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ABSTRACT 

 
An Investigation into Formulation and Therapeutic Effectiveness of Nanoparticle Drug Delivery for 

Select Pharmaceutical Agents 

by 

Dustin Lynn Cooper 

 
Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for 

their use in various drug delivery systems. NPs have been shown to increase bioavailability, decrease 

side effects of highly toxic drugs, and prolong drug release. Furthermore, polymer based, biodegradable 

nanodelivery has become increasing popular in the field of NP formulation because of their high degree 

of compatibility and low rate of toxicity.   

 

Due to their popularity, commercially available polymers such as poly lactic acid (PLA), poly glycolic 

acid (PGA) and polylactic-co-glycolic acid (PLGA) are commonly used in the development and design 

of new nano based delivery systems. Nonsteriodal anti-inflammatory drugs (NSAIDs) are commonly 

used for the treatment of pain and inflammation. NSAIDs such as diclofenac and celecoxib function by 

blocking cyclooxygenase expression and reducing prostaglandin synthesis. Unfortunately, the 

pharmacological actions of NSAIDs can lead to the development of several adverse side effects such as 

gastrointestinal ulceration and bleeding.  

 

The aim of this study was to formulate and optimize diclofenac or celecoxib entrapped polymer NPs 

using an emulsion-diffusion-evaporation technique. NP formulations were evaluated based on specific 

formula parameters such as particle size, zeta potential, morphology, and entrapment efficiency. Effects 

of stabilizer type, stabilizer concentration, centrifugal force, drug amount, and/or emulsifier (lecithin) on 

nanoparticle characterization were examined for formula optimization.  

 

Results of the formulation studies showed that NPs developed using polylactide-co-glycolide (PLGA) 

polymers and the stabilizer didodecyldimethylammonium bromide (DMAB) demonstrated enhanced 

stability, drug entrapment, and reduced particle size. These findings demonstrate an effective method for 

polymer NP formulation of diclofenac or celecoxib. Furthermore, the results reported herein support a 

novel method of drug delivery that may function to reduce known adverse effects of these 

pharmacotherapeutic agents. 
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CHAPTER 1 

INTRODUCTION 

 

Nanoparticles (NPs) are solid colloidal particles ranging in size from 10 to 1000 nm and contain 

nanomolecular materials, in which active ingredients are dissolved, entrapped, or encapsulated (1 - 3). 

NPs are currently gaining popularity in the medical field as an effective means of drug delivery and 

therapy (Shive and Anderson 1997; Buzea et al 2007; De Jong, and Borm 2008; Cooper and 

Harirforoosh 2014). Through the use of colloidal based NPs, researchers are effectively creating a drug 

delivery system that can improve a drug’s overall kinetics, dynamics, and targeted release (Cooper et al 

2014). Altered drug formulation designs using NP encapsulated drugs offer a safe and effective 

alternative in pharmacotherapy. New NP formulations have been found to be well suited for a variety of 

drugs in the biomedical field by offering a higher degree of safety and drug efficacy with regard to 

disease treatment and the onset of drug associated adverse side effects (Shive and Anderson 1997; 

Doane and Burda 2012; Cooper et al 2014). Drug loaded NPs have been shown to increase the 

therapeutic indices of entrapped agents and reduce development of adverse side effects (Shive and 

Anderson 1997; Uchino et al. 2005; Desai et al. 2008; Li et al. 2011; Vishnu and Roy 2011; Doane and 

Burda 2012; Cooper et al 2014). Recent studies on chemotherapeutic and antibiotic NP encapsulated 

drugs have shown potential in accelerating disease treatment and reducing associated adverse 

complications (Mizumura et al 2001; Uchino et al 2005; Li et al 2011; Vishnu and Roy 2011; Benival 

and Devarajan 2012; Jain et al 2012; Zhao et al 2013; Cooper et al 2014).  

