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ABSTRACT

Antibiotics That Inhibit 30S or 50S Ribosomal Subunit Formation in Bacteria:

hygromycin B, quinupristin-dalfopristin and XRP 2868

by

Susan Mabe McGaha

Several antibiotics that prevent translation by binding to ribosomal subunits have

been shown to also inhibit ribosomal subunit assembly (Champney and Tober

2003).  The aminoglycoside hygromycin B was examined in Escherichia coli cells

for inhibitory effects on translation and ribosomal subunit assembly.  The

streptogramin antibiotics quinupristin-dalfopristin and XRP 2868 (NXL 103) were

examined for similar effects on these 2 cellular functions in antibiotic-resistant

strains of Haemophilus influenzae, Staphylococcus aureus, and Streptococcus

pneumoniae.

Pulse chase experiments were performed which verified slower rates of

ribosomal subunit formation in drug treated cells. Hygromycin B exhibited a

concentration dependent inhibitory effect on viable cell number, growth rate,

protein synthesis and 30S and 50S subunit formation. 16S rRNA specific probes

hybridized to rRNA fragments in cells treated with hygromycin B.  RNase II and

RNase III deficient strains of E. coli exhibited the most accumulation of 16S rRNA

fragments upon treatment with hygromycin B.  Examination of total RNA from
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treated cells showed an increase in RNA corresponding to precursor to the 16S

rRNA while 16S rRNA decreased.  There was also an increase in small fragment

RNA.  Hygromycin B was a more effective inhibitor of translation than ribosomal

subunit formation in E. coli.

Two streptogramin antibiotics were compared for inhibitory effects in

antibiotic-resistant Haemophilus influenzae, Staphylococcus aureus, and

Streptococcus pneumoniae. IC50 values for XRP 2868 were several fold lower

than those of quinupristin-dalfopristin for inhibition of cell viability, protein

synthesis, and ribosomal subunit formation.  Both antibiotics revealed a

concentration dependent inhibitory effect on cellular functions including 50S

ribosomal subunit formation in the three organisms examined.

XRP 2868 inhibited both 50S ribosomal subunit assembly and translation.

XRP 2868 was effective against MRSA and was a better inhibitor in each of the

antibiotic resistant strains examined compared with quinupristin-dalfopristin.
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 CHAPTER 1

INTRODUCTION

Ribosomes are the biological structures responsible for the manufacture of

proteins within cells.  The bacterial ribosome is formed from two subunits having

sedimentation coefficients of 30S (small subunit) and 50S (large subunit).  These

subunits are ribonucleoprotein complexes, consisting of ribosomal RNA (rRNA)

and ribosomal proteins.  Figure 1 illustrates the prokaryotic ribosome.  For many

years the ribosome function in translation has been a target for antimicrobial

drugs.  Overuse and negligent use of antibiotics coupled with the fast

evolutionary rate of bacteria and their ability to adapt to new onslaughts have

resulted in an increase in antimicrobial resistance creating a major problem for

human welfare.

Currently, only a small number of antibiotics are available to treat multi-

drug resistant strains of bacteria, but resistance to even the newest antimicrobial

agents is appearing (Hancock 2005).  Increasing antibiotic resistance in microbial

populations has necessitated the search for alternate cellular targets for new and

existing antimicrobial agents.   One novel target is ribosomal subunit assembly.

There are many antibiotics available that inhibit translation in bacterial cells by

binding to the 30S or 50S ribosomal subunit.  In several cases it has been

observed that these drugs also posses a second inhibitory activity that is

stopping ribosomal subunit assembly.  The formation of a functional ribosome is
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a vital cellular process and is therefore also an important cellular drug target

(Champney 2003).

Figure 1  The Prokaryotic Ribosome.  The prokaryotic ribosome is assembled in
cells from 30S subunits made from 16S rRNA and proteins and 50S subunits
consisting of 23S and 5S rRNA and proteins.
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Several studies have been carried out with inhibitors of 50S and 30S

subunit assembly.  Recent work with the macrolides, ketolides, lincosamides and

streptogramin B compounds has reveled that these antibiotics affect 50S subunit

assembly specifically (Champney and Tober 1998; Champney and Tober 2000).

Studies by Mehta and Champney (2002; 2003) also found that aminoglycosides

have a second inhibitory target that is preventing 30S subunit formation.  Figure

2 (A-B) illustrates a proposed model for inhibition of ribosomal subunit formation

by inhibitors of 30S and 50S ribosomal subunits.  Comparison studies with

several antibiotics from each class have provided useful insights into structure-

activity relationships that could lead to novel drug development targeting

ribosomal subunit assembly.  To broaden our understanding of subunit assembly

inhibitors, it is important to examine new or poorly studied antibiotics for their

possible effects on inhibition of subunit formation.   Identifying and comparing

these antimicrobial agents will aid in the search to find more suitable targets for

future antibiotics.
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Figure 2  Models for 30S and 50S ribosomal subunit assembly inhibition by
antibiotics.  Inhibition of 30S (A) and 50S (B) ribosomal subunit assembly. (i)
Subunit formation in control cells (ii) Subunit formation in antibiotic treated cells.
Antibiotics may bind to one of two inhibitory sites, the fully formed ribosomal
subunit inhibiting translation (top panel), or an intermediate particle halting
assembly of the ribosomal subunit (bottom panel).

16S rRNA Fragments
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There are many antibiotics that target translation by binding to ribosomal

subunits that have not been examined for possible inhibitory effects on ribosomal

subunit assembly.  Among those antimicrobial agents are the aminoglycoside

hygromycin B, a 30S subunit inhibitor, and the streptogramin compounds

quinupristin-dalfopristin (Synercid) and XRP2868 (NXL 103) affecting the 50S

subunit.

Hygromycin B has a structure that is different from most aminoglycosides.

Classic aminoglycosides are characterized by two differential amino-sugar rings

that are connected to a 2-deoxystreptamine ring (Figure 3A).  The position at

which the two variable rings are attached determines the class of aminoglycoside

to which the compound belongs.  Hygromycin B is unusual in its structure having

instead two ether linkages connecting two of its three sugar residues resulting in

a fourth, 5-membered ring (Figure 3B).  This extended structure has been shown

recently to bind to the 30S ribosomal subunit near the A, P and E sites and spans

a 13 Å distance on the small subunit (Figure 4) (Brodersen and others 2000).

Hygromycin B has been in use since 1957 as the first additive in livestock

feed to be approved by the Food and Drug Administration. It has been used

extensively since then as a growth aid and parasite control agent in the

production of swine and poultry.  The compound removes parasites by disrupting

the egg laying process and then killing the adults.  Eliminating ova production

ensures that pens and lots will not be contaminated with eggs, a problem

associated with other one-dose parasite removal options (Kelly and Olsen 1960;
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Biehl 1986; Lamb and others 1999).  Hygromycin B has also been used in the

laboratory to select for recombinant cells containing a hygromycin B resistance

marker (Gritz  and Davies  1983).  Importantly it may also be an effective inhibitor

of ribosomal subunit formation.

Figure 3  Chemical structures of aminoglycoside antibiotics.  (A) The classical 2-
deoxystreptamine aminoglycosides.  (B) Hygromycin B has two ether linkages
connecting two of its three sugar residues resulting in a fourth, 5-membered ring.
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Figure 4  Crystal structure of hygromycin B bound to the small subunit.
Hygromycin B is shown bound to Thermus thermophilius 30S subunit, yellow
stick with color corresponding red (oxygen) and blue (nitrogen) balls.  Ring
structures are labeled 1-4.  Green nucleotides represent the proposed decoding
center, orange nucleotides represent mutation sites causing resistance to
hygromycin B (Cell 2000; 103:1145).

Recent studies with the aminoglycosides neomycin and paromomycin

have revealed that these drugs are capable of inhibiting 30S ribosomal subunit

formation by stalling assembly at an intermediate phase of 30S formation (Mehta

and Champney 2002; Mehta and Champney 2003).  Previous Northern

hybridization analysis with inhibitors of 50S ribosomal subunit assembly have
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shown that these antibiotics cause a decrease in the amount of mature 23S

rRNA and an accumulation of partially degraded 23S particles in antibiotic

treated cells (Champney and Burdine 1996; Champney and Burdine 1998a;

Champney and Miller 2002; Silvers and Champney 2005).  This accumulation of

rRNA fragments is the result of antibiotic binding to an intermediate particle in

ribosomal subunit assembly.  These particles are normally degraded by RNases

as illustrated in Figure 2B.  In strains deficient in RNases important for particle

turnover this process is retarded and a build up of ribosomal RNA fragments from

the stalled particle occurs.  The resulting fragments are large enough to be

examined by Northern hybirdization analysis.  Previous work has shown that

RNase II and III and PNPase are heavily involved in the turnover of 23S rRNA in

the precursor which forms in the presence of the 50S inhibitor azithromycin

(Silvers and Champney 2005).  The accumulation of 16S rRNA fragments during

treatment with 30S ribosomal subunit inhibitors has never been examined.  One

goal of this study was to determine if the 30S ribosomal subunit inhibitor

hygromycin B had any effect on accumulation of 16S rRNA fragments in E. coli

cells with loss of function mutations in RNase I, RNase III, RNase II, and PNPase

mutant strains.  The structure and mechanism of binding of hygromycin B sets

the compound apart from other aminoglycosides; therefore, it is of interest to

examine the effect these differences have on inhibition of subunit assembly and

its effects on turnover of 16S rRNA oligonucleotide accumulation in hygromycin B

treated cells.
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Other antibiotics with the potential to be specific inhibitors of ribosomal

subunit formation are the streptogramin compounds quinupristin-dalfopristin and

XRP 2868.  The chemical structures of these antibiotics are shown in Figure 5.

