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ABSTRACT 

Exogenous Ubiquitin: Role in Myocardial Inflammation and Remodeling Post-

Ischemia/Reperfusion Injury  

by 

Stephanie L.C. Scofield 

Sympathetic stimulation occurs in the heart after injuries such as ischemia/reperfusion (I/R) and 

myocardial infarction and affects myocardial remodeling. Prolonged sympathetic stimulation can 

result in myocardial dysfunction through its effects on cardiac myocyte apoptosis and myocardial 

fibrosis. Ubiquitin (UB) is well known for its role of tagging old or damaged proteins for 

degradation via the UB-proteosome pathway. The role of exogenous UB however, is not fully 

understood. Previously, our lab showed that β-adrenergic receptor (β-AR) stimulation increased 

levels of extracellular UB in the conditioned media of adult rat ventricular myocytes and that UB 

inhibits β-AR-stimulated apoptosis. This study investigates the role of extracellular UB after 

myocardial I/R injury in terms of infarct size, function, inflammation and proteomic changes in 

vivo as well as the effects of extracellular UB on cardiac fibroblast function in vitro. First, we 

validated a method of consistently measuring real-time myocardial ischemia and reperfusion in 

vivo. Second, cardiac function was studied 3 days post I/R injury in the presence or absence of 

UB infusion. Echocardiographic analysis determined UB infusion increased cardiac function 

after I/R injury in terms of ejection fraction and fractional shortening. UB decreased infarct size 

and infiltration of inflammatory cells including neutrophils and macrophages as well as reduced 

activity of neutrophils. UB increased protein levels of matrix metalloproteinase (MMP)-2 and 

transforming growth factor-β1 and increased activity of MMP-9. Third, in adult rat primary 
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cardiac fibroblasts, we demonstrate that extracellular UB interacts with CXCR-4. UB treatment 

decreased serum-mediated increases in fibroblast proliferation and enhanced the contraction of 

fibroblast-populated collagen gels. Thus, extracellular UB likely interacts with CXCR-4 to 

influence fibroblast function and proliferation. Additionally, UB influences cardiac remodeling 

in terms of heart function, infarct size, inflammatory response and proteomic profile. 
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CHAPTER 1 

INTRODUCTION 

Cardiovascular pathophysiologies consistently rank as the number one cause of mortality 

in the world1. Cardiovascular disease also causes disability and accounted for $316.6 billion of 

United States healthcare and lost productivity costs in 20112. Approximately 735,000 Americans 

suffer heart attacks and 610,000 people die from heart disease every year, accounting for 25% of 

nationwide deaths. The most common type of heart disease is coronary heart disease, which was 

responsible for about 366,000 deaths in 2015. Geographically, the southeastern United States has 

the highest heart disease death rate with between 452-846 deaths annually per 100,000 

population from 2008-2010. (Statistics provided by the Centers for Disease Control heart disease 

factsheet.)  

Although heart disease can come in many different forms, the aforementioned coronary 

heart/artery disease is credited with being the most common type of heart disease. It is estimated 

to affect 16.8 million Americans. The diagnosis of coronary artery disease typically comes after 

patients report angina pectoris, more commonly known as chest pain, which is usually found to 

result from plaque occluding part of a coronary artery3. The gathering of plaque within the 

coronary artery walls is referred to as atherosclerosis4.   

Human progression to myocardial infarction, commonly called heart attack, typically 

begins years before any symptoms present. Atherosclerosis is a multifactorial disease that forms 

within the walls of the coronary arteries by deposition of lipoproteins, chronic inflammation, 

necrosis, fibrosis and calcification of plaque. These atherosclerotic plaques are contained by a 

fibrous cap, which when thinned, can rupture either spontaneously or upon physical exertion. 

Plaque rupture exposes highly thrombogenic material to the blood stream. The accentuated 
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thrombotic response associated with plaque rupture can be attributed to increased coagulation 

and reactivity of platelets at the site of the plaque rupture5. 

Once the thrombus is in place, it blocks the flow of oxygenated blood to the myocardium 

below the thrombus. The flow of oxygenated blood to the myocardium can also be occluded by 

the atherosclerosis alone, in which case it would push inward on the arterial walls and narrow the 

lumen. Regardless of if the occlusion occurs because of atherosclerotic luminal narrowing or due 

to plaque rupture, the result is restricted flow of oxygenated blood to the myocardium. Cardiac 

myocytes are highly aerobic cells and therefore need a constant supply of oxygen to maintain 

function and cellular homeostasis. Within minutes, the oxygen-depleted myocardium begins to 

die. Ischemia in cardiac myocytes can cause irregularities in function as quickly as 5 minutes 

after onset and can cause irreversible myocyte injury within 20 minutes6. In an attempt to reduce 

the extent of irreversible ischemic injury, the guidelines for treatment of acute myocardial 

infarction recommend that patients experiencing an ischemic myocardial event be treated within 

90 minutes of arriving at the hospital7. 

The heart is made up of multiple cell types but cardiac myocytes dominate the heart in 

terms of mass8. Cardiac myocytes are terminally differentiated meaning that once the heart 

reaches adulthood, the cardiac myocytes will not mitotically divide, and thus will not give rise to 

new myocytes. Therefore, the population of cardiac myocytes that are present in the heart before 

injury will be the same cardiac myocytes present after the injury minus any myocytes lost during 

ischemia or subsequent reperfusion injury. Cardiac regenerative therapies have met limited 

success9; 10. 
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Ischemia/Reperfusion Injury 

Ischemia refers to an inadequate or absent supply of oxygen to an organ.  Since oxygen is 

carried via red blood cells, arterial occlusions make it impossible for oxygenated blood to 

perfuse the myocardium beneath the point of the ligature.  Therefore, the myocardium below the 

ligature that is unable to access oxygenated blood flow is said to be “ischemic,” and quickly 

begins to die. In human patients, the arterial occlusion is due to build-up of atherosclerotic 

plaque and/or arterial rupture and subsequent clotting, forming a thrombus in the affected 

coronary artery.  

 Reperfusion refers to the state of the myocardium after the occlusion is cleared and the 

oxygenated blood is allowed to perfuse the previously ischemic tissue. In human patients 

experiencing myocardial infarction, clearance of the occlusion is achieved pharmaceutically by 

using thrombolytic drugs or invasively through coronary angioplasty and stent placement. In 

patients, reperfusion is critical to survival and recovery.  

Many models have been developed to investigate heart disease.  The myocardial 

infarction model (MI) is a surgical model which, involves ligating the left anterior descending 

coronary artery with a suturing silk. The ischemia/reperfusion model (I/R) is similar to the MI 

model but instead of ligating the artery closed permanently, a temporary snare around the 

coronary artery is created for the duration of ischemia and released for the period of reperfusion.   

 Of the discussed heart disease animal models, the I/R model most closely parallels the 

progression of human myocardial infarction injuries.  This is due to the reperfusion period 

which, corresponds with medical interventions and treatments to clear the thrombus in affected 

patients.  MI animal models do not ever release the ligature occluding the artery and thus, such 

models fail to investigate any of the consequences that would be brought about during the 
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reperfusion phase. Reperfusion is considered medically necessary as it reestablishes oxygen and 

nutrient supply to support cellular metabolism and also allows for the clearance of metabolic 

waste but is well known for its association with serious complications11. If the myocardium is not 

reperfused, the ischemic area below the thrombus or occlusion will succumb to necrosis12. 

Reperfusion injury has been described as a paradox “in which the reoxygenation of ischemic 

myocardium generates a degree of myocardial injury that greatly exceeds the injury induced by 

ischemia alone13.” 

 One of the major consequences of reperfusion following ischemia is a large-scale 

myocardial inflammatory response. Toll-like receptors (TLR) are activated via NF-κB signaling 

mechanisms during ischemic injury which in turn increases expression of cytokines and 

chemokines within the injured heart14. Chemokines from TLR activation and endogenous danger 

signals released by necrotic cells then recruit inflammatory cell types into the injured area of the 

myocardium15. Neutrophils infiltrate the infarcted region of the myocardium rapidly after injury 

and peak at 1 day13. A number of animal studies have demonstrated that anti-neutrophil or anti-

inflammatory therapies reduced infarct sizes by up to 50%16-19.  

   

Cardiac Remodeling 

 Cardiac remodeling refers to changes in the structure of the heart.  A healthy heart has a 

mixture of different cell types that work synergistically to create the rhythmic beating of the 

heart.  Cardiac myocytes are the heart’s muscle cells that are responsible for the contraction of 

the heart.  Cardiac fibroblasts are non-polar cells which typically lie senescent, between 

myocytes, quietly contributing to the makeup and turnover of extracellular matrix6. The 

extracellular matrix refers to the proteins that exist within the myocardium but outside of the 
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cells. This extracellular matrix creates the perfect microenvironment for the transduction of 

electrical signals, arrangement of cardiac myocytes and the alleviation of tension for cellular 

sensors of mechanical stress. 

 Cardiac remodeling occurs when the heart cannot meet the hemodynamic demands of the 

body and begins to change its structure in an attempt to compensate. A change in hemodynamic 

demand could result from either chronic stress due to conditions like uncontrolled hypertension, 

or a sudden large injury such as myocardial infarction. Remodeled hearts can normally be 

identified by a few characteristic features including loss of myocytes, increased fibrosis and an 

increase in the size of the myocytes, called hypertrophy20. Hypertrophy is the heart’s attempt at 

compensating for the loss of myocytes by making the existing myocytes larger. However, 

hypertrophic myocytes are more prone to cellular death and hypertrophic hearts are predisposed 

to sudden death21. 

 Despite the attempt to compensate for chronic stress or acute injury by remodeling, the 

remodeled heart will never regain the complete functionality that it had prior to the stressor or 

injury. After myocardial infarction injury, fibrotic scar material gathers in both the infarcted and 

non-infarcted myocardium. This deposition of fibrous material increases the rigidity of the tissue, 

changes the composition of the tissue, distorts the shape of the heart and its chambers and 

ultimately accounts for cardiac dysfunction. Initially the changes brought about by cardiac 

remodeling are considered to be cardiac-preserving but chronically, these changes contribute to a 

progressive deterioration of left ventricular function ultimately resulting in heart failure22. 
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Inflammation After Cardiac Injury 

 Inflammation of the ischemic and reperfused myocardium occurs through innate immune 

pathways to orchestrate a way of clearing the injured area of necrotic cell debris as well as 

damaged portions of the extracellular matrix. The substantial injury to the myocardium creates 

endogenous signals sometimes referred to as danger signals or damage associated molecular 

patterns (DAMPs), which, alongside heat shock proteins, function to initiate the innate 

inflammatory response23. These DAMPs and heat shock proteins bind TLRs and a pro-

inflammatory signaling cascade begins. 

 The danger signaling pathways that are activated by necrotic cell debris promote the 

influx of inflammatory cell types, namely inflammatory leukocytes. These inflammatory 

leukocytes are recruited due to chemotactic properties of the pro-inflammatory chemokines 

which are present in the injured area23. The C-C and CXC-motif families constitute some of the 

chemokines that are upregulated in the infarct area. These groups of chemokines function to 

recruit neutrophils and phagocytic monocytes that then clear debris from the wounded 

myocardium23.  

 Although infiltration of neutrophils helps clear the wound from debris and apoptotic 

cells, excessive inflammation after reperfusion has cytotoxic effects resulting in increased 

proapoptotic signaling and negative outcomes15. Activation of neutrophils in the reperfused 

myocardium is associated with increased expression of cytokines, oxidative stress and the 

secretion of proteases, leading to exacerbation of the tissue damage14. This creates a predicament 

in trying to develop treatments that allow the inflammatory infiltration to clear the wound while 

also limiting the extent of the inflammatory response to avoid exacerbating injury. 
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 Inflammatory response post-I/R associates with both positive and negative outcomes. 

This is suspected to be due to the nature of macrophages. Macrophages are characterized as 

heterogeneous in that they display a wide variety of activities and functions, differentially 

encompassing both pro- and anti-inflammatory roles. It is reported that reduction of infiltrating 

macrophages decreases inflammation, fibrosis, the extent of ventricular remodeling and 

furthermore dysfunction24. However, macrophages also play a role in wound healing processes 

such as angiogenesis and extracellular matrix reconstruction in the myocardium post 

ischemia/reperfusion injury15. 

 After the first day when neutrophils dominate the injured myocardium, monocytes and 

monocyte-derived macrophages move into the wounded area. Macrophages can have many roles 

in wound healing including the removal of apoptotic cells and both the promotion and resolution 

of inflammation, depending on macrophage phenotype25. Other cell types such as dendritic cells 

and T-lymphocytes also migrate into the wounded area15. Infiltration of monocytes occurs in a 

highly regulated sequence. The first monocytes to infiltrate the wound after neutrophil peak are 

pro-inflammatory monocytes that participate in phagocytosis and proteolysis. The next wave of 

monocytes is largely anti-inflammatory monocytes that promote wound healing via processes 

such as revascularizing angiogenesis, accumulation of myofibroblasts and deposition of 

collagen15. The switch from pro-inflammatory to anti-inflammatory monocytes is referred to as 

resolution of inflammation. 

 

Fibrosis After Cardiac Injury 

 Chronic mechanical stress or DAMPs released during acute cardiac injury can cause 

cardiac fibroblasts to begin to transdifferentiate into tensile, contractile, proliferative, super-
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secretory myofibroblasts26. The transdifferentiation of fibroblasts to myofibroblasts can be 

triggered by mechanical stress due to changes in cardiac contractility or by cytokine signaling. 

One of the major cytokines attributed with the role of initiating fibroblast to myofibroblast 

transdifferentiation is transforming growth factor β (TGF-β)27. These myofibroblasts then deposit 

collagen either interstitially between the myocytes or specifically in a wounded area depending 

on the cause of cardiac stress. 

While pro-inflammatory cytokines recruit cells to clear the debris, the pro-inflammatory 

cytokines function also to delay fibroblast transdifferentiation6. Once the pro-inflammatory 

signals subside, the cardiac fibroblasts gain unrestricted access to growth factor signaling which 

promotes fibroblast proliferation and transdifferentiation into the myofibroblast phenotype6. 

Myofibroblasts in the injured myocardium are suspected to arise from multiple different sources. 

One of the sources is the resident fibroblasts that lie senescent in the interstitium under normal 

conditions. They undergo activation and proliferate in response to paracrine growth signaling6. 

Fibroblasts are proposed to move in response to chemotactic stimulation via cytoskeletal 

reorganization and signaling through primary cilium28. 

