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ABSTRACT 

Pharmacokinetics, Tissue Distribution, Synergistic Activity, and Antitumor Activity of Two 

Isomeric Flavones 

by 

Crystal Whitted 

Flavonoids are polyphenolic secondary metabolites found in plants that have bioactive properties 

including antiviral, antioxidant, and anticancer. Two isomeric flavones were extracted from 

Gnaphalium elegans and Achyrocline bogotensis, plants used by the people from the Andean 

region of South America as remedies for cancer. 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-

chromen-4-one (5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone/ flavone A) and 3,5-dihydroxy-6,7,8-

trimethoxy-2-phenyl-4H-chromen-4-one (3, 5–dihydroxy-6, 7, 8–trimethoxy flavone/ flavone B) 

have shown antineoplastic activity against colon cancer cell lines dependent upon their 

differentiation status. Pharmacokinetic studies reported herein were used to determine dosing for 

antitumor assays, as well as determine target tissue concentration. These included the 

development of methods to extract the flavones from plasma or colon tissue and reverse phase 

high performance liquid chromatography methods for quantification. Quantification methods 

were linear (r2 e  0.99) with plasma calibration curves ranging from 250 - 2,500 ng/mL and 2,500 

- 100,000 ng/mL for both flavones and colon calibration curves ranging from 250 – 100,000 ng/g 

(flavone A) and 1,000-25,000 ng/g (flavone B). Intravenous administration of a 20 mg/kg dose in 

rats yielded half-lives of 83.68 ± 56.61 and 107.45 ± 53.31 minutes with clearance values of 

12.99 ± 13.78 and 80.79 ± 35.06 mL/min/kg for flavones A and B, respectively. Analysis of 

colon tissue yielded concentrations of 1639 ± 601 ng/g (flavone A) and 5975 ± 2480 ng/g 

(flavone B), suggesting both may be good candidate for individual or adjunct therapy for colon 
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cancer due to distribution to the target tissue. Preliminary studies in colon cancer cells CaCo 2 

and HCT 116 using either flavone in combination with 5-fluorouracil (5-FU) suggested 

synergistic activity of these compounds. The combination treatment increased induction of 

apoptosis by enhancing the DNA damaging mechanism of 5-FU. In vivo, preliminary xenograft 

experiments using HCT 116 cells showed smaller tumors in mice dosed with flavone B as 

compared to the 5-FU or combination treatment. Further experiments are warranted to confirm 

these observations.    
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CHAPTER 1 

INTRODUCTION 

Flavonoids are polyphenolic secondary metabolites found in plants that have a common 

phenylbenzopyrone structure (C6-C3-C6) (Figure 1). Over 5,000 flavonoids have been 

discovered (Cai et al. 2003). These are divided into several subgroups depending on the presence 

of double bonded oxygen, a hydroxyl group, a double bond in the C ring, or the carbon of the C 

ring to which the B ring attaches (Figure 2) (Liu et al. 2010; Middleton et al. 2000). 
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(Xiao et al. 2014). Another subgroup, flavonols are associated with a reduced risk of esophageal 

cancer in current smokers (Vermeulen et al. 2013) and inversely associated with the risk of 

bladder cancer (Zamora-Ros et al. 2014). Individual flavonoids such as eupatorin, apigenin, 

naringen, aromadendrin, fisetin, nobiletin, and quercerin display antineoplastic properties in vitro 

(Chiang et al. 2006; Choudhury et al. 2013; Doleckova et al. 2012; Khan et al. 2008; Surichan et 

al. 2012; Wesolowska et al. 2007; Wu et al. 2005), while other flavonoids such as tectochrysin, 

anthocyanin, kaempferol, and quercertin for example, display antitumor properties in vivo (Ha et 

al. 2015; Park et al. 2015; Song et al. 2015; Yang et al. 2015). 

Our laboratory investigates flavonoids from plants belonging to the family Compositae 

(Asteraceae) including the genera Gnaphalium and Achyrocline. These are annual or perennial 

herbs with  worldwide distribution, and some are used for traditional folk medicine (Zheng et al. 

2013).  In the Andean region of South America, Gnaphalium elegans and Achyrocline 

bogotensis are used to make hot beverages commonly recommended as a remedy for cancer. 

Investigation into the compounds that are possibly responsible for the anticancer activity of these 

plants has yielded a pair of isomeric flavones, 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-

chromen-4-one (5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone/ flavone A) and 3,5-dihydroxy-6,7,8-

trimethoxy-2-phenyl-4H-chromen-4-one (3, 5–dihydroxy-6, 7, 8–trimethoxy flavone/ flavone B) 

(Figure 3) (Torrenegra et al. 1980; Torrenegra et al. 1982). In vitro, flavone A and flavone B 

have differential antineoplastic activity against colon, pancreatic, breast, and prostate cancer cell 

lines with little cytotoxicity to normal colon fibroblast cells (Thomas et al. 2012).  
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Figure 3. Flavone structures (A) 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one 
(5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone/ flavone A) from Gnaphalium elegans (B) 3,5-
dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3, 5–dihydroxy-6, 7, 8–trimethoxy 
flavone/ flavone B) from Achyrocline bogotensis.  

The mechanisms used by several flavonoids to achieve their anticancer effect involve the 

induction of apoptosis (Chiang et al. 2006; Das et al. 2012; Ha et al. 2015; Hwang et al. 2005). 

This can be accomplished by activating either the extrinsic or intrinsic pathway. The role of the 

extrinsic pathway is to remove unwanted cells during development, and train the immune 

system, as well as trigger immune-system-mediated tumor removal (Boatright and Salvesen 

2003). The extrinsic pathway is activated by a ligand binding a death receptor such as the Fas or 

TRAIL receptor, followed by binding of the Fas-associated protein with death domain (FADD) 

to caspase 8. Subsequently, FADD is capable of activating caspase 8/10 which results in the 

activation of the executioner caspase 3/7. The intrinsic pathway eliminates cells damaged by 

ionizing radiation and chemotherapeutic drugs, as well as those with mitochondrial damage. 

Certain developmental cues or decreased levels of active pro-survival proteins such as ERK, S6, 

and BAD can also trigger the intrinsic pathway. Once the pathway is triggered, the mitochondrial 

membrane is permeabilized by proapoptotic BAX or BAK, releasing cytochrome c. Caspase 9 is 
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then activated followed by the activation of caspase 3/7 (Boatright and Salvesen 2003; Cohen 

1997; Nagata 1997). Although both flavone A and flavone B induce apoptosis, they use different 

apoptotic pathways (LeJeune et al. 2015). Flavone A activates the intrinsic apoptotic pathway by 

downregulating the active, phosphorylated forms of ERK, S6, and BAD. Dephosphorylated 

BAD is then targeted to the mitochondria where it binds to BCL2 and BCL-XL and trigger 

apoptosis (Chattopadhyay et al. 2001). Flavone B is able to activate the extrinsic pathway of 

apoptosis via the concomitant increase of pERK and pc-JUN ultimately causing cell death  

(LeJeune et al. 2015).  

Although in vitro activity of flavone A and flavone B have been investigated, no studies 

have been performed with either flavone in vivo. In order to determine a suitable dose for the in 

vivo studies, the pharmacokinetics of a drug must be known. Pharmacokinetics is the study of 

how the body acts on a drug (Shargel et al. 2005). This includes different aspects of metabolism, 

absorption, distribution, and excretion of a drug. It is studied by taking blood samples at various 

times prior and post dosing to determine the concentration of the drug in plasma. The plasma 

concentration time profile can be used to determine parameters such as half-life (t1/2), volume of 

distribution (Vz), clearance (CL), and area under the curve (AUC).  Tissue samples can be 

collected to determine distribution of the drug, while urine, and feces samples can help determine 

the rate and route of excretion.   

 The pharmacokinetic parameter half-life is the amount of time required for the 

concentration of drug to decrease by half in plasma (Shargel et al. 2005). This information is 

necessary to determine the frequency in which a drug needs to be administered. As the drug 

travels through the body, a certain percentage may be distributed to the tissues. The volume of 

distribution is used to determine the amount of drug that distributed throughout the body. Tissue 
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samples collected post dosing an animal can help determine which organs a drug is distributed to 

and in what percent of the total drug concentration administered. The distribution patterns of a 

drug can influence the effectiveness of drug used against a certain disease. 

 As the drug travels through the body it is broken down by metabolism and excreted by 

the kidneys. Clearance is the rate at which this process occurs. Measuring the concentrations of 

the drug in the urine and feces can help determine how much of the drug is cleared by excretion 

and what percent of the drug is metabolized. Another parameter that is helpful in understanding 

how the body affects the drug is the systemic exposure or the total concentration of drug in 

plasma from administration to a set time post dosing or total elimination.  

There are several different models to describe the pharmacokinetic of a drug (Shargel et 

al. 2005). The simplest model is a one compartment open model which considers the body as one 

container. The two compartment open model considers the blood, extracellular fluid, and highly 

perfused tissues as one compartment while the tissues in which the drug equilibrates more slowly 

is the second compartment. The three compartment open model adds bone and fat as a third 

compartment to the two compartment model. Each pharmacokinetic parameter is calculated 

slightly differently depending on the model in which the drug plasma concentration time profile 

fits. These calculations can also be made using a noncompartment model which uses no 

assumptions for a specific compartment model to analyze data. 

In the studies described in chapters 2 and 3, rats were used to determine pharmacokinetic 

parameters such as half-life, volume of distribution, clearance, area under the curve, and target 

tissue concentration due to sensitivity of the HPLC method and their larger blood volume 

compared to mice. Using rats allowed for the collection of blood samples at more time points to 
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give us a better picture of the effect of the body on the flavones. Since flavone A and flavone B 

have been reported to have antineoplastic activity against colon cancer in vitro (Thomas et al. 

2012), colon tissues were collected to determine if the flavones distribute to the target organs 

which would influence the effectiveness of these drugs as anticancer therapies and are discussed 

in chapter 3.  

The in vitro antitumor activity of these flavones against colon cancer is important 

because it suggests possible activity in vivo. Colorectal cancer is the third most common type of 

cancer found in both men and women in the United States. The American Cancer Society (ACS) 

projects that 95,270 new cases of colon cancer will be diagnosed in 2016 and will result in 

40,000 deaths (American Cancer Society 2016). Colon cancer can be detected at an early stage to 

have a 90% five-year survival rate after treatment. However, 60% of colon cancer patients are 

diagnosed after the cancer has spread to other organs, when  the five year survival rate is found 

to drop to 13% (American Cancer Society 2015). 

  The drastic difference in the five-year survival rates for colon cancer is due in part to the 

ability to surgically remove cancerous tissue confined to the colon. However, once it has spread 

to other part of the body, alternative forms of treatment  including chemotherapy and radiation 

are used to treat the disease  (American Cancer Society 2016). The most commonly used 

chemotherapy drug for colon cancer is the thymidylate synthase inhibitor, 5-fluorouracil (5-FU). 

A metabolite of 5-FU, 5-fluoro-dUMP (FdUMP), binds with thymidylate synthase (TS) and 

5,10-methylene-tetrahydrofolate (CH2-THF) preventing the conversion of dUMP to dTMP. 

Without dTTP being added to the nucleotide pool, dUTP gets inserted into DNA instead. The 

dTTP depletion also causes another 5-FU metabolite, 5-deoxyuridine triphosphate (FdUTP), to 

also be incorporated into the DNA (Geng et al. 2011; Ghoshal and Jacob 1997; Peters et al. 



18 

 

2002).  Unfortunately, the effect of 5-FU is not specific to cancer cells, and may result in several 

side effects. This drug has a 10-20% response rate in colon cancer patients (Gu et al. 2013; 

Longley et al. 2003; Rashid et al. 2014; Zhang et al. 2008). 

The low five-year survival rate and low response rate of current therapies for colon 

cancer warrant an urgent need for the development of new therapies. One strategy for increasing 

the effectiveness of 5-FU is to add a secondary therapy with a different mechanism of action, in 

order to increase the antineoplastic activity of the drug. Chapter 4 discusses the effect of using 

flavone A or flavone B in combination with 5-FU against colon cancer in vitro and the 

mechanism by which cell death is suggested to occur.  