Streptogramin compounds have been isolated from naturally occurring sources

and have been used clinically in parts of Europe as antimicrobial agents for more

than 20 years (Leclercq and Courvalin 1998).  Streptogramin antibiotics are a

combination of two chemically distinct compounds that are administered clinically

in a 30:70 weight-to-weight ratio of group B to group A.   Each streptogramin

antibiotic is composed of a group B (or type I) and a group A (or type II)

streptogramin.  Each group has a unique binding site.  Each compound alone

has a bacteriostatic effect, but when combined the two groups act synergistically

to produce bactericidal activity (Allignet and others 1996; Malbruny and others

2002).  Group B streptogramins have been shown to bind to a site on the 50S

ribosome and block the peptide exit tunnel.  Group A streptogramins bind within

the peptidyl transferase center and interfere with positioning of substrate in the A

and P sites.  The binding of group A streptogramins also increases the binding

affinity of group B streptogramins giving a synergistic inhibitory effect. The crystal

structure of quinupristin-dalfopristin binding to the 50S subunit of Deinococcus

radiodurans has been resolved and is pictured in Figure 6 (Harms and others

2004).

Historically streptogramin compounds have been limited in their use

because of limited solubility; however, two new streptogramin compounds
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(quinupristin-dalfopristin and XRP2868) have been introduced that have

increased solubility and may be administered intravenously and orally

respectively.  Quinupristin-dalfopristin is a combination of quinupristin (derived

from pristinamycin IA) a group B streptogramin, and dalfopristin (derived from

pristinamycin IIA) a group A streptogramin that have been approved for clinical

use in the United States. Quinupristin-dalfopristin has been indicated for

treatment of vancomycin-resistant Enterococcus faecium and treatment of

complicated skin infections cause by Staphyloccus aureus or Streptococcus

pyogenes (Lamb and others 1999).  Quinupristin-dalfopristin has been shown to

be effective in treatment of antibiotic resistant infections where few other

treatment options exist ( Low 1995; Drew and others 2000).  A recent study using

a S. aureus biofilm model has shown quinupristin-dalfopristin to be more effective

than many other antibiotics against bacteria in biofilms (Pfeil and Wiedemann

2000).  XRP 2868 has also been shown to have good inhibitory activity against a

wide range of Gram-positive pathogens and some Gram-negative respiratory

tract pathogens.   XRP 2868 is one of only three antibiotics from new classes of

antimicrobial agents that have been released in the past 40 years (Lamb and

others 1999).

XRP 2868 is a mixture of 2 streptogramin compounds, RPR 132552A and

RPR 202868, that are chemically modified forms of quinupristin and dalfopristin

respectively (Figure 5).  The structural changes of XRP 2868 from quinupristin-

dalfopristin lead to better water solubility and efficacy of an oral administration



21

route.  Pankuch and others (2003) compared XRP 2868 with quinupristin-

dalfopristin in Gram-positive pneumococci and Haemophilus.  Minimum inhibitory

concentrations for XRP 2868 were 2 fold lower than quinupristin-dalfopristin for

the inhibition of pneumococcial growth and 4-8 fold lower for inhibition of

Haemophilus strains (Pankuch and others 2003).   XRP 2868 is not yet available

clinically but shows superiority over quinupristin-dalfopristin in its inhibitory

activities against important resistant strains of pathogenic bacteria including

methicillin-resistant Staphylococcus aureus (MRSA), erythromycin-resistant

Streptococcus pneumoniae and b-lactamase-positive Haemophilus influenzae

(Pankuch and others 2003; Eliopoulous and others 2005; Goldstein and others

2005; Mabe and Champney 2005).  XRP 2868 has also been shown to be 4 fold

more effective than quinupristin-dalfopristin for inhibition of Enterococcus faecium

and exhibited greater efficacy in inhibition of Enterococcus faecalis (Eliopoulous

and others 2005).  In a murine lung and thigh infection model the antibiotic has

shown great effectiveness in clearing infection by multi-resistant strains of S.

pneumoniae and S. aureus (Andes and Craig 2006).

 Quinupristin-dalfopristin is already proving to be an important antibiotic in

the last line of defense against multi-drug resistant microbes.  XRP 2868,

pending clinical trials and approval from the Food and Drug Administration, will

likely also be an important resource in the clinical arsenal against the increasing

threat of multi-drug-resistant strains of pathogenic bacteria. It is possible that

inhibition of subunit formation could play a role in the success of both
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quinupristin-dalfopristin and XRP 2868 in inhibiting the growth of these

organisms.  More potent subunit assembly inhibition is also a possible

mechanism for the increased activity of XRP 2868 against microorganisms in

comparison to quinupristin-dalfopristin.  Understanding the underlying

mechanisms behind the inhibitory effects of these new compounds is crucial for

improved drug design.  Furthermore, it is important to determine the effects of

other antimicrobials on subunit formation in order to realize the potential of this

new antibiotic target.

Figure 5  Structures of streptogramin antibiotics.  (a) quinupristin, (b) dalfopristin,
(c) RPR 202868, and (d) RPR 132552A.



23

Figure 6  Crystal structure of quinupristin-dalfopristin bound to the large subunit.
Quinupristin-dalfopristin is shown bound to the 50S ribosomal subunit of
Deinococcus radiodurans in relation to the P-site and the ribosomal exit tunnel
(gold) (BioMed Central 2004; 2:4).

The goals of this study were to determine the effects of XRP 2868 and

quinupristin-dalfopristin upon cellular functions in methicillin-resistant

Staphylococcus aureus, b-lactamase-positive Haemophilus influenzae, and

erythromycin-resistant Streptococcus pneumonae.  The study also examined the

effects of hygromycin B upon cellular functions in Escherichia coli including the

effect of hygromycin B on the accumulation of 16S rRNA fragments in E. coli
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strains treated with the antibiotic.  Hygromycin B, quinupristin-dalfopristin, and

XRP 2868 have not been examined for inhibitory activity against ribosomal

subunit assembly.  I hypothesized that the translational inhibitors examined here

also posses a second target in inhibiting ribosomal subunit formation.  The

streptogramin compounds XRP 2868 and quinupristin-dalfopristin that bind to the

50S ribosomal subunit target the 50S ribosomal subunit in assembly.  The

aminoglycoside hygromycin B binds to the 30S and specifically targets this

subunit in assembly.  I also hypothesized that hygromycin B would cause an

accumulation of 16S rRNA fragments in cells treated with the antibiotic and that

this accumulation could be detected by using a Northern blotting procedure.   An

additional expectation was that of 16S rRNA fragments would be higher in strains

missing the RNases that are necessary for turnover of stalled 16S rRNA

particles.  An increase in 16S precursor and small fragment RNA and a decrease

in 16S rRNA in total RNA isolated from cells treated with hygromycin B was also

hypothesized.

Several methods were used to test these hypotheses.  Each drug’s

mechanism of action was measured via a four-part assay experiment that was

used to determine effects on cellular processes including growth rate, rate of

protein synthesis by 35S-methionine incorporation, rate of subunit formation by

3H-uridine incorporation into rRNA and cell viability.  Pulse chase kinetic analysis

with 3H-uridine labeling was used to measure rates of subunit formation in cells.

