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ABSTRACT 

 

Endothelial HSPA12B is a Novel Protein for the Preservation of Cardiovascular 

Function in Polymicrobial Sepsis via Exosome MiR#126 

 

by 

Xia Zhang 

 

Sepsis is the most frequent cause of mortality in most intensive care units. 

Cardiovascular dysfunction is a major complication associated with sepsis, with high 

mortality rates up to 70%. Currently, there is no effective treatment approach for sepsis.  

 

The integrity of the endothelium is fundamental for the homeostasis of the 

cardiovascular system. Sepsis induces endothelial cell injury which is the key factor for 

multiple organ failure. The increased expression of adhesion molecules and 

chemokines in endothelial cell promotes leukocytes infiltration into the tissue. The loss 

of tight junction proteins and increased permeability of the endothelial cells will provoke 

tissue hypoxia and subsequent organ failure. Therefore, preservation of endothelial 

function is a critical approach for improving sepsis#induced outcome. 

 

In this study, endothelial specific protein HSPA12B has been found to play a critical role 

in the preservation of cardiovascular function in polymicrobial sepsis. HSPA12B is a 

newest member of HSP70 family which predominantly expresses in endothelial cells. 
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HSPA12B deficiency (HSPA12B#/#) was found to exaggerated polymicrobial sepsis#

induced endothelial dysfunction, leading to worse cardiac dysfunction. HSPA12B#/# 

significantly increases the expression of adhesion molecules, decreases tight junction 

protein levels and enhances vascular permeability. HSPA12B#/# also markedly promotes 

the infiltration of inflammatory cells into the myocardium and inflammatory cytokine 

production.    

 

The cardioprotective mechanisms of HSPA12B was investigated in sepsis induced 

cardiovascular dysfunction. Exosomes play a critical role in cell#cell communication. 

Exosome is a natural vehicle of microRNAs. We found that exosomes isolated from 

HSPA12B#/# septic mice induced more expression of adhesion molecules in endothelial 

cells and inflammatory responses in macrophages. Interestingly, the levels of miR#126 

in serum exosomes isolated from HSPA12B#/# septic mice were significantly lowers than 

in WT septic mice. Importantly, delivery of miR#126 carried exosomes significantly 

improved cardiac function, suppressed the expression of adhesion molecules, reduced 

immune cell infiltration in the myocardium, and improved vascular permeability in 

HSPA12B#/# septic mice. The data suggests that HSPA12B is essential for endothelial 

function in sepsis and that miR#126 containing exosomes plays a critical role in 

cardiovascular#protective mechanisms of endothelial HSPA12B in polymicrobial sepsis.   
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CHAPTER1 

INTRODUCTION 

 

Sepsis and Septic Cardiomyopathy 

 

Sepsis is a Major Healthcare Problem.��

� The Definition of Sepsis.�Sepsis is systemic immune and inflammatory response 

to pathologic infection. The symptom ranges from minor symptom systemic 

inflammatory response syndrome (SIRS), sepsis, severe sepsis and septic shock 1. 

Bacteremia means the presence of detectable bacteria in the blood. However 

bacteremia is only found in half of severe sepsis and septic shock patients.  

 

 The Epidemiology of Sepsis. In the United States, the incidence of sepsis 

increased to 1,141,000 in 2008 (http://www.cdc.gov/sepsis/datareports/index.html). The 

number is predicted to continuously increase due to a population aging, making this 

disease a major healthcare problem 2,3.   

 

 Sepsis and Multiple Organ Failure. Severe sepsis is sepsis with organ 

dysfunction. Manifestation of organ dysfunction varies from acute heart failure; lung 

injury; oliguria and increased creatinine; coagulopathy; thrombocytopenia; unexplained 

mental changes; hyperbilirubinaemia; or hyperlactatemia. Septic shock is sepsis with 

persistent hypotension despite fluid resuscitation. The yearly incidence of severe sepsis 

has been reported as 132 per 100 000 population 4. Severe sepsis and septic shock are 
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common causes of death in critically ill patients in non#cardiac Intensive Care Units. The 

mortality rate of severe sepsis is 27%, while septic shock with higher rate at 50% 5,2. So 

far, the treatment of sepsis still primarily relies on removal of infectious resource, 

antibiotics and supportive care 6,7.  

 

Septic Cardiomyopathy Plays a Major Role in the Mortality of Septic patients.  

 The Epidemiology of Myocardial Depression in Sepsis. Multi#organ failure is a 

major problem in sepsis/septic shock 8,9,10.  Cardiovascular dysfunction is a well#

recognized manifestation in severe sepsis 11,12,13,4,14,15. Recently cardiac dysfunction 

has been listed as one of criteria for the diagnosis of severe sepsis 4. Studies suggest 

that 40% to 50% of septic shock patients demonstrate myocardial depression 

characterized by ventricular dilation and decreased left ventricle ejection fraction (LVEF 

< 45%) 16. Myocardial depression has been shown to be global but reversible in septic 

patients.  

 

 Septic Cardiomyopathy Contributes to High Mortality in Sepsis. Cardiac 

dysfunction in sepsis has been referred as “septic cardiomyopathy”. Septic 

cardiomyopathy is also transient and recovery can occur in 7#10 days in survivors of 

septic patients 17. But there is compelling evidence that cardiovascular dysfunction is a 

major complication associated with sepsis induced morbidity and mortality 11,4,12. The 

severity of septic cardiomyopathy predicts worse outcomes 18. Septic patients with 

cardiovascular dysfunction are shown to have significantly higher mortality rates of 70% 

to 90% in contrast to 20% in those without myocardial depression 19,20.  But so far there 
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is no specific therapy for septic cardiomyopathy; this is due, in part, to the fact that the 

etiology of cardiac depression is still unclear 21,22,23. Therefore, understanding the 

cellular and molecular mechanisms leading to septic cardiomyopathy will promote the 

development of new and effective therapies that can decrease the morbidity and 

mortality associated with sepsis/septic shock. 

 

Mechanisms that Contribute to Septic Cardiomyopathy.  

 The precise mechanism of septic cardiomyopathy is still unknown. Previously, it 

was assumed cardiac dysfunction may be due to reduced circulating blood volume. But 

recent studies show that septic patients still develop myocardial depression despite 

sufficient fluid resuscitation 4,20. The mechanism of myocardial dysfunction in sepsis is 

probably multifactorial 16,24,25,26,27,28, such as increased apoptosis 29, mitochondrial 

dysfunction 30,31,32, changed calcium channels 33 and Toll#like receptors (TLRs) 

activation 34,35.  

Recent evidences have demonstrated that innate immunity and inflammatory 

responses play a critical role in septic cardiomyopathy 36,37,35,38. Polymicrobial sepsis 

activates inflammatory cells, such as macrophages 39,40 and neutrophils 41,42,43,44,45, to 

release inflammatory mediators 46,47.  

Macrophages and neutrophils express TLRs 48. TLRs, the best characterized 

pattern recognition receptors (PRRs), play an important role in activation of the innate 

immune response 49,50. TLRs have been found both in humans (TLRs 1–10) and in mice 

(TLRs 1–9 and 11–13). Neutrophils express all human TLRs except TLR3 48. TLRs 

stimulate neutrophils function 48. TLRs recognize pathogen#associated molecular 
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patterns (PAMPs), and also damage associated molecular patterns (DAMPs) 51. It is 

well#documented that TLRs mediate innate immune and inflammatory response in 

sepsis 52,53,35. TLRs signal predominantly through the adaptor protein myeloid 

differentiation factor 88 (MyD88) into nuclear factor kappa#B (NF#κB) pathway exception 

for TLR3 54,55,49,56. Transcription factor NF#κB comprises two subunits, p50 and p65, 

which regulate innate immunity and inflammation 57. Phosphorylation of IκBα controls 

the activation of NF#κB 58. NF#κB is activated in sepsis and contributes to organ 

damage.  

Our laboratory has reported that NF#κB activation plays a central role in 

mediating the development of sepsis/septic shock and septic cardiomyopathy 

59,60,61,62,63,64, suggesting that TLR#mediated NF#κB signaling may be a target for 

prevention/management of septic cardiomyopathy.  

Pro#inflammatory cytokines, such as interleukin#6 (IL#6) and tumor necrosis 

factor (TNF#α), are produced upon NF#κB activation. IL#6 plays a critical role in the 

development and mortality of sepsis 65. Several studies also suggest IL#6 may serve as 

diagnostic and/or prognostic biomarker of sepsis severity and mortality 66,67,68,69,65. Anti#

IL6 antibody treatment has been demonstrated to significantly improve survival rate 

70,69. The pro#inflammatory cytokine TNF#α level is also suggested to predict the risk of 

sepsis 71,72. Pretreatment with TNF#α antibody has been shown to improve survival rate 

in response to Lipopolysaccharides (LPS) 73. 

Except for cytokines, other molecules in serum have also shown to depress 

cardiac function during septic shock, i.e. increased nitric oxide, endothelin#1 and 

complement 74.  
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Endothelial Activation/Dysfunction in Sepsis 

The Function of Endothelial Cells  

The endothelial monolayer, constituting the vessel wall, is the first line of defense 

against inflammation, hypoxia and other stresses. The integrity of the endothelium is 

essential for the homeostasis of the cardiovascular system. Under physiological 

conditions, the endothelium dynamically maintains normal coagulator state, blood 

fluidity regulates, barrier function and modulates vasomotor tone. The endothelium is 

not merely an inactive barrier between the blood and the surrounding tissues; it 

orchestrates the innate immune and inflammatory responses in sepsis 75,76.  

 

The Manifestation of Endothelial Activation/Dysfunction  

Dysregulated Endothelial Inflammation. Similar to leukocytes, endothelial cells 

also express PRRs 77, such as TLRs in relatively low levels 78,77,79, which activates 

inflammation through NF#κB and MAP Kinase. DAMPs released from damaged or dying 

cells and were found in the circulation of patients with stroke, trauma, and autoimmune 

diseases 51. During sepsis, PAMPs, such as LPS, as well as DAMPs bind to PRRs and 

initiate innate immune and inflammatory responses, which cause tissue damage. 

Extracellular histones 80, HMGB1 81 and DNA 51 are released during sepsis and induce 

cytokine production by primarily activating TLRs. Dysregulated endothelial inflammation 

stimulates coagulation pathways, increases vascular permeability and leukocyte 

infiltration into tissue. 
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Upregulation of Adhesion Molecules in Endothelial cells. In physiologic 

conditions, endothelial cells express very low levels of adhesion molecules. After 

stimulation, activated endothelial cells show dramatically upregulated expression of P#

selectin, E#selectin, plasminogen activator inhibitor 1 (PAI#1), fms#like tyrosine kinase 1 

(sFlt#1), intercellular adhesion molecule 1 (ICAM#1) 82,83, and vascular cell adhesion 

molecule 1 (VCAM#1) 84,85. The augmented adhesion molecules interact with leukocytes 

and promote their adhesion and infiltration into tissues 86,87.  

 

Disrupted Tight Junction Proteins and Increased Permeability. Endothelial 

Intercellular junction incorporates adherens junctions, gap junctions and tight junctions 

(TJ) 88. Tight junctions play a critical role in endothelial barrier function. The integrity of 

TJs is maintained by appropriate expression level and cellular localization TJ proteins. 

Transmembrane components, Occludin and Claudin, link to intracellular partner zonula 

occludens, i.e. ZO#1, ZO#2 and ZO#3 88. ZO#1 was the first discovered in 1986.  

Occludin was discovered in 1993 89,90. Endothelial highly express Claudin#5 91,92. Sepsis 

promotes the disruption and intracellular translocation of endothelial cell TJ proteins 93. 

The loss of tight junction proteins will promote tissue hypoxia and subsequent organ 

failure, correlated with adverse consequences during sepsis. 

 

Abnormal Nitric Oxide (NO) Production. Under physiological conditions, 

endothelial cells constitutively express endothelial NO synthase (eNOS) and produce 

small amount of NO.  After stimulation, inducible NO synthase (iNOS) increases in 

endothelium and generates abundant NO. Elevated NO production contributes to 
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vasodilation and hypotension. Excessive NO promotes reactive oxygen species (ROS) 

production in endothelial cells. The upregulation of iNOS contributes to systemic 

endothelial dysfunction and inhibition of iNOS attenuates endothelial dysfunction and 

organ injury induced by LPS. Dysregulated NO production is also an early event of 

various cardiovascular diseases, such as hypertension, diabetes, and atherosclerosis.   

The endothelium is a key organ involved in the pathogenesis of sepsis 75,76. It 

has been demonstrated that sepsis induces endothelial dysfunction 94,84,95. Sepsis 

induces endothelial cell activation/injury and increased endothelial permeability 96. 

Endothelial cell dysfunction triggers secondary injuries or subsequent events of sepsis 

97. The increased expression of adhesion molecules and chemokines by endothelial cell 

promotes leukocytes infiltration into tissue 98. The loss of tight junction protein and the 

increased permeability promotes tissue hypoxia and subsequent organ failure. It is well 

known that endothelial cells play key roles in sepsis#induced multiple organ dysfunction 

and high mobidity and mortality 75,99. Therefore, preservation of endothelial function is 

an important approach for improving sepsis#induced outcome.  

 

Endothelial Function and Cardiac Function  

The cascade responses mediated by both bacterial toxins and inflammatory 

cytokines cause endothelial permeability, resulting in leak of fluid into the extravascular 

space that leads to life#threatening edema in multiple organs such as lung, kidney, brain 

and heart of septic patients. The expression of ICAM#1 and VCAM#1 has been 

implicated in neutrophil and macrophage infiltration in septic heart 100. We have 

previously reported that polymicrobial sepsis 35 and endotoxemia 101 significantly 
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induced increased expression of adhesion molecules in the myocardium, resulting in 

accumulation of neutrophils and macrophages in the myocardium, which contribute to 

sepsis#induced cardiac dysfunction 102. ICAM#1 and VCAM#1 also mediate septic 

myocardial dysfunction through as yet unknown mechanisms 103. A multicenter study 

demonstrated that the level of endothelial activation markers positively correlated with 

sepsis severity, organ dysfunction, and mortality 84,85. 

 

Endothelial Heat Shock Protein A12B  

Heat Shock Proteins 

 Heat shock proteins (HSPs) are a family of conserved proteins that are produced by 

cells in response to a wide variety of stress. They were first discovered in 1962 and was 

named because of their relation to heat shock in 1974 104. HSPs are classified into 

several groups according to molecular mass or structure. They include high#molecular#

mass HSPs (≥100 kD), HSP90 (81 to 99 kD), HSP70 (65 to 80 kD), HSP60 (55 to 64 

kD), HSP40 (35 to 54 kD), and small HSPs (≤34 kD) 105.  

 

The Function of HSPs 

 HSPs facilitate protein folding as chaperones 105. HSPs are constitutively expressed 

or induced by various stimuli. The location of HSPs is either intracellular or secreted into 

the extracellular matrix 106. Intracellular HSPs protect against diverse stresses, including 

hypoxia, ischemia, inflammation, and oxidative stress. Hsp27 have been shown to 

protect against LPS induced cardiac dysfunction. Extracellular HSPs are found to 

stimulate the immune system 106. HSPs have been reported to be a ligand of TLRs 107. 
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As an example, circulating Hsp60 has been shown to promote apoptosis in 

cardiomyocytes 107 by binding to TLR4.         

 

HSPA12B is a Member of Hsp70 Family  

 Hsp70 family is the largest and most conserved family of heat shock proteins. In 

addition to the classical properties of HSPs as chaperones or stress proteins, Hsp70s 

also act as signal molecules. Recently, Hsp70 has been demonstrated to increase 

intracellularly and extracellularly in the lung after hyperoxia and confer protective effects 

in endothelial cells as a TLR4 ligand 108.  

 The newest member of the HSP70 protein, HSPA12 was been discovered and 

characterized by Han 
���
 in 2003 109. HSP70 family members have two distinct 

domains, a conserved N#terminal ATPase domain and a diverse C# terminal substrate–

binding domain. HSPA12 has atypical ATPase domains which are separated into two 

parts by spacer amino acids. There are two forms of HSPA12, HSPA12A and 

HSPA12B. Both of them significantly increase in atherosclerotic aortic lesions, 

especially HSPA12A 109. Traditionally HSP70 proteins are thought to express 

ubiquitously and not in one unique cell type. However, HSPA12A was found to be highly 

express in the human brain in 2004 110 and HSPA12B was shown to be predominantly 

expressed in endothelial cells in 2006 111. 

 

The Role of HSPA12B in Endothelia Function�  

 The role of HSPA12B in endothelial cell function have not been intensively 

investigated. However, Han 
���
 has also demonstrated that endothelial HSPA12B is 
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involved in angiogenesis through turnover of a known angiogenesis regulator, Kinase 

anchoring protein 12 (AKAP12), resulting in upregulation of vascular endothelial growth 

factor (VEGF) expression 111. Hu 
���
 have shown that the endothelial specific 

HSPA12B plays a significant role in endothelial cell function 112. These authors have 

shown that knockdown of HSPA12B by small interfering RNAs in human umbilical vein 

endothelial cells (HUVECs) blocked wound healing, migration and tube formation. In 

contrast, overexpression of HSPA12B enhanced migration and accelerated wound 

healing 112. The data indicates that HSPA12B is required for endothelial cell proliferation 

and migration in wound healing.  