The pharmacokinetic studies discussed in chapter 3 determined that both flavone A and 

flavone B distributed to the colon of the rats. These results indicated that both flavones were 

good candidates for in vivo antitumor assays seeking to investigate the effect of the flavone on 

colon cancer tumors. Over the years many different mouse models have been developed in order 

to study different aspects of cancer. These models include xenografts of tumor cells, and 

transgenic mice (Herreros-Villanueva et al. 2012). Some of these models are good for testing the 

effect of a drug on tumor growth while others are better for testing tumor prevention or genetic 

modifications in tumorigenic cells. 

 There are two different types of xenograft models, heterotopic and orthotopic (Herreros-

Villanueva et al. 2012). The heterotopic model implants cancer cells between the muscle and 

dermis of an immune compromised mouse. This can be done on the flank, shoulder, or foot pad 

of the mouse. This is the most commonly used model for preclinical testing of anticancer drugs 

due to the short time period required, and reproducibility.  Furthermore, in this model the tumor 
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is visible and can be easily measured to determine changes in tumor growth over time, or by 

fluorescent imaging if the cancer cells used for the xenograft, have been fluorescently tagged. 

 The heterotopic xenograft model does have the disadvantage in that the cancer cells are 

not located in the target organ. This causes changes in the microenvironment that can affect the 

effectiveness of the drug. Differences in drug distribution can also cause changes in the effect of 

a drug as a drug might get distributed to the subcutaneous tumor but not the target organ. 

Another disadvantage of this model is that subcutaneous tumors rarely metastasize (Becher and 

Holland 2006; Killion et al. 1998; Niedergethmann et al. 2007). 

 The orthotopic xenograft model injects cancer cells into the respective organ. The 

advantage of this model is that the microenvironment and distribution of the drug are the same 

for the tumor and target organ. In addition, these tumors are able to metastasize and site specific 

studies for genes changes and drug therapy can be replicated. Unfortunately, this type of 

xenograft is labor intensive, technically challenging, as well as expensive. This method takes 

longer as there is a healing and recovery time.  Since the tumors are not on the surface of the 

animal, low throughput imaging is required to monitor changes in tumor volume 

(Niedergethmann et al. 2007). Of the two xenograft models, the heterotopic option is good to use 

in preclinical studies investigating the antitumor activity of a drug. However, the orthotopic 

xenograft is better in studies investigating changes in gene expression and tumor metastasis in 

response to therapy (Niedergethmann et al. 2007). 

 In this dissertation, the heterotopic xenograft model was used to determine the in vivo 

antitumor activity of flavone B against colon cancer as well as the synergistic activity of flavone 

B with 5-fluorouracil and is described in chapter 4.   
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Abstract 

Isomers 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7–dihydroxy-3,6,8 

trimethoxy flavone) (flavone A) and 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-

one (3,5–dihydroxy-6,7,8–trimethoxy flavone) (flavone B) have recently demonstrated 

differential antineoplastic activities against pancreatic cancer in vitro. These studies also 

indicated that these compounds target highly tumorigenic cells while sparing normal cells. The in 

vivo antitumor activities of these flavones have not been determined, and detection protocols for 

these compounds are needed to conduct pre-clinical assays following intravenous dosing. Here, 

we report methods developed using acetonitrile to extract two flavone isomers and corresponding 

internal standards, celecoxib and diclofenac, from rat plasma. Separation was achieved using a 

Shimadzu liquid chromatography system with a C18 column and mobile phase acetonitrile/water 

(60:40 and 70:30 for flavones A and B, respectively) containing 0.2% acetic acid and 0.05% 

triethylamine at a flow rate of 0.4 mL/minute and detection at 245 nm. Calibration curves 

ranging from 250-2,500 ng/mL and 2,500-100,000 ng/mL for both flavones were linear (r2 
e  

0.99) with the lower limits of quantification being 250 ng/mL. Recovery of concentrations 250, 

1,000, 2,500, 5,000, and 100,000 ng/mL ranged from 87-116% and 84-103% (n=3) for flavone A 

and B, respectively. Stability of both flavones after a freezing/thawing cycle yielded a mean peak 

ratio e  0.92 when compared to freshly extracted samples. Intravenous administration of a 20 

mg/kg dose in rats yielded half-lives of 83.68 ± 56.61 and 107.45 ± 53.31 minutes with clearance 

values of 12.99 ± 13.78 and 80.79 ± 35.06 mL/min/kg for flavones A and B, respectively. 

 

 Keywords: 5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone, 3, 5–dihydroxy-6, 7, 8–trimethoxy 

flavone, flavonoids, cancer, HPLC, pharmacokinetics 
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1. Introduction 

Throughout history people have used plants for medicinal purposes. In the Andean mountains of 

South America, people often rely on a group of plants commonly known as vira- viras to treat 

different ailments (Thomas et al. 2012). Many of the bioactive compounds found in these plants 

are part of a class of polyphenolic secondary metabolites called flavonoids, a large family of 

compounds characterized by a C6-C3-C6 phenylbenzopyrone backbone. They are further 

subclassified as flavones, isoflavones, flavanones, flavonols, anthocyanidins, and chalcones. 

Over 5,000 flavonoids have been discovered, but the potential health benefit of only a few have 

been studied (Cai et al. 2003). Pharmacological properties of flavonoids include antioxidant 

(Benariba et al. 2013; Choudhary et al. 2008), antiviral (Lin et al. 2013; Zandi et al. 2012), 

antidiabetic (Konate et al. 2014), as well as protective properties of the gastrointestinal tract 

(Mota et al. 2009), and cardiovascular system (Middleton et al. 2000). Anticancer studies have 

shown some flavonoids to prevent or inhibit the development of cancer in rodents (Ito et al. 

2000; Kandaswami et al. 2005; Lambert 2013; Record et al. 1997; Yang et al. 2001). The 

antineoplastic properties of flavonoids are due to their effect on cell growth, inhibition of kinase 

activity, induction of apoptosis, suppression of the secretion of matrix metalloproteinases, and/or 

tumor invasive behavior (Chiang et al. 2006; Dole•ková et al. 2012; Kandaswami et al. 2005). 

Gnaphalium elegans and Achyrocline bogotensis are two of the species identified 

generically as vira– viras that are traditionally used in the treatment of various cancers. A pair of 

isomeric flavones, 5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone (flavone A) and 3, 5–dihydroxy-6, 

7, 8–trimethoxy flavone (flavone B) were isolated from bioactive fractions of G. elegans and A. 

bogotensis respectively (Thomas et al. 2012; Torrenegra et al. 1980; Torrenegra et al. 1982; 

Torrenegra et al. 1987). In vitro studies suggest that flavone A and flavone B have differential 

antineoplastic activity against cancer cell lines, which may depend upon cellular tumorigenic and 
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differentiation status. Indeed, flavones A and B target cancer cell lines derived from colon, 

pancreas, breast, and prostate that have been categorized as being highly tumorigenic. Among 

these, flavone A demonstrated preferential activity against the better differentiated cell lines, 

while flavone B was shown to be active against the poorly differentiated cells. Furthermore, 

flavones A and B demonstrated significant cytotoxic activity on cancer cell lines of the pancreas 

and the colon (Thomas et al. 2012).   

Only 6% of the 46,420 new cases of pancreatic cancer projected to be diagnosed during 

2014 will survive another 5 years. Of the 96,830 new cases of colon cancer predicted to be 

diagnosed in 2014, only 40% will be detected at an early stage to have a 90% 5 year survival 

rate. However, once the cancer has spread to distant organs, the 5 year survival rate drops to13% 

(American Cancer Society 2014). Thus, new treatments for pancreatic and colon cancer are 

urgently needed. In vivo testing and mechanistic analysis are warranted to further understand the 

antineoplastic properties of these compounds.   

In this study, we developed methods to quantify the concentration of flavone A or 

flavone B in rat plasma, using high performance liquid chromatography (HPLC) analysis with 

celecoxib or diclofenac as internal standards, respectively. These methods were used to 

determine the pharmacokinetic parameters of flavone A and flavone B in rats administered a 20 

mg/kg dose via intravenous injection.  

2. Experimental 

2.1 Chemicals and standards  

5,7–dihydroxy- 3,6,8 trimethoxy flavone (flavone A) and 3,5–dihydroxy-6, 7,8–trimethoxy 

flavone (flavone B) were extracted as described previously (Thomas et al. 2012). NMR analysis 

was done to verify that compounds were e  99% pure in a Bruker 400MHz spectrometer 

(Billerica MA). The results were compared to spectra previously obtained (Torrenegra et al. 
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1980; Torrenegra et al. 1982). Celecoxib was purchased from Toronto Research Chemicals 

(Toronto, ON, CA). Diclofenac sodium was purchased from MP Biomedicals, LLC (Solon, OH). 

HPLC grade acetonitrile, acetic acid, triethylamine and water were purchased from Fisher 

Scientific (Pittsburgh, PA). Polyethylene glycol 400 was purchased from Electron Microscopy 

Sciences (Hatfield, PA). 

 

2.2 Stock solution and standards 

Stock solutions of flavone A (100 µg/mL) and celecoxib (25 µg/mL) were prepared with 

acetonitrile/water/acetic acid/triethylamine (60:40:0.2:0.05). Stock solutions of flavone B (100 

µg/mL) and diclofenac (25 µg/mL) were prepared with acetonitrile/water/acetic 

acid/trimethylamine, (70:30:0.2:0.05). All solutions were stored protected from light at 4 °C.  

 

2.3 Sample preparation 

Calibration curves for flavone A was prepared by spiking 100 µL of blank plasma with 100 µL 

flavone A, 100 µL celecoxib (25 µg/mL), and 200 µL of organic solvent (acetonitrile). The 

samples were vortex mixed for 5 seconds before centrifugation for 15 minutes at 4,400 rpm. The 

supernatant was removed to a clean tube and evaporated using a Labconco vacuum concentrator 

(Kansas City, MO). 200 µL of mobile phase was used to reconstitute the residue and 100 µL of 

sample was injected into the HPLC column. Calibration curves for flavone B were prepared in 

similar manner with diclofenac as the internal standard. Analysis was conducted in triplicate. 

 

2.4 HPLC conditions and quantitation 

Assays were performed with a Shimadzu liquid chromatography system (Shimadzu Scientific 

Instruments Inc., Columbia, Maryland, USA) consisting of a DGU-20A Prominence degasser, of 
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LC020AB solvent delivery system, SIL-20AHT auto sampler, CBM-20A communication bus 

module, SPD-M20A diode array detector, and CTO-20A column oven with a C18 (100 × 4.6 

mm, 2.6 µm; ACE, Aberdeen, Scotland) column. Mobile phases used were 

acetonitrile/water/acetic acid/triethylamine 60:40:0.2:0.05 (for flavone A HPLC assay) and 

70:30:0.2:0.05฀(for฀flavone฀B฀HPLCassay).฀Detection฀was฀at฀245฀nm฀with฀a฀temperature฀of฀30˚C.฀

Flow rate was 0.4 mL/minute with run times of 11 and 10 minutes respectively. LC solutions 

program was used to collect and analyze the data. Plotting the peak area ratios of flavone against 

internal standard in Excel were used to make the calibration curves.  

 

2.5 Accuracy and precision  

Calibration curves were used to determine the accuracy and precision of the methods. The 

coefficient of variation (CV) of three replicates performed on the same day was used to 

determine the precision for intra-day analysis and the CV of replicates performed on three 

consecutive days was used for the precision of inter-day analysis. Accuracy was determined by 

how close the calculated concentration was to the known concentration. Data is presented as 

mean ± standard deviation. 

 

2.6 Recovery  

Five concentrations (250, 1,000, 2,500, 5,000 and 100,000 ng/mL) were used to determine the 

percent of flavone recovered by the extraction method. Recovery was determined by comparing 

the peak area ratio of extracted samples to the peak area ratio of non-extracted standard of the 

same concentration. Experiment was performed in triplicate.   
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2.7 Stability  

Three concentrations (1,000, 5,000, and 100,000 ng/mL) were used to determine the stability of 

the flavones after freezing/thawing cycle. 100 µL of blank plasma was spiked with 100 µL 

flavone and put in -20 °C for 24 hours. After thawing, 100 µL of internal standard and 200 µL of 

acetonitrile were added to the sample. Extraction was completed as describe above. The peak 

area ratio of frozen samples was compared to the peak area ratio of freshly prepared samples. 

