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ABSTRACT 

 

T-cell Dysfunction by HCV Core Protein Involves PD-1/PD-L1 Signaling 

 

by 

Ellis King 

 

In 1989 the hepatitis C virus was identified as a significant cause of post-

transfusion hepatitis.  Nearly two decades later there is still no vaccine, 

inadequate treatment options, and limited understanding of how the virus 

establishes chronicity in the majority of the people it infects.  Recent reports 

suggest that the interaction of a negative co-stimulatory pathway mediated by 

PD-1 and PDL-1 is associated with persistent viral infection.  The role, if any, that 

PD-1/PDL-1 has in HCV infection is unknown.  In this study we report that PD-1 

is upregulated in T-cells from persons with chronic HCV infection when 

compared to healthy donors.  In addition, PD-1 and PDL-1 are upregulated on T-

cells from healthy donors when exposed to extracellular HCV core protein (a 

nucleocapsid protein that is immunosuppressive); upregulation of PD-1 is 

mediated by core’s ability to bind to the complement receptor gC1q.  We also 

report that the observed T-cell function can be restored by blocking the PD-

1/PDL-1 interaction.  Our results indicate that HCV core can upregulate an 

important negative T-cell signaling pathway that is associated with viral 

persistence.  This upregulation of PD-1/PDL-1 represents a novel and perhaps 
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shared mechanism that viral pathogens may use to subvert the human immune 

response.  It also represents a potential new treatment option for the millions of 

people who suffer from chronic hepatitis C infection. 

 3



ACKNOWLEDGMENTS 

 I would like to thank my advisor, Dr. Jon Moorman, for his support, advice, 

and optimism (especially when nothing was working) these past five years.  I 

would also like to thank Dr. Zhi Q. Yao for his patience and willingness to teach.  

Thanks also to Debbie Prayther who made sure I did things the right way.  Finally 

I must say thanks to Karen Cantor, Kenton Hall, and Scott Reynolds – between 

showing me the arcane secrets of the lab or serving as a phlebotomist they made 

my life easier and more fun.  Thank you all. 

 4



CONTENTS 

 

Page 

ABSTRACT………………………………………………………………… 2 

ACKNOWLEDGMENTS…………………………………………………. 4 

LIST OF TABLES…………………………………………………………. 9 

LIST OF FIGURES.............................................................................. 10 

Chapter 

 1.  INTRODUCTION……………………………………………… 11 

  A Brief History of Post-Transfusion Hepatitis………..  11 

  Hepatitis C Virus………………………………………….. 12 

   Dysregulation of B Cell Function Mediated by  

HCV………………………………………………… 18 

   Type I Interferon Dysregulation………………….. 21 

   Dysregulation of the NK Response……………… 22 

Dysregulation of Dendritic Cells by HCV Envelope 

Glycoproteins……………………………………… 23 

Dysregulation of T Cell Function Mediated by 

HCV Core Protein………………………………… 24 

Programmed Cell Death 1 (PD-1)………………. 31 

Hypothesis…………………………………………. 33 

2.  T CELL DYSFUNCTION BY HCV CORE PROTEIN  

INVOLVES PD-1/PDL-1 SIGNALING………………………. 34 

 5



 Abstract…………………………………………………….. 34 

 Introduction………………………………………………… 35 

 Materials and Methods…………………………………… 39 

  Subjects……………………………………………. 39 

  Reagents…………………………………………… 39 

  Flow Cytometry……………………………………  40 

  RT-PCR……………………………………………. 41 

  T-Cell Proliferation………………………………… 42 

  Cellular Apoptosis………………………………… 42 

  Statistical Analysis………………………………… 43 

Results……………………………………………………… 43 

Increased Expression of PD-1 and PDL-1 on  

CD4+ and CD8+ T Cells of Individuals with  

Chronic HCV Infection……………………………. 43 

gC1qR-dependent PD-1 and PDL-1 Induction  

on Healthy T cells by HCV Core Protein………… 47 

Blocking PD-1 and PDL-1 Engagement  

Restores HCV Core/gC1qR-mediated  

T Cell Dysfunction………………………………… 51 

Discussion…………………………………………………. 54 

Acknowledgments………………………………………… 58 

Literature Cited……………………………………………. 59 

Figure Legends……………………………………………. 66 

 6



 3.  HEPATITIS C:  THE COMPLICATIONS OF IMMUNE 

DYSFUNCTION………………………………………………… 71 

Summary…………………………………………………… 71 

Introduction………………………………………………… 71 

Potential Mechanisms of HCV-mediated Immune 

Dysfunction………………………………………………… 74 

Dysregulaton of B Cell Function Mediated by HCV…… 76 

Type 1 Interferon Dysregulation………………………… 79 

Dysregulation of NK Response………………………….. 80 

Dysregulation of Dendritic Cells by HCV Envelope  

Glycoproteins……………………………………………… 81 

Dysregulation of T Cell Function Mediated by HCV 

Core Protein……………………………………………….. 81 

HCV and the Associated Diseases of Immune  

Dysfunction………………………………………………… 83 

Mixed Cryoglobulinemia (Type II Cryoglobulinemia)…… 85 

 Disease................................................................. 85 

 Prevalence............................................................ 85 

 Clinical Manifestations.......................................... 86 

 Pathogenesis........................................................ 88 

 Management......................................................... 89 

Non-Hodgkin’s Lymphoma............................................ 92 

 Disease................................................................ 92 

 7



 Prevalence.......................................................... 92 

 Clinical Manifestations........................................ 93 

 Pathogenesis...................................................... 94 

 Management....................................................... 94 

Membranoproliferative Glomerulonephritis (MPGN)...... 95 

 Disease................................................................ 95 

 Prevalence........................................................... 96 

 Clinical Manifestations......................................... 96 

 Pathogenesis....................................................... 97 

 Management........................................................ 97 

Other Diseases.............................................................. 98 

Expert Commenary………………………………………… 99 

Five-year View……………………………………………… 102 

Key Issues…………………………………………………… 103 

Acknowledgements…………………………………………. 104 

Disclosures…………………………………………………… 104 

References…………………………………………………… 105 

 4.  DISCUSSION…………………………………………………….. 120 

 5.  ADDITIONAL INFORMATION………………………………….. 125 

REFERENCES………………………………………………………………. 127 

VITA…………………………………………………………………………… 158 

 8



LIST OF TABLES 

 

Table           Page 

 

3.1 Extrahepatic Disease Manifestations Associated with HCV Infection.. 84 

3.2 Symptoms of Cryoglobulinemia…........................................................ 87 

3.3 Summary of Trials Examining Interferon-alpha or pegylated 

 Interferon-alpha with Ribavirin in the Setting of HCV-associated 

  Mixed Cryoglobulinemia…………………………………………………… 91 

 9



LIST OF FIGURES 

 

Figure           Page 

 

1.1 Sources of Infection for Persons with Hepatitis C……………….… 14 

2.1 PD-1 Expression on PBMCs from Chronically HCV-infected  

Individuals is Increased Compared to Healthy Donors…………… 46 

2.2 PD-1 Induction on Healthy Human T Cells by HCV Core Protein.. 50 

2.3 Blocking PD-1 and PDL-1 Engagement Inhibits HCV  

Core/gC1qR-mediated T Cell Dysfunction………………………… 53 

3.1 HCV Genomic Structure…………………………………………….. 72 

3.2 Proposed Model for Immune Dysregulation by HCV Infection..... 75 

3.3 Immunodysregulatory Aspects of Chronic HC Infection, Based 

 on Published Studies………………………………………………… 100 

4.1 Schematic Representation of HCV Core/gC1qR-induced T Cell  

Dysfunction and HCV Persistence, with a Focus on Putative 

Inhibitory Pathways………………………………………………… 124 

 10



CHAPTER 1 

 

INTRODUCTION 

 

A Brief History of Post-Transfusion Hepatitis 

 

The possibility and need for large scale transfusion medicine came 

together in the 1940s.  Medical science had advanced sufficiently to provide the 

possibility and World War II provided the need.  So, began the establishment and 

growth of blood banks, transfusion services, and other related laboratory support.  

It was quickly realized that hepatitis could be transmitted via blood or blood 

products when post-transfusion hepatitis (PTH) was first reported in the U.S. by 

(Beeson 1943).  However, the demand for blood continued to grow and by the 

early 1970s there were over 5000 organizations involved in transfusion medicine 

with over 12 million units of whole blood transfused per year (Domen 1995).  The 

increased demand brought increased disease transmission; an NIH study during 

this time reported that the risk of PTH was 6.3% when a patient was transfused 

with blood from a commercial donor and <0.6% for blood from a  volunteer donor 

(Walsh and others 1970). 

In 1965 the first marker for PTH was identified and termed the Australian 

antigen (Blumberg and others 1965).  By 1970 the Australian antigen had been 

re-named as the hepatitis B surface antigen (HbsAg) (Gocke and others 1969; 

Gocke and others 1970) and in 1972 the FDA required all blood donations within 
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the  U.S. to be screened for HBsAg (Hoofnagle 1990).  These efforts and the 

FDA decision to disallow commercial donors (persons who donate blood for 

money) lowered the PTH rate to 7.1% of the prior rate (Alter and others 1972).  

The next major discovery was in 1973 (Feinstone and others 1973) when the 

hepatitis A virus (HAV) was identified as an agent of acute hepatitis.  However 

within a few years, it was determined that HAV was not the cause of the non-

HBV cases of PTH (Dienstag and others 1977; Stevens and others 1978).  The 

still unidentified agent of hepatitis was termed non-A, non-B hepatitis (NANBH) 

and represented 90% of residual PTH cases in the 1970s and early 1980s.   

It was not until 1988 that a new hepatitis virus was identified by Houghton 

and associates at Chiron in collaboration with Bradley of the Hepatitis Branch of 

the Centers for Disease Control (Ezzell 1988).  Choo and others then used a 

cDNA library generated from a patient with NANB hepatitis to screen the serum 

of a patient with chronic NANBH.  A complementary DNA clone was isolated that 

was shown to encode an antigen associated specifically with NANBH infections 

(Choo and others 1989).  This positive clone and this new virus were associated 

and named hepatitis C virus (HCV).  

 

Hepatitis C Virus 

Since 1998 the Centers for Disease Control and Prevention (CDC) 

estimate that >40,000 new infections with hepatitis C virus (HCV) occur every 

year making HCV infection the most common chronic bloodborne viral infection 

in the United States.  The third National Health and Nutrition Examination Survey 
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(NHANES III) based on data collected from 1988-94, found that within the 

civilian, non-institutionalized U.S. population 3.9 million American were infected 

with 2.7 million chronically infected.  If this prevalence rate of 1.8% is 

extrapolated to today’s population of 300 million then >5 million Americans are 

presently infected with nearly 3.5 million chronically infected.  These estimates 

are likely conservative due to the exclusion of incarcerated (infection rates 

estimated to be 15-40%, CDC) and homeless persons, groups that generally 

have a high prevalence of HCV infection.  Presently, most HCV infected persons 

are adults between the ages of 30-49 years old (Alter and others 1997; Alter 

1997).  Given that HCV infection can take years to become clinically significant, 

most persons are probably infected in their early adulthood.  Males are almost 

twice as like to be infected compared to females. 

As shown in Figure 1.1, the greatest present day risk of HCV infection 

comes with injecting drug use.  Of persons injecting drugs for at least 5 years, 

60% to 80% are infected with HCV compared to an approximately 30% infected 

with HIV. 
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Figure 1.1  Sources of Infection for Persons with Hepatitis C.  * Hemodialysis; health-care work; 

perinatal.  Source – CDC 

 

Current screening and testing procedures for donated blood have reduced the 

likelihood of contracting HCV from a transfusion to less than one per million units 

transfused.  These same procedures, plus virus inactivation procedures, have 

allowed only one instance of infection from contaminated blood products since 

the testing/screening procedures were put in place in the U.S.  Although the risk 

from sexual intercourse is low, sex is a common behavior in the general 

population.  So, while other types of exposure have a relatively greater risk (e.g., 

transfusion from an infected donor), they account for a relatively small proportion 

of the population in whom these exposures have occurred.  The remaining 

groups at risk – health care worker exposure, vertical transmission from mother 

to child, and persons undergoing hemodialysis account for approximately 5% of 

new infections.  Approximately 10% of infected persons have no recognized 

source for their infection. 
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Preventing and treating HCV is problematic.  Currently no vaccine exists 

and no likely candidates are in the near future.  In the U.S., HCV genotypes 1a 

and 1b are most prevalent (Hoofnagle 1997) and the most resistant to the 

currently recommended therapy of pegylated interferon alpha and ribavirin 

(Hoofnagle 2003).  Peginterferon alpha and ribavirin will achieve a sustained 

elimination of HCV infection for at least 6 months in 30% to 40% of patients who 

complete their therapy.  An additional 10% to 20% of patients do not complete 

the therapy due to the side effects of the medication or have contraindications 

(such as sever cirrhosis) that prohibit treatment.  This combination treatment will 

also induce a sustained virologic response (SVR) in 42-48% of persons infected 

with genotype 1a or 1b, whereas the same treatment will induce a SVR in 76-

88% of persons infected with genotypes 2 or 3 (Fried and others 2002).  

Additional contra indicators also exist.  IFN alpha is associated with depression 

and ribavirin can cause neutropenia and can have a teratogenic effect.  Current 

antiviral therapy is not approved for patients below the age of 18. 

The study of HCV is made difficult by two key factors.  HCV will only 

reliably infect humans and chimpanzees, thus limiting animal models.  

Additionally, in vitro replication is very poor (although some replicon systems 

have been made to work in hepatocytes.)  Because newly infected persons are 

usually asymptomatic and, therefore, almost never clinically recognized as 

infected, it has also been difficult to determine the initial immune responses that 

correlate with viral clearance.  To further compound the issue, it appears that the 

six major genotypes described (Simmonds and others 1993a) may have different 
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disease patterns and different responses to treatment (Hoofnagle and di 

Bisceglie 1997).  Finally, in spite of strong evidence linking HCV infection to 

numerous conditions involving the immune system, diseases associated with 

immune dysfunction occur frequently in persons without HCV infection, and so it 

has been difficult to confirm strong associations between HCV and a given 

disease. 

Hepatitis C is a 9.5-kb positive strand RNA virus of the Flaviviridae family.  

The genome consists of ~9500 nucleotides encoding a single polypeptide of 

~3000 amino acids that is cleaved into structural and non-structural proteins.  It 

encodes three structural proteins (core, E1, and E2) and at least six non-

structural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B).  HCV is 

classified into 6 distinct but related genotypes; HCV is further divided into over 50 

subtypes based on sequence variation in the core and E1 genes and also shows 

significant geographical variation (Simmonds and others 1993b).  Persons with 

long-term infections also tend to have greater levels of genetic diversity within 

their genotypes (quasispecies) (Honda and others 1994; Farci and others 1997), 

most likely due to the poor fidelity of the HCV RNA polymerase.  The phenomena 

of high levels of quasispecies is also associated with poor clinical prognosis 

(Kanazawa and others 1994), that may be linked to the poor CTL response in 

chronically infected persons. 

A remarkable feature of HCV is its ability to evade the host immune 

response, resulting in chronic infection for over 80% of persons exposed.  The 

high incidence of persistent infection with HCV suggests that this virus has 
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evolved one or more mechanisms to evade and possibly suppress the host 

immune response.  Chronic HCV infections are associated with liver cirrhosis 

and hepatocellular carcinoma and have become a leading indicator for liver 

transplant in the U.S. (Hoofnagle 1997).   Cirrhosis of the liver develops in 10% 

to 20% of persons with chronic hepatitis C over a period of 2-30 years, and 

hepatocellular carcinoma (liver cancer) in 1% to 5% of those with cirrhosis.  In 

addition to cirrhosis and carcinoma, persons infected with HCV are also at a 

significant risk of developing autoimmune diseases such as glomerulonephritis 

and mixed cryoglubulinemia (Agnello and De Rosa 2004).  Hepatitis C disease 

progression varies greatly from person to person making it not only difficult to 

predict who will develop chronic disease but also which of the chronically infected 

will go on to develop significant sequellae.  One thing that is known is the impact 

of alcohol use in infected persons.  Chronically infected persons who abuse 

alcohol have a greater risk of developing cirrhosis and also be refractory to the 

effect of any anti-viral medication.   