 Depending on the size of the infarct and the activity of the fibroblasts, fibroblasts can 

over-deposit fibrotic scar materials, namely collagen. This over-deposition of collagen 

accumulates in the wounded area and interrupts the electrical homeostasis of the beating heart, 

making it more susceptible to arrhythmias29. Collagens type I and III make up the complex 

lattice of myocardial fibrillar collagens in the extracellular matrix. The lattice of collagens 

ensures that the synchronized contractions of the individual myocytes are amplified into a 

contraction of the entire heart muscle since the myocytes are linked to this collagen network30. 

These fibrotic scar collagens do not have the contractile flexibility that cardiac myocytes do. The 
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collagen creates a degree of rigidity around and between the myocytes that affects the heart’s 

ability to contract and/or relax fully. 

 

Extracellular Matrix and Matrix-Metalloproteinases 

 Matrix metalloproteinases (MMPs) are enzymes that are responsible for degrading 

extracellular matrix proteins by proteolysis30. There are different types of MMPs and they each 

degrade different target substrates. The most commonly studied myocardial MMPs are MMP-2 

and MMP-9. They are also called collagenases and gelatinases as they degrade collagen and 

gelatin31. MMPs play a very important role in normal tissue homeostasis by degrading old or 

damaged parts of the extracellular matrix to allow for new matrix to be formed. However, MMP 

expression is shown to increase under various pathological conditions including plaque rupture31. 

 MMPs are secreted into the extracellular matrix in their latent proenzyme form where 

they await activation by serine protease before they can proteolytically degrade material30. The 

extracellular matrix accumulates latent MMPs at specific substrates depending on protein 

sequence and is therefore able to recruit and activate MMPs quickly if needed. Additionally, 

because the secreted MMPs bind to specific substrates based on sequence, the activation of 

MMPs can occur within specific regions or patterns within the affected myocardium30. 

 

Ubiquitin 

 Ubiquitin (UB) is a small protein of 76 amino acids and approximately 8.5 kDa. It is 

found in all eukaryotic cells.  UB was first discovered in 1975 from bovine thymus. It was 

initially named “ubiquitous immunopoietic polypeptide” and was believed to be important due to 

its ubiquitous nature and its high degree of evolutionary conservation. The name was later 
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shortened as UB32. The UB protein contains seven lysine residues which all have the ability to be 

utilized for the in vivo chain formation associated with polyubiquitination33.  UB is found to have 

3.5 turns of α-helix, 5strands of mixed β-sheet, 7 reverse-turns and 1 shorter 310 helix.  

Additionally, UB has a hydrophilic binding area, a hydrophobic interaction site and the protein’s 

C-terminus ends with flexible di-glycine residues34. 

 UB is well known for its intracellular role in tagging damaged, old or misfolded proteins 

for proteasomal degradation via a polyubiquitin tag35.  Ubiquitination is a covalent 

posttranslational modification that occurs on specific residues within the target protein.  

Polyubiquitin chains are formed when ubiquitin proteins are covalently bound to other UB 

proteins, most commonly at Lys48 which is specific for proteasomal degradation, but also at the 

other six lysine residues for other processes36.  A variety of UB posttranslational modifications 

including poly- and mono-ubiquitination on different target residues lead to  diverse homeostatic 

processes such as recruitment of specialized polymerases, initiation of chromosomal segregation 

during anaphase, and tagging of proteins for degradation37. With all of UB’s important roles it is 

no surprise that functional intracellular UB is critical for cellular and organismal viability with 

Lys-Arg mutants proving to have lethal phenotypes38. Since its discovery in the 1970s, UB’s role 

within the cell has become a widely studied topic. Recently however, evidence has emerged 

regarding extracellular roles for UB. 

Extracellular UB 

UB is normally found at low levels in serum (<50 ng/mL39), urine and cerebrospinal fluid 

in humans and other mammals.  Circulating UB levels increase dramatically under many 

pathologic conditions including parasitic infection, alcoholic liver cirrhosis and type 2 diabetes 
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among others40-42. UB levels were also found to increase in the cerebrospinal fluid of humans 

and pigs after traumatic brain injury43; 44. 

 Extracellular UB is found to bind to cell surface chemokine receptor CXCR-4 in THP-1 

human monocytic leukemia cells45 as well as other cell types. CXCR-4 is a protein consisting of 

352 amino acids. It has seven transmembrane helices organized into a central bundle which is 

similar to other G-protein coupled receptors46.  It is able to form both homo- and hetero-dimers 

to receive inhibition or activation signals from ligands47; 48. Protein modeling software alongside 

site-directed mutagenesis showed that CXCR-4 interacts with UB via Phe20, Phe189 and 

Lys271, while competitive binding assays determined that UB requires Phe4 and Val70 to 

interact with CXCR-4. UB-CXCR-4 axis utilizes a two site binding mechanism. The first 

binding event functions to connect extracellular loops on CXCR-4 with critical binding sites, 

Phe4 and Val70 on UB. The second binding event functions to activate the receptor and is 

proposed to occur when the flexible diglycine C-terminus falls near the third of CXCR-4’s 

extracellular loops, altering the conformation of CXCR-4 and triggering a “switch” in an 

intracellular loop, thus activating a G protein signaling cascade49. 

Extracellular UB is suggested to have many functions including immune regulation, 

antimicrobial activities and anti-inflammatory activities33. High levels of circulating UB are 

found to correlate with increased survival in patients with burn injury50. UB is also found to have 

a pro-survival and anti-inflammatory role in lethal endotoxemia animal models51. UB treatment 

of whole blood and peripheral blood mononuclear cell cultures exposed to lipopolysaccharide 

reduced the expression of tumor necrosis factor α (TNF-α), a major cytokine often responsible 

for the onset of an inflammatory response52. The discovery of UB levels increasing under 

pathological conditions paired with the discovery that UB has anti-inflammatory and perhaps 
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pro-survival effects is intriguing and warrants attention with regard to ischemia/reperfusion 

injury due to its highly inflammatory nature. 

 Extracellular UB induced lymphocyte differentiation of B-cells in vitro and T-cells in 

vitro and in vivo32; 53.  Treatment with extracellular UB decreased expression of TNF-α post-

injury in a trauma model as well as an endotoxic shock animal model51; 54. In a model of rat 

pulmonary ischemia/reperfusion, treatment with intravenous UB improved lung function and 

increased expression of anti-inflammatory cytokine, interleukin-1055. Extracellular UB treatment 

of hematopoetic cells is noted to result in growth arrest via apoptosis and potentially the 

proteosome pathway56. Treatment of rats with intravenous UB after suffering focal cortical 

contusion brain injuries resulted in significant decreases in contusion volume as well as 

significant improvements in brain morphology at 7 days post-injury57.    

 

Extracellular UB: Role in β-AR Stimulated Myocyte Apoptosis and Myocardial Remodeling 

The β-adrenergic receptors (β-AR) are a family of transmembrane receptors that receive 

signals from catecholamines such as epinephrine and norepinephrine. In the heart, β-AR agonists 

are responsible for increases in chronotropy, inotropy, and dromotropy meaning heart rate, pump 

force and cardiac conduction velocity, respectively. Typically, β-AR stimulation is transient and 

is available to increase the workload on the heart for physically demanding tasks like running. 

However, amplified β-AR stimulation is often sustained in the heart after cardiac injury or during 

heart failure in an attempt to compensate for the decrease in pumping efficacy by increasing 

pump frequency and vigor. This chronic β-AR stimulation stresses the heart and causes the death 

of cardiac myocytes and adverse restructuring of the heart, cardiac remodeling. Isoproterenol 

(ISO) is a chemical β-AR agonist. ISO injections have been used as a model of cardiac injury 
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and have been noted to create infarct-like lesions in the myocardium of rats as well as increase 

myocyte death and myocardial fibrosis in mice58. 

Myocardial ischemia can trigger the release of catecholamines  that cause fluctuations in 

cardiac function59. Sustained myocardial ischemia is associated with the accumulation of 

norepinephrine which is thought to be released by a local, non-exocytotic mechanism60; 61. The 

release of norepinephrine is found to generate oxidation products that increase the rate of 

myocardial injury62; 63.  

Prolonged stimulation of β-AR is also shown to be cytotoxic, causing apoptosis of adult 

rat ventricular myocytes via the c-Jun NH2terminal kinase dependent mitochondrial death 

pathway64; 65. Our lab previously reported that in isolated adult rat ventricular myocytes 

(ARVMs), sympathetic stimulation via β-AR agonist, ISO, induces apoptosis via the 

mitochondrial death pathway65. Additionally, our lab reported ISO increases myocardial 

apoptosis in mouse hearts in vivo66. 

It was observed that in culture, only ~15-20% of ARVMs underwent apoptosis despite all 

of the ARVMs being exposed to the same ISO conditions.  This led to the hypothesis that the 

apoptotic ARVMs were secreting survival factors. Analysis of conditioned media using 2D gel 

electrophoresis followed by sequencing of a protein, ARVMs exposed to ISO were found to 

secrete higher levels of UB vs control. Treatment of ARVMs with UB inhibited β-AR stimulated 

apoptosis65. Extracellular UB was found to inhibit signaling pathways activated by β-AR 

stimulation including GSK-3β and downstream, JNKs65. This finding prompted investigation 

into the potential for UB as a therapeutic agent in cardiac disease models. 

 Our lab also studied a mouse model of β-AR stimulation using chronic ISO infusion and 

found UB to modulate ISO-mediated increases in cardiac function, myocyte apoptosis and 
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myocardial fibrosis after 7 days of ISO stimulation. The ISO stimulated group had large 

interstitial lesions of fibrosis while the UB+ISO group had significantly less fibrosis. UB+ISO 

also had significantly fewer apoptotic myocytes vs ISO group. Animals that received UB+ISO 

experienced anti-apoptotic signaling similar to the in vitro study, including increased activation 

of Akt and decreased activation of GSK-3β and JNK. The decrease in fibrosis in UB+ISO group 

associated with increased expression of MMP-2, MMP-9 and the tissue inhibitor of 

metalloproteinases 2 (TIMP-2)66.  

Specific Aims 

The overall goal of this investigation was to determine if UB has the potential to reduce damage 

of the heart after I/R injury (Fig. 1.1). Inflammation and ECM deposition are essential events of 

infarct healing post-I/R injury. These events are modulated mainly by inflammatory cells 

(neutrophils and macrophages) and fibroblasts.  
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Figure 1.1 Schematic Diagram Illustrating Effects of I/R Injury 

We hypothesized that UB treatment would result in decreased infarct size, reduced 

inflammation, decreased fibrosis, less myocyte death and therefore improvement in heart 

function following myocardial I/R injury (Fig. 1.2). The specific aims of this study were: 1) to 

validate a method of consistently measuring in vivo myocardial ischemia and reperfusion events 

in real time; 2) use in vivo assays to determine if UB treatment reduces damage and improves 

outcomes of myocardial I/R injury in adult male mice; and 3) use in vitro assays to determine if 
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UB interacts with fibroblasts via CXCR-4 receptor to exert phenotypic changes.

 

Figure 1.2. Hypothesis: Schematic Diagram Illustrating Hypothesized Effects of UB on I/R 
Injury 
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SHORT ABSTRACT: 

During murine myocardial ischemia/reperfusion surgery, correct placement of the occluding 

ligature is typically confirmed by visible observation of myocardial pallor. Herein, a method of 

electrocardiographically confirming ischemia and reperfusion, to supplement observed 

myocardial pallor, is demonstrated in male C57Bl/6 mice. 

 

LONG ABSTRACT: 

Many animal models have been established for the study of myocardial remodeling and heart 

failure due to its status as the number one cause of mortality worldwide. In humans, a pathologic 

occlusion forms in a coronary artery and reperfusion of that occluded artery is considered 

essential to maintain viability of the myocardium at risk. Although essential for myocardial 

recovery, reperfusion of the ischemic myocardium creates its own tissue injury. The physiologic 

response and healing of an ischemia/reperfusion injury is different from a chronic occlusion 

injury. Myocardial ischemia/reperfusion injury is gaining recognition as a clinically relevant 

model for myocardial infarction studies. For this reason, parallel animal models of 

ischemia/reperfusion are vital in advancing the knowledge base regarding myocardial injury. 

Typically, ischemia of the mouse heart after left anterior descending (LAD) coronary artery 

occlusion is confirmed by visible pallor of the myocardium below the occlusion (ligature). 

However, this offers only a subjective way of confirming correct or consistent ligature 

placement, as there are multiple major arteries that could cause pallor in different myocardial 

regions. A method of recording electrocardiographic changes to assess correct ligature placement 

and resultant ischemia as well as reperfusion, to supplement observed myocardial pallor, would 

help yield consistent infarct sizes in mouse models. In turn, this would help decrease the number 
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of mice used. Additionally, electrocardiographic changes can continue to be recorded non-

invasively in a time-dependent fashion after the surgery. This article will demonstrate a method 

of electrocardiographically confirming myocardial ischemia and reperfusion in real time. 

 

INTRODUCTION: 

 

Heart disease remains the leading cause of death worldwide1,2. Not only is the left ventricle (LV) 

the most muscular chamber, responsible for pumping blood from the heart to the entire body3, it 

is a common cardiac injury site post-myocardial infarction4. Left ventricular tissue death often 

results in systolic heart failure. Animal models of heart disease are imperative for the 

advancement of biomedical cardiovascular research. The C57Bl/6 strain of mice have been a 

popular choice for animal models due to their quick breeding time, low cost and ease in genetic 

alterations. Most murine surgical models for the study of heart disease involve occlusion of the 

LAD branch of the left coronary artery. The LAD is sometimes called the left obtuse marginal5,6. 

The LAD supplies blood to the left ventricular anterior and antero-lateral walls. LAD occlusion 

studies are aimed at inducing anterior infarctions, sometimes extending into the inferior and 

lateral wall regions7. 

 

Two models that are used frequently for myocardial infarction studies include chronic occlusion 

myocardial infarction and myocardial ischemia/reperfusion injury. The chronic occlusion is 

created by surgically suturing around and permanently blocking blood flow through the LAD. 

The ischemia/reperfusion injury is created much in the same way only with a transient, usually 

30-60 min, ischemic period. To achieve transient ischemia, the occluding suture ties around the 
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LAD and a small PE-10 tube which is placed parallel to the LAD on the epicardial surface of the 

heart, followed by a reperfusion period where the tubing and occluding suture is removed and 

blood is allowed to once again flow through the artery and into the myocardium. The 

ischemia/reperfusion surgery has been deemed to be clinically relevant due to the nature of 

reperfusion injury paralleling the treatment of human infarctions which includes prompt 

coronary angioplasty and stenting of the artery, or coronary artery bypass. Typically, during 

these surgeries, ischemia of the LV in a mouse heart is confirmed by visible pallor of the 

myocardial wall. However, by simply performing the surgeries on an electrocardiogram (ECG) 

pad under constant monitoring conditions, visible changes can be observed in the ECG 

waveform, thereby confirming ischemia and reperfusion of the mouse myocardium. 