Experiments were performed in triplicate.  

 

2.8 Animals and drug administration  

Male Sprague-Dawley rats weighting 269-305g and fitted with jugular vein cannulas were 

purchased from Charles River (Raleigh, NC). Animals were housed in a 12 hour light-dark cycle 

and experiments were carried out within the Animal Care Committee of East Tennessee State 

University guidelines. During the experiment, rats were housed in metabolic cages. Flavones 

were mixed in polyethylene glycol 400 and administered by intravenous injection to deliver a 20 

mg/kg dose of flavone A (n=6) or flavone B (n=6). Serial blood samples (250 µL) were collected 

at 0, 5, 15, 30, 60, 90, 120, 240, and 360 minutes post dosing. After 3 minutes of centrifugation 

at 10,000 rpm, plasma collected and stored at -20฀˚C.฀ 

 

2.9 Pharmacokinetic analysis 

Outliers were determined using SPSS Statistics software version 21. The non-compartmental 

component of Phoenix WinNonlin (v.6.3) was used to calculate the pharmacokinetic parameters 

such as clearance (CL), area under the plasma concentration-time curve from zero to t (AUC0-t), 

area under the plasma concentration-time curve from zero to infinity (AUC 0-• ), half-life (t1/2), 



27 

 

and volume of distribution (Vz) for both flavones. A Student’s t-test was used to determine 

statistical differences between the pharmacokinetic parameter of flavone A and B. 

 

3. Results  

3.1 Specificity  

Chromatograms of blank plasma, blank plasma spiked with celecoxib, and blank plasma spiked 

with celecoxib and flavone A are shown in Figure 1. Chromatograms of blank plasma, blank 

plasma spiked with diclofenac, and blank plasma spiked with diclofenac and flavone B are 

shown in Figure 2. The retention times for flavone A and celecoxib are 7.0 and 9.6 minutes, 

respectively. Retention times for diclofenac and flavone B are 5.0 and 6.8 minutes, respectively. 

Good separation was achieved and no interfering peaks were seen under these chromatographic 

conditions.  
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Figure 1. Elution of flavone A from plasma. HPLC chromatographs of (A) blank plasma; (B) 

plasma spiked with internal standard (celecoxib 25 µg/ ml); (C) plasma spiked with flavone A 

(100 µg/ml) and internal standard. 
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Figure 2. Elution of flavone B from plasma. HPLC chromatographs of (A) blank plasma; (B) 

plasma spiked with internal standard (diclofenac 25 µg/ml); (C) plasma spiked with internal 

standard and flavone B (100 µg/ml).  
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3.2 Linearity, lower limit, and precision 
  

For both flavones, calibration curves were divided into 250-2,500 ng/mL and 2,500-100,000 

ng/mL sections. The 2,500-100,000 ng/mL curve for flavone A has the representative calibration 

equation of y = 0.000048x + 0.03024 while the 250-2,500 ng/mL curve has the representative 

equation of y = 0.00005x + 0.01752 (Figure 3). Good linearity can be seen for flavone A with r2
 

= 0.9991 and r2 = 0.9917, respectively.  For flavone B, the representative calibration equation for 

the 2,500-100,000 ng/mL curve was y = 0.00006x while the 250-2,500 ng/mL curve equation 

was y = 0.000148x + 0.00458 (Figure 4). These curves also had good linearity with r2 = 0.9994 

and r2 = 0.9958, respectively. The lower limit of quantification (coefficient of variation < 40) for 

both flavone A and B in plasma was 250 ng/mL (Tables 2 and 4). 
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Figure 3. Calibration curves for flavone A extracted from plasma. Calibration curves were 

made by graphing the flavone/internal standard area under the curve extracted from plasma 

versus the known concentration of flavone A ranging from (A) 2,500-100,000 ng/mL or (B) 250-

2,500 ng/mL.  
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Figure 4. Calibration curves for flavone B extracted from plasma. Calibration curves were 

made by graphing the flavone/ internal standard area under the curve extracted from plasma 

versus the known concentration of flavone B ranging from (A) 2,500-100,000 ng/mL or (B) 250-

2,500 ng/mL.  
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Intra-day precision was determined by three calibrations curves performed in the same day. 

Inter-day precision was determined by calibration curves performed on three consecutive days.   

Intra-day coefficient of variation for flavone A (Tables 1 and 2) and B (Tables 3 and 4) were d 

20.23 and d 39.94, respectively. The accuracy ranged from 94-112% for flavone A and 83-124% 

for flavone B. Inter-day coefficient of variation for flavone A and B were d 22.44 and d 16.18 

respectively. The accuracy ranged from 83-111% for flavone A and 89-103% for flavone B, 

respectively.  

 

Table 1. Intra-day and inter-day precision and accuracy for 2500-100000 

ng/mL flavone A extracted from rat plasma  

Concentration 
(ng/mL) 

Error intra-day 
(%) 

Observed intra-day 
(n=3) 

CV Accuracy 
(%) 

100000 2.51 ± 1.82 98830 ± 3277 3.31 98 

25000 4.43 ± 4.72 24028 ± 1347 5.61 96 

5000 8.28 ± 6.29 5126 ± 576 11.24 102 

2500 17.38 ± 12.31 2774 ± 514 18.56 110 

     Concentration 
(ng/mL) 

Error inter-day 
(%) 

Observed inter-day 
(n=3) 

CV Accuracy 
(%) 

100000 6.61 ± 4.28 103582 ± 8033 7.75 103 

25000 9.17± 7.33 26843 ± 2481 9.24 107 

5000 4.43 ± 3.85 4898± 308 6.29 97 

2500 12.53 ± 2.69 2186 ± 67 3.07 87 
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Table 2. Intra-day and inter-day precision and accuracy for 250-2500 ng/mL 

flavone A extracted from rat plasma  

Concentration 
(ng/mL) 

Error intra-day 
(%) 

Observed intra-day 
(n=3) 

CV Accuracy 
(%) 

2500 3.54 ± 1.83 2494 ± 117 4.71 99 

1000 12.53 ± 11.32 1125 ± 113 10.06 112 

500 11.25 ± 10.94 516 ± 85 16.57 103 

250 12.61 ± 13.26 236 ± 48 20.23 94 

     Concentration 
(ng/mL) 

Error inter-day 
(%) 

Observed inter-day 
(n=3) 

CV Accuracy 
(%) 

2500 5.92 ± 3.39 2509 ± 199 7.96 100 

1000 15.07 ± 12.65 996 ± 223 22.44 99 

500 11.75 ± 13.59 558± 68 12.17 111 

250 16.54 ± 9.02 208 ± 23 11.03 83 
 

Table 3. Intra-day and inter-day precision and accuracy for 2500-100000 

ng/mL flavone B extracted from rat plasma  

Concentration 
(ng/mL) 

Error intra-day 
(%) 

Observed intra-day 
(n=3) 

CV Accuracy 
(%) 

100000 3.71 ± 2.52 103140 ± 3497 3.39 103 

25000 4.16 ± 2.35 23958 ± 588 2.46 96 

5000 9.68 ± 3.36 4515 ± 168 3.73 90 

2500 9.71 ± 2.22 2257 ± 56 2.48 90 

     Concentration 
(ng/mL) 

Error inter-day 
(%) 

Observed inter-day 
(n=3) 

CV Accuracy 
(%) 

100000 3.11 ± 3.18 104648 ± 2355 2.28 103 

25000 4.89 ± 2.64 25450 ± 1999 7.84 102 

5000 10.88 ± 4.61 4781 ± 334 6.98 96 

2500 10.51 ± 9.30 2223 ± 149 6.7 89 
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Table 4. Intra-day and inter-day precision and accuracy for 250-2500 ng/mL 

flavone B extracted from rat plasma  

Concentration 
(ng/mL) 

Error intra-day 
(%) 

Observed intra-day 
(n=3) 

CV Accuracy 
% 

2500 8.28 ± 2.11 2535 ± 255 10.07 101 

1000 7.43 ± 5.77 1068 ± 67 6.28 106 

500 24.31 ± 17.38 621 ± 87 13.98 124 

250 20.95 ± 29.27 209 ± 83 39.94 83 

     Concentration 
(ng/mL) 

Error inter-day 
(%) 

Observed inter-day 
(n=3) 

CV Accuracy 
% 

2500 4.56 ± 3.42 2527 ± 160 6.35 101 

1000 4.51 ± 4.83 1027 ± 65 6.35 102 

500 10.86 ± 9.03 487 ± 79 16.18 97 

250 9.20 ± 9.42 259 ± 35 13.4 103 
 

3.3 Recovery  

Recovery was determined by comparing the peak area ratio of extracted sample to peak area 

ratio for non-extracted standards of specific concentration (250, 1,000, 2,500, 5,000, and 100,000 

ng/mL). This experiment was performed in triplicate with mean recovery ranging 87-116% for 

flavone A and 84-102% for flavone B, respectively (Tables 5 and 6).  

 

Table 5. Recovery of flavone A 

extracted from rat plasma  

Concentration 
(ng/mL) 

Recovery 
(%) 

RSD 
(%) 

100000 87 4.01 

5000 102 6.02 

2500 106 8.70 

1000 116 10.04 

250 92 25.40 
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Table 6. Recovery of flavone B 

extracted from rat plasma 

Concentration 
(ng/mL) 

Recovery 
(%) 

RSD 
(%) 

100000 92 3.10 

5000 102 1.78 

2500 84 15.20 

1000 103 7.92 

250 101 4.11 
 

3.4 Stability  

Stability was determined by comparing the peak area ratio of spiked plasma that had been frozen 

with peak area ratio of samples that had been freshly prepared for concentrations 1,000, 5,000, 

and 100,000 ng/mL. This experiment was performed in triplicate with mean peak ratio ranging 

from 0.93-1.04 for flavone A and 0.92-1.09 for flavone B, respectively (Table 7).   

Table 7. Stability of flavone A and flavone B in rat plasma after 

freeze/thaw cycle (n=3) 

Flavone A Flavone B 

Concentration 
(ng/mL) 

Mean peak 
area ratio 

RSD 
(%) 

Concentration 
(ng/mL) 

Mean peak 
area ratio 

RSD 
(%) 

100000 1.01 4.82 100000 1.05 3.61 

5000 0.93 18.68 5000 1.09 3.53 

1000 1.04 25.84 1000 0.92 5.29 

 

3.5 Pharmacokinetics of flavones A and B following a single intravenous injection 

The plasma concentration-time profile for flavone A after the administration of a 20 mg/kg dose 

via intravenous injection is shown in Figure 5A. The pharmacokinetic parameters are listed in 

Table 8.  Flavone A has a short half-life of 83.68 ± 56.61 minutes and clearance of 12.99 ± 13.78 

mL/min/kg. The plasma concentration-time profile and pharmacokinetic parameters for flavone 

B after the intravenous administration of a 20 mg/kg dose are shown in Figure 5B and table 9. 



37 

 

The half-life of flavone B is calculated to be 107.45 ± 53.31 minutes with a clearance of 80.79 ± 

35.06 mL/min/kg. 

 

Figure 5. Area under the plasma concentration-time (AUC) curves. AUC following 

intravenous administration of 20 mg/kg doses of (A) flavone A or (B) flavone B. 
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Table 8. Pharmacokinetic parameters of flavone A after 

administration of a 20 mg/kg dose via intravenous 

injection (n=6)  

Parameters Values 
t1/2 (min) 83.68 ± 56.61 

Vz (mL/kg) 986.77 ± 591.30 

CL (mL/min/kg) 12.99 ± 13.78 

AUC0-360 (µg*min/mL) 2358.14 ± 1200.70 

AUC0-•  (µg*min/mL) 2492.82 ± 1244.27 

 
Legend: t1/2 - half-life, VZ – volume of distribution, 
 CL – total clearance, AUC0-t – area under the plasma 
 concentration-time curve from 0 to 360 minutes,  
AUC0-•  - area under the plasma concentration-time  
curve from time 0 to infinity. 
 