We have previously reported that transgenic mice with endothelial specific 

expression of HSPA12B significantly attenuated the expression of adhesion molecules 

and cardiac dysfunction induced by endotoxin 101, suggesting that HSPA12B may play 

an important role in regulation of endothelial function in sepsis. However, the role of 

endothelial HSPA12B in cardiovascular function in polymicrobial sepsis has not been 

investigated precisely. The present study aimed to elucidate the mechanisms by which 

endothelial specific expression of HSPA12B protects against polymicrobial sepsis#

induced cardiovascular dysfunction. 

 

MicroRNAs 

The microRNAs Processing  

 MicroRNAs (MiRNAs) are small non#protein#coding RNA molecules which are 21 to 

23 nucleotides in length. MiRNAs originate from precursor RNAs, also named primary 

miRNAs, which are hundreds to thousands of nucleotides long. After transcription, 
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primary miRNAs are then processed by the enzyme Drosha and RNA binding protein 

DGCR8 into precursor miRNA which contain 70 to 100 nucleotides with a hairpin. 

Exportin 5 facilitates the transportation of precursor miRNA into the cytoplasm. 

Precursor miRNA is further processed by the enzyme Dicer into a shorter double#

stranded RNA and then incorporated into the RNA#induced silencing complex. One 

strand becomes the mature miRNA and binds with targeted mRNAs, while another one 

is usually degraded soon after.   

 MiRNA typically binds to the 3′ untranslated region (UTR) of an mRNA with a 

complementary sequence. Nucleotides 2 to 8 of the miRNA, termed the “seed” region, 

are essential for the binding. However, miRNAs are also associated with 5′ UTRs or 

exons. More than 1000 miRNAs have been predicted to exist in humans. MiRNAs are 

believed to regulate up to 90% of human genes 113,114,115,116. Several miRNA target 

prediction resources are available online, such as TargetScan, DIANA#microT, 

miRanda, PicTar, MicroInspector, miTarget and miRecords. 

 

The Function of MiRNA  

 MiRNAs have been identified as novel regulators of gene expression at the post#

transcriptional level, either promoting mRNA degradation or inhibiting translation 117,118. 

MiRNAs are new players in regulating innate immunity and inflammation 

119,120,118,121,122,123,124,125. Several MiRNAs (miR#146a, miR#155, and miR#125b, etc.) 

have been reported to regulate NF#κB#mediated inflammatory responses 

126,127,119,116,128,129,130.  
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 The Role of MiRNAs in Sepsis. MiRNAs have been reported to play a critical role in 

sepsis/septic shock induced innate immune and inflammatory responses 118,117. Some 

miRNAs have been shown to significantly increase in septic patients compared with 

healthy people, such as miR#133a 131, miR#223 132, miR#16 133, miR#574#5p 134 and miR#

150 135. However, some miRNAs are downregulated in sepsis patients, including miR#

146a 136, miR#181b 137, and miR#4772 135. 

 MiR#146a directly targets IL#1 receptor associated kinase 1 (IRAK1) and tumor 

necrosis factor receptor associated factor 6 (TRAF6) 138,139,140. IRAK1 and TRAF6 are 

critical adaptor proteins in NF#κB signaling pathway 129. The induction of miR#146a is 

NF#κB dependent, but miR#146 can negatively regulate NF#κB signaling pathway 

through a feedback mechanism 141,138 by directly targeting and suppressing IRAK1 and 

TRAF6 expression 138. MiR#146a also silences the transcription and translation of TNF#

α 142. MiR#146a has been reported to protect organ function against 

ischemia/reperfusion (I/R) injury 143,144. 

 MiR125b#5p increases in macrophages after TLR activation. MiR125b#5p 

downregulates the expression of TNF#α and iNOs induced by LPS 129,145 as a negative 

regulator of inflammatory responses. Anti#inflammatory macrophages (M2) have higher 

miR#125b levels than pro#inflammatory macrophages (M1) 146.  Also miR#125b 

negatively regulates apoptotic signaling p53 147, p38 148 and Bak#1.  

 

 The Role of MiRNAs in Cardiac Function. MiRNAs have emerged as new players in 

cardiac pathophysiology 149,150,151. Specific MiRNAs are enriched in heart, such as miR#

1, let#7, miR#30, miR#29, miR#26, miR379 and miR#143. MiRNA expression profiling has 
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been shown to be altered in cardiac diseases, such as miR#125, miR#146, miR#27 and 

miR#181b.  

 Modulating miRNAs levels has been shown to improve cardiac function. Lin et al 

have shown that miR#23a is upregulated in cardiac hypertrophy and suppression of 

miR#23a by a specific antagomir alleviated cardiac hypertrophy induced by 

isoproterenol 152. We have reported that miR#146a level are significantly increased after 

sepsis and enhanced miR#146a level via delivery of lentiviral miR#146a protects cardiac 

function against septic injury 138,153 by down#regulation of IRAK1 and TRAF6. Also we 

have found that upregulation of either miR#125b or miR#146a levels attenuate cardiac 

ischemia/reperfusion injury 144. 

 

 The Role of MiRNAs in Endothelial Cell. MiRNAs also have been shown to play an 

important role in endothelial cell activation, proliferation, angiogenesis and inflammation 

154. MiR#181b has been reported to negatively regulate NF#κB mediated endothelial 

inflammation and upregulation of miR#181b suppresses NF#κB signaling in endothelium 

137. As we mentioned previously, miR#146a and miR#125b also attenuates inflammation. 

MiR#17#3p and miR#31 induced by TNF#α negatively regulates ICAM#1 and E#selectin 

respectively in TNF#α treated endothelial cells 155.  

 In this study we investigated the role of miR#126 on controlling endothelial cells 

inflammation in ���	 and �������	. MiR#126 is predominantly expressed in endothelial 

cells 156 and regulates the progression of angiogenesis, proliferation, and migration 157. 

Endothelial inflammation is critically regulated by miRNAs such as miR#126 �������	 and 

������	. Endothelial miR#126 level has been reported to decrease in type 2 diabetes 158. 
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MiR#126 also plays a critical role in vascular dysfunction and modulates the expression 

of vascular cell adhesion molecule#1 induced by TNF#α 159 and chemokine stromal cell#

derived factor#1 (SDF#1/CXCL#12) 160. The levels of miR#126 have been reported to be 

downregulated in murine and human serum during the course of experimental chronic 

kidney disease 161 and in human diabetic patients 158. Interestingly, a recent study has 

demonstrated that the survival and function of plasmacytoid dendritic cells are 

modulated by miR#126 via the VEGFR2 pathway 162, suggesting that miR#126 may 

regulate innate immune responses by targeting VEGF signaling. However, the role of 

miR#126 in ploymicrobial sepsis#induced cardiac dysfunction has not been investigated.�

 

The Diagnotic and Therapeutic Potential of MiRNAs 

 MiRNAs are novel potential diagnostic markers and therapeutic targets for various 

cardiovascular diseases 163,164,165,166,167. MiR#133a has been reported to prominently 

upregulate in sepsis patients and is associated with disease severity and organ 

dysfunction 131. The elevation of miR#133a may serve as diagnostic marker and 

predictor of severity in sepsis patients. MiR#150 in peripheral blood leukocytes and 

plasma is significantly reduced in sepsis patients and correlated with the prognosis of 

sepsis 135. Restoration of MiR#150 may provide therapeutic potential for sepsis patients. 

Other miRNAs have been demonstrated to associate with the diagnosis and severity of 

sepsis, such as miR#146a 136 and miR#4772#5p#iso 135. They also provide potential 

therapeutic targets for sepsis. 

 The beauty of miRNAs as a therapy is that miRNA coordinately regulates multiple 

targets at different levels of a process. One miRNA has the potential to modulate 
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hundreds of mRNA post#transcriptionally. 3′ UTR of mRNA also have redundant binding 

sites of varies miRNAs.  All these potentials allow the possibility of complicated but fine#

tuned coordinated negative or positive regulation.  

 However, miRNA therapy has several potential obstacles. Effective development of 

MiRNAs therapeutics depends on the delivery methods, including neutral lipid emulsion, 

nanoparticles and exosomes. Naturally existing RNA shuttles, such as exosomes, have 

triggered increasing interest as a drug carrier 168. 

 

Exosomes 

 

 Intercellular communication coordinates cells to accomplish specific cellular 

functions. Gap junctions allow cells to exchange information by direct contact. Soluble 

factors can transmit information short distances in paracrine fashion, or enter the blood 

to target distant organs as in the case of hormones. Three decades ago, another 

method for intercellular communication appeared, involving the production and 

secretion of extracellular vesicles, including macrovesicles (MVs) and exosomes. 

Macrovesicles are heterogeneous vesicles with relatively larger sizes of 100#1000 nm in 

diameter. They originate via shedding from plasma membranes 169. MVs contain 

proteins, such as Annexin 2 and caspases, but no specific markers. Exosomes are 

homogenous nanovesicles with a size range of 30#100nm. Exosomes originate from the 

end of endocytic#lisosomal system and are released from cells when multivesicluar 

bodies fuse with plasma membrane. Exosomes have specific markers, such as HSP70 
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and tetraspanins CD63, CD81 and CD9 170. In this study we will mainly focus on the 

function of exosomes in our model. 

 

The Biogenesis of Exosomes 

 It is well known that eukaryotic cells release vesicles into the extracellular 

environment. The most widely studied and best known types of vesicles are 

microparticles (MPs) and exosomes 171. The term exosomes was initially described in 

1983 by Harding 
���
 and named by Johnstone 
���
 in 1987 when researchers 

investigated vesicle formation in reticulocytes. Exosomes attracted more interest in 

1996 for their role of antigen presentation. Recent evidence indicates that exosomes 

can carry and transfer genetic information. Exosomes have been secreted ������	 or ���

����	 by most cell types, including cardiomyocytes 172, cancer cells 173, neutrophils, 

platelets, endothelial cells 174, dendritic cells 175, macrophages 176 and mesenchymal 

stem cells 177.  

 

The Composition of Exosomes 

 Exosomes as lipid#rich vesicles also contain cellular proteins, such as tetraspanins 

CD9, CD63, and CD81, heat shock proteins, major histocompatibility complex (MHC) 

and the endosomal#sorting complex required for transport (ESCRT) related proteins 

178,179,180. Despite proteins and lipids, exosomes also carry a variety of RNAs, including 

miRNAs, mRNAs, transfer RNA and lncRNAs, among them miRNAs are most 

abundant. The five most abundant miRNAs have been reported to account for almost 

half of the miRNAs in human plasma exosome, including miR#99a#5p, miR#128, miR#
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124#3p, miR#22#3p, and miR#99b#5p 181. Information regarding exosome content is 

summarized in Exocarta (http://www.exocarta.org). The lipid composition of exosomes 

is still less known. 

 Exosomes from different origins have unique signatures of their parental cells, 

i.e.CD31 for endothelial cells, CD41 for platelet, F4/80 for macrophage, NIMP#R14 for 

neutrophil and CD45 for leukocyte. Exosomes can be constitutively released from cells, 

or they can be induced by various stimuli 182. The unique profiles of exosomal 

components indicate proteins and MiRNAs maybe selectively incorporated into 

exosomes. 

 

The Purification and Characterization of Exosomes 

  The most common procedure to isolate exosomes is a series of centrifugations, 

first to remove dead cells and cell debris, discriminate larger particles through 0.22Sm 

filters and then pellet exosomes by ultracentrifugation. To further eliminate large protein 

aggregation and other small vesicles, exosomes will float on sucrose gradients (density 

1.13g/ml to 1.19g/ml). Some commercial precipitation reagents are also been used to 

isolate exosomes, especially for low sample volumes. When isolating exosomes from 

cell culture medium, it is necessary to exclude exosomes from serum by overnight high#

speed ultracentrifugation because serum has large amounts of exosomes.   

 Transmission electron microscopy is commonly performed to validate the existence 

of exosomes.  Exosomes are 30#100nm in diameter and have characteristic saucer#

shape morphology 178,179.  Western blot and fluorescence#activated cell sorting (FACS) 
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analysis are also routinely used to confirm the presence of exosome by detecting 

specific exosome markers 183,184. 

 

The Biological Function of Exosomes  

 When firstly discovered, researchers thought that exosomes may serve as a 

degradation mechanism to discard cellular “garbage”. Recently, exosomes as 

extracellular organelles have also been demonstrated to play a critical role in cell#to#cell 

communication 185,186,175,179,168. Exosomes are novel vehicles for transferring proteins 

and/or MiRNAs from one cell to another 187,188,189,190. Exosomes can function in a 

paracrine fashion, targeting proximally located cells/ tissue, or as hormones, travelling 

to distant cells/tissues. Exosomes release their contents into the target cells via 

membrane fusion with the target cells or via binding with specific receptors on target 

cells. Exosomes are also uptaken via endocytotic internalization.  

 Exosomes are novel vehicle for delivering mRNAs and microRNAs to exchange 

genetic information between cells 185. MiRNAs transferred by exosomes are functional 

191,175 and induce target gene repression in recipient cells 175,192. The functions of 

exosomes from antigen#presenting cells have been investigated intensively. MiRNAs in 

exosomes have been shown to modulate immune responses 193,192. MiR#155 and miR#

146a have been shown to be in exosomes released by dendritic cell (DC). Those 

miRNAs can be transferred into recipient DC �������	�����������	 and suppress target 

gene expression 192.  
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 The Role of Exosomes in Sepsis. The functions of exosomes produced �������	 and 

������	 have been investigated in sepsis. Recent evidence suggests that exosomes may 

play an important role in sepsis 194,195,192. Azevedo et al reported that exosomes from 

septic shock patients induce myocardial dysfunction in isolated rabbit hearts 194. The 

main source of septic exosomes is platelets. Exosomes from septic patients increase 

reactive oxygen species production and cause apoptosis in endothelial cells 194. 

Gambim et al have shown that platelet derived exosomes induce endothelial cell 

apoptosis and endothelial dysfunction 194,195. Immature dendritic cell#derived exosomes 

dampen inflammatory response and reduce mortality in septic animals. Exosomal miR#

155 released by DC enhances while miR#146a suppresses inflammatory response in 

endotoxin#treated mice 192. 

 

 The Role of Exosomes in Endothelial Cell Function. Endothelial cells have been 

reported to secrete exosomes and also can be targeted by exosomes 174. Endothelial 

cells communicate with other cells through exosomes 196. It have been reported miRNA 

incorporated in exosome can be transferred into endothelial cell and are functional in 

recipient cells 197.  

 

 The Role of Exosome MiRNAs in Sepsis. The profile of exosomal miRNAs in mouse 

serum have been shown to be altered after polymicrobial sepsis induced by cecum 

ligation and puncture (CLP). Some miRNAs significantly increased in exosomes after 

CLP for eight hours, including miR#16, miR#17, miR#20a/b and miR#26a/b. Exosomal 
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miR#155 released by DC enhances while miR#146a suppresses inflammatory 

responses in endotoxin#treated mice 192.  

 The conventional biomarkers for sepsis that are currently used clinically have low 

specificity and sensitivity, including procalcitonin, C#reactive protein and IL#6. Recently 

the differences in exosomal miRNAs (miR#671#5p, miR#16#5p, and miR#150#3p) in 

patient serum have been shown to provide specific and sensitive information for 

diagnosis and categorization in virus infectious disease. 

 

The Diagnostic and Therapeutic Potentials of Exosomes 

 Studies have demonstrated that exosomes can be identified in cell culture medium 

and many bodily fluids, such as breast milk 198, blood 199, amniotic fluid 200, synovia 184, 

bronchoalveolar lavage fluid 201 and urine 183 all of which are accessible in the clinic. 

The composition of exosomes reflects the cellular origins and status. It has been 

reported that the secretion and composition of exosomes changes during cancer, sepsis 

and hypoxia 202,182. Especially the components of exosomal miRNAs is demonstrated to 

change in diseases. Therefore exosomes have significant diagnostic potential in 

patients 203,204.  

 Exosomes, as naturally existing RNA shuttles, have stimulated increasing interest 

as a drug carrier 168,205. They have been utilized as shuttles to package and deliver 

drugs 206 because of their low immunogenicity and bio#distribution. As a novel drug 

delivery strategy, exosome may enhance anti#inflammatory activity of drugs. However, 

the biodistribution of systemically delivered exosomes has been challenged by a recent 

finding that unmodified exosomes injected intravenously will be mostly uptaken by liver 
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and spleen 207. Despite miRNAs, exosomes also carry proteins, such as a well 

characterized transmembrane protein, lysosomal associated membrane protein 2b 

(Lamp2b). Recently, researchers have successfully engineered exosomes by fusing 

exosomal protein Lamp2b with CNS#specific rabies viral glycoprotein (RVG) peptide 

206.The targeted exosomes boost short interfering RNA delivery efficacy into neural cells 

and inhibit gene expression post#transcriptionally 206.Therefore, modified exosomes are 

a potential ideal shuttle for in vivo delivery of miRNAs to target tissue 168.�

 Exosomes secreted by mesenchymal stromal cells (MSCs) have been shown to 

have cytoprotective effects and can attenuate myocardial ischemia/reperfusion injury 208 

and hypoxia/induced pulmonary hypertension 209. MSCs secrete a huge amount of 

extracellular microvesicles 210 and are efficient manufacturer of exosomes for drug 

delivery 211,205. MSCs exosomes as a novel therapy promotes cardiac regeneration and 

recovery in several cardiovascular diseases 212,213,214.  

