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ABSTRACT  

Regulation of Acute and Chronic Immune Responses by β-Arrestin2    

by 

Hui Yan  

 

          β-arrestin2, previously recognized as a facilitator for G-protein associated 7 TMR 

desensitization/ internalization, has now been appreciated as an independent signal transducer 

that regulates multiple cellular responses including inflammation. Cecal ligation and puncture 

procedure (CLP) induced septic shock is an acute inflammatory response characterized by 

uncontrolled systemic inflammation. Myocardial ischemia/reperfusion is a chronic sterilize 

inflammation that requires the reaction of macrophages, fibroblasts and cardiac stem cells for 

regeneration and remodeling of the infarcted myocardium. Restrained chronic stress is an 

immune suppression model in which the inactivation of macrophages may be involved. Here we 

showed β-arrestin2 overexpression inhibited CLP-induced heart dysfunction in septic shock, 

stabilized the cardiovascular system, and eventually promoted survival. Inhibition of the 

activation of p38 that downstream of the IL-6 pathway may be a key regulatory target for β-

arrestin2. To rescue cardiomyocytes from ischemia and reperfusion injury, Sca-1+ CSC from 

Wide-type or β-arrestin2 Knockout mice were delivered to the risked area before reperfusion; β-

arrestin2 was shown to be a required factor and a promoter for the differentiation of the cardiac 

stem cells.  A β-arrestin2/miR-155/GSK3β pathway was identified in this study. TLR-9 is an 

important part of the innate immune system which has been shown to be regulated by β-arrestin2 

in various inflammatory models. Here we found, the immune suppression induced by restrained 

stress is mediated by Toll-like receptor 9 (TLR-9). TLR-9 facilitated the elevation of IL-1β, IL-

10 and IL-17 levels in serum and decrease of the levels of plasma IFN-γ. Furthermore, 

macrophage apoptosis was alleviated in TLR-9 deficiency mice. In summary, β-arrestin2 and 
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associated proteins like TLR-9 are important regulators of the immune response in a variety of 

disease conditions. Therapeutic strategies should be generated to balance the inflammation and 

anti-inflammation response by modulating β-arrestin2 expression and functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 4 

DEDICATION 

Dedicated to Fengliang Yan and Jianrong Fu: 

       To my father Fengliang Yan and my mother Jianrong Fu: 

       I would never finish this work without the guidance of my father Fengliang Yan, who 

encouraged and supported me to get through the darkest days, and my mother Jianrong Fu, who 

always have belief in me.   

       Thanks to my best friend and husband Jia Zhang, who gives me love and strength all the 

times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 5 

ACKNOWLEDGEMENTS 

        I would like to express my gratitude to Dr. Deling Yin for his constant advice and 

encouragement.  

 

       Graceful thanks to Dr. Balvin H.L. Chua, who provided essential support to this project.  

 

        Thanks to my graduate committee members Dr. Alok Agrawal, Dr. Dennis M. Defoe, and    

Dr. Donald B. Hoover for their valuable guidance. 

 

        For thoughtful academic discussion, assistance, and expertise: 

        Dr. Gene LeSage, Dr. Krishna Singh, Dr. William L. Stone 

 

        For endless moral support along the way: 

        Mitchell Robinson, Beverly Sherwood, Brian P. Rowe, Philip Musich and Theresa A. 

Harrison  

        And for technical assistance and discussions, with a big dose of friendship: Yi Caudle, 

Yanxiao Xiang, Dan Hu, Jing Zhao, James Denney, Christopher R. Daniels, Suman Dalal, 

Stephanie Scofield, Hui Li, Hui Wang, Xia Zhang and Jianqun Kou. 

 

         I also wish to thank the ETSU Biomedical Sciences Graduate Program for letting me 

enrolled in this great program. 

 

        This work was supported in part by NIH grants NIGM094740 and NIGM114716 to D. Yin. 

This research was also supported in part by the National Institutes of Health grant 

C06RR0306551 and ETSU Graduate Student Research Grant. 

 

 

 



 

 6 

TABLE OF CONTENTS 

  Page 

ABSTRACT ...........................................................................................................................        2  

 DEDICATION ....................................................................................................................... 4        

 ACKNOWLEDGEMENTS ...................................................................................................         5 

LIST OF FIGURES ...............................................................................................................       11 

LIST OF TABLES .................................................................................................................       13  

LIST OF ABBREVIATIONS ................................................................................................       14 

 

Chapter 

1. INTRODUCTION  .............................................................................................................  16 

     The Arrestin Family ...................................................................................................       16 

                          History  ....................................................................................................       16 

 GPCR. Paragraph  ...................................................................  16 

 Arrestins. Paragraph  ...............................................................  16 

                          Functions of β-arrestins  ..........................................................................       16 

 G-protein Related Functions  ..................................................  16 

 G-protein Independent Functions  ..........................................  17 

Function of  β-arrestin2 in Inflammation ................................................       17 

Function of  β-arrestin2 in Heart Injury ..................................................       17 

 MiR-155 ......................................................................................................................      18 

                          MiRNA-155 and Inflammation ................................................................      18 

                          MiR-155 and Cardiomyocyte Differentiation ..........................................      18                          

Beta-arrestin2 and Toll-like Receptors .....................................................................      19  

 Toll-like Receptors  .................................................................................      19 

Beta-arrestin2 Regulates Toll-like Receptor 9 in Inflammation .............      19 

            Specific Aims...............................................................................................................      20 

 

2. ΒETA-ARRESTIN2 ATTENUATES CARDIAC DYSFUNCTION IN             

POLYMICROBIAL SEPSIS THROUGH GP130 AND P38  ...............................................      21 



 

 7 

Abstract ......................................................................................................................      22             

Introduction ................................................................................................................      23 

Material and Methods .................................................................................................      25  

Experimental Animals  ........................................................................      25  

Cecal Ligation and Puncture (CLP) Polymicrobial Sepsis ..................      25   

Cardiac Functional Analysis (P-V loop) ..............................................      26 

Western Blot Analysis .........................................................................      26 

Enzyme linked Immunosorbent Assay (ELISA) for Cytokines ..........      27 

Echocardiography ...............................................................................      27 

TUNEL Assay .....................................................................................      27 

Statistical Analysis ..............................................................................      28 

Results .....................................................................................................................      29 

Overexpression of β-arrestin2 in Mice Enhances Animal Survival 

following CLP .....................................................................................      29 

β-arrestin2 Overexpression Attenuates Sepsis-induced Cardiac 

Dysfunction .........................................................................................      30 

Overexpression of β-arrestin2 Diminishes Sepsis-reduced  

Cardiac Output and Stroke Volume ........................................      30 

β-arrestin2 overexpression attenuates sepsis-reduced end- 

 diastolic volume (EDV)  ........................................................  32 

Overexpression of β-arrestin2 Enhances Left Ventricular 

Contractility following CLP  ..................................................  33 

Increased β-arrestin2 Expression in Septic Heart  ..............................      35 

Effect of β-arrestin2 on the Levels of Phospho-gp130 and 

Phospho-p38 MAPK following CLP  .................................................        36 

The Effect of β-arrestin2 on STAT3 Phosphorylation after Sepsis  ...        38 

The Effects of β-arrestin 2 on ERK and JNK Phosphorylation  

after Sepsis  .........................................................................................  39 

Cardiac Preload was Maintained in β –arrestin2 Overexpression  

Mice after CLP Induced Sepsis in Echocardiography Studies  ..........        41 

IL-6 expression is not Affected in β –arrestin2 Overexpression Mice  



 

 8 

after CLP induced sepsis  ....................................................................   41 

Decreased Cardiomyocyte Apoptosis in β –arrestin2  

Overexpression Mice  .........................................................................      43 

Discussion .............................................................................................................     45 

References .............................................................................................................     51 

 

3. ΒETA-ARRESTIN2/MIR-155/GSK3BETA REGULATES TRANSITION  

OF 5’-AZACYTIZINE-INDUCED SCA-1-POSITIVE CELLS TO  

CARDIOMYOCYTES ..........................................................................................................       56 

       Abstract ...........................................................................................................................       57 

       Introduction .........................................................................................................       58 

       Materials and Methods ........................................................................................       60 

Regents ...............................................................................................       60 

Animals ..............................................................................................       60 

Cell Culture ........................................................................................       61 

Cell Transfections and Plasmids ........................................................       61 

Real-time PCR (RT-PCR) ..................................................................       62 

Western Blot Analysis .......................................................................       62 

Luciferase Reporter Assay ..................................................................      62 

Immunofluorescent Staining ...............................................................      63 

Myocardial Infarction-reperfusion (I/R) Injury and Cell Delivery .....      63 

Cardiac Function Analysis ..................................................................      64 

Statistical Analysis ..............................................................................      64 

                    Results .................................................................................................................      65 

 β-arrestin2 Promoted 5aza-induced Cardiac Myocyte Differentiation  

in CSCs................................................................................................      65 

MiR-155 Inhibited 5aza-induced Myocardiac Differentiation and was 

Regulated by β-arrestin2 .....................................................................      70 

GSK3β is Required for 5aza-mediated Myocardiac Differentiation and 

Targeted by MiR-155 ..........................................................................      74 



 

 9 

5aza Promotes Sca-1+ cell Transition to Cardiomyocytes through an 

Arrb2/miR-155/GSK3 Pathway............................................................     78 

                                    Arrb2/miR-155/GSK3β Pathway in CSC-mediated Cardiac Repair ...     79 

      Discussion ............................................................................................................     83 

References ............................................................................................................     86 

 

4. THE ROLE OF TOLL-LIKE RECEPTOR 9 IN CHRONIC STRESS-INDUCED 

APOPTOSIS IN MACROPHAGE ...........................................................................................    90 

 Abstract ....................................................................................................................    91 

 Introduction .............................................................................................................    93 

Materials and Methods ............................................................................................   96 

Experimental Animals ..............................................................................    96 

Experimental Model of Restraint Stress ...................................................    96 

Isolation of Peritoneal Macrophages ........................................................    97 

Determination of Apoptosis by TUNEL Assay.........................................    97 

Western Blot Analysis ..............................................................................    98 

Enzyme Linked Immunosorbent Assay (ELISA) for Cytokines ..............    98 

Statistical Analysis ....................................................................................    98 

Results ....................................................................................................................    99 

TLR9 is Required for Chronic Stress-induced Macrophages     

Accumulation.............................................................................................     99 

Macrophages from TLR9 Knockout Mice Display Impaired Changes of 

Chronic Stress-induced Cytokine Levels ..................................................    101 

      TLR9 Deficiency Blocks Chronic Stress-induced Changes of 

Pro-inflammatory Cytokines in Serum .....................................................    103 

                TLR9 Deficiency Blocks Chronic Stress-induced Macrophage  

                Apoptosis ..................................................................................................    105 

      TLR9 Deficiency Attenuates Stress-induced Activation of Caspase-3 and  

 PARP and Alteration of Bcl-2/Bax Ratio .................................................    106 

    TLR9 Deficiency Blocks Chronic Stress-induced Changes of 

Apoptosis Related Pathways .....................................................................    108 



 

 10 

                   Discussion ............................................................................................................    110 

                  Reference ..............................................................................................................    114 

 

5. SUMMARY .......................................................................................................................    120 

 

 REFERENCES  .....................................................................................................................    125 

 VITA .....................................................................................................................................     141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 11 

LIST OF FIGURES 

 

Figures                                                                                                                                       Page 

      1. Figure 2.1. β-arrestin2 TG mice are less susceptible to CLP-induced  

polymicrobial sepsis.  ..................................................................................................  29  

     2. Figure 2.2. Overexpression of β-arrestin2 in mice attenuates CLP-reduced  

cardiac output and stroke volume.  .............................................................................  31     

     3. Figure 2.3 β-arrestin2 overexpression in mice diminishes CLP-reduced end 

 diastolic volume (EDV).  ...........................................................................................  33 

       4. Figure 2.4 β-arrestin2 expression in septic heart.  .......................................................  35 

     5. Figure 2.5 Overexpression of β-arrestin2 in mice blocks CLP-induced  

the levels of gp130 and p38 phosphorylation.  ...........................................................  36                         

     6. Figure. 2.6. β-arrestin2 expression promotes anti-apoptotic STAT3   

activation after sepsis.  ................................................................................................  39   

      7. Figure 2.7 The role of  β-arrestin 2 in CLP-induced ERK and  

JNK phosphorylation  .................................................................................................  40                                                                                               

      8. Figure 2.8. IL-6 serum levels were examined by ELISA. Serum was collected  

from WT, β-arrestin2 KO and β-arrestin2 TG mice 6h after CLP.  ...........................   43 

9. Figure 2.9. Overexpression of β-arrestin2 attenuated sepsis-induced apoptosis 

in the heart.  .................................................................................................................  44                                                                                                                   

    10. Figure 2.10.  Schematic diagram – Signaling transduction of β-arrestin2  .................  47                     

    11. Figure 3.1. Effect of Arrb2 on 5’-azacytizine-induced differentiation of cardiac  

stem cells (CSCs) to cardiomyocytes.  .......................................................................  69                                                                           

    12. Figure 3.2 MiR-155 inhibits 5aza-induced differentiation of CSCs into 



 

 12 

 cardiomyocytes through Arrb2.  ................................................................................  72                                                                                    

    13. Figure. 3.3 Arrb2 is a miR-155 target.  .......................................................................  73                                                                         

    14. Figure. 3.4 MiR-155 targets GSK3β.  .........................................................................  75                                                                             

    15. Figure. 3.5. GSK3β is involved in 5aza-induced differentiation of  

CSCs to cardiomyocytes.  ...........................................................................................  78                                                                    

    16. Figure 3.6. Arrb2/miR-155/GSK3β pathway is important in CSC-  mediated  

cardiac repair.  .............................................................................................................  79 

    17. Figure 4.1. A deficiency of TLR9 blocks chronic stress-induced accumulation 

 of macrophages in peritoneal cavity.  ........................................................................  100                                                                         

    18. Figure 4.2. A deficiency of TLR9 decreases chronic stress-induced changes of  

pro-inflammatory cytokine levels by macrophages.  ..................................................  102                                          

    19. Figure 4.3. A deficiency of TLR9 suppressed change of cytokine   

levels caused by chronic stress.  .................................................................................  104                                                                                   

    20. Figure 4.4. A deficiency of TLR9 is resistant to stress-induced macrophage 

 apoptosis.  ..................................................................................................................  105                                                                                                                     

    21. Figure 4.5. TLR9 deficiency inhibits stress-induced change in 

 caspase-3 and PARP activation and ratio of Bcl-2/Bax.  ...........................................  107                                              

    22. Figure 4.6. TLR9 deficiency attenuates chronic stress-induced    

changes of apoptosis related pathways.  .....................................................................  109                                                 

 

 

 

 



 

 13 

LIST OF TABLES 

 

Tables                                                                                                                                         Page 

1.  Cardiac systolic and diastolic functions 6 h after cecal ligation  

and puncture.  ..............................................................................................................  34                                                                                                  

2.  Beta-arrestin-2 over-expression affected cardiac preload (venous return)  

in mice during sepsis induced by cecal ligation and puncture.  ..................................  42                                     

3.  Effects of Sca-1+ CSCs on the cardiac function of wild-type mice with  

myocardial infarction  .................................................................................................  81                                                                             

      4. Effects of Sca-1+ CSCs on the cardiac function of Arrb2-KO mice with myocardial   

          infarction  ......................................................................................................................  82                                                        

 

 

 

 

 

 

 

 

 

 

 

 



 

 14 

ABBREVIATIONS 

ANOVA                               Analysis of Variance 

Arrb2                                    β-arrestin2 

CLP                                      Cecal Ligation and Puncture 

CSC                                      Cardiac Stem Cells 

ELISA                                  Enzyme Linked Immunosorbent Assay 

ERK                                     Extracellular-signal-regulated Kinases 

GSK3β                                  Glycogen Synthase Kinase 3 

GPCR                                   G-protein-coupled Receptor 

Gp130                                   Glycoprotein 130 

IFN-γ                                    Interferon γ 

iNOS                                    Inducible Nitric Oxide Synthase 

IL-1β                                     Interleukin-1β 

IL-6                                       Interleukin-6 

IL-10                                     Interleukin-10 

IL-17                                     Interleukin-17 

KO                                        Knockout 

MAPK                                  Mitogen-activated Protein Kinase 

miR-155                               MicroRNA 155 

PARP                                    Poly ADP-ribose Polymerase 

PI3K                                      Phosphoinositide 3-Kinase 

SEM                                      Standard Error of Mean 

Sca-1+                                   Stem-cell antigen 1–positive 



 

 15 

SDS-PAGE                           Sodium Dodecyl Sulfate Polyacrylamide  

                                               Gel Electrophoresis 

STAT3                                   Signal Transducer and Activator of Transcription 3 

TG                                         Transgenic  

TNF α                                    Tumor Necrosis Factor α 

TUNEL                                  Terminal Deoxynucleotidyl Transferase (TdT)  

                                               dUTP Nick-End Labeling 

TLRs                                     Toll-like Receptors 

TLR9                                     Toll-like Receptor 9 

UTR                                        Untranslated Region 

WT                                          Wild-type 

 

 

 

 

 

 

 

 

 

 

 

 



 

 16 

CHAPTER 1 

INTRODUCTION 

The Arrestin Family 

History 

          GPCR Rhodopsin, also called visual purple, was discovered in the late nineteenth century 

due to its unique color changing property in the pigment of retina 
17

. In 1980s, the architecture 

similarity between visual sensory protein rhodopsin and some widely distributed seven trans-

membrane receptors lead to the discovery of the largest family of cell surface receptors called G-

protein-coupled receptors (GPCRs). The binding of extracellular ligand to its GPCRs induces 

conformational changes of the receptors themselves as well as the downstream phosphorylation 

of G proteins (guanylate nucleotide-binding protein). 