Table 9. Pharmacokinetic parameters of flavone B after 

administration of a 20 mg/kg dose via intravenous 

injection (n=6)  

Parameters Values 
t1/2 (min) 107.45 ± 53.31 

Vz (mL/kg) 11463.50 ± 5936.69 

CL (mL/min/kg) 80.79 ± 35.06 

AUC0-240 (µg*min/mL) 245.47 ± 112.47 

AUC0-•  (µg*min/mL) 289.14 ± 121.58 

 
Legend: t1/2 - half-life, VZ – volume of distribution, 
 CL – total clearance, AUC0-t – area under the plasma 
 concentration-time curve from 0 to 240 minutes,  
AUC0-•  - area under the plasma concentration-time  
curve from time 0 to infinity. 
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4. Discussion 

Our previous studies have shown that isomeric flavones A and B have significant antineoplastic 

activity against highly tumorigenic pancreatic and colon cancer cell lines with varying 

differentiation status (Thomas et al. 2012). In the current study, we developed simple HPLC 

methods to determine the concentration of either flavone A or B in rat plasma. The methods 

described in this paper provide good separation of the flavones from the plasma peaks and 

internal standards. To optimize our methods, several ratios of acetonitrile and water of differing 

pH were used to achieve separation from the plasma peak. Also, a variety of compounds were 

tested to determine the most appropriate internal standards, including flavonoids, vitamins, 

statins, and nonsteroidal anti-inflammatory drugs. Most compounds, especially the flavonoids, 

overlapped with the drug or the plasma peak. Celecoxib and diclofenac gave the best peaks 

without overlapping, as well as good run times close to 10 minutes (Figures 1 and 2). 

The described assays provide satisfactory and reproducible quantification of the flavones 

in concentrations ranging from 250-100,000 ng/mL (Tables 1-4). The assays were linear for both 

flavone A and flavone B (Figure 3). The extraction method used yielded satisfactory, consistent 

recovery for both flavones at all concentrations (Tables 5 and 6). Freezing and thawing of spiked 

plasma samples showed that both flavones were not degraded during the process (Table 7). 

Both flavone A and B have short half-lives (< 120 minutes) that are commonly seen in 

flavonoids (Talbi et al. 2014; Yang et al. 2014; Zhang et al. 2014; Zhu et al. 2015). The area 

under plasma concentration-time profiles shows that flavone B disappears from the plasma at a 

faster rate than flavone A (Figure 5). The concentrations of flavone B were below the limits of 

detection (250 ng/mL) by 360 minutes, whereas flavone A was still detectable at that time. This 

difference in plasma levels was also seen in the AUC0-•  values (p = 0.0015) depicted in tables 8 
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and 9. These observations correspond with the higher volume of distribution (p = 0.0015) and 

higher clearance (p = 0.0013) values of flavone B compared to those of flavone A. Part of the 

observed rapid disappearance of flavone B in plasma could be explained by the higher lipophilic 

nature of this flavone (Thomas et al. 2012). This is further supported by reports that flavonoids 

can be incorporated into the erythrocyte cell membrane causing an echinocytic form of these 

cells, and into epithelial cell membranes (Bonarska-Kujawa et al. 2014; Pawlikowska-Pawlega et 

al. 2014). The lipophilic nature of the compounds may also favor their rapid distribution into 

tissues.  

   

5. Conclusion 

Extraction methods were developed for flavones A and B from rat plasma that have been 

validated in terms of recovery, linearity, precision, and accuracy. The HPLC methods developed 

for flavones A and B have good separation and detection for the ranges of 250-100,000 ng/mL. 

Pharmacokinetic analysis of flavone A and B reveal them to have short half-lives comparable to 

other flavonoids. 
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CHAPTER 3 

QUANTIFICATION OF TWO ISOMERIC FLAVONES IN RAT COLON TISSUE USING 

REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 

 

Introduction 

Many flavonoids have been recognized for their antitumor properties (Kale et al. 2008; 

Kandaswami et al. 2005; Lopez-Lazaro 2002; Wang 2000). It is known that these activities are 

greatly determined by their chemical structure which subsequently dictates  their ability to 

interact with cellular molecules (Lopez-Lazaro 2002). This differential effect has been observed 

with flavone isomers flavones 5,7–dihydroxy-3, 6, 8–trimethoxy flavone (flavone A) and 3, 5–

dihydroxy-6, 7, 8–trimethoxy flavone (flavone B) (Thomas et al. 2012). Specifically, each 

isomer has been shown to target colon cancer cells with distinct phenotypical characteristics via 

different mechanisms of action (LeJeune et al. 2015). However, it is unknown whether either of 

these flavones distribute to the colon after intravenous administration of these compounds. 

Modifications were made to methods developed for extracting and quantifying these flavones in 

rat plasma using reverse phase high performance liquid chromatography. The modifications 

included preparation of the sample by homogenization in water and filtration using a 

polyvinylidene fluoride (PVDF) membrane, and the creation of calibration curves to determine 

the concentration of either flavone in colon tissue. 

These methods allowed for the detection of flavone A and flavone B in rat colon.  Our 

data indicate that flavone B was found in higher concentrations in the colon than flavone A, 

which may be the result of higher volume of distribution value of flavone B (Whitted et al. 2015) 

compared to that of flavone A.   
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Method and Results 

Procedure to extract and purify flavones A and B  

The compounds were obtained as described before (Thomas et al. 2012). Briefly, flavone 

A was purified from dried flowers of Gnaphalium elegans extracted with chloroform using a 

silica gel chromatography column. Flavone B was purified from leaves of Achyrocline 

bogotensis, using chloroform, followed by crystallizations in hexane. The physical and 

spectroscopic properties of these compounds allowed their proper identification.  

 

Stock solution and standards 

Stock solutions of flavone A at a concentration of 100 µg/mL, prepared as described 

previously (Whitted et al. 2015), and 25 µg/mL celecoxib (Toronto Research Chemicals; 

Toronto, ON, CA) were prepared with acetonitrile/water/acetic acid/triethylamine 

(60:40:0.2:0.05).฀Stock฀solutions฀of฀100฀µg/mL฀of฀flavone฀B,฀prepared฀as฀described฀

previously(Whitted et al. 2015), and 25 µg/mL diclofenac (MP Biomedicals, LLC; Solon, OH) 

were prepared with acetonitrile/water/acetic acid/trimethylamine (70:30:0.2:0.05). All stock 

solutions were stored protected from light at 4ºC. HPLC grade acetonitrile, acetic acid, 

trimethylamine, and water were purchased฀from฀Fisher฀Scientific฀(Pittsburgh,฀PA).฀Flavone฀A฀or฀

flavone฀B฀were฀mixed฀with฀polyethylene฀glycol฀400฀(Electron฀Microscopy฀Sciences;฀Hatfield,฀

PA) for intravenous injection. 

 

Sample preparation 

Colon tissue was homogenized using a PowerGen 700 from Fisher Scientific (Pittsburgh, 

PA)฀in฀a฀1:2฀ratio฀with฀water฀(1฀mg/฀2฀mL).฀Serial฀concentrations฀for฀calibration฀curves฀(flavone฀
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A: 250-100000 ng/g and flavone B: 1000-25000 ng/g) were prepared. Briefly, 100 µL of blank 

homogenate was spiked with 100 µL฀flavone,฀100฀µL฀internal฀standard฀(25฀µg/mL฀celecoxib฀or฀

diclofenac), and 200 µL of organic solvent (acetonitrile). The samples were vortex mixed before 

being centrifuged for 15 min at 3000 x g. The supernatant was removed and filtered with a 

polyvinylidene fluoride (PDVF) filter (0.45 µm) into a clean tube and evaporated using a 

Labconco vacuum concentrator (Kansas City, MO). Mobile phase (200 µL) was used to 

reconstitute the residue and 100 µL of sample was injected into the HPLC column. Analysis was 

conducted in triplicate. 

 

HPLC conditions and quantitation 

HPLC assays were performed using a Shimadzu liquid chromatography system 

(Shimadzu฀Scientific฀Instruments฀Inc.,฀Columbia,฀Maryland,฀USA)฀with฀an฀ACE฀C18฀(100×4.6฀

mm) (Aberdeen, Scotland) column. Mobile phases used for HPLC contained acetonitrile/water 

60:40฀(flavone฀A)฀and฀70:30฀(flavone฀B)฀with฀0.2%฀acetic฀acid฀and฀0.05%฀triethylamine.฀

Detection wavelength was at 245 nm with a temperature of 30 ºC. Flow rate was 0.4 mL/min 

with run times of 11 and 10 min, respectively. LC solutions program was used to collect and 

analyze the data. Good separation was achieved (Figures 1 & 2) and the peak area ratios of 

flavone฀against฀internal฀standard฀were฀plotted฀in฀Excel฀to฀make฀the฀calibration฀curves฀(Figure฀3).฀

Representative equation for flavone A concentrations 250–100000 ng/g was y = 2E-05x + 

0.0029 and flavone B concentrations 1000-25000 ng/g was y = 7E-05x + 0.0531 with r
2 e  0.99.  
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Figure 1. Elution of flavone A from colon. HPLC chromatographs of (A) blank colon; (B) colon 

spiked with internal standard (celecoxib 25 µg/mL); (C) colon spiked with flavone A (100 

µg/mL) and internal standard. 
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Figure 2. Elution of flavone B from colon. HPLC chromatographs of (A) blank colon; (B) colon 
spiked with internal standard (diclofenac 25 µg/mL); (C) colon spiked with flavone B (100 
µg/mL) and internal standard. 
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Figure฀3.฀Calibration฀curves฀were฀made฀by฀graphing฀the฀ratio฀of฀flavone/internal฀standard฀area฀
under the curve extracted from colon tissue versus the known concentration฀of฀flavone.฀
Representative calibration curves for (A) flavone A and (B) flavone B are presented.  
 

Precision and accuracy 

Three฀calibration฀curves฀were฀used฀to฀determine฀the฀precision฀(coefficient฀of฀variation฀- 

CV) and accuracy of the methods. Data is presented as mean ± standard deviation (Tables 1 & 

2). 

 

Table 1. Precision and accuracy for 250-100000 ng/g flavone A 

extracted from rat colon tissue  

Concentration Error Observed CV Accuracy 
(%) (ng/g) (%)  (n=3) 

100000 13.88 ± 2.14 113888 ± 2138 1.87 114 

25000 16.32 ± 1.06 29081 ± 265 0.91 116 

10000 11.83 ± 4.15 11182 ± 415 3.71 111 

5000 9.93 ± 0.97 5496 ± 48 0.88 109 

2500 13.92 ± 4.87 2848 ± 121 4.27 113 

1000 11.45 ± 8.90 1114 ± 89 7.98 111 

500 
16.65 ± 
21.51 

558 ±129 23.21 111 

250 
21.02 ± 
19.30 

285 ± 68 24.03 113 
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Table 2. Precision and accuracy for 1000-25000 ng/g flavone B 

extracted from rat colon tissue  

Concentration Error Observed CV Accuracy 
(%) (ng/g) (%) (n=3) 

25000 1.51 ± 0.50 25204 ± 410 1.62 101 

10000 2.89 ± 0.52 10075 ± 345 3.43 101 

5000 3.69 ± 3.42 4934 ± 271 5.51 98 

2500 4.22 ± 2.55 2480 ± 142 5.73 99 

1000 
25.18 ± 
27.00 

1128 ± 378 33.56 113 

 

Animals and drug administration 

The methods described here were used to determine the concentrations of flavone A or 

flavone B in colon tissue collected from the male Sprague-Dawley rats used in a previous study 

(Whitted et al. 2015). Briefly, flavones were mixed in polyethylene glycol 400 and were 

administered฀by฀intravenous฀injection฀to฀deliver฀a฀20฀mg/kg฀dose฀of฀flavone฀A฀(n=6)฀or฀flavone฀B฀

(n=6). Animals were euthanized under anesthesia 6 hours post dosing. Colon tissue was collected 

and flash frozen using dry ice and stored at -80 ºC until analyzed for the measurement of 

concentrations of flavones. Analysis yielded 1639 ± 601 ng/g of flavone A and 5975 ± 2480 ng/g 

of flavone B in colon tissue (Figure 4).  
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Figure 4. Distribution of flavones to target tissue. Male Sprague-Dawley rats received 20 mg/kg 
of either flavone A or flavone B via intravenous injection. The colon tissues were collected 6 
hours after dosing and analyzed for the presence of flavone using a HPLC system. 
 