While the precise mechanisms for how the disruption of the host immune 

response by HCV can result in various immune disorders have yet to be defined; 

however it is apparent that HCV modulates host immunity on several different 

levels (Moorman and others 2001b).  Over the past decade, there have been 

numerous studies examining different facets of HCV-associated immune 

dysfunction that have included B-cell, T-cell, NK cell, and dendritic cell 

dysregulation (King and others 2007).  The significance of such 

immunomodulatory potential appears to be twofold: evasion of the host immune 
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response leading to viral chronicity, and the potential for development of 

lymphoproliferative disorders.  

It is noteworthy that HCV clearly infects multiple extrahepatic cell types, 

including peripheral blood mononuclear cells, and this is observed both in vivo 

and in vitro (Shimizu and others 1992; Shimizu and others 1997; Lerat and 

others 1998; Radkowski and others 2000; Radkowski and others 2002; Nowicki 

and others 2005).  It is therefore possible that the immune dysfunction observed 

in HCV is a function of its ability to infect such cells, although the frequency of 

this infection appears low (Bronowicki and others 1998).  HCV sequences 

observed in different cellular compartments and in particular peripheral blood 

mononuclear cells may vary, suggesting viral tropism for specific cells that may 

be in part affected by the HCV diversity that occurs as quasispecies develop 

(Lerat and others 1998).  The role of a given genotype in targeting hematopoetic 

cells remains controversial (Kao and others 1997; Lerat and others 1998). 

 

Dysregulation of B Cell Function Mediated by HCV

Because the association between chronic HCV infection and both mixed 

cryoglobulinemia and B-cell lymphoma was first recognized, there have been an 

increasing number of studies examining B cell dysfunction in the context of 

chronic HCV infection.  While it has clearly been shown that clonal populations of 

B lymphocytes are disproportionately present in increased numbers in patients 

with chronic HCV infection, there are also numerous data detailing specific 

mechanisms behind B cell clonality.  Moreover, such mechanisms offer insight 
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into the presence of immune dysfunction in patients with chronic HCV infection.  

Most notably, B cells have become a target of drug development for the 

treatment of certain HCV-associated immune diseases (Kazkaz and Isenberg 

2004). 

(Franzin and others 1995), were the first to report the presence of clonal B 

cell expansion in the peripheral blood of 38 HCV-infected patients. Subset 

analyses in their study revealed the presence of clonal immunoglobulin gene 

rearrangements in 100% of HCV-positive patients with type II mixed 

cryoglobulinemia (MC) as opposed to only 24% in HCV-positive patients without 

mixed cryoglobulinemia. The reversibility of B cell clonality in chronic HCV 

infection was similarly assessed in a cohort of 20 patients with HCV-associated 

MC undergoing interferon alpha therapy (Mazzaro and others 1996).  While 80% 

of these patients (all of whom were noted to have clonal populations of B cells) 

achieved complete or partial clinical responses, 15% reverted to polyclonal B cell 

populations following therapy. Recent studies also suggest upregulation of B-

lymphocyte stimulator (BLyS) in the setting of MC (Fabris and others 2006; Sene 

and others 2006), further supporting a significant relationship between clonal 

expansion of B lymphocytes and HCV-associated mixed cryoglobulinemia.  

(Zignego and others 2000), found an increased frequency of bcl-2 gene 

rearrangement (Mazzaro and others 1996; Nowicki and others 2005) in a 

prospective study of individuals with HCV and mixed cryoglobulinemia (Antonelli 

and others 2002), while (Toubi and others 2004), observed enhanced B cell 

apoptosis in B cells from chronically infected HCV patients.  There was relative 
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resistance to apoptosis seen in the CD95/Fas+ B cell subpopulation, suggesting 

a potential role for this subpopulation in B cell proliferative disorders. 

As the propensity of HCV to induce lymphoproliferation in patients with 

HCV-associated mixed cryoglobulinemia has been further elucidated, there has 

been some effort to define the underlying mechanisms.  (Machida and others 

2005), reported that an HCV E2-CD81 interaction modulates host B cell 

responses by enhancing activation-induced cytidine deaminase (AID) and 

hypermutating V(H) immunoglobulin genes in B cells, suggesting a mechanism 

for HCV-associated B cell lymphoproliferative disorders.  HCV E2 was also 

shown to activate the JNK pathway leading to preferential proliferation of CD27+ 

B cells (Rosa and others 2005).   

The effect of HCV core protein on molecular profiling in human B-

lymphocytes was recently examined by (Wu and others 2006), who found 

dramatic evidence for inhibition of B lymphocyte apoptosis by HCV core in 

several steps of the apoptotic cascade. The investigators expressed HCV core in 

an adenoviral vector in a healthy population of human B lymphocytes and 

observed down regulation of MHC class II molecules and caspase-1 and -4, 

which are proapoptotic proteins.  Up regulation of nuclear factor kappa light 

peptide inhibitor gene and TATA box protein, both of which are associated with B 

cell lymphoma, was also observed.  These findings underscore the potential of 

HCV to disrupt antigen presentation and apoptosis and may indicate yet another 

mechanism for HCV-related autoimmunity and lymphoproliferation. 
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Oncogenes have also been a focus of investigation in patients with MC.  

In a prospective study of 37 patients with HCV-associated mixed 

cryoglobulinemia, (Zignego and others 2000), found that 75.7% had bcl-2 

rearrangements in peripheral blood mononuclear cells, as opposed to 37.6% of 

patients with chronic HCV infection without mixed cryoglobulinemia (Antonelli 

and others 2002). (Galli-Stampino and others 2003), further expanded on the 

relationship between oncogenesis and clonal B cell expansion in patients with 

HCV-associated mixed cryoglobulinemia by demonstrating the presence of 

restricted V(H)I gene sequences in peripheral blood, hepatic, and lymph node B 

lymphocytes in three of four patients (Galli-Stampino and others 2003).  These 

gene sequences are usually associated with B-cell non-Hodgkin’s lymphoma 

(NHL) and their presence in patients with chronic HCV patients may indicate a 

mechanism of developing NHL through non-malignant, clonally expanded B-cell 

populations. 

 

Type I Interferon Dysregulation

Interferon-alpha stimulation is a critical and non-specific response to viral 

infection.  Its two main effects are induction of an anti-viral state in infected cells 

and interferon receptor ligation that results in activation of Janus kinase (Jak) and 

signal transducer and activator of transcription (STAT).  Jak/STAT signaling in 

turn activates numerous interferon-response genes including 2’-5’ oligoadenylate 

synthetase (OAS), Mx proteins and the double-stranded RNA dependent protein 

kinase (PKR) (Katze 2002).  PKR is induced by double stranded viral RNA and, 
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in-turn, phosphorylates eukaryotic initiation factor 2 (elF-2), resulting in inhibition 

of cellular protein syntheses and viral replication.  Two HCV proteins, the 

envelope glycoprotein E2 and the nonstructural protein NS5A, have been 

reported as potential inhibitors of the IFN response (Taylor 2000; Pflugheber and 

others 2002).  

Phosphorylated interferon regulatory factor 3 (pIRF-3) is the key 

transcription regulatory factor for type I interferon (Foy and others 2003).  Type I 

interferon, in turn, upregulates expression of double-stranded RNA-dependent 

protein kinase (PKR) that is a negative regulator of cell growth.  Recently, the 

HCV protein NS3/4A (a serine protease) was shown to interrupt the IFN signaling 

pathway.  Thus, in the presence of NS3/4A, IRF-3 is never phosphorylated and 

IFN production is not induced (Foy and others 2003).  The importance of IRF-3 

was also demonstrated with mutations resulting in dominant negative or 

constitutively active IRF-3 leading to enhanced or restrained HCV replication, 

respectively. 

 

Dysregulation of the NK Response 

Natural killer (NK) cells play a critical role in innate immunity.  NK cells 

mediate lysis of target cells by releasing cytotoxic granules that contain perforin 

and granzymes or by binding apoptosis inducing receptors on the target cells.  

NK cells also secrete numerous cytokines including IFN-gamma and TNF-alpha 

during inflammation (Poccia and others 2001).  Recent reports have implicated 
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the HCV E2 protein in suppression of NK activity (Crotta and others 2002; Tseng 

and Klimpel 2002). 

The HCV E2 protein binds CD81, which is expressed on the surface of 

host cells.  When NK cells are exposed to immobilized E2 or anti-CD81 (in vitro), 

their function is impaired.  The impairment ranges from suppression of 

cytotoxicity and IL-2 induced proliferation to suppression of IL-2, IL-12, and IL-15 

mediated induction of IFN-gamma (Crotta and others 2002; Tseng and Klimpel 

2002).  Additionally, ligation of CD81 by E2 inhibits CD16-mediated activation of 

extracellular signal-regulated kinase (ERK) and mitogen-activated protein kinase 

(MAPK) in NK cells (Crotta and others 2002).  These mechanisms, if employed 

by HCV, could facilitate HCV persistence.  However, this possibility needs further 

research as NK cells do not play a role in all viral infections. 

 

Dysregulation of Dendritic Cells by HCV Envelope Glycoproteins 

One possible cause of an impaired CD8+ response to HCV infection may 

be abnormal dendritic cell (DC) function preventing appropriate antigen 

processing and presentation.  Interestingly, HCV E1 and E2 glycoproteins 

interact with DC-specific intercellular adhesion molecule 3 (ICAM-3), 

sequestering nonintegrin (DC-SIGN) and its receptor, DC-SIGNR, in immature 

DCs (Lozach and others 2003; Pohlmann and others 2003).  The role of HCV 

interactions with DC remains controversial.  Numerous studies demonstrate 

abnormal DC activity in chronic HCV patients, yet recent studies by (Longman 

and others 2005), report the converse. 
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In addition to envelope proteins, HCV core has also been implicated in 

inhibiting DC and macrophage function (Sarobe and others 2003).  Addition of 

extracellular core or expression of core/E1 in mice by recombinant adenovirus 

demonstrated an effect on DC maturation and T cell responses upon allogenic 

stimulation.  A molecular mechanism(s) has not fully elucidated to explain this 

inhibition. 

 

Dysregulation of T Cell Function Mediated by HCV Core Protein

Evidence suggests that the 21kD HCV core protein, the first to be 

synthesized during infection, contains multiple functions that have numerous 

downstream effects on immune related cellular responses.  This 

immunomodulatory effect has been demonstrated by the suppression of anti-viral 

CTL activity (Large and others 1999b) and diminished T cell responses to HBV 

envelope proteins in mice immunized with HCV-core/HBV chimeric constructs 

(Geissler and others 1998).  HCV core has also been found circulating in the 

bloodstream of infected patients (Maillard and others 2001) suggesting that the 

effects of core may extend beyond the specific cells that are infected with HCV.  

This is important because in relative numbers, HCV infects few peripheral blood 

mononuclear cells (PBMCs) (e.g. lymphocytes).  Furthermore, extracellular HCV 

core has been shown to inhibit the T lymphocyte responses that are crucial for 

viral clearance (Kittlesen and others 2000; Yao and others 2001a), thus implying 

a role for core in establishing chronicity.  It is well known that, in general, an early 

and sustained virus-specific T-cell response is critical for viral clearance (Missale 
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and others 1996; Cooper and others 1999; Gerlach and others 1999; Gruner and 

others 2000; Takaki and others 2000; Thimme and others 2001).  However, in 

patients who are chronically infected with HCV, the frequency of virus specific T-

cells is relatively low.  Furthermore, the effector functions of HCV specific 

CD4+/CD8+ cells as well as the production of Th1-type cytokines (e.g. IL-2 and 

interferon gamma) are severely decreased (Rehermann and others 1996; Chang 

and others 1997; Lechmann and others 1999; Wedemeyer and others 2002; 

Sugimoto and others 2003).  It is clear that HCV will establish a chronic infection 

in most persons who are infected.  The available data strongly support the 

thought that HCV, through some action(s), suppresses the human immune 

system, thus establishing chronicity.  The available data also strongly suggest 

that the HCV core protein has a significant, yet not fully understood role, in the 

immune suppression. 

Studies have implicated that gC1qR (the glycoprotein portion of the C1q 

cellular receptor) is the cellular target of core protein (Kittlesen and others 2000).  

The natural ligand for gC1qR is C1q.  C1q is an integral part of the C1q complex 

that is well established as the first component in the classical pathway of 

complement activation, thus playing a critical role in the early defense against 

foreign antigens (Ghebrehiwet and others 2001).  The 33kD gC1qR and the 

60kD cCqR bind the globular “head” and collagen-like “stalk” domains of C1q, 

respectively, and form a hetrodimer that is expressed in most cell types, including 

T cells (Ghebrehiwet and others 2001).  Interestingly, treatment of PBMCs with 

extracellular HCV core leads to suppression of T-cell proliferation in a manner 
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similar to that observed when T-cells are exposed to C1q (Chen and others 

1994; Kittlesen and others 2000).  This suppressive effect can be abrogated by 

the addition of anti-gC1qR suggesting that core is indeed mediating suppression 

through gC1qR.  Therefore, the interaction between HCV core and gC1qR may 

provide the virus with a means to affect the human host immune response. 

gC1qR has also been reported to interact with several other viral and 

bacterial proteins potentially providing other micro-organisms with a “shared” 

mechanism of immune evasion (Luo and others 1994; Bruni and Roizman 1996; 

Wang and others 1997; Matthews and Russell 1998; Braun and others 2000; 

Nguyen and others 2000).  These data suggest that numerous human pathogens 

exploit a similar strategy to subvert the host immune response.  The underlying 

mechanisms for the role of gC1qR in the interference of the immune system have 

yet to be elucidated with regards to HCV infection as well as the other pathogens 

that may use this pathway.  It is, however, clear that the ability of HCV core to 

alter the immune response is not as simple as it binding to gC1qR.  In vitro 

studies show that HCV core from genotype 1a will dampen the host immune 

response (Yao and others 2006b), while other in vivo studies using HCV core 

from genotype 1b conducted in transgenic mice report no such effect (Liu and 

others 2002).  This suggests that the immunosuppressive effects may be 

genotype specific, and, indeed, this has been reported (Sugimoto and others 

2005).  Another in vitro study conducted in HepG2 cells reported that HCV core 

genotype 1a will significantly suppress nuclear factor kappa-B (NF-kB) when 

compared to genotype 1b (Ray and others 2002).  NF-kB is a well-known 
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transcription factor that is important in many cellular immune responses, as many 

of its target genes; such as interferon beta, TNF alpha, IL-2, IL-6, and IL-8 are 

immunologically relevant (Pellegrini and Schindler 1993).  Yet, patients who are 

infected with HCV genotype 1b still become chronically infected, further 

suggesting host factor(s) impact whether a newly infected person clears the virus 

or becomes chronically infected.  This is supported by studies conducted in 

chimpanzees that showed the level of innate expression of gC1qR will affect 

core’s ability to suppress the immune system.  Chimpanzees that had lower 

levels of gC1qR expression were more likely to resolve the HCV virus challenge 

versus those chimpanzees with higher levels of innate gC1qR expression (Yao 

and others 2006a). 

To date and with regard to HCV core-gC1qR binding and any subsequent 

immune suppression, most of the data produced have come from work in 

lymphocytes; lymphocytes obtained from either cell lines, such as Jurkats, or 

primary lymphocytes isolated from human volunteers.  One notable exception 

was a set of experiments conducted in normal human lung fibroblasts (NHLF) 

cell line.  The impetus for this study was reported links of HCV infection to 

declines in pulmonary function in patients with underlying pulmonary diseases 

such as asthma and chronic obstructive pulmonary disease (Kanazawa and 

others 2003; Kanazawa and Yoshikawa 2004).  The study investigators focused 

on IL-8 stimulation given its known role in mediating inflammatory pulmonary 

processes and general pulmonary pathology (Kaplanski and others 1997; Polyak 

and others 2001; Mukaida 2003).  They found that when HCV core is added to 
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cultures of NHLFs in an extracellular manner, IL-8 mRNA and protein are 

stimulated in a dose and time dependent manner (Moorman and others 2005b).  