  In this study, efforts were directed at understanding the role of exosomes, 

especially exosomal miRNAs level, in a cardiac phenotype of HSPA12B deficiency after 

sepsis. Herein we investigated the changes in exosomal miRNAs after sepsis in our 

mouse model. We also detected whether the miRNA message of exosomes isolated 

from septic mice could be functionally transferred into macrophages and endothelial 

cells �������	. Finally we also tested the therapeutic potential of miRNA incorporated by 

exosome in septic mice. 
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CHAPTER 2�

CONSTRUCTON OF ENDOTHELIAL SPECIFIC HSPA12B DEFICIENT MICE 

 

Introduction 

 

The critically ill patient frequently develops a complex disease spectrum that may 

include acute respiratory distress syndrome (ARDS), systemic inflammatory response 

syndrome (SIRS), sepsis syndrome, septic shock and multiple organ dysfunction 

syndromes (MODS). There is compelling evidence that cardiovascular dysfunction is a 

major complication associated with sepsis induced morbidity and mortality 11,4,12. 

Therefore, understanding the cellular and molecular mechanisms leading to septic 

cardiomyopathy will promote development of new and effective therapies. 

As mentioned above, endothelial cell function is a critical factor contributing to 

cardiovascular dysfunction in sepsis/septic shock 94. Preservation of endothelial function 

is critically important for protection against sepsis/septic shock induced multiple organ 

failure. We have previously reported that increased expression of HSPA12B attenuated 

endotoxin#induced cardiac dysfunction through activation of PI3K/Akt dependent 

signaling. The data suggests that HSPA12B is required for the preservation of 

cardiovascular function. HSPA12B is specifically expressed by endothelial cells 111 and 

is an essential for endothelial function. It is of interest to understand the role of 

HSPA12B in endothelial function in sepsis. To accomplish this goal, endothelial specific 

HSPA12B deficient (HSPA12B#/#) mice were produced. HSPA12B#/# flox/flox mice were 
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designed and developed by Dr. Zhihua Han who was a faculty in the Department of 

Biomedical Science at ETSU.  

 

Materials and Methods 

Constructing Endothelial Specific HSAP12B Knockout Mice. 

The knockout targeting strategy is outlined in Figure 1A. The targeting construct 

contained a PGK#driven Neo cassette and MC1 promoter#driven HSV#TK cassette, 

allowing for positive and negative selection. The right and the left arm loxP knockin 

were confirmed by genomic Southern with (EcoRI and probe A) and Sall digestion of 

PCR product by external and internal primer (5’#TCTGTGTCTGCCTGTGTTCTGT#3’ 

and 5’#TAGTCTGCATTCGGAGGCAAGT#3’).  The successful homologous 

recombination clones were subsequently transfected with pCre#Pac for excision by Cre 

to generate targeted alleles. 

Endothelial specific HSPA12B knockout mice were generated by cross#breeding 

the conditionally targeted HSPA12B mice with C57BL/6.Cg#Tg (Tek#cre) strain which 

carries Cre recombinase under the control of the Tek promoter. Genotypes for the 

tissue specific deletions were confirmed by PCR of tail genomic DNA analysis with 

specific primers of floxed allele ( HSPA12B#cko#1: 5’#

GAAGCAAGCATATTCATCTCATTACTATTC#3’; HSPA12B#cko#2: 5’#

GCTTGCTCAAAAGTGATGGTTGCTC#3’. 191 bp for knockout and 151 bp for wild type 

mice), HSPA12B deletion (HSPA12B#cko#1: 

GAAGCAAGCATATTCATCTCATTACTATTC; HSPA12B#cko#4: 

TAAAGCCTACACTCAGATGAGAGCAG. 240 bp product for deletion; >2kB or no 
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product for wild type control) and for Cre gene expression (5’#

GTGAAACAGCATTGCTGTCACTT#3’ and 5’#GCGGTCTGGCAGTAAAAACTATC#3’). 

Western blot and immunohistochemistry were also performed to identify endothelial 

specific deficiency of HSPA12B. 

 

Figure1. The knockout targeting strategy. The knockout targeting strategy is outlined in 
Figure 1A. LoxP sites flanking exon 2 were introduced by recombineering and the 
linearized targeting construct. 
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Figure2. Strategy for constructing the endothelial specific HSPA12B knockout mice. 
Endothelial specific HSPA12B knockout mice were generated by cross#breeding the 
conditionally targeted HSPA12B mice with C57BL/6.Cg#Tg (Tek#cre) strain which 
carries Cre recombinase under the control of the Tek promoter. 
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DNA Extraction from Mice Tails, PCR and Gel Electrophoresis. 

Mice tails were removed into Eppendorf tube and added with10 Vl of Protein K 

(10mg/mL) and DNA digestion buffer (50 Vl) for each sample. The samples were 

incubated at 55°C overnight until complete dissolve of the tail. TE buffer (pH 8.0) 500Vl 

was added and then Phenol Chloroform bottom layer (∼ 600ml) by 1:1. Mix the contents 

of the tube for approximately 15 minutes until an emulsion forms. Centrifuge at 14,000 

rpm, 4°C for 15 minutes. Remove the aqueous phase (400Vl) to a new tube. Add 1/10 

amount of 3M NaAc (PH 7.0) approximately 40 Vl. Mix well. Add 1:1 concentration of 

isopropanol solution (∼440Vl). Mix until DNA appears as white floccules. Centrifuge for 

15 minutes at 14,000 rpm, 4°C. Discard aqueous layer and add two times∼700 Vl 70% 

ethanol (#20 °C) to the sediment and invert several times. Centrifuge for 5 minutes and 

discard supernatant. Carefully remove last drop of ethanol. Let the sample stand and air 

dry at room temperature for 10#15mins. Add 100Sl TE buffer to resuspend DNA. Vortex 

and centrifuge at short speed (∼30 sec). Dilute DNA with TE buffer: For each sample 

adds 12Sl primer and 2Sl diluted DNA sample. Run PCR. PCR products by agarose gel 

at 80 volts and 124 milliamps, then take picture by G:BOX. 

 

Western Blot.   

Briefly, the cellular proteins were isolated by using RIPA buffer and separated by 

SDS#polyacrylamide gel electrophoresis and transferred onto Hybond ECL membranes 

(Amersham Pharmacia, Piscataway, NJ). The ECL membranes were incubated with 

primary anti#HSPA12B antibody (a kind gift from Dr. Han Zhihua) followed by incubation 

with peroxidase#conjugated secondary antibodies (Cell Signaling Technology, Inc.) and 
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analysis by the ECL system (Amersham Pharmacia, Piscataway). The signals were 

quantified using the G: Box gel imaging system by Syngene (Syngene, USA, Fredrick, 

MD). GAPDH (Meridian Life Science, Inc, TN) was detected as loading control. 

 

Immunofluorescence Staining. 

 Briefly, the heart sections were stained with specific first antibodies rabbit anti#

HSPA12B and rat#anti#CD31 (PECAM#1) (1:100) for overnight at 4 ˚C. Then secondary 

antibody Alexa Fluor#488 goat#anti#rabbit IgG (H+L) (green, Thermo Fisher Scientific) 

and Alexa Fluor#555 goat#anti#rat IgG (H+L) (red) (Thermo Fisher Scientific) were added 

to the section for 1 hour at room temperature. Then the slides were examined with 

fluorescent microscope at a magnification of 400×. 

 

Statistical Analysis�

 The data are expressed as mean ± SE. Comparisons of data between two 

groups were made using t#test. Probability levels of 0.05 or smaller were used to 

indicate statistical significance. 

 

Results and Discussion 

 

HSPA12B specifically expresses in endothelial cells 112. To investigate the role of 

HSPA12B in polymicrobial sepsis, we constructed endothelial specific HSPA12B 

deficient mice. The strategy we employed is as shown in Figure 1 and Figure 2. We 

obtained two independent knockout lines (lines 11 and 43). In this study, we employed 
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line 43 knockout mice for all the experiments.  PCR was performed to examine the 

successful deletion of HSPA12B. As shown in Fig.3a, there is a 100bp band for Cre, a 

190bp band for Flox, and a 240 bp band for HSPA12B deletion in knockout mice. In 

contrast, WT mice show no band for Cre, a 150bp band for Flox and no band for 

HSPA12B deletion). Figure 3b shows that the protein levels in the myocardium of 

HSPA12B knockout mice were undetectable, when compared with WT mice. 

Immunohistochemistry staining shows that HSPA12B (green) was co#localized with 

CD31 (red) which is a marker of endothelial cells (Fig. 3c) in WT myocardial tissue. 

However, there is undetectable of HSPA12B in the myocardium of HSPA12B deficient 

mice, suggesting that HSPA12B was specifically knocked out from endothelial cells. We 

observed that endothelial specific knockout of HSPA12B does not compromise normal 

reproduction.  
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Figure 3 HSPA12B knockout mice have no expression of HSPA12B protein in 
endothelial cells. a. PCR was performed to examine the successful deletion of 
HSPA12B, by using specific primers of Cre, flox, and HSPA12B. b. The expression level 
of HSPA12B in the cytoplasm of myocardium was detected by WB (Fig. 3B, 
N=12/group). GAPDH serves as loading control. * indicates P<0.05. c. The expression 
level and localization of HSPA12B was also detected by immunofluorescent staining. 
HSPA12B (green) was co#localized with CD31 (red) which is a marker of endothelial 
cells in WT myocardial tissue (n=4/group). 
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CHAPTER 3 

ENDOTHELIA HEAT SHOCK PROTEIN A12B (HSPA12B) IS REQUIRED FOR 

MAINTENANCE OF CARDIOVASCULAR FUNCTION IN POLYMICROBIAL SEPSIS 

 

Introduction 

 The endothelium is a major target of sepsis#induced injury and endothelial cells 

are responsible for much of the pathophysiology of sepsis 75,94. Vascular endothelial 

cells are the first cell type in the body that contact with circulating bacterial molecules. 

Endothelial cells possess mechanisms that recognize structural pathogen associated 

molecular patterns (PAMPs) and subsequently initiate the expression of inflammatory 

mediators 215. In general, the cellular response to bacterial toxins normally provides 

protection against pathogen invasion. However, over activated cellular responses could 

lead to critical injury of organs. Under normal conditions, our body contains the stringent 

control mechanisms that avoid overresponses induced by danger signals. However, 

during sepsis, this balance is disrupted and the disturbance is manifested by profound 

changes in the relative production of different mediators.  

 Both endotoxin from Gram negative bacteria and PAMPs from Gram positive 

bacteria play a role in the initiation of sepsis/septic shock 216,34,24,217,24. These bacterial 

toxins will be recognized by TLRs, resulting in activation of TLR#mediated NF#κB 

signaling pathways 218,34,35 which stimulates inflammatory cytokine expression. In 

addition, activation of integrins on the leukocyte membranes promotes the adhesion of 

leukocytes to cytokine#activated adhesion molecules on endothelial cells, resulting in 

the infiltration of leukocytes into the tissues and stimulation of inflammatory responses. 
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In addition, inflammatory cytokines, such as TNF#α and IL#1β, act synergistically in the 

initiation of the inflammatory responses of sepsis, leading to the further activation of 

other important mediators in the cascade of sepsis. Collectively, the cascade responses 

mediated by both bacterial toxins and inflammatory cytokines cause endothelial 

permeability, resulting in loss of fluid into the extravascular space that leads to life#

threatening edema in the multiple organs such as lung, kidney, brain and heart of septic 

patients. Therefore, preservation of endothelia function is one important target for 

treatment and management of sepsis/septic patients.  

 It is well known that endothelial cells play key roles in sepsis#induced multiple 

organ dysfunction and high mobidity and mortality 75,99. Therefore, preservation of 

endothelial function is an important approach for improving sepsis#induced outcome. 

HSPA12B is predominately expressed on endothelial cells and has been demonstrated 

to play an important role in endothelial cell function. In this study, we examined whether 

HSPA12B is essential for maintenance endothelial function in polymicrobial sepsis. Also 

we evaluated the role of HSPA12B in sepsis induced cardiac dysfunction and mortality.  

A multicenter study has demonstrated that the level of endothelial activation 

markers is positively correlated with sepsis severity, organ dysfunction, and mortality 

84,85. We have previously reported that polymicrobial sepsis 35 and endotoxemia 101 

induced expression of adhesion molecules in the myocardium, resulting in accumulation 

of neutrophils and macrophages in the myocardium, which contribute to sepsis#induced 

cardiac dysfunction 102. The expression of ICAM#1 and VCAM#1 has been implicated in 

neutrophil and macrophage infiltration in septic heart 100. In addition to leukocyte 

adhesion, ICAM#1 and VCAM#1 also mediate septic myocardial dysfunction through 
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other unknown mechanisms 103. In this study, we investigated the changes in adhesion 

molecules as well as neutrophils and macrophages infiltration in HSPA12B deficient 

mice after sepsis.  

  

Materials and Methods 

CLP Polymicrobial Sepsis Model�  

Cecal ligation and puncture (CLP) was performed to induce polymicrobial sepsis 

in mice as previously described 63,35,219. Briefly, the mice were anesthetized by 

Isoflurane (Induced by 5.0% and maintained by 3%). A midline incision was made on 

the anterior abdomen and the cecum was exposed and ligated with a 4#0 suture. Two 

punctures were made through the cecum with an 18#gauge needle and feces were 

extruded from the holes. The abdomen was then closed in two layers. Sham surgically 

operated mice served as the surgery control group. Immediately following surgery, a 

single dose of resuscitative fluid (lactated Ringer’s solution, 50 ml/kg body weight) was 

administered by subcutaneous injection 63,35,219. 

 

Echocardiography�   

Transthoracic two#dimensional M#mode echocardiogram was obtained using a 

Toshiba Aplio 80 Imaging System (Toshiba Medical Systems, Tochigi, Japan) equipped 

with a 12#MHz linear transducer as described previously 35. M#mode tracings were used 

to measure LV end#systolic diameter (LVESD), and LV end#diastolic diameter (LVEDD). 

Percent fractional shortening (%FS) and ejection fraction (EF%) were calculated as 

described previously 37,35,220. 
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Tissue Accumulation of Neutrophils and Macrophages. 

 Inflammatory cells accumulation in heart tissues was examined with neutrophil 

specific antibody and macrophage specific antibody F4/80 (1:50 dilution, Santa Cruz, 

CA), separately 35,219. Three samples from each group were evaluated, counterstained 

with hematoxylin, and examined with brightfield microscopy. Four different areas of 

each section were evaluated. The results are expressed as the numbers of neutrophils 

or macrophages per field (400x). 

 

Myeloperoxidase (MPO) Activity Assay.  

MPO activity was measured using a MPO fluorometric Detection kit (Assay 

Designs Inc., Ann Arbor, MI) according to the manufacturers’ instructions.  

 

Immunohistochemistry Staining. 

 Immunohistochemistry was performed as described previously 35,219. Briefly, 

heart tissues were immersion#fixed in 4% buffered paraformaldehyde, embedded in 

paraffin, and cut at 5 Sm sections. The sections were stained with specific goat anti#

intercellular adhesion molecule 1 (ICAM#1, 1:50 dilution, Santa Cruz Biotechnology) and 

rabbit anti#vascular cell adhesion molecule (VCAM#1, 1:50 dilution, Santa Cruz 

Biotechnology), respectively, and treated with the ABC staining system (Santa Cruz 

Biotechnology) according to the instructions of the manufacturer. Three slides from 

each block were evaluated, counterstained with hematoxylin, and examined with 

brightfield microscopy. Four different areas of each section were evaluated. 
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Electrophoretic Mobility Shift Assay (EMSA).  

 Nuclear proteins were isolated from heart samples as previously described 

221,35,219. NF#κB binding activity was performed using a LightShift Chemiluminescent 

EMSA kit (Thermo Fisher Scientific, Waltham, MA) as described previously 62,222,35 in a 

20 Sl binding reaction mixture containing 1 x binding buffer, 50 ng poly dI:dC, 20 fmol of 

double stranded NF#κB consensus oligonucleotide which was end#labelled with Biotin, 

15Sg nuclear proteins. The binding reaction mixture was incubated at room temperature 

for 20 min and analyzed by electrophoresis, transferred to a nylon membrane. The 

biotin end#labeled DNA was detected using the Streptavidin#Horseradish peroxidase 

conjugate and the chemiluminescent substrate 62,222,35.  

 

ELISA for Cytokine Assay.  

The levels of cytokines (TNF#α, IL#6) in cell#free supernatants were measured by 

ELISA development kits (Peprotech) according to manufacturers’ instructions. Briefly, 

ELISA plate was incubated overnight at room temperature (R.T.) with 100Sl capturing 

antibody.  After washing for four times, 300Sl blocking buffer was added for 1 hour at 

R.T. After washing, serial 100 Sl dilute standard or sample was added and incubated at 

room temperature for at least 2 hours. 100Vl diluted detection antibody was immediately 

added after washing and incubate at R.T. for 2 hours. Plates were aspirated and 

washed plate 4 times. Diluted Avidin#HRP conjugate was added and incubated 30 min. 

Plates were aspirated and washed plate 4 times. Add 100Vl of ABTS liquid substrate 

solution to each well.  Monitor color development with an ELISA plate reader at 405 nm.  
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Wet/dry Lung Weight Ratio.  

