant decrease in relative fold-change, there could still be a 

significant amount of serotonin being left in the synaptic cleft as it is not able to be brought back 

up into the cell while more GABA is potentially being repackaged and resent out, producing a 

more inhibitory effect overall[26]. 

The putative transcripts identified for 5-HT receptors had varying expression levels 

across the different time points, some of which could be validated using q-PCR. Transcript 

DN12680 showed a marked increase in expression between 0100 and 1300 hours (3.5B; One-

Way ANOVA, p <0.001; Dunnett’s multiple comparisons: 0100 vs 1300 hours: p < 0.05). 

Transcript DN43050 showed a significant increase at 1300 hours (Fig. 3.5C; Dunnett’s multiple 

comparisons: 0100vs. 1300 hours: p < 0.05). Transcript DN9776 and DN23475 did not have 
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significant changes in fold change (Fig. 3.5 D-E). Taken together, it appears that two transcripts 

are upregulated in the daytime (onset of photophase and mid-photophase).  

 

DISCUSSION 

 
 Serotonin is implicated in regulating aggression in many arthropods, yet how each 

component of the serotonergic system interacts in this regulation is not clear.  This study took a 

global approach to investigating what aspects of the serotonergic system are fluctuating 

throughout the day to produce the endogenous diel rhythmicity in anti-predator behavior in the 

orb-weaving spider L. cornutus.  Not only were physiological levels of 5-HT quantified, but 

putative transcripts involved in the serotonergic system were identified using transcriptomic 

analysis. Although there were not significant changes in endogenous levels in head tissue or 

hemolymph, there were several transcripts putatively involved in synthesis, transport, and 

signaling that appear to fluctuate throughout the time of day.  

 A putative transcript for TPH was isolated from the L. cornutus transcriptome and the 

expression levels, both in RNA-seq analysis and qPCR validation, dramatically shifted between 

the time points analyzed in this study. Putative TPH transcripts, the rate-limiting synthesis 

enzyme of 5-HT, is upregulated during the onset of photophase and reaches its peak expression 

level at 1300 hours. This result aligned with our initial hypothesis that synthesis enzymes of 5-

HT would be upregulated during the day when the spider was the most docile as 5-HT reduced 

boldness in previous studies[17]. TPH expression undergoes circadian variation in expression in 

several taxa, however this expression pattern has been attributed not to TPH’s role in 5-HT 

production, but rather its downstream influence on melatonin[27–31]. TPH expression, if 

reduced pharmacologically or by inducing a mutation to the gene, does directly influence 
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aggression levels in both mammals and  invertebrates, including insects and 

crustaceans[11,32,33]. However, studies that have analyzed TPH expression in relation to both 

circadian oscillations and aggression-related behaviors are less common. This study revealed that 

TPH fluctuates throughout the day as seen in other organisms in relation to influencing 

aggression levels in an organism. Presumably, this upregulation of synthesis enzyme would 

produce a marked increase in overall levels of 5-HT in the head tissue or hemolymph. Significant 

differences in levels of 5-HT were not detected in cephalothorax tissue or hemolymph in L. 

cornutus between the time points in this study. These results could be attributed to the high level 

of variation among the individuals assessed in this study or the methodology utilized.  While 

many studies have identified circadian fluctuations of 5-HT levels in other organisms, these same 

studies analyzed specific brain regions of the organism versus whole head homogenate[34–37]. 

Future work further investigating the activity of TPH as well as quantifying 5-HT in discrete 

brain regions would allow a clear understanding the specific role of TPH on behavior in L. 

cornutus. 

Putative serotonin-dependent transporters appear to show variation in expression 

throughout the day in L. cornutus. Transporters are essential for reuptake of compounds and 

offer a substantial level of regulation of a compound’s influence on physiology and behavioral 

response of organisms[38,39]. SERTs influence aggression in many organisms including mice 

and humans[40,41]. In mice lacking a functional SERT, there is a reduction in aggression[40]. 

Some studies have investigated SERTs in arthropods, but there is paucity of research targeting 

the role these transporters play in aggression-related behavior. Our results describe the potential 

of a SERT-like transcript altering expression quite significantly throughout the day. This 

transporter would appear to influence daytime behavior and physiology of L. cornutus, possibly 
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modulating the tone of serotonin signaling to produce the decreased level of aggression. Further 

studies are needed to confirm the direct impact of this transporter, particularly pharmacological 

manipulation as done in several vertebrate models[4,42,43] 

In L. cornutus, it appeared that some putative transcripts for 5-HT receptors do fluctuate 

in their expression throughout the day. Monoamine receptor expression and their sensitivity is 

implicated in allowing organisms to perceive sensory information and physiologically tuned in 

different behavioral states[44,45]. In several organisms investigated, the expression of 5-HT 

receptors is influenced by the endogenous clock and photoperiod length[46–48]. Like mammals, 

several different types of 5-HT receptors have been characterized in invertebrates, including 

Drosophila and Caenorhabditis[12]. These receptors are implicated in regulating the tone of the 

5-HT signal in many physiological and behavioral processes. Often, the expression patterns of 

different receptor subtypes are not uniform[13,47,49]. Our results have identified several 

potential 5-HT like receptors in L. cornutus which display varying patterns of gene expression. 

Two transcripts, DN12680 and DN43050 appear to be drastically upregulated during the day 

which could influence the overall signal of 5-HT. It is difficult to postulate the specific signaling 

capacity of these receptors without future work, however, it would be expected to see an 

upregulation of receptors when signaling molecules are the most numerous. Receptor expression 

would be down regulated after a higher level of signaling activity occurred. Thus, two putative 

transcripts for 5-HT receptors, DN12680 and DN43050 appear intriguing.  

 

CONCLUSIONS 

 
 The results of this study illustrate an initial descriptive view of the individual components 

of the serotonergic system in L. cornutus and how they fluctuate in transcript levels throughout 
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the day. There is a tremendous body of work investigating 5-HT’s impact on exclusive aspects of 

either aggression or circadian rhythms, but not in congruence with each other. While this study 

took an initial descriptive approach, the genes investigated are still very much at the surface of 

the serotonin signaling pathway. Downstream signaling molecules and their effector cells are just 

as critical in efforts to understand the full impact 5-HT plays on the behavior and physiology of 

an organism[50]. It is also important to note that 5-HT plays a multifaceted role in a wide array 

of behavioral and physiological processes and thus analyzing the influence of 5-HT on anti-

predator behavior is not mutually exclusive from those other effects.  Finally, future studies are 

needed to investigate each transcript of interest in an isolated manner, paying particular attention 

to characterizing the gene and identifying localization. 