 

Discussion 

The modifications made to the methods for extracting flavone A and flavone B from rat 

plasma enabled the development of good methods for extracting and quantifying these flavones 

from rat colon tissue. The in vitro antineoplastic activity of these flavones against colon cancer 

cells in combination with both flavones distributing to rat colon tissue makes them good 

candidates for in vivo experiment investigating their antitumor activity against colon cancer. 
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CHAPTER 4 

THE EFFECT OF TWO ISOMERIC FLAVONES, 5-FLUOROURACIL, AND 

COADMINISTRATION AGAINST COLON CANCER 

 

Introduction 

The American Cancer Society lists colorectal cancer as the second leading cause of death 

in the United States and estimates that 49,190 death will result from colon cancer alone in 2016 

(American Cancer Society 2016). Colon cancer has a 90% five-year survival rate if diagnosed 

early. Unfortunately, this is expected to only occur for 40% of the 95,270 new cases of colon 

cancer that are predicted to be diagnosed in 2016. Once the cancer has metastasized to distant 

organs, the five- year survival rate drops to 13% (American Cancer Society 2015).    

Surgery is the most common treatment for localized colon cancer. Once the cancer has 

spread, chemotherapy is often used (American Cancer Society 2015). 5-fluorouracil (5-FU) has 

been used to treat a wide variety of cancers including that of the colon for the last 50 years 

(Rashid et al. 2014; Srimuangwong et al. 2012).   

5-fluoro-dUMP (FdUMP), the main active metabolite of 5-FU, forms a complex with 

thymidylate synthase (TS) and 5,10-methylene-tetrahydrofolate (CH2-THF) preventing dUMP 

be converted to dTMP causing a depletion of dTTP from the nucleotide pool. This depletion 

allows for the insertion of dUTP and another 5-FU metabolite, 5-deoxyuridine triphosphate 

(FdUTP), into DNA (Figure 1A), (Geng et al. 2011; Ghoshal and Jacob 1997; Peters et al. 2002).  

The DNA damage caused by dUTP and FdUTP triggers Ataxia-telangiectasia mutated and Rad3-
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related (ATR) kinase cascade resulting in cell cycle arrest and apoptosis (Figure 1B and C) 

(Flynn and Zou 2011; Woods and Turchi 2013). 

  



54 

 

 

Figure 1. Mechanism of action of 5-fluorouracil. (A) A metabolite of 5-FU (FdUMP) binds TS to 
delete dTTP from the nucleotide pool. (B) Ataxia-telangiectasia mutated and Rad3-related ATR 
response to DNA damage. (C) Cellular response to 5-FU induced DNA damage leading to 
apoptosis.    
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Unfortunately, the activity of 5-FU is not cancer cell specific, resulting in several side 

effects and only has a 10-20% response rate in colon cancer patients (Gu et al. 2013; Longley et 

al. 2003; Rashid et al. 2014; Zhang et al. 2008). One method to try to improve the effectiveness 

of 5-FU is to include a secondary drug with the treatment (Cheah et al. 2014; Gonzalez-Vallinas 

et al. 2013; Wang et al. 2014a). 

The two isomeric flavonoids, flavone A, and flavone B which are isolated from 

Gnaphalium elegans and Achyrocline bogotensis, have been shown by our laboratory to have 

differential antineoplastic activity against colon cancer (Thomas et al. 2012). Flavone A is 

cytotoxic to more differentiate CaCo 2 colon cancer cells, while flavone B is effective against the 

poorly differentiate HCT 116 colon cancer cells. In this chapter, we investigate the mechanisms 

by which the flavones may cause synergistic effects on colon cancer cell lines when used in 

combination with 5-FU in vitro and in vivo.  

Methods 

Chemicals 

Flavone A and flavone B were obtained as previously described (Thomas et al. 2012). 

Briefly, flavone A was extracted from G. elegans dried flowers using CHCl3 then concentrated 

by dry vacuum. Methanol and filtering were used to remove fats and hydrocarbons from the 

residue. The concentrated residue was reconstituted in C6H6 and eluted by silica gel 

chromatography using C6H6:Me2CO (19:1) as a mobile phase. The flavonoid was purified by 

crystallizations in hexane. Physical and spectroscopic properties of 5,7 dihydroxy-3,6,8 

trimethoxyflavone, were used for identification of the compound. Flavone B was extracted by 

soaking fresh leaves of A. bogotensis in CHCl3 followed by filtration and concentration. The 

residue dissolved in hot methanol. Fats and hydrocarbons were filtered out of the sample before 
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reconcentration. Hexane was used to dissolve and recrystallize the purified flavonoid. Physical 

and spectroscopic properties as 3,5-dihydroxy-6,7,8-trimethoxyflavone were used to identify the 

compound. Stock solutions of flavones were prepared using dimethyl sulfoxide to yield a 

maximum final concentration of 0.01% in the treated well (Sigma-Aldrich, St. Louis, MO).  5-

fluorouracil (5-FU) was purchased from Sigma Aldrich (St Louis, MO). 

Cell culture 

Colon cancer cells lines HCT 116 and CaCo 2 were purchased from American Tissue 

Type Culture Collection (ATCC; Manassas, VA). HCT 116 cells were culture in McCoy’s media 

and CaCo 2 cells cultured in DMEM/F12 media (GIBCO/Invitrogen, Carlsbad, CA). Media was 

supplemented with 10% fetal bovine serum (GIBCO/Invitrogen, Carlsbad, CA) and 1% 

penicillin/streptomycin (Hyclone, Logan, UT). DMEM/F12 was also supplemented with 1% 

sodium pyruvate (Hyclone, Logan, UT). 

Cell viability assay 

HCT 116 and CaCo 2 cells were seeded in 48 well plates and grown until ~75% 

confluent. CaCo 2 cells were treated with either dissolution vehicle (DMSO), flavone A (5-80 

µM), 5-FU (5-80 µM) (Cheah et al. 2014; Hwang et al. 2005; Riahi-Chebbi et al. 2015), or 

combination (5-FU 5-80 µM and 40 µM flavone A). HCT 116 cells were treated with either 

vehicle, flavone B (5-80 µM), 5-FU (5-80 µM), or combination (5-FU 5-80 µM and 40 µM 

flavone B). Cells were incubated at 37 ºC for 48-72 hours. 3-(4, 5-methyl-thiazol-2-yl)-2, 5-

diphenyl-tetrazolium bromide (MTT) was added at 10% per volume and incubated for 3 hours 

(Invitrogen). Formazan crystals were solubilized with acidified 2-propanol and optical density 

was measured at 570 nm using a Biotek PowerWave XS2 plate reader (Winooski, VT). 
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Statistical analysis was performed using One-way ANOVA (Tukey) on Graph Pad v5. 

Combination index was determined using CompuSyn.  

Effect = 100- viability     (1) 

CI = [a]/[A] + [b]/[B]     (2) 

a = concentration of individual drug 1 to achieve X effect. A = concentration of drug 1 in 

combination to achieve effect X. b = concentration of individual drug 2 to achieve X effect. B = 

concentration of drug 2 in combination to achieve effect X. 

Apoptosis assay 

Cells were plated on coverslips and grown until ~75% confluent. CaCo 2 cells were 

treated with vehicle, 40 µM flavone A, 80 µM 5-FU, or combination. HCT 116 cells were treated 

with vehicle, 40 µM flavone B, 80 µM 5-FU, or combination. After 24-72 hours of treatment, 

TUNEL assay (TdT-mediated dUTP nick end labeling) was performed as directed by the 

manufacturer (Roche; Mannheim, Germany). Briefly, the cells were fixed with 4% 

paraformaldehyde and permeabilized with 0.1% sodium citrate and 0.1% Triton. TUNEL reagent 

was then added. Nuclei of the cells were stained with DAPI.  Fluorescence microscopy images 

were obtained using an EVOS microscope (AMG, Bothell, WA). 

Cell cycle analysis 

CaCo 2 or HCT 116 cells were grown in 6 well plates until ~75% confluent. Cells were 

treated with flavone (40 µM), 5-FU (80 µM), or combination. Cells were lifted with cell scraper 

and suspended in binding buffer for cell cycle and apoptosis quantification using an Annexin V-

FITC kit from Abcam (Cambridge, MA) according to manufacturer instructions. Briefly, 

Annexin and propidium iodide were added to suspended cells and incubated in the dark for 5 

minutes. A BD Accuri C6 flow cytometer (BD Bioscience, San Jose, CA) was used to obtain cell 
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count. Data was analyzed with CFLOW Plus (BD Bioscience, San Jose, CA). One-way ANOVA 

(Tukey) was performed using Graph Pad v5 for statistical analysis. 

Comet assay 

Caco 2 and HCT 116 cells were plated in 6 well plates and grown until ~75% confluent. 

CaCo 2 cells were treated with vehicle, flavone A (40 µM), 5-FU (80 µM), or combination. HCT 

116 cells were treated with vehicle, flavone B (40 µM), 5-FU (80 µM), or combination. Cells 

were lifted from the plate using a cell scraper and suspended in 300 µL phosphate buffered 

saline. Alkaline comet assay (Trevigen, Gaithersburg, MD) was performed per manufacturer’s 

instructions. Briefly, cells were suspended in agarose and plated in comet plates. Cells were 

lysed with lysing buffer then immersed in alkaline unwinding solution. Samples were washed 

with deionized water and 70% ethanol. SYBR gold (Life Technologies, Eugene, OR) was used 

to stain the cells. Fluorescence microscopy images were obtained using an EVOS microscope 

(AMG, Bothell, WA). Tail moment (tail length * percent tail DNA) (Gyori et al. 2014) was 

determined using the OpenComet plugin for Image-J (NIH). Tail moments > 5 were used to 

determine average tail moments for 50 + samples. One-way ANOVA (Tukey) was performed 

using Graph Pad v5 for statistical analysis. 

Antibodies  

Antibodies pCHK1 (S345), CHK1, pBAD (S112), BAD, P-p44/42 MAPK (T202), p44/42 

MAPK (ERK ½), and BCL-2 were purchased from Cell Signaling (Beverly, MA), ² -actin from 

Sigma (St. Louis, MO), TS from Santa Cruz (Dallas, TX), ³ -H2AX from Bethyl Laboratories 

(Montgomery, TX), Cleaved Caspase 3 (Asp 175) (R & D Systems, Minneapolis, MN), and 

Alexa Fluor 594 goat anti-rabbit IgG (GIBCO/Invitrogen, Carlsbad, CA). Peroxidase-conjugated 

secondary antibodies were affinity purified with no cross-reactivity with other species and 
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obtained from Pierce (Rockford, IL), Promega (Madison, WI), and Jackson ImmunoResarch 

(West Grove, PA).  

Immunoblot 

HCT 116 and CaCo 2 cells were treated in the same manner as for apoptosis assay and 

lysed after 4-32 hours using lysis buffer consisting of 20 mM imidazole, 100 mM KCl, 1mM 

MgCl2, 10mM EGTA, 0.2% Triton X-100, phosphatase, and protease inhibitors (Sigma 

Aldrich). A protein assay from Cytoskeleton (Denver, CO, USA) was used to measure protein 

concentrations from cell lysates and the colorimetric reaction was read spectrophotometrically at 

590nm (Cary 50; Varian, Palo Alto, CA). The samples were run in SDS-PAGE and then blotted 

onto nitrocellulose membranes. The signal of the primary antibodies was detected using 

secondary affinity-purified goat anti-mouse or anti-rabbit immunoglobulins coupled to 

peroxidase and a chemiluminescent system (Pierce; Grand Island, NY) and images obtained 

using a gel documentation system (G:Box fromSyngene, Frederick, MD). The intensity of the 

bands in the images were estimated after subtracting the background and compared against a 

control using Image J (NIH).  One-way ANOVA (Tukey) was performed using Graph Pad v5 for 

statistical analysis. 