The water content of lungs of HSPA12B#/# and WT mice was measured by 

calculating the wet/dry ratios. After CLP surgery for 6 h, the lung of each mouse was 

removed and weighed before drying (wet weight) and then dried in an oven for 72 h at 

50°C (dry weight). Wet/dry weight ratio was calculated by dividing the wet weight by the 

dry weight. 

 

Western Blot.   

Western blot (WB) was performed as described previously 221,35,219. Briefly, the 

cellular proteins were separated by SDS#polyacrylamide gel electrophoresis and 

transferred onto Hybond ECL membranes (Amersham Pharmacia, Piscataway, NJ). 

The ECL membranes were incubated with primary antibodies and followed by 

incubation with peroxidase#conjugated secondary antibodies (Cell Signaling Technology, 

Inc.) and analysis by the ECL system (Amersham Pharmacia, Piscataway). The signals 

were quantified using the G: Box gel imaging system by Syngene (Syngene, USA, 

Fredrick, MD). For the source of antibodies, anti#HSPA12B is a kind gift from Dr. Han 

Zhihua. Zo#1 and occludin were bought from Invitrogen, iNOs from  BD, anti#GAPDH 

from Meridian Life Science, Inc, anti#VCAM1 and anti#ICAM1 from Santa Cruz 

Biotechnology, TN, respectively, 

 

Statistical Analysis�

 The data are expressed as mean ± SE. Comparisons of data between groups 

were made using one#way analysis of variance (ANOVA), and Tukey’s procedure for 

multiple#range tests was performed. The log#rank test was used to compare group 
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survival trends. Probability levels of 0.05 or smaller were used to indicate statistical 

significance. 

 

Results 

HSPA12B Significantly Increases after Polymicrobial Sepsis  

HSPA12B is specifically expressed in endothelial cells 112 and has been 

demonstrated to play a critical role in the regulation of angiogenesis and endothelial 

function. We observed that expression level of HSPA12B significantly increases after 

polymicrobial sepsis (Figure 4). 

 

Figure 4 HSPA12B significantly increases after polymicrobial sepsis. WT mice were 
subjected polymicrobial sepsis induced by CLP. Sham surgical operation served as 
sham control. Heart tissue was harvested six hours after CLP and proteins were 
isolated. The level of HSPA12B was evaluated by WB (N=7#8/group). 
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Endothelial Specific Deficiency of HSPA12B Results in Severe Cardiac Dysfunction 

Following Polymicrobial Sepsis 

The endothelium is a key organ involved in the pathogenesis of sepsis 75,76. We 

examined whether HSPA12B will be an essential for cardiovascular function in 

polymicrobial sepsis. As shown in Figure 5a, there is no significant difference in the 

baseline values of ejection fraction (EF %) and fractional shortening (%FS) between WT 

and HSPA12B#/# mice. However, the values of EF% and %FS in WT septic mice were 

markedly reduced by 34.3% and 42.8% respectively, when compared with WT sham 

control. Interestingly, the EF% and %FS values in HSPA12B#/# septic mice were 

significantly decreased by 48.2% and 56.5%, respectively compared with HSPA12B#/# 

sham control which were further decreased by 20.5% and 22.8% as compared with WT 

septic mice. Echocardiographic images (Fig. 5b) show that movement of the chamber 

walls of HSPA12B#/# septic mice was worse than that in WT septic mice. These data 

suggests that endothelial HSPA12B is an essential for cardiac function following 

polymicrobial sepsis.  
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Figure 5 Endothelial cell specific HSPA12B deficiency potentiates sepsis#induced 
cardiac dysfunction. a. HSPA12B deficient and wild type (WT) mice were subjected to 
polymicrobial sepsis induced by CLP. Sham surgical operation served as sham control. 
The cardiac function was examined by echocardiography before and 6 hour after CLP 
(N=6#13/group). Two cardiac function parameters ejection fraction (EF%) and fractional 
shortening (%FS) was calculated. b. Typical echocardiographic images show that 
movement of the chamber walls of heart. * indicates P<0.05. 
 
 
Endothelial Cell Specific HSPA12B Deficient Mice have Shorter Survival Time after 

Polymicrobial Sepsis 

Next, we examined the effect of HSPA12B on survival time following 

polymicrobial sepsis. Figure 6 shows that the septic mice began to die at 18.9 h after 

CLP#induced sepsis. The mean survival time for WT septic mice was 53.6 h. In 

HSPA12B#/# septic mice, however, the mean survival time was 38.1 h. The data 

indicates that endothelial specific knockout HSPA12B accelerates the polymicrobial 

sepsis induced death.  
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Figure 6 Endothelial cell specific HSPA12B deficient mice have shorter survival time 
after polymicrobial sepsis. HSPA12B deficient and wild type (WT) mice were subjected 
to polymicrobial sepsis induced by CLP. Survival rate was closely monitored up to 5 
days (N=15#16/group).  

 

Endothelial Specific Deficiency of HSPA12B Decreased Tight Junction Proteins and 

Increased Endothelial Permeability after Polymicrobial Sepsis. 

Sepsis induces endothelial cell activation/injury and increases endothelial 

permeability 96. We performed WB to detect the level of tight junction proteins and iNOs 

in heart. As shown in Fig. 7a, Sepsis causes the loss of tight junction proteins and an 

increase in iNOs. However, we observed that the levels of tight junction proteins in the 

myocardium were significantly reduced and iNOs markedly increased in HSPA12B#/# 

septic mice when compared to WT septic mice. We examined endothelial permeability 

using wet/dry lung ratio after sepsis. Sepsis significantly induced a severe lung edema 
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in HSPA12B#/# mice compared to WT mice (Fig. 7c). The ratio of wet/dry lung in WT 

septic mice was increased by 12% compared with sham control. In HSPA12B#/# septic 

mice, the ratio of wet/dry lung was increased by 22.6%, when compared with HSPA12B#

/# sham control.  There is no significant difference in the ratio of wet/dry lung between 

WT sham and HSPA12B#/# sham mice. The data suggests that HSPA12B plays an 

important role in endothelial permeability following polymicrobial sepsis and deficiency 

of endothelial HSPA12B markedly increased endothelial permeability, resulting in lung 

edema in sepsis.  
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Figure 7 Endothelial cell specific HSPA12B deficiency exaggerated increased 
endothelial permeability and decreased tight junction proteins in the myocardium in 
response to polymicrobial sepsis. HSPA12B deficient and WT mice were subjected 
polymicrobial sepsis induced by CLP. Sham surgical operation served as sham control. 
The hearts and lungs were then harvested. The levels of tight junction proteins and 
iNOs in heart were examined with western blot (N=4#6/group). GAPDH served as 
loading control. The water content of lungs of HSPA12B#/# and WT mice was measured 
by calculating the wet/dry lung ratios (N=6/group). * indicates P<0.05 
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Endothelial HSPA12B Deficiency Enhanced the Expression of Adhesion Molecules after 

Polymicrobial Sepsis. 

The infiltration of inflammatory cells into the myocardium is dependent on the 

expression of adhesion molecules on endothelial cells 86. We examined the effect of 

HSPA12B on the expression of VCAM#1 and ICAM#1 in the myocardium following 

polymicrobial sepsis by WB. As shown in Figures 8a, the levels of VCAM#1 and ICAM#1 

in the myocardium were significantly increased in WT septic mice compared with sham 

control. In HSPA12B#/# septic mice, myocardial VCAM#1 and ICAM#1 were enhanced by 

1.91 fold and 1.73 fold, respectively, when compared with WT septic mice. 

Immunohistochemistry staining shows that CLP sepsis increased the immunostaining of 

VCAM#1 and ICAM#1 in the myocardium compared with sham controls (Fig. 8b and c). 

There is more positive staining of VCAM#1 and ICAM#1 in the myocardium from 

HSPA12B#/# septic mice than that in WT septic mice. The data suggests that HSPA12B 

plays an important role in the regulation of adhesion molecule expression on endothelial 

cells which will facilitate the infiltration of inflammatory cells into the myocardium 

following polymicrobial sepsis.  
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Figure 8 Endothelial cell deficiency of HSPA12B increases expression of adhesion 
molecules after sepsis.  Sham surgical operation served as sham control. Heart was 
harvested 6 hour after CLP. The expression level of adhesion molecules VCAM (N=7#
8/group) and ICAM (N=5#7/group) were examined with WB (Fig. 8a). The levels of 
GAPDH served as loading control in WB. * indicates P<0.05. Immunohistochemistry 
was also performed to evaluate the level of VCAM and ICAM in heart tissue as shown in 
Figure 8b&c. The dark brown color (red arrow) indicates VCAM#1 and ICAM#1. 
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HSPA12B Deficiency Exacerbates Inflammatory Cell Infiltration in the Myocardium 

following Polymicrobial Sepsis. 

The infiltration of inflammatory cells such as macrophages and neutrophils into 

the myocardium contributes to septic cardiomyopathy 35. We examined the effect of 

HSPA12B on the infiltration of macrophages and neutrophils in the myocardial tissues 

following polymicrobial sepsis. As shown in Figure 9a, CLP sepsis significantly 

increased the accumulation of neutrophils in WT septic mice compared with WT sham 

(9.3±0.66 vs 1.8±0.22). In HSPA12B#/# septic mice, the neutrophil accumulation in the 

myocardium markedly increased by 170% compared with WT septic mice. The data 

from myeloperoxidase activity (MPO) measurement shows that CLP sepsis increased 

myocardial MPO activity by 89.9% in WT septic mice and by 169.6% in HSPA12B#/# 

septic mice respectively, when compared with the respective controls (Fig. 9b). CLP 

sepsis also markedly increased the infiltration of macrophages into the myocardium 

(Fig. 9c). The numbers of macrophages in the myocardium were increased in WT septic 

mice compared with WT sham (15.6±1.01 vs 2.6±0.0.36). In HSPA12B#/# septic mice, 

the macrophage accumulation in the myocardium significantly increased by 57.9% 

compared with WT septic mice. The data indicates that endothelial HSPA12B plays a 

role in the infiltration of inflammatory cells into the myocardium following polymicrobial 

sepsis possibly through regulation of the expression of adhesion molecules. 
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Figure 9. Endothelial cell deficiency of HSPA12B exacerbates inflammatory cell 
infiltration in the myocardium following polymicrobial sepsis. HSPA12B deficient and WT 
mice were subjected polymicrobial sepsis induced by CLP. Sham surgical operation 
served as sham control. Heart tissue was harvested six hours after CLP. Inflammatory 
cells accumulation in heart tissues was examined with neutrophil specific antibody (a) 
and macrophage specific antibody F4/80 (c), separately. Three samples from each 
group were evaluated. Four different areas of each section were evaluated. Red arrows 
point at the infiltrated inflammatory cells. The results are expressed as the numbers of 
neutrophils or macrophages per field (400x). Expression of myeloperoxidase (MPO) by 
neutrophils is necessary for their activation by neutrophil, so MPO activity was 
measured by kit (b, N=6#8/group). * indicates P<0.05. 
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HSPA12B Deficiency Increased Myocardial NF#κB Binding Activity and Promoted the 

Production of Inflammatory Cytokines in Serum. 

It is well known that pro#inflammatory cytokines contribute to cardiovascular 

dysfunction during sepsis/septic shock 38. NF#κB is an important transcription factor that 

regulates inflammatory cytokine production 57. HSPA12B deficiency promoted the 

infiltration of inflammatory cells into the myocardium (Fig. 9). Therefore, we examined 

myocardial NF#κB binding activity and serum levels of pro#inflammatory cytokines in 

CLP septic mice. Figure 10a shows that CLP sepsis markedly increased myocardial NF#

κB binding activity by 36.8% compared with WT sham control. However, the NF#κB 

binding activity in HSPA12B#/# septic mice was significantly increased by 82.3%, as 

compared with HSPA12B#/# sham mice. Figure 10b shows that CLP#sepsis markedly 

increased the levels of TNF#α and IL#6 in WT septic mice, when compared with WT 

sham control. However, the serum levels of TNF#α and IL#6 in HSPA12B#/# septic mice 

were further increased by 243% and 223% respectively, as compared with WT septic 

mice.  The data suggests that endothelial HSPA12B deficiency resulted in activation of 

pro#inflammatory signaling and pro#inflammatory cytokine production following 

polymicrobial sepsis. 
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Figure 10 Endothelial cell deficiency of HSPA12B increased myocardial NF#κB binding 

activity and serum levels of pro#inflammatory cytokine production. HSPA12B deficient 

and WT mice were subjected to polymicrobial sepsis induced by CLP. Sham surgical 

operation served as sham control. Heart and serum were harvested six hours after CLP. 

Nucleoproteins of heart were isolated and NF#κB activity was measured by EMSA (N=8#

10/group). The levels of TNF#α (N=5#11/group) and IL#6 (N=8/group) in serum were 

assessed by ELISA kits. * indicates P<0.05. 

 

Discussion 

 HSPA12B was discovered by Han 
���
 in 2003 109 and characterized as a new 

family of Hsp70 proteins. HSPA12B has been shown to predominantly expressed in 

vascular endothelium 111. Han 
���
 has also demonstrated that endothelial HSPA12B is 

involved in angiogenesis through turnover of a known angiogenesis regulator a Kinase 
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anchoring protein 12 (AKAP12), resulting in upregulation of vascular endothelial growth 

factor (VEGF) expression 111. Hu 
���
 have shown that zebrafish orthologue of 

mammalian HSPA12B plays an important role in endothelial cell function 112. These 

authors have also shown that knockout HSPA12B in human umbilical vein endothelial 

cells (HUVECs) prevent wound healing; while overexpression of HSPA12B promote the 

process 112. The mechanism is indicated to involve Akt phosphorylation. These data 

indicates that HSPA12B is required for endothelial cell proliferation and migration in 

wound healing.  

 The role of endothelial HSPA12B in cardiovascular function during polymicrobial 

sepsis has not been investigated previously. It is well known that endothelial dysfunction 

plays a major role in the pathophysiology of septic shock and multiple organ 

dysfunctions 94. We have previously reported that polymicrobial sepsis 35 or 

endotoxemia 101 induced increased expression of adhesion molecules in the 

myocardium,with a concomitant accumulation of neutrophils and macrophages, which 

contribute to sepsis#induced cardiac dysfunction 102. Therefore, preservation of 

endothelial function is important for prevention and protection against sepsis induced 

multiple organ failure. We have observed that endothelial cell specific deficiency of 

HSPA12B resulted in more severe cardiac dysfunction in polymicrobial sepsis. Our 

observation is consistent with our previous report showing that endothelial specific 

overexpression of HSPA12B in transgenic mice exhibited against endotoxin induced 

cardiac dysfunction. Our observations suggest that endothelial HSPA12B serves a 

protective role in cardiovascular function in sepsis.  
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It is well known that the endothelium is an essential membrane barrier that 

regulates the hemostasis of macromolecules and separates the cellular elements of the 

blood providing from tissue compartment. In the septic condition, however, the 

endothelial barrier function is impaired which may be a central pathophysiological 

process in septic shock 96,93. We have observed that the ratio of wet/dry lung in 

HSPA12B#/# septic mice was significantly higher than that in WT septic mice. The levels 

of tight junction proteins (ZO#1 and Occludin) were markedly lower compared with WT 

septic mice. The data indicates that endothelial barrier function in HSPA12B#/# septic 

mice was worsen compared with WT septic mice. The mechanisms of endothelial 

barrier dysfunction include the activation of innate immune and inflammatory responses 

and the interaction between monocyte/macrophage and endothelial cells 86,87. Indeed, 

we observed that the infiltration of macrophages and neutrophils into the myocardium 

were significantly enhanced in the myocardium of HSPA12B#/# septic mice (Fig. 9). 

Macrophages and neutrophils have been observed to rolling, polarizing and recruiting to 

ed reported that recruitment of circulating activates inducible nitric oxide synthase with 

rapid efflux of nitric oxide, leading to vasodilatation, opening of endothelial gaps and 

loss of endothelial barrier function 97,86. Our data shows that the levels of myocardial 

iNOS in HSPA12B#/# septic mice were significant greater than in WT septic mice (Fig. 

7a). 

 Since increased expression of adhesion molecule expression on endothelial cells 

contributes to cardiovascular dysfunction in sepsis 75, we examined the effect of 

HSPA12B on sepsis#induced expression of VCAM#1 and ICAM#1 in the myocardium 

following polymicrobial sepsis. We observed that endothelial specific deficiency of 
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HSPA12B markedly enhanced expression of myocardial VCAM#1 and ICAM#1 relative 

WT septic mice. The data is consistent with our previous observation showing that 

endothelial overexpression of HSPA12B markedly suppresses endotoxin#increased 

adhesion molecule expression in the myocardium 101. Collectively, our data suggest that 

endothelial HSPA12B plays a critical role in the regulation of adhesion molecule 

expression in polymicrobial sepsis. To elucidate the mechanisms by which endothelial 

HSPA12B control adhesion molecule expression in sepsis, we performed the following 

experiments described in chapters 4 and 5.   

 It is well known that increased expression of adhesion molecules, such as ICAM#

1 and VCAM#1 plays a critical role in recruitment of macrophages and neutrophils into 

the myocardium which contributes to cardiac dysfunction in sepsis 103,40,42. Activated 

macrophages release chemokines that attract neutrophils into the myocardium 103. 