 

REFERENCES  

1.  Frazer A, Hensler JG. Serotonin Involvement in Physiological Function and Behavior. 
Lippincott-Raven; 1999; Available: https://www.ncbi.nlm.nih.gov/books/NBK27940/ 

2.  Kravitz EA. Serotonin and aggression: insights gained from a lobster model system and 
speculations on the role of amine neurons in a complex behavior. J Comp Physiol A 
Sensory, Neural, Behav Physiol. Springer-Verlag; 2000;186: 221–238. 
doi:10.1007/s003590050423 

3.  Sperry TS, Thompson CK, Wingfield JC. Effects of Acute Treatment with 8-OH-DPAT 
and Fluoxetine on Aggressive Behaviour in Male Song Sparrows (Melospiza melodia 
morphna). J Neuroendocrinol. Wiley/Blackwell (10.1111); 2003;15: 150–160. 
doi:10.1046/j.1365-2826.2003.00968.x 

4.  Popova NK. From genes to aggressive behavior: the role of serotonergic system. 
BioEssays. 2006;28: 495–503. doi:10.1002/bies.20412 

5.  Livingstone MS, Harris-Warrick RM, Kravitz EA. Serotonin and octopamine produce 
opposite postures in lobsters. Science. 1980;208: 76–9. doi:10.1126/science.208.4439.76 

6.  Yeh SR, Fricke RA, Edwards DH. The effect of social experience on serotonergic 
modulation of the escape circuit of crayfish. Science. 1996;271: 366–9. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/8553075 

7.  Edwards DH, Kravitz EA. Serotonin, social status and aggression. Curr Opin Neurobiol. 
1997;7: 812–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/9464985 

8.  Bubak AN, Swallow JG, Renner KJ. Whole brain monoamine detection and manipulation 
in a stalk-eyed fly. J Neurosci Methods. 2013;219: 124–130. 
doi:10.1016/j.jneumeth.2013.07.006 



 88 

9.  Alekseyenko O V., Lee C, Kravitz EA. Targeted Manipulation of Serotonergic 
Neurotransmission Affects the Escalation of Aggression in Adult Male Drosophila 
melanogaster. McCabe BD, editor. PLoS One. 2010;5: e10806. 
doi:10.1371/journal.pone.0010806 

10.  Mckinney J, Teigen K, Ge Frøystein NA °, Salaün C, Knappskog PM, Haavik J, et al. 
Conformation of the Substrate and Pterin Cofactor Bound to Human Tryptophan 
Hydroxylase. Important Role of Phe313 in Substrate Specificity. doi:10.1021/bi015722x 

11.  Panksepp JB, Huber R. Chronic alterations in serotonin function: dynamic neurochemical 
properties in agonistic behavior of the crayfish, Orconectes rusticus. J Neurobiol. NIH 
Public Access; 2002;50: 276–90. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/11891663 

12.  Tierney AJ. Structure and function of invertebrate 5-HT receptors: a review. Comp 
Biochem Physiol Part A Mol Integr Physiol. Pergamon; 2001;128: 791–804. 
doi:10.1016/S1095-6433(00)00320-2 

13.  Shukla R, Watakabe A, Yamamori T. mRNA expression profile of serotonin receptor 
subtypes and distribution of serotonergic terminations in marmoset brain. Front Neural 
Circuits. Frontiers; 2014;8: 52. doi:10.3389/fncir.2014.00052 

14.  Price JB. Neurochemical Levels Correlate with Population Level Differences in Social 
Structure and Individual Behavior in the Polyphenic Spider,. East Tennessee State 
University. 2010.  

15.  Punzo F, Punzo T. Monoamines in the Brain of Tarantulas (Aphonopelma Hentzi) 
(Araneae, Theraphosidae): Differences Associated With Male Agonistic Interactions. J 
Arachnol. 2001;29: 388–395. doi:10.1636/0161-8202(2001)029[0388:MITBOT]2.0.CO;2 

16.  Jones TC, Akoury TS, Hauser CK, Moore D. Evidence of circadian rhythm in antipredator 
behaviour in the orb-weaving spider Larinioides cornutus. Anim Behav. 2011;82: 549–
555. doi:10.1016/j.anbehav.2011.06.009 

17.  Jones TC, Akoury TS, Hauser CK, Neblett MF, Linville BJ, Edge AA, et al. Octopamine 
and serotonin have opposite effects on antipredator behavior in the orb-weaving spider, 
Larinioides cornutus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 
2011;197: 819–25. doi:10.1007/s00359-011-0644-7 

18.  Hebets EA, Hansen M, Jones TC, Wilgers DJ. Octopamine levels relate to male mating 
tactic expression in the wolf spider Rabidosa punctulata. Anim Behav. 2015;100: 136–
142. doi:10.1016/j.anbehav.2014.11.023 

19.  Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a 
tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 
2012;13: 134. doi:10.1186/1471-2105-13-134 

20.  Yang C, Pan H, Noland JE, Zhang D, Zhang Z, Liu Y, et al. Selection of reference genes 
for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata 
(Coleoptera: Coccinellidae). Sci Rep. Nature Publishing Group; 2016;5: 18201. 
doi:10.1038/srep18201 

21.  Chang Y-W, Chen J-Y, Lu M-X, Gao Y, Tian Z-H, Gong W-R, et al. Selection and 
validation of reference genes for quantitative real-time PCR analysis under different 
experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae). Gao 
Y, editor. PLoS One. Public Library of Science; 2017;12: e0181862. 
doi:10.1371/journal.pone.0181862 

22.  Ma K-S, Li F, Liang P-Z, Chen X-W, Liu Y, Gao X-W. Identification and Validation of 



 89 

Reference Genes for the Normalization of Gene Expression Data in qRT-PCR Analysis in 
Aphis gossypii (Hemiptera: Aphididae). J Insect Sci. 2016;16: 17. 
doi:10.1093/jisesa/iew003 

23.  Xiao R, Wang L, Cao Y, Zhang G. Transcriptome response to temperature stress in the 
wolf spider Pardosa pseudoannulata (Araneae: Lycosidae). Ecol Evol. Wiley-Blackwell; 
2016;6: 3540–3554. doi:10.1002/ece3.2142 

24.  Li C-C, Wang Y, Li G-Y, Yun Y-L, Dai Y-J, Chen J, et al. Transcriptome Profiling 
Analysis of Wolf Spider Pardosa pseudoannulata (Araneae: Lycosidae) after Cadmium 
Exposure. Int J Mol Sci. Multidisciplinary Digital Publishing Institute  (MDPI); 2016;17. 
doi:10.3390/ijms17122033 

25.  Zheng W, Chung LM, Zhao H. Bias detection and correction in RNA-Sequencing data. 
BMC Bioinformatics. BioMed Central; 2011;12: 290. doi:10.1186/1471-2105-12-290 

26.  Ciranna L. Serotonin as a modulator of glutamate- and GABA-mediated 
neurotransmission: implications in physiological functions and in pathology. Curr 
Neuropharmacol. Bentham Science Publishers; 2006;4: 101–14. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/18615128 

27.  Shibuya H, Toru M, Watanabe S. A circadian rhythm of tryptophan hydroxylase in rat 
pineals. Brain Res. 1978;138: 364–368. Available: 
https://www.sciencedirect.com/sdfe/pdf/download/eid/1-s2.0-0006899377907545/first-
page-pdf 

28.  Privat K, Ravault JP, Chesneau D, Fevre-Montange M. Day/night variation of tryptophan 
hydroxylase and serotonin N-acetyltransferase mRNA levels in the ovine pineal gland and 
retina. J Pineal Res. 1999;26: 193–203. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/10340721 

29.  Valenciano AI, Alonso-Gómez AL, Iuvone PM. Diurnal rhythms of tryptophan 
hydroxylase activity in Xenopus laevis retina: opposing phases in photoreceptors and 
inner retinal neurons. Neuroreport. 1999;10: 2131–5. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/10424687 

30.  Chong NW, Cassone VM, Bernard M, Klein DC, Iuvone PM. Circadian expression of 
tryptophan hydroxylase mRNA in the chicken retina. Brain Res Mol Brain Res. 1998;61: 
243–50. Available: http://www.ncbi.nlm.nih.gov/pubmed/9795235 

31.  Yeung Lam P, Chen K, Shih JC. The circadian rhythm of 5-HT biosynthetic and 
degradative enzymes in immortalized mouse neuroendocrine pineal cell line–a model for 
studying circadian rhythm. Life Sci. 2004;75: 3017–3026. doi:10.1016/j.lfs.2004.04.052 

32.  Alekseyenko O V, Lee C, Kravitz EA, Mccabe BD. Targeted Manipulation of 
Serotonergic Neurotransmission Affects the Escalation of Aggression in Adult Male 
Drosophila melanogaster. PLoS One. 2010;5. doi:10.1371/journal.pone.0010806 

33.  Manuck SB, Flory JD, Ferrell RE, Dent KM, Mann JJ, Muldoon MF. Aggression and 
anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene. 
Biol Psychiatry. 1999;45: 603–14. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/10088047 

34.  Arechiga H, Banuelos E, Frixione E, Picones A, Rodriguez-Sosa L. Modulation of 
crayfish retinal sensitivity by 5-hydroxytryptamine. J Exp Biol. 1990;150.  