 

          Arrestins Arrestins were discovered in the study of desensitization of rhodopsin and beta 2 

adrenergic receptors 
48

. Arrestin 1 is the fist member of arrestin family that is found can facilitate 

dampening of signaling transduction pathway mediated through rhodopsin in retina. β-arrestin 1 

and 2, also called arrestin2 and 3 are the homologs of arrestin1 that are identified by gene clone 

technology associate with β-2 adrenergic receptors in early studies. 

 

Functions of β-arrestins  

           G-protein Related Functions Arrestins can compete with G protein in binding with 

GPCRs and terminate the signaling transduction through G proteins. Therefore, GPCRs are 

desensitized to agonist by arrestins, which is triggered by the conformational change and 
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phosphorylation of receptors. Arrestins are also involved in the internalization/endocytosis of 

GPCRs, along with trafficking proteins such as clathrin and AP2 
33,47

. 

 

            G-protein Independent Functions Recently, more and more G protein independent but 

arrestins required GPCRs signaling pathway were reported. GPCRs were preferably called seven 

trans-membrane receptors (7TMRs), and arrestins had been recognized as direct signaling 

transducers rather than adaptors and regulators at these circumstances 
105

. In this study, we focus 

on the G protein independent functions of arrestins. 

 

Function of β-arrestin2 in Inflammation 

              The knowledge of β-arrestin2 as a negative regulator for inflammation is mainly 

confined to cells of immune systems 
29,91,3

. Recently, it has been shown that β-arrestin2 regulates 

innate immune system by targeting Toll-like receptor-interleukin 1 receptor (TLR-IL-1R) 

especially Toll-like receptor 4 (TLR4) signaling 
105,53

. Interestingly, increased β-arrestin2 

expression in monocyte is associated with less activated immune system during myocardial 

infarction 
106

. However, the role of β-arrestin2 in cardiovascular system during sepsis remains to 

be elucidated.  

      

Function of β-arrestin2 in Heart Injury 

          β-arrestin2 mediates positive inotropic change in heart through enhanced Ca2+/calmodulin 

kinase II activation, myosin light chain phosphorylation and Ca2+ responsiveness in 

myofilament 
82,62,92

. β-arrestin2 stimulation is cardio protective in acute cardiac injury, heart 

ischemia/reperfusion, chronic hypertension and post injury ventricular remolding 
69,45,38

. The 
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reported anti-apoptotic mechanism of β-arrestin2 includes inhibition of BAD phosphorylation 

and p38 activation 
48,112

. Furthermore, β-arrestin2 promotes smooth muscle cell (SMC) 

proliferation in vitro 
106

. Therefore, it would be interesting to explore the effect of β-arrestin2 on 

hemodynamic profile during sepsis. 

 

MiR-155 

MiR-155 and Inflammation 

          Micro RNA are short (20-24 nt in length) non-coding single strand RNA that can regulate 

protein gene expression at post-transcriptional level in mammals. In immune system, it has been 

shown MiR-155 played an important role in T cell differentiating into regulatory T cell and 

different subsets of helper T cells 
86,97,101

. In addition, miR-155 is required for CD8+ T cell 

proliferation and effective responses to infections 
35

. Cardiomyocyte ischemia and reperfusion is 

a form of sterilized inflammation, so immune regulation by miR-155 may affect disease 

progress. 

 

MicroRNA and Cardiomyocyte Differentiation 

          Cardiomyocyte differentiation, survival and regeneration has been shown to be regulated 

by a group of microRNAs. For example, MiR-155 promotes cardiac survival.  MiR-1 and miR-

499 were able to promote cardiomyocyte differentiate from cardiac progenitors. Fibroblasts can 

be differentiated into cell with similar characteristic of cardiomyocyte with the help of miR-1, 

miR133, miR208 and miR409. There are also several microRNAs could enhance cardiac 

proliferation and re-programing. Emerging evidence suggests microRNAs are great targets for 

regulation of cardiomyocyte differentiation following ischemia reperfusion 
96

.  As the protective 
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role of β-arrestin2 in cardiac ischemia/reperfusion has been indicated above, the association 

between β-arrestin2 and miR155 should be determined in the process of cardiomyocyte 

differentiation from cardiac stem cells followed by ischemia/ reperfusion injury. 

 

Beta-arrestin2 and Toll-like Receptors 

Toll-like Receptors   

         Toll like receptors are part of the innate immune system that enabled host to clear 

infections without the involvement of adaptive immune system. Thirteen TLRs are discovered in 

the TLR family, most of which recognize specific pathogen structures and deliver signals 

through MyD88. TLR9 is activated by oligodeoxynucleotides with unmethylated CpG motifs. 

TLR9 is located within the cells, in ER before stimulation 
50

. TLR9 is required for apoptosis in 

various cell types including microglia in CNS 
36

. Our results also showed decreased 

inflammatory response in TLR9 knockout mice in septic model 
41

.  The role of TLR9 in chronic 

stress induced macrophage apoptosis is still undefined. 

 

Beta-arrestin2 Regulates Toll-like Receptors 9 in Inflammation       

          Previous studies have shown β-arrestin2 could inhibit signaling transduction though Toll-

like receptor-Interleukin 1 receptor by regulating TRAF6 
105

. β-arrestin2 could also regulate 

Toll-like receptor 4 by GSK 3β 
53

.  All the results suggest β-arrestin2 may indirectly regulate 

other members of TLR family including TLR9. As the potential regulatory target for β-arrestin2, 

the anti-inflammatory effect of decreased TLR9 expression was tested in this study.  
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Specific Aims 

 

1. This study aims to investigate The role of β-arrestin2 in sepsis induced heart dysfunction and  

    survival. To explore whether the expression of β-arrestin2 could affect the signaling   

    transduction of the interlukin-6 pathways in septic hearts. 

§ Some of the findings in Chapter 2 are reproduced from our submitted paper which is in 

revision process, reference# 110. Additional unpublished results are reported in Chapter 2 

2. This study aims to investigate the contribution of miR155 in β-arrestin2 mediated cardiac 

     stem cell differentiation induced by 5aza and the mechanism of action. Whether the  

     theories generated from of in vitro studies could apply to the treatment of  

     myocardiac infarction in mice. 

§ We published the findings in Reference# 122. The published findings are reproduced in 

Chapter 3 

3. This study aims to investigate the effect of TLR-9 in chronic stress induced inflammation in 

    mice. Whether the TLR-9 is required in the progression of chronic inflammation. The 

    molecular mechanism underlying the response of inflammatory factors and  

    macrophages.  

§ We published the findings in Reference# 108. The published findings are reproduced in 

Chapter 4 
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Abstract 

 

                    Sepsis is an exaggerated systemic inflammatory response to persistent bacteria 

infection with high morbidity and mortality rate clinically. β-arrestin2, a principal regulator, and 

scaffolds of various signaling, modulates cell survival and cell death in different systems. 

However, the effect of β-arrestin2 on sepsis-induced cardiac dysfunction is not yet known. Here, 

we show that β-arrestin2 overexpression significantly enhances animal survival following cecal 

ligation and puncture (CLP)-induced sepsis. Importantly, overexpression of β-arrestin2 in mice 

prevents CLP-induced cardiac dysfunction. Also, β-arrestin2 overexpression dramatically 

attenuates CLP-induced myocardial gp130 and p38 mitogen-activated protein kinase (MAPK) 

phosphorylation levels following CLP. Therefore, β-arrestin 2 prevents CLP-induced cardiac 

dysfunction through gp130 and p38. These results suggest that modulation of β-arrestin2 might 

provide a novel therapeutic approach to prevent cardiac dysfunction in patients with sepsis. 
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Introduction 

 

          Sepsis, a significant clinical problem, is one of the leading causes of death in intensive 

care units throughout the world (1). Sepsis is the No.1 cause of morbidity and mortality in 

intensive care units (ICUs), and about 60% of patients admitted to the ICU have cardiac 

dysfunction (2-4). When accompanied by heart dysfunction, survival for sepsis is only 30% 

(1,2). An average of 7.5 million incidences of severe sepsis are recorded in the United States 

yearly, and the number is rising at a steady rate. The prognosis of sepsis is different from person 

to person. However, the mortality rate is nearly 40 percent in an advanced aged patient under 

severe sepsis in spite of aggressive treatment (1,2). Cardiac dysfunction plays a critical role in 

the high morbidity and mortality of this condition (2-4). Therefore, it is urgent to elucidate the 

mechanisms by which sepsis modulates cardiac dysfunction and generate more efficient ways to 

improve the prognosis. 

       β-arrestin2, a universally expressed member of arrestin family in many tissues with 

especially high expression in nervous and cardiovascular tissues (5-7), is an essential negative 

regulator of the G-protein-coupled receptor (GPCR) signaling (5,7-9). β-arrestin2 not only 

facilitates G-protein associated 7 TMR desensitization/internalization but also mediates 

intracellular signal transduction independently (5,9).  In addition to these established functions, 

β-arrestin2 increasingly represents an active line of investigation where β-arrestin2 binds with 

various target molecules and thus modulates a broad range of biological processes (10-12). 

Recent evidence has shown that β-arrestin2 is functionally involved in the regulation of immune 

responses by modulating various signaling pathways (11,12). β-arrestin2 stimulation protects 
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against acute cardiac injury (13,14). However, the effect of β-arrestin2 on cardiac function 

during sepsis is not yet known.    

         The affinity between β-arrestin2 and mitogen-activated protein kinases (MAPKs) exhibited 

in numerous cases of GPCR signaling (15-18). We and others recently reported that β-arrestin2 

scaffolds MAPK components such as the MAP kinases extracellular-signal regulated kinase 

(ERK) and c-Jun-N-terminal kinase (JNK), leading to phosphorylation, activation and 

accumulation of MAPKs in defined cellular compartments (15,18).  To examine the mechanisms 

by which β-arrestin2 modulates cardiac functions, we focus on investigation of β-arrestin2 to 

regulate glycoprotein 130 (gp130) and p38 MAPK signaling during sepsis. 

         Signal transducer and activator of transcription 3 (STAT3), the effector of IL-6/IL-

6R/gp130/JAK2/STAT3 pathway, receives signals from tyrosine kinase JAK2 via site 705 

phosphorylation, translocates to the nucleus, and then regulates transcription of various survival 

genes (e.g. BCL-xL) (34). Recently, STAT3 phosphorylation on Ser-727 is shown to help 

improve the performance of electrotransfer chain in the mitochondria, block the mitochondrial 

pole and protect cells from reactive oxygen species (ROS) (32). Importantly, tyrosine and serine 

phosphorylation are both required for a maximized anti-apoptotic effect of STAT3 (33). 

Although STAT3 has been reported to mediate the negative inotropic effect of IL-6 in isolated 

myocytes by iNOS expression (35), for now, the overall effect of STAT3 in sepsis is undefined. 

        In the present study, we demonstrated that overexpression of β-arrestin2 enhances survival 

and attenuates cardiac dysfunction in septic mice. Additionally, β-arrestin2 overexpression 

prevents elevated levels of myocardial gp130 and p38 MAPK phosphorylation in polymicrobial 

sepsis.  
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Materials and Methods 

Experimental Animals 

      Wild-type (WT) C57BL/6J mice were ordered from Jackson Laboratory (Bar Harbor, ME). 

Arrb2 knockout (KO) mice on a C57BL/6 background were kindly provided by Dr. Robert 

Lefkowitz (Duke University) and bred at East Tennessee State University (ETSU) (18). β-

arrestin2 over-expression (TG) mice were generated as previously described (19). Briefly, full-

length human β-arrestin2 cDNA from brain cDNA/λphage library was cloned into pcDNA3 

(BamHI-EcoRI) with HA tag (HindIII-BamHI) under the control of a human cytomegalovirus 

(CMV) promoter. Then the DNA constructions were injected into fertilized mice eggs with the 

C57BL/6J background. The integration of variable copies of a transgene into the genomes of 

founder mice and their offspring was verified. Real-time PCR analysis was used to check the 

mRNA expression of the transgene. The genomic DNA primers used to identify transgenic mice 

were β-arrestin2, sense 5’-CAGCCAGGACCAGAGGACA-3’, antisense 5’-

TGATAAGCCGCACAGAGTT-3’. There is no difference between physical appearance, 

activity, productivity and life span in WT, β-arrestin2 KO, and β-arrestin2 TG mice. All mice 

were maintained in the Division of Laboratory Animal Resources at ETSU, a facility accredited 

by the Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC). All animal studies were approved by the ETSU Committee on Animal Care. 

 

Cecal Ligation and Puncture (CLP) Polymicrobial Sepsis 

          CLP was performed to induce sepsis in mice as described in our previous studies (20). 

Briefly, mice were initially anesthetized by 5.0% isoflurane inhalation in 100% O2 in a closed 

chamber and then maintained by 3% isoflurane inhalation during surgery. A small incision was 



 

 26 

made in the anterior abdomen, and the cecum was ligated 1 cm proximal to the terminal of 

cecum with a size 2-0 sutures. The cecal puncture was done with a 20-gauge needle and the 

content was extruded from two holes. The abdomen was then closed layer by layer. Mice without 

ligation and puncture were served as control. Immediately following CLP or sham surgery, 

40ml/kg pre-warmed saline was administrated by intraperitoneal injection. 

 

Cardiac Functional Analysis (P-V loop) 

            Cardiac function was detected by use of the SPR-839 instrument (Millar Instruments, 

Houston, TX, USA) as described previously by us (21). Briefly, a microtip pressure–volume 

catheter (SPR-839; Millar Instruments, Houston, TX, USA) was inserted through a 25-gauge 

apical stab into the LV to measure the steady-state cardiac function. At the completion of the 

study, 10 µL of hypertonic saline (15%) was injected into the right atrium to calibrate Vp, the 

parallel volume. The signals were continuously recorded at a sampling rate of 1000 s
−1

 using an 

ARIA pressure–volume conductance system (Millar Instruments) coupled to a Powerlab/4SP 

A/D converter (AD Instruments, Mountain View, CA, USA). All pressure–volume loop data 

were analyzed with a cardiac pressure–volume analysis program (PVAN3.4; Millar Instruments). 

At the end of the functional analysis, the hearts were removed and perfused for 2 min as 

Langendorff preparations to remove the remaining blood before Western blot analysis. 