 

Although the murine heart is similar to the human heart in many respects, including its four-

chambered structure, the hearts also have differences. One obvious difference is the average 

resting heart rate of adult mice is 600-700 beats per min (bpm) whereas that of adult humans is 

~60-100 bpm8,9. Additionally, in mice the repolarization waves, J and T, often merge with the 

depolarization QRS-complex making a clear ST-segment difficult to discern10.  To complicate 

the process of electrocardiographically confirming myocardial ischemia, it is the elevation of the 

T-wave and the ST-segment which are used as markers for the diagnosis of ischemia and 

myocardial infarction injury in humans, clinically referred to as ST elevation myocardial 

infarction or STEMI. One of the key differences between human and murine waveforms is that 

S-wave is immediately followed be a J-wave that transfers directly into a negative T-wave. 

During acute myocardial ischemia in mice the amplitude of S-wave decreases and is directly 

followed by an abnormal J-wave and an inverted T-wave11. The T-wave does not seem to 
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represent a significant portion of the repolarization in mice11. Despite nomenclature and mouse 

vs. human differences, ECG confirmation of murine myocardial ischemia and reperfusion is still 

feasible and relatively simple.  For the sake of simplifying waveform interpretation, the segment 

between the S-J-T is referred to as ST-segment herein. 

 

STEMI guidelines published in 2013 recommend a patient door-to-balloon time of less than 90 

min12.This means that the time frame from the identification of the patient’s coronary artery 

occlusion until the artery is reopened should be less than 90 min. The beating heart is constantly 

working and therefore, has a high oxidative metabolism and a high level of oxygen 

consumption3. To provide for this, a network of capillaries is available to each myocyte3. It only 

takes a heart a few beats to exhaust its oxygen and nutrient supply. In a 90 min window, an 

ischemic heart region in a human will have been blocked from receiving between 5,400 and 

9,000 heart beats worth of oxygen-rich blood. In that same 90 min window, a mouse would have 

54,000 to 63,000 heart beats. Experimental time points for murine ischemia/reperfusion injury 

are typically between 30 and 60 min.  

 

The importance of developing a supplemental method of confirming myocardial ischemia and 

reperfusion in a murine model has profound implications on the consistency and reproducibility 

of data in myocardial ischemia/reperfusion studies. The current practice of visually observing the 

heart for a change in tissue color is not adequate as a stand-alone diagnostic. Additionally, 

reperfusion after removal of the tubing and suture is not guaranteed. Although the artery is no 

longer tied off, the artery may have sustained damage during the procedure and may become 

impossible to reperfuse. It would be beneficial to have a record of electrocardiographic changes 
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to confirm reperfusion rather than relying on observations of myocardial pallor and rubor (red 

color). Hearts that do not show the markers of ischemia/reperfusion injury can then quickly be 

flagged and a decision on how to proceed can be made by the investigators. 

 

Lastly, establishing a record of ECG changes from baseline throughout the ischemic and 

reperfusion periods allows investigators to continue to monitor the heart after the initial surgery. 

Investigators currently lose sight of the heart as soon as the surgery is completed. ECG is a 

simple way to gain insight into changes occurring in the myocardium hours to days after the 

surgery. ECG recorded at time points after surgery could reveal late-developing Q-waves 

indicating continued or worsening tissue death. However, to effectively gage new or worsening 

electrocardiographic markers, a baseline ECG must be available for comparison. 

 

This protocol will demonstrate how to prepare, obtain, and interpret the ECG to confirm 

ischemia and reperfusion of the mouse heart using 8-12 week old male C57Bl/6 mice.  

 

PROTOCOL: 

 

All surgical procedures performed on animals should be carried out in accordance with Guide for 

the Care and Use of Laboratory Animals13 or other appropriate ethical guidelines. Protocols 

should be approved by the animal welfare committee at the appropriate institution before 

proceeding. 

 

1. Preparing for the ECG 
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Before beginning, don personal protective equipment including gloves, eyewear and a clean 

laboratory coat or disposable gown. 

 

1.1. Clean the ECG pad using a non-alcohol and non-bleach based decontamination solution. 

Gently use a delicate task wipe to blot off excess solution to ensure that the electrode pad does 

not become damaged. 

 

1.2. If the ECG pad has a heating feature, use it. Anesthetized mice tend to lose body heat 

rapidly. Heat the pad to 42 °C to maintain normothermic body temperature of 37 °C throughout 

the surgery14.  Monitor the mouse to make sure the mouse’s skin is not burning, adjust pad 

temperature as necessary.  Body temperature can be monitored using a rectal thermometer probe. 

 

1.3. As most thoracotomies are performed with the mouse lying on its back (supine), ensure 

that the toggle is flipped to the “supine” setting. Many ECG pads have a function to toggle 

between prone and supine positions. Failure to select the right orientation can result in 

misrepresentation of electrocardiographic events. 

 

1.4. Anesthetize mouse using 5% inhaled isoflurane and 1 L/min Oxygen.  Once mouse is 

anesthetized, transfer mouse to ECG pad equipped with an anesthesia nose-cone and reduce 

isoflurane to 2% and 1 L/min Oxygen.  Confirm proper anesthesia by ensuring mouse does not 

react when the mouse’s foot is pinched with forceps. 
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1.5. Apply a thin coat of eye lubrication ointment over the mouse’s eyes to prevent dryness 

and corneal damage while anesthetized. 

 

1.6. Clean the mouse’s paws with a wet wipe to remove all visible bedding that may be stuck 

to the paws or may interfere with the transmission of electrical impulses from the paws to the 

ECG pad. Dry paws with a wipe. 

 

1.7. Apply a small amount (slightly smaller than a USD dime) of highly conductive 

electrolyte gel to each of the four metallic electrodes on the ECG pad. 

 

 

Note: Be sure to only apply a small amount of gel as too much gel makes it difficult to restrain 

the paws to the pad using tape.  Additionally, paws are likely to slip out of the restraint during 

surgery if they were wet before applying tape. 

 

1.8. With the mouse in supine position, use clear medical tape to restrain each paw to its 

corresponding electrode (Figure 1).  First press each paw to its piece of tape and then adhere the 

tape to the ECG pad.  Ensure that each restrained paw is in contact with the electrolyte gel and 

the electrode. 

 

 

2. Acquiring the ECG 
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2.1. Depending on the equipment used for ECG acquisition, there may be different ways to 

configure the machine so that the ECG waveform can be visualized in real time.  

 

2.1.1. For ECG recordings using the physiologic monitoring settings on an echocardiography 

machine, a live B-mode image will have the ECG waveform running along the bottom of the 

screen. 

 

Note: See individual machine user guides to determine how best to configure that equipment. 

 

2.2. Enable real time visualization of ECG waveform by pressing the B-mode key on an 

echocardiography machine or the equivalent on other ECG recording devices. 

 

2.2.1) Adjust the resolution to account for differences in amplitude. If the peak of the R-wave or 

the trough (valley) of the Q-wave are out of the visual frame, adjust the resolution until the entire 

height of the waveform can be observed. 

 

Note: This can be done under the physiological settings tab on an echocardiography machine.  

Click the increase or decrease arrows until the entire waveform is visible. 

 

2.3. Any time that an image is to be obtained, clear the ECG pad of tools. Touching the 

mouse during ECG recording with forceps or fingers will disturb the waveform. Ensure that the 

mouse is still and untouched on the ECG pad before recording any ECGs. 
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2.4. Use the machine’s “record” or “store” feature before making any surgical incisions on the 

mouse. This image will be used as a baseline for comparison later on. 

 

3. Surgical Procedure and Recording ECG 

 

3.1. Inject anesthetized mouse with analgesic (Buprenorphine, 1.5 μg, intraperitoneal) before 

beginning.  The details of the ischemia/reperfusion surgical procedure can also be found 

elsewhere5. 

 

3.2. Remove hair around the surgical site chemically or mechanically and disinfect the area 

with betadine solution. Use a scalpel to make a vertical incision parallel to the esophagus and 

trachea.  Gently move the lymph nodes to each side of the incision until the thin tissue covering 

the trachea is exposed.  Using forceps, gently separate the tissue until the white cartilage rings of 

the trachea are visible. 

 

Note: Chemical hair removal has been used in our laboratory because high resolution 

echocardiography (which can detect hair follicles) is performed before surgery and before 

endpoint.  If using chemical hair removal, rinse skin thoroughly with saline or water to ensure 

that the chemical hair removal agent has been washed off.  Skin burns can occur if the chemical 

agent is left on the skin. 

 

3.3. Quickly remove the mouse’s nose from the nose-cone and insert ventilation tubing into 

the mouth of the mouse and towards the throat.  When the tip of the ventilation tubing is visible 
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through the exposed neck area, align the tube with the start of the trachea.  Gently wiggle the 

tube side to side while applying upward pressure until the tubing slides into the trachea which 

can be confirmed visually through the translucent trachea. 

 

3.4. Ensure that the mouse remains anesthetized during the intubation procedure.  Pause from 

intubation and return the mouse to the nose-cone if it begins to stir. 

 

3.5. Using a loop of string, hook the mouse’s two front teeth through the loop and tape the 

string ends to the ECG pad to steady the head of the mouse and to ensure the ventilation tubing 

does not move during surgery.  Quickly attach ventilation tubing to rodent ventilator and adjust 

ventilation settings according to the weight of the mouse. Tape ventilation tubing in place. 

 

3.6. Cover the mouse’s exposed trachea with a gauze soaked in warm saline to keep tissue 

from drying. 

 

3.7. Make a vertical incision using a scalpel along the left side of the sternum. 

 

3.8. Using forceps, gently separate the fascia layer from the muscle layer.  Carefully cut the 

underlying muscle layers without cutting visible blood vessels. 

 

3.9. Using forceps, grab the third rib and pull upwards gently.  Maintain grip on the rib with 

one hand and use surgical scissors to carefully cut the intercostal tissue between the third and 

fourth rib.  Ensure that the lungs are not damaged. 
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Note: Lungs will retract deep into the chest cavity almost immediately after the chest cavity is 

punctured by the surgical incision due to the loss of the pressure gradient.  Wait until the lungs 

have retracted before continuing. 

 

3.10. Use forceps to grab and gently separate the thin layer of pericardium which surrounds the 

heart. 

 

3.11. Insert retractors or manually use forceps as rib retractors to move the ribs into a position 

where the heart is visible between the ribs. 

 

Note: It is common practice to move the mouse’s lower left paw so that it is overlapping the 

lower right paw during the placement of the ligature. This helps to position the heart so that the 

left atrial appendage, or auricle, is easily visible during placement of the ligature. Be aware that 

valid ECG waveforms will not be obtained while the lower left paw is off of the electrode. For 

this reason it is advisable to return the paw to its electrode after the suturing ligature is passed 

through the myocardial tissue but before a knot is tightened. 

 

3.12. Locate the LAD visually, beneath the left auricle.  Swiftly insert a 7-0 silk tapered 

suturing needle into the myocardium deeply enough to pass under the LAD but not so deep as to 

penetrate the LV cavity.  Pull the suturing ligature through until there is about 4 cm of suturing 

silk left on the free (non-needle) end of the suturing ligature. 
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3.13. Begin to tie a simple suture knot.  Once the free end of the suturing silk has been pulled 

through the loops to form the knot, pause. 

 

3.14. Holding both the free and needle ends of the suturing silk with forceps, insert a ~1 cm 

section of PE-10 tubing underneath the forming knot and atop the epicardial surface. 

 

3.15. If the mouse’s left paw is crossed, return the paw to its proper electrode.  Tighten knot so 

that the PE-10 tubing is sutured to the heart.  Release all physical contact with the mouse to 

allow ECG to be recorded. 

 

3.16. Allow ECG waveform to cycle through for ~10 sec.  Check ECG waveform visually and 

record waveform as “Time of Occlusion”.  If the T-wave does not increase in amplitude within 1 

min, reassess placement of ligature and make a decision on how to proceed.   

 

Note: If the T-wave amplitude does not increase, investigators should either discard the animal 

from the study or attempt to correct the ligature placement. 

 

3.17. Visually check the color of the myocardium to confirm ischemic paling of the LV. 

 

3.18. If ECG changes and myocardial color changes indicate ischemia, double knot the suture 

around the PE-10 tubing. 

 

3.19. Cover the open chest cavity with warm saline gauze. 
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3.20. Record ECG every 5-10 min for the duration of the ischemic period. 

 

4. Confirmation of Reperfusion Using ECG 

 

4.1. Remove saline gauze covering the chest cavity and visualize the heart. 

 

4.2. Use a blade to cut the suturing silk atop the PE-10 tubing.  Once the ligature is cut, 

remove the section of PE-10 tubing and gently remove the suturing ligature from the 

myocardium. 

 

4.3. Release all physical contact with the mouse and allow the ECG waveform ~10 sec to 

cycle.  Record waveform as “Time of Reperfusion.”  Continue to record ECG waveforms every 

5-10 min until the desired experimental time point is reached. 

 

4.4. Adjust resolution for changes in amplitude as needed.  If the T-wave does not change 

upon removal of the PE-10 tubing and ligature, reperfusion is not confirmed.  Make a decision 

about how to proceed.  

 

Note: If the T-wave does not change upon removal of tubing, investigators should discard the 

animal from the study or attempt to correct the ligature placement. 

 

4.5. Visually inspect myocardium to additionally confirm reperfusion by return to red color. 
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4.6. Close chest cavity by suturing the intercostal space with a 5-0 silk suture while applying 

gentle pressure to the mouse’s chest to expel excess air that has entered during surgery.  Then 

suture the muscle layers and finally, skin. 

 

Note: Applying pressure to the chest cavity may not be sufficient to evacuate the chest cavity of 

air in all mice.  Therefore, the syringe and needle method of evacuation should be employed to 

ensure that all air has been expelled. 

 

4.7. Record the last ECG before turning inhaled anesthesia off and removing the mouse’s 

paws from the electrodes.  Increase oxygen to 2 L/min and maintain ventilation until the mouse 

regains consciousness. 

 

4.8. Allow mouse to recover in a constant temperature controlled environment, e.g. heating 

pad or warm incubator, to avoid infarct variability.  Treat mouse with buprenorphine 24 hours 

after the surgery and then as needed as indicated by the mouse grimace scale. 