Pharmaceutical agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used 

among the general population (Cooper et al 2014). NSAIDs act to block the formation of the 

inflammatory messenger molecule prostaglandin by inhibiting the cyclooxygenase (COX) enzyme 

(Simmons 2004; Brater 2006; Dogne 2006; Cooper et al 2014). The most commonly reported side 

effects of these drugs are gastrointestinal ulcerations, dyspepsia, and diarrhea. Certain cardiovascular 

side effects such as stroke and myocardial infarction are also common among COX-2-selected inhibitors 
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such as rofecoxib and celecoxib (Goldberg 1999; Simmons et al 2004; Caldwell et al 2006; Dogne et al 

2006).  

Evidence suggest that the use of NPs in drug delivery may effectively reduce complications 

associated with the use of NSAIDs (Mizumura et al 2001; Uchino et al 2005; Desai 2008; Li et al 2011; 

Vishnu and Roy 2011; Benival and Devarajan 2012; Jain et al 2012; Zhao et al 2013; Cooper et al 

2014).  In the literature, drug reformulation studies using polymer based NPs have shown positive 

benefits in regards to drug induced complications as well as reductions in associated adverse events. 

When applied towards the commonality of NSAID use, and the known efficacy and side effects 

associated with such drugs, investigation into NP reformulation of these pharmaceutical agents was 

warranted.  

Currently, there are many types of polymers available for polymer based NP formulation. Examples 

of common polymers employed in NP formulation are poly (lactic acid) (PLA), poly (glycolic acid) 

(PGA), and poly (lactic-co-glycolic acid) (PLGA) (Cooper et al 2014). Like many NP delivery systems, 

polymer based NP formulation can act to offset drug release by desorption of bound drug from particle 

surfaces, erosion of the polymer membrane, and/or drug diffusion (Buzea et al 2007; Dejong and Borm 

2008; Cooper et al 2014). The three aforementioned stages at which polymer NPs can release active 

pharmaceutical agents makes them an ideal choice in attempting to formulate a new and novel drug 

delivery systems that could act to modify or control drug release and offset the occurrence of drug 

related adverse events.  

In regards to polymer choice, PLA has been shown to exhibit a prolonged rate of degradation and 

drug release (Cooper et al 2014). In counter to PLA characteristics, PGA is commonly used in 

formulations were fast hydrolysis and erosion are warranted. As such, in this study focused was placed 

on the use of PLGA because of its known intermediate rate of hydrolysis and biodegradation in 

comparison to PLA or PGA. Furthermore, polymeric NP formulations consisting of PLGA can result in 

minimal or reduced toxicity due to product conversion to the Krebs cycle intermediates lactic acid and 
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glycolic acid. Because of these favorable characteristics, PLGA was chosen as the primary polymer to 

be used. 

Solvent evaporation is one of the more commonly used formulation techniques for production of 

polymer based NPs (Savjani et al 2012; Cooper et al 2014, Cooper and Hariroforoosh 2014; Cooper and 

Harirforoosh 2014). In this study polymer encapsulated pharmaceutical agents were formulated using a 

previously described oil in water solvent evaporation technique Cooper and Hariroforoosh 2014; Cooper 

and Harirforoosh 2014). To facilitate NP formulation, an organic phase consisting of polymer and drug 

dissolved in ethyl acetate was added to an aqueous phase containing a stabilizer. Ethyl acetate has been 

shown to be effective in the formulation and creation of drug loaded NP delivery systems and was thus 

chosen as the primary solvent for these formulation studies. The stabilizer didodecydimethylammonium 

bromide (DMAB) is highly effective at creating positively charged particles (Cooper and Hariroforoosh 

2014). In DMAB based formulation studies, these positively charged surface characteristics have been 

shown to impede particle agglomeration and enhance system stability, making them an ideal stabilizer of 

choice for new NP formulation analysis (Cooper and Hariroforoosh 2014; Cooper and Harirforoosh 

2014). A second stabilizer, poly vinyl alcohol (PVA), was also chosen as a comparison model for 

stabilizer effects in NP formulation. PVA has been extensively used in various formulation designs. Due 

to PVA’s extensive history in drug delivery and formulation, it was chosen for comparative stabilizer 

analysis during formula optimization techniques. 