Immunofluorescence 

HCT 116 and CaCo 2 cells were plated on coverslip until ~75% confluent. HCT 116 cells 

were treated with vehicle, flavone B (40 µM), 5-FU (80 µM), or combination for 48 hours. CaCo 

2 cells were treated with vehicle, flavone A (40 µM), 5-FU (80 µM), or combination for 36 

hours. Cells were fixed with 3% paraformaldehyde and incubated with cleaved Caspase 3 (A175) 

antibody (R & D Systems, Minneapolis, MN). Alexa Fluor 594 goat anti-rabbit IgG 
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(GIBCO/Invitrogen, Carlsbad, CA) was used as secondary antibody and cells were counted 

stained with DAPI. Images were taken using an EVOS microscope (AMG, Bothell, WA).    

Animals and drug administration  

Male NCrNU immunodeficient mice were obtained from Taconic (Hudson, NY) and 

were housed in a sterile room with a 12 hour light-dark cycle. All experiments were carried out 

following the guidelines of the Animal Care Committee of East Tennessee State University. 

Mice were injected in the right flank with 5 x 106 HCT116 cells in matrigel. After tumors 

reached an average of 5 x 5 mm, mice were divided into 4 groups (n=6). Group 1 was treated 

with polyethylene glycol 400 given by intratumoral (IT) injection and saline given by 

intraperitoneal (IP) injection once a day, three days a week. Group 2 was administered 1 mg/kg 

flavone B in polyethylene glycol 400 by IT once a day, three days a week. Group 3 was 

administered 12 mg/kg 5-FU in saline by IP once a day, three days a week. Group 4 was 

administered flavone B via IT and 5-FU via IP once a day, three days a week. The weight of 

mice and tumor size were measured three times a week. Tumor volume (TV) was calculated 

using length and width measurement of the tumor. 

TV = d2 * D/2      (3) 

With d being the smaller diameter and D the larger diameter. Relative tumor volume (RTV) was 

calculated as ratio of tumor volume to average control tumor volume. Animal were euthanized 

under anesthesia and tumors were collected. Two-way ANOVA (Tukey) was performed using 

Graph Pad Prism for statistical analysis. 
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Results 

Flavone A and flavone B have synergistic activity on colon cancer cells when used in 

combination with 5-fluorouracil.  

To determine whether the addition of flavone A or flavone B to cells treated with 5–FU 

will produce an increase in cytotoxicity, colon cancer cells were treated with each agent alone 

and in combination and analyzed for cell viability. A single dose of flavone in the middle of the 

concentration consistent to the one used in the previous study which caused loss of cell viability 

e  50% was used in the combination treatments (Thomas et al. 2012). Caco 2 cells were treated 

with 0, 5, 10, 20, 40, or 80 µM flavone A, 5-FU, or combination (40 µM flavone A and 5-80 µM 

5-FU). After 48 hour MTT assay was performed to determine cell viability.  Cells treated with 

either flavone A or 5-FU individually had cell viability similar to that of the controls. However, 

the combination treatment was able to decrease cell viability to below 50% (Figure 2A).  The 

combination index (CI) was calculated using CompuSyn to determine if the increased 

cytotoxicity seen with the combination treatment was additive (CI=1), antagonistic (CI>1), or 

synergistic (CI<1). The effect for all concentration combinations of flavone A and 5-FU used 

were found to be synergistic (Figure 2B). 

HCT 116 cells were treated with 0, 5, 10, 20, 40, or 80 µM flavone B, 5-FU, or 

combination (40 µM flavone B and 5-80 µM 5-FU) for 72 hours. Flavone B and 5-FU had 

similar effects on cell viability with the lowest cell viability around 65% (Figure 2C). The 

combination treatment was more cytotoxic against HCT 116 cells causing cell viability to 

decrease to 38% with the highest concentration.  All concentration combinations of flavone B 

and 5-FU were synergistic (Figures 2D). 
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Figure 2. Combination treatment decreases cell viability of colon cancer cells. (A) Cell viability 

of colon cancer cells, CaCo 2, treated with flavone A, 5-fluorouracil, or combination for 48 

hours. (B) Combination index comparing the effect achieved by concentration of drug(s) in 

combination versus individual treatments of 5-fluorouracil and/or flavone A on CaCo 2 cells. (C) 

Cell viability of colon cancer cells, HCT 116, treated for 72 hours with flavone B, 5-fluorouracil, 

or combination. (D) Combination index comparing the effect achieved by concentration of 

drug(s) in combination versus individual treatments of 5-fluorouracil and/or flavone B on HCT 

116 cells. Cell viability was determined using MTT assay. * Significant difference (p < 0.05 

determined using One-way ANOVA (Tukey).  

 

Combination treatment increases the induction of apoptosis in CaCo 2 cells. 

Both flavones and 5-FU have been shown to induce apoptosis (Thomas et al. 2012; Wang 

et al. 2014a)  TUNEL assay was performed to determine if the combination treatment increased 

the induction of apoptosis versus the individual treatments. CaCo 2 cells were treated with 40 

µM flavone A, 80 µM 5-FU, or combination. After 24 or 36 hours, TUNEL assay was 
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performed. At 24 hours apoptosis could be detected in cells treated with flavone A, but not 5-FU 

or the combination treatment (Figure 3). Detection of apoptotic activity changed at 36 hours with 

few apoptotic cells being detected in cells treated with flavone A or 5-FU and several apoptotic 

cells detected in cells treated in the combination. The difference in the time of apoptotic 

induction correlates with the change in time of cell death for each treatment. At 24 hours, the 

antineoplastic activity of flavone A can be detected, however, 5-FU take longer (48 hour) to 

cause an antineoplastic effect. The combination treatment is similar to 5-FU in the time of 

apoptosis and cell death induction. 
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Figure 3. Combination therapy increases the induction of apoptosis in CaCo 2 cells. Caco 2 

colon cancer cells were treated with 5-fluorouracil, flavone A, or a combination. TUNEL assay 

was performed after 24 and 36 hours. The results shown are representative of at least three 

independent assays. 

 

  



65 

 

Combination treatment increases induction of apoptosis in HCT 116 cells. 

To determine if a similar change in apoptotic activity occurs when flavone B is used in 

combination with 5-FU, HCT 116 cells were treated with 40 µM flavone B, 80 µM 5-FU, or 

combination. TUNEL assay was performed 48 or 72 hours after treatment. At 48 hours, the 

majority of apoptotic cells were detected in cells treated with 5-FU with some in flavone B 

treated cells (Figure 4). However, after 72 hours, the majority of apoptotic cells were detected in 

the combination treatment, while the individual treatments had few apoptotic cells. This differs 

from CaCo 2 and HCT 116 cells treated with 40 µM flavone A or flavone B, respectively, were 

apoptosis can be detected as early as 6 hours (LeJeune et al. 2015). These data indicate that 

flavone B still has some ability to induce apoptosis days after the main effect is seen. However, 

as with flavone A, the apoptotic and cell death time of induction of the combination treatment is 

similar to that of 5-FU. 
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Figure 4. Combination therapy increases the induction of apoptosis in HCT 116 cells. HCT 116 

colon cancer cells were treated with 5-fluorouracil, flavone B, or a combination. TUNEL assay 

was performed after 48 and 72 hours. 
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5-fluorouracil and the combination treatment increases cells cycle shift to S phase. 

Both flavones and 5-FU has been shown to induce S-phase (LeJeune et al. 2015; 

Robinson et al. 2006; Xiao et al. 2005). To determine if the combination treatment also induces a 

similar or enhanced cell cycle shift CaCo 2 and HCT 116 cells were treated with flavone A or 

flavone B, respectively, 5-FU, or combination. Annexin V-FITC and propidium iodide were used 

to determine the percent of apoptotic cells and which cell cycle cells were in. 5-FU and 

combination treatment caused a significant shift to S phase in the cell cycle, but did not 

significantly increase apoptosis in CaCo 2 cells (Figure 5A and B). This could be a result of 

timing as the flow cytometry was performed at 9 hours which may be long enough to halt the cell 

cycle, but not long enough to trigger and see the effect of the apoptotic pathway. An increase in 

apoptosis, as well as a shift to S-phase were seen in HCT 116 cell treated with 5-FU and 

combination therapy 24 hours post dosing (Figure 5C and D).  No change in cell cycle or 

apoptotic activity was seen in cells dosed with either flavone individually at these time points. 

However, both flavones were able to induce increases in apoptosis, S, and G2 phases in Panc 28 

and HCT 116 cells 9 hours post dosing (LeJeune et al. 2015). 
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Figure 5. 5-FU and combination treatment cause a cell cycle shift. (A) Caco 2 cells were treated 

with flavone A, 5-fluorouracil, or combination. Propidium iodide was used to determine cell 

cycle and annexin was used to determine the percent of apoptotic cells. (B) Graphical 

representation of the percent of cells in cell cycle or apoptotic cells. (C) HCT 116 cells were 

treated with flavone B, 5-fluorouracil, or combination. Propidium iodide was used to determine 

cell cycle and annexin was used to determine the percent of apoptotic cells. (D) Graphical 

representation of the percent of cells in cell cycle or apoptotic cells. * Significant (p< 0.05) from 

control as determined by One-way ANOVA (Tukey). 

 

The addition of flavone A or flavone B to 5-fluorouracil treatment causes an increase induction 

of DNA damage. 

The shift in time of apoptosis and cell death caused by the addition of 5-FU to the flavone 

treatment raised the question of if the flavone was enhancing the DNA damage caused by 5-FU 

resulting in the increase in cell death. Alkaline comet assays were performed on CaCo 2 and 
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HCT 116 treated with vehicle, 40 µM flavone A or flavone B, respectively, 80 µM 5-FU, or the 

combination after 24 hours. These assays determined if the combination treatment caused an 

increase in both ssDNA and dsDNA damage. 5-FU and the combination treatments showed more 

DNA damage than either the control or flavone treatments for both CaCo 2 and HCT 116 cells 

(Figure 6A and C). Tail moments (length of tail times percent DNA in the tail) indicates that the 

combination treatment cause more DNA damage per cell in comparison to the DNA damaged 

caused by 5-FU alone in both cell lines (Figure 6B and D). The percent of DNA damaged cells 

per population was not altered in either cell line. 
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Figure 6. Combination therapy increased the induction of DNA damage. A. Comet assay was 

performed CaCo 2 cells were treated with flavone A, 5-FU, or the combination for 24 hours. B. 

Bar graph of the tail moments from CaCo 2 cells treated with flavone A, 5-FU, or combination. 

C. Comet assay was performed on HCT 116 cells treated with flavone B, 5-FU, or combination 

for 24 hours. D. Bar graph of the tail moments from HCT 116 cells treated with flavone B, 5-FU, 

or combination for 24 hours. * Significant (p < 0.05) from control as determined by One-way 

ANOVA (Tukey). ++ Significant (p < 0.05) from 5-FU as determined by One-way ANOVA 

(Tukey). 
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Flavone A and B enhances the mechanism of action of 5-fluorourail in colon cancer cells. 

The complexing of the 5-FU metabolite, FdUMP, with thymidylate synthase (TS) and 

CH2-THF inhibits the conversion of dUMP to dTMP causing a depletion of dTTP from the 

nucleotide pool which causes dUTP to be inserted into DNA resulting in DNA damage (Figure 

1)  (Geng et al. 2011; Ghoshal and Jacob 1997; Peters et al. 2002). Ataxia-telangiectasia mutated 

and Rad3-related (ATR) kinase response to replication stress in order to start DNA damage 

repair and has increased levels in cells in response to 5-FU caused DNA damage (Woods and 

Turchi 2013). ATR activates CHK1 by phosphorylation which in turn arrests the cell by 

preventing the activation of CDK/cyclins (Flynn and Zou 2011). Histone H2AX is  also 

phosphorylated by ATR in response to DNA replication stress and recruits several DNA repair 

proteins as well as chromatin remodeling complexes to the chromatin adjacent to the stressed 

replication fork (Flynn and Zou 2011). When DNA damage is too extensive for repair, CHK1 

initiates apoptosis through the activation of tumor-suppressor protein p53 (Wu et al. 2016). 