35.  Escamilla-Chimal EG, Van Herp F, Fanjul-Moles ML. Daily variations in crustacean 
hyperglycaemic hormone and serotonin immunoreactivity during the development of 
crayfish. J Exp Biol. 2001;204.  



 90 

36.  Wildt M. Regulation of serotonin levels by multiple light-entrainable endogenous 
rhythms. J Exp Biol. 2004;207: 3765–3774. doi:10.1242/jeb.01205 

37.  Mateos SS, Sánchez CL, Paredes SD, Barriga C, Rodríguez AB. Circadian Levels of 
Serotonin in Plasma and Brain after Oral Administration of Tryptophan in Rats. Basic 
Clin Pharmacol Toxicol. 2009;104: 52–59. doi:10.1111/j.1742-7843.2008.00333.x 

38.  Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and 
indifference to cocaine and amphetamine in mice lacking the dopamine transporter. 
Nature. 1996;379: 606–612. doi:10.1038/379606a0 

39.  Koepsell H, Lips K, Volk C. Polyspecific Organic Cation Transporters: Structure, 
Function, Physiological Roles, and Biopharmaceutical Implications. Pharm Res. Kluwer 
Academic Publishers-Plenum Publishers; 2007;24: 1227–1251. doi:10.1007/s11095-007-
9254-z 

40.  Holmes A, Murphy D, Crawley J. Reduced aggression in mice lacking the serotonin 
transporter. Psychopharmacology (Berl). 2002;161: 160–167. doi:10.1007/s00213-002-
1024-3 

41.  Beitchman JH, Baldassarra L, Mik H, De Luca V, King N, Bender D, et al. Serotonin 
Transporter Polymorphisms and Persistent, Pervasive Childhood Aggression. Am J 
Psychiatry. 2006;163: 1103–1105. doi:10.1176/ajp.2006.163.6.1103 

42.  Prosser RA, Stowie A, Amicarelli M, Nackenoff AG, Blakely RD, Glass JD. Cocaine 
modulates mammalian circadian clock timing by decreasing serotonin transport in the 
SCN. Neuroscience. NIH Public Access; 2014;275: 184–93. 
doi:10.1016/j.neuroscience.2014.06.012 

43.  Caveney S, Cladman W, Verellen L, Donly C. Ancestry of neuronal monoamine 
transporters in the Metazoa. J Exp Biol. The Company of Biologists Ltd; 2006;209: 4858–
68. doi:10.1242/jeb.02607 

44.  Lema SC, Wagstaff LJ, Gardner NM. Diurnal rhythms of behavior and brain mRNA 
expression for arginine vasotocin, isotocin, and their receptors in wild Amargosa pupfish 
(Cyprinodon nevadensis amargosae). Mar Freshw Behav Physiol. 2010;43: 257–281. 
doi:10.1080/10236244.2010.498632 

45.  Rex E, Molitor SC, Hapiak V, Xiao H, Henderson M, Komuniecki R. Tyramine receptor 
(SER-2) isoforms are involved in the regulation of pharyngeal pumping and foraging 
behavior in Caenorhabditis elegans. J Neurochem. Blackwell Science Ltd; 2004;91: 1104–
1115. doi:10.1111/j.1471-4159.2004.02787.x 

46.  Nilaweera KN, Archer ZA, Campbell G, Mayer C-D, Balik A, Ross AW, et al. 
Photoperiod Regulates Genes Encoding Melanocortin 3 and Serotonin Receptors and 
Secretogranins in the Dorsomedial Posterior Arcuate of the Siberian Hamster. J 
Neuroendocrinol. Wiley/Blackwell (10.1111); 2009;21: 123–131. doi:10.1111/j.1365-
2826.2008.01810.x 

47.  Yuan Q, Joiner WJ, Sehgal A. A Sleep-Promoting Role for the Drosophila Serotonin 
Receptor 1A. Curr Biol. Cell Press; 2006;16: 1051–1062. doi:10.1016/J.CUB.2006.04.032 

48.  Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, et al. A novel 
adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of 
mammalian circadian rhythms. Neuron. Cell Press; 1993;11: 449–458. doi:10.1016/0896-
6273(93)90149-L 

49.  Aoki N, Watanabe H, Okada K, Aoki K, Imanishi T, Yoshida D, et al. Involvement of 5-

HT₃ and 5-HT₄ receptors in the regulation of circadian clock gene expression in mouse 



 91 

small intestine. J Pharmacol Sci. 2014;124: 267–75. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/24492464 

50.  Polter AM, Li X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell 
Signal. 2010;22: 1406–1412. doi:10.1016/j.cellsig.2010.03.019 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 92 

SUPPLEMENTAL FIGURES 
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Supplemental Figure 3.1. A) Box shade of TPH protein regions in alignment. Proteins were aligned with the 

ClustalW alignment algorithm on the Geneious  software with default settings and the box shade was produced 
with Unipro Ugene. Shading is determined by the conservation of a residue at a position by percentage; dark 

blue = 100% of residues ;share identity, medium blue = 75% of residues share identity, light blue = 50% of residues 
share identity. The number at the end of each line of each protein sequence is the number of residues that a protein 
has up to the end of that line. Species abbreviations and accession numbers: Dm_NP_612080.1 [Drosophila 
melanogaster], Bm_AIL94234.1 tryptophan hydroxylase [Bombyx mori], Ad_ETN64302.1 Tryptophan 
hydroxylase, partial [Anopheles darlingi], Gb_BAJ83476.1 tryptophan hydroxylase [Gryllus bimaculatus], 
Ls_AAF36488.1 tryptophan hydroxylase, partial [Lymnaea stagnalis], Tu_XP_015786532.1 PREDICTED: 
tryptophan 5-hydroxylase 1-like [Tetranychus urticae], Pt_XP_015919503.1 PREDICTED: tryptophan 5-
hydroxylase 1-like, partial [Parasteatoda tepidariorum], Sm_KFM59231.1 Protein henna, partial [Stegodyphus 
mimosarum], Lh_ADV40151.1 phenylalanine hydroxylase, partial [Latrodectus hesperus], Is_XP_002406648.1 
phenylalanine hydroxylase, putative, partial [Ixodes scapularis], Ce_AAD30115.1 tryptophan hydroxylase 
[Caenorhabditis elegans], Pm_V_AEV53929.1 tryptophan hydroxylase [Petromyzon marinus]. B) Phylogenetic tree 
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constructed in Geneious  using Neighbor-Joining Maximum-likelihood analysis with bootstrapping values (1000 
replicates). 
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Supplemental Figure 3.2. A) Box shade of 5-HT transporter protein regions in alignment. Proteins were aligned with 