 

Western Blot Analysis 

        Western blot analysis was performed according to established protocols (18, 22). Briefly, 

Briefly, proteins extracted from heart tissue lysis were loaded to 10-15% SDS-PAGE then 

transferred to a nitrocellulose membrane (Bio-Rad). The blocking solution was composed of 3% 
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BSA dissolved in 1xTBS; blocking the membrane for 1 hour at room temperature.  Incubated the 

membrane for 2 hours at room temperature in primary antibody and 1hour in secondary 

antibody, both in 1.5% BSA dissolved in 1xTBS. The signals were detected with the ECL system 

(Amersham Biosciences). The signals were quantified by scanning densitometry and computer-

assisted image analysis. Pan p38, phospho-p38, pan ERK, phospho-ERK, pan JNK, phospho-

JNK, pan STAT3, and phospho-STAT3 antibodies were from Cell Signaling Technology 

(Beverly, MA). Pan gp130, phospho-gp130, and GAPDH antibodies were obtained from Santa 

Cruz Biotechnology (Santa Cruz, CA).   

 

Enzyme-linked Immunosorbent Assay (ELISA) for Cytokines 

         Blood collected from sham and CLP mice was allowed to clot for 2 hours at room 

temperature and centrifuged for 20min at 2000×g. The level of IL-6, IL-1β, and TNFα in the 

serum were quantified using  Quantikine Mouse ELISA kits (R&D Systems, Minneapolis, MN). 

 

Echocardiography 

         Transthoracic two-dimensional M-mode echocardiography was performed by a Toshiba 

Aplio 80 imaging system as described (18, 9). Left ventricular end systolic volume (LVESV) and 

the LV end diastolic volume (LVEDV) were calculated from left ventricular diameters measured 

from M-mode tracings (10). Before and 6h after CLP, mice were kept warm using a heating pad 

and maintained on 1% isoflurane anesthesia during echocardiography. 

 

TUNEL Assay  

            Middle one third of heart was collected 6 h after CLP and fixed in 10% buffered 

formalin. Paraffin embedded heart section was prepared. Cardiac myocyte apoptosis was 
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examined by the TUNEL assay (Roche Diagnostic, Indianpolis, IN), according to the 

manufacturer’s instructions. For each group, three slides were evaluated for the percentage of 

cells that were apoptotic. Four fields of each slide were randomly examined using a defined 

rectangular field area with a magnification of 40×.  

 

Statistical Analysis 

          Comparisons of data from multiple groups were carried out using one-way analysis of 

variance and Newman-Keuls multiple comparison tests.  Means were compared by Student's t-

test between two groups. All data were expressed as mean ± SEM. The Kaplan-Meier method 

was used to generate the survival curves, and the significance of differences was ascertained 

using the Log-rank (Mantel-Cox) test.  P < 0.05 was considered statistically significant. 
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Results 

Overexpression of β-arrestin2 in Mice Enhances Animal Survival following CLP 

      First, we investigated the effect of the multifunctional protein β-arrestin2 (5,18) on animal 

survival after sepsis. WT, β-arrestin2 TG, and β-arrestin2 KO mice were subjected to CLP, and 

mortality was monitored for 120 h. As shown in Fig. 2.1, mortality occurred with highest 

frequency 18-24 h after sepsis.  

 

 

Figure 2.1. β-arrestin2 TG mice are less susceptible to CLP-induced polymicrobial sepsis. 

WT, β-arrestin2 KO and β-arrestin2 TG mice (n = 15 per group) were subjected to CLP and 

monitored up to 120 h. Survival Curves are compared by Log-rank (Mantel-Cox) test. *P < 0.05.  

 

    The survival rate 24 h after CLP was 40% for WT mice, 80% for β-arrestin2 TG mice, and 

13.3% for β-arrestin2 KO mice. At the end of the observation period, the survival rates were 
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20% in WT, 53.3% in TG, and 6.7% in β-arrestin2 KO group. There were no deaths in sham 

control mice (data not shown). These results support that β-arrestin2 contributes to animal 

survival following CLP.  

 

β-arrestin2 Overexpression Attenuates Sepsis-induced Cardiac Dysfunction 

           Overexpression of β-arrestin2 Diminishes Sepsis-reduced Cardiac Output and Stroke 

Volume. Very recently, it has been shown that sepsis induces cardiac dysfunction (23). However, 

it is not known whether β-arrestin2 plays a role in sepsis-induced cardiac dysfunction. To 

evaluate the effect of β-arrestin2 on cardiac function following sepsis, we collected 

hemodynamics parameters by pressure-volume loop measurement 6 h after sepsis in WT, β-

arrestin2 KO, and β-arrestin2 TG mice. As shown in Fig. 2.2A, 67 % of cardiac output was 

preserved in β-arrestin2 TG mice while 32% was preserved in WT and 17% was preserved in β-

arrestin2 KO mice. We found the similar results in stroke volume (Fig. 2.2B). The similar results 

were observed by echocardiography analysis (data not shown). Taken together, overexpression 

of β-arrestin2 attenuates sepsis-reduced cardiac output and stroke volume.  
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Figure 2.2. Overexpression of β-arrestin2 in mice attenuates CLP-reduced cardiac output and 

stroke volume. We subjected WT, β-arrestin2 KO and β-arrestin2 TG mice (n = 6 per group) to 

CLP or sham operations. At 6 h CLP, hemodynamic parameters were measured by cardiac 

functional analysis. (A) CO, cardiac output. (B) SV, stroke volume. (C) HR, heart rate. *P < 

0.01. 
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              β-arrestin2 Overexpression Attenuates Sepsis-reduced End-diastolic Volume (EDV). 

End diastolic volume (EDV) represents the extent of ventricular filling in sepsis induced cardiac 

dysfunction. EDV decreased by 39.6% and 49.5% in WT and β-arrestin2 KO mice after CLP 

(Fig. 2.3A), respectively. Importantly, EDV decreased by only 16.6% in β-arrestin2 TG mice. 

Therefore, β-arrestin2 over expression significantly blocks sepsis-reduced EDV. Either sepsis or 

β-arrestin2 did not have an effect on LV end-systolic volume (ESV) (Fig. 2.3B). The similar 

results were obtained by echocardiography analysis (Table 2).  
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Figure 2.3 β-arrestin2 overexpression in mice diminishes CLP-reduced end diastolic volume 

(EDV). WT, β-arrestin2 KO and β-arrestin2 TG mice (n = 6 per group) were subjected to CLP or 

sham operations. Hemodynamic parameters were determined by cardiac functional analysis 6 h 

after CLP as in Fig. 2.2. (A) EDV, LV end-diastolic volume. (B) ESV, LV end-systolic volume. 

*P < 0.05. 

 

                  Overexpression of β-arrestin2 Enhances Left Ventricular Contractility following 

CLP. We then measured left ventricle pressure-related parameters after sepsis in WT, β-arrestin2 

KO, and β-arrestin2 TG mice (Table 1).  End systolic pressure (ESP) was severely reduced in β-

arrestin2 KO mice after sepsis (36 mmHg) as compared to sham mice (71 mmHg).  In contrast, 

ESP was slightly increased in septic WT mice (105 mmHg) and maintained in β-arrestin2 TG 
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mice (90 mmHg). However, the end diastolic pressure (EDP) was not changed in CLP treated 

groups. In addition, β-arrestin2 TG mice showed less decrease in dP/dtmax and dP/dtmin after 

sepsis (decrease by 15 % and 5 %, respectively) compared to WT mice (decrease by 37 % and 29 

%, respectively) and β-arrestin2 KO mice (decrease by 70 % and 72 % respectively).  

 

Table 1 Cardiac systolic and diastolic functions 6h after cecal ligation and puncture. 

 

         

Parameter 
WT KO             TG 

 Sham  CLP  Sham  CLP  Sham CLP  

EF, (%) 66±1.8 37±2.7
*
 66±1.6 25±2.4

‡†
 63±1.5 56±1.2

§†
 

ESP, mmHg 91±2.9 105±3.6
*
 71±4.3

*
 36±3.3

†
 97±4.5 90±1.8

†
 

EDP, mmHg 7±1.2 4±0.9 6 ±0.7 7±1.4 6±0.9 6±1.1 

LVDevP, mmHg 92±3.4 104±3.2 75±3.1
*
 34±4.0

‡†
 97±3.8 89±3.1

†
 

dP/dtmax, mmHg/s 10209±956 6393±191
*
 5647 ±529

*
 1702±153

‡†
 9782±544 8320±535

†
 

dP/dtmin, 

mmHg/s 
9143±490 6524±451

*
 4713 ±381

*
 1310±150

‡†
 7863±324

*
 7468±318 

Ea (mmHg/µL) 4.2±0.27 14.7±1.11
*
 3.5 ±0.30 10.3±1.01

‡†
 4.8±0.38 6.2±0.29

†
 

Tau-Weiss (msec) 7.0±0.52 9.2±0.55 9.6±0.46 20.4±2.04
‡†

 7.6±0.40 8.0±0.48 

 

Values present with means (±SEM). N=6 for each group. 
*
: P < 0.05, versus WT-Sham; 

†
: P < 

0.05 versus WT-CLP; 
‡
: P < 0.05 versus KO-Sham; 

§
: P < 0.05 versus TG-Sham. EF, ejection 

fraction; ESP, LV end-systolic pressure; EDP, LV end-diastolic pressure; LVDevP, LV 

developed pressure = Pmax-Pmin.  
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Increased β-arrestin2 Expression in Septic Heart 

           To investigate the anti-apoptotic effect of β-arrestin2, we first examined the expression 

level of β-arrestin2 in heart tissue following sepsis. Although elevated cardiac β-arrestin2 

expression was observed in both WT and β-arrestin2 TG mice during sepsis, β-arrestin2 

expression was still higher in TG mice (Fig. 2.4). The interference of β-arrestin2 expression from 

non-residential cells (blood cells, macrophages) in heart was minimized by sufficient saline rinse 

before and after tissue harvest.  
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Figure 2.4 β-arrestin2 expression in septic heart. The protein level of β-arrestin2 in saline rinsed 

heart tissue from mice 6h hour after treated with Sham or CLP were examined by Western blot 

with loading control GAPDH. Data are representative of at least three independent experiments. 

Values present means ± S.E.M.). *P < 0.05 were considered significantly different. 

 

Effect of β-arrestin2 on the Levels of Phospho-gp130 and Phospho-p38 MAPK following CLP 

               Glycoprotein 130 (gp130), a key signal transducer, has been considered to be involved 

in sepsis (24). Hence, we studied gp130 activation in the myocardium of β-arrestin2 KO and β-

arrestin2 TG and WT mice following CLP. At 6 h after CLP, the levels of gp130 Ser782 

phosphorylation were significantly enhanced in septic WT and β-arrestin2 KO mice compared 

with their control mice (Fig. 2.5A). Interestingly, the activation of gp130 was strikingly 

decreased in β-arrestin2 TG septic mice as compared with WT and β-arrestin2 KO mice.  

            We recently reported that β-arrestin2 inhibits Toll-like receptor 4 by targeting p38 in 

lipopolysaccharide-stimulated cell culture studies (18). The effect of β-arrestin2 on p38 

activation (phospho-p38) in sepsis remains to be elucidated. In the present study, we tested 

whether p38 activation can be modulated by β-arrestin2 in the myocardium of CLP mice. Fig. 

2.5B shows that CLP-induced sepsis significantly enhanced the level of phospho-p38 in WT and 

β-arrestin2 KO mice, compared with sham control. Notably, overexpression of β-arrestin2 

prevented CLP-enhanced myocardial phospho-p38 levels. 
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Figure 2.5 Overexpression of β-arrestin2 in mice blocks CLP-induced the levels of gp130 and 

p38 phosphorylation. WT, β-arrestin2 KO and β-arrestin2 TG mice (N = 6 per group) were 

subjected to CLP or sham operations as in Fig. 2. After cardiac functional analysis, hearts were 

harvested and cellular proteins were prepared. The levels of phosphorylation of gp130 (A) and p 

38 (B) were determined by Western blot with specific antibodies. Representative results are 

shown above the graph. *P < 0.05. 

      

Results showed p38 and gp130 can still be phosphorylated in inflammation-induced myocardial 

depression in the absent of β-arrestin 2, which is consisted with the impaired cardiovascular 

function in both WT and β-arrestin 2 knockout mice. Results of β-arrestin 2 knockout suggested 

* 
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β-arrestin 2 was not an essential mediator in the development of uncontrolled inflammation. 

Further than that, WT level of β-arrestin 2 expression was unable to prevent the CLP-induced 

stimulation of signaling transduction pathways mediated by p38 and gp130. Only β-arrestin 2 

overexpression before sepsis showed positive results in anti-inflammation. 

       Phosphorylation of gp130 on Ser782 accelerated the internalization of membrane-bound 

gp130 (28).  Our results showed correlated beta-arretin2 overexpression and phosphorylation of 

gp130 in TG mice following sham treatment, which indicated a ligand-independent regulation of 

IL-6 receptors by β-arrestin 2. 

      Our results suggested lowered threshold for the activation of p38 due to overexpression of β-

arrestin 2. Therefore, the mild stimulation of sham treatment was able to moderately enhance p38 

phosphorylation in TG mice compared to WT and knockout mice. The molecular mechanism 

between β-arrestin 2 and p38 is unknown. 

 

The Effect of β-arrestin2 on STAT3 Phosphorylation after Sepsis. 

         To understanding the signaling pathway downstream to gp130, we then examined levels of 

phosphorylated STAT3 (Tyr705 and Ser727), a possible effector of gp130 mediated signaling 

pathway in septic myocardium (24).  

          Results showed STAT3 phosphorylation at Tyr705 was dampened in KO mice (Fig. 2.6.), 

indicating β-arrestin 2 was required in STAT3 Tyr705 phosphorylation. STAT3 Ser727 

phosphorylation was enhanced in all three genotypes after CLP including KO group, suggesting 

the involvement of β-arrestin 2 independent inflammatory signaling pathways.  

          In consist with increased gp130 phosphorylation in TG mice with sham treatment, 

increased STAT3 phosphorylation on Ser727 was also observed. 
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However, STAT3 phosphorylation on Tyr705 was not elevated in TG sham group.  

The unbalanced STAT3 phosphorylation on two sites suggested different signaling transduction 

pathways were involved. 

 

                                                                                              

Figure. 2.6. β-arrestin2 expression promotes anti-apoptotic STAT3 activation after sepsis. Total 

or phosphorylation level of STAT3 were examined by Western blot with loading control 

GAPDH. Data are representative of at least three independent experiments. Values present 

means (±S.E.M.). *: P < 0.01. 

 

The Effects of β-arrestin 2 on ERK and JNK Phosphorylation after Sepsis. 
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      As shown in results above, p38 MAPK activation was regulated by β-arrestin 2. To explore 

possible downstream effectors of β-arrestin 2 after CLP-induced myocardial dysfunction, we also 

examined the phosphorylation level of ERK and JNK. Increased activation of both ERK and 

JNK activation was observed after CLP-induced sepsis. However, the results of phosphorylation 

were not correlated the expression level of β-arrestin 2 in both sham and CLP treated conditions 

(Fig. 2.7). Therefore, at the time point of 6 hour after CLP, ERK and JNK were unlikely the 

downstream effectors of β-arrestin 2. 

 

 

Figure 2.7  The role of  β-arrestin 2 in CLP-induced ERK and JNK phosphorylation . WT, β-

arrestin 2 KO, and β-arrestin 2 TG mice (N = 6 per group) were subjected to CLP or sham 

operations as in Fig. 2. After cardiac functional analysis, mice hearts were harvested and cellular 
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proteins were prepared. The levels of phosphorylation of ERK (A) and JNK (B) were determined 

by Western blot with specific antibodies. Representative results are shown above the graph. *P < 

0.05.  

 

Cardiac Preload was Maintained in β –arrestin2 Overexpression Mice after CLP Induced Sepsis 

in Echocardiography Studies. 