 

Note: Procedure for reperfusion is also discussed in detail by Xu et al.5 

 

REPRESENTATIVE RESULTS: 

 

A normal murine ECG is displayed in figure 2 with alphabetic markers for electrical events P, Q, 

R, S, J and T.  P is the initial atrial depolarization. QRS is the wave of depolarization over the 

ventricles. J is early repolarization and T represents heterogeneous repolarization also known as 
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recovery11.  It should be noted that many labs do not use the J-wave nomenclature and instead 

refer to the SJT-segment as the ST-segment10,15-17.  Here, results and analyses are representative 

and based off of laboratory observations of 40 mice.  Most mice exhibited similar waveform 

progressions over the course of the surgery.  Mice that did not exhibit similar waveforms were 

flagged for further analysis and were considered non-infarcted animals.  Similar waveform 

results have also been reported by Jong et al.15. 

 

Murine hearts suffering from regional ischemia due to LAD occlusion typically show increased 

amplitude of the R-wave as well as hyperacute peaking of the JT-segment followed by eventual 

elevation of the ST-segment.  Figure 3 shows the first sign of acute myocardial ischemia; 

hyperacute peaking of the T-wave.  As can be seen in this figure, the T-wave has increased in 

amplitude from baseline conditions. However, this is not yet ST-segment elevation because the 

S-wave is still projecting deeply and negatively as it does on the baseline waveform.  

 

Baseline ECG configuration displays a negatively projecting S-wave (Figure 2). As time 

progresses, ECG changes are noted.  The ST-segment is defined as the segment between the end 

of the S-wave and the start of the T-wave.  This ST-segment is clear in humans. Due to high 

heart rate, this segment is merged in mice and an additional, early repolarization “J-wave” 

separates the S- and T-waves.  Therefore, the elevation of the S-wave to the isoelectric line or 

higher should be considered as the murine version of ST-segment elevation. In figure 4 the 

progression of ischemia to early infarction can be seen by ST-segment elevation. Here the S-

wave is displaying at elevated amplitude, above the isoelectric line.  The J-wave is also elevated, 
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especially when compared to the baseline waveform (Figure 2).  Therefore, the ST-segment is 

elevated which is indicative of injury/infarction10. 

 

Figure 5 follows the progression of one mouse from baseline all the way through reperfusion.  

The first waveform displays a normal sinus rhythm which was the recorded baseline.  The 

second waveform displays the ECG 1 min after the ligature was tied and the artery became 

occluded.  The red circle on this line indicates hyperacute T-wave peaking.  If compared with 

“Baseline,” it is clear that the T-wave is elevated.  The third waveform shows the complete ST-

segment elevation at the 5 min time point.  In the “1 min Ischemia” image, the S-wave was still 

projecting negatively, passing the isoelectric line. However, at 5 min the S portion of the 

complex does not reach as far negative as it should before progressing into the J- and T-waves.  

This is described as ST-segment elevation because the segment between the S- and T-waves is 

elevated from the isoelectric line.  Another electrophysiological marker of regional ischemia is 

widening of the QT-interval16 which extends from the beginning of the QRS complex and 

continues until the end of the T-wave.  At 20 min of ischemia, the QT-interval has widened and 

the ST-segment is still elevated.  After 45 min of ischemia, the QT-interval remains widened and 

the ST-segment remains elevated. 

 

Reperfusion of myocardium that has been ischemic for 30 min or less should result in the ECG 

returning back to baseline conditions in a mouse. Preda and Burlacu established a correlation 

between murine electrocardiographic changes, ischemic time, and infarct severity17. It was 

observed that ischemic periods of 30 min did not cause permanent ECG changes whereas 

ischemic periods of 1 hr did cause permanent ECG changes. Additionally, reperfusion of the 
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occluded artery after 24 hr of ischemia had no salvage effect17. Normally, Q-waves can be 

identified as the slight downward projection just before the depolarization QRS-complex. 

Significant, or pathologic Q-waves can develop shortly after onset of myocardial ischemia as 

considerable muscle death begins to set in10. Significant Q-waves are defined as at least 1/3rd of 

the height of the corresponding R-wave or by their elongated time, resulting in a wide Q-wave. 

The significant Q-wave results from a region of dead myocardium deflecting electrical currents 

away from the electrode7. After 5 min of reperfusion, evidence of deep, significant Q-waves 

begin to appear (Figure 5).  Additionally, the T-wave returns to the isoelectric line (Figure 5).  

After 30 min of reperfusion, the negative Q-waves remain and are likely showing permanent 

damage.  At this time point, the Q-waves are wide and deep, and indicate that the dying heart 

tissue is deflecting electrical currents around the damaged area (Figure 5).   

 

After continuous ischemia, the progression to injury and infarction leads to enhanced negative T-

wave projection (Figure 5, 30 min reperfusion, second red circle). This enhanced T-wave 

projection due to a true infarction will usually be permanent7. The second red circle in the 30 min 

reperfusion waveform shows what appears to be an inverted T-wave (Figure 5).  If the 5 and 30 

min T-waves are compared it is clear that the T-wave is projecting more negatively.  This, 

coupled with the significant Q-waves provides evidence for permanent tissue damage to this 

heart. It should be noted that inhaled isoflurane anesthesia reduces heart rate, and therefore 

increases QT-intervals. However, amplitude of recovery T-waves remains unaffected18.   

  

The aforementioned changes can be quantitatively analyzed in terms of voltage.  Figure 6 shows 

that exporting physiological data as a .csv file will provide a very large amount of data.  In 
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addition to offering ECG values (amplitudes) at fractions-of-millisecond rates there may be 

options to include other data from respirations, temperature probes, blood pressure cuffs etc. if so 

desired.  These quantitative data can be graphed as shown in Figure 7.  Graphing a series of 

waveforms from P-wave to P-wave helps visualize an ECG configuration trend.  The time period 

of 500 ms is a good time frame to visualize since any less time may not result in enough 

waveforms and any additional time will make the graph appear cluttered and 

electrophysiological events may be missed or difficult to recognize when viewed on a standard 

computer monitor. 

 

Figure 2.1. Correct placement of mouse on ECG pad. This mouse is positioned in supine 
position. Each one of the mouse’s paws are taped to the corresponding electrodes on the ECG 
surface pad. 
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Figure 2.2. Normal murine baseline ECG waveform. The normal murine baseline ECG is labeled 
with the letters P, Q, R, S, J and T which are used to describe electrical events in the heart. 

 

Figure 2.3. T-wave elevation. Also known as hyperacute T-wave or peaking.  The T-wave is 
amplified and higher than the baseline T-wave (Figure 2). 
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Figure 2.4. ST-segment elevation. This figure displays ST-segment elevation which can be 
observed as the ST-segment is higher than the isoelectric point. 

 

Figure 2.5. Typical ECG changes over the course of an ischemia/reperfusion surgery.  This 
figure follows one mouse over the duration of myocardial Ischemia/Reperfusion surgery. The 
first waveform displays a normal sinus rhythm which was the recorded baseline (Baseline). The 
second waveform (1 minute Ischemia) displays the waveform 1 min after the ligature was tied 
and the artery became occluded.  The red circle on this line shows hyperacute T-wave peaking. 
The red circle on the third waveform (5 minutes Ischemia) displays the complete ST-segment 
elevation.  The red circle on the fourth waveform (20 minutes Ischemia) displays a widened QT-
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interval and the S-wave is still elevated.  The red circle on the fifth waveform (45 minutes 
Ischemia) displays widened QT-segment and elevated ST-segment.  The sixth waveform (1 
minute Reperfusion) displays no significant changes versus 45 minutes ischemia. The red circle 
on the seventh waveform (5 minutes Reperfusion) displays deep, significant Q-wave form. The 
first red circle in the eighth waveform (30 minutes Reperfusion) displays significant Q-waves, 
while the second red circle displays possible T-wave enhancement. 

  

 

Figure 2.6. Physiological data.  This figure shows the physiological data as it is exported as .csv 
file to spreadsheet. 
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Figure 2.7. Graphed mV values. The graph displayed in this figure shows mV values from three 
consecutive and complete waveforms using the physiological data file (Figure 6).  The graph is a 
simple line graph using points from the physiological data file. 

 

DISCUSSION: 

Using ECG changes as a supplemental method for confirming myocardial ischemia and 

reperfusion ensures the accurate placement of the occluding ligature. Accuracy of ligature 

placement is critical to reducing data variability among animals. The LAD in a mouse heart is a 

difficult artery to visualize. Therefore, supplementing visual pallor with electrocardiographic 

changes will help ensure the correct placement of the ligature and resulting tissue damage. 

 

Since the ECG pad offers a non-invasive view of the heart, multiple ECGs can be obtained 

during the course of the study. This can help provide a better understanding of cardiac changes 

that occur during and after the surgery.  It is critical to obtain a baseline ECG to use for 

comparison after the surgical procedure.  Later stage tissue death and even ventricular aneurysm 



49 
 

can be observed by deflections of electrophysiological signals and ECG configuration changes. 

This may provide insight into the progression of heart failure. 

 

The advantages of measuring ECG using echocardiographic machine include the simultaneous 

measurement of structural and functional parameters of the heart prior to or after the 

ischemia/reperfusion surgery. The limitations of the system to record ECG include the high cost 

to purchase an echocardiography machine.  However if the experiments require constant ECG 

monitoring over multiple days, there are a variety of apparatuses available for ECG recording 

including remote telemetric ECG units with corresponding software that can be programed to 

record and analyze waveforms at various time intervals.  However, many of the ECG telemetry 

units require an implantation procedure or specialized habitats.  Additionally, many alterative 

electrode options exist including electrode clips and needles.  Ischemia/Reperfusion surgery via 

thoracotomy is a highly invasive procedure.  Advantages to using the ECG pad with an 

echocardiography machine include non-invasive procedure with no wires connected to the 

animal during surgery and no extra surgical procedure.  However, investigators should determine 

the best equipment for their laboratory and experimental needs.  

 

As mentioned previously, isoflurane anesthesia decreases heart rate.  Additionally, isoflurane 

may be cardioprotective via activation of KATP channels and therefore reduce infarct size, as has 

been found in dogs19.  General anesthesia in mice can be induced using injectable agents.  

Inhalation anesthesia does provide greater safety, particularly for prolonged procedures. 

However, inhalation anesthesia requires complex and expensive equipment such as precision 

vaporizers and flowmeters, specific breathing systems, and efficient scavenging systems to 
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prevent pollution. The disadvantages of injectable anesthetics include difficulty in choosing an 

initial dose, no chance of accurately modulating the depth of prolonged anesthesia, prolonged 

recovery, etc. The choice of anesthesia must be adapted according to the length of the procedure 

and aim of the study20.    

 

Using ECG as a supplemental method for confirming ischemia/reperfusion injury in mice will 

help improve consistency and reproducibility of infarctions but also opens the possibility for 

future applications of the technique through establishing quantitative trends. Investigators may 

notice similar ECG configurations within certain experimental groups. For instance, a genetically 

modified animal group may exhibit unusually wide QT-intervals after surgery when compared to 

the wild type. This informative data would have been missed if investigators use myocardial 

color changes as a sole confirmation of ischemia and reperfusion injury. For comparative studies 

between wild type and transgenic mice, considerations to the Lambeth Conventions guidelines 

may also be valuable, especially with respect to age, sex, blinding and randomization of 

animals21.  

 

In conclusion, supplemental confirmation of myocardial ischemia/reperfusion injury offers 

multiple benefits. Using ECG as a supplemental technique can help establish consistency in 

surgery. This may help decrease the number of animals used, while providing higher quality 

data. It also allows investigators to monitor cardiac injury, tissue death and/or remodeling non-

invasively over time. Lastly, using ECG as a confirmation of myocardial ischemia/reperfusion 

offers the possibility of establishing quantitative electrophysiological trends. 
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Abstract 

Aims: β-adrenergic receptor (β-AR) stimulation increases levels of extracellular ubiquitin (UB). 

Extracellular UB plays a protective role in β-AR stimulated myocyte apoptosis and myocardial 

remodeling. Here, we hypothesized that exogenous UB plays anti-inflammatory and anti-fibrotic 

roles in cardiac remodeling 3-days post ischemia/reperfusion (I/R) injury.  Methods and Results: 

Mice (22-27 g) were infused with vehicle (saline) or UB (1g/g/h) using micro-osmotic pumps, 

and subject to I/R injury. The structure and function of the left ventricle (LV) were investigated 3 

days after the onset of reperfusion. UB alone had no effect on any of the structural and functional 

parameters of the heart. Infarct size was significantly lower in UB-I/R vs I/R group. M-mode 

echocardiography showed that I/R decreases heart function as indicated by decreased percent 

fractional shortening (%FS) and ejection fraction (%EF). UB infusion significantly improved 

I/R-mediated decrease in %FS and %EF. LV end systolic diameter was significantly lower in 

UB-I/R vs I/R group. UB-I/R group displayed significant decrease in inflammatory infiltrates, 

neutrophils, and macrophages vs I/R group. Additionally, UB-I/R group had significantly 

reduced neutrophil activity vs I/R group. Western blotting analyses showed significant increase 

in MMP-2 and TGF-β1 protein levels in UB-I/R group. MMP-9 activity as measured by in-gel 

zymography was higher in UB-I/R group. Conclusion: Extracellular UB plays a protective role in 

myocardial remodeling post-I/R injury with effects on cardiac function, infarct size, 

inflammatory response, expression and activity of MMPs and TGF-β1 expression. 
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Introduction 

 Ubiquitin (UB) is a highly conserved protein of ~8.5 kDa and is found in all eukaryotic 

cells. It is best known for its role in regulating protein turnover via the ubiquitin-proteasome 

pathway1. Within cardiac myocytes, the ubiquitin-proteosome pathway has been proposed to 

regulate internalization of cell-surface receptors, hypertrophic response, apoptosis and tolerance 

to ischemic and reperfusion insults2. UB is a normal constituent of plasma. Elevated levels of 

circulating extracellular UB have been found in patients experiencing various pathologies 

including parasitic and allergic diseases3, alcoholic liver disease4, type 2 diabetes5, β2-

Microglobulin amyloidosis6  and in patients undergoing chronic hemodialysis7. Increase in 

extracellular UB levels have also been described in the cerebrospinal fluid of traumatic brain 

injury patients8, 9. Extracellular UB is suggested to have  multiple functions including immune 

response regulation, anti-inflammatory properties and neuroprotective activities1, 10-12, as well as 

a role in growth and apoptosis of hematopoetic cells13. Previously, our lab has provided evidence 

that stimulation of β-adrenergic receptors (β-AR) in adult rat ventricular myocytes (ARVMs) 

increases extracellular levels of UB, and UB plays an anti-apoptotic role in β-AR–stimulated 

myocardial remodeling with effects on left ventricular function, fibrosis and myocyte apoptosis14, 

15. However, the role of exogenous UB following myocardial ischemia/reperfusion injury, a 

clinically relevant model, has not yet been investigated. 