An examination of rRNA turnover in cells treated with hygromycin B was also
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performed.  Northern blotting techniques with a 16S rRNA specific biotin labeled

probe were used to show accumulation of 16S rRNA in cells treated with

hygromycin B.  RNase deficient strains were also examined to determine the

enzymes that may be involved in turnover of stalled 16S precursor particle.  Total

RNA was also examined using an Aligent Bioanalyzer 2100.  For each assay,

comparisons were made between inhibitory effects on protein synthesis relative

to subunit assembly inhibition. Information from these studies will aid in

understanding structure-activity relationships for ribosomal subunit assembly

inhibition and can also help elucidate the mechanisms cells have for recycling

rRNA that has been bound by antibiotic.  Comparing inhibitory activities of

different types of antibiotics also provides information useful in determining the

value of ribosomal subunit assembly inhibition as a possible target for future drug

development.
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CHAPTER 2

MATERIALS AND METHODS

Materials

XRP 2868 and quinupristin-dalfopristin were supplied by Aventis

Pharmaceuticals and were used as a 70:30 mixture of the A- and B-

streptogramins. Stock solutions of all antibiotics were made at 10 mg/ml in

distilled H2O.  Lysozyme, thymine, lipo-proteins, hemin, nicotinamide adenine

dinucleotide, and hygromycin B were purchased from Sigma Chemical

Corporation.  Tryptic soy broth, tryptone peptone, agar, agarose, sucrose,

Scintisafe Gel scintillation fluid, sodium dodecyl sulfate, 3-(N-Morpholino)-

propanesulfonic acid, trichloro-acetic acid, 20X saline-sodium citrate,

formaldehyde, formamide, methanol, deoxycholic acid sodium salt,

phenylmethanesulfonyl fluoride, isopropanol, Mirus Label-IT® biotin labeling kit,

Fuji medical X-ray film, and Kodak GBX developer and fixer were purchased

from Fisher.  AquaPure RNA isolation kit was purchased from Bio-Rad.  Nytran

SPC nylon transfer membranes were purchased from Scheicher & Schuell. The

North2South® chemiluminescent nucleic acid hybridization and detection kit was

purchased from Pierce. Washing & Pre-Hybridization solution and background

quencher were purchased from Molecular Research Center, Inc.  PCR primers
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were obtained from Life Technologies. The PCR Super-mix was purchased from

Gibco BRL. The GF/A glass fiber filters and blotting paper were purchased from

Whatman International.  3H-uridine (45 Ci/mmol) was purchased from New

England Nuclear.  35S-methionine (TRANS35S-LABEL 1175 Ci/mmol) was

purchased from MP Biomedical.  Low range, ready-to-use RNA ladder was

purchased from Fermentas.

Cricket Graph III software (Computer Associates) was used to construct

graphs and curves and for calculations.  Curve fitting was also performed through

Cricket Graph software.  Curve fits were chosen according to best fit.

Media

Tryptic Soy Broth:  30 g tryptic soy broth in 1 L dH2O.

Tryptic Soy Broth Plates:  1 L tryptic soy broth and 15 g agar.

5X A-salts:  52.5 g K2HPO4, 22.5 g KH2PO4, 5 g (NH4)2SO4, and 2.5 g

NaCitrate·(2H2O) to 1 L dH2O

Buffers

S-Buffer:  10 mM Tris-HCl (pH 8.0), 50 mM NH4Cl and 0.5 mM Mg Acetate.

10X MOPS Buffer:  0.2 M MOPS (pH 7.0), 20 mM sodium acetate, 10 mM EDTA

(pH 8.0).

16S rRNA Fragments
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RNA Resuspension Buffer: 150 µl formamide, 36 µl formaldehyde, 30 µl 10X

MOPS buffer.

RNA Running Buffer:  900 ml sterile dH2O, 100 ml 10X MOPS buffer.

Alkaline Transfer Buffer:  3 M NaCl, 8 mM NaOH, and 2 mM Sarkosyl.

5X Neutralizing Buffer:  79.25 g Na2HPO4, 60.25 g NaH2PO4 in 1 L dH2O

Formamide Hybridization Buffer:  50% formamide, 5X SSC, 0.1 % sarkosyl,

0.02% SDS, 200 µg/ml BSA, with 1X background quencher.

TE buffer: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA.

Bacterial Strains

Several bacterial strains were used in this study.  Those strains are listed in
Table 1.

Table 1  Strains of bacteria used in this study

Name Genotype Phenotype Reference

Escherichia coli D10 HfrH met- rna-1

relA

RNase 1- (Gesteland

1966)

Escherichia coli

CA244

F- ∆pnp::kanR PNPase - (Reuven and

Deutscher

1993)
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Table 1 continued

Name Genotype Phenotype Reference

Escherichia coli

SK7622

F- thyA715

rncD38::kanR

RNase III- (Babitzke and

others 1993)

Escherichia coli

SK4803

gal thi ton sup

hasdR4

endAsbcB15

rnb296

RNase II- (Donovan and

Kushner 1986)

Staphylococcus

aureus A1024

Streptococcus

pneumoniae

11591

ErmB+

Methicillin-resistant

Erythromycin-

resistant

(Champney and

Burdine 1998b)

(Champney and

others 2004)

Haemophilus

influenzae

 G79-84

b-lactamase+ Methicillin-

resistant

(Champney and

Tober 2003)
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Methods

MIC Determination

The minimal inhibitory concentration for each antibiotic was determined by

a broth dilution method as described (Champney and Burdine 1998a).  Six test

tubes were filled with 1 ml of TSB.  Each tube received 50 µl of an overnight

culture of bacterial cells and antibiotic over a range of concentrations.  The tubes

were incubated at 37°C overnight and the absorbance at 600 nm was measured.

Analysis of Cell Growth and Cell Viability

Cell cultures except S. pneumoniae were grown in a water bath at 37°C in

TSB in the presence or absence of antibiotic according to the method of

Champney and Burdine (1998a).  S. pneumoniae was grown in TSB at 37°C in 8

ml screw cap tubes.  Media were supplemented with 50 µg/ml of thymine for E.

coli strain SK7622 and with 10 µg/ml of hemin and nicotinamide adenine

dinucleotide and 0.7% lipo proteins for H. influenzae.  Growth was initiated by

adding cells from an overnight culture (~0.1-0.2 ml) to TSB growth media.

Growth rates were measured by recording the increase in cell density over time

using a Klett-Summerson colorimeter.  Cell growth was monitored over two cell

doublings at which point 10 µl was removed from the growing culture and added

to 990 µl of A-salts.  A serial dilution was performed to achieve a final dilution of

10-5 and 10 µl was plated on square TSB agar plates (Jett and others 1997).
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TSB agar plates for E. coli SK7622 and H. influenzae were supplemented with

Thymine at 50 µg/ml.  Plates were incubated for 24-48 hours at 37°C.  Colonies

were counted from control and drug treated samples to determine the effect of

the antibiotics on the viable cell number.

Analysis of the Rate of Protein Synthesis

Cell cultures were grown as described above.  After 2 cell doublings in the

presence or absence of antibiotic, 35S-methionine was added to the culture at a

concentration of 1 µCi/ml.  Three samples of 0.4 ml were removed at 5 minute

intervals after addition of the 35S-methionine.  Cells were precipitated in 20%

TCA and collected on Whatman GF/A glass fiber filters.  Filters were washed

with 10% TCA and 97% ethanol to ensure there was no free 35S-methionine on

the filters.  Filters were air dried under a heat lamp and placed in vials with 3 ml

Scintisafe fluid before being measured for radioactivity by liquid scintillation

counting.

Analysis of Ribosomal Subunit Assembly

All bacterial cells were grown as described above.  For all strains except S.

pneumoniae, a 30 ml culture of bacterial cells in TSB was started from an

overnight culture.  Cells were grown to a Klett of approximately 20 and the 30 ml

culture was split into six 5 ml cultures.  S. pneumoniae was grown in TSB at 37°C

in 8 ml screw cap tubes.  Antibiotic was added in different concentrations to
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appropriate cultures.    After 15 minutes of growth in the presence of antibiotic,

3H-uridine (1 µCi/ml) and 1 µg/ml uridine was added to the control and antibiotic

treated samples. In order to halt further isotope incorporation after 2 cell

doublings, uridine (50 µg/ml) was added in excess to each culture.  After a 15-

minute chase period, cells were spun in a Beckman centrifuge (J2-21) at 6,000

rpm for 12 minutes in a JA21 rotor.  Cell pellets were washed with sterile S-buffer

or SAS-buffer (S. aureus, and S. pneumoniae).  Washed pellets were spun again

at 6,000 rpm for 12 minutes.   The cell pellets were stored at -70°C before cell

lysis.

Different lysis procedures were used for the various strains of bacteria.

Washed cell pellets were thawed at room temperature.  E. coli and H. influenzae

cell pellets were re-suspended in 200 µl of S- buffer and 10 µl of a 5 mg/ml

solution of lysozyme was added.  S. aureus was re-suspended in 200 µl of SAS-

buffer with 20 µg lysostaphin and 15 µl of 0.1M phenylmethanesulfonyl fluoride in

isopropanol.  S. pneumoniae was re-suspended in 300 µl of SAS-buffer, 300 µg

lysozyme and 30 µl of 0.1M PMSF.  Suspended E. coli, H, influenzae, and S.

aureus cells were allowed to incubate at room temperature for 15 to 20 minutes

and were then subject to a freeze-thaw process. S. pneumoniae was incubated

for 30 minutes at 37°C.  After the incubation, 100 mg 0.1 mm sterile glass beads

and 15 µl of 10% deoxycholic acid sodium salt were added.  Cells were frozen for

5 minutes at -70°C and then thawed at room temperature.  This procedure was

repeated twice. The S. pneumoniae cells were vortexed for 1.5 minutes after
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each freeze thaw until the lysate was viscous.  DNA was digested in cell lysates

by adding 1-2 units of RNase free DNAse to each sample.  The samples were

spun at 6,000 rpm for 12 minutes to clear the lysate of cell debris.