      In order to measure heart function in a non-invasive manner, echocardiography was 

performed on β –arrestin2 KO, TG and WT mice before and after CLP induced sepsis. The 

results were consist with invasive measurements in that β –arrestin2 TG mice showed preserved 

cardiac preload (LVEDD) compared to KO and WT mice (Table 2) . 

 

IL-6 expression is not Affected in β –arrestin2 Overexpression Mice after CLP induced sepsis. 

         IL-6 is a potent cardiomyocyte depressor, which is vigorously produced in early sepsis. 

Directed myocyte contractility inhibition was observed in serum containing IL-6, while the 

inhibitory effect is absent in serum containing only TNFα or IL-1β (36-37). Sequestering IL-6 by 

antibodies could restore myocyte contractility. Therefore targeting IL-6 expression or 

downstream signaling conductors may provide therapeutic effects on SIMD. IL-6-induced 

myocyte depression and dampened inotropic responsiveness is reversible by p38 inhibition in 

isolated human myocytes. Cardiomyocytes overexpressing mutant p38 are resistant to IL-6 

induced myocyte depression, which indicated the requirement of activated p38 for the 

deleterious effect of IL-6. Additionally, our previous study showed β-arrestin2 inhibited Toll like 

receptor 4 via targeting p38 MAPK in LPS stimulated cell culture studies (18). Increased cell 

survival after nutrient deprivation is also indicated in β-arrestin2 transfected cells, inhibited p38 

phosphorylation was observed. We hypothesis β-arrestin2 overexpression may regulate IL-6 
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pathway through p38 in CLP induced sepsis. In this study, we found that IL-6 levels in all three 

genotype groups were increased 6 h after sepsis (Fig. 2.8) 

Table 2. Beta-arrestin-2 over-expression affected cardiac preload (venous return) in mice 

during sepsis induced by cecal ligation and puncture. 

 
Time Relative to Cecal Ligation and Puncture 

WT KO TG 

Index Before After Before After Before After 

Heart rate, 

beats/min 
505 ±38 462 ± 78 500 ± 59 363 ± 38

b
 492 ± 32 500 ± 45 

Ejection 

fraction, % 
54 ± 6 57 ± 13 57 ± 2 60 ± 14 57 ± 8 67± 11 

FS, % 27.3 ± 3.73 29.0 ±8.06 29.5 ± 1.68 31 ± 11.31 29.8 ±5.07 36.4 ± 7.55 

LVEDD, mm 3.8 ± 0.27 2.9 ± 0.51
a
 3.9 ± 0.07 2.2 ± 0.38

b
 3.8 ± 0.11 3.1 ± 0.48 

LVESD, mm 2.8 ± 0.31 2.1 ± 0.60
a
 2.8 ± 0.07 1.6 ± 0.38 2.7 ± 0.26 2.0 ± 0.47 

LVEDV, µL 64± 11 32 ± 13
a
 66 ± 3 18 ± 7 63 ± 8 40 ± 15 

LVESV, µL 30 ± 8 14. ± 11
a
 28 ± 2 7 ± 3 26 ± 6 16 ± 10 

Stroke 

volume, µL 
33 ± 4 18 ± 4

a
 38 ±3 10. ± 5

b
 37 ± 3 24. ± 5

b
 

Cardiac 

output, µL 

/min 

16800 ± 

1816 

7879 ± 

1877
a
 

18739 ± 

1907 

3756 ± 

1654
b
 

18291 ± 

1631 

12209 ± 

2681
b
 

 

Data are mean ± SEM. There were 9 mice in each group. Cardiac function was measured by 

echocardiography before and 6 hours after cecal ligation and puncture. Abbreviations: FS, 

fractional shortening index; LVEDD, left ventricular end-diastolic diameter; LVESD, left 

ventricular end-systolic diameter; LVEDV, left ventricular end-diastolic volume; LVESV, left 

ventricular end-systolic volume. 
a
 P < 0.05, compared with before CLP in WT group. 

b
 P < 0.05, 

compared with after CLP in WT group. 
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Figure 2.8. IL-6 serum levels were examined by ELISA. Serum was collected from WT, β-

arrestin2 KO and β-arrestin2 TG mice 6h after CLP. Cytokine level was measured in serum 

using ELISA. Values present means ± SEM, n=4 for CLP and Sham groups in IL-6 level 

analysis. 
#
P < 0.05 were considered significantly different. 

 

Decreased Cardiomyocyte Apoptosis in β –arrestin2 Overexpression Mice                   

        TUNEL staining was used to evaluate apoptosis in heart tissue. We found 27% apoptotic 

cells in WT, 29% in KO but only 15% in TG tissues after sepsis (Fig. 2.9). These data are 

consistent with the report that heart function change in early sepsis could predict prognosis since 

TG mice showed better cardiac performance. 
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Figure 2.9. Overexpression of β-arrestin2 attenuated sepsis-induced apoptosis in the heart. WT, 

β-arrestin2 KO and β-arrestin2 TG mice were subjected to CLP or Sham operations, and then 

sacrificed 6 h later. Apoptotic cells from heart section were examined by TUNEL staining (A). 

Dark brown spots represent apoptotic nuclei and red spots represent normal nuclei. Arrows point 

to the representative apoptotic nuclei. Bar scale 50µm. B, statistical analysis of TUNEL positive 

cells. n=3 for each group. Values present means ±SEM.
 #
 P <0.05, compared to Sham group; 

a
 P 

<0.05, compared to WT group; 
b
 P <0.05, compared to KO group. P <0.05  were considered 

significantly different. 
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Discussion 

          Sepsis is a major clinical problem, and the mortality rate is over 40 percent (1,3). Sepsis is 

the No.1 cause of morbidity and mortality in intensive care units (ICUs), and about 60% of 

patients admitted to the ICU have cardiac dysfunction (2-4,23). Cardiac dysfunction plays a 

fundamental role in the high morbidity and mortality of this condition (2-4,23 ). Thus, it is urgent 

to elucidate the mechanisms by which sepsis modulates cardiac dysfunction and generate more 

efficient ways to improve the prognosis. In this study, we have demonstrated that β-arrestin2 

plays a critical role in the regulation of sepsis-triggered cardiac dysfunction through gp130 and 

p38 MAPK. Following sepsis, overexpression of β-arrestin2 in mice increases animal survival. 

Importantly, β-arrestin2 overexpression in mice abolishes sepsis-induced cardiac dysfunction. 

The role of β-arrestin2 in regulating gp130 and p38 MAPK activation is significant, as β-

arrestin2 overexpression results in lower gp130 and p38 phosphorylation after sepsis stimulation. 

Our results implicate that overexpression of β-arrestin2 may form the basis of a new strategy for 

the clinical treatment of sepsis.  

      Increasing evidence suggests that β-arrestin2 can modulate inflammatory responses through a 

few mechanisms. For instance, β-arrestin2 modulates immune functions during the development 

of allergic asthma (25). Another prior study indicates that β-arrestin2 participates in the 

regulation of inflammatory responses in sepsis (26). In previous studies, sepsis was associated 

with decreased cardiac output, decreased end diastolic volume or diastolic diameter, and 

decreased ejection fraction (EF). Decreased heart contractility was found 18 h as well after CLP 

using Millar instruments for cardiac functional analysis (23). In our study, WT mice showed 

significant cardiac dysfunction 6 hours after CLP, consistent with results of these studies (23,27). 

Impaired vascular contractility and decreased sympathetic tone in sepsis has been demonstrated 



 

 46 

in several studies (3,27).  In this study, we also confirmed the involvement of vascular factors by 

echo-cardiovascular measurement before CLP and 6 hours after CLP (n = 9). We found 

decreased cardiac output after sepsis, most likely due to combined cardiomyocyte dysfunction 

and decreased cardiac preload. The decreased mortality and preserved cardiac function in β-

arrestin2 overexpression mice suggests that agents increasing β-arrestin2 expression may protect 

the cardiac and vascular system from sepsis-induced injury. In the present study, we found that 

overexpression of β-arrestin2 increases animal survival in sepsis. Notably, a new and novel role 

for β-arrestin2 was revealed in the prevention of sepsis-induced cardiac dysfunction. Thus, 

attenuation of cardiac dysfunction might be a primary mechanism by which β-arrestin2 enhances 

animal survival during sepsis. While investigating the role of β-arrestin 1 in cardiac dysfunction 

induced by sepsis beyond the scope of the current study and will be elucidated in future research. 

            Cardiac β-arrestin2 expression in TG mice is around two fold of that found in WT mice 

without CLP with increased β-arrestin2 expression after CLP in both TG and WT mice.  It may 

be a self-protective mechanism to increase the protein level of β-arrestin2 during inflammatory 

injury. This study showed moderately attenuated cardiac dysfunction in WT mice compared to 

significantly compromised cardiac function β-arrestin2 KO mice.  However, elevated β-arrestin2 

expression in WT mice is not associated with significantly improved final survival rate. These 

results suggest increasing β-arrestin2 expression before CLP may be more important for 

prognosis. 

          In this study, we examined phosphorylation of gp130, a key signal transducer. We found 

that significantly decreased levels of gp130 phosphorylation in the myocardium in β-arrestin2 

TG mice following CLP while the opposite results shown in WT and β-arrestin2 KO mice. 

Gp130 phosphorylation at Ser782 is involved in the internalization of membrane-bound gp130 
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(28). Recent studies have shown that β-arrestin2 functions as an adaptor to connect the receptors 

to the cellular trafficking machinery, such as scaffolding GPCRs activation (18,22), as well as 

the signal transduction not related to GPCRs such as Toll-like receptors (8,18,30–33).  Beside its 

function in facilitating receptor internalization, β-arrestin2 can scaffold different sets of 

molecules that lead to distinct and even opposite effects on the same signaling cascade dependent 

on the receptor activated (29, 30). Our studies show that in the septic animal model, the 

overexpression of β-arrestin2 reduces phospho-gp130, associating with more survival. Our 

results suggest a possible connection between β-arrestin2 and gp130 internalization. Our studies 

did not determine the specific membrane receptors that are involved in the modulation of β-

arrestin2 phosphorylation gp130 in sepsis. Identifying the specific membrane receptors is beyond 

the scope of the current study and will be investigated in future.. 
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 Figure 2.10. The predicted role of β-arrestin2 in septic heart. β-arrestin2 overexpression may 

positively regulate STAT3 phosphorylation via inhibiting p38 phosphorylation and subsequent 

gp130 phosphorylation (internalization) through unknown mechanisms. ETC: electron transport 

chain; ROS: reactive oxygen species; GPCR: G protein coupled receptor; solid arrow: direct 

effect; dashed arrow: indirect effect; ?: unknown mechanisms. 

         IL-6 is continuously expressed and maintained at high levels after sepsis; thereby it serves 

as a better clinical molecular marker than IL-1β and TNFα in determining the severity of this 

disease, especially for heart dysfunction (36-37). The controversy on expression levels of 

cytokines after CLP mostly likely due to the different time point of the measurement, the 

sensitivity of the cytokine measurement kit/instrument, or the severity of the sepsis model.  In 

this study, serum IL-6 level was about 20ng/ml 6 h after CLP and unexpectedly uniform within 

and between different genotypes, which indicates the initiation of IL-6/ IL-6R/ gp130/JAK2 

/STAT3 pathway is beyond the regulation of β-arrestin2. Recently, β-arrestin2 has been reported 

to regulate the internalization and signaling transduction of chemokine receptors during 

inflammation. In this study, we established a connection between β-arrestin2 and gp130, a 

common IL-6 receptor and functional signal transducer. We found β-arrestin2 overexpression 

inhibited gp130 Ser782 phosphorylation that might result in decreased receptor internalization 

and increased downstream STAT3 activation.     

          STAT3 has been revealed to induce tumor genesis in a Ras-dependent manner (32). But 

the anti-apoptotic effect of STAT3 is beneficial for an acute inflammatory response. STAT3 is 

the downstream effector of various signaling cascades including but not limited to the IL-6-

mediated pathway. Therefore, the enhanced STAT3 Tyr705 phosphorylation may be the 

combined result of JAK2 and other tyrosine kinases such as Src (33-35). Our result also 
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indicated β-arrestin2 scaffold protein Akt is not the principal regulator for STAT3 on Ser727 

activation in cytoplasm. It would be interesting to investigate whether β-arrestin2 could interact 

with STAT3. 

       P38 and ERK, members of the MAPKs family, are essential cellular protein kinases. They 

can be activated by a series of extracellular signals and then induce cell responses, including cell 

proliferation, differentiation, survival and apoptosis (22). Activation of p38 and ERK modulates 

different cell responses depending on the stimulus (22, 31). However, the effect of β-arrestin2 on 

p38 and ERK activation in sepsis remain to be established. In the current study, we observed that 

CLP significantly induced p38 phosphorylation in the myocardium in WT and β-arrestin2 KO 

mice. Interestingly, the level of phospho-p38 was diminished in β-arrestin2 TG mice following 

CLP. However, we observed that β-arrestin2 was not involved in ERK phosphorylation in the 

myocardium following CLP. All together, these results suggest that β-arrestin2 may specifically 

decrease myocardial p38 phosphorylation during sepsis (Fig 2.10.).  

      Previous studies have suggested p38 as a crucial modulator for gp130 Ser782 

phosphorylation and internalization in the crosstalk between IL-1β and IL-6 signaling pathways 

during inflammation (28). In acute inflammation of sepsis, overestimation of the IL-6 signaling 

pathway, which is mediated by gp130, could be negatively regulated by the activation of p38. On 

the other side, p38 activation could be controlled by β-arrestin 2 in various conditions. Without 

inflammation, stress-induced p38 activation could be facilitated by the overexpression of β-

arrestin 2, which might serve as an explanation for moderately increased p38, gp130, and STAT3 

phosphorylation in the sham group of transgenic mice. During sepsis, p38 activation could be 

achieved by β-arrestin 2 dependent as well as β-arrestin 2 independent pathways, followed by 

accelerated gp130 phosphorylation/internalization and STAT3 activation. However, we suspect 
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an opposite function of β-arrestin 2 on p38 activation, when the accumulation of β-arrestin 2 

exceeds the threshold, which could serve as a signal or a direct effector for the suppression of 

p38 activation. At 6 hour after CLP, the suppression of p38 action was first achieved in β-

arrestin 2 transgenic mice. Although the network among p38, β-arrestin 2, and gp130 could be 

complicated and variable in the development of sepsis, evidence revealed from this work could 

still serve as a useful clue for future studies.       

       In summary, the data presented herein demonstrated for the first report, to the best of our 

knowledge, a vital role for β-arrestin2 in sepsis-induced cardiac dysfunction. The protective 

effects could be mediated at least partially by down-regulation of gp130 and p38 activation in β-

arrestin2 TG mice. These findings implicate the beneficial effect of β-arrestin2 overexpression in 

sepsis and open a novel promising target for the management of sepsis. 
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Abstract 

        Stem-cell antigen 1–positive (Sca-1+) cardiac stem cells (CSCs), a vital kind of CSCs in 

humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5’-

azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β-

arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the 

function of β-arrestin2 in Sca-1+ CSC differentiation, we used β-arrestin2-knockout mice and 

overexpression strategies. Real-time PCR revealed that β-arrestin2 promoted 5’-azacytizine-

induced Sca-1+ CSC differentiation in vitro. Because the microRNA 155 (miR-155) may 

regulate β-arrestin2 expression, we detected its role and relationship with β-arrestin2 and 

glycogen synthase kinase 3 (GSK3β), another probable target of miR-155. Real-time PCR 

revealed that miR-155, inhibited by β-arrestin2, impaired 5’-azacytizine-induced Sca-1+ CSC 

differentiation. On luciferase report assay, miR-155 could inhibit the activity of β -arrestin2 and 

GSK3β, which suggests a loop pathway between miR-155 and β-arrestin2. Furthermore, β-

arrestin2-knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β was 

inhibited in β-arrestin2-knockout mice, so the activity of GSK3β was regulated by β-arrestin2 

not Akt. We transplanted Sca-1+ CSCs from β-arrestin2-knockout mice to mice with myocardial 

infarction and found similar protective functions as in wild-type mice but impaired arterial 

elastance. Furthermore, low level of β-arrestin2 agreed with decreased phosphorylation of Akt 

and increased phosphorylation of GSK3β, similar to in vitro findings. The β-arrestin2/miR-155/ 

GSK3β pathway may be a new mechanism with implications for treatment of heart disease. 
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Introduction 

            Acute myocardial infarction, characterized by the irreversible necrosis of cardiac cells, 

causes a significant number of deaths every year. The clinical trials of stem cells transplantation 

have not been consistent because these cells either do not differentiate into cardiac cells or 

differentiate into only limited number of cardiac cells. More recently, direct differentiation of 

resident cardiac stem cells (CSCs) into cardiomyocytes has given new hope for myocardial 

regeneration (1–3). However, the mechanisms of CSCs differentiation into cardiomyocytes are 

little known. 