The overall aim of this research was to formulate, develop and optimize a polymeric NP loaded 

drug delivery system. The results shown herein outlines development of this new delivery systems for 

the select pharmaceutical agents, diclofenac and celecoxib.  

As a whole, formulation aspects of this study were directed at elucidating effects of polymer 

type, drug and stabilizer concentration, and emulsifier effects on overall drug loaded NP characteristics.  

Commonly reported NP characteristics including particle size, zeta potential, drug entrapment, 

morphology, and in vitro release rates of various NSAID reformulations were determined. The 
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examination of particle size and zeta potential was performed using a NICOMP Zeta Sizer (Particle 

Sizing Systems, Port Richey, FL, USA). In vitro drug release and drug entrapment investigations were 

carried out using ultra violet spectrometry (Eppendorf Biophotometer, Hauppauge, NY, USA). Drug 

loaded NP morphology was examined via transmission electron microscopy (Tecnai Philips 

Transmission Electron Microscope; FEI, Hillsboro, Oregon, USA).  

All experiments outlined above were used to study and elucidate the most effective and efficient 

means of developing polymer drug encapsulated NPs of diclofenac or celecoxib. Major pit-falls and 

difficulties were not expected during the formulation process. However, a trial and error process was 

required to identify peak formulation parameters for polymer drug formulation. For example, variations 

in stabilizer concentration can lead to altered particle characteristics. If a certain concentration of 

stabilizer resulted in unsatisfactory particle characteristics (i.e. low zeta potential, reduced 

encapsulation), formulations utilizing higher stabilizer concentrations were examined in an attempt to 

achieve peak particle parameters. Other optimization techniques were also employed in an effort to 

reach ideal particle characteristics.  
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CHAPTER 2 

Nanoparticles in Drug Delivery: Mechanism of Action, Formulation, and Clinical Application Towards 

Reduction in Drug Associated Nephrotoxicity. 

 
Dustin L. Cooper, Christopher M. Conder, and Sam Harirforoosh 

 

Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, 

Johnson City, TN 37614 

 

 

Abstract 

 

Introduction: Over the past few decades, nanoparticles (NPs) have gained immeasurable interest in the 

field of drug delivery. Various NP formulations have been disseminated in drug development in an 

attempt to increase efficiency, safety, and tolerability of incorporated drugs. In this context, NP 

formulations that increase solubility, control release, and/or affect the in vivo disposition of drugs, were 

developed to improve the pharmacokinetic and pharmacodynamic properties of encapsulated drugs.  

Areas Covered: In this article, important properties related to NP function such as particle charge, size, 

and shape are disseminated. Also, the current understanding of how NP characteristics affect particle 

uptake and targeted delivery is elucidated. Selected NP systems currently used in delivery of drugs in 

biological systems and their production methods are discussed as well. Emphasis is placed on current 

NP formulations that are shown to reduce drug induced adverse renal complications. 

Expert Opinion: Formulation designs utilizing NP encapsulated drugs offer alternative 

pharmacotherapy options with improved safety profile for current and emerging drugs. Nanoparticles 

have been shown to increase the therapeutic index of several entrapped drugs mostly by decreasing drug 

localization and side effects on organs. Recent studies on NP encapsulated chemotherapeutic and 

antibiotic medications show enhanced therapeutic outcomes by altering drug degradation, increasing 

systemic circulation, and/or enhancing cellular uptake. They may also reduce the distribution of 

encapsulated drugs into kidneys and attenuate drug-associated adverse renal complications. The 

usefulness of NP formulation in reducing the nephrotoxicity of nonsteroidal anti-inflammatory drugs is 

an under explored territory that deserves more attention. 

 

 

 

 

 

 

 

 

 

 

Keywords: nanoparticle, formulation, liposome, polymer, bioavailability, biodegradation, 

nephrotoxicity, NSAIDs 
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Article highlights. 