To examine the amount of subunits in cells and the effects of antibiotics on

subunit assembly, cell lysates were centrifuged on linear sucrose gradients.

Linear sucrose gradients of 5-20 % were prepared to separate ribosome

particles.  The cleared supernatant was loaded on the top of the 5-20% linear

sucrose gradients.  Gradients were made using a Buchler gradient maker and 6

ml each of 5% and 20% sucrose in S- buffer for E. coli and H. influenzae and

SAS-buffer for S. aureus and S. pneumoniae.  The prepared gradients were

placed in a SW40 swinging bucket rotor and centrifuged in a Beckman LE80K

Ultracentrifuge at 39,000 rpm for 4.5 hours or 18,000 rpm for 18 hours.  An ISCO

Model UA-5 absorbance monitor was used to measure and record the

absorbance at 254 nm of the gradients as they were pumped through.  Fractions

of equal amounts were collected into vials and mixed with 3 ml of Scintisafe gel.

The incorporation of 3H-uridine into RNA was then measured by liquid scintillation

counting set for dual labeled samples to distinguish 3H from 35S.
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3H-uridine Pulse-Chase Kinetic Analysis of Ribosomal Subunit Formation

E.coli cells were grown in 24 ml of TSB to approximately 10 Klett units at

27°C.  50 µg/ml of hygromycin B was added to the culture.  The control sample

was grown in the absence of the antibiotic.  When the cell density reached a Klett

reading of 30, cells were pulse-labeled with 3H-uridine (1 µCi/ml) for 3 minutes

and then chased with uridine at 50 µg/ml.  Samples of 4 ml were taken from the

cultures at intervals and centrifuged at 6000 rpm for 12 minutes.  Cell pellets

were washed and stored at -70°C before cell lysis for sucrose gradient

centrifugation and liquid scintillation counting as described above.

Construction of Biotinylated 16S and 23S rRNA Specific Probes

Polymerase chain reaction (PCR) was used to amplify the 16S (241 base

pair) and 23S (146 base pair) specific probes from plasmid pKK3535 DNA.  PCR

reaction mixtures contained 45 µl PCR Supermix High Fidelity reagent mixture

(Gibco BRL), 1 µl of plasmid DNA (6.5 ng), 1 µl (10 pmol) of either the 16S or

23S forward primer, 1 µl (10 pmol) of either 16S or 23S reverse primer, and 2 µl

sterile dH2O.  Primer sequences are given in Silvers and Champney (2005).

Samples were placed in a MJ Research PTC-100 programmable thermocycler

for 35 cycles under the following conditions:  denaturation at 94°C for 30

seconds, annealing of primers to target DNA at 57°C for 30 seconds, and

extension of the primers at 72°C for 30 seconds.  The PCR products were

purified by extraction with an equal volume of phenol:CHCl3 and precipitated with
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2 volumes of pure ethanol.  The pellets were dried at 44°C for 15 minutes then

resuspended in 30 µl of sterile dH2O.  Purity of the PCR products was examined

by running 1 µl on a 2% agarose gel.  The purified DNA probes were labeled with

biotin using the Label-IT biotin labeling kit (Mirus) following the manufacturer’s

instructions.  Specificity of each probe was tested by hybridization with 23S and

16S rRNA as shown in Figure 7.  Detection of the biotin label is carried out by

using a streptavidin horseradish peroxidase conjugate as illustrated in Figure 8.

Figure 7  Assay for specificity of 16S and 23S biotin labeled probes.  (A)
Hybridization of 16S rRNA specific probe with 16S and 23S rRNA.  (B)
Hybridization of 23S rRNA specific probe with 16S and 23S rRNA.
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Figure 8  Detection of rRNA via biotin labeled 16S internal probe.  Streptavidin
horseradish peroxidase conjugate is used to illuminate biotin labeled probe
positions upon addition of peroxide substrate.

Isolation of Small RNA and Total RNA

E. coli cells were grown in 10 ml of TSB.  Cells were harvested and lysed,

and lysates were centrifuged through S-buffered sucrose gradients as described

above.  The top fractions of sucrose gradients were taken and RNA was isolated

from these fractions by phenol and chloroform extraction.  One volume of

absolute ethanol and Mg acetate to 0.01 M was added to the pool of fractions

and was allowed to stand at -20°C for 15 minutes to precipitate the RNA.

Samples were spun at 7,000 rpm for 30 minutes and the supernatant was
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discarded. The RNA pellet was resuspended in 0.5 ml TE buffer and transferred

to a 1.5 ml tube. The samples were vortexed with 5 µl 10% SDS and 0.5 ml

phenol and spun in a microcentrifuge at 10,000 rpm for 5 minutes.  The aqueous

layers were extracted and placed into new microcentrifuge tubes and the phenol

extraction repeated. The aqueous layers were placed into new tubes and 0.5 ml

of chloroform was added.  The samples were vortexed and spun at 10,000 rpm

for 5 minutes in a microcentrifuge.  The chloroform extraction was also performed

twice.  Aqueous layers were removed into new tubes and 5 µl of 5 M NH4 acetate

was added and the tubes were filled with absolute ethanol, mixed, and allowed to

stand at -70°C for 30 minutes.  Samples were spun in a cold room at 10,000 rpm

for 10 minutes.  After the addition of 0.5 ml of 70% ethanol, the samples were

spun again at 10,000 rpm for 10 minutes.  Ethanol was decanted and RNA

pellets were dried until no ethanol was detectable.  RNA was re-suspended in 25

µl of sterile water.

Total RNA was isolated from cell pellets using the AquaPure RNA isolation

kit from Bio-Rad according to the manufacturer’s directions.

Northern Analysis of 16S rRNA

RNA was isolated as described above.  The RNA (2.5-5 µg) was mixed

with 15 µl RNA resuspension buffer, heated at 55°C for 15 minutes, and then

quickly cooled on ice.  Loading dye 5 µl (80% glycerol, 1% bromo-phenol blue)

was added to the samples before loading on 1.5% agarose gels.  Top samples
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from gradients were run for 2 hours, while total RNA samples were run for 4

hours at 50 volts.  A low range RNA ladder (Fermentas) was biotin labeled using

the LableIt Kit from Mirus according to the manufacture’s directions and added to

one well for determining size of RNA fragments. RNA in the gels was examined

by soaking in 1% ethidium bromide solution and examination by UV light.

After electrophoresis, RNA from the gels was blotted onto nylon

membranes (Nytran) using a Turboblot apparatus.  Following the manufacturer’s

directions, alkaline transfer buffer was used to carry out the transfer.  After the

transfer, gels were checked for RNA.  The membranes were neutralized in 1X

neutralizing buffer and the RNA was cross-linked to the membranes using a UV

oven (Fisher-Biotech).  The membranes were placed in 50 ml plastic corex tubes

with 15 ml of 1X prehybridization solution (MRC, Inc.) and allowed to incubate at

42°C for 30 minutes in a hybridization incubator (Fisher-Biotech).  The pre-

hybridization buffer was discarded and the membranes were hybridized overnight

at 42°C in the hybridization incubator with hybridization buffer, with 1X

background quencher (MRC Inc.) and 4 pmol of denatured 23S or 16S probe.

The probe was denatured by mixing with 0.1 volume of Mirus Denaturation Buffer

D1 and incubating at room temperature for 5 minutes.  The solution was chilled

on ice and mixed with 0.1 volume Mirus Neutralization Buffer N1 and incubated

at room temperature for 5 minutes.

Following hybridization, the membranes were washed and the probe

detected using Pierce’s North2South chemiluminescent hybridization and
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detection kit according to the manufacturer’s instructions.  The membrane was

covered with plastic wrap on a glass plate and exposed to Fuji Medical X-ray film.

X-ray film was developed by soaking the film in Kodak GBX developer for 1-5

minutes, rinsing in H2O, soaking in fixer and replenisher for 1-5 minutes, followed

with a final rinsing in H2O.

Analysis of Total RNA Via Aligent Bioanalyzer

E. coli cells were grown as described previously with various

concentrations of hygromycin B and without hygromycin B. Total RNA was

extracted as described above.  Total RNA was examined using an Aligent

Bioanalyzer 2100 and the RNA 6000 lab on a chip.  Five microliters (200 ng/µl) of

sample from total RNA was loaded onto each well of the RNA 6000 chip.