They also reported that this up-regulation could be blocked by the addition of 

anti-gC1qR that blocks the core binding site on gC1qR.  While more studies need 

to be conducted in this area, this study offers an intriguing glimpse toward other 

(non-PBMC) possible ramifications of interactions between core and gC1qR. 

The early lymphocyte work investigating the consequences of core-gC1qR 

binding employed transfection methods in order to introduce core to the cell and 

focused on core’s ability to induce or up-regulate apoptosis of T-cells.  These 

studies found that transient expression of core appeared to up-regulate apoptosis 

mediated by interaction with members of the tumor necrosis family of receptors 

(TNFR) (Hahn and others 2000; Zhu and others 2001; Moorman and others 

2003).  It was found that expression of core sensitized Jurkat cells to FasL 

induced apoptosis (Hahn and others 2000) mediated by the cytoplasmic domain 

of Fas.  Additional studies also indicate that core can induce ligand independent 

apoptosis of Jurkats by activating caspase 3 and 8.  This same study also 

reported that intracellular expression of core can also induce Fas multimerization 

at  the cellular level as a  means of activating the apoptotic pathway (Moorman 

and others 2003).  While the evidence indicating that expression of HCV core will 

induce apoptosis in a T-cell cell line is strong, it is worth remembering that, as 

noted earlier, HCV infects a relatively low number of PBMCs.  Yet, in spite of 

HCV trophism for lymphocytes, the immune system can still produce HCV 
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specific T cells and HCV antibody, neither of which have significant efficacy given 

the high rate of chronicity. 

While inducement of apoptosis in T-cells may have a role in HCV 

establishing a chronic infection, it is likely that T-cell inhibition or suppression 

plays a larger role.  The search for a molecular basis for HCV core’s ability to 

suppress the immune system has identified several possibilities, all mediated by 

core’s ability to bind to gC1qR.  Core was first found to inhibit proliferation in 

activated T-cells by blocking the phosphorylation of extracellular signal-regulated 

kinase (ERK) and mitogen-activated ERK kinase (MEK) (Yao and others 2001a) 

in activated T-cells. HCV core-induced impairment of ERK/MEK mitogen-

activated protein kinase resulted in the inhibition of IL-2 and IL-2R gene 

transcription that led to the inhibition of IL-2 production and high-affinity IL-2R 

alpha expression. Importantly, the ability of anti-gC1qR Ab treatment to reverse 

HCV core-induced inhibition of ERK/MEK phosphorylation reveals that the 

interaction between HCV core and gC1qR is linked to the interference of 

ERK/MEK mitogen-activated protein kinase activation.  HCV core has also been 

shown to inhibit cell cycle progression from G1 to S phase by stabilizing p27Kip1, 

which is a negative regulator of Cdk4/cyclin D and Cdk2/cyclin E (Yao and others 

2003) complexes.  These cyclin dependent kinases (Cdk) and their cyclin 

partners serve to phosphorylate proteins that push cells from G1 to S phase.  

Therefore, stabilization of proteins that inhibit these Cdk-cyclin complexes will in 

turn lead to inhibition of cell cycle progression. 

 29



Further studies have reported additional instances of core interfering with 

cellular signaling.  As previously mentioned, core will bind to the complement 

receptor gC1qR whose natural ligand is C1q and that C1q also delivers inhibitory 

signals to T-cells.  Recent studies have shown that the affinity of core for gC1qR 

is greater than that of C1q, and core appears to deliver stronger inhibitory signals 

than does C1q (Yao and others 2004).  These same studies also reported that 

CD8+ T-cells are more susceptible to core meditated inhibition than CD4+ cells 

most likely due to CD8+ cells having higher expression of gC1qR.  Based on 

previously reported data that indicated core had an inhibitory effect on ERK/MEK 

signaling in T-cells (Yao and others 2001a) the investigators searched for other 

inhibitory effects on signaling.  They focused on early signaling in the early 

stages of T-cell activation and found that core treated T-cells show a decrease in 

the expression of Src kinases, Lck, and ZAP-70 that may impede cell cycle 

progression (Yao and others 2004).  Some of the latest data regarding signaling 

inhibition was conducted using recombinant core from patients who had a 

chronic infection versus patients who had spontaneously resolved their infection.  

It was found that core from the chronic patients had a greater inhibitory effect 

possibly mediated by diminishing the phosphorylation of STAT1/3 that, in turn, up 

regulates the expression of SOCS1/3 (Yao and others 2006b), which are 

negative regulators of T-cell proliferation.  This finding is strengthened when 

siRNAs, designed against SOCS1/3, abrogated the core mediated T-cell 

inhibition. 
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Programmed Cell Death 1 (PD-1). 

In the early 1990s Honjo and colleagues began to search for gene 

products that contributed to apoptotic cell death that was dependent on de novo 

synthesis of RNA and protein e.g., the classical type programmed cell death.  

They began their work in four cells lines of consisting of T-cells, B-cells, and a 

lymphoid progenitor line.  In 1992 they reported that in two of the four cell lines 

de novo synthesis of RNA was necessary for apoptosis to occur.  Further work 

determined that a novel member of the immunoglobulin gene superfamily, 

termed program cell death 1 (PD-1), was linked to the observed apoptosis (Ishida 

and others 1992). 

By 2002 it had been reported that, in vivo, PD-1 was expressed 

predominately on activated T-cells (Iwai and others 2002).  Further studies 

indicated that cross-linking of PD-1 with its ligand would induce phosphorylation 

of its immunoreceptor tyrosine-based switch motif that would then recruit SHP-2 

with its subsequent negative regulatory signal (Okazaki and others 2001).  The 

ligands were then identified as PD-L1 (B7-H1) and PD-L2 (B7-DC) (Dong and 

others 1999; Freeman and others 2000; Latchman and others 2001; Tseng and 

others 2001) with PD-L1 shown to be expressed in numerous nonlymphoid tissue 

(Dong and others 1999; Freeman and others 2000).  The receptor-ligand 

distribution pattern, PD-1 expressed in activated T-cells and PD-L1 expressed in 

peripheral tissue, led to the hypothesis that PD-1/PD-L1 interaction might occur 

at the effector phase of the immune response when activated T-cells migrate to 

sites of inflammation or infection.  Beginning with known liver involvement in the 
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immune response, a set of experiments was designed around liver 

nonparenchymal cells (LNPCs).  It was found that PD-L1 was constitutively 

expressed on LNPCs and that this expression was essential to inhibit 

proliferation of activated T-cells in the liver (Iwai and others 2003), suggesting 

that the PD-1/PD-L1 interaction may play important roles in the negative 

regulation of immune responses in the liver. 

The pathways that memory CD8+ T-cells take after an acute viral infection, 

versus a chronic infection, are distinct (Wherry and others 2003; Wherry and 

others 2004; Klenerman and Hill 2005).  Memory CD8+ T-cells generated from an 

acute viral infection are, in general, highly functional and make up an important 

component of protective immunity.  On the other hand, memory CD8 T-cells 

generated from a chronic viral infection are often characterized by varying 

degrees of functional impairment that is the most likely reason the virus is able to 

establish a chronic infection.  However, even in viral infections that eventually 

become chronic, initial T effector cells are generated.  Yet, they soon lose 

function over the course of a chronic infection and become ‘exhausted’.  This 

exhaustion effect was first reported in mice with a chronic LCMV infection 

(Gallimore and others 1998; Zajac and others 1998) but was quickly shown to be 

a factor in humans with chronic viral infections; particularly those persons with 

human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C 

virus (HCV) (Letvin and Walker 2003; Pantaleo and Koup 2004; Rehermann and 

Nascimbeni 2005). 
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The next step taken was to determine gene expression in exhausted T-

cells versus functional T-cells in the mouse LCMV model.  PD-1 mRNA and 

protein was found to be significantly up-regulated in the exhausted T-cells 

(Barber and others 2006) when compared to the functional T-cells.  Further 

investigation by found that the LCMV strain that consistently causes an acute 

infection in mice had only transient up-regulation of PD-1 mRNA and protein, 

whereas the strain that consistently causes a chronic infection had higher and 

sustained levels of PD-1 mRNA and protein.  They then determined that by 

blocking the PD-1/PD-L1 interaction they could restore function, e.g. the 

exhausted T-cell where induced to clonally expand, to CD8+ cells even in the 

absence of CD4+ cells. 

 

Hypothesis 

Based on the available data the following hypothesis is considered: 

Persistence of HCV infection is mediated by the dysregulation of the PD-1 

pathway in T-cells via HCV core-gC1qR interaction. 
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CHAPTER 2 

 

T cell Dysfunction by HCV Core Protein Involves PD-1/PDL-1 Signaling 

 

Abstract 

 

Recent reports show that a negative T cell co-stimulatory pathway mediated by 

PD-1 and PDL-1 is associated with T cell exhaustion and persistent viral 

infection.  Persistent hepatitis C virus (HCV) infection in humans is also 

characterized by impaired T lymphocyte function, but the role of the PD-1 and 

PDL-1 pathway in HCV infection is unknown.  Here we report that T cells isolated 

from chronically infected HCV patients express significantly higher levels of PD-1 

when compared to healthy donors.  In addition, PD-1 and PDL-1 expression is 

up-regulated on T cells from healthy donors exposed to HCV core, a 

nucleocapsid protein that is immunosuppressive; up-regulation of PD-1 is 

mediated through interaction of HCV core with the complement receptor, gC1qR.  

Importantly, T cell functions that are dysregulated by HCV core, including T cell 

activation, proliferation, and apoptosis, can be restored by blocking PD-1 or PDL-

1 engagement.  Our results indicate that HCV core can up-regulate a key 

negative T cell signaling pathway associated with viral persistence and highly 

expressed on the T cells of persistently infected individuals.  This up-regulation of 

the PD-1 and PDL-1 pathway in humans represents a novel and perhaps 
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common mechanism by which a virus usurps host machinery to facilitate 

persistence. 

 

Introduction 

 

T cell dysfunction is a common feature of many persistent viral infections, 

although the underlining mechanism(s) remains poorly understood.  Hepatitis C 

virus (HCV) infection provides an excellent model to study the mechanisms of 

persistent viral infection as this virus is remarkable at evading host immune 

surveillance, resulting in chronic infection in the majority of infected individuals 

(Moorman and others 2001a).  Chronic HCV infection is associated with liver 

cirrhosis and hepatocellular carcinoma and has become a leading cause of liver 

transplantation in the United States (Lauer and Walker 2001).  Numerous studies 

have reported that effective T cell responses are crucial for viral clearance, and 

impaired viral specific CD4+ and CD8+ T cell functions are associated with 

chronic HCV infection (Gerlach and others 1999; Gruner and others 2000; 

Lechner and others 2000; Takaki and others 2000; Thimme and others 2001; 

Wedemeyer and others 2002; Shoukry and others 2003).   Other studies have 

suggested the possibility of a more non-specific immune dysregulation in the 

setting of HCV infection, perhaps supported by the high frequency of 

autoimmune disease in individuals with chronic HCV infection (Yao and others 

2001a; Yao and others 2001b; Lucas and others 2004; Graham and others 2005; 

Par and others 2006).  Despite extensive investigations into the mechanisms of 
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virus-mediated T cell dysfunction, it still remains unclear why a small percentage 

of HCV patients exhibit effective T cell responses and clear the virus following 

acute infection, while the vast majority fail to do so and progress to chronic 

infection. 

It is likely that a gene product(s) encoded by HCV directly affects T cell 

functions that are crucial for limiting virus replication, and thus facilitates 

persistent infection.  Several HCV-derived proteins, including the nucleocapsid 

core protein, may play a role in the impairment of host immunity either directly or 

through interaction with host molecules (Ray and Ray 2001; Eisen-Vandervelde 

and others 2004).  It has been previously demonstrated that HCV core protein is 

necessary and sufficient to suppress host immune responses in a murine model 

(Large and others 1999a).  The molecular mechanism of HCV core-mediated 

immunomodulation was subsequently determined by identifying a host-binding 

partner, C1q complement receptor-gC1qR, on human T lymphocytes (Kittlesen 

and others 2000).  C1q, the natural ligand for gC1qR, is the first molecule to be 

activated in the classical complement cascade and plays a critical role in 

modulating both innate and adaptive immunity (Ghebrehiwet and others 2001).   

Binding of C1q to gC1qR on T lymphocytes leads to suppression of T cell 

responsiveness (Chen and others 1994); similarly, HCV core can inhibit T cell 

responses through interaction with gC1qR (Yao and others 2001a; Yao and 

others 2003; Yao and others 2004).   Thus, the engagement of circulating HCV 

core protein with gC1qR displayed on the surface of T lymphocytes may provide 

the virus with a direct means of affecting host immunity (Yao and others 2001b). 

 36



In light of the observations that free core particles circulate in the 

bloodstream of HCV-infected patients (Masalova and others 1998; Maillard and 

others 2001), our findings may be particularly salient to the pathogenesis of HCV.  

It is notable that in addition to HCV core, gC1qR has been shown to interact with 

several viral and bacterial proteins, potentially providing these organisms with a 

“shared” mechanism of immune modulation (Ghebrehiwet and others 2001; Yao 

and others 2001b).  While the early events following the HCV core/gC1qR 

interaction have yet to be elucidated, T cell receptor (TCR) signaling pathways--

and in particular other negative regulatory pathways--would be prime targets for 

viral immunomodulation. 

The recently described PD-1 and PD-L inhibitory pathway represents just 

such a negative regulatory mechanism to maintain the intricate balance between 

positive and negative costimulatory signals delivered to T cells after antigenic 

encounter (Nishimura and Honjo 2001; Khoury and Sayegh 2004).  PD-1 

(programmed death-1) is an immunoinhibitory receptor predominantly expressed 

on activated T cells; its natural ligands include PDL-1 (also known as B7-H1, 

expressed on both haematopoetic and parenchymal cells) and PDL-2 (B7-DC, 

primarily expressed on monocytes).  Activation of the PD-1 pathway induces 

immunoreceptor tyrosine phosphorylation and recruitment of tyrosine 

phosphatases, including src-homology proteins (SHP-1/SHP-2), to deliver a 

negative signal to TCR activation pathways.  Evidence is emerging for the 

involvement of PD-1 inhibitory pathway in normal immune tolerance, autoimmune 

responses, and antitumor and antiviral immune evasion (Nishimura and Honjo 
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2001; Iwai and others 2003; Khoury and Sayegh 2004).  Perhaps most 

interesting, PD-1 was recently found to be selectively up-regulated on 

“exhausted” CD8+ T cells during chronic viral infection in mice (Barber and others 

2006).  In addition, very recent reports now show similar findings in the setting of 

HIV infection (Day and others 2006; Freeman and others 2006; Petrovas and 

others 2006; Trautmann and others 2006b). 

To further characterize underlying mechanism(s) of HCV-induced T cell 

dysfunction, we examined the role of PD-1 and PDL-1 expression on human T 

cells. We found that individuals with chronic HCV infection exhibit up-regulation 

of both PD-1 and PDL-1 on CD4+ and CD8+ T cell populations compared to 

healthy control populations.  To explore potential mechanisms for this up-

regulation, we exposed naïve healthy T cells to HCV core and found that 

expression of both PD-1 and PDL-1 are up-regulated, and this core-induced   

PD-1 and PDL-1 induction is gC1qR-dependent.  Importantly, blocking PD-1 and 

PDL-1 signaling pathway can restore HCV core/gC1qR-mediated T cell function, 

suggesting that the PD-1 pathway may be employed during HCV core/gC1qR 

interaction as a means of dysregulating T cell functions. 
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Materials and Methods 

 

 Subjects. 

 

 An IRB-approved protocol at ETSU has contributed to a database for the 

storage of blood samples from HCV-infected individuals.  Blood from healthy 

donors serves as a normal control.  Peripheral blood mononuclear cells (PBMC) 

were isolated from these subjects by Ficoll density centrifugation with lympholyte-

H (Cedarlane Labs, Ontario, Canada) and then cryopreserved in freezing 

medium (10% DMSO, 20% FBS in RPMI 1640) in liquid nitrogen until examined.  