Activated p53 induces the transcription of pro-apoptotic proteins BAX, BAK, PUMA, and 

NOXA and inhibits the transcription of anti-apoptotic protein BCL-2, thus suppressing cell 

survival  (Chipuk et al. 2004; Goldar et al. 2015). The decrease in BCL-2 protein levels causes 

the release of cytochrome c from the mitochondria allowing to bind to Apf-1 and recruit caspase 

9 forming the apoptosome which in turn, cleaves and activates the effector caspase 3 causing the 

execution apoptosis (Goldar et al. 2015; Pujhari et al. 2014; Zou et al. 1997). To determine if this 

is the mechanism by which both flavones are able to enhance the amount of DNA damage per 

cell when used in combination with 5-FU, TS, pCHK1 (Ser 345), ³ -H2AX, and BCL-2 levels 

were examined.  
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CaCo 2 and HCT 116 cells were treated with 40 µM flavone A or B, respectively, 80 µM 

5-FU, or combination. In CaCo 2 cells, the combination treatment increased the concentration of 

TS by 318% as compared to the control whereas the individual treatments of flavone A and 5-FU 

caused a 40 and 77% increase, respectively, after 9 hours. In addition, the molecular weight of 

the band shifted up indicating that the TS was in a complex similar to that seen with 5-FU 

individual treatment (Figure 7A and B).  

After 24 hours, 5-FU treatment increased the percent of pCHK1 by 17% as compared to 

the control levels whereas the combination treatment increased levels by 68% in Caco 2 cells. 

Flavone A by itself decreased the expression of pCHK1 by 25% (Figure 7C and D). Combination 

treatment increased the level of ³ -H2AX were expression by 113% over the control and 132% 

over the flavone A treatment (Figure 7E and F).  

After another 5 hours (29 post dosing) changes further down the apoptotic pathway in the 

form of BCL-2 levels were detected in CaCo 2 cells. Flavone A and the combination treatment 

significantly decreased the BCL-2 expression to 51 and 54% of control levels, respectively. A 

similar but not significant decrease in BCL-2 level was seen with 5-FU treatments (60% of the 

control level (Figure 7G and H).  Together, these data indicate that flavone A is able to enhance 

5-FU ability to complex with TS, increase DNA damage, and activate the ATR pathway.  
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Figure 7. Flavone A enhances 5-FU mechanism of action in CaCo 2 cells. (A) TS levels in CaCo 

2 cells treated with vehicle, flavone A (40 µM), 5-fluorouracil (80 µM), or combination for 9 

hours. (B) Graphical representation of percent of TS/actin in CaCo 2 cells. (C) pCHK1 and 

CHK1 levels in CaCo 2 cells were treated with vehicle, flavone A (40 µM), 5-fluorouracil (80 

µM), or combination for 24 hours. (D) Graphical representation of percent of pCHK1/actin and 

CHK1/actin in CaCo 2 cells. (E) ³ -H2AX levels in CaCo 2 cells treated with vehicle, flavone A 

(40 µM), 5-fluorouracil (80 µM), or combination for 24 hours. (F) Graphical representation of 

percent of ³ -H2AX /actin in CaCo 2 cells. (G) BCL-2 levels in CaCo 2 cells treated with vehicle, 

flavone A (40 µM), 5-fluorouracil (80 µM), or combination for 29 hours. (H) Graphical 

representation of percent of BCL-2 /actin in CaCo 2 cells. Western blots are representative of 

experiments performed in triplicate. * Significant (p < 0.05) from control as determined by One-

way ANOVA (Tukey). ++ Significant (p < 0.05) from 5-FU as determined by One-way ANOVA 

(Tukey). *** Significant (p < 0.05) from combination treatment as determined by One-way 

ANOVA (Tukey). 
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Flavone B also appears to enhance the mechanism of 5-FU in a similar manner. After 24 

hours, the combination treatment increased the levels of TS by 90% over the control levels. In 

addition, a similar shift in molecular weight was seen, suggesting that both flavones enhance the 

ability of 5-FU to complex with TS (Figure 8A and B). When used with 5-FU, flavone B was 

also able to increase the activation of the ATR pathway in a more pronounce manner than 

flavone A. At 24 hours, pCHK1 levels in HCT 116 cells treated with 5-FU and combination 

therapies causing an increase of 277 and 400% over control levels, respectively, whereas, 

flavone B alone caused a 20% increase in pCHK1 (Figure 8C and D). Individual flavone B and 

5-FU treatments increased ³ -H2AX levels by 38 and 52% over the control. However, the 

combination treatment increased ³ -H2AX levels by 141% over the control (Figure 8E and F). 

Effects downstream in the apoptotic pathway could be detected 9 hours later (32 hours 

post dosing) in BCL-2 levels. The combination treatment significantly decreased BCL-2 levels to 

40% of control levels. As seen with CaCo 2 cells, individual flavone B and 5-FU treatments 

decreases BCL2 levels in a similar fashion (65 and 61% of control, respectively) though these 

changes were not significant (Figure 8G and H). 
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Figure 8. Flavone B enhances 5-FU mechanism of action in HCT 116 cells. (A)TS levels in HCT 

116 cells treated with vehicle, flavone B (40 µM), 5-fluorouracil (80 µM), or combination for 24 

hours. (B) Graphical representation of percent of TS/actin in HCT 116 cells. (C) pCHK1 and 

CHK1 levels in HCT 116 cells were treated with vehicle, flavone B (40 µM), 5-fluorouracil (80 

µM), or combination for 24 hours. (D) Graphical representation of percent of pCHK1/actin and 

CHK1/actin in HCT 116 cells. (E) ³ -H2AX levels in HCT 116 cells treated with vehicle, flavone 

B (40 µM), 5-fluorouracil (80 µM), or combination for 24 hours. (F) Graphical representation of 

percent of ³ -H2AX /actin in HCT 116 cells. (G) BCL-2 levels in HCT 116 cells treated with 

vehicle, flavone B (40 µM), 5-fluorouracil (80 µM), or combination for 32 hours. (H) Graphical 

representation of percent of BCL-2 /actin in HCT 116 cells. Western blots are representative of 

experiments performed in triplicate. * Significant (p < 0.05) from control as determined by One-
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way ANOVA (Tukey). ++ Significant (p < 0.05) from 5-FU as determined by One-way ANOVA 

(Tukey). 

Both flavone A and flavone B increase cleavage of Caspase 3 when combined with 5-

fluorouracil. 

Both flavones and 5-FU cause cell death via apoptosis (Fujinaka et al. 2012; Hwang et al. 

2005; LeJeune et al. 2015; Thomas et al. 2012) which is triggered by cleaved effector caspases 

including caspase 3 (Baig et al. 2016; Olsson and Zhivotovsky 2011). CaCo 2 cells were probed 

for cleaved caspase 3 7 hours after the decrease in BCL-2 was detected (36 hours post dosing). 

Cells were treated with vehicle, flavone A (40 µM), 5-FU (80 µM), or combination. A 

significant increase in the cleavage of caspase 3 was seen in cells treated with the combination 

versus the control (5.37 vs 0.25%) (Figure 9A and C). Similarly, HCT 116 cells treated with the 

combination of flavone B (40 µM) and 5-FU (80 µM) had a significant increase in cleaved 

caspase 3 to 12.88% versus 0.85% seen in the control 56 hours post dosing (Figure 9B and D). 
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Figure 9. Combination treatment increases cleavage of caspase 3. (A). CaCo 2 cells treated with 
vehicle, flavone A (40 µM), 5-FU (80 µM), or combination for 36 hours were probed for cleaved 
caspase 3. (B) HCT 116 cells treated for 56 hours with vehicle, flavone B (40 µM), 5-FU (80 
µM), or combination and probed for cleaved caspase 3. (C) Percent of CaCo 2 cell population 
with cleaved caspace 3. (D) Percent of HCT 116 cell population with cleaved caspace 3. * 
Significant difference (p < 0.05) as determined by One-way ANOVA (Tukey).  
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5-fluorouracil and combination treatment resulted in large fluid filled tumors. 

To determine whether the synergistic activity of flavone B and 5-FU also occurred in 

vivo, 24 male NCruNU mice were inoculated subcutaneously with 5 x 106 HCT 116 cells in the 

right flank and divided into 4 groups; control, flavone B, 5-FU, and combination treatment. 

Flavone B was administer mixed in polyethylene glycol 400 (PEG 400) via intratumoral 

injection at a dose of 1 mg/kg. 5-FU was mixed in saline and administered via intraperitoneal 

injection at a dose of 12 mg/kg. Saline and PEG 400 were used to treat the controls. Treatments 

were given and tumors measured 3 times a week. Animals were euthanized 12 days post first 

treatment. At this time final tumor measurements and weight were taken after removal from the 

animal (Figure 10A &B). Final tumor weight and volume were significantly different for mice 

treated with the combination at 0.54 ± 0.26 g and 489 ± 354 mm3, respectively (Figure 10C & 

D).  Our data indicate that relative tumor volume (RTV) increased in mice treated with 5-FU or 

the combination treatments 12 and 25 fold, respectively, versus the 4 and 3 fold increase that 

occurred with control and flavone B treated mice, respectively, over the 12 day period (Figure 

10E). Unexpectedly, tumors from mice treated with 5-FU or the combination treatment were 

filled with fluid that was not found in tumors from mice in the control and flavone B treatment 

groups. 
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Figure 10. 5-FU and combination treatment increase the rate of tumor growth. Male NCruNU 
mice with HCT 116 xenografts were treated with vehicle, flavone B (1 mg/kg), 5-FU (12 mg/kg), 
or combination three times a week for 12 days via intratumoral or intraperitoneal injection.  (A) 
Final tumors in mice treated with control, flavone B, 5-FU, or combination, respectively. (B) 
Tumors removed from mice treated with control, flavone B, 5-FU, or combination, respectively. 
(C) Graphical representation of final tumor weight. (D) Graphical representation of final tumor 
volume. (E) Relative tumor volume change. * Significant (p < 0.05) from control as determined 
by Two-way ANOVA multiple comparison (Tukey). ++ Significant (p < 0.05) from flavone B 
treatment as determined by Two-way ANOVA multiple comparison (Tukey). ** Significant (p < 
0.05) from 5-FU treatment as determined by Two-way ANOVA multiple comparison (Tukey). 
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Discussion 

Although colon cancer has a 90% 5 year survival rate if the cancer is detected at an early 

enough stage that it can be removed by surgery, the 5 year survival rate drops to 13% once the 

cancer has moved to another area (American Cancer Society 2015). Unfortunately, early 

detection only occurs in 40 % of cases. Common treatment for the other 60% of cases include 

chemotherapy and radiation. 5-fluorouracil is the most commonly used chemotherapy for the 

treatment of colon cancer and has a 10-20% response rate (Longley et al. 2003; Zhang et al. 

2008). Because 5-FU cases damage to DNA, it is not cancer cell specific and results in several 

side effects. One strategy to improve the effectiveness of 5-FU and potentially relieve some of 

the side effects is to add a secondary drug to the therapy. 

 Our laboratory has previously demonstrated that flavone A and flavone B have 

differential antineoplastic activity against highly tumorigenic cell lines but not against normal 

cells in vitro (Thomas et al. 2012). This antineoplastic activity is caused by the induction of 

apoptosis using different mechanisms (LeJeune et al. 2015). Flavone A targets more 

differentiated cells causing a decrease in the active forms of pro-survival proteins ERK, S6, and 

BAD triggering the intrinsic apoptotic pathway. Flavone B causes the concomitant increase in 

phosphorylated ERK and c-JUN in poorly differentiated cells thus triggering an extrinsic 

apoptotic pathway that is not fully understood. These pathways are activated shortly after dosing 

causing the majority of effected cells to die within 24 hours. 

Our results have shown in no change to cell viability in 24 hours when 5-FU is added to 

the either flavone treatment (Data not shown). However, CaCo 2 cells treated with flavone A and 

5-FU show a decrease in cell viability at 48 hours. HCT 116 treated with flavone B and 5-FU 

also have a delay in decrease of cell viability which is seen at 72 hours.  The effect of 5-FU 
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individual treatment on cell viability occurred at the same time as combination treatments in both 

cell lines. This suggested that the addition of 5-FU to each flavone, blocked the mechanism of 

action of the flavones, possibly favoring the effect of 5-FU. Further investigation into the 

mechanism via which the combination therapy caused cell death showed an increase in apoptotic 

activity and shifts in cell cycle showed that these were similar to the 5-FU treatment in the time 

points of occurrence, whereas, both flavones alone cause on increase in apoptosis and cell cycle 

shift to the S phase at earlier time points (LeJeune et al. 2015).    