Sample prep, loading procedure, and run were carried out according to

manufacturer’s recommendations for total RNA analysis.
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CHAPTER 3

RESULTS

Effects of Hygromycin B on Growth Rate, Protein Synthesis, Cell Viability, and

Ribosomal Subunit Formation in Escherichia coli

MIC Determination of Hygromycin B in E. coli

Minimal inhibitory concentration (MIC) represents the minimal

concentration of antibiotic that will halt visible cell growth.  An MIC value was

determined prior to other experiments in order to find a suitable concentration

range of antibiotic.  The MIC value for hygromycin B in E. coli D10-1 growing in

TSB at 37°C was 150 µg/ml (Table 2).  Sub-inhibitory concentrations of drug

were chosen based on the results of the MIC.  Sub-inhibitory amounts of drug

suppress cell growth without halting growth completely.  The sub-inhibitory

concentrations chosen based on the MIC value spanned a range from 0-100

µg/ml.

Effects of Hygromycin B on Protein Synthesis

Aminoglycoside antibiotics are well-known inhibitors of translation in

bacteria cells.  The rate of protein synthesis in growing E. coli cells was

examined by measuring the incorporation of 35S-methionine into cellular proteins.

Figure 9A shows the rate of incorporation of 35S-methionine with increasing

concentrations of hygromycin B.  The inhibitory effect on protein synthesis is
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represented in Figure 9B as a percent of control [35S-methionine incorporation at

15 minutes graphed as a percent of control protein synthesis].  The IC50 is given

in Table 2.

 

Figure 9  Inhibition of protein synthesis by hygromycin B.  (A) Inhibition of 35S-
methionine incorporation in E. coli D10-1 cells treated with hygromycin B at (<)
0 µg/ml, (‡) 15 µg/ml, (o) 30 µg/ml, (s) 45 µg/ml, (c) 60 µg/ml, (=) 75 µg/ml.
(B) Concentration dependent inhibition of 35S-methionine incorporation in E. coli
D10-1 cells at 37 °C treated with hygromycin B graphed as a percent of control
protein synthesis.  Arrow indicates IC50 value.  Bars indicate standard error.
Results are the mean of two experiments.

B
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Table 2  MIC and IC50 values for hygromycin B in E. coli cells.

a Cell number was determined by colony counting after dilution of 10-5 and plating on
TSB agar plates.
b Growth rate was determined by cell density (measured in Klett units) over time.
cProtein synthesis rates was determined by 35S-methionine incorporation.
d Subunit formation was determined by 3H-uridine incorporation.

Effects of Hygromycin B on Growth Rate and Cell Viability.

The inhibition of cell viability and cellular growth rate is consistent with the

demonstrated inhibitory effects of hygromycin B on translation.  As shown in

Figures 10A and 10B, hygromycin B diminished the number of viable cells and

increased the doubling time in a concentration dependent fashion.  Hygromycin B

inhibited viable cell numbers by 50% at a concentration of 20 µg/ml.  Growth rate

was reduced by half at a concentration of 25 µg/ml.

 

 

   IC50(µg/ml)   

 
MIC 

(µg/ml) 

 
aCell 
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bGrowth 

Rate 

 
cProtein 

Synthesis 

 
d30S 
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d50S 

subunit 
amount 

      
150 20 25 16 65 45 
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Figure 10  Inhibition of growth rate and cell viability in E. coli cells with increasing
concentrations of hygromycin B.  (A) Percent decrease in growth rate with
increasing concentrations of hygromycin B ( n ).  (B) Percent decrease in viable
cell numbers with increasing concentrations of hygromycin B ( g ).  Arrows
indicate IC50 values. Bars indicate standard error.  Results are the mean of two
determinations.

Inhibition of Ribosomal Subunit Formation by Hygromycin B

The effect of hygromycin B on ribosomal subunit formation was examined

in growing E. coli cells.  The concentration dependence of ribosomal subunit

assembly was measured by examining sucrose gradient profiles of ribosomal

subunits labeled with 3H-uridine during growth in the presence and absence of

hygromycin B.  Figures 11A-F show sucrose gradient profiles of lysates from

cells grown without antibiotic or in the presence of the drug.  The 30S ribosomal

subunit amount was reduced more so than the 50S amount initially.  There was
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also an increased amount of fragmented RNA that accumulated in the top

fractions of the gradients from cells treated with hygromycin B.  Figure 12 shows

the concentration dependent inhibitory action on assembly of the 30S ribosomal

subunit by hygromycin B.  Increasing concentrations of the antibiotic lowered 30S

particle amounts in growing E. coli cells.  The amounts of 50S ribosomal subunits

were also reduced.  The decline in 50S ribosomal subunit amounts was most

apparent at higher concentrations of hygromycin B.  IC50 values for inhibition of

ribosomal subunit formation are given in Table 2.

Pulse-chase kinetic analysis of ribosomal subunit assembly

Pulse-chase kinetic analysis was also used to measure the rates of

ribosomal subunit synthesis in growing cells.  Figures 13A and 13B show the

pulse chase kinetic analysis of ribosomal subunit formation in control and

hygromycin B treated cells.  In the absence of the antibiotic 30S ribosomal

subunit formation was complete in 15 minutes and 50S subunit formation

reached a plateau in 30 minutes.  When cells were treated with hygromycin B,

30S subunit formation did not reach control levels until 60 minutes and 50S

ribosomal subunit amounts were estimated to reach control levels in

approximately 120 minutes.   30S and 50S ribosomal subunit formation rates

were inhibited equally relative to control rates.
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Figure 11  Effect of hygromycin B on ribosomal subunit amounts.  (A) Sucrose
gradient profiles of E. coli grown in the absence of antibiotic and in the presence
of (B) 15 µg/ml hygromycin B (C) 30 µg/ml hygromycin B.  (D) 45 µg/ml
hygromycin B (E) 60 µg/ml hygromycin B  (F) 75 µg/ml hygromycin B.
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Figure 12  Concentration dependent inhibition of ribosomal subunit assembly in
E. coli cells at 37°C treated with hygromycin B.  Inhibition of 30S assembly (®),
and inhibition of 50S assembly ( n ).  Arrows indicate IC50 values for 30S (red
arrow) and 50S (green arrow) ribosomal subunit formation.  Results are the
mean of two determinations.  Bars indicate standard error.
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Figure 13 3H-uridine pulse and chase labeling kinetic analysis of ribosomal
subunit formation.  Ribosomal subunit assembly kinetics in E. coli at 27 °C.  (A)
Assembly of 30S subunits ( n )  and 50S subunits (s) without hygromycin B.
(B) Assembly of 30S subunits ( n ) and 50S subunits (s) with hygromycin B (50
µg/ml). Results are the mean of two determinations.  Bars indicate standard
error.

Northern Hybridization Analysis of 16S rRNA Fragmentation

Previous work with 50S ribosomal subunit inhibitors has shown that 23S

rRNA fragments accumulate upon drug treatment.  These are in greater amounts

in E. coli strains containing one or more mutations in specific RNase genes that

may be involved in the turnover of antibiotic-stalled rRNA (Silvers and Champney

2005).  RNase II, RNase III, and PNPase were shown to be involved in the

turnover of stalled 23S rRNA.  Studies examining paromomycin and neomycin

have revealed an accumulation of fragmented RNA in the top portion of gradients

from cells treated with these aminoglycoside antibiotics (Mehta and Champney
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2002; Mehta and Champney 2003).  Broken down rRNA as well as smaller tRNA

and mRNA sediment in the top fractions of sucrose gradients.  It is apparent from

Figure 11(A-F) that in cells treated with hygromycin B there are substantially

higher amounts of RNA oligonucleotides in the top fractions compared to 30S

and 50S subunit amounts.  My goal was to determine if the 30S ribosomal

subunit inhibitor hygromycin B had any effect on accumulation of 16S rRNA

fragments and to determine the enzymes involved in turnover of 16S rRNA.

 Analysis by Northern hybridization with 16S and 23S rRNA-specific

probes was performed on RNA isolated from the top fractions of sucrose

gradients of lysates from E. coli strains grown with hygromycin B.  The

ribonuclease mutant strains examined in this study included D10-1 (RNase I-),

SK4803 (RNase II-), CA244 (PNPase-), and SK7622 (RNase III-) deficient strains.

Table 1 lists the strains of E. coli used in this experiment along with their

respective phenotype and genotypes.  Figure 14 shows the autoradiograph of the

Northern blots hybridized with the 16S and 23S rRNA specific probes.

Hybridization of 16S rRNA specific probe with rRNA isolated from the top fraction

occurred in each strain that had been treated with hygromycin B.  SK7622 and

SK4803 strains contained larger amounts of 16S fragments in comparison to

D10-1.  D10-1 exhibited very little accumulation of 16S oligonucleotides with or

without the presence of hygromycin B.  RNase III deficient SK7622 had

particularly high amounts of 16S fragmentation.  The size of RNA fragments

hybridized to 16S rRNA specific probes were estimated to be 900-200
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nucleotides.  Size was calculated using a low range RNA ladder (Fermentas) that

was biotin labeled using the Mirus Label-It kit.  No accumulation of 23S RNA was

visualized in the top fractions (Figure 14B).