‡Research into the functional aspects of particle science has led to increased interest in NP based 

drug delivery for enhancement of the therapeutic effects of selected drugs. 

 

‡Characteristic aspects of NPs enables the use of drug loaded NPs for improved targeting and 

cellular uptake by altering particle properties such as drug lipophilicity, cell adhesion, receptor 

binding, and endocytosis based drug uptake.  

 

‡NP formulation can be achieved through differing methods of development based on drug, 

particle type, characteristics, and delivery form. Several methods are employed in industry and 

academia for successful development of liposomal and polymer based NP delivery systems. 

Solvent evaporation techniques are commonly employed in both industry and academia for 

successful development of a wide range of NP systems. 

 

‡Altered degradation rates can lead to functional differences in drug effects and systemic 

exposure. NPs have successfully altered pharmacokinetic and pharmacodynamics properties of 

selected drugs, leading to the development of sustained drug delivery systems that work to 

increase patient compliance and reduce the onset of drug induced side effects. 

 

‡Nephrotoxic side effects are common for a number of prescribed medications. NP science has 

shown enhanced beneficial aspects of known nephrotoxic drugs utilizing NP drug delivery. In 

vivo, in vitro, and clinical trials have demonstrated improved renal effects in paclitaxel, 

amphotericin B, and cyclosporine based drug regimens. These and other findings have led to 

development of several FDA approved formulations showing improved clinical efficacy and 

minimization of common drug side effects, suggesting further research into the effect of NP 

formulation for improved clinical efficacy of other known nephrotoxic drugs such as NSAIDs.   

 

This box summarizes key points contained in the article 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

Introduction 

Nanoparticles (NPs) are small particles that range in size from 10 nm to 1000 nm [1]. They contain 

nanomolecular materials in which active ingredients are dissolved, entrapped, and/or encapsulated. At 

present, NPs can be found in hundreds of different consumer products ranging from sunscreen and air 

conditioners to processed food supplies [2]. Over the past few decades, NPs have gained recognition in 

the medical field as an effective means of drug delivery and therapy [3].  

Nanometer size  range can effectively alter a substance’s physical, chemical, and biological 

properties [4]. On the other hand, NP surface properties can be altered through the utilization of various 

substances such as polysaccharides, proteins, and polymers [5]. The size and surface properties of NPs 

can be optimized for given drugs. This opportunity allows the re-formulation of many different 

therapeutics to new pharmaceutical products with a potential for   increased activity and reduced toxicity 

[6].  

Active ingredients can be encapsulated within NPs of differing functionality and chemical structure. 

This allows for the formulation of a multitude of NP based delivery systems [7] that can exhibit unique 

properties related to their intended use. The ultimate objective of research in this area is to design  a 

suitable NP, i.e., NPs of appropriate size, chemical structure, and surface characteristics, that can 

encapsulate clinically relevant amounts of an intended drug with enhanced drug kinetics and dynamics 

in the biological system [4]. The choice of materials to be used for the production of NP formulations is 

dependent on the desired functionality one wishes to achieve with respect to specific physicochemical 

characteristics of a drug and its intended pharmacological activity [8]. In this manuscript, we discuss the 

function and preparation of selected NP systems used in biomedical research. Emphasis is then placed 

on the role of NP formulations in reducing renal side effects of commonly known nephrotoxic drugs. 

 

Nanoparticle Mechanism of Action 

NP drug encapsulation offers several advantages in creating effective means of drug delivery and 

localization. NP traits such as particle size, surface charge, and shape play important roles in creating 

effective NP delivery systems that function through a variety of mechanisms. 