          Several kinds of resident CSCs, including stem-cell antigen 1–positive (Sca-1+), c-kit+ 

and side-population cells, have been identified in adult hearts (2, 4). Transplantation of Sca-1+ 

into the infarcted area of hearts promotes cardiac repair (5, 6), which indicates a key role of Sca-

1+ resident CSCs in CSC differentiation and therapy. Recently, Sca-1+ cells were found to 

different into cardiomyocytes after treatment with 5-azacytidine (5aza) in vitro (7, 8), this model 

helps in exploring the underlying mechanisms of Sca-1+ cell differentiation into cardiomyocytes. 

        β-arrestins, abundantly expressed in cardiac muscle, are well- known negative regulators of 

G-protein-coupled receptor signaling and function as scaffold proteins to modulate G-protein-

independent signal cascades. β-arrestins consist of two proteins: β-arrestin1 and β-arrestin2 

(Arrb2). The expression of Arrb2 is induced in the failing heart (9), and recent studies point to 

the beneficial role Arrb2 plays in the heart (10). However, the direct function and the mechanism 

of Arrb2 mediated Sca-1+ CSC differentiation is not known yet. 

          MicroRNAs (miRNAs) are small 20- to 24-nt non-coding RNAs found in diverse 

organisms. They have a broad impact on gene expression via translational repression or post-

transcriptional suppression (11). TargetScan analysis showed that many miRNAs might regulate 
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Arrb2. MiR-155 is a probable miRNA regulating Arrb2. Furthermore, miR-155 was greatly 

down-regulated in a myocardial infarction model (12, 13), so miR-155 might have a protective 

function in cardiac injury. However, whether miR-155 participates in Arrb2–regulated Sca-1+ 

cell differentiation is not clear. 

         In this study, we explored the mechanism of Arrb2 mediated Sca-1+ CSC differentiation, 

and found β-arrestin2/miR-155/GSK3β pathway regulates transition of 5’-azacytizine-induced 

Sca-1+ cells to cardiomyocytes, which might be a new target for the treatment of heart disease. 
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Material and Methods 

Regents 

         5aza and PKH2 green fluorescent cell linker kit were obtained from Sigma-Aldrich (St. 

Louis, MO, USA). Lipofectamine 2000, and SYBR GreenER were from Invitrogen (Grand 

Island, NY, USA). The MMLV reverse transcription system and dual luciferase reporter assay 

system were from Promega (Madison, MI, USA). TaqMan MicroRNA Assay, TaqMan 

MicroRNA Reverse Transcription kit, and TaqMan Universal PCR Master Mix were from 

Applied Biosystems (Foster, CA, USA). Anti- bodies, including total and phospho-GSK-3β (Ser 

9), total and phospho- Akt (Ser 473), were from Cell Signaling Technology (Beverly, MA, 

USA). Biotinylated Sca-1 antibody was from BD Biosciences (San Jose, CA, USA). Antibodies 

for GAPDH and Arrb2 were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The 

cardiac troponin T (cTnT) antibody was from Abcam (Cambridge, UK). GSK-3β inhibitor 

SB216763 was from Tocris Bioscience (Bristol, UK). 

Animals 

         10–12 weeks Arrb2-KO mice on a C57BL/6J background were provided by Dr. Robert J. 

Lefkowitz (Duke University Medical Center, Durham, NC). Wild-type (WT) C57BL/6J male 

mice were obtained from the Jackson Laboratory (Bar Harbor, ME, USA). All mice were 

maintained in the Division of Laboratory Animal Resources at East Tennessee State University 

(ETSU), a facility accredited by the Association for the Assessment and Accreditation of 

Laboratory Animal Care International. Animal care and experimental protocols were approved 

by the ETSU Committee on Animal Care. 
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Cell Culture 

          Cardiac Sca-1+ cells were isolated by magnetic cell sorting from C57BL/ 6 or Arrb2 

knockout mice (10- to 12-week-old, C57BL/6 background) with about 98% purity, as described 

previously (14). Briefly, hearts from adult mice were treated with 0.1% collagenase for 30 min. 

followed by filtering through 80 µm mesh. To separate Sca-1+ cells, cells were incubated with 

biotinylated anti-Sca-1 antibody (BD Biosciences) for 15 min. on ice and washed with IMag 

buffer (consisting of PBS with 0.5% bovine serum albumin and 2 mM EDTA) followed by 

incubation with streptavidin-conjugated particles for 30 min. on ice. Newly isolated cardiac Sca-

1+ were cultured on 1% gelatin-coated dishes with Iscove’s modified Dulbecco’s medium 

supplemented with 10% fetal bovine serum (FBS), 100 µg/ml penicillin, and 250 µg/ml 

streptomycin at 37°C in humid air with 5% CO2. The separated Sca-1+ CSCs were lack of the 

hematopoietic stem cell markers CD45 and CD34 (also a marker of endothelial progenitor cells) 

and hematopoietic transcription factors Lmo2, Gata2 and Tal (2). At 1 day after seeding, cells 

were treated with 10 µM 5aza for the first 3 days; the medium was changed every 3 days. The 

dose and time of treatment with 5aza was reported previously (7, 8). Human HEK293T cells 

were purchased from American Type Culture Collection (USA). 

 

Cell Transfection and Plasmids 

          Sca-1+ cells (3.5 ×10
5
) in 350 µl gene pulse electroporation buffer with 40 µg/ml DNA 

were transferred into a 0.4-cm cuvette. After a pulse at 200 V, 250 µF, 1000 Ω, 10 ̋ with Bio-Rad 

MXcell (Bio-Rad, Hercules, CA, USA), cells were transferred to 1% gelatin-coated wells of a 

24-well tissue culture plate containing 500 µl growth medium. Cells were incubated with 

Iscove’s modified Dulbecco’s medium supplemented with 10% FBS and 10 µM 5aza for the first 
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3 days, then normal culture medium. Arrb2 full-length and control vectors were generous gifts 

from Dr. Gang Pei (Shanghai Institutes for Biological Sciences). 

Real-time PCR (RT-PCR) 

               Total RNA was extracted and reverse-transcribed into cDNA. Quantified RT-PCR was 

involved use of SYBR GreenER on the Bio-Rad PCR instrument. PCR reaction conditions were 

according to the standard protocol. GAPDH was used as an endogenous control. All real-time 

PCR reactions were performed in triplicate, and relative quantification involved the Delta Delta 

Ct method (95% CI). All primer sets were subjected to a dissociation curve analysis and 

produced single peaks on a derivative plot of raw fluorescence. Primer sequences for MYH6, 

GATA4, cTnT and β-actin were as described (15). 

 

Western Blot Analysis 

          Total proteins were extracted by use of RIPA lysis buffer (Pierce Biotechnology, 

Rockford, IL, USA). Samples containing equal amounts of protein were separated by 8% SDS-

PAGE and transferred onto Hybond ECL membranes (Amersham Pharmacia, Piscataway, NJ, 

USA), which were incubated overnight at 4°C with the appropriate primary antibodies (1:1000), 

then incubated 1 hr at RT with peroxidase-conjugated secondary antibodies (1:5000). Blots were 

exposed to the SuperSignal West Dura Extended Duration substrate (Pierce). Signals were 

quantified by scanning densitometry with the Bio-Image Analysis System (Bio-Rad). 

 

Luciferase Reporter Assay 

          HEK293T cells were seeded on 96-well plates the day before transfection in antibiotic-free 

medium. Cells were cotransfected with 60 ng miR-155 plasmid or control plasmid and 100 ng 
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psicheck2 3’-UTR-WT (WT Arrb2 or GSK3β 3’-UTR) or psicheck2 3’-UTR-MUT (mutant 

miR-155 target site in Arrb2 or GSK3β 3’-UTR) by use of Lipofectamine 2000 (Invitrogen). 

After 48 hrs, cells were collected for luciferase assay with the Dual Luciferase Assay kit on a 

Modulus microplate. MiR-155 and control plasmids were generous gifts from Dr. Yangchao 

Chen (Chinese University of Hong Kong). Luciferase constructs were generated by Geneway 

Biotech Co. (Shanghai, China). Briefly, the entire 3’-UTR or 3’-UTR-MUT of Arrb2 and GSK-

3β genes were cloned into pBluescript SK vector and then cloned into psicheck2 vector. 

 

Immunofluorescent Staining 

         Cells or tissue slides were fixed with 3.7% formaldehyde in PBS for 20 min. at RT and 

stained with anti-cTnT antibody, then Alexa fluor 546-conjugated secondary antibody 

(Molecular Probes, Eugene, OR, USA). Cells or slides were examined by use of the Olympus 

IX70 microscope. 

 

Myocardial Infarction-reperfusion (I/R) Injury and Cell Delivery 

           Male mice were anesthetized with 5% isoflurance and maintained by inhalation of 1.5% 

isoflurance driven by 100% oxygen flow and ventilated by use of a rodent ventilator. Myocardial 

infarction was induced as described (16). At 30 min. after left anterior descending ligation, 20 µl 

basal IMEM medium without cells (control group) or with 2×10
5  

Sca-1+ cells stained with 

PKH2 green fluorescent cell linker kit (cell injection group) were injected into the infarction and 

border zones of hearts by use of 29-gauge needles. After cell injection, hearts were reperfused 

for 1 hr, the chest was sutured with silk and all mice were allowed to recover. At 14 days after 

surgery, cardiac function was analyzed. Every group has six mice and sham mice were as a 
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control. At the end of the experiment, mice were killed, and hearts were collected for western 

blot analysis or were perfusion-fixed, embedded in paraffin, and cut transversely into 6–8 µm 

thick sections at the level of the papillary muscle. Sections were stained with anti-cTnT antibody 

and scanned. 

 

Cardiac Function Analysis 

          Cardiac function was detected by use of the SPR-839 instrument (Millar Instruments, 

Houston, TX, USA) (16). In anesthetized mice, systolic and diastolic arterial blood pressure was 

recorded by means of a microtip pressure transducer inserted into the right carotid artery. The 

catheter was then advanced into the left ventricle to measure cardiac functions in the closed-chest 

preparation. Then cardiac tissues were harvested for western blot and real-time PCR analyzes. 

 

Statistical Analysis 

         Data are reported as mean ± SEM and analyzed by one-way ANOVA followed by a Holm-

Sidak post hoc analysis. Differences were considered statistically significant at P < 0.05. 
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Results 

β-arrestin2 Promoted 5aza-induced Cardiac Myocyte Differentiation in CSCs 

        The expression of cardiomyocyte markers showed that 5aza induced cardiac myocyte 

differentiation in Sca-1+ CSCs at 3 weeks (Fig. 3.1A). So this time-point was used in our current 

study. Arrb2 was up-regulated at both mRNA and protein levels at 3 weeks after 5aza treatment 

(Fig. 3.1B and C). Furthermore, Arrb2 overexpression could increase the mRNA expression of 

MYH6 and cTnT on RT-PCR and the level of cTnT on immunofluorescence assay (Fig. 3.1D 

and E), which suggested that Arrb2 promoted 5aza-induced Sca-1+ cell differentiation to 

cardiomyocytes. 

         To evaluate whether 5aza-induced Sca-1+ cell differentiation was through Arrb2, we used 

Sca-1+ cells from Arrb2-KO mice. 5aza could not up-regulate the expression of cardiac cell 

markers MYH6, GATA4 and cTnT in Sca-1+ cells from Arrb2-KO mice as compared with WT 

mice (Fig. 3.1F), which suggests that 5aza induced Sca-1+ cell differentiation via an Arrb2–

dependent manner. Thus, we further determined the mechanisms responsible for Arrb2–

dependent differentiation of 5aza-treated Sca-1+ cells. 
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Figure 3.1. Effect of Arrb2 on 5’-azacytizine-induced differentiation of cardiac stem cells 

(CSCs) to cardiomyocytes. (A) Isolated Sca-1+ cells from wild- type (WT) mice were seeded 1 

day before cells were treated with 5’-azacytizine (5aza) at 10 µM. After 3 days’ treatment, cell 

culture medium was changed every 3 days for 2 and 3 weeks. Relative gene expression of 

cardiomyocyte markers including MYH6, GATA4, and cTnT were detected by RT-PCR. (B and 

C) isolated Sca-1+ cells from wild-type (WT) mice were treated with 5aza at 10 µM for 3 weeks. 

Arrb2 expression was determined by RT-PCR (B) and western blot analysis (C). (D and E) Sca-

1+ cells from WT mice were transfected with full-length Arrb2 or control vector. After 24 hrs, 

cells were treated with 5aza as in A; the level of cTnT was detected by fluorescence assay (D) 

and the expression of MYH6, GATA4 and cTnT by RT-PCR (E). (D) It shows phase-contrast 

(transmission) and fluorescence images. GFP shows transfected cells; scale bar = 15 µm. (F) 

Sca-1+ cells from WT and Arrb2-knockout (KO) mice were treated with 5aza as in A. Real-time 

PCR analysis of the mRNA levels of MYH6, GATA4, and cTnT. Data are mean ± SEM of three 

experiments. *P < 0.05; **P < 0.01. 
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MiR-155 Inhibited 5aza-induced Myocardiac Differentiation and was Regulated by β-arrestin2 

        MiR-155 is a potential regulator for Arrb2 expression as suggested by analysis with 

Targetscan. We found miR-155 level decreased in CSCs after 3 weeks of 5aza treatment (Fig. 

3.2A). To study the role of miR-155, we generated a construct expressing miR-155. 

Overexpression of miR-155 rescued the increased expression of the cardiac marker cTnT (Fig. 

3.2B), so miR-155 inhibited the myocardiac differentiation. 

          To determine the relationship between miR-155 and Arrb2, we detected the changes in 

miR-155 level in Arrb2–transfected Sca-1+ CSCs by RT-PCR. Arrb2-KO inhibited the level of 

miR-155 in WT cells (Fig. 3.2C), which supports a relationship between Arrb2 and miR-155. 
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Figure 3.2 MiR-155 inhibits 5aza-induced differentiation of CSCs into cardiomyocytes through 

Arrb2. (A) RT-PCR analysis of the expression of miR-155 in Sca-1+ cells from WT mice treated 

as in Figure 3.1A. (B) Sca-1+ cells from WT mice were transfected with miR-155 plasmid or 

empty plasmid control. After 24 hrs, cells were treated with 5aza and the expression of MYH6 

and cTnT was examined by RT-PCR. (C) Sca-1+ cells from WT and Arrb2-KO mice were 

treated with 5aza and miR-155 expression was examined as in A. Data are mean ± SEM of three 

experiments. **P < 0.01. 

 

          The potential target site for miR-155 interaction is at nucleotides 145-151 of the mouse 

Arrb2 3’-UTR as suggested by analysis with Targetscan (Fig. 3.3A). To test whether miR-155 

could directly target the 3’-UTR of Arrb2 mRNA in a sequence-specific manner, we generated a 

luciferase construct harbouring a potential binding site for miR-155 and produced a mutant 

construct with potential target sites mutated (Fig. 3.3B). Luciferase activity decreased 

significantly in cells transfected with luc-β-arrestin2 on cotransfection with miR-155, with no 
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significant difference in luciferase activity on cotransfection with the mutated construct and miR-

155 (Fig. 3.3C). So miR-155 might target Arrb2 and inhibit its expression, but because Arrb2 

will inhibit the expression of miR-155. Thus, there is a loop pathway between Arrb2 and miR-

155 to maintain the function of Arrb2 promoting CSC differentiation. 