the ClustalW alignment algorithm on the Geneious  software with default settings and the box shade was produced 
with Unipro Ugene. Shading is determined by the conservation of a residue at a position by percentage; dark 
blue = 100% of residues ;share identity, medium blue = 75% of residues share identity, light blue = 50% of residues 
share identity. The number at the end of each line of each protein sequence is the number of residues that a protein 
has up to the end of that line. Species abbreviations and accession numbers: 
Tc: DQ903873.1 [Tibicen canicularis], Ssp.: DQ903870.1 [ Spirostreptus sp.], Scsp.: DQ903871.1 [Scolopendra 
sp.]Pa: DQ903869.1 [Periplaneta Americana], Osp.: DQ903878.1_2 [ Opistophthalmus sp.], Lt: DQ903879.1 
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[Lumbricus terrestis], Gr: DQ903877.1 [Grammostola rosea], Cn: DQ903875.1 [Cepaea nemoralis], As: 
DQ903874.1 [Artemia sp.], Aj: DQ903872.1 [Anax junius]. 
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Supplemental Figure 3.3. A) Box shade of 5-HT receptor protein regions in alignment. Proteins were aligned with 

the ClustalW alignment algorithm on the Geneious  software with default settings and the box shade was produced 
with Unipro Ugene. Shading is determined by the conservation of a residue at a position by percentage; dark 
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blue = 100% of residues ;share identity, medium blue = 75% of residues share identity, light blue = 50% of residues 
share identity. The number at the end of each line of each protein sequence is the number of residues that a protein 
has up to the end of that line. Species abbreviations and accession numbers: Pt_XP_021003801 and Pt_LAA15520 
[Parasteatoda tepidariorum], Lp_XP_022249116 and Lp_XP_022255119 [Limulus polyphemus], 
Am_NP_001164579 [Apis mellifera], Dm_NP_725849 [Drosophila melanogaster], Cs_JAC59323 [Cupiennius 
salei], Mt_AAS05316 [Metapenaeus ensis], Rm_AAQ89933 [Rhipicephalus microplus]. B) Phylogenetic tree 

constructed in Geneious  using Neighbor-Joining Maximum-likelihood analysis with bootstrapping values (1000 
replicates). 
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ABSTRACT 

 

Monoamine oxidase (MAO) is a mitochondrial-bound protein that catalyzes the oxidative 

deamination of monoamine neurotransmitters in vertebrates and some invertebrates. While the 

enzyme monoamine oxidase has been studied extensively in its role in moderating behavior in 

mammals, there is paucity of research investigating this role in invertebrates that utilize the 

enzyme as a major pathway in degradation of monoamines. Larinioides cornutus is a species of 

orb-weaving spider that exhibits diel fluctuations in behavior, specifically levels of aggression. 

The monoamines octopamine and serotonin have been shown to influence aggressive behaviors 

in L. cornutus. Because previous studies revealed monoamine oxidase degradation of 

monoamines in arachnids, this study investigated monoamine oxidase in L. cornutus as a 

potential site of regulation of monoamines throughout the day. Not only did gene expression of a 

MAO orthologs and MAO activity fluctuate at different times of day, but the enzymatic activity 

was substrate-specific producing a higher level of degradation of octopamine as compared to 

serotonin in vitro. This study further supports evidence that MAO has an active role in 

monoamine inactivation in invertebrates and provides a first look at how MAO ultimately may 

be regulating behavior in an invertebrate. 
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INTRODUCTION 

 

Monoamine oxidase (MAO) is a mitochondrial-bound protein that catalyzes the oxidative 

deamination of monoamine neurotransmitters in vertebrates[1]. MAO is essential in the 

regulation of neurotransmitter levels and thus plays an instrumental role in the physiology, 

metabolism, and behavior of an organism[2]. MAO has two isoenzymes, MAO-A and MAO-B, 

which are characterized by their regional distribution, substrate preference and physiological 

roles in mammals[3]. Although these two isoenzymes share 70% structural identity, MAO-A has 

a high affinity for serotonin and norepinephrine while MAO-B primarily catabolizes 2-

phenyethylamine (PEA) and aids in the degradation of trace amines and dopamine[3,4]. MAO-A 

has largely been associated with impulsive and reactive aggression in humans[5,6]. In fact, a 

number of studies have found robust associations between low activity MAO-A variants and 

psychopathy and criminal behavior[7–11]. Similar findings have also been discovered in rodents, 

revealing a proclivity to aggressive responses toward intruders when MAO-A activity is 

pharmacologically blockaded[12–14]. Moreover, MAO-A is also influenced by the circadian 

clock components[15]. Clock proteins Per2 and BMAL positively upregulate MAO-A gene 

expression, producing daily fluctuations in levels of the enzyme which ultimately impact the 

likelihood of aggressive behaviors throughout the day[16].  

Invertebrates use a wide array of enzymatic routes to degrade monoamines including N-

acetylation, γ -glutamyl conjugation, sulphation, and beta-alanyl conjugation [17–22]. Like 

chordates, MAO is also utilized in some invertebrates including echinoderms[23,24], 

molluscs[25–29], and some arachnids[30–33]. In echinoderms and molluscs, congruent studies 

have established MAO as the principle enzyme in providing effective metabolism of 

monoamines. Specifically, MAO plays a key role in sperm cells and development in sea urchins 
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[34] as well as providing effective metabolism of monoamines in both the optic ganglia and the 

hepatopancreas of cephalopods[28,35]. However, while MAO activity has also been established 

within the Class Arachnida, the conclusions have not been consistent between ticks, mites,  and 

spiders [30,31,33,36,37]. Some studies in ticks reported the primary presence of MAO as an 

enzymatic pathway for dopamine and 5-HT, with very little N-acetylated or γ -glutamyl 

conjugated amines[38,39]. Also, MAO activity was inhibited by MAO-B inhibitor deprenyl, but 

not MAO-A inhibitor clorygline, similar to findings with echinoderms[38]. However, studies in 

spiders revealed a prominent presence of the MAO enzyme throughout different brain regions of 

various species, but showed significant reduction in MAO activity using clorygline and no effect 

with the MAO-B inhibitor parygline[40]. While these invertebrate studies have been influential 

in establishing the presence and activity of MAO, very few studies have investigated MAO’s 

role in diel behavioral processes and enzymatic fluctuations outside of mammals[41,42]. 

 The orb-weaver Lariniodes cornutus is a pan-artic species that has diel patterns of 

locomotor activity and aggression that appear to be under circadian control[43]. A nocturnal 

forager, L. cornutus, is mostly active at night and this pattern in locomotor activity persists in 

constant conditions (Jones and Moore, unpublished work). When threatened by a predator 

stimulus, the spider forms a tight-ball formation and exhibits a death-feigning behavior or a 

“huddle” response. This “huddle” response reflects a diel and circadian pattern, with the spider 

huddling longer during the day while in a less aggressive state, and breaking out of this huddle 

more rapidly at night while in an apparent more aggressive state when the spider would 

otherwise be actively hunting prey[43]. These varied aggressive states can also be induced using 

exogenous amounts of the biogenic amines, serotonin, and octopamine. When octopamine levels 

were artificially increased, the boldness level of the individual increased[44]. Thus, it appears the 



 100 

monoamines OA and 5-HT play a role in these diel shifts in behavior. As some previous studies 

show MAO activity in oxidizing 5-HT previously in arachnids[38], MAO may potentially be a 

source of regulation in the shift in behavioral states in L. cornutus. This study aimed at first 

identifying monoamine oxidase transcripts and characteristics of the enzyme in the spider L. 

cornutus and then investigated substrate preference, specificity of inhibition, and fluctuations in 

activity of the MAO enzyme during the day.  