 

1.1. Effect of Particle Size 

Particle size can affect the efficiency, biodistribution, and cellular uptake of various NP systems [9]. It is 

thought that size parameters can play significant roles in the determination of cell interaction and 

adhesion for various NPs. Size can also play an important part in degradation and elimination processes 

of NPs. In certain NP systems, the primary aim is to avoid the reticuloendothelia system that targets 
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foreign bodies for degradation. Avoidance of this system results in an increase of total blood circulation 

time and bioavailability. As such, it is important to note that nanoparticle size has been directly 

correlated with clearance rate. As the size of NPs increase, the rate of clearance increases as well. It has 

been shown that NPs with hydrophilic surfaces exhibiting a particle size less than 100 nm can 

effectively avoid the mononuclear phagocytic system (MPS) [10]. MPS is a critical element in 

physiological systems for the elimination of foreign substances. Blood serum contains opsonin proteins 

which can efficiently bind to larger NPs and tag them for MPS degradation [11]. NPs that obtain small 

particle diameter and hydrophilic properties can avoid opsinization and MPS degradation, thus 

enhancing total blood circulation time [10, 11]. Nanometric particles can undergo extensive cellular uptake 

in comparison to micrometric particles [12]. In a study conducted by Desai et al., it was shown that 

nanoparticle uptake of an in situ rat intestinal loop model demonstrated 15 – 250 fold increases in 

cellular uptake when compared to larger microparticles [13]. Other studies have shown positive particle 

size influence in regards to cellular and tissue uptake. In these studies, it was demonstrated that only 

nano sized particles underwent extensive uptake in comparisons to their larger, microparticle 

counterparts [14]. Findings such as these demonstrate the influence and importance of particle size for 

intracellular delivery of various active agents used within the realm of drug therapeutics.   

 

1.2. Effect of Particle Charge 

NP charge plays a critical role in the action and efficacy of NP delivery to and through cellular 

membranes [15]. Stability of an NP system is facilitated through the degree of surface charge present on 

NPs [16]. A highly charged system undergoes a much larger degree of repulsion between like charged 

particles. This net repulsive force acts to stabilize and prevent NP aggregation. NPs formulated with 

more pronounced surface charges have been shown to stabilize NP suspension and prevent particle 

aggregation. Surface charge characteristics can determine NP degree of absorption as it has been found 

that NPs with highly positive charges can interact with the anionic polyelectrolyte properties of mucus, 

resulting in enhanced muco-adhesion and retention of NPs within the mucus layer. Investigational 

studies performed with PLGA and poly vinyl alcohol formulated NPs have resulted in NPs with highly 

negative surface charges, which may explain their high reabsorption ability through natural pathways. 

Many cellular membranes are negatively charged. NPs formulated with known anionic polymers or 

surfactants will be presented with higher net negative surface charge. This increased negative surface 

charge will result in repulsion of the NP when it comes into the vicinity of cell membranes. As a result 

of this repulsive force, cellular uptake becomes difficult and cellular adhesion is reduced. Positively 
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charged nanoparticles experience opposite effects. The cationic NP facilitates membrane attraction and 

adhesion, which creates favorable properties for cellular uptake via endocytosis or other mechanisms. 

 

1.3. Effect of Particle Shape 

In recent years, research has revealed that particle shape may have fundamental effects on the biological 

properties of NPs [17]. In a study conducted by Geng et al., it was found that polymer micelles of shorter 

stature showed an increased total blood circulation time following intravenous (IV) injection [18]. When 

compared to longer micelles, shorter spheres also underwent a higher degree of cell uptake and 

effectively delivered the drug, paclitaxel, to targeted tumor cells. Another study found that the length of 

NP inversely influenced cellular adhesion. In that study it was found that as particle length increased the 

subsequent binding of NPs decreased, suggesting that attachment and adhesion is a function of cellular 

length [19]. These studies suggest the importance of NP shape in therapeutic outcomes in relations to 

drug design and delivery. In NP development, characterization and design must not only pertain to 

particle size or surface charge, rational design and analysis of shape effects on targeted NP outcomes 

must be dually considered during NP drug delivery research. 

 

1.4. Cell Targeting 

Many biological targets for nanomedicines are large complex molecules such as membrane receptors 

[20]. Biological processes are initiated through polyvalent interaction between these targeted receptors 

and its appropriate ligand. Many NP formulations have been developed that largely overlook NP valence 

capacitance and receptor interactions. However, some formulations such as dendrimer and polymer 

based NPs have been documented to function through polyanionic receptor mediated targeting [15]. 