 

Figure. 3.3 Arrb2 is a miR-155 target. (A) Sequence alignment of miR-155 and its target site in 

the 3’-UTR of Arrb2 (downloaded from http://www. targetscan.org). (B) The seed region of 

Arrb2 3’-UTR was mutated as indicated. (C) HEK293T cells were cotransfected with 60 ng 
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miR-155 plasmid or empty EGFP plasmid control and 0.1 µg psicheck2 3’-UTR- WT (WT 

Arrb2) or psicheck2 3’-UTR-MUT (mutant miR-155 target site in Arrb2 3’-UTR). Cells were 

collected 48 hrs after transfection and analyzed by dual luciferase reporter assay. The psicheck2 

vector that provided the constitutive expression of Renilla luciferase was cotransfected as an 

internal control. Data are mean ± SEM of four experiments. **P < 0.01. 

 

GSK3β is Required for 5aza-mediated Myocardiac Differentiation and Targeted by MiR-155 

          To clarify the downstream molecule of miR-155, we analyzed the function of GSK3β, 

another probable target of miR-155, determined via Targetscan, in 5aza-induced differentiation. 

Computational analysis indicated that miR-155 potentially targets mouse GSK3β at nucleotides 

4863-4869 and 265-271 (Fig. 3.4A). We generated luciferase constructs harboring two potential 

binding sites for miR-155 and produced a mutant construct with potential target sites mutated 

(Fig. 3.4B). Luciferase activity decreased significantly in luc-GSK3β–transfected cells on 

cotransfection with miR-155, with no significant difference on cotransfection with the mutated 

construct and miR-155 (Fig. 3.4C). So GSK3β is the target of miR-155.  
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Figure.3.4 MiR-155 targets GSK3β. (A) Two possible GSK3β sites could be targeted by miR-

155 as in Figure 3.3A. (B) The seed regions of GSK3β 3’-UTR were mutated as indicated. (C) 

Luciferase assay of psi- check2 3’-UTR-WT (WT GSK3β) or psi- check2 3’ -UTR-MUT 

(mutant miR-155 target site in GSK3β 3’-UTR) and others measured as in Figure 3.3C. Data are 

mean ± SEM of four experiments. **P < 0.01. 

 

           To determine the function of GSK3β, we treated Sca-1+ cells with its inhibitor, 

SB216763, at 10 µM, together with 5aza for the first 3 days. The effective concentration was as 

described previously and in our preliminary experiment (17). SB216763 could inhibit the 5aza-

induced expression of cardiac markers (Fig. 3.5A), which suggested that the activity of GSK3β 

was required for 5aza-mediated cardiomyocyte differentiation. 
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Figure. 3.5. GSK3β is involved in 5aza-induced differentiation of CSCs to cardiomyocytes. (A) 

Sca-1+ cells from WT mice were treated with 5aza as in Figure 3.1A and incubated with or 

without SB216763 at 10 µM for the first 3 days. The mRNA expression of MYH6 and cTnT was 

analyzed by RT- PCR analysis. (B) Sca-1+ cells from WT and Arrb2-KO mice were treated with 

5aza as in Figure 3.1A. The expression of total and phosphorylated Akt (p-Akt), total and p-

GSK3β were analyzed by western blot. (C) Quantification of p-Akt levels shown in B. protein 

level were normalized to AKT. (D) Quantification of p-GSK3β levels shown in B. protein level 

were normalized to GSK3β. Data are mean ± SEM of four experiments. *P < 0.05; **P < 0.01. 

 

5aza Promotes Sca-1+ cell Transition to Cardiomyocytes through an Arrb2/miR-155/GSK3 

Pathway 

          To analyze the signaling pathways involved in myocardiac differentiation, we examined 

the effect of Arrb2 on changes in GSK3β expression. 5aza inhibited the phosphorylation of 

GSK3β. However, Arrb2-KO in Sca-1+ cells promoted phosphorylation of GSK3β and inhibited 

its activity (Fig. 3.5B and D). Thus, Arrb2 participated in 5aza-induced CSC transition to 

cardiomyocytes by promoting GSK3β activation. Akt is a well-known upstream inhibitor of 

GSK3β activation. To exclude the function of Akt on GSK3β activation, we detected changes in 

Akt activity. Phosphorylation of Akt was increased in 5aza-treated CSCs, and Arrb2-KO in Sca-

1+ cells inhibited 5aza-induced activation of Akt. The mortality of the I/R model in mice is about 

40%. Because all the change rules are in contrast to the changes in AKT as the inhibitor to 

GSK3β (Fig. 3.5B and C), we concluded that Arrb2 promoted the activation of GSK3β by 

inhibiting miR-155 but not Akt. 
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Arrb2/miR-155/GSK3β Pathway in CSC-mediated Cardiac Repair 

         To determine the role of the Arrb2/miR-155/GSK3β pathway in CSC-mediated cardiac 

repair in vivo, we injected stem cells from WT and KO mice into the hearts of mice with 

myocardial infarction. After 2 weeks, immunofluorescence assay revealed that the injected Sca-

1+ cells could differentiate into myocardial cells (Fig. 3.6A). Arrb2 protein was expressed in 

Arrb2-KO mice after transfer of Sca-1+ CSCs from WT mice (Fig. 3.6B), which suggests that 

the transplanted cells could survive in the mice with myocardial infarction. Furthermore, in KO 

mice, the low protein level of Arrb2 caused low phosphorylation of Akt and high 

phosphorylation of GSK3β, which agrees with in vitro results (Fig. 3.6B). 

 

Figure 3.6. Arrb2/miR-155/GSK3β pathway is important in CSC-mediated cardiac repair. 

Isolated 2×10
5
 Sca-1+ cells from WT or Arrb2-KO mice were injected immediately into 

infarcted and border zones of the mouse heart after myocardial infarction (MI). Hearts were then 
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reperfused for 1 hr. After 2 weeks, 2-mm sections of hearts near the mid-ventricles were 

collected. (A) Fluorescence microscopy of hearts for WT mice with MI injected with WT Sca-1+ 

cells and stained with cTnT. Red shows cardiomyocytes; green shows injected Sca-1+ cells; blue 

shows DAPI- stained cell nuclei; scale bar, 40 µm; n = 6. (B) Western blot analysis of the 

expression of Arrb2, total Akt and p-Akt, and total and p-GSK3β. GADPH was a loading 

control. The column shows the quantification of the protein expression. Protein levels were 

normalized to GAPDH or total protein; n = 3; *P < 0.05; **P < 0.01 versus WT. 

 

        Cardiac function analysis showed that myocardial infarction (injected with medium) 

impaired cardiac function significantly as compared with the sham control (P < 0.01 versus 

sham), and trans plantation of Sca-1+ cells from WT mice could protect cardiac function, 

including ejection fraction, cardiac output, stroke volume and Vmax (P < 0.01 versus WT mice 

injected with medium). However, cardiac function measures did not differ with transplantation of 

Sca-1+ cells from Arrb2-KO and from WT mice, except for impaired indexes of arterial 

elastance and Tau-weiss (P < 0.01 versus WT mice injected with medium; P < 0.01 versus WT 

mice injected with WT Sca-1+ CSCs) (Table 3.1). 

          To exclude the affection of background expression of Arrb2 in WT mice, we transplanted 

WT or Arrb2 KO Sca-1+ CSCs to Arrb2 KO mice with myocardial infarction, high level of 

Arrb2 equal to better performance of cardiac function, including ejection fraction, cardiac output, 

stroke volume and Vmax (Table 3.2), which verified the important role of Arrb2 in heart repair. 

 

 

 

 

 



 

 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*
P

 <
 0

.0
1
 v

ersu
s sh

am
. †

P
 <

 0
.0

1
 v

ersu
s W

T
 m

ice in
jected

 w
ith

 m
ed

iu
m

. ‡
P

 <
 0

.0
1
 v

ersu
s W

T
 m

ice in
jected

 w
ith

 W
T

 ty
p
e 

S
ca-1

+
 cells. D

ata are m
ean

 ` S
E

M
 o

f six
 ex

p
erim

en
ts. H

R
: h

eart rate; E
F

: ejectio
n
 fractio

n
; L

V
D

P
 =

 E
S

P
-E

D
P

; E
S

P
: en

d
-

sy
sto

lic p
ressu

re; E
D

P
: en

d
-d

iasto
lic p

ressu
re; C

O
: card

iac o
u
tp

u
t; E

(a): arterial elastan
ce. 

 T
a

b
le

 3
 E

ffe
c

ts
 o

f S
c

a
-1

+
 C

S
C

s
 o

n
 th

e
 c

a
rd

ia
c

 fu
n

c
tio

n
 o

f w
ild

-ty
p

e
 m

ic
e

 w
ith

 m
y

o
c

a
rd

ia
l in

fa
rc

tio
n

 



 

 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*
P

 <
 0

.0
5
 co

m
p
ared

 w
ith

 w
ild

-ty
p
e sca-1

 in
jectio

n
. D

ata are m
ean

 ±
 S

E
M

 o
f six

 
ex

p
erim

en
ts. E

F
: ejectio

n
 fractio

n
; C

O
: card

iac o
u
tp

u
t. 

 T
a

b
le

 4
  E

ffe
c

ts
 o

f S
c

a
-1

+
 C

S
C

s
 o

n
 th

e
 c

a
rd

ia
c

 fu
n

c
tio

n
 o

f A
rrb

2
-K

O
 m

ic
e

 w
ith

 m
y

o
c

a
rd

ia
l in

fa
rc

tio
n

 



 

 83 

Discussion 

          Recently, both experimental and clinical findings have revealed that the heart can replace 

cardiomyocytes throughout life, but this response is inadequate to compensate for major injuries 

such as myocardial infarction (18). So resident CSCs could be stimulated to differentiate into 

cardiomyocytes. Resident Sca-1+ CSCs, existing in humans and mice (4, 19), have therapeutic 

functions on the heart because of their differentiation potential. We used the 5aza-induced 

differentiation model in vitro, and showed that Arrb2 could promote the differentiation of Sca-1+ 

cells to cardiomyocytes, which suggested an important role of Arrb2 in Sca-1+ cell transition and 

promoted us to explore the mechanisms of Arrb2 mediated Sca-1+ CSCs transition to 

cardiomyocyte. As 5-Azacytidine can induce gene expression through demethylation (20), we 

deduced that 5-Azacytidine regulated β-arrestin2 expression by decreasing the degree of 

methylation of the β-arrestin2 gene or other genes. In this study, we focused on the pathway 

regulated by β-arrestin2, but how 5-Azacytidine regulated β-arrestin2 expression still needs 

further research. 

          MiR-155, a well-known multifunctional miRNA, was indicated to play a crucial role in 

various physiological and pathological processes such as hematopoietic lineage differentiation, 

immunity, inflammation, cancer, and cardiovascular diseases (21), but its role in CSC 

differentiation is not clear. Our results showed that miR-155, the predicted regulator of Arrb2, 

inhibited the 5aza-induced differentiation of Sca-1+ cells to cardiomyocytes and was regulated 

by Arrb2. So miR-155 might locate downstream of Arrb2. However, dual luciferase reporter 

assay showed that miR-155 also inhibited the expression of Arrb2. We suggest a loop pathway 

between miR-155 and Arrb2, which explains the mechanism for its participation in regulating 

cardiovascular diseases. 
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           As the downstream of Arrb2 and the target of miR-155, GSK3β promoted the 5aza-

induced murine Sca-1+ cell differentiation. This result is the same as its role in cardiomyocyte 

differentiation of murine bone marrow-derived mesenchymal stem cells (22). Although GSK3β 

is regulate by Arrb2 in cell apoptosis and target by miR-155 in T-cell proliferation has been 

reported (5, 23), we analyzed the relationship among the three factors, and explored the 

important roles of Arrb2/miR-155/GSK3β pathway in cardiomyocyte differentiation of Sca-1+ 

cell. Furthermore, we verified that AKT and GSK3β are down- stream of β-arresin2. However, 

GSK3β activity was not affected by Akt phosphorylation as usual. As the protected function of 

GSK3β to regional myocardial ischemia/reperfusion injury has been verified (24, 25), so the 

Arrb2/miR-155/GSK3β pathway might be a new tar- get for CSC-mediated cardiac repair. 

We transplanted CSCs from WT or Arrb2 KO mice into mice with myocardial infarction to 

analyze the function of Arrb2 in CSC-participating cardiac repair. In WT infarcted mice, Arrb2–

KO CSCs showed the same protective functions, except for arterial elastance perhaps because 

the background of Arrb2 in WT infarcted mice affected its actual role. Otherwise, it might be 

caused by the interference of the adrenal-dependent neurohormonal mechanisms. β-arrestins 

(including Arrb1and Arrb2) have been shown to activate epidermal growth factor receptor by 

eliciting a G-protein–independent signals in vitro, so they might be beneficial for the failing 

heart. However, with regard to the heart, Arrb1 preferred to perform a G-protein dependent 

function, and regulates the majority of cardiovascular G protein-coupled receptors, especially 

adrenal and central sympathetic nervous system a2ARs, to perform a negative impact on post-

myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal 

mechanisms (26). Arrb2 has the same effect as Arrb1 on cardiac b1ARs and Adrenal a2AR 

internalization (27). So it is not strange that Arrb2 also protect the heart from damage. As 
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Arrb20s role was affected by adrenal-dependent neurohormonal mechanisms, only development 

of tissue-specific KO mice can provide definitive answers to this important question. However, 

low Arrb2 level agreed with decreased phosphorylation of AKT and increased phosphorylation 

of GSK3β, findings also found in vitro. Furthermore, we transplanted WT or Arrb2 KO Sca-1+ 

CSCs to Arrb2 KO mice with myocardial infarction, high level of Arrb2 equal to better 

performance of cardiac function, verified the vital function of Arrb2 in cardiac repair. The 

Arrb2/miR-155/GSK3β pathway may be a new mechanism with implications for treatment of 

heart disease. 
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CHAPTER 4 

The Role Of Toll-Like Receptor 9 In Chronic Stress-Induced Apoptosis In Macrophage 
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Abstract 

          Emerging evidence implied that chronic stress has been exerting detrimental impact on 

immune system functions in both humans and animals. Toll-like receptors (TLRs) have been 

shown to play an essential role in modulating immune responses and cell survival. We have 

recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic 

stress. However, the exact role of TLR9 in stress-mediated change of macrophage function 

remains unclear. The results of the current study showed that when BALB/c mice were treated 

with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the 

peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of 

stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production 

from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the 

chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 

significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in 

macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and 

IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These 

results indicated that TLR9-mediated macrophage responses were required for chronic stress-

induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the 

increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 

deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused 

upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as 

well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our 

studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating 
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macrophage accumulation and attenuating macrophage apoptosis, thus preventing 

immunosuppression in restraint-stressed mice. 
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Introduction 

          Experimental studies and clinical observations have indicated that stress serves as an 

important risk factor in the etiology of infectious and autoimmune diseases (1, 2). Both acute and 

chronic stress has been found to have dramatic impacts on the immunological parameters in both 

humans and animals. Data suggested a positive effect of acute stress on the immune system, 

while chronic stress frequently leads to immunosuppression (3). These effects at least partly 

depend on the function of and apoptotic cell death of immune cells. Numerous studies have 

revealed that chronic stress leads to a decrease of thymocytes and splenocytes by a mechanism 

associated with stress-induced lymphocyte apoptosis (4,5). As one of the most important immune 

cells, macrophages might express inducible nitric oxide synthase (iNOS), H2O2, tumor necrosis 

factor (TNF)-α and interleukin (IL)-1, which participate in the macrophage-induced suppression 

of immune responses (6, 7). However, it remains unknown whether macrophages are involved 

with the immune suppression due to chronic stress. Recent study reveals that stressful life events 

are associated with altered levels of macrophages in rat models of prostate and breast cancers(8), 

we hypothesize that chronic stress plays immunosuppressive function partially by inducing 

macrophage responses. Here, we employed the physical restraint stress mouse model to examine 

the relationship between chronic stress and macrophage, and to explore the effect of chronic 

stress on macrophage apoptosis and the possible molecular mechanism. 