 

METHODS 

 

Female L. cornutus collection and conditioning for MAO experiments 

 Individual L. cornutus females were collected from Washington County, Tennessee, USA 

during the month of October in 2017. Individuals were housed in plastic containers for a 

minimum of 7 days prior to sacrifice and were fed live crickets and misted with distilled water 

every 2-3 days. Specimens were entrained to 12:12 light: dark cycle with constant humidity. 

Fifteen individuals were sacrificed via flash-freezing in liquid nitrogen every 6 hours for 24 

hours for a total of four time points (0100, 0700, 1300, and 1900 hours). Cephalothoraces (head 

tissue) were removed from each specimen and were homogenized over liquid nitrogen using a 

lysis buffer and bead grinder apparatus. Homogenized samples were then centrifuged for 10 

minutes at 13,000 rpm. The supernatant was measured for protein concentration and samples 

were prepped according to the protocol for MAO activity (Thermo Fischer Amplex Red 

Monoamine Oxidase Assay Kit). 
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Identification of Putative Monoamine Oxidase Transcripts from de novo assembled 

transcriptome 

 
Homolog sequences of L. cornutus MAO were isolated from the transcriptome assembly 

(Wilson et al., unpublished) using a TBLASTX query of known MAO protein sequences from 

other organisms (List of query sequences Supplemental Figure #). Using the ClustalW alignment 

program in Geneious, multiple alignments were performed and the result revealed amino acid 

sequences of MAO are highly conserved among the arthropod species. After the first protein 

alignment, transcripts or protein homologs were analyzed and removed if there was poor 

alignment or the protein was a partial fragment of the protein. A second protein alignment was 

then performed using Consensus Alignment tools using Geneious  software. Phylogenetic trees 

were constructed from the protein alignments via Neighbor-Joining and maximum-likelihood 

with bootstrapping with 1000 replicates using Geneious  software. The putative transcripts 

were then analyzed for expression levels at four different time points (1, 7, 13, and 19 hours) 

using RNA-sequencing data of L.cornutus cephalothorax tissue (Wilson et al., unpublished). 

 

Validation of Transcriptome Analysis by Quantitative real-time PCR analysis  

Quantitative real-time PCR (qPCR) was performed to verify the transcriptome results of 

L. cornutus (Wilson et al, unpublished). Total RNA was extracted from cephalothoraces of 

female L. cornutus at four defined time points (1,7,13, and 19 hours). Cephalothoraces (head 

tissue) were removed from each specimen and were homogenized over ice and RNA was 

extracted using Maxwell ® 16 LEV simplyRNA Tissue Kit (Promega, Lot #082114). RNA was 

primed with oligo (dT) primer and reverse transcription was carried out using Omniscript reverse 
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transcriptase kit (Qiagen, cat #205113). Quantitative measurements were performed in triplicate 

on an ABI 7300 system (Applied Biosystems) using the GoTaq qPCR Master Mix (Promega) 

and gene-specific primers (Table 1). Primers were designed using NCBI Primer 3 and Primer-

BLAST[45]. Transcript abundance was normalized to the internal control Actin for each sample. 

As a housekeeping gene, actin has been used as an endogenous reference gene in qPCR analysis 

in a number of studies with arthropods[46–48]. All qPCR primers were designed using 

Geneious software.  

 

Table 4.1. Primers used for qPCR validation of putative MAO transcript. 
 

 

Measurement of MAO activity in cephalothorax tissue 

 Monoamine oxidase (MAO) activity was measured fluorimetrically in all of the 

experiments using the Amplex Red Monoamine Oxidase Assay Kit (Thermo Fischer 

Scientific) [49,50]. MAO activity was initially determined using p-tyramine or benzylamine as a 

substrate (unless specified in following experiments) and detecting hydrogen peroxide in 

horseradish peroxidase-coupled reaction.  Both p-tyramine and benzylamine were provided in 

the Amplex Red Monoamine Oxidase Assay Kit (Thermo Fischer Scientific) as initial 

substrates to differentiate MAO subtypes [49,50]The supernatant collected from homogenized 

Putative Gene Primer Name Sequence 5'--> 3' Transcript ID 

Actin 
Forward_Actin_L.cor CATTACAGTGAGTGGGCGC 

DN56916_c0_g2_i8 
 Reverse_Actin_L.cor TCCACCTTCCAGCAGATGTG 

Monoamine Oxidase (DN53 
Forward_MAO_L.cor          TGCTTCCTCCCGGTTTTCTC 

DN53734_c3_g1_i3 
Reverse_MAO_L.cor         GCTTCCACTGCTCCACTCAT 
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samples were normalized using 1X Reaction Buffer provided in the assay kit and then mixed 

with equal amounts of Amplex red (100uM), horseradish peroxidase (0.5U/mL), and p-

tyramine or benzylamine (0.1uM) and incubated at room temperature for 45 minutes.  

Fluorescence intensity was measured at excitation wavelength of 530nm and emission 

wavelength of 590nm using BioTek Synergy HTM Multi-Mode Microplate Reader. A 

positive control was used with 20mM hydrogen peroxide solution and a negative control was 

reaction buffer without hydrogen peroxide added. Background fluorescence was controlled by 

subtracting from the control without substrate. Three biological replicates (three indivividual L. 

cornutus cephalothoraxes) and three technical replicates were performed using cephalothorax 

tissue collected at 19 hours. 

Measurement of MAO activity in the presence of MAO-inhibitors parygline and clorygline 

The MAO activity was also measured in the presence of two inhibitors, parygline or 

clorygline, at varying concentrations (0-2uM). Parygline has been found to preferentially block 

MAO-B type proteins while clorygline preferentially blocks MAO-A type proteins[51]. These 

inhibitors have been used in several other studies to determine MAO activity in other arthropods 

[22,40,52]. Protein sample used was a fixed amount (15ug) from homogenized cephalothorax 

tissue samples collected at 19 hours. The protein samples were pre-incubated for 30 minutes with 

the respective inhibitor prior to adding the Amplex reaction mixture as previously listed with 

benzylamine (0.1 uM) as a substrate. Three biological replicates and three technical replicates 

were performed using cephalothorax tissue collected at 19 hours. 
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Measurement of MAO activity of cephalothorax tissue collected at 13 and 19 hours 

 The MAO activity was measured at two time points during the day at which the putative 

MAO transcript was expressed at its lowest and highest levels, 13 hours and 19 hours, 

respectively. The supernatant collected from homogenized samples were normalized then mixed 

with equal amounts of Amplex red (100uM), horseradish peroxidase (0.5U/Ml), and 

Benzylamine (0.1uM) and incubated at room temperature for 45 minutes. Fluorescence intensity 

was measured at excitation wavelength of 530nm and emission wavelength of 590nm using 

BioTek Synergy HTM Multi-Mode Microplate Reader. Three biological replicates and three 

technical replicates were performed. 