Thus, the inflammatory cytokines released by infiltrated macrophages and neutrophils 

are thought to be important suppressors of cardiac function 42. We observed that 

endothelial specific deficiency of HSPA12B results in increased accumulation of 

macrophages and neutrophils in the myocardium in polymicrobial sepsis, when 

compared with WT septic mice. Increased infiltration of inflammatory cells into the 

myocardium is associated with enhanced inflammatory response in HSPA12B#/# septic 

mice. Myocardial NF#κB binding activity and serum inflammatory cytokine levels, i.e. 

TNF#α and IL#6, in HSPA12B#/# septic mice were markedly greater than that in WT septic 

mice. Our findings suggest that endothelial HSPA12B regulates inflammatory responses 

through controlling adhesion molecule expression and accumulation of inflammatory 

cells in the myocardium in polymicrobial sepsis. In the following experiments, we will 
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investigate the mechanisms of endothelial HSPA12B regulation of inflammatory 

response in sepsis. 

 Collectively, our observations demonstrated that endothelial HSPA12B is 

essential for the regulation of endothelial barrier function in polymicrobial sepsis via 

controlling the expression of adhesion molecules and innate immune and inflammatory 

responses.  
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CHAPTER 4 

INVESTIGATE THE MECHANSIMS BY WHICH ENDOTHELIAL SPECIFIC HSPA12B#/# 

CAUSES ENDOTHELIAL DYSFUNCTIN IN POLYMICROBIAL SEPISIS  

 

Introduction 

The data generated from Chapter 3 suggests that endothelial specific expression 

of HSPA12B serves a protective role in preservation of cardiovascular function in 

polymicrobial sepsis. Specifically, we observed that endothelial HSPA12B deficiency 

results in severe cardiovascular dysfunction in polymicrobial sepsis. We also observed 

that endothelial HSPA12B deficiency significantly enhances inflammatory responses by 

activation of NF#κB mediated signaling. It is well known that endothelial cells are a 

major target of sepsis#induced cardiovascular dysfunction 75,76 and multiple organ 

failure. To better understand the role of HSPA12B in endothelial function during 

polymicrobial sepsis, we performed the following experiments focusing on the role of 

exosomes in mediating endothelial cell function and inflammatory response.  

� Exosomes have been demonstrated to play a critical role in mediating cell#cell and 

organ#organ communication 179,173,223. Exosomes release their contents into the target 

cells via membrane fusion with the target cells or via binding with specific receptors on 

target cells or endocytotic internalization. The functions of exosomes produced �������	 

and�������	�have been investigated in sepsis area. Recent evidence suggests that 

exosomes may play an important role in sepsis 194,195,192. Azevedo et al reported that 

exosomes from septic shock patients induce myocardial dysfunction in isolated rabbit 

hearts 194. The main source of septic exosomes is the platelet. Exosomes from septic 



69 

 

patients increase reactive oxygen species production and cause apoptosis in 

endothelial cells 194. Gambim et al have shown that platelet derived exosomes induce 

endothelial cell apoptosis and endothelial dysfunction 194,195. Immature dendritic cell#

derived exosomes dampen inflammatory response and reduce mortality in septic 

animals.  

 Exosomes are novel vehicle for delivering mRNAs and microRNAs to exchange 

genetic information between cells 185. MiRNAs transferred by exosomes are functional 

191,175 and induce target gene repression in recipient cells 175,192. MiRNAs in exosomes 

have been shown to modulate immune responses 193,192. MiR#155 and miR#146a have 

been shown to present in exosomes released by dendritic cell (DC). Those miRNAs can 

be transferred into recipient DC in vitro and in vivo and suppress target gene expression 

192. Herein we will investigate whether serum exosome could deliver information to 

endothelial cells in vitro.   

 The profile of exosomal miRNAs in mouse serum have been shown to be altered 

after polymicrobial sepsis induced by cecum ligation and puncture. Some miRNAs 

significantly increased in exosomes after CLP for eight hours, including miR#16, miR#17, 

miR#20a/b and miR#26a/b. Exosomal miR#155 released by DC enhances while miR#

146a suppresses inflammatory response in endotoxin#treated mice 192. 

 In addition, exosomes contain microRNAs which have been shown to play an 

important role in regulation of cardiovascular function and inflammatory processes 

during sepsis. Exosomal miR#155 released by DC enhances while miR#146a 

suppresses inflammatory response in endotoxin#treated mice 192. Endothelial cells have 

been reported to secrete exosomes and also can be targeted by exosomes 174. 
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Endothelial cells communicate with other cells through exosomes 196. It have been 

reported miRNA incorporated into exosome can be transferred into endothelial cells and 

function in the recipient cells 197. However, the relationship of endothelial cell function 

and exosomes in sepsis is still poorly understood. Here we will determine the miRNA 

composition in serum exosomes after sepsis in HSPA12B#/#. We hypothesize that that 

circulating exosomes from septic mice (septic exosomes) are involved in endothelial 

dysfunction and inflammatory responses in polymicrobial sepsis. 

 In this study, we observed that the level of serum exosome miRNAs changed in 

HSPA12B deficient mice compared with wild type after sepsis. We demonstrated that 

exosomes isolated from serum of septic mice significantly increased the expression of 

adhesion molecules and decreased the levels of tight junction proteins of endothelial 

cells. Importantly, exosomes isolated from HSPA12B#/# septic mice resulted in more 

severe endothelial dysfunction. The data suggests that exosomes plays a critical role in 

mediating endothelial dysfunction during polymicrobial sepsis. 

 

Materials and Methods 

Isolation of Exosomes�  

Ten hours after CLP, blood was collected from the experimental mice followed by 

centrifugation at 1,500 g for 15 min at 18˚C. The supernatant was collected and added 

to ExoQuickTM exosome precipitation solution (63 Sl/ 250Sl plasma, ExoQ5A#1, SBI) 

according to manufacturer’s instruction. The mixture was incubated at room 

temperature for 30 min followed by centrifugation at 1,500g for 30min. The supernatants 

were removed and the pellets were exosomes. 
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Isolation of MiRNAs from Exosomes.  

Total RNA was extracted from the exosome pellets using Trizol (RN190, 

Molecular Research Center, Cincinnati, USA) according to manufacturer’s instructions. 

Approximately 10 ng of isolated total RNA was applied to examination of microRNA 

levels as described previously 153.  

 

qPCR Assay of MiRNAs.  

MiRNAs were isolated from heart tissues or exosomes using the mirVanaTM miR 

isolation kit (Ambion) as described previously224. MiRNAs levels were quantified by 

qPCR using specific Taqman assays (Applied Biosystems, USA) and specific primers 

(Applied Biosystems, Primer identification numbers: 002228 for hsa#miR#126#3p and 

001973 for snRU6). The levels of miRNAs were quantified with the 2(#∆∆ct) relative 

quantification method that was normalized to the U6 small nucleolar RNA (snRU6). 

 

Delivering Septic Exosomes into Endothelial Cells �������	.  

Mice were subjected to CLP and then serum was collected at 10 hours after 

surgery. Blood was collected and exosomes in serum was isolated with ExoQuickTCTM 

exosome precipitation solution (ExoQ5A#1, SBI). Human umbilical vein endothelial cells 

(HUVECs) were cultured and treated with exosomes (5Sg/ml) diluted in conditional 

medium. The conditional medium was exosome free medium, i.e. centrifuged at 

120,000 rpm, 4˚C for 18 hours. Cells were collected and cellular proteins were isolated. 

The level of adhesion molecules (ICAM and VCAM) were analyzed by WB. 
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Western Blot.   

Briefly, the cellular proteins were isolated by using RIPA buffer and separated by 

SDS#polyacrylamide gel electrophoresis and transferred onto Hybond ECL membranes 

(Amersham Pharmacia, Piscataway, NJ). The ECL membranes were incubated with 

primary antibody followed by incubation with peroxidase#conjugated secondary 

antibodies (Cell Signaling Technology, Inc.) and analysis by the ECL system 

(Amersham Pharmacia, Piscataway). The signals were quantified using the G: Box gel 

imaging system by Syngene (Syngene, USA, Fredrick, MD). GAPDH (Meridian Life 

Science, Inc, TN) was detected as loading control. For the source of antibodies, CD63 

and CD 81 were bought from SBI, zo#1 and occludin from Invitrogen, VCAM1 and 

ICAM1 from Santa Cruz. 

 

Immunofluorescence Staining. 

 Briefly, the heart sections were stained with specific first antibodies rabbit anti# 

tight junction protein ZO#1 (1:100) for overnight at 4 ˚C. Then secondary antibody Alexa 

Fluor#555 goat#anti#rabbit IgG (H+L) (red) (Thermo Fisher Scientific) were added to the 

section for 1 hour at room temperature. Then the slides were examined with fluorescent 

microscope at a magnification of 400×. 

 

Statistical Analysis�

 The data are expressed as mean ± SE. Comparisons of data between groups 

were made using one#way analysis of variance (ANOVA), and Tukey’s procedure for 

multiple#range tests was performed. The log#rank test was used to compare group 
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survival trends. Probability levels of 0.05 or smaller were used to indicate statistical 

significance. 

 

Results 

Exosomes Isolated from HSPA12B#/# Septic Mice Decreased the Levels of Tight 

Junction Proteins in Endothelial Cells 

Exosomes have been demonstrated to play an important role in the 

communication between cells and organs 179. Exosomes can also carry microRNAs 

which regulate gene expression at the post transcription levels 185,191. We observed that 

the levels of tight junction proteins in the myocardium were significantly reduced and the 

ratio of wet/dry of lung markedly increased in HSPA12B#/# septic mice than in WT septic 

mice (Fig. 7). We examined the effect of exosomes isolated from septic mouse serum 

on tight junction proteins in endothelial cells. Serum exosomes were isolated from 

serum of WT sham, septic mice and HSPA12B#/# sham and septic mice, respectively. 

Figure 11a shows that CD63 and CD81 which are specific markers for exosomes are 

present in isolated exosomes. Endothelial cells were treated with the exosomes isolated 

from sham and septic mice. Endotoxin was used as positive control. As shown in Figure 

11b, LPS or WT septic exosomes markedly decreased the levels of ZO#1 and Occludin 

in the endothelial cells compared with sham exosomes. However, treatment of HUVECs 

with HSPA12B#/# septic exosomes resulted in more decreases in the levels of ZO#1 and 

Occludin, when compared with WT septic exosomes treated group. Fluorescent images 

show that WT exosomes treatment caused breaks of tight junction of endothelial cells 
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(Fig. 11c). However, treatment of endothelial cells with HSPA12B#/# septic exosomes 

resulted in lost and breakdown of tight junction protein on the endothelial cells. 

 

 
Figure 11 Exosomes isolated from septic HSPA12B#/# mice decreased the levels of tight 
junction proteins in endothelial cells. HSPA12B deficient and WT mice were subjected 
CLP#induced sepsis. Sham surgical operation served as sham control. Ten hours after 
CLP, blood was collected and serum exosomes were isolated by ExoQuickTM exosome 
precipitation solution. (a) Exosome markers CD63 and CD81 were detected in 
supernatant and exosomes by WB. (b) Endothelial cells (HUVEC) were treated with 
exosomes diluted in conditional medium (5 mg/ml) for 12 hours. The cells were 
harvested and the level of tight junction proteins ZO#1 and Occludin in cytoplasm were 
analyzed by WB (N=5#12/group). GAPDH served as loading control. WS = WT sham; 
WC = WT CLP; HS= HSPA12B#/# sham; HC= HSPA12B#/# CLP. * indicates P<0.05. (c) 
The expression level and location of tight junction protein ZO#1 was detected by 
immunofluorescence. N=3/group. 
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Exosomes from HSPA12B#/# Septic Mice Enhances the Expression of Adhesion 

Molecules on Endothelial Cells 

We observed that endothelial specific deficiency of HSPA12B results in 

significantly increased expression of VCAM#1 and ICAM#1 in the myocardium following 

polymicrobial sepsis. We examined the effect of exosomes isolated from WT and 

HSPA12B#/# mice on the expression of VCAM#1 and ICAM#1 in endothelial cells. 

HUVECs were treated with exosomes isolated from sham and septic mice respectively. 

LPS treatment served as positive control. Figure 12 shows that exosomes isolated from 

WT septic mice markedly increased the levels of VCAM#1 by 87.2% and ICAM#1 by 

157.3%, respectively, compared with sham exosome treated group. However, treatment 

of HUVECs with HSPA12B#/# septic exosomes resulted in more expression of VCAM#1 

and ICAM#1 than in WT septic exosome treatment. The levels of VCAM#1 and ICAM#1 

in HSPA12B#/# septic exosomes group were greater by 75.1% and 78.9% respectively, 

compared with the group treated with WT septic exosomes. The data indicates that 

septic exosomes may play a critical role in up regulation of adhesion molecule 

expression in the endothelial cells and increased expression of adhesion molecules 

could be responsible for increased infiltration of inflammatory cells into the myocardium 

in polymicrobial sepsis. 
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Figure 12 Exosomes isolated from HSPA12B#/# septic mice decreased the levels of tight 
junction proteins in endothelial cells. HSPA12B deficient and WT mice were subjected 
CLP#induced sepsis. Sham surgical operation served as sham control. Ten hours after 
CLP, blood was collected and serum exosomes were isolated by ExoQuickTM exosome 
precipitation solution. Endothelial cells (HUVEC) were treated with exosomes diluted in 
conditional medium (5 mg/ml) for 12 hours. The cells were harvested and the level of 
adhesion molecules VCAM and ICAM in cytoplasm were analyzed by WB (N=8#
10/group). GAPDH served as loading control. WS = WT sham; WC = WT CLP; HS= 
HSPA12B#/# sham; HC= HSPA12B#/# CLP. * indicates P<0.05.  
 

Decreased Levels of MiRNA#126 in Endothelial Cells Treated with HSPA12B#/# 

Exosomes from Septic Mice. 

 Recent studies have demonstrated that microRNAs play critical roles in regulation of 

endothelial cell function 157,159. MiR#126 has been reported to suppress endothelial cell 

adhesion molecule expression 159. Therefore, we examined the levels of miR#126 in 

endothelial cells treated with septic exosomes. HUVECs were treated with WT and 
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HSPA12B#/# exosomes, respectively. MiR#126 levels were measured by qPCR (Fig. 13). 

The data shows that treatment of HUVECs with exosomes from WT and HSPA12B#/# 

sham mice slightly reduced the levels of miR#126 compared with untreated control. WT 

septic exosome treatment decreased the expression of miR#126 but the decrement was 

not statistical different, when compared with the WT sham exosome group. However, 

the levels of miR#126 in HSPA12B#/# treated cells were significantly reduced, when 

compared with the groups treated with HSPA12B#/# sham or WT septic exosomes, 

respectively.  

 

 

 
Figure. 13 Decreased levels of miR#126 in endothelial cells treated with HSPA12B#/# 
exosomes from septic mice. HSPA12B deficient and WT mice were subjected CLP 
induced polymicrobial sepsis. Sham surgical operation served as sham control. Ten 
hours after CLP, blood was collected for isolation of serum exosomes. Endothelial cells 
(HUVEC) were treated with exosomes for 12 hours. The cells were harvested. Total 
miRNAs was extracted from the endothelial cells.  MiR#126a level in endothelial cell 
were measured by RT#PCR after the exosomes treatment (N=6/group). * indicates 
P<0.05. 
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Decreased Expression of MiR#126 in Serum Exosomes from HSPA12B#/# Septic Mice 

 We also examined the levels of exosomes isolated from WT and HSPA12B#/# mice. 

The data shows that there was no significant difference in the levels of miR#126 

between WT sham and HSPA12B#/# sham (Fig.14). The miR#126 levels were markedly 

increased in WT septic exosomes, when compared with WT sham exosomes. However, 

in HSPA12B#/# septic exosomes, the miR#126 levels were comparable with HSPA12B#/# 

sham exosomes but significantly lower than in WT septic exosomes. The data suggests 

that lower levels of miR#126 in HSPA12B#/# septic exosomes and their treated 

endothelial cells may be responsible for increased expression of adhesion molecules in 

HSPA12B#/# septic exosome treated cells. � 

�

�

�

�
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�
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Figure 14 The expression of miR#126 decreased in serum exosomes from HSPA12B#/# 
septic mice. Ten hours after CLP, the blood was collected and serum exosomes were 
isolated by exosome precipitation solution. Total RNA was extracted from the exosome 
pellets using Trizol. MiR#126 levels in serum exosomes were quantified by qPCR (N=6#
9/group). The levels of examined MiRNAs were normalized to the U6 small nucleolar 
RNA (snRU6). * indicates P<0.05. 



79 

 

Discussion 

 The data shows that exosomes isolated from septic mice may play a critical role 

in mediating endothelial dysfunction, including decreased tight junction proteins and 

increased adhesion molecules. MiRNAs incorporated in exosomes may play an 

important roles in these effects.  

It is well known that eukaryotic cells secrete vesicles into outside environment. 

Those vesicles mainly incorporate three categories, i.e. apoptotic bodies, exosomes 

and microvesicles or microparticles, based on their biogenesis. All three vesicles are 

confined by a lipid bilayer, but the composition and the size vary (from 30 to 2,000 nm in 

diameters). The most widely studied and best known types of vesicles are 

microparticles and exosomes 171. Microvesicles are budded directly from plasma 

membrane. In contrast, exosomes are generated inside from endosomal compartments 

called multivesicular bodies (MVBs). Exosomes are released via the integration of 

MVBs with the plasma membrane. Exosomes have been intensively investigated in 

infection 194,195,192. However, the role of exosomes in sepsis#induced cardiovascular 

dysfunction has not been investigated previously.  