          Macrophages play important roles in regulating immunity by virtue of their ability to 

secrete a multitude of proinflammatory cytokines and chemokines. Many studies have shown 

that toll-like receptors (TLRs) modulate the activation of macrophages by pathogens. Among the 

subsets of TLRs, several pattern recognition receptors have previously been implicated in the 

chronic stress-induced immune response, including TLR2 and TLR4, as well as the downstream 
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the phosphoinositide 3-kinase (PI3K)/Akt signaling (5, 9). Previous studies have indicated an 

involvement of TLR9 in the development of innate immune responses, but the precise role of 

TLR9 and the underlying mechanisms in the macrophage response after chronic stress exposure 

is still poorly documented. Recent studies reported that stressed mice showed increased intestinal 

permeability which resulted in bacterial translocation to the peritoneal cavity (10). These 

peritoneal bacteria are a major source of CpG DNA, which can trigger the activation of 

macrophage TLR9 and cause immune response (11). Recent studies from us and others have 

revealed that activation of TLR9 signaling triggers activation of pro-apoptotic signaling 

pathways, and cause cell apoptosis in various system (11–13). 

         TLR9 stimulation activates PI3K/Akt and mitogen-activated protein kinase (MAPK) 

signaling pathway (14). Akt is an important cellular factor which exerts critical roles in 

regulating many cellular functions, such as cellular activation, inflammatory response, and 

apoptosis (15). GSK-3β is a constitutively active enzyme that is inactivated by Akt which 

regulates cell survival and apoptosis (16). MAPKs are associated with some important aspects of 

immune responses (17). Among MAPK families, p38 MAPK is easily activated by stress signals 

(18). Earlier studies established that activation of p38 MAPK and down-regulation of Akt kinase 

led to leucocytes apoptosis by the disruption of Bcl-2, caspase activation and subsequent 

apoptotic features (19). 

          A distinctive feature of activated macrophages is their capacity to rapidly generate TNF-α 

in response to diverse stimuli. In addition to producing TNF-α, activated macrophages secrete 

the cytokine IL-10 which contributes to the down-regulation of IFN-γ and consequently, in the 

apoptosis process of macrophage, highlighting the importance of macrophage in innate and 

adaptive immune responses (20). This report investigates mechanisms by which TLR9 inhibition 
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suppresses chronic stress-induced imbalance of cytokines production. We demonstrated that 

TNF-α, IL-1βand IL-10 production, as well as p38 activation, cleaved caspase-3 and cleaved 

poly ADP-ribose polymerase (PARP) induced by chronic stress were impaired in macrophages 

from TLR9-deficient mice. We also showed that TLR9 deficiency did restore chronic stress-

impaired IFN-γ production, Akt/GSK-3β phosphorylation and Bcl-2/Bax ratio in macrophage. 
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Materials and Methods 

Experimental Animals 

          Breeding pairs of TLR9 knockout (not a functional knockout) mice on a BALB/c 

background were kindly provided by Dr. Shizuo Akira (Osaka University, Osaka, Japan) via Dr. 

Dennis Klinman (National Cancer Institute, Frederick, MD). Wild type BALB/c male mice were 

purchased from the Harlan (Indianapolis, Indiana) and all mice were kept in the Division of 

Laboratory Animal Resources at East Tennessee State University (ETSU), a facility accredited 

by the Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC). All animals were maintained in a specific pathogen-free room under controlled 

conditions at the room temperature (23 ± 1℃) with a 12-h light-dark cycle. All experiments 

were adhered to the animal use protocol approved by the ETSU Committee on Animal Care.  

 

Experimental Model of Restraint Stress 

          All mice (male, weight 23~25g) were healthy and six to eight-week-old. The protocol used 

to establish chronic physical restraint model was proved to be effective in our laboratory as well 

as others (21). Briefly, wild type mice and TLR knockout mice were randomly divided into 2 

groups, 7 in each group, respectively. Each individual mouse of stress group was placed in a 50-

ml polypropylene conical centrifuge tube (Corning, NY). The tubes were arranged with multiple 

punctures for ventilation. Mice were restricted horizontally in the tubes for 12 h (from21:00 to 

next day 9:00) followed by a 12 h rest (from 9:00 to 21:00). The stressed mice were kept next to 

each other. The stressed mice were provided with food and water during the rest period in an 

ordinary cage. Food and water were provided to control littermates in their original cage only 

during the 12 h rest. The cages were transparent, well-ventilated and only contained food, water 
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and bedding materials during the rest period. Observations in our laboratory showed that during 

restraint, the mice did not suffer from any physical suppression or pain. After 2 cycles, mice 

were humanely killed by cervical dislocation for the subsequent experiments. 

 

Isolation of Peritoneal Macrophages 

          After the two cycles of stress finished, mice were humanely killed by cervical dislocation, 

and peritoneal macrophages were collecting by injecting 5 ml of phosphate-buffered saline 

(PBS) into the peritoneal cavity. The cell suspension was cultured with RPMI-1640 containing 

10% fetal bovine serum (FBS) for 60 min at 37°C in to allow the macrophages to adhere as 

described by Mantovani (22). After being washed in PBS, the non-adherent cells were removed. 

The purity of macrophages was >95%. 

 

Determination of Apoptosis by TUNEL Assay 

         TUNEL assay was performed according to our previous study (23). Apoptotic nuclear 

DNA fragments were investigated using the In Situ Cell Death Detection kit (Roche Diagnostic, 

Indianapolis, IN). Briefly, macrophages (5 × 10
5
 cells) from wild type and TLR9 knockout mice 

were fixed in 4% formaldehyde/PBS for 20 min at 37°C，permeabilized in 0.1% sodium citrate 

solution containing 0.1% Triton X-100, for 10 min, after that, the sections were incubated with 

50 µL of TUNEL reaction mixture for 60 min at 37°C. After convert-AP incubation, 50 µL of 

substrate solution was placed on the slices. Finally, sections were conterstained with 

haematoxylin. Slices were observed under a light microscope using a 40× objective. 
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Western Blot Analysis 

          Western blotting was performed as described previously (1, 20). Briefly, the cellular 

proteins were fractionated by 10% SDS-PAGE gel and electroblotted onto Hybond ECL 

membranes (Amersham Pharmacia, NJ). After being blocked with nonfat milk, the membranes 

were blotted overnight at 4°C with following primary antibody (anti-TLR9, anti-phospho-p38, 

anti-p38, anti-phospho-Akt, anti-Akt, anti-cleaved-caspase-3, anti-caspase-3, anti-PARP, anti-

Bcl-2, anti-Bax, anti-phospho-GSK-3β, anti- GSK-3β, anti-GAPDH (Cell Signaling Technology, 

Beverly, MA) (20). Next day, after incubation with HRP-conjugated secondary antibodies (Cell 

Signaling Technology, Inc.), membranes were then developed with the Super Signal West Dura 

Extended Duration substrate (Pierce Biotechnology, Rockford, IL). The bands were quantified 

by densitometry using a Bio-Image Analysis System (Bio-Rad). 

 

Enzyme Linked Immunosorbent Assay (ELISA) for Cytokines 

          Equal amounts of peritoneal macrophages (5×10
5
 cells/ mL) were planted in 96-well 

plates. The supernatants were harvested after 24 h of incubation. The concentration of cytokines 

in the supernatants was detected by ELISA kits (R&D Systems, Minneapolis, MN) according to 

our previous studies (5). 

 

Statistical Analysis 

          Data were expressed as mean ± S.E.M. Statistical analysis were performed using one-way 

analysis of variance (ANOVA) followed by Bonferroni tests to examine whether differences 

among groups existed. A P value < 0.05 was accepted as significant. 
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Results 

TLR9 is Required for Chronic Stress-induced Macrophages Accumulation 

          Recent evidence showed that TLR9 is largely expressed on macrophages, however, the 

exact role of TLR9 in modulating macrophage function is not known yet (24). Data suggests that 

chronic stress increases TLR9 expression in peritoneal macrophage (Fig 4.1A). We therefore 

asked whether TLR9 is involved in stress-mediated changes of macrophage function. Since 

macrophages in peritoneal cavity of chronic stress-induced mice, irrespective of their location, 

can significantly contribute to inflammation and immune response by producing cytokines and 

free oxygen radicals (25) (26), it is important to assess the total number of macrophages 

accumulated in peritoneal cavity. Therefore, we decided to examine the pattern of total 

macrophages increase after stress treatment in the peritoneal cavity of TLR9 knockout and wild 

type mice. We observed a robust accumulation of macrophages in peritoneal cavity 2 days after 

stress challenge, representing a > 2-fold increase over baseline number of cells; no significant 

change in number of peritoneal macrophages was observed after stress challenge compared with 

that in control group in TLR 9 knockout mice (Fig 4.1B). Therefore, TLR9 knockout mice lose 

their sensitivity to chronic stress-induced accumulation of macrophages, supporting a critical role 

of TLR9 in stress-induced immune response. 
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Figure 4.1. A deficiency of TLR9 blocks chronic stress-induced accumulation of macrophages in 

peritoneal cavity. TLR9 knockout mice or wild type BALB/c mice aged 6 to 8 weeks were 

subjected to a 12 h physical restraint daily. After 2 d stress, mice were sacrificed by cervical 

dislocation, and the peritoneal macrophages were harvested and the counts were performed. For 

TLR9 protein expression evaluating, the macrophages were harvested and cultured for 24 hours. 

The expression of TLR9 was analyzed by Western blot. Means and SEs were calculated from 7 

mice per group. 
*
 p < 0.05, 

**
 p< 0.01 compared with indicated groups. 
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Macrophages from TLR9 Knockout Mice Display Impaired Changes of Chronic Stress-induced 

Cytokine Levels 

          In response to a large range of stimulation, macrophages secrete powerful biological 

substances, such as TNF-αand interleukins. This secretion results in inflammation. To investigate 

whether the diminished accumulation observed in the TLR9 knockout mice was secondary to 

altered macrophage function, we have detected generation of major pro-inflammatory cytokines 

by macrophages. Wild type and TLR9 knockout mice were subjected to stress as described 

previously, peritoneal macrophages were harvested and cultured for 24 hours. Our data showed 

that IL-1β, TNF-α, IL-10 were significantly overproduced in supernatants of macrophages of 

stressed wild type mice, increasing by 2.2-, 3.1- and 1.8-fold, compared to that of control wild 

type mice, respectively. However, IL-1β, TNF-α, IL-10 levels of stressed TLR9 knockout mice 

displayed no distinctive change compared to control TLR9 knockout mice and (Fig 4.2A, 4.2C 

and 4.2D). Chronic stress significantly inhibited IFN-γ production in supernatant of macrophages 

from stressed wild type mice by 2.5-fold than that from control wild type mice, but no change in 

IFN-γ expression level in supernatant of macrophages was observed after chronic stress 

challenge in TLR9 knockout mice (Fig 4.2B). 
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Figure 4.2. A deficiency of TLR9 decreases chronic stress-induced changes of pro-inflammatory 

cytokine levels by macrophages. TLR9 knockout mice or wild type BALB/c mice aged 6 to 8 

weeks were subjected to a 12 h physical restraint daily. After 2 d stress, mice were sacrificed by 

cervical dislocation, and the macrophages were harvested, purified and cultured (5 × 10
5
 

cells/well) on culture plates for 24 hours. IL-1β, TNF-α, IL-10 and IFN-γ levels were measured 

in supernatants of macrophages by ELISA kit. Means and SEs were calculated from 7 mice per 

group. 
*
 p < 0.05, 

**
 p< 0.01 compared with indicated groups. 
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TLR9 Deficiency Blocks Chronic Stress-induced Changes of Pro-inflammatory Cytokines in 

Serum 

          It is known that excessive production of plasma proinflammatory cytokines in response to 

chronic stress can promote the development of immune suppression. We next assessed the 

expression of IL-1β, IL-10, IL-17 and IFN-γ in the serum of wild type and TLR9 knockout mice 

challenged with chronic stress. Our data showed that expression level of IL-1β, IL-10, IL-17 in 

the serum of stressed wild type mice increased by 3.3-, 2.9- and 2.8-fold, compared to that of 

control wild type mice, respectively. However, the expression level of IL-1β, IL-10, IL-17 did 

not differ between the control TLR9 knockout mice and stressed TLR9 knockout mice (Fig 4.3A, 

4.3B and 4.3C). Chronic stress significantly inhibited IFN-γ production in the serum from 

stressed wild type mice by 2.1-fold than serum from control wild type mice, but chronic stress 

failed to induce the change in TLR9 kncokout mice (Fig 4.3D).  

 

TLR9 Deficiency Blocks Chronic Stress-induced Macrophage Apoptosis 

          Our recent study showed that chronic stress induces lympocyte apoptosis (2). We also 

reported that chronic stress promotes cell apoptosis through TLR9 (12). To determine whether 

TLR9 is associated with stress-induced macrophages apoptosis, wild type and TLR9 knockout 

mice were subjected to stress as described previously, peritoneal macrophages were then 

harvested and cultured for 24 hours and TUNEL assay was performed to detect cell apoptosis. 

We found that a large amount of wild type macrophages were undergoing apoptosis after 

restraint stress, whereas only a few apoptotic cells were detected in the TLR9 deficient 

macrophages following stress challenge (Fig 4.4). Therefore, stress-induced macrophage 

apoptosis requires TLR9. 
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Figure 4.3. A deficiency of TLR9 suppressed change of cytokine levels caused by chronic stress. 

TLR9 knockout mice or wild type BALB/c mice aged 6 to 8 weeks were subjected to a 12 h 

physical restraint daily. After 2 d stress, mice were sacrificed by cervical dislocation, and the 

serum were harvested and the levels of IL-1β, IL-10, IL-17 and IFN-γ in serum were examined 

by ELISA kit. Means and SEs were calculated from 7 mice per group. 
*
 p < 0.05, 

**
 p < 0.01 

compared with indicated groups. 
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Figure 4.4. A deficiency of TLR9 is resistant to stress-induced macrophage apoptosis. TLR9 

knockout mice or wild type BALB/c mice aged 6 to 8 weeks were subjected to a 12 h physical 

restraint daily. After 2 d stress, mice were sacrificed by cervical dislocation, and the 

macrophages were harvested, purified and cultured (5 × 10
5
 cells/well) on culture plates for 24 

hours. Apoptotic cells (dark brown color cells) were determined by TUNEL assay. Photographs 

of representative TUNEL-stained cells are shown at the top. Magnification 200×. The bar graph 

shows the percentage of apoptotic cells. Means and SEs were calculated from 7 mice per group. 
*
 

p < 0.05, 
**

 p < 0.01 compared with indicated groups. 
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TLR9 Deficiency Attenuates Stress-induced Activation of Caspase-3 and PARP and Alteration 

of Bcl-2/Bax Ratio 

          The levels of major apoptosis-related proteins were detected to further assess the 

mechanisms underlying cellular changes observed in mice after stress challenge. We found that 

the levels of cleaved caspase-3 and cleaved PARP, two well-known characteristics of apoptosis, 

were remarkably increased in macrophages of wild type mice following stress treatment, 

whereas the increases of cleaved caspase-3 and cleaved PARP were attenuated markedly in 

TLR9 deficient macrophages (Fig 4.5A). As protein expressions of Bcl-2 and Bax are involved 

in the chronic stress-induced apoptotic pathway (27), we examined the ratio of Bcl-2 and Bax in 

macrophages to elucidate the mechanism of stress-induced apoptosis. Stress challenge markedly 

decreased the ratio of Bcl-2/Bax in wild type macrophages; moreover, the expressions of Bcl-2 

and Bax in the macrophages were not altered in TLR9 deficient mice. Our data suggested that 

Bcl-2 family participate in TLR9-mediated macrophage signaling after stress treatment (Fig 

4.5B). 
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Figure 4.5. TLR9 deficiency inhibits stress-induced change in caspase-3 and PARP activation 

and ratio of Bcl-2/Bax. TLR9 knockout mice or wild type BALB/c mice aged 6 to 8 weeks were 

subjected to a 12 h physical restraint daily. After 2 d stress, mice were sacrificed by cervical 

dislocation, and the macrophages were harvested, purified and cultured (5 × 10
5
 cells/well) on 
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culture plates for 24 hours. The expression of cleaved caspase-3 and cleaved PARP (A), and Bcl-

2/Bax (B) was analyzed by Western blot. Means and SEs were calculated from 7 mice per group. 