Measurement of MAO activity of cephalothorax tissue with octopamine or serotonin as a 

substrate 

 The MAO activity was measured as described previously, however, octopamine or 

serotonin were used as substrates; a 0.1mM concentration was used based on previous MAO 

kinetic studies[53]. Protein sample used was collected from homogenized cephalothorax tissue 

samples collected at 13 hours. Three biological replicates and three technical replicates were 

performed.  
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RESULTS 

Identification of Putative Monoamine Oxidase Transcripts from de novo assembled 

transcriptome 

Homolog sequences of L. cornutus MAO were isolated from the transcriptome assembly 

using a TBLASTX query of known MAO protein sequences from other organisms (list of query 

sequences in legend of Figure 4.2A legend and table in Supplemental Figures). While there were 

several transcripts initially pulled, only a few transcripts showed significant changes in 

expression among the time points (Figure 4.1A). Transcript DN53734_c3_g1_i3, however, did 

show high homology with the query sequences and significant fluctuations in expression, thus it 

was utilized for further analysis (Figure 4.1A and 4.1B). Using the ClustalW alignment program 

in Geneious, multiple alignments were performed and the result revealed amino acid sequence of 

MAO is relatively well conserved among invertebrate and vertebrate species (Fig. 4.2A). The 

transcript isolated from L.cornutus (DN_53734) had several conserved residues for all MAO 

proteins, but shared higher homology with MAO-B than MAO-A in humans (Figure 4.3). 

Previous studies have shown that the substrate selectivity if MAO-A and MAO-B appear to be 

determined by a single amino acid residue (Phe208 in MAO A and Ile199 in MAO B), which 

appears to be shared with the transcript DN53734 of L.cornutus[4].  In addition, a phylogenetic 

tree, constructed by Neighbor-Joining method, showed the grouping of the MAO homolog 

(DN53734) in L. cornutus with another putative MAO homolog from the spider Parasteatoda 

tepidariorum (Figure 4.2B). The MAO homologs of invertebrates group in a separate node from 

vertebrate MAOs, in spite of differentiation in subtype (MAO-A vs. MAO-B). The relatively 

high bootstrap value for each node support these results. 
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qPCR validation of transcriptome analysis 

In order to verify the accuracy of the differential expression analysis of L. cornutus 

transcriptome (Wilson et al, unpublished), monoamine oxidase (putative MAO orthologs: 

Trinity_DN 53734_c3_g1_i3 transcript was selected for qPCR validation. Relative expression of 

these selected genes was quantitatively measured over four time points (1,7,13, and 19 hours) 

and the results were analyzed considering scotophase (1hr) as the control time point (Figure 

4.1B). qPCR results displayed that during mid-photophase (13hr), the putative transcript of 

MAO was at the lowest level (Figure 4.1B) compared to onset of scotophase (19hr) than the 

control time point. The qPCR results are consistent with those observed in the transcriptome 

analysis, validating the reproducibility of our transcriptome data.   
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Figure 4.1. A)  Normalized gene expression values for putative ortholog protein sequences of L. cornutus of MAO 
over time (01:00H, 07:00H, 13:00H, 19:00H). B) qPCR validation for MAO ortholog of L. cornutus (Transcript: 
DN53734_c3_g1_i3). Relative expression of MAO ortholog over time (01:00H, 07:00H, 13:00H, 19:00H) were 
measured in a group of three spider cephalothoraces. Results are the mean ± S.D. of three replicates. Statistical 
analysis was conducted by Kruskal-Wallis (p = 0.101).  
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Figure 4.2. A) Box shade of MAO protein regions in protein sequence alignment, labeled with species abbreviations and subtype 

(MAO-A or MAO-B). Proteins were aligned with the ClustalW alignment algorithm on the Geneious  software with default 
settings and the box shade was produced with Unipro Ugene. Shading is determined by the conservation of a residue at a position 

by percentage; dark blue = 100% of residues share identity, medium blue = 75% of residues share identity, light blue = 50% of 
residues share identity. The number at the end of each line of each protein sequence is the number of residues that a protein has 
up to the end of that line. Species abbreviations and accession numbers: Hs, Homo sapiens (AAA59547.1 and AAA59551.1) Xp , 
Xenopus tropicalis (NP001129572.1), Gg , Gallus gallus (NP001025970.1 andAAT85676.1); Rn, Rattus norvegicus 

(AAA41566.1); Cg, Crassostrea gigas (CAD89351.1); Pt, Parasteatoda tepidariorum (XP015929427.1); Sp, Stronglyocentrus 

purpuratus (XP003725257.1) ;Ac Aplysia california (XP005098472.1); My, Mizuhopecten yessvensis (OWF47812.1); Aj , 

Apostichopus japonicas (PIK61914.1). B) Phylogenetic tree constructed in Geneious  using Neighbor-Joining Maximum-
likelihood analysis with bootstrapping values (1000 replicates), labeled with species abbreviations and subtype (MAO-A or 
MAO-B).   
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Figure 4.3. CLUSTAL O(1.2.4)multiple sequence alignment of L.cornutus transcript 
DN53734_c3_g1_i3 with of Human MAO-A and MAO-B protein sequences (Accession 
numbers: AAA59547.1 and AAA59551.1). An asterisk ( * ) indicates positions which have a 
single, fully conserved residue. A  colon ( : ) indicates conservation between groups of strongly 
similar properties. A period  ( . ) indicates conservation between groups of weakly similar 
properties. 
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Protein concentration curve of MAO activity with two substrates (p-tyramine and benzylamine) 

MAO activity was measured using three biological replicates, and three technical 

replicates were performed. MAO activity increased as the protein concentration increased with 

both p-tyramine and benzylamine as substrates (Figure 4.4A). These two substrates were 

provided with the Amplex Monoamine However, the MAO activity was significantly higher with 

p-tyramine as the substrate at all protein concentrations over 0ug of protein (Figure 4.4A; 

Shapiro-Wilks Normality test: p-tyramine, p-value= 0.12; Benzylamine, p-value= 0.1101; Two-

way ANOVA: Column factor-Substrate type: <0.0001; Sidak’s multiple comparisons: 0ug: p = 

0.9971; 4ug: p = 0.0120; 8ug: p = 0.0002; 16ug: p <0.0001; 32ug: p <0.0001; 64ug: p <0.0001; 

128ug: p <0.0001).  
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Figure 4.4. A) Protein concentration curve of detection of MAO activity from two different substrates, p-tyramine 
and benzylamine. Data are mean ± SD of triplicate wells.   B) MAO activity with inhibitor concentration curve 
using the two inhibitors parygline and clorygline. Data are mean ± SD of triplicate wells. (*,p<0.05; **, p<0.01; 
***, p<0.001; ****,p<0.0001) 
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Measurement of monoamine oxidase activity in the presence of MAO-inhibitors parygline and 

clorygline 

The MAO activity was measured from three biological replicates and three technical 

replicates using benzylamine as a substrate in the presence of two different MAO inhibitors: 

parygline and clorygline. Both MAO inhibitors decreased MAO activity at concentrations of 

0.4uM or greater (Figure 4.4B). Parygline showed a greater decrease in MAO activity compared 

to clorygline, showing a significant difference in reduction of MAO activity at the 2uM 

concentration (Shapiro-Wilks Normality test: parygline: p = 0.6808; clorygline: p = 0.2578; 

Two-way ANOVA: Column factor (Inhibitor type): p <0.0001; Sidak’s multiple comparisons: 

2uM concentration: p<0.0001).  