 Azevedo 
���
 reported that exosomes from septic shock patients induce 

myocardial dysfunction in isolated rabbit hearts 194. Gambim 
���
 have shown that 

platelet derived exosomes induce endothelial cell apoptosis and endothelial dysfunction 

195. We have observed in the present study that the exosomes isolated from the serum 

of septic mice significantly increased the expression of adhesion molecules (VCAM#1 

and ICAM#1) and decreased the levels of tight junction proteins (ZO#1 and Occludin) in 

endothelial cells. Interestingly, treatment of endothelial cells with HSPA12B #/# septic 
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exosomes resulted in further increases in the expression of levels of adhesion 

molecules and decreases in the levels of tight junction proteins. Our data suggest that 

exosomes from septic mice could contain compounds that markedly regulate the 

function of targeted cells through cell#cell communication. At present, we do not know 

which components in the septic exosomes cause endothelial dysfunction. However, we 

do know that exosomes play a critical role in regulating cellular function of targeted cells 

during polymicrobial sepsis. Indeed, recent studies have shown that exosomes can act 

locally or circulate through various bodily fluids, including blood and lymph and play a 

critical role in cell#to#cell communication 185,175,189,190 by transferring proteins and/or 

nucleic acids from one cell to another 185,175,189,190. Therefore, the exosomes contain 

microRNAs which may play an important role in regulation of cardiovascular function in 

polymicrobial sepsis. 

 MicroRNAs (miRNAs) are 21 to 23 nucleotide non#protein#coding RNA molecules 

and have been identified as novel regulators of gene expression at the post#

transcriptional level by binding to target messenger RNAs (mRNAs) 118,121,225. MiR#126 

is predominately expressed in endothelial cells 156. MiR#126 has been reported to 

suppress endothelial adhesion molecule expression 159, and it is involved in the 

regulation of angiogenesis 157. We have observed that the levels of miRNA#126 in septic 

exosomes were markedly decreased in HSPA12B#/# septic exosomes (Fig. 14). Our data 

indicates that lower levels of miR#126 in the exosomes may be responsible for the 

higher levels of adhesion molecules in the myocardium of HSPA12B#/# septic mice. 

Although we do not understand the mechanisms by which specific deficiency of 

endothelial HSPA12B resulted in lower levels of miR#126 in circulation exosomes, 
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recent evidence has shown that specific miRNAs play a critical role in the negative 

regulation of TLR/NF#κB mediated innate immune and inflammatory responses 

117,121,116,226. Several miRNAs (miR#146a, miR#155, and miR#125, etc.) have been 

reported to regulate TLR#mediated NF#κB activation 119,116,226. Thus those miRNAs play 

an important role in the pathophysiology of sepsis/septic shock 227,137. We have 

previously reported that increased expression of miR#146a in the myocardium 

significantly attenuates septic cardiomyopathy 144. We have also found that transfection 

of lentivirus expressing miR#125b protects against sepsis#induced cardiomyopathy 228. 

Our previous studies indicate that MiRNAs carried by exosomes could differentially 

regulate detrimental signaling pathways, thus dictating the outcome of septic 

cardiomyopathy and survival in sepsis. We hypothesize that modulation of exosomes 

containing miR#126 may be a new and novel approach for the treatment of 

cardiomyopathy in HSPA12B#/# septic mice. The experiments presented in the part V 

were performed to evaluate this hypothesis.  
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CHAPTER 5 

INVESTIGATE THE MECHANISMS BY WHICH ENDOTHELIAL SPECIFIC HSPA12B#/# 

DEFICIENCY ENHANCES THE INFLAMMATORY RESPONSE 

 

Introduction  

 In the chapter 3 studies, we observed that inflammatory responses in HSPA12B#/# 

septic mice were significantly greater when compared with WT septic mice, suggesting 

that HSPA12B may serve as a negative regulator of the pro#inflammatory responses 

during sepsis. However, we still do not understand how HSPA12B negatively regulates 

inflammatory responses during sepsis/septic shock.   

 It has well been demonstrated that TLRs play a critical role in mediating the innate 

immune and inflammatory responses which contribute to septic cardiomyopathy 229,50. 

TLR mediated signaling predominately activates NF#κB that is a critical transcription 

factor regulating gene expression including inflammatory cytokines, cell death and 

survival 230,231. We have previously demonstrated that that NF#κB activation plays a 

central role in mediating the development of sepsis/septic shock and septic 

cardiomyopathy 35. However, the mechanisms by which activation of TLR/NF#κB 

signaling results in septic sequelae have not been elucidated.  

 The data generated from the Chapter 4 studies show that exosomes isolated from 

septic mice play a critical role in mediating endothelial dysfunction. It is possible that 

septic exosomes could be responsible for sepsis#induced inflammatory responses.  

Exosomes contain microRNAs which have been reported to regulate cardiovascular 

function and inflammatory processes in several models of diseases 144,156,228. Indeed, 
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microRNAs play a critical role in sepsis/septic shock#induced innate immune and 

inflammatory responses 192. Several microRNAs such as miR#146a, miR#155, and miR#

125, etc. have been reported to regulate activated NF#κB#mediated inflammatory 

responses 138,232,119,116,119,116. Thus, these microRNAs play an important role in the 

pathophysiology of sepsis/septic shock 227,137. We have previously reported that miR#

146a plays a protective role in attenuation of sepsis induced cardiomyopathy by 

targeting the NF#κB activation pathway 144.  We have also found that miR#125b protects 

against sepsis#induced cardiac dysfunction in polymicribial sepsis by targeting TNF#α 

and sepsis#induced apoptosis 228.  

 Our previous studies indicate that microRNAs carried by exosomes could 

differentially regulate detrimental signaling pathways. In the Chapter 4 experiments, we 

demonstrated that septic exosomes stimulate inflammatory responses in macrophages. 

Interestingly, the exosomes isolated from HSPA12B#/# septic mice, which are associated 

with the lower levels of miRNA#146a and miRNA#125b, resulted in more inflammatory 

cytokine production in macrophages. The data suggests that the lower levels of mR#

146a and miR#125b may be responsible for the losing of negative feedback regulation 

of inflammatory response in HSPA12B#/# septic mice.    

 

Materials and Methods 

Isolation of Exosomes�  

Ten hours after CLP, the blood was collected from the experimental mice 

followed by centrifugation at 1,500 g for 15 min at 18˚C. The supernatant was collected 

and added to ExoQuickTM exosome precipitation solution (63 Sl/ 250Sl plasma, 
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ExoQ5A#1, SBI) according to manufacturer’s instruction. The mixture was incubated at 

room temperature for 30 min followed by centrifugation at 1,500g for 30min. The 

supernatants were removed and the pellets were exosomes. 

 

Isolation of MiRNAs from Exosomes.  

Total RNA was extracted from the exosome pellets using Trizol (RN190, 

Molecular Research Center, Cincinnati, USA) according to manufacturer’s instructions. 

Approximately 10 ng of isolated total RNA was applied to examination of microRNA 

levels as described previously 153.  

 

qPCR Assay of MiRNAs.  

MiRNAs were isolated from heart tissues or exosomes using the mirVanaTM miR 

isolation kit (Ambion) as described previously224. MiRNAs levels were quantified by 

qPCR using specific Taqman assays (Applied Biosystems, USA) and specific primers 

(Applied Biosystems, Primer identification numbers: 000468 for hsa#miR#146a, 000449 

for miR#125b and 001973 for snRU6). The levels of examined miRNAs were quantified 

with the 2(#∆∆ct) relative quantification method that was normalized to the U6 small 

nucleolar RNA (snRU6). 

 

Delivering of Septic Exosomes into Macrophage �������	.  

Mice were subjected to CLP and then serum was collected at 10 hours after 

surgery. Blood was collected and exosomes in serum was isolated with ExoQuickTCTM 

exosome precipitation solution (ExoQ5A#1, SBI). Murine macrophages J774.1A were 
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treated with exosomes 5Sg/ml diluted in conditional medium for different times. The 

conditional medium is exosome free medium, prepared by centrifuged at 120,000 rpm, 

4˚C for 18 hours. The medium was collected. The production of TNF#α and IL#6 by 

macrophages were determined by ELISA. Cells were collected and cellular proteins 

were isolated.  

 

ELISA for Cytokine Assay.  

The levels of cytokines (TNF#α, IL#6) in cell#free supernatants were measured by 

ELISA development kits (Peprotech) according to manufacturers’ instructions. For 

cytokines release from cells, macrophages (50.000/50 Vl/well) were seeded into wells of 

96#well microtiter plates.  After 12 h treatment cell#free supernatants were collected, 

centrifuged at 1000g for 10 min at 4 °C and aliquots were frozen at −20 °C until 

measurement. Supernatants were analyzed.  Briefly, ELISA plate was incubated 

overnight at room temperature (R.T.) with 100Sl capturing antibody.  After washing for 

four times, 300Sl blocking buffer was added for 1 hour at R.T. After washing, serial 100 

Sl dilute standard or sample was added and incubated at room temperature for at least 

2 hours. 100Vl diluted detection antibody was immediately added after washing and 

incubate at R.T. for 2 hours. Plates were aspirated and washed plate 4 times. Diluted 

Avidin#HRP conjugate was added and incubated 30 min. Plates were aspirated and 

washed plate 4 times. Add 100Vl of ABTS liquid substrate solution to each well.  Monitor 

color development with an ELISA plate reader at 405 nm.  
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Western Blot.   

Briefly, the cellular proteins were isolated by using RIPA buffer and separated by 

SDS#polyacrylamide gel electrophoresis and transferred onto Hybond ECL membranes 

(Amersham Pharmacia, Piscataway, NJ). The ECL membranes were incubated with 

primary anti#phosphor#IκB or IκB antibody (Cell Signaling Technology ) followed by 

incubation with peroxidase#conjugated secondary antibodies (Cell Signaling 

Technology, Inc.) and analysis by the ECL system (Amersham Pharmacia, Piscataway). 

The signals were quantified using the G: Box gel imaging system by Syngene 

(Syngene, USA, Fredrick, MD). GAPDH (Meridian Life Science, Inc, TN) was detected 

as loading control. 

 

Statistical Analysis�

 The data are expressed as mean ± SE. Comparisons of data between groups 

were made using one#way analysis of variance (ANOVA), and Tukey’s procedure for 

multiple#range tests was performed. The log#rank test was used to compare group 

survival trends. Probability levels of 0.05 or smaller were used to indicate statistical 

significance. 

 

Results�

HSPA12B#/# Septic Exosomes Stimulated Inflammatory Cytokine Production in 

Macrophages 

 We found that endothelial specific deficiency of HSPA12B results in enhanced 

inflammatory cytokine production in serum (Fig. 10). We also observed that septic 
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exosomes induces dysfunction of endothelial cells (Figure 7 and 8). We hypothesize 

that septic exosomes could stimulate inflammatory response in macrophages. To 

evaluate our hypothesis, we isolated serum exosomes from WT and HSPA12B#/# mice, 

treated macrophages with exosomes, followed by analysis of inflammatory cytokine 

production. As shown in Figure 15, treatment of macrophages with WT septic exosomes 

markedly increased TNF#α production by 133.9% and IL#6 by 427.9% respectively, 

compared to the WT sham exosome group. However, HSPA12B#/# septic exosomes 

stimulated even more inflammatory cytokine production in macrophages. The levels of 

TNF#α and IL#6 in HSPA12B#/# septic exosomes treated cells were significantly 

enhanced by more 184% and 360% respectively than that in WT septic exosome 

treated group. The data suggest that exosomes play an important role in the induction 

of the inflammatory response in macrophages.  

 

 
Figure 15 HSPA12B#/# septic exosomes stimulate inflammatory cytokine production in 
macrophages. HSPA12B deficient and WT mice were subjected to polymicrobial sepsis 
induced by CLP. Sham surgical operation served as control. Ten hours after CLP, blood 
was collected for isolation of serum exosomes. The murine macrophage J774.1A cells 
were treated with exosomes (5 mg/ml) for 12 hours. The medium was collected and 
cytokine production, TNF#α (a) and IL#6 (b) was measured by ELISA. (N=4#8/group). * 
indicates P<0.05. 
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Exosomes from Septic Mice Increase NF#κB Binding Activity in Macrophages  

 We observed that septic exosome stimulation significantly increased inflammatory 

cytokine production in macrophages (Figure 15). Activation of NF#κB plays a critical role 

in the regulation of inflammatory cytokine production 218. Therefore, we examined 

whether septic exosome#induced increases in the inflammatory cytokine production are 

mediated through activation of NF#κB binding activity. IκBα phosphorylation and 

degradation are crucial steps for NF#κB translocation and binding activity 58. 

Macrophages (J774.1A cells) were treated with exosomes isolated from WT and 

HSPA12B#/# mice. Cellular proteins were isolated for measurement of IκBα 

phosphorylation. As shown in Figure 16, sham exosomes from WT and HSPA12B#/# 

mice did not alter the levels of IκBα phosphorylation or total IκBα in macrophages. 

However, WT septic exosome stimulation markedly increased the levels of 

phosphorylated IκBα by 154.1% and decreased total IκBα levels by 102.3% compared 

with WT sham exosome treated group. Importantly, HSPA12B#/# septic exosome 

increased the level of phosphorylated IκBα even further by 89.3% and decreased total 

IκBα levels by 90.2%, when compared with WT septic exosome group. The data 

suggests that septic exosomes induce IκBα phosphorylation, which is critical for NF#κB 

translocation and binding activity. These data indicate that endothelial specific 

deficiency of HSPA12B amplified the effect of septic exosomes on IκBα phosphorylation 

in macrophages.  
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Figure 16 HSPA12B#/# exosomes from septic mice increased NF#κB binding activity in 
macrophages. HSPA12B deficient and WT mice were subjected to polymicrobial sepsis 
induced by CLP. Sham surgical operation served as control. Ten hours after CLP, blood 
was collected for preparation of serum exosomes. The murine macrophage J774.1A 
cells were treated with exosomes (5 mg/ml) for 45 mins. Protein levels of phosphor#IκB 
and IκB in macrophage cytoplasm were detected by Western blot. GAPDH served as 
loading control (N=4/group). Exosomes isolated from septic HSPA12B#/# mice promotes 
cytokine release from macrophages. WS = WT sham; WC = WT CLP; HS= HSPA12B#/# 

sham; HC= HSPA12B#/# CLP. * indicates P<0.05. 
 

Decreased Levels of miR#146a in Macrophages Treated with HSPA12B#/# Exosomes 

from Septic Mice 

 MicroRNA#146a has been reported to serve as a negative regulator for NF#κB 

activation 138,143. We and others have previously shown that miR#146a suppresses NF#

κB binding activity by targeting TRAF6 and IRAK1 153,143. We examined whether NF#κB 

activation induced by septic exosomes is due to downregulation of miR#146a. The 
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levels of miR#146a in the macrophages treated with WT and HSPA12B#/# exosomes 

were analyzed by qPCR. Figure 17 shows that there was no significant alteration in the 

levels of miR#146a following exosomes treatment for 4 hours. Interestingly, treatment of 

macrophages with WT or HSPA12B#/# sham exosomes markedly enhanced the levels of 

miR#146a, when compared with untreated control. In contrast, WT septic exosome 

treatment decreased expression of miR#146a as compared with WT sham exosomes. 

However, HSPA12B#/# exosomes resulted in even lower levels of miR#146a, when 

compared with WT septic exosomes. The data indicates that decreased levels of miR#

146a in HSPA12B#/# septic exosomes and their treated macrophages could be 

responsible for stimulation of NF#κB mediated inflammatory cytokine production.  
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Figure 17 HSPA12B#/# exosomes from septic mice decreased miR#146 in macrophages. 
HSPA12B deficient and WT mice were subjected to polymicrobial sepsis induced by 
CLP. Sham surgical operation served as control. Ten hours after CLP, blood was 
collected for preparation of serum exosomes. Murine macrophage cell line J774.1A was 
treated with 5Sg/ml exosomes for 12 hours. MiR#146a level in macrophage were 
measured by RT#PCR (N=6/group).  * indicates P<0.05. 
 



91 

 

Decreased Expression of MiR#146a and MiR#125b in Serum Exosomes from HSPA12B#

/# Septic Mice 

 We also examined the levels of miR#146a in the exosomes isolated from WT and 

HSPA12B#/# sham and septic mice. MiR#146a was markedly increased in WT septic 

exosomes compared with WT sham control. However, there were significantly lower 

levels of miR#146a in HSPA12B#/# septic exosomes when compared with WT septic 

exosomes. CLP sepsis markedly increased the levels of miR#146a in exosomes 

compared with WT sham exosomes, while there was no significant difference in the 

levels of miR#146a between HSPA12B#/# septic exosomes and HSPA12B#/# sham 

exosomes. MiR#125b has been reported to suppress TNF#α expression 232. We 

analyzed the levels of miR#125b in serum exosomes from WT and HSPA12B#/# mice. 

CLP sepsis markedly decreased miR#125b (b). In contrast, HSPA12B#/# septic exosomes 

have significantly lower level of miR#125b compared with WT septic exosomes. These 

data indicate that the decreased MiRNAs in serum exosomes from HSPA12B#/# septic 

mice may be responsible for losing negative feedback regulation mechanisms for 

sepsis#induced inflammatory responses in HSPA12B#/# mice.   
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Figure 18 The expression of miR#146a and miR#125b decreased in serum exosomes 
from HSPA12B#/# septic mice. Ten hours after CLP, the blood was collected and serum 
exosomes were isolated by exosome precipitation solution. Total RNA was extracted 
from the exosome pellets using Trizol. MiR#146a (N=13/group) and miR#125b (N=10#
12/group), levels in serum exosomes were quantified by qPCR. The levels of examined 
MiRNAs were normalized to the U6 small nucleolar RNA (snRU6). * indicates P<0.05. 