Figure 14  Northern hybridization analysis of rRNA.  RNA was isolated from the
top regions of sucrose gradients from cells grown without and with hygromycin B
(50 µg/ml).  The RNA was separated on a 1.5% agarose gel and a blot of the gel
was hybridized with a biotin labeled 16S specific DNA probe (A) or a 23S specific
DNA probe (B). 16S rRNA was used as a standard along with a biotin labeled
low-range ladder.
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Analysis of Total RNA Via Agilent Bioanalyzer

Total RNA was examined in E. coli cells treated with hygromycin B at

various concentrations of antibiotic and in control cells using the RNA 6000 lab

chip kit and Bioanalyzer 2100 (Agilent).  With increasing concentrations of

hygromycin B there was an increase in the amount of RNA accumulation

corresponding to a 16S rRNA precursor.  There also was a concentration

dependent decrease in the amount of 16S ribosomal RNA present in the

antibiotic treated cells along with an increase in the amount of small fragments of

RNA.  Table 3 lists the percentage of total area for each peak corresponding to

small RNA, 16S rRNA, precursor to the 16S rRNA, and 23S rRNA.  Figure 15(A-

B) shows the fluorescent chromatograph and virtual gel from the Agilent

Bioanalyzer analysis.

Table 3  Percent of total area for fluorescent chromatograph peaks representing
small RNA, 16S rRNA, precursor for the 16S rRNA, and 23S rRNA from E. coli
D10-1 with increasing concentrations of hygromycin B.  Results are the mean of
two determinations.  Standard error of the mean is represented.

 Percent Total Area 

Concentration 
of hygromycin 

B (µg/ml) 

Small 
RNA 

16S Precursor 
to the 16S 

23S  

0 
25 

60.9±0.1 
59±1.0 

9.6±0.1 
10.4±0.1 

0.3±0.1 
0.5±0.04 

13±1.2 
13.5±0.2 

50 62.8±0.8 10.4±0.5 0.75±0.2 12.5±0.6 
75 64.5±1.5 7.3±0.05 1.1±0.2 12.7±0.3 
100 68.8±0.8 4.8±0.05 1.2±0.1 10±0.15 
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Figure 15  Agilent bioanalyzer analysis of total RNA from E. coli cells treated with
hygromycin B.  (A) Fluorescent chromatograph showing the intensity of labeled
RNA peaks in samples of total RNA extracted from control E. coli cells (red line)
and cells treated 100 µg/ml of hygromycin B (blue line).  (B) Virtual gel produced
by the Agilent software based on the results from the fluorescent chromatograph.

B
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The Effect of Quinupristin-Dalfopristin and XRP 2868 on Cellular Growth Rates,

Cell Viability, Protein Synthesis, and Ribosomal Subunit Formation in H.

influenzae, S. aureus and S. pneumoniae.

  

MIC Determination of Quinupristin-Dalfopristin and XRP 2868.

Minimal inhibitory concentrations (MIC) for both antibiotics were

determined for each organism and are listed in Table 4.  The values were in good

agreement with those found by Pankuch and others (2003).

  

Effects of Quinupristin-Dalfopristin and XRP2868 on Protein Synthesis

Streptogramin antibiotics are well-known inhibitors of translation in bacteria

cells.  Quinupristin-dalfopristin kills cells by inhibiting protein synthesis and 50S

subunit formation ( Lamb and others 1999; Champney and Tober 2000).  Protein

synthesis rates in growing cells were measured by the incorporation of 35S-

methionine into cellular proteins.  Figure 16 A-C illustrates the effect of increasing

concentrations of each drug on the rate of translation.  Both drugs inhibited

translation at a lower concentration in S. aureus and S. pneumoniae compared

with H. influenzae.  XRP 2868 was the more effective inhibitor of protein

synthesis in all three organisms examined. IC50 values for translational inhibition

are presented in Table 4.  Inhibition of protein synthesis by each drug is

represented as a percent of control 35S-methionine incorporation.
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Figure 16  Inhibition of protein synthesis by quinupristin-dalfopristin and XRP
2868.  Streptogramin concentration dependent inhibition of protein synthesis
rates.  Protein synthesis rates were measured by 35S-methionine incorporation in
(A) H. influenzae, (B) S. aureus and (C) S. pneumoniae in the presence of
increasing concentrations of XRP 2868 ( ®, dashed line ) and quinupristin-
dalfopristin ( O, solid line ).  Power best fit lines are shown for S. aureus and S.
pneumoniae.  Linear best fit lines are shown for H. influenzae.  Bars indicate
standard error.  Arrows indicate IC50 values for quinupristin-dalfopristin (open
arrows) and XRP 2868 (filled arrows).  Results are the mean of three
determinations.

ragments

16S rRNA Fragments
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Table 4  MIC and IC50 values for streptogramin antibiotic inhibition of cell viability,
protein synthesis and 50S ribosomal subunit formation In three microorganisms.

a Cell number was determined by colony counting after dilution of 10-5 and plating
on appropriate nutrient agar plates.
b Growth rate was determined by cell density (measured in Klett units) over time.
c Protein synthesis rates was determined by 35S-methionine incorporation.
d Subunit formation was determined by 3H-uridine incorporation.

Effects of quinupristin-dalfopristin and XRP 2868 on cell viability

The inhibition of cell viability is consistent with the demonstrated inhibitory

effects of each antibiotic on translation.  Quinupristin-dalfopristin and XRP 2868

Organism Antibiotic aCell

Number

bProtein

Synthesis

c50S

subunit

amount

MIC

(µg/ml)

H. influenzae Quinupristin-

dalfopristin 2.2 3 3.6 4

XRP2868 0.3 0.6 0.9 1

S. pneumoniae Quinupristin-

dalfopristin 0.07 0.12 0.24 1

XRP2868 0.07 0.07 0.11 0.5

S. aureus Quinupristin-

dalfopristin 0.13 0.11 0.2 2

XRP2868 0.05 0.07 0.4 1
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both reduced the viable cell count in each organism tested in a concentration

dependent manner, consistent with the inhibitory effects seen on protein

biosynthesis.  XRP 2868 exhibited the greatest effect on each organism

examined.  The results are shown in Figure 17 A-C and IC50 values for the

antibiotics are shown in Table 4.  The growth rate of each organism also declined

in proportion to the drug concentration (data not shown).

Figure 17  Streptogramin concentration dependent inhibition of cell viability.
Inhibition of cell viability by colony counting in (A) H. influenzae, (B) S. aureus
and (C) S. pneumoniae in the presence of XRP 2868 (®, dashed line) and
quinupristin-dalfopristin (O, solid line).  Linear best fit lines are shown for H.
influenzae and power best fit lines are shown for S. aureus and S. pneumoniae.
Bars indicate standard error.  Arrows mark IC50 values for XRP 2868 (filled
arrows) and quinupristin-dalfopristin (hollow arrows). Results are the mean of
three determinations.
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Inhibition of ribosomal subunit formation by quinupristin-dalfopristin and XRP

2868

Each antibiotic was also examined for its effects upon ribosomal subunit

formation. The concentration dependence of ribosomal subunit assembly was

measured by examining sucrose gradient profiles of ribosomal subunits labeled

with 3H-uridine during growth in the presence and absence of each drug in each

organism.  Both drugs showed a concentration dependent inhibition of 50S

ribosomal subunit formation.   XRP 2868 was more effective than quinupristin-

dalfopristin at inhibiting 50S ribosomal subunit formation, inhibiting assembly by

half at 2-4 fold lower concentrations than quinupristin-dalfopristin, with the

exception of S. aureus that was nearly equivalent. The results for inhibition of

50S particle synthesis are illustrated in Figure 18A-C. IC50 values for each

antibiotic are shown in Table 4.
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Figure 18  Streptogramin concentration dependent inhibition of 50S ribosomal
subunit assembly.  Inhibition of 50S subunit amounts from 3H-uridine labeled
ribosomal subunits separated by sucrose gradient centrifugation in (A) H.
influenzae, (B) S. aureus and (C) S. pneumoniae in the presence of XRP 2868
(©, dashed line ) and quinupristin-dalfopristin (O, solid line ).  Linear best fit lines
are shown for H. influenzae and power best fit lines are shown for S. aureus and
S. pneumoniae. Arrows mark IC50 values for  XRP 2868 (filled arrows) and
quinupristin-dalfopristin (hollow arrows). Results are the mean of three
determinations.  Bars indicate standard error.
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CHAPTER 4

DISCUSSION

The aminoglycoside hygromycin B and the streptogramin compounds

quinupristin-dalfopristin and XRP 2868 are all well known translational inhibitors.