 

Measurement of monoamine oxidase activity of cephalothorax tissue collected at 13 and 19 

hours 

 The MAO activity was measured from three biological replicates and three technical 

replicates using p-tyramine as a substrate with protein samples collected at two different time 

points (13 and 19hours). MAO activity was higher at 13 hours than 19 hours at all protein 

concentrations, showing significant differences at both 128ug and 256ug protein concentrations 

(Figure 4.5A; Shapiro-Wilks normality test:13H : p = 0.08; 19H: p = 0.12; Two-way ANOVA: 

Column factor (Time of Day) F(1,14): p<0.0001; Sidak’s multiple comparisons: 128ug protein, 

p<0.0001; 256ug of protein, p<0.0001). 
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Figure 4.5. A) Protein concentration curve of detection of MAO activity from protein samples collected at 13 
hours and 19hours. Data are mean ± SD of triplicate wells. B) Protein concentration curve of detection of MAO 
activity of octopamine and serotonin as substrates (0.1mM). Data are mean ± SD of triplicate wells.  (*,p<0.05; 
**, p<0.01; ***, p<0.001; ****,p<0.0001) 
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Protein concentration curve of MAO activity with octopamine and serotonin 

 The MAO activity was measured form three biological replicates and three technical 

replicates using octopamine or serotonin as a substrate. MAO activity occurred with both 

substrate types, however, the activity was significantly higher with octopamine (Figure 4.5B; 

Two-way ANOVA: Column factor-Substrate type:  F(1,31) p < 0.0001 Sidak’s multiple 

comparisons: 0ug: <0.0001; 4ug: p <0.0001; 8ug: p <0.0001; 16ug: p <0.0001; 32ug: p <0.0001; 

64ug: p <0.0001; 128ug: p <0.0001).  

 

 

DISCUSSION 

While a significant amount of research has focused on the role MAO plays in behavior in 

vertebrates, very few studies have evaluated this same role in invertebrates. In order to address 

this disparity, MAO activity must be investigated in organisms that exhibit fluctuations in 

behavioral state and utilize the enzyme for inactivating of monoamines. This study investigated 

the presence and expression of MAO at different time points throughout the day in L.cornutus, a 

spider that exhibits diel shifts in behavioral state[43]. Our results indicate L. cornutus does 

express a putative MAO gene and activity of MAO did vary throughout the day. In addition, the 

MAO enzyme appears to exhibit inhibitor selectivity as well as substrate preference, revealing 

potentially a key site of regulation in the degradation of octopamine.  

 In L. cornutus, the expression of MAO transcripts and activity did fluctuate throughout 

the day, and had significant differences between 13 hours and 19 hours. It is interesting to note 

that gene expression values remained relatively high throughout the day, and lowest at 13 hours. 

As L. cornutus is a nocturnal forager, it appears the expression of this MAO transcript increases 

at dusk and remains high until dawn, when the spider would be actively foraging[43]. In 
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mammals, MAO-A gene expression fluctuates throughout the day, with peaks of gene expression 

levels at dawn in mice[54]. However, this expression pattern in mammals can vary across 

different brain regions while MAO-B gene expression does not appear to fluctuate at all[54]. 

While the putative MAO transcript expression was lowest at 13 hours, MAO activity was 

significantly higher at 13 hours compared to 19 hours in L. cornutus. This finding could be the 

result of negative feedback from heightened protein levels due to a high transcript expression 

pattern at the other  time points (1, 7, and 19 hours), a signal delay between mRNA and protein 

levels, or delayed translation on demand[55,56]. MAO-A activity fluctuates throughout the day 

in various parts of the mammalian brain, which have been found to be associated with clock gene 

expression (period 2 and BMAL gene)[16]. From our results, similar clock components could be 

influencing the expression and activity of MAO in L.cornutus. 

Protein alignments and phylogenetic tree analysis revealed a high homology between 

invertebrate and vertebrate MAO sequences, however there was a clear distinct grouping of 

vertebrate MAOs and invertebrate MAOs, regardless of the subtype characterize for these 

sequences in invertebrates. There is a high amount of homology in MAO sequences across the 

taxa in general, but amino acid residue differences in MAO-A and MAO-B produce slightly 

different binding pockets[57]. Thus, different binding pockets dictate which type of substrate the 

enzyme can oxidize (i.e. octopamine, serotonin, dopamine). When compared to MAOs of 

humans, it is clear L. cornutus MAO transcripts shares key residue similarities with MAO-B. 

Human MAO-B mainly processes phenylethylamine and other trace amines (i.e. 

octopamine)[58]. This homology is important to consider when discussing our results regarding 

substrate specificity and effective inhibition of the enzyme in this study.  
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Inhibition of MAO activity has been used to characterize potential subtypes in arachnids, 

however there is not a clear picture due to some contradicting results[22]. MAO activity has been 

documented several times in ticks and this activity is greatly decreased in the presence of MAO-

B inhibitor deprenyl[38]. However, this same inhibitor deprenyl showed no effect in previous 

studies of MAO activity in spiders in the presence of noradrenaline, adrenaline, and dopamine as 

substrates[33]. In L. cornutus, there was a decrease of activity in the presence of either selective 

inhibitor, however parygline (MAO-B specific inhibitor) had a greater effect. This result 

disagrees with previous studies on parygline in the cattle tick which suggesting MAO-B 

deamination was minimal[59].  This discrepancy could be due to several different factors, 

including lack of specificity in earlier studies as a majority of earlier work was based on 

immunohistochemical techniques on frozen tissues. Because you see inhibition from both 

compounds, there could be a lack of specificity with the MAO enzyme that you see in other 

invertebrate taxa[22].  

 MAO activity did appear to be substrate specific, with a higher level of oxidation 

occurring with p-tyramine compared to benzylamine. As benzylamine is more specific for MAO-

B enzymes, it appears that MAO activity is somewhat mixed in L. cornutus if considering 

substrate performance alone. In echinoderms and mollusks, substrate specificity has not been 

thoroughly investigated[22]. Previous studies in ticks and spiders show MAO activity with a 

range of substrates, including noradrenaline, adrenaline, dopamine, serotonin, and 

octopamine[30,33,36,38,39]. There were also differences in substrate specificity, but it is 

difficult to compare these affinities as benzylamine and p-tyramine were not used. It can be 

extrapolated from MAO activity in vertebrates that MAO-A preferentially oxidizes serotonin and 

NE, while MAO-B oxidizes phenylethylamine and benzylamine. Thus, this study sheds some 
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light on mixed abilities of this MAO enzyme in invertebrates to process different substrates that 

may not necessarily be uniform with the behavior of these enzymes in vertebrates. 

 Enzymatic activity of MAO also revealed a significantly higher level of oxidation with 

octopamine when compared to serotonin as a substrate in vitro. This finding was interesting for 

several reasons. First, it further supports substrate specificity for the MAO enzyme in L. 

cornutus. Second, MAO appears to be a much more potent regulator of octopamine levels than 

serotonin, in contrast to earlier studies in spiders showing little to no effect on octopamine by 

MAO activity[33]. When MAO in L.cornutus is expressed at higher activity levels, presumably 

octopamine will be degraded at a much faster rate, reducing the overall signal of the monoamine. 

Since previous findings show an increase in aggression from exogenous octopamine[44], it 

would be expected to see a higher amount of activity of enzymes degrading octopamine during 

times of day when L. cornutus is the least aggressive (i.e. in the middle of the day). When taken 

together with the marked decrease in activity between 13 hours and 19 hours, MAO may be 

playing an important role in attenuating the signaling of octopamine, quickly degrading the 

compound to produce a less aggressive behavioral state during the day. 