 

Discussion 

 Innate immune and inflammatory responses have been demonstrated to play a 

critical role in cardiovascular dysfunction in sepsis/septic shock 36,37,35,38. TLRs are 

PRRs that recognize PAMPs to activate innate and adaptive immune responses 49,50. 

TLR mediated cellular signaling predominately activates NF#κB which is an important 

transcription factor regulating gene expression including inflammatory cytokines and 

chemokines as well as cell survival and death 54,55,49,233,56,231,218. Pro#inflammatory 

cytokines, such as IL#6 and TNF#α, are produced upon NF#κB activation. We have 

previously demonstrated that TLR#mediated NF#κB activation pathway plays a 

detrimental role in sepsis#induced cardiovascular dysfunction 59,60,61,62,63,64. Either 

deficiency of TLR4 or targeting TLR#mediated NF#κB activation significantly improved 

outcome and cardiac function in polymicrobial sepsis. Recently, we found that targeting 
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TLR mediated NF#κB activation with miR#146a or miR#125b markedly attenuated 

polymicrobial sepsis#induced cardiac dysfunction 153,228. Our data and other reports 

clearly demonstrated that activation of innate immune and inflammatory responses 

mediated by TLR/NFκB signaling contribute to cardiovascular dysfunction in 

sepsis/septic shock. However, mechanisms by which TLR mediated NF#κB activation 

during sepsis/septic shock are unclear. 

 The present study demonstrated that circulating exosomes in septic mice play a 

critical role in the induction of inflammatory responses in macrophages. Stimulation of 

macrophages with septic exosomes significantly increased the production of 

inflammatory cytokines (TNF#α and IL#6). Our finding suggests that septic exosomes 

may play an important role in mediated inflammatory responses either by carrying 

endogenous ligands that activate the TLR#mediated NF#κB pathway or by loss of some 

substances in septic exosomes that will play a role in negative feedback regulation of 

sepsis. Indeed, we observed that stimulation of macrophages with septic exosomes 

significantly enhanced phosphorylation of IκBα which controls the activation of NF#κB 58. 

 The data suggests that septic exosomes may contain endogenous ligands that 

activate TLR#mediated NF#κB activation pathway. In our pilot studies, we observed that 

the levels of high mobility group box 1 protein (HMGB1) in septic exosomes were 

markedly greater compared with the exosomes isolated from sham control mice. It has 

well been demonstrated that HMGB1 is a critical factor causing organ failure in 

sepsis/septic shock 234. It is possible that HMGB1 in septic exosomes may be, in part, 

responsible for the inflammatory response induced by septic exosomes in 

macrophages. We observed HSPA12B#/# septic exosomes induced more inflammatory 
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cytokine production in macrophages than that in WT septic exosomes. Interestingly, the 

levels of HMGB1 in HSPA12B#/# septic exosomes were markedly greater compared with 

WT septic exosomes, indicating that septic exosomes may carry endogenous ligands, 

such as HMGB1, that activate innate immune and inflammatory responses. At present, 

we do not understand the mechanisms by which endothelial cell specific deficiency of 

HSPA12B resulted in high levels of endogenous ligand levels in exosomes. Recent 

studies have shown that activation of glycolysis regulates HMGB1 release from 

inflammatory cells. Both clinical and basic studies have demonstrated that sepsis/septic 

shock significantly increase glycolytic metabolism. In endothelial cells, there is more 

than 60% of metabolism via glycolysis. Therefore, it is possible that HSPA12B regulates 

septic exosomes containing endogenous ligands via glycolytic dependent mechanisms. 

 Exosomes are novel vehicles for carrying and delivering microRNAs to the target 

cells, resulting in regulation of signaling pathways in the recepient cells 197,235. MiR#146a 

has been shown to attenuate small intestine ischemia/reperfusion injury by 

downregulating IRAK1 143. We observed that the levels of miR#146a and miR#125b in 

HSPA12B#/# septic exosomes were markedly lower than in WT septic exosomes. We 

have reported that increased expression of miR#146a in the myocardium via delivery of 

lentivirus expressing miR#146a protects the myocardium from polymicrobial sepsis#

induced cardiac dysfunction 153. We demonstrated that miR#146a targets TRAF6 and 

IRAK1, resulting in downregulation of NF#κB binding activity in polymicrobial sepsis 153. 

We also observed that increased expression of miR#125b in the myocardium 

significantly attenuates sepsis#induced cardiac dysfunction via targeting TNF#α and 

apoptotic factors (Bim and Bak) 228. In the present studies, we observed that the levels 
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of both miR#146a and miR#125b in the HSPA12B#/# septic exosomes were lower when 

with WT septic exosomes. Therefore, lower levels of these MiRNAs in HSPA12B#/# 

septic exosomes may be, in part, responsible for HSPA12B#/# septic exosomes induced 

more inflammatory cytokine production in macrophages. We will determine in our future 

studies whether increased levels of miR#146a and/or miR#125b in HSPA12B#/# septic 

exosomes will markedly attenuate inflammatory response in macrophages and improve 

cardiovascular function in HSPA12B#/# septic mice. 
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CHAPTER 6 

������� DELIVERY OF EXOSOMAL MIR#126 ATTENUATED SEPSIS#INDUCED 

CARDIAC DYSFUNCTION 

 

Introduction 

 We have found that the exosomes isolated from HSPA12B#/# septic mice 

stimulated the expression of adhesion molecules and decreased the levels of tight 

junction proteins in endothelial cells. Interestingly, we observed that the levels of 

miRNA#126 in HSPA12B#/# septic exosomes were much lower than that in WT septic 

exosomes. The importance of miR#126 in the regulation of endothelial cell function has 

been documented. MiRNA#126 predominantly expresses in endothelial cells 111 and 

regulates the progression of angiogenesis, proliferation, and migration of endothelial 

cells 157, and the expression of vascular cell adhesion molecule#1159 as well as 

chemokine stromal dell#derived factor#1 (SDF#1/CXCL#12) 160. Interestingly, miR#126 

has also been reported to regulate the survival and function of plasmacytoid dendritic 

cells via modulation of the VEGFR2 pathway 38, indicating that miR#126 may regulate 

innate immune responses by targeting VEGF signaling. In our studies, we found that the 

lower levels of miR#126 in septic exosomes are associated with worst outcome and 

cardiovascular dysfunction as well as over#production of inflammatory cytokines in 

HSPA12B#/# septic mice.  

 

 Based on our findings that endothelial cell specific deficiency of HSPA12B 

significantly increases the expression of adhesion molecules which promote the 
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infiltration of inflammatory cells into the myocardium and myocardial inflammatory 

responses as well as loss of tight junction proteins, it is possible that decreased levels 

of miR#126 in septic exosomes may be the important factor causing the responses in 

polymicrobial sepsis. We hypothesize that restoration of miR#126 levels in exosomes 

could significantly improve cardiac function in HSPA12B#/# septic mice. 

Exosomes are membranous nanovesicles (30#100 nm) which arise inside many 

cells from endosomal compartments called multivesicular bodies (MVBs) 171,236. 

Exosomes are novel vehicle for delivering mRNAs and microRNAs to exchange genetic 

information between cells 185,186,175,179,168. MiRNAs transferred by exosomes are 

functional 191,175 and induce target gene repression in recipient cells 175,192. Exosomes, 

as natural RNA shuttles, have triggered increasing interest as a drug carrier 168,205. They 

have been utilized as shuttles to package and deliver drugs 206 because of their low 

immunogenicity and bio#distribution. Mesenchymal stromal cells secrete a huge amount 

of extracellular microvesicles 210 and are efficient manufacturer of exosomes for drug 

delivery 211,205. We tested the therapeutic potential of miRNA#126 incorporated by 

exosome on septic mice. 

 

Materials and Methods 

Transfection of MiRNA Mimics �������	�  

HUVEC (1×106) in 6 well plates were transfected with 40pmol microRNA 

(scrambled, anti–miR#126 [Exiqon] or miR#mimic#126 [Ambion] by lipofectamine 2000 

(Thermo Fisher Scientific). Twenty#four hours later, endothelial cells were treated with 
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LPS (5ug/ml). Four hours later, endothelial cell adhesion molecules (VCAM and ICAM) 

were evaluated by WB. Endothelial cell injury was evaluated by LDH release. 

�

Measurement of LDH Release.  

The cell impermeable enzyme, lactate dehydrogenase (LDH), leaks through 

damaged cell membranes. Cell injury was assessed by measurement of LDH activity in 

culture medium using a commercial kit (Cytotoxicity Detection Kit, Sigma) according to 

the manufacturers’ instructions. Briefly, cells (105/ well) were seeded into 96#well plates. 

After treatment, 50 SL medium was transferred into a new plate and same volume 

reaction mixtures were added. After incubation for 30 mins at room temperature, 

reactions are stopped by adding Stop Solution. Absorbance at 490 nm and 680 nm was 

measured using a plate reader.  

�

Isolation of Exosomes.  

Ten hours after CLP, blood was collected from the experimental mice followed by 

centrifugation at 1,500 g for 15 min at 18˚C. The supernatant was collected and added 

with ExoQuickTM exosome precipitation solution (63 Sl/ 250Sl plasma, ExoQ5A#1, SBI) 

according to manufacturer’s instruction. The mixture was incubated at room 

temperature for 30 min followed by centrifugation at 1,500 rpm for 30min. The 

supernatants were removed and the pellets were exosomes. 
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Isolation of MiRNAs from Exosomes  

Total RNA was extracted from the exosome pellets using Trizol (RN190, 

Molecular Research Center, Cincinnati, USA) according to manufacturer’s instructions. 

Approximately 10 ng of isolated total RNA was applied to examination of microRNA 

levels as described previously 153.  

 

qPCR Assay of MiRNAs.  

MiRNAs were isolated from heart tissues or exosomes using the mirVanaTM miR 

isolation kit (Ambion) as described previously224. MiRNAs levels were quantified by 

qPCR using specific Taqman assays (Applied Biosystems, USA) and specific primers 

(Applied Biosystems, Primer identification numbers: 002228 for hsa#miR#126#3p and 

001973 for snRU6). The levels of examined MiRNAs were quantified with the 2(#∆∆ct) 

relative quantification method that was normalized to the U6 small nucleolar RNA 

(snRU6). 

 

Preparation of Exosomes Containing MiR#126.  

Bone marrow stromal cells (BMSCs) were isolated from HSPA12B#/# and WT 

mice as described previously 237. Briefly, mice were euthanized and bone marrow was 

isolated by flushing the femur and tibia with Dulbecco's modified Eagle's medium 

(DMEM) using a 25G 0.5#inch needle (BD). The bone marrow was dissociated by 

syringe. The cell mixture was cultured in DMEM supplemented with 10% fetal bovine 

serum (FBS) (HyClone, Thermo Fisher Scientific Waltham, MA), glutamine (2 mM) and 

penicillin/streptomycin (50 U/ml and 50 mg/ml, Sigma). After incubation in a 37 °C with 
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5% CO2 for 3 h, non#adherent cells were removed carefully by two washes with PBS 

and fresh medium was replaced. The medium was changed every other day. Cells at 

the 4th #7th generation were transfected with 40 nmol/L hsa#miR#126 mimics (MC12841, 

Ambion), hsa#miR#126 inhibitor (MH12841, Ambion) or Cy3TM dye labeled miR#

scrambled control (AM17010, Ambion), using Lipofectamine 2000 transfection reagent 

(Thermo Fisher Scientific Inc.) according to the manufacturer’s protocol. Twenty#four 

hours after transfection, supernatants were harvested for exosomes isolation using 

Exoquick#TCTM Exosome Precipitation Solution (SBI) according to the manufacturer's 

protocol. 

 

������	 Delivery of Exosomes Loaded with MiR#126 into Mice Hearts.   

Mice were transfected with exosomes loaded with miR#126 or exosomes loaded 

with miR#control through the right carotid artery as described previously 224,228. Briefly, 

mice were intubated and mechanically ventilated. The anesthesia was induced by 5% 

isoflurane and maintained by 1.5% isoflurane driven by 100% oxygen. Body 

temperature was maintained at 37oC by surface water heating. An incision was made in 

the middle of the neck and the right common carotid artery was carefully exposed. A 

micro#catheter was introduced into the isolated common carotid artery and positioned 

into the aortic root. Exosomes (10Sg diluted in 100Sl PBS) loaded with miR#126 or 

loaded with miR#Con were injected through the micro#catheter immediately after the 

induction of polymicrobial sepsis. The micro#catheter was gently removed and the 

common carotid artery was tightened before the skin was closed 63,35,219. 
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Western Blot.   

Western blot (WB) was performed as described previously 221,35,219. Briefly, the cellular 

proteins were separated by SDS#polyacrylamide gel electrophoresis and transferred 

onto Hybond ECL membranes (Amersham Pharmacia, Piscataway, NJ). The ECL 

membranes were incubated with primary antibodies anti#VCAM1, anti#ICAM1 (Santa 

Cruz Biotechnology), and anti#GAPDH (Meridian Life Science, Inc, TN), respectively, 

followed by incubation with peroxidase#conjugated secondary antibodies (Cell Signaling 

Technology, Inc.) and analysis by the ECL system (Amersham Pharmacia, Piscataway). 

The signals were quantified using the G: Box gel imaging system by Syngene (Syngene, 

USA, Fredrick, MD).  

 

Immunohistochemistry Staining. 

 Immunohistochemistry was performed as described previously 35,219. Briefly, 

heart tissues were immersion#fixed in 4% buffered paraformaldehyde, embedded in 

paraffin, and cut at 5 Sm sections. The sections were stained with specific goat anti#

intercellular adhesion molecule 1 (ICAM#1, 1:50 dilution, Santa Cruz Biotechnology) and 

rabbit anti#vascular cell adhesion molecule (VCAM#1, 1:50 dilution, Santa Cruz 

Biotechnology), respectively, and treated with the ABC staining system (Santa Cruz 

Biotechnology) according to the instructions of the manufacturer. Three slides from 

each block were evaluated, counterstained with hematoxylin, and examined with 

brightfield microscopy. Four different areas of each section were evaluated. 
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Tissue Accumulation of Neutrophils and Macrophages. 

 Inflammatory cells accumulation in heart tissues was examined with neutrophil 

specific antibody and macrophage specific antibody F4/80 (1:50 dilution, Santa Cruz, 

CA), separately 35,219. Three samples from each group were evaluated, counterstained 

with hematoxylin, and examined with brightfield microscopy. Four different areas of 

each section were evaluated. The results are expressed as the numbers of neutrophils 

or macrophages per field (400x). 

 

Wet/dry Lung Weight Ratio.  

The water content of lungs of HSPA12B#/# and WT mice was measured by 

calculating the wet/dry ratios. After CLP surgery for 6 h, the lung of mice was removed 

and weighed before drying (wet weight) and then dried in an oven for 72 h at 50°C (dry 

weight). Wet/dry weight ratio was calculated by dividing the wet weight by the dry 

weight. 

 

Echocardiography�   

Transthoracic two#dimensional M#mode echocardiogram was obtained using a 

Toshiba Aplio 80 Imaging System (Toshiba Medical Systems, Tochigi, Japan) equipped 

with a 12#MHz linear transducer as described previously 35. M#mode tracings were used 

to measure LV end#systolic diameter (LVESD), and LV end#diastolic diameter (LVEDD). 

Percent fractional shortening (%FS) and ejection fraction (EF%) were calculated as 

described previously 37,35,220. 
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Statistical Analysis�

 The data are expressed as mean ± SE. Comparisons of data between groups 

were made using one#way analysis of variance (ANOVA), and Tukey’s procedure for 

multiple#range tests was performed. The log#rank test was used to compare group 

survival trends. Probability levels of 0.05 or smaller were used to indicate statistical 

significance. 

 

Results 

 

Transfection of MiR#126 Mimics Attenuated LPS#induced Adhesion Molecules in 

Endothelial Cells.  

MiR#126 predominantly expresses in endothelial cells 156 and targets adhesion 

molecule expression 159. We observed decreased levels of miR#126 in HSPA12B#/# 

septic exosomes which may be responsible for increased expression of adhesion 

molecules in the myocardium and septic exosomes treated endothelial cells. We 

examined whether increased miR#126 levels will suppress adhesion molecule 

expression in endotoxin treated endothelial cells. HUVECs were transfected with miR#

126 mimics or scrambled miR which served as control (miR#control). Twenty#four hours 

after transfection, the cells were treated with LPS for 4 hours. The cellular proteins were 

isolated for analysis of VCAM#1 and ICAM#1 expression. Figure19a shows the 

transfection efficiency for microRNA delivery into the cells reached 86.3%. LPS 

treatment significantly increases expression of adhesion molecules (Figure 19b). 

Importantly, LPS#induced increases in the expression of VCAM#1 and ICAM#1 were 
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prevented by transfection of miR#126 mimics. Transfection of miR#control or antagomir#

126 mimics did not markedly alter LPS#induced increases in the expression of adhesion 

molecules. The data suggests that miR#126 is essential for regulation of adhesion 

molecule expression in endothelial cells stimulated with endotoxin.   