Twelve chronically HCV-infected patients and seven healthy donors were 

selected, and their PBMC were thawed, washed, and counted for the following 

studies. One subject was co-infected with HIV but was a long-term 

nonprogressor with repeatedly negative HIV viral load.  All subjects had HCV 

infection detected by ELISA and confirmed by HCV RNA testing and none were 

considered to be acute infections. 

 

Reagents. 

 

Recombinant HCV core protein, NS3, and control β-galactosidase proteins 

were obtained from ViroGen (Watertown, MA).  These proteins have been used 

extensively in immunologic studies of HCV antigens and have been documented 

to be free of LPS or RNA.  Anti-CD3/CD28, anti-CD45RA/RO antibodies, and 

 39



FITC-conjugated anti-CD4 and CD8 antibodies were obtained from BD 

Pharmingen (San Diego, CA).  Anti-PD-1 and anti-PDL-1 were obtained from 

eBioScience. 

 

Flow Cytometry. 

 

To determine PD-1 or PDL-1 expression on the surface of T lymphocytes, 

1 x 106 PBMC from HCV patients or healthy donors were stimulated with or 

without anti-CD3/CD28 (1 μg/ml) in the presence of HCV core or a control 

protein, β-gal (2 μg/ml).  After 24 h treatment, the cells were washed in 

fluorescence-activated cell sorting (FACS) medium (RPMI 1640 supplemented 

with 10% FBS and 1% NaN3) at 200 x g for 5 min at 4 ºC.  The cells were 

counted and resuspended in 100 μl of FACS medium containing 20 μl PE-anti-

human PD-1 and PDL-1 conjugate (eBioScience) and 20 μl of FITC-anti-human 

CD4 and CD8 conjugate (BD Pharmingen) at 4 ºC for 1 h in the dark.  The cells 

were then washed three times and fixed with 1% paraformaldehyde in PBS 

before analysis by flow cytometry (Becton Dickinson, San Jose, CA).  The 

primary isotype controls were used to determine the level of background staining.  

20,000 events were collected after gating on lymphocyte populations and using 

consistent instrument settings to avoid bias. 

To determine the role of PD-1 and PDL-1 in HCV core-induced T cell 

inactivation,   PBMC were anti-CD3/CD28-stimulated and HCV core-treated as 

described above in the presence of anti-human PD-1 or PDL-1 or isotype control 
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antibodies (Santa Cruz) for 24 h, and CD69 cell surface expression was detected 

by incubating cells with PE-anti-human CD69 conjugate (BD Pharmingen) 

followed by FACS analysis (Yao and others 2003). 

 

RT-PCR. 

 

Purified PBMCs (2 x 106) were treated with or without HCV core protein (2 

μg/ml; ViroGen) for various time points (6, 12, 24, 48 h), and total RNA was 

isolated from these cells by the TRIzol method (Life Technologies).  A total of 1 

μg of RNA was treated with DNase to digest genomic DNA and 0.27 μg of RNA 

was then reverse transcribed using MuLV reverse transcriptase under conditions 

of 10 min at room temperature, 20 min at 42 ºC, 5 min at 99 ºC, and 5 min at      

4 ºC.  1 μl of 1:10 serially diluted cDNA generated in the RT reaction was added 

to the PCR reaction.  PCR was carried out using the following primer pairs: PD-1 

sense 5’-GCT CAG GGT GAC AGA GAG AAG-3’; antisense 5’-CAC CAA CCA 

CCA GGG TTT G-3’; β-actin sense 5’-CGA GCG GGA AAT CGT GCG TGA 

CAT-3’; antisense 5’-CGT CAT ACT CCT GCT TGC TGA TCC ACA TCT-3’ for 

35 cycles of 95 ºC for 15 s, 58 ºC for 15 s, 72 ºC for 15 s, followed by a single 10 

min extension at 72 ºC.  To control for genomic DNA contamination, equal 

amount of cDNA from each sample were PCR amplified without RT.  The 

resulting PCR products were separated on a 2% BioGel (Bio 101, Carsbad, CA) 

and viewed by a multimager.  To examine whether gC1qR mediates the HCV 

core-induced induction of PD-1, a 1:10-diluted anti-gC1qR antibody or pre-
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bleeding control serum (kindly provided by Dr. Hahn) was coincubated with cells 

treated with core protein, and PD-1 mRNA expression was assessed as 

described above. 

 

T Cell Proliferation. 

 

The ability of anti-PD-1 or anti-PDL-1 to reverse the HCV core-induced T 

cell inhibition was evaluated by using Quick Cell Proliferation Assay (BioVision, 

Mountain View, CA).  Briefly, 1 x 105 of PBMC were stimulated with or without 

anti-CD3/CD28 in the presence of HCV core or β-gal protein.  Anti-PD-1 or anti-

PDL-1 or isotype control antibody (2 μg/ml, Santa Cruz) was added 

simultaneously and the cells were cultured for 24 h.  T cell proliferation was 

performed according to manufacturers’ instructions.  The absorbance of the 

treated and untreated samples was measured using a microtiter plate reader at 

420-480 nm with a reference wavelength 650 nm.  The experiments were set up 

as triplicates of each treatment and the data shown as mean ± SD of the optical 

density (OD) values. 

 

Cellular Apoptosis. 

 

Blocking PD-1 and PDL-1 engagement to reverse the HCV core-mediated 

lymphocyte apoptosis was assessed by Annexin V (AV)/Propidium iodide (PI) 

staining (BD Pharmingen).  Briefly, 1 x 106 PBMC were treated with HCV core or 
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β-gal (2 μg/ml; ViroGen) in the presence or absence of anti-PD-1 or anti-PDL-1 

or isotype control antibody (Santa Cruz) for 24 h.  Cell apoptosis was examined 

by FACS using an AV/PI staining kit according to manufacturer’s instructions. 

The primary isotype controls were used to determine the level of background 

staining.  Twenty thousand events were collected after gating on lymphocyte 

populations.   

 

Statistical Analysis. 

 

Data were shown as mean ± SD and level of significance was determined 

using ANOVA as a program of Stata/SE 8.0 software.  P < 0.05 was considered 

significant. 

 

Results 

 

Increased Expression of PD-1 and PDL-1 on CD4+ and CD8+ T Cells of 

Individuals with Chronic HCV Infection. 

 

It has been reported that T cells adapt to persistent antigen exposure by 

down-regulating their responsiveness to TCR signal transduction.  Furthermore, 

recent data suggest a key role for PD-1 in decreasing TCR signaling as a means 

of promoting viral persistence. To determine if PD-1 might be playing a role 

during HCV infection in humans, we examined PD-1 expression on T cells from 
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chronically HCV-infected individuals (n=12) and compared these with T cells from 

healthy donors (n=5).  To this end, peripheral blood mononuclear cells (PBMC) 

isolated from HCV patients and healthy donors were stimulated with or without 

anti-CD3/CD28 antibodies, mimicking the activation of the TCR/CD28 pathway 

by MHC/peptide/B7 complex on T cells.  The cells were harvested at 24 hr after 

the stimulation and the expression of PD-1 on the surface of T cells was 

determined by flow cytometric analysis.  As shown in fig. 2.1A, PD-1 expression 

on the surface of unstimulated (39.02 ± 7.28) as well as anti-CD3/CD28-

stimulated PBMCs (54.01 ± 8.14) isolated from HCV patients is significantly 

higher than the expression observed on the cells of healthy donors (17.88 ± 3.72, 

P=0.002; 36.70 ± 9.17, P=0.005; respectively).  Consistent with the aggregate 

PBMC population data, the expression of PD-1 on the surface of distinct 

subpopulations of CD4+ and CD8+ T cells from HCV patients is also higher than 

that found on healthy donors, with representative dot blots shown in fig. 2.1B.  

The expression of PDL-1 on PBMCs from HCV infected individuals was similarly 

increased, with representative histograms shown in fig. 2.1C.   Treatment with 

other viral proteins, including HCV NS3 as well as HIV Tat and gp120, revealed 

no effect on PD-1 expression levels in PBMC (data not shown). 

It is possible that we started with different lymphocyte phenotype 

subpopulations and that the increases in expression of PD-1 and PDL-1 are 

related to different baseline phenotypes.  Examination of PBMC from two HIV-

infected subjects, however, revealed similar CD45RO+ and CD45RA+ 

subpopulations and increases in expression in PD-1 and PDL-1 upon TCR-
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stimulation (fig. 2.1D)  This is consistent with our hypothesis that HCV infection 

leads to up-regulation of PD-1 and PDL-1 expression via an interaction of HCV 

core with gC1qR that is expressed on multiple T cell phenotypic subpopulations, 

and that there is both HCV-specific and generalized T cell dysfunction in the 

setting of chronic HCV infection. 
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Figure 2.1  PD-1 expression on PBMCs from chronically HCV-infected individuals is increased 

compared to healthy donors 
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gC1qR-dependent PD-1 and PDL-1 Induction on Healthy T Cells by HCV 

Core Protein. 

 

The above data suggested that PD-1 and PDL-1 are up-regulated in 

response in the setting of chronic HCV infection; how this occurs is unclear, but it 

seems likely that a viral product induces this up-regulation.  Because we have 

previously shown that the HCV core nucleocapsid protein is both necessary and 

sufficient to inhibit T cell responses against viral infection (Yao and others 2001a; 

Yao and others 2001b; Yao and others 2003; Yao and others 2004), we 

examined expression of PD-1 and its ligand, PDL-1, on healthy T cells exposed 

to the HCV core protein.  Peripheral blood mononuclear cells (PBMC) isolated 

from healthy donors were stimulated with or without anti-CD3/CD28 antibodies in 

the presence or absence of HCV core protein.  To confirm that the complement 

pathway is indeed involved in up-regulation of PD-1 signaling, we also treated 

PBMC with C1q protein.  The cells were harvested at 24 hr after treatment and 

the expression of PD-1 and PDL-1 was determined by flow cytometric analysis.  

As shown in fig. 2.2A, treatment of PBMC with C1q leads to an increase in PD-1 

expression compared to control β-gal treatment in unstimulated PBMC;  PDL-1 

expression was also increased in response to C1q treatment (data not shown).  

Both PD-1 and PDL-1 expression can be up-regulated on unstimulated 

lymphocytes exposed to the HCV core protein (from 8% to 12%; and from 27% to 

69%, respectively).  Notably, PD-1 and PDL-1 expression are up-regulated on 

lymphocytes stimulated with anti-CD3/CD28 (from 8% to 20%; and from 27% to 

 47



70%, respectively), and their expressions can be further up-regulated with HCV 

core treatment (from 20% to 28%; and from 70% to 92%, respectively).  These 

data revealed statistically significant differences.   A titration analysis with HCV 

core protein revealed a dose-dependent increase in PD-1 expression, with 

minimal increases seen at 0.125 μg and saturation by 2 ug/ml of protein (data not 

shown).  Notably, while C1q treatment does appear to up-regulate the PD-1 

pathway, HCV core appears to be more efficient at doing so.  HCV core has, 

however, been shown to have a higher affinity for gC1qR than C1q in previous 

binding studies. 

We next wanted to characterize the expression of PD-1 and PDL-1 on 

specific human T cell subpopulations. PBMCs were treated as above, followed 

by double staining with FITC-anti-human CD4 and PE-anti-human PD-1 and 

PDL-1 conjugates.  As expected based on the data in the aggregate lymphocyte 

population, the expression of PD-1 and PDL-1 are up-regulated by HCV core 

protein on both unstimulated and TCR-activated CD4+ T lymphocytes (fig. 2.2B).  

CD8+ T cells revealed similar trends (data not shown). 

To determine the relationship between HCV core and PD-1 expression, 

we next detected PD-1 mRNA expression in PBMCs stimulated with anti-

CD3/CD28 in the presence or absence of HCV core protein for various times 

after treatment using semi-quantitative RT-PCR.  As shown in fig. 2.2C, PD-1 

mRNA in human cells is consistently up-regulated, starting as early as 6 hrs and 

peaking at 24 hrs after treatment with HCV core protein.  Because we have 

shown that HCV core protein impairs T cell functions through an interaction with 
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the complement receptor, gC1qR, we employed anti-gC1qR antibodies in the 

above experiments and found inhibition of HCV core-induced PD-1 up-regulation.  

This reversal effect can be also achieved by addition of anti-HCV core antibody, 

which interferes with the engagement of core protein with cell surface gC1qR, but 

not by a control serum. To support these findings, healthy, TCR-stimulated 

PBMC were treated with HCV core along with anti-gC1qR or control antibodies 

and PD-1 expression was detected on the surface of healthy CD8+ T cells by 

flow cytometry.  PD-1 expression was diminished in cells treated with antibodies 

to gC1qR, consistent with our PCR data in PBMC.  Notably, treatment of PBMC 

with anti-gC1qR antibodies alone has no effect on either PD-1 expression levels 

as measured by flow cytometry or lymphocyte apoptosis as measured by AV 

staining (data not shown).  These results suggest that HCV core induces PD-1 

expression directly through the gC1qR displayed on the surface of lymphocytes. 
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Figure 2.2  PD-1 induction on healthy human T cells by HCV core protein 
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Blocking PD-1 and PDL-1 Engagement Restores HCV Core/gC1qR-

Mediated T Cell Dysfunction. 

 

To explore the role of PD-1 and PDL-1 in the HCV core-induced T cell 

dysfunction, we next addressed the possibility of restoring HCV core-mediated 

inhibition of T cell function by blocking PD-1 and PDL-1 engagement.  We have 

previously shown that HCV core modulates T cell activation status, proliferative 

capacity, and apoptosis (Yao and others 2001a; Moorman and others 2003; Yao 

and others 2003; Yao and others 2004). To this end, we incubated TCR-

stimulated healthy PBMCs with HCV core protein in the presence of anti-PD-1 or 

anti-PDL-1 or isotype control antibodies and assayed the above measures of T 

cell function.  We found that treatment of PBMC with anti-PD-1 or anti-PDL-1 

antibodies alone had no effect on any of these measures and found no increase 

in the ability to activate T cells despite blocking PD-1 and PDL-1 signaling (data 

not shown).  We first detected the expression of the T cell activation marker, 

CD69, on the surface of T cells.  As shown in fig. 2.3A, CD69 expression on 

CD4+ and CD8+ T cells was suppressed by exposure to HCV core protein, and 

this suppression was almost totally reversed by the treatment of anti-PD-1 or 

anti-PDL-1 antibody.  CD69 expression on T cells inhibited by HCV core was not 

affected by adding control antibody. 

We next examined T cell proliferation in response to HCV core in the 

presence of antibodies to PD-1 and PDL-1.  We incubated TCR-stimulated 

PBMC with HCV core protein in the presence of anti-PD-1 or anti-PDL-1 or 
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control antibody, and T cell proliferation was evaluated as described in Methods.  

As shown in fig. 2.3B, T cell proliferation was inhibited by HCV core protein, and 

the proliferative ability of T cells inhibited by HCV core could be partially restored 

by simultaneously adding either anti-PD-1 or anti-PDL-1 antibody into the culture.  

These data suggest that the PD-1 pathway plays a role in HCV core-induced T 

cell suppression. 