 Myocardial remodeling after I/R injury typically involves a period of cell death via necrosis 

and apoptosis.  Necrosis and reperfusion of the ischemic area trigger an inflammatory response 

in the heart with infiltration of cells such as neutrophils and macrophages (monocytes) in the 

area of injury to clear dead cells and cellular debris16.  Next, fibroblasts proliferate and move into 

the infarcted area, depositing collagenous scar material to fill the void of irreplaceable myocytes.  
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Cytokines and growth factors play a role in differentiation of fibroblasts into myofibroblasts. 

TGF-β1 plays an important role in differentiation of fibroblasts into myofibroblasts17. 

Myofibroblasts are a major producer of extracellular matrix (ECM) proteins. They also produce 

matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix 

metalloproteinases (TIMPs). A highly regulated balance between MMPs and TIMPs is 

imperative to maintaining ECM homeostasis18.   

Here, we investigated the in vivo role of exogenous UB in myocardial remodeling 

following 3 days I/R injury in mice.  We report that UB plays a protective role in myocardial 

remodeling post-I/R injury with effects on cardiac function, infarct size, infiltration of immune 

cell types, expression and activity of MMP-2 and MMP-9, and expression of TGF-β1. 

 

Methods and Material 

Animal Care  

The study conforms to the regulations provided in the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 

1996). The animal protocols were approved by the University Committee on Animal Care. 

Animals were anesthetized using a mixture of isoflurane (2.5%) and oxygen (0.5 l/min) when 

undergoing termination by exsanguination.  The heart was excised through an incision in the 

diaphragm.  For this study, male C57Bl/6 mice (8-12 weeks; Jackson Laboratories) were used. 

Ischemia/Reperfusion (I/R) Injury 

 I/R was performed as described19. Mice were anesthetized with a mixture of isoflurane (2.5%) 

and oxygen (0.5 l/min) inhalation and ventilated using a small rodent ventilator (Harvard 
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Apparatus). Body temperature was maintained for the duration of the surgery at ∼37°C using a 

heating pad. The heart was exposed via left thoracotomy and the left anterior descending 

coronary artery was ligated for 45 minutes using a 7-0 braided silk suture that formed a snare 

around a piece of polypropylene tubing (1mm diameter). After 45 min, the snare was released 

and reperfusion was allowed to occur. I/R was confirmed by myocardial color changes and 

electrocardiogram changes as described19. Sham mice underwent left thoracotomy without 

coronary ligation. At the 3 day time point, hearts were isolated and used for either histology or 

protein analyses. 

Mice treatment 

Mice were grouped at random into 4 different treatment groups (sham, UB, I/R, and UB-I/R). 12 

h prior to surgery, mice were implanted with micro-osmotic pumps (Alzet) that released either 

normal saline (sham) or UB (1μg/g/h) dissolved in normal saline over a 3 day period.  The dose 

of ubiquitin was selected based on a previously published report24. 

Echocardiography 

Transthoracic two-dimensional M-mode echocardiograms were obtained using a VEVO 1100 

(VisualSonics, Fujifilm) equipped with a 22-55 MHz MS550D transducer22;25. Echocardiography 

was performed at baseline and 3 days after I/R surgery. During echocardiography, animals were 

anesthetized using a mixture of isoflurane (1.5%) and oxygen (0.5 l/min), and their body 

temperature maintained at ~37°C using a heating pad. M-mode tracings were used to measure 

left ventricle (LV) dimensions. Percent fractional shortening (%FS) and ejection fraction (EF %) 

were calculated by Fujifilm software on the VEVO 1100. All echocardiography measurements 

were performed by a single investigator and confirmed by a second investigator. 
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Morphometric Analyses 

Animals were euthanized and the isolated hearts were perfused using KH buffer to clear the 

tissue of blood.  The hearts were then arrested in diastole using KCl (30 mmol/L) followed by 

fixation with 10% buffered formalin and subsequent paraffin embedding. Cross sections of the 

heart (4µm thick) were stained with Masson’s trichrome. Infarct size was calculated as a 

percentage of affected LV using NIS elements software (Nikon). 

Hematoxylin and Eosin Staining 

Tissue sections (4μm) were stained with basic histologic staining hematoxylin and eosin to 

analyze inflammatory infiltrates. Images were acquired using Nikon Eclipse TE-2000-S 

microscope (Nikon, New York, USA) equipped with an Andor Zyla sCMOS camera (Andor, 

Belfast, United Kingdom). Quantitative analysis of inflammatory infiltrate was carried out using 

NIS elements software (Nikon, New York, USA). Three random fields of infarcted LV were 

analyzed per animal. 

Immunohistochemistry 

Myocardial cross sections (4μm) were deparaffinized and rehydrated using xylene and ethanol 

washes. Epitope retrieval was performed using proteinase XXIV at 37° (0.1% in PBS). Tissue 

sections were then incubated in anti-neutrophil antibody (1:50; Santa Cruz) or anti-F4/80 (1:200; 

Santa Cruz) to quantify neutrophils and macrophages, respectively. The sections were then 

stained using ABC DAB kit (Vectastain) for colorimetric analysis. Images were acquired using a 

Nikon Eclipse TE-2000-S microscope (Nikon, New York, USA) equipped with an Andor Zyla 

sCMOS microscope camera (Andor, Belfast, United Kingdom) and analyzed using Nikon 

Elements software. The data is expressed as number of positively stained cells/0.1mm2 of infarct 

area. Four randomly selected fields of infarcted LV were analyzed per animal. 
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Neutrophil Activity Assay 

Myocardial cross sections were stained with Napthol AS-D Chloroacetate esterase kit (Sigma), 

also known as Leder stain, for the measurement of enzymatic activity of neutrophils using the 

manufacturer’s instructions. The areas stained pink were considered to be positive for neutrophil 

activity. The data are presented as an average percentage of positive stained area to the total 

infarct area per image. Three randomly selected fields of infarcted LV were analyzed per animal. 

Western Analysis 

Left ventricles were snap frozen in liquid nitrogen and pulverized using a mortar and pestle. LV 

lysate powder was then suspended in RIPA buffer (1%Triton X-100, NaCl 150 mmol/l, Tris 10 

mmol/l, pH 7.4, EDTA 1 mmol/l, EGTA 1mmol/l, phenylmethylsulfonyl fluoride 0.2 mmol/l, 

sodium orthovanadate 0.2 mmol/l and 0.5% Nonidet P-40). Equal amounts of total protein, (50 

μg), were resolved on 10% SDS-polyacrylamide gels and transferred onto PVDF membranes. 

Membranes were then probed with primary antibodies directed against MMP-2 (Santa Cruz), 

MMP-9 (Santa Cruz), TGF-β (Santa Cruz), or GAPDH (Cell Signaling Technologies) followed 

by corresponding HRP-conjugated secondary antibodies. Band intensities were quantified using 

ImageQuant LAS 500 imaging system (GE, Massachusetts, USA). 

In-gel zymography:  

Gelatin in-gel zymography using LV (70 µg) lysates was performed as described20. Digested 

clear bands representing the activity of MMP-9 were quantified using imageJ software. Due to 

negligible presence of MMP-9 activity, sham groups were combined for statistical analysis. 
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Statistical analysis:  

Data are expressed as mean  SEM. Data were analyzed using two-way ANOVA followed by 

post-hoc (Student-Newman-Keuls unless otherwise specified) or Student’s t test.  Probability (p) 

values of <0.05 were considered significant. 

Results 

Survival and morphometric studies 

Fourteen out of total 78 animals died during the course of the experiment.  Seven out of 33 mice 

died in I/R group, while 6 out of 33 died in UB-I/R group. Mortality rate was not significantly 

different between the two I/R groups. All of the deaths can be attributed to known and recorded 

surgical errors. Four animals were excluded from the study due to lack of infarctions or lack of 

reperfusion. There were no significant changes in heart weights or body weights in any of the 

groups during the course of the study. There was a significant increase in lung wet:dry ratio in 

I/R versus sham group (Table 3.1). 

Table 3.1 Morphometric Measurements 

Parameters 

Sham 

(n=5) 
UB 

(n=4) 
I/R 

(n=10) 
UB-I/R 

(n=9) P Value 

BW, g 24.05±0.59 23.74±0.97 23.48±0.38 23.23±0.48 NS 

HW, mg 109.22±5.83 106.83±6.29 114.72±3.63 108.01±3.09 NS 

HW:BW, mg/g 4.54±0.17 4.49±0.11 4.89±0.16 4.66±0.13 NS 

Lung Wet:Dry 1.02±0.18 1.28±0.02 2.77±0.55* 2.86±0.63 <0.05* 

Values are means±SEM; BW, body weight; HW, heart weight; NS, not significant; *comparison 

vs sham. 
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Infarct Size 

Analysis of infarct size using Masson’s trichrome staining showed that UB infusion significantly 

decreases infarct size 3 days post-I/R surgery (%LV infarct, I/R, 28.93  4.61; UB-I/R, 12.97  

2.74#; #P<0.05 vs I/R;  n=3-5; Fig 3.1). 

 

Figure 3.1. Infarct Size. A. Masson’s trichrome stained images of the hearts. Pink staining 
indicates myocardium; purple-blue staining indicates fibrotic scar material. B. Graphical 
representation of infarct size; #P<0.05 vs I/R; n =5. 

Echocardiographic measurements 

M-mode echocardiographic parameters were not significantly different between sham and UB 

alone groups. I/R significantly reduced heart function as evidenced by decreased %FS and EF vs 
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sham group. UB infusion improved %FS (%FS, Sham, 37.85  2.77, UB, 34.88  1.32; I/R, 

27.66   1.05*; UB-I/R, 32.95  1.83#; *P<0.05 vs respective sham; #P<0.05 vs I/R; n=4-6; Fig 

3.1A) and %EF (%EF, Sham, 68.50  3.56, UB, 64.85  1.63; I/R, 54.62  1.74*; UB-I/R, 62.35 

 2.56#; *P<0.05 vs respective sham; #P<0.05 vs I/R; n=4-6; Fig 3.2B) post-I/R. 

 

Figure 3.2. UB Infusion Improves Heart Function 3 Days post-I/R. Indices of heart function; 
percent fractional shortening (%FS), ejection fraction (%EF) were calculated using 
echocardiographic images 3 days post-I/R. A. M-mode images; B. %FS; C. %EF. *P<0.05 vs 
sham and UB; #P<0.05 vs I/R; n = 4-6.   
 

Inflammatory Infiltration 

Hematoxylin and Eosin staining of myocardial cross-sections showed a significant presence of 

inflammatory cells in the infarct LV regions of both I/R groups. Quantitative analysis revealed a 
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significant decrease in the number of infiltrates in the UB-I/R vs I/R group. (Infiltrates per 

0.1mm2, I/R, 106.63  15.95; UB-I/R, 46.52  6.80#; #P<0.05 vs I/R; n=3; Fig 3.3).   

 

Figure 3.3. UB Infusion Decreases Inflammatory Infiltrates. Heart sections were stained with 
hematoxylin and eosin (H&E). The number of inflammatory infiltrates was quantified using NIS 
elements software. Upper panel exhibits H&E stained images of the LV regions from I/R and 
UB-I/R groups. Blue staining represents nuclei, while pink staining represents cytoplasm. Lower 



65 
 

panel exhibits quantitative analysis of inflammatory infiltrates 3 days post-I/R; *P<0.05 vs I/R; 
n=3. 

Neutrophil number and activity 

Sham and UB alone groups showed the presence of only a few neutrophils in the LV region with 

no significant difference between the two groups. I/R increased the number of neutrophils in the 

infarct regions of both I/R groups. However, the number of neutrophils was significantly lower 

in UB-I/R vs I/R group (Neutrophil per 0.1mm2, Sham, 0.46  0.34, UB, 0.58  0.32; I/R, 87.81 

 6.83*; UB-I/R, 20.27  7.55#; *P<0.05 vs sham and UB; #P<0.05 vs I/R; n=3-5; Fig 3.4A&B). 

 
Figure 3.4 UB Decreases Neutrophil Number and Activity 3 Days Post-I/R. A. Image panel 
depicts stained images of infarct LV from I/R and UB-I/R groups. Brown represents positive 
immunostaining using anti-neutrophil primary antibodies. B. The number of immune-positive 
cells per 0.1mm2 of infarcted LV area was quantified using NIS elements software. C. Image 
panel depicts neutrophil activity in LV infarct regions of I/R and UB-I/R groups. Red staining 
indicates neutrophil activity. D. The percentage stained positive for neutrophil activity within the 
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infarct LV was quantified using NIS elements software; *P<0.05 vs sham or UB, #P<0.05 vs I/R; 
n=3-5. 

 

Measurement of neutrophil activity using Napthol AS-D Choloracetate esterase kit 

showed that the neutrophils present in the infarct region were in fact active. Neutrophil activity 

was significantly lower in UB-I/R vs I/R group (Neutrophil activity, % of Infarct Area; I/R, 9.95 

 2.18; UB-I/R, 4.33  2.18#; #P<0.05 vs I/R; n=3; Fig 3.4C&D). 

Macrophage number 

Sham and UB alone groups showed presence of few macrophages in the infarct LV region with 

no significant difference between the sham and UB alone groups. I/R significantly increased the 

number of macrophages in both I/R groups. However, the number of macrophages was 

significantly lower in UB-I/R vs I/R group (Macrophage per 0.1mm2, sham, 0.84  0.54, UB, 

0.63  0.30;  I/R, 91.33  26.32*; UB-I/R, 28.84  5.22#; *P<0.05 vs sham and UB; #P<0.05 vs 

I/R; n=3-5; Fig 3.5). 
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Figure 3.5. UB Decreases Macrophage Number 3 Days Post-I/R. A. Stained images of infarct 
LV from I/R and UB-I/R groups. Brown represents positive immunostaining using anti-F4/80 
primary antibodies. B. The number of macrophages per 0.1mm2 of infarcted LV area was 
quantified using NIS elements software; #P<0.05 vs I/R; n=5. 
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Expression and activity of MMPs 

MMPs (MMP-2 and MMP-9) are key players in  myocardial fibrosis and remodeling processes29. 