*
 p < 0.05, 

**
 p < 0.01 compared with indicated groups. 

 

TLR9 Deficiency Blocks Chronic Stress-induced Changes of Apoptosis Related Pathways 

           Accumulating evidence indicates that p38 MAPK participates as a modulator in Bcl-

2/Bax-mediated apoptosis in neuroblastoma cells (28, 29). It also has been demonstrated that 

activated Akt alters the ratio of Bcl-2 and Bax and exhibits an anti-apoptotic role in various cells 

(30). Additionally, recent studies have revealed cross-talk between TLR signaling and the 

Akt/GSK-3β or p38 MAPK signaling pathway (13, 31). To examine whether chronic stress 

activates p38 MAPK and Akt/GSK-3β signaling in TLR9-mediated signaling, the levels of 

phosphorylated p38 (phospho-p38), phospho-Akt and phospho-GSK-3β in macrophages 

following stress treatment were examined by western blot analysis. The results of the present 

study confirmed that chronic stress promoted p38 phosphorylation in wild type macrophage. 

Moreover, stress-induced p38 MAPK activation was reversed in TLR9 knockout macrophages 

suggesting that stress markedly increases the level of phospho-p38 through TLR9 (Fig 4.6). We 

also found that the increasing levels of phospho-Akt and phospho-GSK-3β were significantly 

abolished by chronic stress in wild type macrophages but not in TLR9 deficient macrophages, 

demonstrating that chronic stress decreases the activation of phospho-Akt/phospho-GSK-3β 

signaling in a TLR9-dependent manner (Fig 4.6). 
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Figure 4.6. TLR9 deficiency attenuates chronic stress-induced changes of apoptosis related 

pathways. TLR9 knockout mice or wild type BALB/c mice aged 6 to 8 weeks were subjected to 

a 12 h physical restraint daily. After 2 d stress, mice were sacrificed by cervical dislocation, and 

the macrophages were harvested, purified and cultured (5 × 10
5
 cells/well) on culture plates for 

24 hours. The expression of total and phospho-p38, total and phospho-Akt, total and phospho-

GSK-3β were analyzed by Western blot. Means and SEs were calculated from 7 mice per group. 

*
 p < 0.05, 

**
 p< 0.01 compared with indicated groups. 
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Discussion 

          The knowledge on pattern recognition receptors (PRRs) recognition and activation of an 

efficient immune response against chronic stress has progressively increased, mainly in regards 

to TLR2, TLR4 (5, 27). Several lines of evidence suggest that TLR9 seems to participate in 

chronic stress-mediated immune suppression, however, the involvement of TLR9 in functional 

change of macrophages following chronic stress treatment has not yet been addressed. Our data 

presented herein clearly revealed that chronic stress might act through TLR9 to generate 

macrophage inflammation and apoptosis, further supporting that TLR9 plays a role in immune 

response. 

          In response to multiple waves of pathogenic stimuli, inflammatory mediators including 

TNF-α, IFN-γ, IL-1β, IL-6 and IL-10 may be liberated by macrophages. These molecules with 

diverse physiological effects might play critical roles in the recruitment and apoptosis of 

macrophages. Indeed, in the present study, we showed that chronic stress induced series 

inflammatory response characterized by recruitment of macrophages into the peritoneum; 

generation of pro-inflammatory mediators from macrophages, such as IL-1β and TNF-α and 

induction of apoptosis. Interestingly, TLR9 deficiency markedly diminished these inflammatory 

responses induced by chronic stress. 

           Our previous study indicates that chronic stress causes an imbalance in the Th1 and Th2 

responses (32). Increase of IL-1βand TNF-αsecretion in blood and brain turns out to be a 

common feature of diverse models of stress (33), whereas the decrease of other cytokines like 

IFN-γ and IL-10 seems to be more controversial (34–36). IL-17, an important cytokine produced 

by Th17 cells, is able to indirectly induce the recruitment of macrophages and neutrophils during 

inflammation (37). In fact we showed in this study that chronic stress could induce a dramatic 
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increase of IL-1β, IL-10 and IL-17 production and a significant decrease of IFN-γ synthesis. In 

contrast, the production of these cytokines was almost unaffected in TLR9 deficient mice under 

chronic stress influence. These results corroborate a previous report showing that malaria in 

TLR9 knockout mice significantly diminishes changes of Th1 and Th2 cytokines as compared to 

control wild type mice (38), indicating that chronic stress leads to immune suppression in a 

TLR9-dependent manner. 

          We next attempted to investigate the mechanistic pathway by which TLR9 modulates 

immune responses. During the process of apoptosis several targets have been identified as 

characteristic of cell death, including the potential decreases in mitochondrial membrane (25). 

Apoptotic stimulation causes the change in mitochondrial membrane potential and the release of 

cytochrome C into the cytoplasm, activating caspase-9, triggering activation of other caspase 

members, including caspase-7 and caspase-3, to initiate a caspase cascade, which leads to 

apoptosis (39, 40). Furthermore, PARP acts as the main cleavage targets of caspase-3 (41). For 

these reason, we detected the expression of cleaved-caspase-3 and cleaved-PARP. In our current 

study, we demonstrated that chronic stress dramatically upregulated cleavage of caspase-3 and 

PARP in wild type macrophages. This agrees with our previous report on chronic stress-induced 

apoptosis accompanied by caspase-3 activation in splenocytes (27). We also found that the 

elevated activation of caspase-3 as well as PAPR was significantly blocked to almost control 

level in TLR9 deficient macrophages. In addition, apoptosis is commonly associated with an 

imbalance between pro- and anti-apoptotic members of the Bcl-2 family. In the current study, the 

ratio of Bcl-2/Bax was markedly reduced in chronic stress-induced macrophage, indicating that 

cells were undergoing apoptosis, however, TLR9 deficiency elevated the Bcl-2/Bax ratio 
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remarkably in macrophage, further confirming that TLR9-deficient macrophage was resistant to 

chronic stress-induced apoptosis. 

           Accumulating evidence suggests that p38 MAPK and Akt signaling pathways acts to 

regulate the cell cycle progression and proliferation (42, 43). The data of current study indicated 

that the p38 signaling pathway was significantly activated by chronic stress treatment in wild 

type macrophages, indicating that p38 was involved in stress-induced macrophage apoptosis. In 

contract, stress-induced p38 activation was suppressed in TLR9 knockout macrophages, 

suggesting that stress promoted p38 phosphorylation through TLR9. Consistently, a recent study 

showed that activation of p38 MAPK signaling pathway by morphine induced apoptosis in a 

TLR9 dependent manner (31). As recent evidence implicates, there is a cross-talk between TLR 

signaling and the Akt/GSK-3β signaling pathway. In previous studies we documented that TLR2 

was required for chronic stress-induced apoptosis via PI3K/Akt/GSK-3β signaling cascade in 

lymphocytes (9). Additionally, the PI3K/Akt signaling cascade may participate in TLR4-

mediated immune responses as an endogenous negative feedback regulator (5). Considering that 

Akt/GSK-3β has an important role on immune cells activation in a TLR dependent manner, we 

then addressed the question of whether this signaling pathway was associated with chronic 

stress-induced macrophage apoptosis. As expected, no phosphorylation was detected in 

macrophages when wild type mice were subjected to chronic stress. In contract, phosphorylation 

of Akt and GSK-3β was restored to the normal level in TLR9 deficient macrophages, suggesting 

that in TLR9 deficient mice, the higher level of phosphor-Akt and phosphor-GSK-3β prevents 

macrophages from stress-induced inflammation and apoptosis. Collectively, our data implicates 

that TLR9 participates in chronic stress-induced immune response via mediating apoptosis-

related signaling pathways and proteins. 
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          In summary, our data demonstrated that the chronic stress plays immunosuppressive 

function partially by inducing macrophage responses and was characterized by a vigorous TLR 

9-mediated accumulation of macrophages and release of cytokine, resulting in alteration of 

macrophage cell signaling and immunosuppression. Theses cytokines might further participate in 

the apoptosis of macrophages. Bcl-2 family and caspase-3; p38 MAPK and Akt/GSK-3β 

signaling take part in TLR9-mediated chronic stress-induced apoptosis in macrophage. 
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CHAPTER 5 

SUMMARY 

Major findings of our research were: 

1. β-arrestin2 overexpression promoted survival in CLP-induced septic shock. 

2. Cardiac dysfunction induced by CLP was dampened in β-arrestin2 overexpression mice. 

3. The activation of gp130 and p38 was inhibited in β-arrestin2 TG mice in 

     CLP-induced heart injury. 

4. β-arrestin2 knockout mice were more vulnerable to CLP-induced cardiac dysfunction  

than wide-type and β-arrestin2 overexpression mice. 

5. End diastolic volume was preserved in  β-arrestin2 overexpression mice in  

hemodynamic analysis followed by CLP. 

6. Pre-activation of STAT3 was involved in the protective mechanism of β-arrestin2  

overexpression mice after CLP. 

7. Cardiomyocyte apoptosis was decreased in β-arrestin2 overexpression mice in 

CLP-induced sepsis. 

8. Serum IL-6 level was not affected by β-arrestin2 expression in severe sepsis. 

9. Cardiac β-arrestin2 expression might up-regulate IL-6/IL-6R/gp130/STAT3 anti-apoptotic 

signaling in a p38 involved manner. 

10. MiR-155 was inhibited by β-arrestin2 in Cardiac Stem Cell differentiation. 

11. 5’-azacytizine-induced Sca-1+ CSC differentiation was negatively regulated by miR-155. 

12. Luciferase report study showed β-arrestin2 activation could be inhibited by miR-155. 

13. Luciferase report study showed GSK-3β activation could also be inhibited by miR-155. 

14. The activity of GSK-3β was inhibited in β-arrestin2 knockout cells 
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15. β-arrestin2 but not Akt played a key role in regulation of GSK-3β activation 

16. The function of Cardiac Stem Cell from β-arrestin2 knockout mice was intact. 

17. β-arrestin2/miR-155/ GSK3β pathway was critical for 5’-azacytizine-induced  

Sca-1+ CSC differentiation 

18. The amount of macrophages was increased in peritoneal fluid of BALB/c mice in restraint 

stress. 

19. TNF-α, IL-1β, and IL-10 levels were increased in the restraint stress model. 

20. IFN- γ level was decreased in restraint stress. 

21. Macrophage apoptosis was found in restraint stress model. 

22. Cytokine levels were reversed in TLR9 deficient mice in chronic stress. 

23. Cytokine and macrophages response were mediated by TLR9 in Chronic Stress. 

24. TLR9 deficiency decreased p38 activation in chronic stress. 

25. Akt and GSK-3β phosphorylation was increased in TLR9 deficiency mice in chronic 

stress. 

26. Mitochondrial cytochrome c release was inhibited by TLR9 deficiency mice in  

chronic stress. 

27. Bcl-2/Bax protein ratio were increased in TLR9 deficiency mice in chronic stress. 

28. Cleavage of caspase-3 and PARP were down-regulated by TLR9 deficiency in chronic  

Stress. 

29. Macrophage apoptosis was inhibited by TLR9 deficiency in restraint stress induced  

chronic stress.  

30. Immunosuppression was prevented by TLR9 deficiency in restraint-stressed mice. 
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           These results showed the protective effect of β-arrestin2 expression in multiple 

inflammatory conditions specifically in sepsis, ischemic heart injury and suggested the role of 

TLR-9 in restraint stress.  

            β-arrestin2 overexpression was beneficial to septic mice by maintaining the preload and 

contractility of the heart. β-arrestin2 was a signal transducer in the IL-6 signaling pathway, and 

the downstream effectors of β-arrestin2 could be membrane-bound IL-6 receptor gp130 and pro-

apoptosis effector p38. β-arrestin2 could also promote residential cardio stem cell differentiation 

by miR-155 inhibition and GSK-3β activation. An earlier report from our lab showed TLR9 was 

essential for p38 activation and dampened Akt phosphorylation in CLP mice. TLR9 deficiency 

could revert splenic apoptosis and the increased levels of inflammatory cytokines 
41

.  These 

results suggested TLR9 and β-arrestin2 had common downstream effectors. The underlining 

mechanisms might overlap in some key regulatory points (p38, GSK3β) but also could differ 

from one disease model to another.  

             In the septic heart, the function of β-arrestin2 may mediate mainly by p38 through IL-6 

pathway within 6 hours, but in ischemic heart, the loop regulation between β-arrestin2 and miR-

155 seems to be more important since cardiomyocyte regeneration/differentiation is critical for 

more than two weeks of recovery from damage. Restrain chronically induced stress, is in a two-

day pattern, TLR9 is an essential factor for restrained stress induced macrophage response and 

apoptosis. 

          In a systemic model of sepsis, the understanding of disease pathogenesis should not be 

confined to a single system. Different response mechanisms from non-immune system especially 

the cardiovascular system should also be emphasized. Likewise, in a systemic model of β-

arrestin2 knockout and overexpression, the protective effect against systemic inflammation 
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should also be evaluated in both immune system and non-immune system. To investigate the role 

of β-arrestin2 on blood return, we measured cardiac function 6 h after sepsis; the result turned 

out to have significant higher cardiac preload in β-arrestin2 TG mice, comparing to β-arrestin2 

KO mice and WT mice. Therefore, the main contributor for the protective role of β-arrestin2 

should be the preserved vascular integrity given the inflammatory nature of this model and its 

influence on other organs with oxygen and nutrient deprivation.  

          Previous studies have established the GPCR desensitization and internalization role of β-

arrestin2 as well as β-arrestin 1, which theoretically would affect the signaling transduction of 

various endogenous vasoactive substances during systemic inflammation and subsequently 

vascular leakage and sympathetic response. In this study, β-arrestin1 expression seemed higher 

in β-arrestin2 KO mice, suggesting complementary overexpression. Although the functional 

redundancy has been indicated, the impaired cardiovascular function of β-arrestin2 KO mice 

suggested the deficiency of β-arrestin2 can not be adequately compensated by β-arrestin 1 in this 

acute severe sepsis model.   

         The loop regulation of β-arrestin2 and miR-155 was unexpected because in our hypothesis 

β-arrestin2 was the target of miR-155. However, this result demonstrated a new way to 

understand the function of miRNAs. We suspected miRNAs could be regulated by its goal 

according to defined pathophysiological conditions, as in ischemia /reperfusion injury in this 

study. This kind of exquisite regulation is protective for the injured organ tissue, promote 

survival rate. 

       Our results showed TLR-9 was required for inflammation in chronic stress. The immune 

suppression was prevented in TLR-9 knockout mice. The function of TLR-9 here is opposite to 

β-arrestin2, which has been shown to be a negative regulator in multiple inflammatory diseases.  



 

 124 

The relationship between β-arrestin2 and TLR-9 can be predicated as β-arrestin2 could be an 

inhibitor of TLR-9 in inflammatory disease. However, further studies should be performed to 

verify this hypothesis.  

       In summary, β-arrestin2 is a potent cardiovascular protector and hemodynamic stabilizer in 

CLP-induced polymicrobial sepsis.  β-arrestin2 could rescue heart from myocardial infarction by 

enhancing cardiac stem cell differentiation.  TLR-9 as a potential target of β-arrestin2 is required 

in chronic stress induced macrophage response. The study of  β-arrestin2 regulated immune 

response is crucial for developing new treatment and improving the prognosis of inflammatory 

diseases.   
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