The induction of cellular apoptosis is one manifestation of HCV core-

mediated T cell dysfunction.  To determine whether blocking PD-1 and/or PDL-1 

engagement can reverse HCV core-induced cell apoptosis, we incubated human 

PBMC with HCV core or control proteins in the presence of anti-PD-1, anti-PDL-

1, or a control antibody for 24 hrs, and apoptosis was evaluated by AV/PI 

staining.  As shown in fig. 2.3C (top), HCV core induces apoptosis, as 

represented by increasing percentages of AV/PI positive cells, when compared 

with those treated with a control protein, β-gal; this core-induced cell apoptosis 

can be successfully blocked by the treatment with either anti-PD-1 or anti-PDL-1 

antibody.  These data are reproducible in multiple independent experiments 

(bottom). 
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Figure 2.3  Blocking PD-1 and PDL-1 engagement inhibits HCV core/gC1qR-mediated T cell 

dysfunction 
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Discussion 

 

The most enigmatic facet of HCV infection is the fact that the majority of 

individuals infected with this virus exhibit impaired T cell responses and develop 

persistent infection, while a limited group are able to successfully control their 

infections and experience spontaneous virus eradication.   It is generally agreed 

that both viral and host factors play a role in determining the outcome of viral 

infection.  Our previous studies (Yao and others 2001a; Moorman and others 

2003; Yao and others 2003; Yao and others 2004) and current data would 

suggest that HCV core protein may be a major viral antigen involved in 

immunomodulating host responses. Intriguingly, HCV core is secreted from 

infected cells and circulates in the bloodstream of infected individuals (Masalova 

and others 1998; Maillard and others 2001) at levels consistent to those used in 

our experiments.  In addition, the amount of free core protein or core protein 

expressed on the surface of infected cells is greater in the micro-environment of 

the liver, where virus replication occurs quite vigorously in early infection when 

chronicity is either avoided or established.  Thus, HCV core protein appears to be 

available in the setting of clinical infection and based on our studies could be 

contributing to establishment of persistent HCV disease. 

While it seems clear that HCV evades relatively weak host immune 

responses, the issue of the level and specificity of immunosuppression in 

individuals with HCV infection remains debatable.  Several reports suggest that 

selective dysfunction of HCV-specific T cells occurs in HCV-infected patients, 
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with preservation of immune responses to unrelated viruses and/or antigens 

(Gruner and others 2000; Takaki and others 2000; Thimme and others 2001; 

Wedemeyer and others 2002).  Other studies, however, have found 

abnormalities with T cell responses to unrelated or nonspecific antigens in the 

setting of HCV infection. For example, CMV-specific CD8+ maturation markers 

were dramatically lost in an HCV-infected cohort despite the fact that inducible 

responses to antigen were preserved (Lucas and others 2004).  This study 

suggested that HCV infection had a pervasive effect on numerous CD8+ T cell 

populations and not merely HCV-specific T cells.  Interestingly, a recent study in 

an HIV/HCV co-infected cohort found that IFNγ secretion to recall antigens 

including Candida (as well as HCV antigens) correlated with the degree of 

hepatic fibrosis, with the data suggesting that impaired cellular responses were a 

qualitative defect rather than a function of CD4 cell count (Graham and others 

2005).  It is by no means impossible that both HCV-specific and non-specific 

immunodysregulatory mechanisms are occurring during acute and chronic HCV 

infection, perhaps supported by the strong clinical evidence of autoimmune 

disease associated with HCV infection (Manns and Rambusch 1999; Vogel and 

others 2002). 

Our data would support nonspecific immunomodulation of both CD4+ and 

CD8+ T cell functions by HCV core antigen.  We have in this and previous studies 

consistently noted effects on T cell proliferation, activation, and apoptosis in 

response to HCV core and dependent upon gC1qR engagement (Yao and others 

2001a; Moorman and others 2003; Yao and others 2003; Yao and others 2004).  
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This does not rule out the presence of HCV-specific T cell dysfunction by HCV 

core or other viral gene products, and certainly further studies in this area are 

warranted.  It is also feasible that HCV core expression in the peripheral blood of 

infected patients, while perhaps not sufficient to induce the severe, generalized 

immunosuppression seen with HIV, may be high enough to reach a threshold 

locally in the liver to facilitate persistent HCV infection. 

The novel role of PD-1 and PDL-1 in HCV described herein is exciting and 

may ultimately provide a marker and perhaps a mechanism by which such 

viruses establish persistent infection.  The recent studies of LCMV infection in a 

murine model and HIV in humans clearly demonstrate a key role for PD-1 up-

regulation in CD8+ T cell exhaustion and control of viral infection (Barber and 

others 2006; Day and others 2006; Freeman and others 2006; Petrovas and 

others 2006; Trautmann and others 2006b).  Our data in human T cells suggest 

that that HCV might function in a similar model, with up-regulation of PD-1 being 

associated with and perhaps contributing to chronicity.  While it is certainly 

possible that this up-regulation of PD-1 in chronically HCV-infected individuals is 

more a marker of chronicity, there is little doubt that signaling via this pathway in 

general leads to immunomodulation (Nishimura and Honjo 2001).  We expect 

that other chronic viruses may be associated with PD-1 up-regulation as well. 

Once again, our data would suggest that up-regulation of the PD-1 and 

PDL-1 pathway occurs in the general T cell population, but it would clearly be 

worth pursuing an analysis of PD-1 expression in HCV-specific CD8+ and CD4+ T 

cell populations from chronically infected individuals using tetramer studies and 
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antibodies to PD-1 and PDL-1.  Complicating these studies is the very real 

technical challenge of analyzing virus-specific T cells that are often absent or 

present at very low frequencies in individuals with chronic HCV infection (He and 

others 1999); studies in this area are in progress but reversal of virus-specific T 

cell dysfunction thus far has not been accomplished.  It is possible that core-

induced up-regulation of PD-1 and PDL-1 might be occurring on antigen 

presenting cells or hepatic tissues and promoting T cell dysfunction through cell-

cell interaction. 

Our data demonstrated the ability to reverse T cell dysfunction in healthy 

donor PBMCs exposed to HCV core by blocking PD-1 engagement, supporting a 

link between HCV core, gC1qR, PD-1, and T cell functions.  Whether this 

reversal can occur in chronically infected HCV-infected individuals is no doubt 

the most pressing question, but has thus far been technically challenging for us 

to determine in infected individuals in the setting of years of chronic antigen 

exposure and T cell anergy. The intracellular mechanism(s) linking these 

pathways are also as yet unclear, but possibilities include SHP-1/2 or the SOCS 

family that have been linked to negative regulation of T cell signaling pathways 

(Balasubramanian and others 2003; Bode and others 2003).  Studies addressing 

these questions are ongoing. 

We have thus found up-regulation of the PD-1 pathway in chronically 

infected individuals with HCV that may be mediated through HCV core protein, a 

known immunomodulatory viral antigen that circulates in the serum of infected 

individuals.  This study raises the possibility of targeting this inhibitory pathway 
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for the treatment of persistent viral infections.  Blocking either the gC1qR or PD-1 

inhibitory pathways might be of clinical benefit during the acute phase of viral 

infection when persistence is established in the majority of hosts.  Restoring 

impaired T cell function during chronic infection, albeit challenging, may be the 

more desirable goal.  This might be achievable based on limited evidence of 

occasional resolution of HCV infection with increasing CD4+ T cell numbers and 

function following HAART for HIV infection. Furthermore, the most common 

reason for failure of therapeutic vaccine in eliminating chronic diseases is limited 

T cell proliferative potential, and as such a better understanding of this novel 

mechanism by which viruses impair T cell responses may open new avenues for 

immunotherapy by inhibition of fundamental, negative regulatory pathways.   
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Figure Legends 

 

Figure 2.1  PD-1 Expression on PBMCs from Chronically HCV-infected 

Individuals is Increased Compared to Healthy Donors.   

 

A)  PMBC were isolated from 12 chronically HCV-infected patients 

(circles) and 5 healthy donors (squares).  The cells were stimulated with (filled 

circles or squares) or without anti-CD3/CD28 (anti-TCR stimulation, open circles 

or squares) for 24 h, and PD-1 expression on lymphocytes was examined as 

described in Materials and Methods.  Percentage of PD-1+ cells in the gated 

lymphocyte population was shown.  Statistical comparison (p values) amongst 

different groups, including PD-1 expression on T cells from chronic HCV patients 

versus healthy donors as well as unstimulated cells versus TCR-stimulated cells, 

are all < 0.01.  Data represent cumulative results of three independent 

experiments.  B) Representative dot blots from subjects showing percentages of 

PD-1+ cells in the TCR-stimulated CD4+ and CD8+ T lymphocyte populations.  

Lymphocytes were double-stained and gating was performed on distinct 

populations of either CD4+ or CD8+ cells.  Isotype controls for these experiments 

are shown.  C) Representative histograms of PDL-1 expression on unstimulated 

lymphocytes from HCV-infected or healthy subjects. D) PD-1 and PDL-1 

expression on different PBMC phenotype populations. PBMC from 2 chronic 

HCV patients were subjected to mock stimulation or TCR-activation and PD-1 

and PDL-1 expression on CD45RA+ and CD45RO+ populations were detected by 
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flow cytometric analysis.  Percentages of PD-1 and PDL-1 on CD45RA+ and 

CD45RO+ lymphocytes are shown on the upper right corner. 

  

Figure 2.2  PD-1 Induction on Healthy Human T Cells by HCV Core 

Protein.  

 

  A) PD-1 induction on lymphocytes by C1q protein and HCV core protein. 

Left, unstimulated PBMC from healthy donors were exposed to C1q or a control 

protein β-gal for 24 hr, and PD-1 expression on the surface of the treated 

lymphocytes was examined as described in Methods.  The percentages of PD-1 

expression on lymphocytes are shown and the data are representative of 

experiments from two separate donors.  Middle and right, unstimulated or TCR-

stimulated PBMC from healthy donors were exposed to HCV core or a control 

protein β-gal for 24 h, and PD-1 and PDL-1 expressions on the surface of the 

treated lymphocytes were examined as described in Methods.  The percentages 

of PD-1 or PDL-1 expression on PBMCs are shown and are representative of 

three independent experiments. Cumulative analysis of these experiments 

revealed statistical significance between β-gal- and β-gal core-treated 

unstimulated cells and stimulated cells (unstimulated PD-1:  10.09 ± 2.7 vs 16.5 

± 5.03, p<0.05; stimulated PD-1:  18.05 ± 2.9 vs 32.15 ± 5.3, p<0.05; 

unstimulated PDL-1:  31.27 ± 19.98 vs 58.60 ± 16.03, p<0.05; stimulated PDL-1:  

65.9 ± 5.6 vs 90.75 ±2.3, p<0.02).  B) PD-1 and PDL-1 induction on the CD4+ T 

cell subpopulation by HCV core protein.  Unstimulated or TCR-stimulated PBMC 
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from healthy donors were exposed to HCV core or control protein β-gal for 24 h, 

and PD-1 and PDL-1 expression on the surface of the treated CD4+ T 

lymphocytes were examined as described in Methods.  Cells were double-

stained and gating was performed on a distinct CD4+ population; data shown are 

representative dot blots from three independent experiments.  The percentages 

of PD-1 or PDL-1 expression on CD4+ T lymphocytes are shown.  C) Time- and 

gC1qR-dependent PD-1 mRNA induction by HCV core protein.  Above, TCR-

activated PBMC were treated with or without HCV core in the presence or 

absence of anti-HCV core, anti-gC1qR or a control antibody for various time 

points and PD-1 expression was detected by semi-quantitative RT-PCR as 

described in the Methods.  β-actin serves as a control.  Results are 

representative of two independent experiments.  Below, flow cytometric analysis 

of gC1qR-dependent PD-1 induction on CD8+ T cells by HCV core protein.  

PBMC from 2 healthy donors were TCR-stimulated and treated with HCV core in 

the presence or absence of anti-gC1qR or a control antibody for 24 hr, and PD-1 

expression on CD8 + T cells was analyzed by flow cytometry.  Percentage of PD-

1+ cells in the CD8+ populations is shown on the upper right corner. 

 

Figure 2.3  Blocking PD-1 and PDL-1 Engagement Inhibits HCV 

Core/gC1qR-mediated T Cell Dysfunction.   

 

A) Blocking PD-1 pathway signaling restores the expression of the early T 

cell activation marker CD69 that is inhibited by HCV core.  PBMC were 
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stimulated with anti-CD3/CD28 in the presence of HCV core or control protein β-

gal for 24 h.  Anti-PD-1 or anti-PDL-1 antibody was added to the TCR-stimulated 

and core-treated cells simultaneously.  T cell activation was assessed by 

detecting CD69 expression on the surface of CD4+ and CD8+ T lymphocytes as 

described in Methods.  Isotype controls for staining are shown.  Results are 

representative of two independent experiments with separate donors.  In the 

CD4+ subpopulation, statistical significance was observed between β-gal and β-

gal-core-treated cells (55.6 ± 3.7 vs 13.2 ± 2.7, p<0.01), between β-gal-core-

treated cells and β-gal-core-treated cells with antibody to PD-1 (41.5 ± 11.1 vs 

13.2 ± 2.7, p<0.04), and between β-gal-core-treated cells and β-gal-core-treated 

cells with antibody to PDL-1 (57 ± 8.1 vs 13.2 ± 2.7, p<0.01).  B) Blocking PD-1 

pathway prevents HCV core-induced inhibition of T cell proliferation.  PBMC were 

stimulated with or without anti-CD3/CD28 in the presence or absence of HCV 

core protein for 24 h.  Anti-PD-1 or anti-PDL-1 antibody was added to the TCR-

stimulated and core-treated cells simultaneously.  T cell proliferation was 

assessed by Quick Cell proliferation assay.  Statistical significance is shown and 

results are derived from three independent experiments with separate donors.  

C) Blocking PD-1 pathway prevents HCV core-induced T cell apoptosis.  PBMC 

were TCR-stimulated in the presence or absence of HCV core protein for 24 h.  

Anti-PD-1 or anti-PDL-1 antibody was added to the TCR-stimulated and core-

treated cells simultaneously.  T cell apoptosis was assessed by AV/PI staining as 

described in Methods.  Above, percentages of cells in the early apoptotic stage 

(only AV positive) and in death (AV/PI double positive) after the treatment are 
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shown.  Below, the data were shown as percentage of cells positive for AV or PI 

(mean ± SD) on the gated T cell populations from six independent experiments 

with separate donors.   * denotes statistical significance when compared to 

control treatment (p<0.01).   †denotes statistical significance when compared to 

HCV core treatment (p<0.01). 
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CHAPTER 3 

 

Hepatitis C:  the Complications of Immune Dysfunction 

 

Summary

 

Hepatitis C virus (HCV) infection has been linked to numerous diseases of 

immune dysfunction, including but not limited to essential mixed cryoglobulinemia 

and non-Hodgkin’s lymphoma. Clinical studies support these associations and 

treatment of the underlying HCV infection has been variably successful.  Recent 

studies focusing on the role of HCV gene products have discovered evidence of 

dysregulated responses in multiple aspects of host immunity that may be 

contributing to the genesis of these diseases.  Novel treatments that target these 

areas of dysregulation offer hope for improved therapy for the diseases 

associated with immunodysregulation by HCV.  

 

Introduction 

 

 HCV was identified as the agent of transfusion related non-A, non-B 

hepatitis in 1989 (Choo and others 1989).  The Centers for Disease Control and 

Prevention estimate 2.7 million Americans have chronic hepatitis C infection with 

an annual monetary cost (medical and work loss) of >600 million dollars.  The 

majority of acute cases occur in adults 30-49 years old and HCV infection is the 

leading indicator for liver transplant in the U.S. and Europe (Alter and others 
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1997; Hoofnagle 1997).  Persons who have chronic hepatitis C infection are at 

significant risk of developing cirrhosis, hepatocellular carcinoma and notably 

diseases of immune dysfunction, including essential mixed cryoglobulinemia and 

lymphoproliferative disorders (Hoofnagle 1997), upon which this review will 

focus.  Disease progression varies greatly from person to person, making it not 

only difficult to predict who will develop chronic disease but also which of the 

chronically infected will go on to develop significant sequelae.  To further 

compound the issue, it appears that the six major genotypes described may have 

differing disease patterns and responses to treatment (Simmonds and others 

1993b). 

 Hepatitis C is a 9.5-kb, positive strand, RNA virus of the Flaviviridae 

family.  The genome consists of ~9500 nucleotides encoding a single polyprotein 

of ~3000 amino acids that is cleaved into structural and non-structural proteins.  

It encodes three structural proteins (core, E1 and E2) and at least six non-

structural proteins (Figure 3.1).   