CONCLUSIONS 

 
 This study demonstrated diel fluctuations of MAO gene expression and activity in an 

invertebrate, similar to what is observed in vertebrates[54]. While further studies are needed to 

investigate in more detail how this activity influences L. cornutus aggression and activity state, 

MAO is a potential site of regulation of monoamine signaling and aggression in this spider based 

on our in vitro studies. There is evidence for other metabolic pathways for monoamines in 

arachnids including N-acetylation and sulphation[60,61]. Although these pathways have been 

studied previously in terms of mechanistic action, it would be important to investigate how these 
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degradation pathways interact in concert with each other to produce diel or circadian effects on 

behavior in arthropods.    
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CHAPTER 5 

 

DISCUSSION 

 Research in the areas of circadian rhythms and aggression-related behaviors have been 

expanded immensely in their respective individual directions, yet the interplay of these two 

research topics has begun to appear more apparent over the last decade. The influence of 

circadian rhythms on aggression-related behaviors has not only been documented in simpler 

model systems like insects (Thomas C. Jones et al. 2011), but also in many psychological 

illnesses and disease states in human health (Todd et al. 2018 Apr 9). This study took a holistic 

approach to understanding underlying mechanisms involved in the entwinement of circadian 

control and aggression-related behaviors in the orb-weaving spider L.cornutus. Specifically, this 

research was a preliminary step in identifying potential sites of regulation in the influence of OA 

or 5-HT on the variation in boldness in L.cornutus.  

 While it was initially predicted endogenous levels of 5-HT and OA would fluctuate 

throughout the day (Q1), the significant amount of individual variation did not allow for 

significant fluctuations to be observed in spite of some clear patterns of 5-HT levels increasing 

and OA levels appearing lower during the day. A crude methodology of utilizing whole head 

tissue was employed due to several potential issues with discrete brain dissection in spiders, 

however, future experiments investigating localization of these monoamines in specific brain 

regions would be beneficial. In addition, it is interesting to note there were no significant 

changes in circulating levels of either monoamine. Although, these measurements were also 

accompanied by a high level of individual variation. Other studies have been successful 

investigating circulating levels of these same monoamines in  wolf spiders, but these studies 
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were done with two contrasting behavioral states  (aggressive mating tactics vs. non-aggressive 

mating tactics) in which fluctuations may be more noticeable than among time points separated 

by several hours (Hebets et al. 2015). Finally, the time points selected to observe such changes in 

monoamine levels were somewhat limiting in this study. Future experiments could benefit from 

the addition of more time points to better identify sharp fluctuations that may have been 

overlooked through the day. 

 A shot-gun transcriptome approach not only produced a plethora of information to be 

collected in the head tissue of this spider, but also established a foundation of transcript 

information to be mined in terms of monoaminergic systems employed at different times 

throughout the day. Components involved in the octopaminergic system of L.cornutus were 

preliminarily identified in this research and observed for relative fold changes in transcription 

throughout the day. As seen in other organismal systems, enzymes involved in OA synthesis 

appear to have variation in temporal expression. The two enzymes involved, tyrosine 

decarboxylase and tyramine beta-hydroxylase both decrease during the day, and are upregulated 

at their highest levels at dusk. This finding supported our initial predictions that as OA can 

increase boldness/aggression-related behavior in L. cornutus, you would see an upregulation of 

the synthesis enzymes involved at night when L. cornutus is the boldest. While the HPLC data 

did not corroborate this pattern, the methodology employed may have not been specific enough 

(i.e. specific brain regions). 

In addition to changes in synthesis enzymes of OA, preliminary identification of octopamine 

transporters and receptors was achieved. The transcript of interest for an octopamine transporter 

exhibited a significant increase during the middle of that day. While this finding agrees with 

studies revealing transporter upregulation prior to the increase in signaling molecules (Saito et al. 
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2008), the specificity of this transporter transcript will need to be established to provide clear 

conclusions. Some putative homologs of octopaminergic receptors were also observed to be 

upregulated to their highest level at dusk. This finding aligned with our initial predictions, but 

there is a tremendous amount of complexity to consider when investigating receptor gene 

expression. Even though gene expression of neurotransmitter receptors is a site of regulation, 

changes in neurotransmitter receptor trafficking is also a key mechanism for altering the strength 

of synaptic signaling (Collingridge et al. 2004).  

 Temporal changes in expression of putative transcripts of proteins involved in 5-HT 

synthesis and signaling were also uncovered in this research. Tryptophan hydroxylase, the rate-

limiting synthesis enzyme of 5-HT, has increased transcription during the day (0700 and 1300 

hours) with reduced levels at night. This result was anticipated as 5-HT decreases boldness of 

individuals and L.cornutus individuals exhibit a lower level of boldness during the day. While 

the HPLC results of 5-HT levels were not statistically significant, levels of 5-HT in the 

cephalothorax of L.cornutus were highest during the day (1300 hours) which appears to be 

substantiated with an upregulation of tryptophan hydroxylase during that time. Although 

transcripts were initially isolated in reference to sodium-dependent serotonin-specific transporter 

query sequences, some of the transcripts identified for significant upregulation during the day 

(DN51156_c5_g2_i1) had higher homology with transporters associated with GABA. Thus, 

when comparing two transporter transcripts, one with a higher potential selectivity for 5-HT 

(DN53562_c1_g1_i1) and the other with a higher potential selectivity for GABA, a significant 

amount of serotonin could be left in the synaptic cleft as more GABA is being repackaged and 

resent out. While this event could potentially be producing more of an inhibitory effect on the 

organism, further work is needed to investigate specificity of these transporters and how they are 
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being actively translated during the day. Lastly, serotonergic receptor transcripts were isolated 

based on protein sequence homology and observed for fluctuations in expression level 

throughout the day. Some transcripts were upregulated significantly during the day (1300 hours), 

however, additional experimentation will be required to characterize these receptors as there are 

several types of 5-HT receptors with varying levels of influence on serotonergic tone. 

 In spite of mixed findings of previous studies investigating major catabolic pathways of 

monoamines in arachnids(Sloley 2004; Hiragaki et al. 2015), there is strong evidence for MAO 

expression and activity in L.cornutus. Our results established not only substrate specificity of 

MAO in L. cornutus, but also selectivity in inhibition using pharmacological antagonists. Similar 

to MAO-B subtype in humans(Grimsby et al. 1990; Zhou et al. 1998), the MAO in L.cornutus 

metabolizes trace amines like OA at higher protein concentrations more efficiently than 5-HT. In 

addition, there was a significant temporal difference in activity, with MAO activity being higher 

at 1300 hours than compared to 1900 hours, the time points that had the greatest fold change in 

MAO transcript expression. In summation, MAO has a higher activity level at 1300 hours and 

metabolizes OA more readily than 5-HT, ultimately allowing OA levels to decrease while 5-HT 

levels increase during the day. While this appears to be a potential intriguing mechanism of 

regulating downstream effects of OA and 5-HT, a more extensive approach is needed in the 

future to establish all other possible degradation pathways of these monoamines in arachnids.  

Conclusions and Future Directions 

 Spiders are exceptionally unique organisms for a multitude of reasons including species 

diversity and abundance, a wide array of behaviors, and complex physiological processes (i.e. 

silk production) (Foelix 2011). Like other spider species, L. cornutus offers a unique model 

system to study underlying mechanisms of aggression and chronobiology. This dissertation 
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research allowed a preliminary look into how genes involved in two monoaminergic systems are 

fluctuating throughout the day, revealing multiple facets of how aggressive behavior may be 

influenced transcriptionally and enzymatically in the common furrow orb-weaver L.cornutus. 

Synthesis, signaling, and degradation of OA and 5-HT all fluctuate transcriptionally at different 

time points throughout the day, prompting future studies to investigate these transcripts of 

interest more extensively, whether through protein characterization and/or localization.  
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