 

Figure 19 Transfection of miR#126 mimics attenuated LPS#induced expression of 
adhesion molecules in endothelial cells. Endothelial cells (HUVECs) were transfected 
with 40pmol microRNA (scramble, miR#126 mimics or inhibitors by lipofectamine 2000 
(Thermo Fisher Scientific). The transfection efficiency was evaluated by RT#PCR (a). 
Twenty#four hours later, endothelial cells were treated with LPS (1ug/ml). Four hours 
later, adhesion molecules (VCAM and ICAM) in endothelial cells were evaluated by WB 
(b, N=6#9/group). * indicates P<0.05. 
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Transfection of MiR#126 Mimics Reduced the Release of LDH from Endothelial Cells 

after LPS treatment   

We also examined the effect of transfection of miR#126 mimics on LPS induced 

damage of endothelial cells by releasing LDH. As shown in Figure 20, LPS treatment 

significantly increased LDH activity by 40.8% compared with the untreated control. 

Transfection of miR#control mimics did not significantly alter LPS#induced LDH release. 

However, miR#126 mimic transfection prevented LDH release in LPS#treated endothelial 

cells. Inhibition of miR#126 by transfection of anta#miR#126 mimics slightly enhanced 

LPS#induced LDH release but no significant difference. The data suggests that miR#126 

plays a protective effect on LPS#induced cell damage and adhesion molecule 

expression.    
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Figure 20 Transfection of miR#126 mimics prevented LPS#induced release of LDH from 
endothelial cells. Endothelial cells (HUVECs) were transfected with 40pmol microRNA 
(scramble, miR#126 mimics or inhibitors by lipofectamine 2000 (Thermo Fisher 
Scientific). Twenty#four hours later, endothelial cells were treated with LPS (1ug/ml). 
Twenty four hours later, endothelial injury was evaluated by LDH release (N=8/group). * 
indicates P<0.05. 
 

Delivery of MiR#126 in Exosomes Prevented Sepsis#induced Expression of Adhesion 

Molecules in the Myocardium of HSPA12B#/# Septic Mice 

�������	 data suggests that increased miR#126 levels significantly attenuated LPS#

induced adhesion molecule expression and injury of endothelial cells. We examined 

whether increased miR#126 levels in exosomes will suppress sepsis#induced 

cardiovascular dysfunction. Exosomes are excellent vectors for carrying and delivery of 

MiRNAs into cells and tissues 173. We prepared exosomes that were loaded with miR#

126 mimics from bone marrow stromal cells. Bone marrow stromal cells (BMSCs) were 
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collected by flushing the femurs and tibias from HSPA12B#/# deficient mice. The cultured 

BMSCs were then transfected with miR#126 mimics or miR#control mimics which served 

as miR#control. Forty#eight hours after transfection, the exosomes were isolated from 

cultured medium. The levels of miR#126 in the exosomes were measured by qPCR. As 

shown in Figure 21a, the levels of miR#126 were significantly increased by more than 

thousand times (>14547 folds) in the exosomes that were loaded with miR#126 mimics, 

when compared with the exosomes loaded with miR#control mimics.  

To examine whether delivery of exosomes that were loaded with miR#126 would 

suppress adhesion molecule expression in the myocardium, we delivered the exosomes 

carrying miR#126 or miR#control into the myocardium through the right carotid artery 

immediately after induction of CLP in HSPA12B#/# mice. As shown in Figures 21b, 

delivery of exosomes loaded with miR#126 prevented sepsis#induced increases in the 

expression of VCAM#1 and ICAM#1 in the myocardium. Immunohistochemistry staining 

of heart tissues (Fig. 21c) show that sepsis#induced strong immunostaining of ICAM#1 

and VCAM1 were attenuated by delivery of exosomes loaded with miR#126 mimics. 

Delivery of exosomes loaded with miR#control did not alter sepsis#induced 

immunostaining of ICAM#1 and VCAM#1. Western blot data show that delivery of 

exosomes loaded with miR#126 prevented sepsis induced ICAM#1 and VCAM#1 

expression in the myocardium. In contrast, delivery of miR#control carried by exosomes 

did not significantly alter sepsis#increased expression of ICAM#1 and VCAM#1 in the 

myocardium. The data clearly suggest that miR#126 plays a critical role in controlling the 

expression of adhesion molecules in the myocardium in polymicrobial sepsis.   
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Figure 21 Delivery of miR#126 in exosomes prevented sepsis#induced expression of 
adhesion molecules in the myocardium of HSPA12B#/# septic mice. Bone marrow 
stromal cells (BMSCs) were isolated from HSPA12B#/# mice. Cells at the 4th #7th 
generation were transfected with 40 nmol/L scramble or miR#126 mimics. Twenty#four 
hours after transfection, supernatants were harvested for exosome isolation. The level 
of miR#126 in exosomes was detected by RT#PCR (a, N=4#6/group). Mice were 
transfected with exosomes, loaded either with miR#126 or miR#control through the right 
carotid artery, immediately after the induction of polymicrobial sepsis. Six hours later, 
the hearts were harvested. The level of adhesion molecules (ICAM and VCAM) in 
myocardium were evaluated by WB (b, N=8#11/group) and immunohistochemistry (c, 
N=3/group). * indicates P<0.05. 
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 Delivery of MiR#126 by Exosomes Decreased the Infiltration of Inflammatory Cells into 

the Myocardium of HSPA12B#/# Septic Mice 

Delivery of miR#126 via exosomes significantly suppresses sepsis induced 

increases in the expression of adhesion molecules in the myocardium (Figure 22), 

therefore, we examined the effect of delivery of exosomes loaded with miR#126 on 

sepsis#induced increases in the filtration of inflammatory cells into the myocardium. As 

shown in Figure 22, sepsis#induced infiltration of neutrophils and macrophages into the 

myocardium were suppressed by delivery of exosomes loaded with miR#126 mimics as 

evidenced by significant decreases in the numbers of immunostained neutrophils and 

macrophages in the heart tissues. The data suggests that miR#126 could suppress 

sepsis induced infiltration of macrophages and neutrophils into the myocardium by 

targeting the expression of adhesion molecules in polymicrobial sepsis.  
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Figure 22 Delivery of exosomal miR#126 by exosomes decreased the infiltration of 
inflammatory cells into the myocardium of HSPA12B#/# septic mice. Bone marrow 
stromal cells (BMSCs) were isolated from HSPA12B#/# mice. Cells at the 4th #7th 
generation were transfected with 40 nmol/L scrambled or miR#126 mimics. Twenty#four 
hours after transfection, supernatants were harvested for exosome isolation. Mice were 
transfected with exosomes, loaded either with miR#126 or miR#control, through the right 
carotid artery, immediately after the induction of polymicrobial sepsis. Six hours later, 
the hearts were harvested. Macrophage and neutrophil infiltration were evaluated by 
immunohistochemistry (N=3/group).  
�

������	 Delivery of MiR#126 by Exosomes Improved Cardiac Dysfunction in HSPA12B#/# 

Septic Mice 

It has been demonstrated that infiltration of inflammatory cells into the 

myocardium contributes to cardiac dysfunction in polymicrobial sepsis 40,45. We 

examined whether delivery of miR#126 carried by exosomes will improve sepsis induced 

cardiac dysfunction in HSPA12B#/# mice. We delivered exosomes loaded with miR#126 

or miR#control into the myocardium through the right carotid artery immediately after 

induction of CLP sepsis. First, we examined whether delivery of miR#126 will enhance 

the levels of miR#126 in circulation. Figure 23a shows that the serum miR#126 levels 
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after delivery of exosomes loaded with miR#126 were markedly increased (↑178%), 

when compared with HSAP12B#/# septic mice that were delivered by exosomes loaded 

with miR#control. The data from echocardiographic measurements show that delivery of 

miR#126 carried by exosomes into the myocardium significantly increased the values of 

EF% by 47.8% and %FS by 61.2% respectively, when compared with HSPA12B#/# 

septic mice that received exosomes loaded with miR#control (Fig. 23b). In addition, 

delivery of exosomal miR#126 markedly improved endothelial cell permeability in the 

HSPA12B#/# septic mice that received miR#126 carried with exosomes (Fig. 23c). The 

data suggests that miR#126 is required for preservation of cardiac function and 

maintenance of endothelial cell integrity in HSPA12B#/# septic mice. 
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Figure 23 ������	 delivery of miR#126 by exosomes improved cardiac dysfunction in 
HSPA12B#/# septic mice. Bone marrow stromal cells (BMSCs) were isolated from 
HSPA12B#/# mice. Cells at the 4th #7th generation were transfected with 40 nmol/L 
scramble or miR#126 mimics. Twenty#four hours after transfection, supernatants were 
harvested for exosome isolation. Mice were transfected with exosomes, loaded either 
with miR#126 or miR#control through the right carotid artery, immediately after the 
induction of polymicrobial sepsis. Six hours later, cardiac function was evaluated by 
echo (b, N=5#9/group). The blood was collected and the level of miR#126 in mice serum 
was detected by RT#PCR (a, N=5#7/group).  Endothelial permeability was evaluated by 
wet/dry lung ratio (c, N=6/group). * indicates P<0.05. 
 

Discussion 

 Endothelial dysfunction is one of major important factors causing multiple organ 

failure in polymicrobial sepsis/septic shock 75. MiR#126 predominately expresses in 

endothelial cells 156 and regulates adhesion molecule expression 159. We have made a 
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novel observation that the levels of miR#126 in HSPA12B#/# septic exosomes are 

significantly lower than that in WT septic exosomes. It is possible, therefore, lower miR#

126 in septic exosome may be responsible for server endothelial dysfunction in 

HSPA12B#/# septic mice by losing the negative feedback regulation of adhesion 

molecule expression. It is well known that endothelial cell dysfunction during 

sepsis/septic shock will cause more accumulation of inflammatory cells in organs, 

resulting in significant inflammatory response in both local and systemic. We 

hypothesized that increased levels of miR#126 will attenuate sepsis#induced endothelial 

dysfunction ������	. 

 First, we performed �������	 experiments to examine whether increased levels of 

miR#126 will attenuated endotoxin induced the expression of adhesion molecules in 

endothelial cells. The data shows that transfection of endothelial cells with miR#126 

mimics prevented endotoxin#induced adhesion molecule expression. Our observation is 

consistent with the reports showing miR#126 targets VCAM#1 159. Interestingly, we 

observed that increased levels of miR#126 significantly attenuated endotoxin induced 

endothelial injury and death. Our observation indicates that miR#126 may function as 

anti#cell injury and death, in addition to target adhesion molecules. At present, we do 

not know whether the protection against endothelial cell injury by miR#126 has a direct 

effect or indirect effect that through regulation of adhesion molecule expression. Maybe 

miR#126 will regulate cellular signaling pathways that involve regulation of cell survival. 

 Exosomes, as naturally existing RNA shuttles, have triggered increasing interest as 

a drug carrier 168,205. They have been utilized as shuttles to package and deliver drugs 

206. Exosomes secreted by Mesenchymal stromal cells (MSCs) have been shown to 
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have cytoprotective effect and can attenuate myocardial ischemia/reperfusion injury 208 

and hypoxia/induced pulmonary hypertension 209. MSCs secrete a huge amount of 

extracellular microvesicles 210 and are efficient manufacturer of exosomes for drug 

delivery 211,205. MSCs Exosomes as a novel therapy promotes cardiac regeneration and 

recovery in several cardiovascular diseases 212,213,214.  

  We have previously shown that exosomes prepared from bone marrow stromal cells 

are the excellent vehicle for delivering microRNA to cardiac myocytes 228. In the present 

study, we observed that the levels of miR#126 in exosomes prepared from bone marrow 

stromal cells (BMSCs) by transfection of BMSCs with miR126 mimics were significantly 

increased by thousand fold compared with control exosome. The data suggests that 

exosomes derived from BMSCs are excellent vehicle for carrying microRNAs. We then 

delivered BMSC derived exosomes loaded with miR126 into the myocardium via the 

right carotid artery immediately induction of CLP sepsis in HSPA12B#/# mice. We 

observed that the transfection of miR#126 into the myocardium by delivering exosomes 

loaded with miR#126 was high. Importantly, we observed that transfection of miR#126 by 

exosomes significantly attenuated sepsis#induced increases in the expression of 

adhesion molecules in the myocardium of HSPA12B#/# septic mice. The exosomes 

containing miR#control did not alter the expression of adhesion molecules in the 

myocardium of HSPA12B#/# septic mice.  

 In our studies, we employed minimal mounts of exosomes that did not significantly 

alter sepsis#induced cardiac dysfunction, suggesting that attenuation of sepsis#induced 

increases in the expression of adhesion molecules in HSPA12B#/# mice was mediated by 

miR#126 but not by exosomes. In consistent with this observation, the infiltrated 
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numbers of neutrophils and macrophages in the myocardium have been significantly 

reduced in HSPA12B#/# septic mice by delivery of exosomes loaded with miR#126, when 

compared with HSPA12B#/# septic mice treated with exosomes loaded with miR#control.  

More importantly, delivery of exosomes carrying on miR#126 to the myocardium of 

HSPA12B#/# septic mice significantly improved cardiac function, when compared with 

HSPA12B#/# septic mice treated with exosomes loaded with miR#control. Our finding 

clearly demonstrated that miR#126 plays a critical role in the regulation of endothelial 

function by targeting adhesion molecule expression in polymicrobial sepsis.   

 Although we do not know the mechanisms by which endothelial specific deficiency of 

HSPA12B resulted in decreased levels of miR#126 in the exosomes following 

polymicrobial sepsis, delivery of exosomes loaded with miR#126 could be a novel 

approach for improvement of cardiovascular dysfunction in sepsis. In the future studies, 

we will determine whether exosomes loaded with combined miR126 and miR146a will 

result in even more beneficial to improve survival outcome and cardiovascular function 

in polymicrobial sepsis.  

 In summary, the levels of miR#126 in HSPA12B#/# septic exosomes are significantly 

lower than that in WT septic exosomes. Transfection of endothelial cells with miR#126 

mimics prevented endotoxin#induced adhesion molecule expression and cell injury. 

Restoration of miR#126 levels in exosomes could significantly improve cardiac function 

in HSPA12B#/# septic mice. Decreased levels of miR#126 in septic exosomes may be the 

important factor causing the serial responses in polymicrobial sepsis. 
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CHAPTER 7 

CONCLUSION 

 

Sepsis is the host inflammatory response to severe, life#threatening infection 

with the presence of organ dysfunction, and is the most frequent cause of mortality in 

most intensive care units. Cardiovascular dysfunction is a major complication 

associated with sepsis, with high mortality rates up to 70%. Currently, no drugs are 

approved to be effective for the treatment of sepsis.  

The integrity of the endothelium is fundamental for the homeostasis of the 

cardiovascular system. Sepsis practically affects all aspects of endothelial cell function 

which is the key factor for sepsis induced multiple organ failure. The increased 

inflammatory response and expression of adhesion molecules as well as chemokines 

on endothelial cells markedly promotes the infiltration of inflammatory cells, such as 

macrophages and neutrophils, into the tissues. The loss of tight junction proteins and 

the increased permeability of the endothelial cells will provoke tissue hypoxia and 

subsequent organ failure. Therefore, preservation of endothelial function is a critical 

approach for the protection against sepsis induced multiple organ failure.  

In this study, we demonstrated, for the first time to our knowledge, that 

endothelial cell specific protein called HSPA12B plays a critical role in the preservation 

of cardiovascular function in polymicrobial sepsis. HSPA12B is a newly discovered 

member of HSP70 family which predominantly expresses in endothelial cells. We 

observed that HSPA12B deficiency exaggerated sepsis#induced endothelial 

dysfunction, leading to cardiac dysfunction in polymicrobial sepsis. The mechanisms 
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involve: 1) increased expression of adhesion molecules, loss of tight junction proteins 

and increased vascular permeability; 2) promoted the infiltration of inflammatory cells 

into the myocardium and inflammatory cytokine production.  

Further, to investigate the precise mechanisms HSPA12B deficiency induced 

endothelial cell dysfunction and enhanced inflammatory response, we examined the 

role of exosomes in sepsis#induced cardiovascular dysfunction in HSPA12B deficient 

mice. Exosomes are cell#derived vesicles that are present in many biological fluids, 

including blood and urine. The diameter of exosomes is between 30 and 100 nm. 

Exosomes have been demonstrated to play a critical role in cell#cell communication. 

Exosome#mediated transfer of microRNAs (MiRNAs) is a novel mechanism of genetic 

exchange between cells. We found that HSPA12B exosomes isolated from septic mice 

induced more expression of adhesion molecules on endothelial cells and inflammatory 

responses in macrophages compared with wild type exosomes from septic mice. We 

also found that the levels of miR#126 in serum exosomes were significantly lower in 

HSPA12B deficient septic mice than that in wild type septic mice. MiR#126 has been 

reported to target the expression of adhesion molecules. We demonstrated that delivery 

of miR#126 in exosomes significantly improved cardiac function in sepsis via 

suppression of adhesion molecule expression, reduction of the infiltration of 

inflammatory cells into the myocardium, and preservation of endothelial function in 

HSPA12B deficient septic mice. Our finding suggests that HSPA12B is essential for 

endothelial function in sepsis. MiR#126 in exosomes plays a critical role for the 

cardiovascular protective effect of endothelial HSAP12B in sepsis.  
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