Figure 3.1 HCV genomic structure

HCV is classified into 6 genotypes with over 30 subtypes based on sequence 

variation in the core and E1 genes, additionally, there are significant 
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geographical variations (Simmonds and others 1993b).  Persons with long-term 

infections tend to have greater levels of genetic diversity within their genotypes 

(quasispecies) (Farci and others 1997), most likely due to the poor fidelity of the 

HCV RNA polymerase.  The phenomena of high levels of quasispecies is 

associated with poor clinical prognosis, which may be linked to the poor cytotoxic 

lymphocyte (CTL) response in chronically infected persons. 

In the U.S., HCV genotypes 1a and 1b are most prevalent and the most 

resistant to the currently available therapy, pegylated interferon-α (IFN-α) and 

ribavirin (Hoofnagle 2003).  This combination treatment will induce a sustained 

virologic response (SVR) in 42-48% of persons infected with genotype 1a or 1b 

but up to 76-88% of persons infected with genotypes 2 or 3 (Fried and others 

2002).  Side-effects, however, are common and can be serious.  For example, 

IFN-α is associated with significant depression and ribavirin can induce anemia 

and neutropenia and is teratogenic.   

 The study of HCV is made difficult by two key factors.  HCV will only 

reliably infect humans and chimpanzees, thus limiting animal models, and in vitro 

replication is very poor (although some replicon systems have been functional in 

hepatocytes.)  Since newly infected persons are often asymptomatic and 

therefore are rarely clinically recognized as infected, it has also been difficult to 

determine the initial immune responses that correlate with viral clearance.  

Finally, because diseases associated with immune dysfunction occur frequently 

in individuals without HCV infection, it has been difficult to confirm strong 

associations between HCV and a given disease.  This review will describe the 
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common diseases of immune dysfunction associated with HCV infection and 

discuss potential mechanisms underlying these diseases. 

 

Potential Mechanisms of HCV-mediated Immune Dysfunction 

While the precise mechanisms for how the disruption of the host immune 

response by HCV can result in various immune disorders have yet to be defined, 

it is apparent that HCV modulates host immunity on several different levels 

(Moorman and others 2001b).  Over the past decade, there have been numerous 

studies examining different facets of HCV-associated immune dysfunction which 

have included B-cell, T-cell, NK cell, and dendritic cell dysregulation (Figure 3.2).  

The significance of such immunomodulatory potential appears to be twofold: 

evasion of the host immune response leading to viral chronicity, and the potential 

for development of lymphoproliferative disorders.  
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 Figure 3.2  Proposed model for immune dysregulation by HCV infection 

It is noteworthy that HCV clearly infects multiple extrahepatic cell types, 

including peripheral blood mononuclear cells, and this is observed both in vivo 

and in vitro (Shimizu and others 1992; Shimizu and others 1997; Lerat and 

others 1998; Radkowski and others 2000; Radkowski and others 2002; Nowicki 

and others 2005).  It is therefore possible that the immune dysfunction observed 

in HCV is a function of its ability to infect such cells, although the frequency of 

this infection appears low.  HCV sequences observed in different cellular 

compartments and in particular peripheral blood mononuclear cells may vary, 

suggesting viral tropism for specific cells that may be in part affected by the HCV 

diversity that occurs as quasispecies develop (Lerat and others 1998).  The role 
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of a given genotype in targeting hematopoetic cells remains controversial (Kao 

and others 1997; Lerat and others 1998). 

 

Dysregulation of B Cell Function Mediated by HCV 

Since the association between chronic HCV infection and both mixed 

cryoglobulinemia and B-cell lymphoma was first recognized, there have been an 

increasing number of studies examining B cell dysfunction in the context of 

chronic HCV infection.  While it has clearly been shown that clonal populations of 

B lymphocytes are disproportionately present in increased numbers in patients 

with chronic HCV infection, there are also numerous data detailing specific 

mechanisms behind B cell clonality.  Moreover, such mechanisms offer insight 

into the presence of immune dysfunction in patients with chronic HCV infection.  

Most notably, B cells have become a target of drug development for the 

treatment of certain HCV-associated immune diseases (Kazkaz and Isenberg 

2004). 

Franzin et al. were the first to report the presence of clonal B cell 

expansion in the peripheral blood of 38 HCV-infected patients (Franzin and 

others 1995). Subset analyses in their study revealed the presence of clonal 

immunoglobulin gene rearrangements in 100% of HCV-positive patients with type 

II mixed cryoglobulinemia (MC) as opposed to only 24% of HCV-positive patients 

without mixed cryoglobulinemia. The reversibility of B cell clonality in chronic 

HCV infection was similarly assessed in a cohort of 20 patients with HCV-

associated MC undergoing interferon-α therapy (Mazzaro and others 1996).  
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While 80% of these patients (all of whom were noted to have clonal populations 

of B cells) achieved complete or partial clinical responses, 15% reverted to 

polyclonal B cell populations following therapy.  Recent studies also suggest 

upregulation of B-lymphocyte stimulator (BLyS) in the setting of MC (Fabris and 

others 2006; Sene and others 2006), further supporting a significant relationship 

between clonal expansion of B lymphocytes and HCV-associated mixed 

cryoglobulinemia.  Zignego et al. found an increased frequency of bcl-2 gene 

rearrangement(t(14;18) in a prospective study of individuals with HCV and mixed 

cryoglobulinemia (Zignego and others 2002), described in detail below. While 

Toubi et al. observed enhanced B cell apoptosis in B cells from chronically 

infected HCV patients, there was relative resistance to apoptosis seen in the 

CD95/Fas+ B cell subpopulation, suggesting a potential role for this 

subpopulation in B cell proliferative disorders (Toubi and others 2004). 

As the propensity of HCV to induce lymphoproliferation in patients with 

HCV-associated mixed cryoglobulinemia has been further elucidated, there has 

been some effort to define the underlying mechanisms.  Machida et al. reported 

that an HCV E2-CD81 interaction modulates host B cell responses by enhancing 

activation-induced cytidine deaminase (AID) and hypermutating V(H) 

immunoglobulin genes in B cells, suggesting a mechanism for HCV-associated B 

cell lymphoproliferative disorders (Machida and others 2005).  HCV E2 was also 

shown to activate the JNK pathway leading to preferential proliferation of CD27+ 

B cells (Rosa and others 2005).   

The effect of HCV core protein on molecular profiling in human B-
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lymphocytes was recently examined by Wu et al., who found dramatic evidence 

of inhibition of B lymphocyte apoptosis by HCV core in several steps of the 

apoptotic cascade (Wu and others 2006). The investigators expressed HCV core 

in an adenoviral vector in a healthy population of human B lymphocytes and 

observed downregulation of MHC class II molecules, and caspase-1 and -4, 

which are proapoptotic proteins; as well as upregulation of nuclear factor of κ 

light peptide inhibitor gene and TATA box protein, both of which are associated 

with B cell lymphoma.  Similarly, we have very recently found a differential 

response of B cells and T cells to HCV core protein, with upregulation of B cell 

functions (immunoglobulin expression and cell proliferation) and inhibition of B 

cell apoptosis in the setting of downregulated T cell responses (personal 

communication, JPM).  These findings underscore the potential of HCV to disrupt 

antigen presentation and apoptosis and may indicate yet another mechanism for 

HCV-related autoimmunity and lymphoproliferation. 

Oncogenes have also been a focus of investigation in patients with MC.  

In a prospective study of 37 patients with HCV-associated mixed 

cryoglobulinemia, Zignego et al. found that 75.7% had bcl-2 rearrangement in 

peripheral blood mononuclear cells, as opposed to 37.6% of patients with chronic 

HCV infection without mixed cryoglobulinemia (Zignego and others 2002). Galli-

Stampino et al. further expanded on the relationship between oncogenesis and 

clonal B cell expansion in patients with HCV-associated mixed cryoglobulinemia 

by demonstrating the presence of restricted V(H)I gene sequences in peripheral 

blood, hepatic, and lymph node B lymphocytes in three of four patients (Galli-
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Stampino and others 2003). These gene sequences are usually associated with 

B-cell non-Hodgkin’s lymphoma and their presence in patients with chronic HCV 

patients may indicate a mechanism of developing NHL through non-malignant, 

clonally expanded B-cell populations. 

 

Type I Interferon Dysregulation 

Interferon-α (IFN-α) stimulation is a critical and non-specific response to 

viral infection.  Its two main effects are induction of an anti-viral state in infected 

cells and interferon receptor ligation which results in activation of Janus kinase 

(Jak) and signal transducer and activator of transcription (STAT).  Jak/STAT 

signaling in turn activates numerous interferon-response genes including 2’-5’ 

oligoadenylate synthetase (OAS), Mx proteins and the double-stranded RNA 

dependent protein kinase (PKR) (Katze 2002).  PKR is induced by double 

stranded viral RNA and in-turn, phosphorylates eukaryotic initiation factor 2 (elF-

2), resulting in inhibition of cellular protein syntheses and viral replication.  Two 

HCV proteins, the envelope glycoprotein E2 and the nonstructural protein NS5A, 

have been reported as potential inhibitors of the IFN response (Taylor 2000; 

Pflugheber and others 2002).  

Phosphorylated interferon factor 3 (pIRF-3) is the key transcription factor 

for type I interferon (Foy and others 2003).  Type I interferon in turn, upregulates 

the expression of PKR.  Recently, the HCV protein NS3/4A (a serine protease) 

was shown to interrupt the IFN signaling pathway; thus, IRF-3 is never 

phosphorylated and IFN production is not induced (Foy and others 2003).  The 
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importance of IRF-3 was also demonstrated with mutations resulting in dominant 

negative or constitutively active IRF-3 leading to enhanced or restrained HCV 

replication, respectively. 

 

Dysregulation of the NK Response 

Natural killer (NK) cells play a critical role in innate immunity.  NK cells 

mediate lysis of target cells by releasing cytotoxic granules which contain perforin 

and granzymes or by binding apoptosis inducing receptors on the target cells.  

NK cells also secrete numerous cytokines including IFN-γ and TNF-α during 

inflammation (Poccia and others 2001).  Recent reports have implicated the HCV 

E2 protein in suppression of NK activity (Crotta and others 2002; Tseng and 

Klimpel 2002). 

The HCV E2 protein binds CD81 which is expressed on the surface of 

host cells.  When NK cells are exposed to immobilized E2 or anti-CD81 (in vitro), 

their function is impaired.  The impairment ranges from suppressing of 

cytotoxicity and IL-2 induced proliferation to suppressing IL-2, IL-12 and IL-15 

induction of IFN-γ (Crotta and others 2002; Tseng and Klimpel 2002).  

Additionally, ligation of CD81 inhibits CD16-mediated activation of extracellular 

signal-regulated kinase (ERK) and mitogen-activated protein kinase (MAPK) in 

NK cells (Crotta and others 2002).  These mechanisms, if employed by HCV, 

could facilitate HCV persistence.  However this possibility needs further research 

as NK cells do not play a role in all viral infections. 
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Dysregulation of Dendritic Cells by HCV Envelope Glycoproteins 

One possible cause of an impaired CD8+ response to HCV infection may 

be abnormal dendritic cell (DC) function preventing appropriate antigen 

processing and presentation.  Interestingly, HCV E1 and E2 glycoproteins 

interact with DC-specific intercellular adhesion molecule 3 (ICAM-3), grabbing 

nonintegrin (DC-SIGN) and its receptor, DC-SIGNR in immature DCs (Lozach 

and others 2003; Pohlmann and others 2003).  The role of HCV interactions with 

DC remains controversial.  Numerous studies demonstrate abnormal DC activity 

in chronic HCV patients, yet recent studies by Longman et al. report the converse 

(Longman and others 2005). 

In addition to envelope proteins, HCV core has also been implicated in 

inhibiting DC and macrophage function (Sarobe and others 2003).  Addition of 

extracellular core or expression of core/E1 in mice by recombinant adenovirus 

demonstrated an effect on DC maturation and T cell responses upon allogenic 

stimulation.  A molecular mechanism(s) has not fully elucidated to explain this 

inhibition. 

 

Dysregulation of T Cell Function Mediated by HCV Core Protein 

Patients who have a strong and broad cytotoxic lymphocyte (CTL) 

response are more likely to spontaneous resolve a HCV infection when 

compared to those with a weaker response (Lechner and others 2000).  The CTL 

response is suppressed during all phases of HCV infection, although the 

suppression mechanism(s) are not well understood.  One hypothesis for weaker 
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CTL responses is that the HCV proteins interact either directly or indirectly 

against CTLs.  Data have been published indicating that HCV core antagonizes 

host T cell responses, thus potentially contributing to disease progression (Large 

and others 1999b; Ray and Ray 2001).   

 HCV core appears to interact with at least two major cellular signaling 

pathways:  intracellular core interacts with tumor necrosis factor receptor (TNFR) 

and Fas, and extracellular core interacts with the complement receptor gC1qR 

(Kittlesen and others 2000).  Interactions between core and TNFR or Fas are 

known to induce apoptosis in both hepatocytes and lymphocytes, suggesting a 

possible mechanism for HCV-associated liver pathology (Hahn and others 2000; 

Zhu and others 2001; Moorman and others 2003).  However, whether the liver 

pathology results from core-induced apoptotic hepatocytes or is a secondary 

necrosis induced by infiltration of apoptotic lymphocytes remains to be 

determined.   

 Intracellular core appears to localize to the cytoplasm, ER and nucleus, 

while extracellular core is found in transfected cell lines and in the serum of 

infected patients (Sabile and others 1999; Maillard and others 2004).  This same 

extracellular core has also been found to interact with the complement receptor 

gC1qR, which results is inhibition of T cell activity (Kittlesen and others 2000).  

This inhibition appears to take place early in infection and targets T cell 

proliferation and IFN-γ production (Yao and others 2001a).  C1q, the natural 

ligand for gC1qR, is part of the C1 complex and is the first component in the 

classical complement pathway.  C1q, like HCV core, will also inhibit T cell 
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proliferation, suggesting that core may usurp this pathway to its advantage.  

Other viruses such as Epstein Barr and HIV appear to exhibit similar 

mechanisms to suppress the host immune response by interactions with the 

complement system (Hilleman 2004).   

 While HCV core appears to be a useful target as an antigenic stimulus 

because of its highly conserved nature, this protein has also been associated 

with the development of auto-antibodies such as anti-LKM, anti-p450, and anti-

GOR.  Interestingly, alteration of core antigen to remove the molecular mimic 

sites responsible for induction of these auto-antibodies was recently used to elicit 

strong antigen-specific CTL responses with less self-recognition (Liu and others 

2006).   

 

HCV and the Associated Clinical Diseases of Immune Dysfunction 

 At least 36 extrahepatic disease manifestations have been associated with 

HCV infection, with disorders of immune function frequently described (Table 

3.1).  With the exception of mixed cryoglobulinemia, acceptance of other disease 

associations with HCV infection is not universal (Agnello 1997), but many have 

fairly strong anecdotal support in the literature.  While the data linking HCV 

infection with non-Hodgkins lymphoma (NHL) is strong, the mechanism(s) 

underlying the association remain poorly understood (Gisbert and others 2003).   
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Table 3.1 Extrahepatic disease manifestations associated with HCV infection 

Antiphospholipid syndrome MALToma 

Aplastic anemia Membranoproliferative glomerulonepritis*

Autoimmune hemolytic anemia Membranous glomerulonephritis 

Autoimmune thyroiditis Mixed cryoglobulinemia* 

Chronic fatigue syndrome Moorne corneal ulcers 

Behcet’s syndrome Multiple myeloma 

Carotid atherosclerosis Non-Hodgkin’s lymphoma (NHL)* 

CREST syndrome Neurocognitive impairment 

Dermatomyositis Pancreatitis 

Diabetes mellitus Polyarteritis nodosa 

Fibromyalgia Polymyositis 

Guillain-Barre syndrome Phophyria cutanea tarda 

Hypertrophic cardiomyopathy Rheumation arthritis 

Hypocholesterolemia Sialadenitis 

Idiopathic pulmonary fibrosis Sjogren’s syndrome 

Idopathic thrombocytopenia purpura Systemic lupus erythematosus 

IgA deficiency Uveitis 

Lichen planus Waldenstrom’s macroglobulinemia 

*Presented in greater detail in the text. 
CREST: calcinosis Cutis, Raynaud’s phenomenon, esophageal dysfunction, sclerodactyly and 
telangiectasia; HCV: Hepatitis C infection; MALT: Mucosa-associated lymphoid tissue 
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Mixed Cryoglobulinemia (Type II Cryoglobulinemia) 

 

Disease. 