Western blot analysis of LV lysates revealed increased levels of MMP-2 (72 kDa) in I/R and 

UB-I/R groups. The expression of MMP-2 was significantly higher in the UB-I/R vs I/R group 

(Fold change vs sham, sham, 1.00  0.15; UB, 1.03  0.10; I/R, 1.41  0.05*; UB-I/R, 1.67  

0.02*#; *P<0.05 vs sham or UB, #P<0.05 vs I/R,; n=3; Fig 3.6). UB alone had no effect on the 

expression of MMP-2 in the heart. 

 

Figure 3.6. UB Increases Protein Levels of MMP-2. Total LV lysates (50µg) were analyzed by 
western blot using anti-MMP-2 antibodies. The upper panel depicts MMP-2 or GAPDH 
immunostaining. The lower panel exhibits quantitative analysis of MMP-2 normalized to 
GAPDH; *P<0.05 vs sham or UB; #P<0.05 vs I/R; n=3. 
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In gel zymography showed increased activity of MMP-9 in both I/R groups vs shams. 

However, the increase in MMP-9 activity was significantly higher in UB-I/R group vs I/R group 

(Fold change vs shams; shams, 1.00  0.23; I/R, 9.61  1.02*; UB-I/R, 14.42  1.58*#;  *P<0.05 

vs sham or UB,  #P<0.05 vs I/R; n=3-4; Fig 3.7). 

 

Figure 3.7. UB Increases MMP-9 Activity. Total LV lysates (50μg) were analyzed by gelatin 
zymography for MMP-9 activity (~90 kDa); *P<0.05 vs Shams; #P<0.05 vs I/R; n=3-4. 

 

Expression of TGF-β 

TGF-β1 plays an important role in myocardial remodeling via its involvement in differentiation 

of fibroblasts into myofibroblasts and ECM deposition. TGF-β1 is expressed as a 44 kDa 
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protein. Western blot analysis showed expression of TGF-β1 in sham and UB groups with no 

difference between the two groups. TGF-β1 expression remained unchanged in I/R group. 

However, expression of TGF-β1 was significantly higher in UB-I/R vs I/R group (Fold change 

vs. sham; sham, 1  0.03; UB, 0.97  0.15; I/R, 0.92  0.16, UB-I/R, 1.45  0.07*#; *P<0.05 vs 

sham, #P<0.05 vs I/R; n= 3-4; Fig 3.8). 

 

Figure 3.8. UB Increases Protein Levels of TGF-β. Total LV lysates (50µg) were analyzed by 
western blot using anti-TGF-β1 antibodies. The upper panel depicts TGF-β1 or GAPDH 
immunostaining. The lower panel exhibits quantitative analysis of TGF-β1 normalized to 
GAPDH; *P<0.05 vs sham or UB; #P<0.05 vs I/R; n=3-4. 
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Discussion 

Previously, our lab has provided evidence that sympathetic stimulation (β-AR) increases 

extracellular levels of UB, and treatment with UB plays an anti-apoptotic role against β-AR-

stimulated apoptosis in vitro in isolated adult rat cardiac myocytes14 and in vivo in mouse 

hearts15. This is the first study investigating the role of exogenous UB in the heart in response to 

myocardial I/R injury. The main findings of the study are – 1) UB infusion decreases % infarct 

size 3 days post-I/R; 2) UB infusion improves heart function as evidenced by improved %FS and 

EF; 3) UB infusion decreases inflammatory response as evidenced by decreased number of 

infiltrates, number and activity of neutrophils and number of macrophages; 4) UB infusion 

increases expression of MMP-2 and activity of MMP-9; and 5) UB infusion increases expression 

of TGF-β1.  

The heart experiences an increase in sympathetic nerve activity post-I/R21. Chronic β-AR 

stimulation induces cardiac myocyte death, creates infarct-like lesions and increases myocardial 

fibrosis in rodent models22, 23. Prolonged β-adrenergic stimulation also leads to the development 

of heart failure and increased mortality in animals and human patients24, 25. Previously using β-

AR-stimulation as a model, our lab provided evidence that UB infusion in mice decreases 

myocardial fibrosis15. This study provides evidence that UB treatment significantly decreased 

infarct size 3 days post-I/R injury. Cardiac dysfunction post-I/R injury is related to infarct size26. 

The observed improvement in heart function in UB-infused hearts 3 days post-I/R injury in this 

study is likely due to decreased infarct size. These data suggest that UB signaling has the 

potential to decrease the severity of cardiac injury during the acute phase post I/R.  

Systolic dysfunction is characterized by decreased contractility and therefore decreased 

pumping function of the heart27. In general, I/R injury, and the associated myocardial death, 
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results in LV dilation and systolic dysfunction28. Consistent with these findings, we observed 

reduced systolic function 3 days post-I/R as observed by decreased %FS and EF. Interestingly, 

UB-infused hearts suffered a lesser degree of impairment in systolic function post-I/R injury. In 

fact, cardiac function in UB-I/R group was not significantly different versus the UB group. 

Previously, we have shown that UB-infusion returns systolic function to normal levels during 

chronic β-AR stimulation15. UB treatment is shown to promote intracellular Ca2+ flux and reduce 

cAMP levels via interaction with G protein-coupled receptor, CXCR-4, in a THP-1 leukemia cell 

line29, 30. Sustained systolic function in the UB-I/R group may be due in part to UB’s interaction 

with CXCR-4 potentially leading to modulation of intracellular Ca2+ flux and cAMP levels. 

I/R injury is associated with a large inflammatory response. Post ischemic tissue is plagued 

by oxidative stress, cell damage and production of proinflammatory cytokines that act to activate 

and recruit neutrophils to the area of injury31. Neutrophils begin to infiltrate into the infarcted 

myocardium within hours of the ischemic event peaking 24 hours post‐I/R injury32.  The 

inflammatory mediators of neutrophil infiltration also contribute to further recruitment of 

leukocytes including the recruitment and activation of spleen-derived monocytes that 

macrophage populations are then derived from33. These neutrophils and macrophages clear the 

infarcted myocardium from cellular and matrix debris.  

Consistent with these reports, we observed an increased number of neutrophils and 

macrophages in the infarct LV region 3 days post-I/R. Interestingly, the inflammatory cell count 

was significantly lower in UB-infused hearts post-I/R. These data suggest an anti-inflammatory 

role for UB post-I/R. It should be noted that a great deal of evidence exists to support a theory 

that activated neutrophils release cytotoxic oxidants and enzymes to exacerbate myocardial 

injury at the time of reperfusion34. In a canine myocardial ischemic injury model, depleting the 
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amount of neutrophils in circulation by ~77% resulted in ~43% decrease in infarct size35. 

Therefore, the observed decrease in infarct size in UB-infused hearts 3 days post-I/R could be 

due to the decreased neutrophil count and/or activity. Neutrophil recruitment to the site of injury 

is carried out by chemotactic signals released by necrotic cells during ischemic injury36. To 

determine the exact effect UB infusion exerts regarding the involvement of molecular signals in 

the post-I/R inflammatory response, further investigations are needed.   

UB is proposed to have a role in the modulation of immune response in a number of 

pathological conditions. Extracellular UB is found to decrease the levels of pro-inflammatory 

cytokine, tumor necrosis factor-alpha (TNF-α), in animal models of trauma and endotoxic 

shock11, 12, 37. In a I/R model in rat lung, UB was found to improve function, reduce edema and 

increase the expression of Th2 cytokines which can be associated with anti-inflammatory 

processes38. In this study, the observed decrease in total inflammatory infiltrates, neutrophil and 

macrophage count, and neutrophil activity suggests that UB may be playing an anti-

inflammatory role in the I/R injured myocardium. 

The extracellular matrix (ECM) of the heart provides a complex lattice of proteins wherein 

the contractile myocytes, fibroblasts and other cell types rest. The ECM provides structural 

integrity for the heart, a functional arrangement of the cells so that they can communicate 

electrical and paracrine signals and it also provides the perfect mechanical environment for the 

cells to thrive and work together. The makeup of the myocardial extracellular matrix plays a 

critical role in cardiac homeostasis and wound healing. Matrix metalloproteinases (MMPs) are a 

family of endopeptidases that proteolytically degrade extracellular matrix proteins39. We 

observed that there is a significant increase in protein levels of MMP-2 (Fig 3.6). Our findings 

that MMP-2 protein levels are increased in I/R hearts is consistent with findings from multiple 



74 
 

reports that hypoxic and reperfusion conditions result in transcriptional upregulation of the 

MMP-2 protein and mRNA transcripts40-43. We also observed increased MMP-9 activity in both 

I/R and UB-I/R groups vs shams. UB infusion significantly enhanced MMP-9 activity vs I/R 

group (Fig 3.7). In a pig model of myocardial infarction, MMP-9  was increased as quickly as 2 

hours post injury44. The increase in MMP-2 expression and MMP-9 activity could indicate that 

enhanced degradation of ECM may also contribute to the observed decrease in infarct size.  

  TGF-β1 is well known for its role in initiating differentiation of cardiac fibroblasts into 

their activated wound-healing phenotype, myofibroblasts, which act to deposit collagen-based 

fibrosis into the injured area45. Although some level of fibrosis after I/R injury is needed to 

maintain structural integrity of the heart, excessive deposition of collagen-based matrix may 

interfere with the rhythmic contraction and relaxation of the heart. In this study we found that 

UB infusion increases TGF-β1 expression 3 days post-I/R (Fig 3.8). Therapies targeted against 

the TGF gene showed that TGF-inhibition during the inflammatory phase resulted in enhanced 

neutrophil infiltration and a worse degree of left ventricular dysfunction17. Therefore, our finding 

raises the possibility that increased TGF-β expression may be increasing fibroblast activation 

while also contributing to the reduction of the inflammatory response post I/R injury.  

Conclusion and study limitations 

  All the mice were male, C57Bl/6 background, ~25 g and 8-12 weeks old. Patient 

populations with respect to heart diseases vary in terms of age, sex and are often plagued by 

multiple comorbidities.  Additionally there are many organismal differences between mice and 

humans. Another important point is that all the observations were made 3 days post-I/R injury. 

Infarct healing process involves 3 overlapping phases: inflammation, proliferation and 

maturation and remodeling can last up to 28 days post-I/R. Going forward, this study should be 
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expanded to encompass female animals as well as other time points to understand the anti-

inflammatory and cardioprotective potential of exogenous UB in the heart after I/R injury. 

The data presented are novel and important because sympathetic stimulation increases 

after myocardial I/R injury. Sympathetic stimulation increases extracellular levels of UB in adult 

cardiac myocytes in vitro14. The present study provides evidence for a cardioprotective role of 

exogenous UB after I/R injury in vivo. It is interesting that extracellular UB reduced the extent of 

the inflammatory response, changed the composition of proteins related to ECM deposition and 

reduced the extent of adverse cardiac remodeling. Cardiac remodeling is known to be maleficial 

to cardiac function so reducing remodeling will prove advantageous in terms of recovery and 

outcomes post myocardial I/R injury. It should be emphasized that the study investigated the role 

of exogenous UB 3 days post-I/R and UB-infusion was started 12 h prior to myocardial 

infarction. This study should be continued to investigate different time points during the 

remodeling process in the following ways; 1) extend the time point to study fully remodeled 

heart and the mature scar, 2) decrease the time point to study early inflammation and 3) use UB 

as a treatment at the time of reperfusion instead of as a 12 h pretreatment to determine if UB has 

potential to treat acute cardiac events.  
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Abstract 

Aims: Chronic β-adrenergic receptor (β-AR) stimulation increases levels of exogenous ubiquitin 

(UB). Exogenous UB plays a protective role against β-AR-stimulated cardiac remodeling 

including reducing the extent of myocardial fibrosis. Cardiac fibroblasts are non-polar cells of 

mesenchymal origin that are vital to extracellular matrix (ECM) turnover and homeostasis of the 

heart. Cardiac fibroblasts are also key players in the deposition of fibrosis that contributes to 

structural remodeling of the heart in response to myocardial injury or chronic stress. This study 

tested the hypothesis that exogenous UB interacts with chemokine receptor CXCR-4 to affect 

cardiac fibroblast function. Methods and Results: Primary cultures of cardiac fibroblasts were 

isolated from adult rat hearts. Using FITC-labeled UB we offer evidence that FITC-UB interacts 

with cardiac fibroblasts and is internalized into the cells at 1 h. UB/CXCR-4 interaction was 

determined using biotinylated-UB (b-UB) and streptavidin magnetic beads. UB inhibited fetal 

bovine serum (FBS) mediated increases in fibroblast proliferation at 24 h. Lastly, UB increased 

the contractility of cardiac fibroblasts in a collagen gel contraction assay. Conclusion: 

Exogenous UB interacts with CXCR-4 and associates with inhibition of fibroblast proliferation 

and increased fibroblast contractility. 
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Introduction 

 Heart disease is the leading cause of death, accounting for 630,000 or 25% of American 

deaths per year. The most common type of heart disease is coronary artery disease. (Statistics 

provided by the Centers for Disease Control). Each year 785,000 Americans will have their first 

heart attack and 470,000 will have another heart attack. (Statistics provided by the American 

Heart Association). This statistic is both positive and negative because it sheds light on the fact 

that many Americans are surviving heart attacks but also, that many Americans are living with 

some degree of heart damage from these heart attacks. After an injury such as a heart attack, the 

dead portion of the heart muscle is often replaced by collagen rich scar material called 

fibrosis(20). 

 Myocardial fibrosis refers to the accumulation of extracellular matrix (ECM) within the 

myocardium. Myocardial fibrosis consists mainly of fibrillar collagens(11). The over-deposition 

of collagen may contribute to structural changes in the heart, which impair function(12).  The 

phenomenon of cardiac structure changing in response to stress or injury is called myocardial 

remodeling and is usually undesirable.  Deposition of too much collagen increases the rigidity of 

the heart muscle which then begins to interfere with the rhythmic contraction and relaxation 

function of the heart(5). Once the collagen deposits begin to impair the heart’s beating 

efficiency, the downward progression towards heart failure begins.  

Cardiac fibroblasts are mesenchymal cells and are the main mediators of ECM 

production and collagen deposition. Under injury conditions, fibroblasts transdifferentiate into 

myofibroblasts which adopt characteristics of smooth muscle cells by enhancing stress fibers and 

thereby contractility(20). Myofibroblasts have enhanced contractility and secretory capabilities 

that function to repair wounds post myocardial infarction(19). Fibroblast to myofibroblast 
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transdifferentiation is typically initiated by transforming growth factor β1 (TGF-β1) which is 

proposed to induce activation of proteins related to increased fibroblast proliferation(18, 20, 21, 

36). An understanding of fibroblast’s role in myocardial remodeling and how to manipulate the 

phenotype and function of fibroblasts is vital to effectively preventing and/or treating heart 

failure. 