Hygromycin B acts specifically on the 30S subunit and the streptogramin

compounds quinupristin-dalfopristin and XRP 2868 specifically inhibit 50S

ribosomal subunit function.  The mechanism for their inhibition of translation has

been well studied; however, these antibiotics have not been examined prior to

this study for their ability to inhibit ribosomal subunit formation (Brodersen and

others 2000; Harms and others 2004).  Ribosomal subunit formation is a critical

life process that would make an ideal target for antimicrobial agents (Champney

2003).  This work has shown that hygromycin B inhibits 30S ribosomal subunit

assembly specifically and that quinupristin-dalfopristin and XRP 2868 act to

inhibit 50S ribosomal subunit synthesis.  Studies of this nature provide a better

understanding of the classes of antibiotics that specifically target ribosomal

subunit formation and the discrepancies within each class will aid future drug

development in this novel target area.

It is known that aminoglycoside antibiotics inhibit translation by binding to

the 30S ribosomal subunit.  Recent studies have shown that the aminoglycoside

antibiotics neomycin and paromomycin posses a secondary inhibitory target,
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preventing the formation of functional 30S ribosomal subunits (Mehta and

Champney 2002; Mehta and Champney 2003).

Previous studies have shown that these antibiotics prevent translation and

ribosomal subunit formation with near equal action in growing E. coli cells (Mehta

and Champney 2002).  An interesting difference was seen in the effect of

hygromycin B on protein synthesis and ribosomal subunit assembly with this

antibiotic.  Hygromycin B was a stronger inhibitor of translation than 30S

ribosomal subunit formation with IC50 values of 16 µg/ml and 65 µg/ml

respectively.  Inhibition of growth rate and total viable cell numbers were in

accordance with the reduction of protein synthesis rates (Table 2).

Hygromycin B has recently been shown to affect a ribosomal ATPase

RbbA that is required for protein synthesis (Ganoza and Kiel 2001).  RbbA is an

ATPase that binds to the 30S subunit near the E-site and functions to aid ejection

of tRNA from the E-site (Xu and others 2006).  Hygromycin B binds near the

binding site for RbbA disrupting the binding of the ATPase.  Hygromycin B has

been shown to inhibit 70-80% of the ATPase activity of 70S ribosomes whereas

similar aminoglycoside antibiotics did not have the same effect; neomycin and

streptomycin inhibited only 10-25% of ribosomal ATPase activity (Ganoza and

Kiel 2001). The effects of hygromycin B on this enzyme may contribute to the

marked difference seen in its inhibitory effect on translation compared to other

aminoglycosides.
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Inhibition of 30S and 50S ribosomal subunit assembly by hygromycin B

was also examined.  Inhibition of 50S ribosomal subunit assembly by most 50S

protein biosynthesis inhibitors does not affect 30S subunit synthesis (Champney

2001).  However, 50S ribosomal subunit formation may be affected by inhibitors

of 30S ribosomal subunit assembly.  Both neomycin and paromomycin have

been shown to cause a reduction in 50S ribosomal subunit formation in E. coli

and S. aureus at higher concentrations of drug (Mehta and Champney 2002;

Mehta and Champney 2003).  Hygromycin B demonstrated a similar reduction

pattern in the amounts of 50S ribosomal subunit.  The indirect action of these

antibiotics on the 50S subunit has been attributed to a downstream effect (Mehta

and Champney 2002; Mehta and Champney 2003).  Small subunit (30S) particle

biosynthesis precedes 50S ribosomal subunit synthesis; therefore, any effect on

30S formation could have a nonspecific downstream action of slowing or halting

50S biosynthesis.  The effects are similar to that found with polar effect on genes

transcribed from a multi-gene transcript.  When transcription of a gene upstream

is affected, all of the genes downstream are also affected while any genes farther

upstream remain unaffected.  Figure 19A-B illustrates the tandem synthesis of

the 30S and 50S particles.
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Figure 19  Tandem synthesis of the 30S and 50S ribosomal subunits in E. coli
cells.  (A) Transcripts for 16S and 23S rRNA genes are linked.  (B) Formation of
30S and 50S ribosomal subunits in E. coli cells.

Pulse-chase kinetic analysis of ribosomal subunit formation in cells treated

with hygromycin B supports a nonspecific effect on 50S particle synthesis.  In

control cells there was approximately twice the amount of 50S ribosomal

subunits compared to 30S subunits and the amount of time required to

ragments
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synthesize a 50S particle was about twice as long as a 30S subunit.  This ratio in

quantity and synthesis rate for the ribosomal subunits was consistently seen.  In

drug-treated cells the rate for synthesis of the 30S and 50S increased to 60

minutes and ~120 minutes before reaching control amounts, respectively.  The

results for the pulse-chase kinetic analysis indicated an equal inhibition of the

rate of 30S and 50S ribosomal subunits (Figure 13A and 13B).  An equivalent

effect on 30S and 50S subunit assembly rates is expected if only the 30S particle

formation is being affected by an antibiotic.  An equal decline in 50S subunit

formation has been observed in previous studies with neomycin and

paromomycin (Champney and Mehta 2002; Champney and Mehta 2003).  The

theory for this indirect effect on the 50S has been explained above.

Northern blot analysis with 16S rRNA specific probe on small RNA

fragments isolated from hygromycin B treated cells showed increased

accumulation of fragmented 16S rRNA (Figure 14A-B).   Samples from SK7622

(RNase II-) and SK4803 (RNase III-) strains treated with drug contained larger

amounts of 16S fragments in comparison to D10-1 (RNase I-).  Previous work

with 23S assembly inhibitors has also shown these enzymes to also be important

in the turnover of stalled 50S intermediate (Silvers and Champney 2005).  There

were only trace amounts of 16S fragments in D10-1 treated with hygromycin B.

The small amount of fragment build up in these cells indicates that RNase I is not

an important enzyme for the turnover of stalled 16S particle.  Silvers and

Champney (2005) also found this to be the case with 50S intermediate turnover;
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D10-1 behaved similarly to wild type cells.  One interesting difference between

23S and 16S turnover was the size of rRNA fragments produced.  Turnover of

azithromycin stalled 50S subunit intermediates gave 23S rRNA in the sizes of

500 and 1000 base pairs were observed (Silvers and Champney 2005).  The 16S

fragments that were produced during hygromycin B treatment were in the size of

200-900 base pairs.   The difference in size is likely because of differences in the

16S and 23S rRNA, the differences in the proteins interacting with the rRNA in

the precursor forms of the 30S and 50S subunits and how these are recognized

by RNases involved in turnover.

The large amounts of 16S fragmentation in E. coli strains SK7622 and

SK4803 could be an indication of the importance of RNase II and III in the break

down of ribosomal subunit precursor that forms during treatment with antibiotics

which inhibit assembly. The model in Figure 2 predicts that RNase enzymes are

necessary for the removal/recycling of stalled precursor from cells treated with

assembly inhibiting antibiotics.  RNase III deficient SK7622 had particularly high

amounts of 16S particle accumulation implicating this RNase as an especially

important factor in the turnover of 30S ribosomal subunit precursor that is formed

during treatment with hygromycin B.  RNase III is an important endoribonuclease

that plays a role in the processing of both 16S and 23S rRNA (Srivastava and

Schlessinger 1990).  Hybridization with a 23S specific probe showed no

accumulation of 23S fragments in any of the drug treated samples indicating that
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hygromycin B is specifically targeting only the 30S ribosome in assembly and

translation (Figure 14B).

Examination of total RNA from hygromycin B treated E. coli cells using the

Agilent bioanalyzer also supported specific inhibition of 16S rRNA.  Total RNA

analysis showed an increase in small fragments of RNA and a decrease in the

amount of RNA corresponding to 16S rRNA.  Meanwhile the amount of

fragments of RNA corresponding to the 16S rRNA precursor increased (Table 3,

Figure (15A-B).  A decrease in the amount of RNA corresponding to the 23S was

also seen.

Hygromycin B binds with specificity only to the 30S ribosomal subunit and

inhibits translation by interfering with the A, P, and E sites only on this subunit

(Brodersen and others 2000).  Hygromycin B has been shown to bind to a part of

helix 44 (H44) that changes position during translocation and it is believed that

hygromycin B binding to H44 restricts the movement of this helix during protein

synthesis (Frank and Agrawal 2000).  It is possible that hygromycin B binding to

this helix could also restrict movement necessary to form functional 30S subunits

and in so doing prevent conformational rearrangement required for processing of

the 16S rRNA transcript and subsequent 30S ribosomal subunit maturation.

The binding of hygromycin B can be interrupted by modification of the

antibiotic by phosphotransferases or mutation of target rRNA bases.  The

hygromycin phosphotransferase enzyme is found in the hygromycin B producing

organism Streptomyces hygroscopicus (Malpartida and others 1983; Bilang and
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others 1991).  The gene for hygromycin phosphotransferase has also been

located on plasmids in bacteria found in animals treated with the antibiotic.  The

resistance gene has also been discovered on R plasmids in 2 clinical strains of

bacteria, Escherichia coli and Klebsiella pneumoniae (Gomez-Lus R 1998). 