5-FU can cause DNA damage by blocking the ability of cells to form dTTP resulting in 

the incorporation of dUTP into DNA. Specifically, 5-FU can interact and form a complex with 

thymidylate synthase and 5,10-methylene-tetrahydrofolate (Figure 1) (Geng et al. 2011; Ghoshal 

and Jacob 1997; Peters et al. 2002). 5-FU induced DNA damage triggers the activation of the 

ATR pathway which in turn cause an increase in the phosphorylation of histone protein H2AX 

and CHK1 with the latter halting the cell cycle until the DNA can be repaired. However, if the 

damage is too extensive, the p53 apoptotic pathway is triggered (Flynn and Zou 2011; Goldar et 

al. 2015; Woods and Turchi 2013; Wu et al. 2016).  
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Figure 11. Mechanism of combination therapy.  Mechanism via which flavone A, flavone B, 5-
fluorouracil, and combination therapy induce apoptosis. 
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The data shown here suggest an increase in the amount of TS in complex and DNA damage 

when either flavone is used in combination with 5-FU as compared to 5-FU used alone.  This 

results in an increase in activation of the ATR pathway leading to apoptosis in cells treated with 

combination therapy versus 5-FU treatment alone (Figure 11). On the contrary, the preliminary 

in vivo data do not confirm these observations.  Indeed, measurements of tumors on mice with 

HCT 116 xenografts treated with 5-FU or combination therapy appear to have an increased rate 

of tumor growth versus control and flavone B treatment (Figure 10). However, the combination 

therapy appears to cause a significant change in final tumor weight and volume that was not seen 

with 5-FU alone. When comparing relative tumor volume, the most striking significant 

differences were seen between flavone B and combination treatment and resulted in the 

combination treatment being significantly different from all other groups. This suggests that 5-

FU and flavone B may be working together in vivo.  Further analysis of the tumor tissue looking 

at changes in TS, ³ -H2AX, BCL-2, and Caspase 3 expression would be needed to determine if 

the mechanism is the same in vivo as it was observed in vitro.  

During the extraction of the tumors after euthanasia, several of the tumors treated with 5-

FU or the combination treatment were fluid-filled. This buildup of fluid in the hollow center of 

the tumors may have to be taken into account when analyzing the rate of growth. To determine 

whether these tumors have higher rates of necrotic cells surrounding the central cavity, histology 

analysis of the tumor samples will need to be conducted. Tumor sections should be analyzed to 

determine if there was an increase in cell death either by apoptosis or necrosis around the cavities 

versus the exterior of the tumor. Although the fluid should have been collected to determine if 

there was a difference in the type of fluid and volume between 5-FU and combination treatments, 
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it may be possible to examine the width and diameter of cavities in the tumor sections to 

determine if there was a size difference in the cavities. 

 There are many additional factors in the tumor microenvironment in an animal that are 

not present in vitro. HCT 116 colon cancer cells are often used to study some of these factors and 

their role in the development of resistance to chemotherapy treatments as HCT 116 cells can 

easily be made resistant to 5-FU (An and Ha 2016; Jin et al. 2016; Liu et al. 2016). Two such 

factors are the presence of inflammation and the effect of macrophage response. Tumor-

associated macrophage (TAMs) respond to tumor cells by being activated to an M2 phenotype 

which in turn promote tumor development by enhancing proliferation, metastasis, angiogenesis, 

and immunosuppression (Colegio et al. 2014; Ding et al. 2015; Ghosh et al. 2015; Sousa et al. 

2015; Zhou et al. 2015). It has also been shown that in response to 5-FU, TAMs secrete 

putrescine which makes colon cancer cells, including HCT 116, resistant to chemotherapy in 

vitro and in vivo (Zhang et al. 2016). The presence of fluid in the 5-FU and combination treated 

tumors suggests the presence of inflammation and an increased recruitment of macrophages. 

Examination of the tumor sections for the presence of TAMs may explain why the 5-FU and 

combination treatments caused an increase in tumor size or provide insight into the mechanism 

of resistance. 

 The increase tumor growth in mice treated with 5-FU or the combination therapy may be 

the result of low, frequent dose of 5-FU. Previous studies have shown this regimen to have been 

effective, however, other studies have reported the successful used higher, less frequent dosing 

regimens (Akindele et al. 2015; Pereira et al. 2016; Shi et al. 2014; Wang et al. 2014b; Zhao et 

al. 2010). A higher dose given once a week may cause an increase in the rate of cell death 

thereby limiting the occurrence of inflammation potentially resulting in less accumulation of 
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TAMs. It is also important to account for technical issues that may have affected the number of 

cells inoculated into the animals that may explain the occurrence of outliers at the onset of 

dosing. It is important to note that at this time there was no significant difference in tumor 

volume. 

  Flavone B did not show a significant reduction in tumor volume in this study. However, 

it did have a 48.00 ± 54.10% tumor grow inhibition compared to the control (data not shown).  A 

greater difference between these two groups may have been seen if The experiment was 

terminated due to the size of the tumors on the 5-FU and combination groups. Furthermore, the 

examination of hepatic and kidney tissue may suggest the absence of deleterious effects by 

flavone B, supporting its antitumor or preventive activity in vivo  

 Further examination of the tissues collected from this study for toxic effects, indications 

of DNA damage and cells death, as well as, the presence of macrophage are needed before 

recommendations can be made involving further research with flavone A, flavone B, or the 

combination treatment.  
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CHAPTER 5 

DISSCUSSION 

  

 The isomeric flavones, 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5, 

7–dihydroxy- 3, 6, 8 trimethoxy flavone/ flavone A) and 3,5-dihydroxy-6,7,8-trimethoxy-2-

phenyl-4H-chromen-4-one (3, 5–dihydroxy-6, 7, 8–trimethoxy flavone/ flavone B), from 

Gnaphalium elegans and Achyrocline bogotensis have previously been shown to have 

antineoplastic activity against highly tumorigenic cancers of the colon, breast, prostate, and 

pancreas dependent on their differentiation status, while sparing normal cells in vitro (Thomas et 

al. 2012).  The hydroxyl on carbon 7 and methoxy on the carbon 3 make flavone A more 

cytotoxic to better differentiated tumor cells whereas the reverse of these R groups makes 

flavone B more cytotoxic to more poorly differentiated tumor cells (Chapter 1, Figure 1). These 

series of studies investigated how these simple structural changes effects the pharmacokinetic, 

distribution, synergistic activity, and in vivo antitumor effects of these flavones.  

 In order to determine the pharmacokinetics of flavone A and flavone B, methods had to 

be developed to extract them from rat plasma. This was successfully done using acetonitrile as an 

organic solvent with recoveries for various concentrations ranging from 84-116% (Whitted et al. 

2015). Reverse-phase high performance liquid chromatography quantification methods were 

developed that used different ratios of acetonitrile and water with acetic acid and triethylamine, 

as well as the selection of different internal standards (celecoxib and diclofenac). In order to 

obtain linear (r2
 > 0.99) calibration curves, the concentrations were divided into 2 sections for 

both flavones with ranges of 250-2,500 ng/mL and 2,500-100,000 ng/mL. Quantification was 
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good with inter-day coefficient of variation being d 22.44 and d 16.18 for flavone A and flavone 

B, respectively, and accuracies 83-111%. 

 These methods were used to determine the pharmacokinetics of a single 20 mg/kg IV 

bolus dose of either flavone A or flavone B. It was found that flavone A has a shorter half-life 

(83 vs 108 minutes) than flavone B, but both were found to have typical half-lives (< 120 

minutes) as reported for flavonoids (Talbi et al. 2014; Yang et al. 2014; Zhang et al. 2014; Zhu et 

al. 2015). Flavone B did have a much higher volume of distribution (11463 mL/kg) than flavone 

A (986 mL/kg) which corresponded with its higher clearance (81 vs 13 mL/min/kg) and lower 

area under the curve (289 vs 2492 µg*min/mL).  

The difference in pharmacokinetics was partially explained when colon and pancreatic 

tissues were examined for flavone A or flavone B.  Filtration of the supernatant from centrifuged 

tissue homogenate by a polyvinylidene fluoride (PDVF) filter (0.45 µm) allowed for the 

extraction of either flavone. The HLPC methods developed for plasma resulted in good 

quantification of flavone A and flavone B from colon tissue homogenate (CV 0.88 -24.03 and 

1.62-33.56, respectively) using one linear (r2 >0.99) calibration curve, 250 – 100000 ng/g and 

1000 – 25000 ng/g, respectively. However, the quantification method did not yield good CVs 

when quantifying flavone A or flavone B from pancreatic tissue homogenate (data not shown). 

The data did show that flavone B distributed to both the colon and the pancreas whereas flavone 

A only distributed to the colon, which could account for some of the difference in volume of 

distribution. These data indicated that both flavone A and flavone B would be viable candidates 

for in vivo colon cancer assays. However, only flavone B would be a good candidate for in vivo 

pancreatic cancer assays. 



91 

 

 With both colon and pancreatic cancer having low 5 year survival rates reported by the 

American Cancer Society (American Cancer Society 2016) and having low response rates to 

current chemotherapies (Longley et al. 2003; Zhang et al. 2008), new or improved treatments are 

urgently needed. One way to improve the current treatment is to add a secondary therapy. Both 

flavone A and flavone B were tested for decreased cell viability when used in combination with 

gemcitabine or 5-fluorouracil (5-FU) against pancreatic cancer. This resulted in cell death similar 

to that seen with chemotherapy treatment alone.  

However, when flavone A or flavone B were combined with 5-FU against colon cancer, 

there was a decrease in cell viability that was synergistic when compared to either treatment 

alone. Investigation into the mechanism via which the combination treatment increased cell 

death revealed that both flavone A and flavone B are capable of enhancing the amount of DNA 

damage caused by 5-FU by increase the amount of thymidylate synthase in complex preventing 

the conversion of dUMP to dTMP, thereby depleting dTTP from the nucleotide pool. This results 

in increase caspase 3 activation and apoptosis in cells treated with both 5-FU and flavone 

A/flavone B than those given an individual therapy.   

Our data suggests that the synergistic effect observed in vitro, is not apparent in in vivo, 

when tumor volume is considered. However, this effect may be apparent in a different manner. 

As it has been shown in the previous chapter, when HCT 116 xenograft mice were treated with 

5-FU or 5-FU plus flavone B, the tumor grew at an increased rate instead of the expected 

diminishing in size. This resulted in the combination treatment mice having significantly larger 

tumors in weight and volume. A possible explanation is that the synergistic effect could have 

resulted in increased inflammation involving tumor associated macrophages which have been 

previously shown to cause resistance of colon cancer cells to 5-FU and tumor proliferation as a 
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result of the low dose of 5-FU used (Colegio et al. 2014; Ding et al. 2015; Ghosh et al. 2015; 

Sousa et al. 2015; Zhang et al. 2016; Zhou et al. 2015). Further examination of the tumor tissue 

for DNA damage, cell death, and inflammation marker such as TAMs are needed to determine if 

there is indeed a synergistic effect by the combination these two agents in colon tumors   

In the case of Flavone B our data suggest a slight decrease in tumor growth as compared 

to the control, that may have been clearly apparent if the experiment was not terminated due to 

high tumor size in 5-FU and the combination groups. The possible absence of renal or hepatic 

damage by histological examination in mice treated with flavone B alone, may warrant extending 

the HCT 116 xenograft experiment using just control and flavone B treated groups.  Similarly, 

this experiments can be conducted to if flavone A has any antitumor activity against CaCo 2 

xenografts. 

In conclusion, based on our pharmacokinetics and tissue distribution studies, flavone A 

and flavone B are good candidates as individual treatments for colon cancer and flavone B 

maybe a good candidate for the treatment of pancreatic cancer. The fact that flavone A and 

flavone B target cells of varying differential status may provide an advantage for using them in 

combination in vivo. The results obtained in vivo in colon cancer warrant further exploration of 

using these as secondary therapies to 5-FU.  Since the tumors in the 5-FU and combination 

groups are fluid filled, adjustment in the dose of 5-FU in combination with flavone A or flavone 

B may demonstrate a synergistic effect on colon tumors.  
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