Previously, our lab demonstrated that sympathetic β-adrenergic receptor (β-AR) 

stimulation increases extracellular concentrations of ubiquitin (UB) in adult rat cardiac 

myocytes(37).  UB is a small molecular weight protein (~8.5 kDa) best known for its 

intracellular role in flagging damaged or misfolded proteins for proteasomal degradation(17).  

Low levels of UB are normal in plasma. Elevated levels of UB are described in the serum or 

plasma of patients with various pathologies including parasitic and allergic diseases(4), alcoholic 

liver disease(39), type-2 diabetes(1), β2-microglobulin amyloidosis(27) and chronic 

hemodialysis(2). Patients with traumatic brain injury are shown to have increased UB levels in 

the cerebrospinal fluid(24).  Extracellular UB is proposed to have pleiotropic functions including 

regulation of immune response, anti-inflammatory and neuroprotective activities(23, 25, 28), as 

well as regulation of growth and apoptosis in hematopoietic cells(8).  Our lab has also shown 

that treatment of adult rat ventricular myocytes with UB inhibits β-AR-stimulated apoptosis(37).   

Our lab also provided evidence that UB treatment reduces β-AR-stimulated increases in 

myocardial fibrosis(10).  Evidence suggests that extracellular UB, which is structurally identical 

to intracellular UB(41), can function as a signaling protein.  UB’s ability to bind C-X-C 

chemokine receptor type 4 (CXCR-4) has been demonstrated in THP-1 human monocytic cell 

line cells(31).  UB-CXCR-4 interaction follows a two-site binding mechanism in which the 
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hydrophobic surface patch surrounding Phe-4 and Val-70 are important for receptor binding, 

while the flexible C-terminus facilitates receptor activation(32). 

The objective of this study was to investigate the role of UB on cardiac fibroblast 

phenotype and function, and to define the role of CXCR-4 in the modulation of fibroblast 

phenotype and function in response to UB.  We hypothesized that extracellular UB influences 

fibroblast phenotype and function by interacting with CXCR-4. The data presented here suggest 

that UB interacts with CXCR-4, and increases collagen gel contractile activity of fibroblasts, 

while inhibiting FBS-stimulated cell proliferation. 

Materials and Methods 

Vertebrate Animals 

All experiments and procedures were reviewed and approved by the East Tennessee State 

University Institutional Committee on Animal Care and conform to the Guide for the Care and 

Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication 

No. 85-23, revised 1996). Primary cultures of cardiac fibroblast were isolated from male 

Sprague-Dawley rats (average wt: 200-225g; Harlan, Indianapolis, IN). For cardiac excision, rats 

were anesthetized using a mixture of isoflurane (2.5%) and oxygen (0.5 l/min).  The heart was 

then removed from the chest cavity following a bilateral diaphragm incision. Rat euthanasia was 

achieved by exsanguination. 

Fibroblast isolation and treatment 

Cardiac fibroblasts were isolated as previously described(42). Cardiac fibroblasts were grown to 

~90% confluence and serum-starved for 48 h to achieve cell cycle arrest before use. Experiments 

were performed using cells from passage 1-3. Depending on the treatment group, cells were 
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pretreated with AMD-3100 (AMD; 10 µM; Sigma) for 30 min followed by treatment with UB 

(10 µg/ml; Sigma). 

Fluorescence/Confocal Microscopy 

 Fibroblasts, plated on glass bottom dishes, were allowed to grow with serum for 24 

hours. FITC conjugated UB (FITC-UB; 1μg/mL; Cal Biochem) or anti-rabbit FITC secondary 

(negative control) were introduced to the culture and allowed to incubate at 37° for 1 hour before 

washing and fixation with 4% paraformaldehyde. Cells were co-stained with Hoechst 33258 for 

nuclear localization. Images were taken on a confocal microscope (Olympus, Leica). Multiple 

cells per dish were imaged at differing magnifications in z-stack and orthogonal views. 

UB/CXCR4 interaction 

Confluent cultures of fibroblasts (two p100 dishes) were lysed using RIPA buffer (10 mM 

Tris·HCl (pH 7.2), 158 mM NaCl, 1 mM EGTA, 0.1% SDS, 1% sodium deoxycholate, 1% 

Triton X-100, 1 mM sodium orthovanadate, and 0.2 mM phenylmethylsulfonyl fluoride) and 

divided into two equal parts. Total lysates were centrifuged at 20,000 g for 15 min to separate 

soluble and membrane-bound proteins. Membrane fractions were resuspended in RIPA buffer 

and agitated. In a separate tube, biotinylated-UB (b-UB; 10µg/mg of Dynabeads) and pre-

washed Dynabeads (M280, Invitrogen) were incubated at room temperature for 1 h to allow a 

bond to form between the Dynabeads and the b-UB herein referred to as Dyna-b-UB. After 1 h, 

the magnetic beads were washed 3x with PBS containing 1% BSA. Fibroblast lysates were 

incubated with Dyna-b-UB or Dynabeads alone overnight at 4° on a rocker. Dynabeads were 

then washed 3x with PBS containing 1% BSA. The dynabeads were then suspended in RIPA 

buffer and boiled for 15 m at 95°. After cooling, the dynabeads were separated from proteins 

using a magnet. The protein samples were then resolved by SDS-PAGE and transferred onto a 
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PVDF membrane. The membranes were then probed with anti-CXCR-4 antibodies (abcam). 

Band intensities were visualized using x-ray film. 

Proliferation assay 

An equal number of fibroblasts were seeded onto glass coverslips and incubated in DMEM 

supplemented with 10% serum for 2 hours at 37°C. The cells were then serum starved for 48 h. 

The cells were then treated with FBS (1%) with or without UB (10µg/ml) for 24 h. The cells 

were fixed using methanol for 10 min followed by washing with PBS. The cells were then 

incubated in blocking solution (5% BSA in PBS) for 1 h followed by incubation with anti-Ki-67 

antibodies (abcam) at 1:100 dilution overnight at 4°C. After washing, the cells were incubated 

with FITC-labeled secondary antibodies for 1 h at room temperature in the dark. After washing, 

the cells were incubated in hochest 33342 (10µM; nuclear stain). The cells were then washed, 

mounted and visualized using a fluorescent microscope (EVOS). 

Images were acquired using Life Technologies EVOS FL Auto microscope. A cell was 

determined to be actively proliferating if FITC-Ki-67 positive staining co0localized with nuclear 

staining. The percentage of Ki-67-positive cells relative to the total number of nuclei was 

determined by counting five randomly chosen fields per coverslip. Percentages were normalized 

to 0 h and expressed as fold-change vs control. 

Collagen contraction assay 

Serum starved fibroblasts were mixed with collagen solution (1 mg/ml) to achieve the final cell 

count of 3 x 105 cells/ml. 500µl of this suspension was aliquoted into a 24 well culture pate and 

allowed to polymerize at 37°C for 30 min. The gels were released from wells, transferred to p60 

culture dishes, floated in DMEM and incubated at 37°C for 24 h. Fibroblast containing gels were 

treated with UB (10µg/ml) or AMD3100 (AMD; 10µM; CXCR-4 antagonist) for 24 h. For 
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AMD+UB, AMD was added 30 min prior to UB treatment. TGF-β1 (10nM) treatment was used 

as a positive control.  Images were acquired at 0 h and 24 h to assess the degree of gel 

contraction. The area of each collagen gel pad was measured using NIS elements software 

(Nikon). 

Statistical analysis 

Data are expressed as the mean  SEM. Data were analyzed using Student’s t-test or a two-way 

analysis of variance (ANOVA) followed by Student-Newman-Keuls test. Probability (p) values 

of <0.05 were considered to be significant. 

Results 

Interaction of extracellular UB 

Stacked and orthogonal views using confocal microscopy revealed clear colocalization of FITC-

UB with cardiac fibroblasts (Fig 4.1A&B). Orthogonal images revealed colocalization of FTIC-

UB within the cell as well as the nucleus (Fig 4.1C). 



88 
 

 

Figure 4.1. Interaction and Internalization of Extracellular UB: Fibroblasts were incubated with 
FITC-UB (1 μg/ml) for 1 hr. Live cells were visualized using confocal microscopy and 
photographed. Green staining indicates FITC-labeled UB, while blue staining indicates nuclear 
staining using Hoechst 33258 (n=3).  A. Two images from a Z-stack of the same area of 
fibroblasts. B. A single fibroblast Z-stack composite image incorporating DIC. C. Orthogonal 
view of a single fibroblast at the epicenter of the nucleus. 
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Interaction of UB with CXCR-4 

Analyses of cytosolic and membrane fractions using biotinylated UB and dynabead incubation 

assay revealed clear interaction of UB with VXCR-4 in the membrane fraction. There was no 

detectable signal for CXCR-4 in the cytosolic fraction (Fig 4.2). 

 

Figure 4.2. Interaction of Extracellular UB with CXCR-4: Fibroblast lysates (cytosolic and 
membrane fractions) were incubated with Dynabeads (negative control) or Dyna-b-UB 
complexes overnight at 4°C. Dynabeads or Dyna-b-UB complexes were separated using SDS-
PAGE and transferred to PVDF membranes. The membranes were probed with anti-CXCR-4 
antibodies. Band intensities were detected using autoradiography. The visible band shows 
interaction between UB and CXCR-4 (a transmembrane receptor) in the membrane fraction 
(n=3). 

 

Extracellular UB inhibits proliferation of fibroblasts 

Ki-67 is found in the nucleus of proliferative cells. It is undetectable during G0 phase and 

reaches peak levels during G2/mitosis(14). Ki-67 is commonly used as an index of 

proliferation(22). 24 h UB treatment alone had no effect on fibroblast proliferation. The number 

of Ki-67-positive cells was not significantly different between control and UB-treated samples. 

FBS significantly increased fibroblast proliferation vs control. UB in the presence of FBS 

significantly reduced the FBS-stimulated increase in fibroblast proliferation. (CTL, 1.63±0.13; 

FBS, 3.76±0.85*; FBS+UB, 1.56±0.16$; UB, 1.31±0.25; *p<0.05 vs CTL; $p<0.05 vs FBS; n = 

3-4; Fig 4.3).  
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Figure 4.3. Extracellular UB inhibits FBS-Mediated Increase in Fibroblast Proliferation: 
Fibroblasts were grown on glass coverslips and serum starved for 48 h. The cells were treated 
with FBS (1%) in the presence or absence of UB (10 μg/mL) for 24 h. The cells were 
immunostained using anti-Ki-67 antibodies. A. The first panel depicts images from FBS and 
UB+FBS treated cells. Green fluorescence indicates Ki-67-positive staining, while blue staining 
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indicates the nucleus, stained using Hoechst 33258. B. The second panel depicts a graphic 
representation of proliferation as fold change vs CTL. *P<0.05 vs CTL, $P<0.05 vs FBS, n=3-4. 

 

Extracellular UB increases contraction of fibroblast-populated collagen gel pads 

Fibroblast-seeded collagen gel pad contraction assay revealed that UB significantly increases 

fibroblast-mediated collagen gel pad contraction versus control. AMD alone had no effect on 

collagen gel contraction. However, pretreatment with AMD significantly inhibited UB-mediated 

increase in collagen gel pad contraction. TGF-β1, positive control, also enhanced collagen gel 

contraction. The extent of contraction of fibroblast-populated collagen gels using TGF-β1 is 

similar to that of UB (Fold Change; CTL, 1.00±0; UB, 1.08±0.02*; AMD, 0.86±0.07; 

AMD+UB, 0.89±0.05$; TGF-β1, 1.21±0.04*; *p<0.05 vs CTL; $p<0.05 vs UB; n=3-6; Fig 4.4). 
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Figure 4.4. Extracellular UB Increases Collagen Gel Contraction: Fibroblasts were seeded in 
collagen gels. Collagen pads were pretreated with AMD3100 for 30 min followed by treatment 
with UB for 24 h. TGF-β1 treatment served as a positive control. A. Panel A depicts collagen gel 
pads 24 h following treatments. B. Panel B shows quantitative analyses of fibroblast-populated 
collagen gel pads; *P<0.05 vs CTL; n = 4-6. 

 

Discussion 

Cardiac fibroblasts play a key role in pathological fibrosis, wound healing and cardiac 

homeostasis through ECM production and maintenance. This study investigated the role of 

exogenous UB on cardiac fibroblast phenotype and function. Here, we provide evidence that 



93 
 

extracellular UB interacts with CXCR-4 and influences fibroblast phenotype and function. Our 

findings demonstrate that 1) UB interacts with CXCR-4 in cardiac fibroblasts; 2) UB treatment 

inhibits FBS-stimulated cell proliferation; and 3) UB treatment enhances contraction of 

fibroblast populated collagen gel pads. These data taken together provide evidence that 

extracellular UB, most likely acting via CXCR-4, influences fibroblast phenotype and function. 

UB is a normal component of plasma. Plasma levels of UB are found to be increased 

under a variety of pathological conditions(35). Biological functions of extracellular UB are not 

yet completely understood. Based on few reports, extracellular UB is proposed to have multiple 

functions including neuroprotection after traumatic brain injury, anti-inflammatory properties in 

response to lipopolysaccharide infusion, regulation of the immune response in terms of the Th2 

cytokine response, and growth and apoptosis of hematopoetic cell types(8, 9, 13, 15, 25). 

Previously our lab demonstrated that β adrenergic receptor (β-AR) stimulation significantly 

increased interaction of UB with adult rat ventricular myocytes(37). The use of N-terminal 

biotin-labeled UB demonstrated that adult rat ventricular myocytes can interact with and uptake 

extracellular UB(37). The use of N-terminal fluorescein-labeled UB demonstrated interaction 

and uptake of extracellular UB in monocytic leukemia cells as well as human peripheral blood 

mononuclear cells(26). Here we demonstrate uptake of FITC-labeled UB in cardiac fibroblasts. 

CXCR-4, a G-protein coupled receptor, is known for its role in HIV-entry and cancer 

metastasis(6). Stromal derived factor-1 alpha (SDF-1α) is a cognate ligand for CXCR-4. SDF-1α 

interaction with CXCR-4 plays an important role in regulating the homing of bone marrow 

derived stem cells and their mobilization into peripheral blood(29). Saini et al. identified CXCR-

4 as the cell surface receptor for extracellular UB in THP-1 human monocytic cell line(31).  