Mutation of rRNA is another mechanism of resistance to hygromycin B.  It

has been shown in single rRNA allelic derivatives of Mycobacterium smegmatis

that point mutations at or near the hygromycin B binding site in helix 44 of 16S

rRNA confer resistance to the antibiotic (Pfister and others 2003).  Studies with

E. coli and Tetrahymena thermophila mutants concur (Spangler and Blackburn

1985; De Stasio and Dahlberg 1990).

Several crystal structures of aminoglycosides complexed with 30S

subunits or 16S fragments have been resolved and are the basis for new

avenues of structure based drug design (Brodersen and others 2000; Vicens and

Westhof 2003).  A group at Anadys Pharmaceuticals, Inc. has designed hybrid

aminoglycoside ligands.  These ligands combine components of hygromycin B

and paromomycin or neomycin B and are designed to make the most of subtle

differences in binding of these antibiotics onto the 30S ribosomal subunit near

helix 44 and the decoding site (Zhou and others 2005; Murray and others 2006).

 Crystal structures of antibiotic bound to intermediate particles in ribosomal

subunit assembly have not yet been resolved.  Antibiotic hybrids designed based

on their ability to bind these intermediate structures could be more effective

antibiotics than their parent drugs.  Inhibition of subunit assembly would halt
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protein synthesis before it began by preventing the formation of functional

ribosomes.  Targeting of ribosomal subunit formation should create an even

greater bactericidal effect in comparison to inhibition of translation.  It is important

to examine other antibiotics for their inhibitory effects on this possible target.

 This study also examined the effects of several new streptogramin

compounds for their effects on ribosomal subunit formation.  The development of

new antimicrobial agents is critical for overcoming the problem of microbial drug

resistance.  Both the development of new antibiotics like linezolid (Livermore

2003) and the modification of existing compounds such as the aminoglycoside

hybrid ligands are required.  Quinupristin-dalfopristin is a streptogramin antibiotic

that has been in clinical use since 1999 for the treatment of multi-resistant

infections of Gram-positive bacteria.  XRP 2868 (also known as NXL 103) is a

new oral streptogramin derived from quinupristin-dalfopristin that is showing

great promise as a treatment option in multi-resistant Gram-positive infections.

XRP2868 has been shown to be more inhibitory than nine other antibiotics tested

against a variety of Gram-positive clinical isolates (Goldstein and others 2005).

The new antibiotic has also shown better activity against H. influenzae and S.

pneumoniae than its parent drug combination of quinupristin-dalfopristin in MIC

assays (Pankuch and others 2003).

Antibiotics that bind to the large 50S ribosomal subunit of bacterial

ribosomes inhibit both the translational activity of the subunit and specifically

prevent its formation in cells (Champney 2003).  Both A and B-type
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streptogramins have this dual activity (Champney and Tober 2000).  The goal of

this study was to compare the inhibitory effects of XRP 2868 with quinupristin-

dalfopristin on cellular functions including ribosome function and assembly in b-

lactamase-positive Haemophilus influenzae, methicillin-resistant Staphylococcus

aureus, and erythromycin-resistant S. pneumoniae strains.  These resistant

strains were chosen because they are commonly found in human infections and

they often respond to streptogramin antibiotics (Lamb and others 1999).  Minimal

inhibitory concentrations (MIC) for both antibiotics were determined for each

organism and are listed in Table 4.  The values for S. pneumoniae and H.

influenzae are in good agreement with those found by Pankuch and others

(2003).

Quinupristin-dalfopristin kills cells by inhibiting protein synthesis and 50S

subunit formation (Lamb and others 1999; Champney and Tober 2000).  Both

drugs inhibited translation at a lower concentration in S. aureus and S.

pneumoniae compared with H. influenzae.  XRP 2868 was the more effective

inhibitor of protein synthesis in all three organisms examined (Figure 16).  IC50

values for translational inhibition are summarized in Table 4.

Each antibiotic was also examined for its effects upon ribosomal subunit

formation.  Previous work has shown that the streptomycin compound

virginiamycin caused a specific decrease in the amount of 23S rRNA in Bacillus

subtilis cells treated with the antibiotic (Cocito 1969; Cocito 1971; Cocito 1973).

It has been demonstrated that the streptogramin B component is responsible for
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the reduction in 50S ribosomal subunit formation by several streptogramin

compounds in B. subtilis and S. aureus while the A component functions to inhibit

protein synthesis (Cocito 1969; Cocito 1971; Cocito 1973; Champney and Tober

2000).  Quinupristin-dalfopristin and XRP 2868 showed a concentration

dependent inhibition of 50S ribosomal subunit formation with XRP 2868 being as

effective as quinupristin-dalfopristin at a 2-4 fold lower concentration of drug with

the exception of S. aureus (Figure 18A-C). The major effect of both drugs in S.

aureus was inhibition of translation and XRP 2868 reduced protein biosynthesis

by half at a concentration of drug two fold lower than quinupristin-dalfopristin.

There was not a specific decline in 30S subunit amounts in cells treated with

each antibiotic (data not shown).

Resistance to quinupristin-dalfopristin, XRP 2868 and other streptogramins

is incurred by enzymatic modification of the compound, active transport or efflux

by an ATP powered pump, and alteration of the target site.  Because there are

different binding sites for each of the components, the mechanisms of resistance

are also different.  Resistance to group B components most often occurs though

cross resistance provided by erm genes encoding erythromycin methyl

transferases.  These enzymes transfer methyl groups onto an adenine residue in

the 23S rRNA that results in decreased binding of macrolide, lincosamide, and

streptogramin B antibiotics.  Other mechanisms of resistance to group B

streptogramins are rare and specific for certain strains of Gram-positive bacteria.

Group A resistance is most often mediated by genes that encode
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acetyltransferases that inactivate the antibiotic or by genes which encode efflux

pumps that actively transport the antibiotic out of the cells (Thal and Zervos

1999).  Quinupristin-dalfopristin has been available clinically only since 1999.

Resistant isolates containing one or more of the above mentioned resistance

factors have already begun to appear in the clinical setting (Bozdogan and

Leclercq 1999; Lina and others 1999; Malbruny and others 2002).  The need to

expand the antibiotic arsenal is ever present.  Improving existing antibiotics and

seeking out new targets for existing antimicrobial agents are ways to strengthen

our stand in the war against antibiotic resistant pathogens.

The results show that XRP 2868 is a more effective inhibitory agent

against methicillin-resistant S. aureus, erythromycin-resistant S. pneumoniae,

and b-lactamase-positive H. influenzae than quinupristin-dalfopristin.  This study

is the first to test the inhibitory effects of this new compound on cellular functions

in a MRSA strain and demonstrates that this drug is effective against this

resistant organism.  The IC50 values for inhibition of protein synthesis by XRP

2868 in all bacteria examined were 2-5 fold lower than that of quinupristin-

dalfopristin.  50S subunit amounts were reduced in proportion to the decline in

protein synthesis in all organisms.  The inhibition of 50S subunit amounts

indicates that cell killing was a result of the antibiotics’ effect on translation and

the assembly of 50S subunits.  Understanding the relationship between structural

variance and differential inhibition of cellular function in target organisms is

important for the development of effective antibiotics (Chu and others 1996).
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More studies of this nature with other modified streptogramin compounds would

be helpful in this regard.

This work is a continuation of studies examining possible ribosomal

subunit assembly inhibitors.  More studies such as this one are needed to

elucidate the potential of ribosomal subunit assembly as an antibiotic target and

increase our understanding of the mechanism behind specific inhibition of this

vital cellular function.
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ABBREVIATIONS

30S ……………………  Small subunit of ribosome

50S …………………….  Large subunit of ribosome

DNA …………………….  Deoxyribonucleic acid

MIC …………………….. Minimal inhibitory concentration

RNA …………………….. Ribonucleic acid

rRNA ……………………... Ribosomal RNA

S-buffer, R-buffer ………………. Subunit buffer, Ribosome buffer

IC50 ……………………… 50% inhibitory concentration

TSB ……………………… Tryptic soy broth

MRSA ...…………………… Methicillin resistant Staphylococcus aureus

RNase, PNPase  ……………….  Ribonuclease, Polynucleotide Phosphorylase

TCA    ……………………… Trichloro-acetic acid

SDS   ………………………. Sodium lauryl sulfate

DOC ………………………. Deoxycholic acid sodium salt

EDTA ………………………. Disodium ethylenediamine-tetraacetate

PMSF ………………………. Phenylmethanesulfonyl fluoride

MOPS ………………………. 3-(N-Morpholino)-propanesulfonic acid

SAS-buffer  ……………………….. S. aureus subunit buffer

PCR  ……………………….. Polymerase chain reaction
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