 

Cryoglobulinemia is defined as the presence of circulating 

immunoglobulins (Ig) that reversibly precipitate at <37°C.  The term “mixed 

cryoglobulins” was coined to differentiate types II and III, which is characterized 

by a mixture of 2 different kinds of antibodies, from type I, characterized by just a 

single monoclonal antibody.  Cryoglobulins may precipitate in vivo in small blood 

vessels (venules, capillaries, arterioles), leading to vasculitis.  The evidence 

linking HCV and mixed cryoglobulinemia (MC) is strong and is supported by 

epidemiological, molecular, and virological studies. 

 

Prevalence. 

 

In the early 1990s, multiple investigators reported the presence of HCV 

infection in 50-90% of MC patients (Ferri and others 1991; Agnello 1997).  The 

frequency of dual status exhibits geographic variation, with southern Europe 

having a higher rate than northern Europe or North America (Cacoub and others 

2000).  The most likely explanation for this difference is differing laboratory 

techniques used to identify cryoglobulins.  This hypothesis is supported by the 

fact that regions that reported a higher frequency of HCV with MC generally used 
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more sensitive laboratory methods to identify MC and consistent use of these 

more sensitive methods has revealed increasing prevalence rates over time. 

 One alternative to using the more sensitive methods for detecting 

cryoglobulins is to test for rheumatoid factor (RF).  RF displays a high avidity for 

IgG and thus easily forms immune complexes.  Common tests for RF are 

generally much more sensitive than tests for cryoglobulins.  This was 

demonstrated when data from 408 patients infected with HCV revealed that 40% 

were positive for cryoglobulins, yet 100% were positive for RF (Karlsberg and 

others 1995).  HCV is now linked to approximately 73% of all forms of 

cryoglobulinemia (Trejo and others 2001).  Notably, the presence of 

cryoglobulinemia is highly associated not only with extrahepatic disease, as 

described below, but also with the development of cirrhosis (Kayali and others 

2002). 

 

Clinical Manifestations. 

 

Traditionally, the presence of purpura, arthralgias, and weakness were 

used to diagnose MC; this is no longer adequate as other symptoms are now 

known to be associated with MC as well (Table 3.2) (Mayo 2003).  Many persons 

with detectable cryoglobulins display no obvious symptoms.  When present, the 

classic skin rash is a palpable purpura that may rarely progress to a necrotizing 

lesion or systemic vasculitis.  Arthralgias are a common complaint of persons 

with MC and most often affect the proximal interphalangeal joints, 
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metacarpophalangeal joints, and knees.  In some cases, exposure to cold 

temperatures will increase the pain and stiffness in these areas.  Changes in 

renal function and peripheral neuropathies are also more common than 

previously thought. 

Table 3.2 Symptoms of cryoglobulinemia  

Symptom Incidence 

Skin disease 22% 

Joint disease 16% 

Weakness 65% 

Renal disease 25-30% 

Raynaud phenomenon 3-50% 

Neuropathy 8-25% 

Sicca syndrome 20% 

Lymphadenopathy 3% 

Fever 3% 

Adapted from:  (Dickson 1997; Hoofnagle 1997; Lunel and Musset 2001; Schott and others 2001; Raanani 

and Ben-Bassat 2002; Mohammed and Rehman 2003; Nocente and others 2003; Han 2004; Ramos-Casals 

and Font 2005; Vassilopoulos and Calabrese 2005; Vigani and others 2005) 

 

Notable differences are observed when HCV-associated MC (HCV-MC) 

patients are compared to MC patients without HCV infection.  Both groups 

display the same frequency of cutaneous involvement, renal involvement and 

peripheral neuropathy, but the HCV-MC patients are less likely to manifest fever, 

lymphadenopathy, articular involvement, or Raynaud’s phenomenon.  ANA and 
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RF are common in both groups, but MC patients without HCV are more likely to 

have ANA, whereas HCV-MC patients are more likely to have RF (Trejo and 

others 2001).  Circulating immune complexes will activate complement and 

therefore low levels of C3, C4, and CH50 are seen in all patients with MC.  

However, the levels of C4 and CH50 are significantly lower in HCV-MC versus 

non-HCV-MC patients (Trejo and others 2001). 

 

Pathogenesis. 

 

The symptoms of MC are due the vascular deposition of the 

cryoprecipitate, which contains HCV-RNA, LDL, VLDL, IgG and monoclonal IgM 

that has RF activity; these deposits can then lead to vasculitis.  The importance 

of HCV infection in this process is demonstrated by the increased levels of virus 

and RF antibody (up to 1000 fold higher) at the site of vascular lesions when 

compared to serum levels (Agnello and others 1992).  Persons with HCV-MC can 

also present with abnormal B cell proliferation, as described in detail above, 

which appears to be an antigen driven process that can ultimately result in a 

dominant B cell clone.  This may be the result of genetic mutation; for example, 

88% of patients who are HCV-MC demonstrate a translocation of the bcl-2 gene 

from chromosome 18 to chromosome 14, compared to 8% of patients with HCV 

alone and 2% of patients with other liver diseases (Zignego and others 2002).  

However, translocation has not been shown to be a definitive cause, since bcl-2 

overexpression does not always accompany t(14;18) translocation 
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(Papakonstantinou and others 2001).  B cells with the t(14:18) translocation 

without bcl-2 overexpression and mRF B cells that over express bcl-2 without the 

t(14:18) translocation may be present in the blood.  The two populations cannot 

be discerned without isolation studies that thus far have not been performed. 

 

Management 

 

Prior to the recognition that HCV is associated with MC, plasmapheresis in 

conjunction with high-dose corticosteroids and immunosuppressive therapy was 

employed to treat symptomatic exacerbations of the disease; there is a paucity of 

evidence showing long-term benefit from such an approach (Ballare and others 

1995).  Plasmapheresis remains the cornerstone of therapy in the setting of MC-

associated renal failure, limb ischemia attributable to cryoglobulinemic vasculitis, 

and progressive motor neuropathy.  Observational data suggests that 

plasmapheresis can halt the progression of acute renal failure in 55% to 87% of 

patients, although there is no clear mortality benefit (Madore and others 1996).  

Corticosteroids are also generally advocated in patients with progressive renal 

failure or vasculitis, although there are data suggesting that they may increase 

HCV RNA viremia (Dammacco and others 1994). 

Antiviral therapy directed towards chronic HCV infection has been shown 

to be highly effective in HCV-associated MC.  Interferon-α or pegylated 

interferon-α in combination with ribavirin have been used successfully in this 

manner (Table 3.3) (Zuckerman and others 2000; Mazzaro and others 2003; 
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Cacoub and others 2005; D'Amico and others 2005; Mazzaro and others 2005).  

Cacoub et al. reported complete clinical responses in eight of nine patients with 

HCV-MC at 18 month follow-up after treatment with pegylated interferon-α plus 

ribavirin for a mean of 13.5 months (Cacoub and others 2005).  Mazzaro et al. 

also reported favorable responses in eighteen patients with HCV-MC treated with 

pegylated interferon-α plus ribavirin, although 44% (8 patients) relapsed both 

virologically and clinically within a few weeks after cessation of therapy (Mazzaro 

and others 2005). 
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Table 3.3: Summary of trials examining interferon-α (IFN-α) or pegylated IFN-α with ribavirin in 
the setting of HCV-associated mixed cryoglobulinemia 

Year 
 

Authors 
 

No. of 
patients 

Treatment Complete 
Virologic 
Response* 
(%) 
 

Complete 
Immunologic 
Response** 
(%) 
 

Complete 
Clinical 
Response 
(%) 
 

Sustained 
Response 
(Clinical or 
Immunologic) 
(%) 
 

2005 D’Amico et 
al 

25 IFN-α 
plus 
ribavirin 
(6 – 12 
months) 

100 96 ND ND 

2005 Cacoub et 
al. 

9 Pegylated 
IFN- α 
plus 
rivavirin 
(10 – 26 
months) 

78 56 89 89-100 

2005 Mazzaro et 
al. 

18 Pegylated 
IFN-α 
plus 
rivavirin 
(48 
weeks) 

83 56-100 89 44 

2003 Mazzaro et 
al. 

27 IFN-α 
plus 
rivavirin 
(1 year) 

18 33 85 30 

2000 Zuckerman 
et al. 

9 IFN-α 
plus 
rivavirin 
(6 
months) 

22 78 100 ND 

ND- no data 
*Defined in all studies as achievement of undetectable viral load 
**Reduction in cryocrit or rheumatoid factor concentration 
Adapted from: (Zuckerman and others 2000; Mazzaro and others 2003; Cacoub and others 2005; D'Amico 
and others 2005; Mazzaro and others 2005) 
 

Rituximab, which is a chimeric monoclonal antibody directed towards 

CD20, is a novel therapy to be tried in HCV-associated MC and appears to be 

useful based on limited but numerous anecdotal studies (Zaja and others 1999; 
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Basse and others 2005; Bruchfeld and others 2006; Quartuccio and others 

2006a; Scheinfeld 2006; Seror and others 2006).  

 

Non-Hodgkin’s Lymphoma 

 

Disease. 

 

Each year, 54,000 people in the United States are diagnosed with non-

Hodgkin’s lymphoma (NHL).  NHL is a set of malignant diseases arising from 

lymphoid tissues (B or T lymphocytes).  Given the multiplicity of subsets of NHL, 

epidemiological studies regarding causative factors have not been satisfactorily 

conducted in comparison to other malignant diseases.  However, several 

possible causative factors have been identified, including pesticides, blood 

transfusion, immunodeficiency, radiation, smoking and several types of diet, as 

summarized previously (Matsuo and others 2001).   

 

Prevalence. 

 

The data linking HCV infection to NHL are significant but show 

considerable variation (0-42%) (Kashyap and others 1998; Germanidis and 

others 1999).  Epidemiologic studies support a role for HCV in the development 

of NHL as well as multiple myeloma (Ohsawa and others 1999; Duberg and 

others 2005), but others have failed to show significance (Rabkin and others 
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2002).  An interesting parallel is data showing that random bone marrow biopsies 

of HCV positive persons reveal a lymphoproliferative disorder 25-40% of the time 

(Ferri and others 1994; Rasul and others 1999).  One case control study from 

Italy found that HCV infection increased the risk for NHL 50-fold in the liver or 

salivary glands--greater than the relative risk for hepatocellular carcinoma.  The 

same study found a 4-fold increase of lymphoma in other sites (De Vita and 

others 1998). 

 

Clinical Manifestations 

 

Numerous NHL tumor types associated with HCV infection have been 

reported (Silvestri and others 1998), with follicular and lymphoplasmacytoid 

lesions being the most common.  Extranodal involvement is common (found in 

65% of individuals with HCV), with liver and salivary glands being over-

represented (De Vita and others 1997; Zuckerman and others 1997).  Individuals 

with NHL present with symptoms related to enlargement of lymph nodes that 

may be located throughout the lymphatic system.  Visceral involvement with NHL 

may remain occult for prolonged periods prior to diagnosis.  A subset of 

individuals will develop symptoms such as fever, night sweats, and weight loss 

that may bring them to medical attention. 

 

 

 

 93



Pathogenesis. 

 

While it is clear that individuals with chronic HCV infection and hepatitis 

leading to cirrhosis often develop hepatocellular carcinomas, the direct 

oncogenic potential of HCV is controversial.  Such a role cannot be completely 

ruled out, since, e.g., HCV core protein has been reported to be involved in 

transformation of cells to malignant phenotypes (Ray and others 1996).  HCV 

does show some lymphotrophic specificity but only in relatively small numbers of 

peripheral blood mononuclear cells (PBMC) (Zignego and Brechot 1999), and 

perhaps only under abnormal conditions such as immunosupression (Muratori 

and others 1996; Laskus and others 2002) or cell transformation (Sung and 

others 2003).  The preponderance of data suggests that HCV-associated 

lymphomas arise from abnormal B cell proliferation, with the mechanisms 

outlined previously in this review.   

 

Management. 

 

As the potential of HCV to clonally expand B-lymphocytes and promote 

lymphomagenesis has been further elucidated, there have been several small 

trials examining the response of HCV-associated B-cell lymphoma to antiviral 

therapy. Zuckerman et al. reported complete hematologic responses and 

regression of B-cell clonality in thirteen of fifteen patients with chronic HCV 

infection and t(14:18) translocation or IgH rearrangement, treated with either 
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interferon-α or interferon-α and ribavirin for 6 to 12 months (Zuckerman and 

others 2001).  Vallisa et al. also reported complete or partial hematologic 

responses in nine of twelve patients with HCV-associated, low grade B-cell 

lymphoma treated with pegylated interferon-α and ribavirin for 6 to 12 months, 

although molecular remission was not achieved as in the Zuckerman trial (Vallisa 

and others 2005).  Whether antiviral therapy for HCV-associated B-cell 

lymphoma should supplant or be added to conventional chemotherapy, including 

rituximab, is unclear as there have been no supporting clinical studies. 

 

Membranoproliferative Glomerulonephritis (MPGN) 

 

Disease. 

 

MPGN is a disease that affects the glomeruli of the kidney.  It is 

characterized by endocapillary proliferation, monocytic infiltration, double contour 

membranes, large eosinophilic, PAS-positive intraluminal deposits and vasculitis 

of the small and medium sized renal arteries (Fornasieri and D'Amico 1996).  

Electron microscopy indicates subendothelial deposits that may have structure 

similarities to cryoglobulins (Cordonnier and others 1975).  MPGN appears to 

occur predominantly with type II cryoglobulins (Pucillo and Agnello 1994; 

Fornasieri and D'Amico 1996).  mRF appears to be a critical element in 

deposition of cryoglobulins in the glomeruli (Fornasieri and D'Amico 1996) and 

since HCV infection produces relatively high concentrations of mRF (Pucillo and 
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Agnello 1994), this may be a reason for the predominance of HCV in 

cryoglobulinemic glomerulonephritis. 

 

Prevalence. 

 

Reports linking HCV-related mixed cryoglobulinemia to MPGN find this 

association in 33% (Agnello 2000) to 81% (Misiani and others 1992) of cases.  

Data linking HCV infection as a whole to MPGN are more controversial.  Reports 

have been published supporting and opposing this premise.  Neither argument is 

convincing since studies to detect and characterize RF in MPGN lesions in the 

absence of cryoglobulinemia and B cell clonal analysis that can detect mRF B 

cells in the absence of cryoglobulinemia have not been performed. 

 

Clinical Manifestations 

 

The average patient with renal disease associated with HCV infection is 

recognized when diagnosed with nephritic syndrome (71%).  Most will have 

serum albumin <3 g/dl with mild renal insufficiency (72%).  Over time, a relatively 

small number may progress to dialysis (Fornasieri and D'Amico 1996). Most of 

these patients will have detectable cryoglobulins (59% initially – 85% overall) but 

only 44% will present with extra-renal manifestations of cryoglobulinemia.  

Clinical presentation of liver involvement is not a given.  Up to 82% will show no 

clinical manifestations of liver disease.  However, up to 88% will have an 
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abnormal liver biopsy consistent with chronic HCV infection (Fornasieri and 

D'Amico 1996).  As in primary MC disease, complement levels will also be 

depressed in most of these patients (Misiani and others 1992). 

 

Pathogenesis 

 

Renal biopsy will generally reveal endocapillary proliferation, monocytic 

infiltration, and double contour membranes; all morphological features consistent 

with immune complex disease.  Detection of HCV RNA in the affected glomeruli 

is inconsistent due to the high levels of RF-induced artifact.  Notable is the fact 

that RF from patients with type II MC shows a high affinity for cellular fibronectin, 

which is highly concentrated in the glomerular mesangium.  This has led to 

speculation that RF induces deposition of Ig in the glomerulus irrespective of 

HCV infection (Fornasieri and D'Amico 1996). 