Using CXCR-4 antagonist, AMD3100, our lab previously provided evidence that UB/CXCR-4 
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interaction plays a role in stimulating angiogenesis in cardiac microvascular endothelial 

cells(38). Here using b-UB, we provide evidence that extracellular UB is interacting with 

CXCR-4. It is interesting to note that confocal microscopy (Fig 4.1) demonstrates cytosolic and 

nuclear presence of FITC-UB in fibroblasts. However, using dynabeads, our b-UB assay shows 

no interaction of b-UB with CXCR-4 in cytosolic fractions. The reason for lack of detection of 

interaction between b-UB and CXCR-4 may be due to negligible presence of CXCR-4 in the 

cytosol, since it is a transmembrane receptor. SDF-1α binding induces internalization of CXCR-

4 in leukocytes(3). Extracellular UB is proposed to be internalized into human monocytic 

leukemia cells (THP-1) via CXCR-4(31). In this study, UB interaction with CXCR-4 was 

investigated using membrane and cytosolic fractions as opposed to live cells. Future experiments 

are needed to investigate potential UB/CXCR-4 internalization in cardiac fibroblasts. 

Myofibroblasts have the ability to contract to close wounds effectively because of their α-

SMA reinforced actin structure(7).  Once the myofibroblasts adhere to multiple points in the 

wounded or stressed area, the α-SMA reinforced fibers pull the adherence points closer together 

generating wound contracture.  This effect is mirrored in the collagen gel contraction assays in 

vitro(33). In hepatic stellate cells, stimulation of CXCR-4 with SDF-1α is shown to promote the 

contraction of collagen gels, which is inhibited by pretreatment with AMD3100(30). Here we 

show that UB treatment stimulates collagen gel contraction, and that CXCR-4 antagonist, 

AMD3100, negates UB-mediated increases in collagen gel contraction. These data suggest a role 

for the UB/CXCR-4 axis in modulation of fibroblast function. 

Compromising the ECM composition after large injuries such as myocardial infarction 

(MI) destabilizes the heart and predisposes it to cardiac rupture(34, 40).  Since fibroblasts play 

an integral role in composition of the ECM and collagen-based scar formation, it is likely that 
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inhibition of fibroblast proliferation would predispose the heart to cardiac rupture post-MI. 

Conversely, rapid proliferation of fibroblasts and subsequent deposition of extracellular matrix 

post-MI also associates with adverse effects on cardiac structure and function(16). Therefore, a 

well-controlled balance between fibroblast proliferation and ECM deposition is integral in the 

maintenance of ECM homeostasis. Here, we observed that UB significantly inhibits FBS-

mediated increases in proliferation of cardiac fibroblasts. UB alone had no effect on fibroblast 

proliferation. In T cell line KT-3 and myeloid cell line HL-60, UB is shown to inhibit cell growth  

via selective degradation of the STAT3 transcription factor(8). Previously, our lab has provided 

evidence that UB inhibits β-AR stimulated increases in cardiac fibrosis(10). UB treatment also 

enhanced expression of matrix metalloproteinases (MMP-2 and MMP-9). Together, these data 

suggest that UB has the potential to decrease myocardial fibrosis by modulating expression of 

MMPs and/or fibroblast proliferation.  

 

 

The data presented are important because cardiac fibroblasts play a major role in wound 

healing post myocardial injury. This present study provides evidence that extracellular UB 

influences fibroblast function and proliferation, most likely by interacting with CXCR-4. The 

finding that UB decreases FBS-stimulated increases in fibroblast proliferation may imply that 

UB-mediated decrease in fibroblast proliferation may help modulate scar formation in the heart, 

specifically post-MI. However, further investigations are needed to investigate the role of UB in 

wound healing processes of the heart post-MI. 
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Perspectives 

 Investigation of signaling mechanisms leading to UB-mediated regulation of cardiac 

fibroblast function and proliferation may help uncover strategies to improve cardiac remodeling 

and function. 
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CHAPTER 5 

CONCLUSIONS 

 The development of therapies to combat the enormous prevalence of cardiovascular 

disease in the United States is of key interest to healthcare providers and scientists alike. 

Currently, multiple different therapies and pharmaceutic targets are being investigated as 

potential avenues for the treatment of myocardial infarction, I/R injury and heart failure. In order 

to advance the science and practice of medicine, a more complete understanding of the processes 

associated with myocardial remodeling and cardiac dysfunction must be elucidated67. 

Heart disease is the leading cause of death and disease in the United States68. Heart 

disease often displays as coronary artery disease, which can lead to myocardial infarction (MI), 

pathological remodeling and an ultimate decrease in cardiac function. In a healthy heart, many 

cell types work synergistically to ensure the proper function of the heart. Cardiac myocytes make 

up the contractile force behind the rhythmic pumping of the heart. Myocytes have limited 

regenerative capacity69. Cardiac fibroblasts are responsible for creating an environment of 

extracellular matrix (ECM) to maintain the structural and functional integrity of the heart27. 

Cardiac fibroblasts are also responsible for wound healing and fibrosis in the injured heart. Thus, 

if there is a large loss of myocytes, the wounded area is replaced with fibrosis. Although fibrosis 

maintains the structural integrity of the heart, it increases cardiac rigidity and leads to a decrease 

in function6; 70. Investigating myocardial remodeling in terms of fibrotic processes and 

characterization of ECM components may eventually lead to the discovery of novel therapeutics 

and new investigative targets. 

 Following I/R injury there is an increase in sympathetic nerve activity in the heart71. This 

increase in sympathetic activity occurs acutely in order to sustain cardiac function post-injury but 

eventually leads to deleterious effects on cardiac function as well as myocardial structure72. 
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Myocardial remodeling associated with sustained β-AR stimulation is characterized by left 

ventricle (LV) chamber dilation, myocyte apoptosis and decreased contractile function73.Chronic 

activation of β-adrenergic receptors (β-AR) increases cardiac myocyte death and worsens the 

development of heart failure65; 66; 74. Our lab has previously shown that chronic β-AR stimulation 

with the agonist Isoproterenol (ISO) increases myocardial apoptosis and fibrosis in vivo66. 

 UB is a protein that is expressed intracellularly in all eukaryotic cells75. However, UB is 

also found to be present extracellularly in various bodily fluids including in circulation33. 

Extracellular levels of UB are described as elevated in various biological fluids in patients and 

animal models across many different pathologies. These pathologic conditions include traumatic 

brain injury, burn with inhalation injury, and alcoholic liver disease, among many others40; 43; 50. 

Previously, our lab has demonstrated that UB decreases β-AR-stimulated increases in myocyte 

apoptosis and myocardial fibrosis66. Extracellular UB is proposed to have anti-inflammatory 

roles that are demonstrated by an increase in Th2 cytokines in vivo in a swine model of lung 

ischemia/reperfusion injury and by a decrease in the tumor necrosis factor-α (TNF-α) response 

from peripheral blood monocular cells treated with endotoxin ex vivo52; 55. The roles of 

extracellular UB in myocardial remodeling post-myocardial I/R injury have not yet been 

determined. 

 The data presented in this study suggest that extracellular UB has a role in cardiac 

fibroblast function and proliferation as well as a cardioprotective role in remodeling processes 

post-myocardial I/R injury. First, we validated a method of consistently measuring ischemia and 

reperfusion in real time using electrocardiography. Second, we found that extracellular UB 

interacts with CXCR-4 receptor in cardiac fibroblast lysates, associates with decreases in serum-

stimulated fibroblast proliferation, and associates with increases in contraction of fibroblast 
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seeded collagen gels.  Third, we discovered that UB plays a cardioprotective role in remodeling 

after myocardial I/R injury with effects on infarct size, cardiac function, inflammatory response, 

and ECM protein levels.  

 Validating a method of consistently measuring ischemia and reperfusion in real time 

using electrocardiography was important to the success of the second aim of investigating UB’s 

role in I/R remodeling processes. In order to obtain consistent and accurate experimental results 

in the study, there must be confirmation of successful ischemia and successful reperfusion. The 

extent of ischemia and or reperfusion can be difficult to determine based on myocardial color 

changes alone. Real time ECG allowed us to begin recording the time of ischemia at the time 

when the SJT segment elevated. After 45-minutes of SJT elevation, reperfusion was then 

confirmed by the immediate changes to the SJT segment. Furthermore, the development of deep 

Q-waves indicated myocardial tissue damage due to the ischemia and subsequent reperfusion. 

Therefore, real time use of the ECG platform ensured that the animals in the study received 

adequate periods of ischemia and confirmed that they experienced full reperfusion and 

myocardial damage. 

The schematic diagram of the proposed effects of exogenous UB on myocardial 

remodeling post-I/R injury is shown in Figure 5.1. We found that extracellular UB decreases the 

inflammatory response as evidenced by decreased infiltration of inflammatory infiltrates 

including macrophages and neutrophils as well as decreased neutrophil activity. The decreased 

extent of inflammation in UB-infused hearts could contribute to the observed decrease in infarct 

size. We also noted that extracellular UB influences the expression of MMP-2 and TGF-β, two 

proteins involved in ECM remodeling, as well as the activity of MMP-9. UB associated increases 

in these ECM protein levels and activity may be responsible for the observed reduction in 
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collagen-based scar. Lastly, the data revealed that extracellular UB resulted in improved cardiac 

function 3 days post-I/R. Observed increases in cardiac function may result from the culmination 

of multiple factors associated with UB administration such as reduced inflammatory infiltration 

and activity, reduced infarct size and an increase in the protein levels and activity of key ECM 

proteins. 

The finding that UB-infusion induced proteomic changes in the myocardium and the 

extracellular matrix is very interesting. UB is reported to bind CXCR-4 in THP-1 cells, among 

others45. CXCR-4 is a G protein-coupled receptor that contains 7 transmembrane helices and is 

proposed to induce multiple signaling events upon stimulation with its cognate ligand, SDF-1α, 

via interaction with heterotrimeric Gi-proteins76. The signaling pathways activated via CXCR-4 

include increases in activation of focal adhesion molecules, ERK1/2, PI3-k and the JAK/STAT 

pathway76. Additionally, SDF-1α is recognized to mediate CXCR-4 receptor internalization via 

G protein-coupled kinases and β-arrestin76. There are conflicting reports regarding the specific 

effects of receptor activation versus receptor internalization. However, using mutated forms of 

CXCR-4, it was discovered that receptor internalization is not required for downstream 

phosphorylation of signaling targets76. 

This raises multiple questions regarding the role of signaling initiated by UB binding 

CXCR-4. Previously, our lab found UB to increase phosphorylation of AKT in ISO treated 

cardiac fibroblasts and decrease phosphorylation of JNK in the LV of ISO treated mouse 

hearts66. Interestingly, UB had no significant effect on phosphorylation of ERK1/2 in the LV 

lysates of mouse myocardium66. These findings suggest that SDF-1α and UB illicit different 

signaling pathways despite a shared receptor. Regulation of ERK1/2 phosphorylation was 

correlated with increased MMP-2 and MMP-9 expression in an atherosclerosis study77. It is 
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possible that the observed increases in MMP-2 protein levels and MMP-9 activity are due to 

CXCR-4 mediated activation of ERK1/2 signaling. However, without ERK1/2 data specific to 

our model, it is difficult to speculate. To investigate this in the future, phosphorylation of 

ERK1/2 should be studied and receptor endocytosis should be inhibited to determine if the 

events associated with UB-infusion are mediated via receptor internalization or internalization-

independent signaling events. 

 Cardiac fibroblasts are the main mediators of ECM homeostasis and ECM remodeling 

under wound healing conditions27. In this study, extracellular UB associated with changes in 

fibroblast function and proliferation. UB is shown to interact with cardiac fibroblasts and CXCR-

4 in the membrane fraction of fibroblast lysates. Our finding is supported by reports of UB-

CXCR-4 interaction in THP-1 cells among others45. We also present evidence that UB associates 

with functional changes in cardiac fibroblasts. UB reduced serum-stimulated increases in 

fibroblast proliferation. Interestingly, this is not the first time UB has been implicated in cell-

specific growth inhibition. Extracellularly administered UB caused the growth arrest of 

Schizosaccharomyces pombe cells78. In that study, it was determined that inhibiting the 

proteasomal degradation pathway reversed the growth-inhibition that was initiated by 

administration of extracellular UB78. A proteasomal inhibitor should be used in future 

investigations to determine the role of the UB-proteosome pathway in exogenous-UB-mediated 

proliferative changes. The implications of the observed reduction in the serum-stimulated 

proliferation of fibroblasts may include fewer fibroblasts in the injured area, which in turn, may 

contribute to our observation of reduced fibrotic infarct size in UB-I/R hearts.  

UB also increased the contraction of fibroblast seeded collagen gels. Increased 

contraction of fibroblast seeded collagen gels could indicate that UB treated fibroblasts may have 



105 
 

enhanced wound contracture capabilities. CXCR-4, the proposed receptor for UB, associates 

with increased activation of focal adhesion proteins76. This represents a possible mechanism for 

increased contraction of fibroblast-seeded gel pads. However, our findings regarding fibroblast 

function are in vitro. Myocardial remodeling remains a complex and multifactorial process. 

While these findings may shed light on possible explanations for our in vivo I/R observations, 

UB’s influence on fibroblast function ultimately must be investigated in vivo. 

 

 

Figure 5.1. Schematic diagram representing the results of extracellular UB infusion post-
ischemia/reperfusion injury with regards to our hypothesis.  MMP-2, matrix metalloproteinase 2; 
MMP-9, matrix metalloproteinase 9; TGF-β, transforming growth factor β1. Green coloring 
indicates the observed effects when UB infusion was administered. Red coloring indicates the 
effects of ischemia/reperfusion injury.  
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There are additional avenues to further investigate this topic in the future. The current 

study investigated the role of extracellular UB in vitro in cardiac fibroblasts and also in vivo 3 

days after myocardial I/R injury. The I/R study should be extended to 7 day and 28 day time 

points to determine if cardioprotective effects of UB are sustained long term. The I/R study 

should also be reduced to a 1 day or 4 hour study to determine early signaling events and their 

role in cardiac remodeling outcomes. Injured hearts are often able to sustain function for a short 

time by compensating loss of efficiency with increased work. However, compensative changes to 

the heart are unsustainable and the heart will eventually decompensate and begin to fail. A 28-

day time point would give insight into whether UB-mediated functional sustainment is 

permanent or compensative.  Future studies should investigate the contents of the infarcted area 

and the scar such as collagen composition as well as other ECM proteins. It would be interesting 

to develop a timeline of cytokine expression using serum to determine differences in 

inflammatory signaling in UB-I/R vs I/R groups. This current study was conducted using UB 

infusion as a pretreatment. Administering UB at the time of reperfusion would strengthen this 

study, as that would truly investigate the clinical potential for UB as a therapeutic agent in a 

clinical setting. 
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