 

Management. 

 

Antiviral therapy aimed at chronic HCV infection remains the most 

effective treatment for HCV-associated MPGN, although recent studies using 

rituximab are quite encouraging. Interferon-α and pegylated interferon-α both in 

combination with ribavirin have been used successfully in this regard and have 

been shown to halt the progression of renal failure in such patients (Giannico and 

others 2000; Loustaud-Ratti and others 2002; Sabry and others 2002).  While 
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there is concern over the use of ribavirin in patients with renal insufficiency 

whose threshold for hemolytic anemia is lowered, its combination with interferon 

is advocated in these patients as long as its dose is titrated to account for a lower 

creatinine clearance (Orlent and others 2005). As noted, very recent studies 

suggest a role for rituximab in treating HCV-related glomerulonephritis 

(Roccatello and others 2004; Garini and others 2005; Quartuccio and others 

2006b). 

 

Other Diseases 

 

 Evidence has been published linking a number of diseases to HCV 

infection.  In general, more research needs to be done to prove or disprove these 

links.  For example, HCV has been repeatedly linked to progressive declines in 

pulmonary function in patients with underlying lung diseases such as asthma and 

chronic obstructive pulmonary disease (COPD) (Kanazawa and others 2003; 

Kanazawa and Yoshikawa 2004; Moorman and others 2005a). In patients who 

already had a diagnosis of COPD, chronic HCV infection led to a more rapid 

decline in forced expiratory volume (FEV1) and diffusing capacity for carbon 

monoxide (DLCO), findings that were abrogated in those treated with interferon 

(Kanazawa and others 2003).  In a recent 6-year prospective trial, asthmatic 

patients with chronic HCV who did not respond to interferon had greater impaired 

reversibility to bronchodilators when compared to either HCV-negative controls or 

to HCV-positive individuals who responded to interferon (Kanazawa and 
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Yoshikawa 2004).  Some data suggests that HCV infection may alter 

acetylcholine-mediated airway tone (Kanazawa and Yoshikawa 2004).  We have 

shown that HCV core protein can alter IL-8 cytokine expression in pulmonary 

fibroblasts, mediated by p38 MAPK (Moorman and others 2005b).  Other smaller 

studies also suggest a role for HCV infection in various pulmonary diseases, 

including idiopathic pulmonary fibrosis (Manganelli and others 1996; Idilman and 

others 2002). 

 

Expert Commentary 

 

While HCV infection has in the past been primarily considered a disease 

of the liver, it is now clear that this systemic infection leads to serious health 

issues beyond just the propensity to lead to chronic hepatitis and cirrhosis.  The 

majority of the diseases outlined in this review are at their core disorders of 

immune signaling.  HCV gene products such as envelope and core proteins and 

NS5A appear to have significant effects on host immune responses, and these 

may ultimately also facilitate the establishment of viral chronicity following acute 

infection.  The lack of latency with this particular virus supports the existence of 

viral mechanisms by which host immune responses are either usurped or 

avoided in an effort to establish chronicity. 

  For the majority of individuals who do go on to chronic HCV infection, the 

consequences on the immune system appear to persist.  While there are multiple 

lines of evidence suggesting that HCV can be an immunosuppressive virus, the 
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authors firmly believe that it is more accurate to state that HCV is 

immundysregulatory.   We and others have consistently found differential effects 

on B and T lymphocyte function in the setting of both clinical disease and in in 

vitro studies, with B cells exhibiting profiles consistent with activation and CD4+ 

and CD8+ T cells exhibiting altered or impaired cytokine and receptor 

expressions, proliferation, and cell survival.  The immune-associated disease 

states that are observed in the setting of chronic HCV likely represent the results 

of a complex interplay between these dysregulated immune responses (Figure 

3.3).   

 

  

 

Figure 3.3  Immunodysregulatory aspects of chronic HCV infection based on published studies.  
CTL: Cytoxic T lymphocyte; IFN: interferon; IL: Interleukin; MAPK: Mitogen-activated protein kinase; 
MHC: Major histocompatability complex; MPGN: Membraneoproliferative glomerulonephritis
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In contrast to HIV infection, characterized by a very dramatic loss of CD4+ 

T cells and extreme immunosuppression, chronic HCV infection leads to 

dysregulated immune responses that are generally more subtle and certainly 

more variable within a given infected individual.   Not every infected patient will 

develop mixed cryoglobulinemia, for example, but it would not be surprising to us 

if the majority of HCV-infected patients exhibit altered B cell responses to some 

degree when assayed in detail.  We believe that translational studies focusing on 

individuals with HCV-associated immune conditions will be the most fruitful 

approach to determining how HCV and its gene products are altering the specific 

arms of host immunity.    

 Unfortunately, much of the data regarding HCV-associated immune 

dysfunction is derived from small populations and the data are often anecdotal.  

The difficulty in accruing large numbers of affected individuals could be offset by 

a multicenter approach to studying these diseases.  Such an approach would be 

excellent for facilitating clinical trials and translational studies and would better 

define the specific immune-related issues that occur in the setting of HCV 

infection. 

 In terms of therapy, there are a fair amount of clinical data suggesting that 

combination therapy with interferon-α and ribavirin will ameliorate many of the 

HCV-associated conditions to some extent, particularly in interferon responders.  

In addition, it is of course desirable to completely eradicate this potentially 

curable disease if at all possible to avoid not only immunodysregulatory diseases 

but chronic hepatitis and all of its sequelae.  All individuals with HCV infection 
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should ideally be evaluated for treatment and offered combination therapy if 

appropriate, although in practice this has not been the rule for a multitude of 

reasons ranging from cost to toxicity of treatment to social barriers to care.  

These patients need close clinical follow up, immunizations, and teaching 

regarding lifestyle alterations including alcohol cessation. Treatment by either a 

hepatologist or infectious diseases specialist is recommended because current 

treatment options are quite toxic and require intense monitoring. 

 Therapy with rituximab is perhaps the most exciting modality that has 

emerged for individuals with immunodysregulatory diseases associated with 

HCV.  Although still primarily anecdotal, the limited data do suggest that targeting 

of B cells may be relatively effective for several of the conditions outlined herein.  

The authors believe that individuals with HCV infection who are either not eligible 

for or do not respond to combination interferon-α and ribavirin therapy, or who 

have persistent immune disease despite therapy, should be considered for 

treatment with rituximab and ideally should be enrolled in ongoing clinical trials 

with this drug.  

 

Five-year View 

 

It is likely that within 5 years there will be much more clinical data 

confirming the efficacy of drugs such as rituximab in treating HCV-associated 

diseases.  Anecdotal studies throughout the literature are quite encouraging for 

this treatment, which targets B cells in particular and has comparatively few side 
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effects.  Clinical trials with rituximab are enrolling for the treatment of 

cryoglobulinemic vasculitis, NHL, and Sjogren’s syndrome, but other HCV-

associated conditions will assuredly be targeted and clinical data are 

forthcoming.   

Although treatment of the underlying HCV infection does lead to 

improvement in some of these diseases, our current regimens of pegylated 

interferon-α and ribavirin are fraught with side effects and cure less than half of 

our infected patients, depending on their HCV genotype.  A large number of new 

treatments, however, are now in early phase clinical trials and promise improved 

sustained virologic responses.  These include novel protease, RNA polymerase, 

and RNA helicase inhibitors.  The ability to clear infection in the majority of 

individuals may be a reality for clinicians in the very near future.  

 

Key Issues 

 

• Hepatitis C virus (HCV) can dysregulate host immune responses through 

interactions with host proteins and perturbation of signal transduction 

cascades; this immunodysregulation may afford the virus the opportunity 

to persist and to facilitate the development of immune disorders.  

• Mixed cryoglobulinemia is strongly associated with HCV, and renal 

disease and lymphoma manifest at least some overlap with 

cryoglobulinemia.   

• The interaction of the HCV gene products with key aspects of the host 
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immune system seems to be important in the pathophysiology of several 

of the extrahepatic manifestations of HCV.   

• Antiviral therapy and/or treatment targeted at B cell populations are 

efficacious for certain immune-related manifestations of HCV infection.  
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CHAPTER 4 

 

DISCUSSION 

 

Despite the advances made in the area of HCV research we are still left 

with many unanswered questions and few good options.  There is no vaccine 

available for HCV; there is no treatment that is consistently effective from patient 

to patient and viral genotype to genotype; and finally, there is no conclusive 

evidence that explains how HCV evades the human immune system and 

establishes a chronic infection.  In these studies we attempt to identify one 

possible pathway that the virus may exploit to establish a chronic infection.   

It has been established that extracellular hepatitis C core protein will bind 

to the complement receptor gC1qR (Kittlesen and others 2000) and subsequently 

suppress T-cell activity in vitro.  This suppressive ability mimics C1q, which is the 

natural ligand for gC1qR (Chen and others 1994), and can be blocked by the 

addition of anti-gC1qR.  Given that a strong T-cell response is necessary to 

eliminate viral infections any perturbations of the T-cell response suggests a 

possible mechanism for establishing a chronic viral infection. 

Very recent data have shown that the expression of PD-1/PDL-1 to be 

related to whether an acute viral challenge will be cleared by the host or develop 

into a chronic infection.  These data show that PD-1/PDL-1 is upregulated in a 

chronic infection versus an acute infection and may play a role in T-cell anergy.  
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Of most importance, these studies have shown that anergic T-cells can be 

rescued by blocking the ligation of PDL-1 to PD-1. 

We began these studies by determining the PD-1 expression levels on 

PBMCs isolated from healthy donors versus PBMCs isolated from persons 

chronically infected with HCV.  Upon activation of these PBMCs by anti-

CD3/CD28 or no activation, we were able to demonstrate that in fact PD-1 

expression is upregulated on PBMCs from the chronically infected donors when 

compared to the healthy donors.  We were further able to show that PD-1 is also 

upregulated on the CD4+ and CD8+ subpopulations.  We were also able to 

demonstrate that the ligand for PD-1, PDL-1, is also upregulated on chronically 

infected persons.  Moreover, when isolated PBMCs were treated with other viral 

proteins, such as HCV NS3, HIV Tat, and gp120, no change in PD-1 expression 

was noted.  Finally, to rule out the possibility that we had started with different 

lymphocyte phenotype subpopulations, we compared the PD-1/PDL-1 

expression levels of CD45RA and CD45RO on T-cells isolated from chronically 

infected persons.  In both a stimulated and unstimulated setting we show no 

difference in the levels of PD-1/PDL-1 expression. 

Our data suggest that PD-1/PDL-1 are upregulated in response to the 

setting of a chronic HCV infection; how this occurs is unknown but seems likely 

related to a hepatitis C viral product.  Because previous data have shown that the 

HCV core protein has suppressive effects on T-cells, we investigated whether 

HCV core protein would have an effect on the expressed levels of PD-1 and 

PDL-1.  We demonstrated that HCV core will increase the expression of PD-1 in 
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a dose dependent manner and that C1q will also increase the expression of PD-1 

when compared to a control protein.  This upregulation of expression, as induced 

by HCV core, was also shown to be present on CD4+ and CD8+ T-cells.   

Next, to determine if a the upregulation of PD-1 is mediated through HCV 

core binding to gC1qR and to further support the link between core and PD-1 

expression, we measured the levels of PD-1 mRNA in T-cells exposed to HCV 

core.  We found consistent upregulation of the message, beginning as early as 6 

hours, after treatment with the core protein.  We also employed anti-gC1qR in 

these experiments and found that the antibody inhibited core’s ability to increase 

the level of PD-1 message.  To support the gC1qR findings we again measured 

the expression level of PD-1, this time in healthy donor cells treated with core 

alone, core plus a non-specific antibody, or core plus anti-gC1qR.  Again, we 

found that anti-gC1qR inhibited core’s ability to effect PD-1 changes, e.g. PD-1 

upregulation. 

Our last set of experiments were designed to determine if blocking the PD-

1/PDL-1 interaction in the presence of core protein would restore T-cell function.  

We found that CD4+ and CD8+ cells in the presence of core protein show a 

suppression of CD69 (a T-cell activation marker); yet, these same cells 

demonstrated an increase of CD69 when treated with anti-PD-1 or anti-PDL-1.  

We were also able to show that blocking with anti-PD1 or anti-PDL-1 will partially 

restore T-cell proliferation (in the presence of core protein) and will decrease the 

amount of apoptosis of T-cells (in the presence of core protein). 
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HCV core is a known immunomodulatory viral antigen that circulates in the 

plasma of infected individuals.  Whether core is the cause or a cause of chronic 

infection remains to be determined.  Regardless of the role core is eventually 

discovered to have, it seems clear that levels of PD-1 and PDL-1 do have a role 

in establishing a chronic infection.   

Data supporting the importance of PD-1 and its role in the immune 

response are many; evidence suggests that PD-1/PDL-1 involvement is normal 

for proper immune tolerance, autoimmune responses, and antitumor or antiviral 

immune evasion (Nishimura and Honjo 2001; Dong and others 2002; Iwai and 

others 2003; Chen 2004; Khoury and Sayegh 2004); the recent discovery that 

PD-1 is upregulated on exhausted T-cells during a chronic viral infection in mice 

(Barber and others 2006) and their subsequent reactivation by blocking the 

interaction between PD-1 and PDL-1.  Interestingly, this exhaustion of host T-

cells as a means of immune evasion may also be a mechanism employed by 

other persistent viruses in humans, such as HIV (Day and others 2006; Freeman 

and others 2006; Petrovas and others 2006; Trautmann and others 2006a).  The 

data so far make a strong suggestion for the importance of PD-1 in general and 

its potential role in the establishment of viral chronicity.  If this is indeed the case 

then either blocking the PD-1/PDL-1 interaction or blocking the HCV core 

protein/gC1qR interaction would offer potential new treatment options for 

management of hepatitis C. 

Our lab has also recently shown that suppressor of cytokine signaling-1 

(SOCS-1) is also upregulated in T-cells in the presence of HCV core.  SOCS-1, 
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like PD-1, is a negative regulator of T-cells.  With this knowledge that two known 

negative regulators of T-cells are upregulated by HCV core protein the next step 

will be to examine the role of PD-1 and SOCS-1 in regulating T-cell signaling 

during HCV infection as described in Figure 4.1. 

 

 

Figure 4.1  Schematic representation of experiments designed to delineate signaling by negative 

modulators PD-1 (A) or SOCS-1 (B) during HCV core/gC1qR-mediated T cell inhibition. 
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 CHAPTER 5 

 

ADDITIONAL INFORMATION 

 

 In addition to the data presented and discussed in chapters one through 

three, we also attempted to further characterize the hepatitis C core protein.  Our 

hypothesis was that HCV core protein inhibited specific T-cell signaling pathways 

mediated by its ability to bind to gC1qR and this inhibition subsequently inhibited 

the T-cell response.  Our overall strategy was to create and express mutations of 

the HCV core protein and compare the mutated core effects on T-cell responses 

to the wild type core effects on T-cell responses. 

 We employed a scanning alanine mutagenesis technique to generate the 

core mutants.  We were able to create 10 mutations (as confirmed by 

sequencing) in the area of HCV core deemed most likely to contain the binding 

site to gC1qR.  We were then able to clone these mutants into an E. coli 

expression system that would express the now mutant proteins with a 6 histidine 

tag.  We then attempted expression and were able to express the mutant 

proteins and confirm the expression via western blot and coomassie gel.  We 

were also able to purify the proteins by using Ni+ columns.  We were less 

successful in our attempts to concentrate the protein.  Concentration attempts 

seemed to cause the core protein to ‘disappear’ as we could see no signal on 

post-concentration analysis.  Efforts to block the concentration system using 

unrelated proteins had no positive effect. 

 125



 We then compared T-cell responses using proteins that we were able to 

express and found no differences.  Whether this was due to small concentrations 

of the mutant proteins or other reasons is unknown.  We ultimately abandoned 

this avenue of research but feel that with adequate funding and time that needed 

progress could be accomplished in this area. 
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