Dendrimer based NP systems have demonstrated targeted viral and cellular interactions via polyvalent 

interactions with varying surface proteins [20]. Folate formulated polymer based NPs have been shown to 

bind to overexpressed folate receptors common to tumor cells and initiate cellular entry [15]. Other 

polymer formulated NPs have shown specificity for caveolae and clatherin proteins resulting in 

endocytosis uptake via differing target mechanisms [21]. Polymeric micelles have demonstrated the 

ability to target cancer cells and initiate cellular uptake while avoiding excess uptake in normal 

epithelial cells [15]. This difference in cell type uptake is thought to be a result of NP differentiation of 

endocytosis mechanisms common to each cell type [22]. Carcinogenic cellular uptake is initiated through 

caveolae mediated endocytosis which is absent in normal cell lines. The caveolae targeting capacitance 

of polymeric micelles enables drug uptake into cancerous cell lines while avoiding drug uptake in 
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normal cells. As a result, cytotoxic drugs can be formulated in polymer based micelles for cancer 

treatment that could avoid cytotoxicity of normal functional cell types  

 

Characterization 

New NP formula characterization is a vital and highly sensitive component in new drug development 

and delivery. Some researchers can experience poor characterization studies as a result of undefined 

methods or misinterpreted information [23]. The National Cancer Institute’s Nanotechnology 

Characterization Laboratory (NCL) has taken steps in further streamlining nanoparticle formulation 

safety and biocompatibility. The NCL functions as a strong resource for new formulation scientist in 

hopes of avoiding common pitfalls in new NP design. In this review, characteristics and methods of 

determination will be briefly discussed as it is important to understand the varying methods used in 

academia and industry for identification of NP parameters. While this review offers a brief description 

of characterization studies commonly done in NP formulation, it is far from exhaustive. Further inquiry 

into proper characterization techniques should be directed towards NCL’s scientific bibliography and 

published data on characterization [23]. 

 

1.5. Particle Size Characterization 

Dynamic light scattering (DLS) is commonly used to determine NP size. DLS functions by measuring 

Brownian motion and relates its velocity to NP size using the Stokes-Einstein equation [24]. Reported 

results are expressed as mean particle size with a degree of particle homogeneity or polydispersity index 

(PDI). A PDI value between 0.1 and 0.25 is indicative of small distribution ranges in particle size, while 

PDI values greater than 0.5 suggest larger particle dispersity in relation to size [25]. Microscopy 

techniques can also be used to accurately determine particle size, however the process is often times 

more complicated, requiring several different sample preparation steps. 

 

1.6. Determination of Zeta Potential 

Measurements of particle charge, or zeta potential, are often accomplished by electrophorectic mobility 

assays. NPs are surrounded by two separate liquid layers, the strong inner bound Stern layer and the 

weak bound outer layer [25]. Electrophoresis applies an electrical current to an NP solution and measures 

the degree of NP mobility, thus measuring the charge of the NP outer layer. Several different pieces of 

equipment, such as Malvern zeta sizer and NICOMP particle sizing system, are used for particle charge 

analysis [26]. In many instances, these systems serve a dual functionality by providing both particle 

charge and particle size data analysis [27]. 
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1.7. Measurement of Drug Release 

The ability for an NP to release entrapped drug is critical in the overall functionality of NP derived drug 

delivery. Measurements of NP release kinetics enable scientists to properly analyze new NP system 

behavior and evaluate their potential efficacy in clinical use. NP release can occur through three distinct 

pathways: desorption of surface bound drug, polymer matrix erosion, and drug diffusion [25]. Primary 

routes of drug release often occur through matrix diffusion and/or erosion, while desorption of surface 

bound drug is commonly attributed to the rapid burst release seen in many NP formulations. 

Analysis of NP release is commonly done using sample separation or membrane dialysis techniques 

[28]. In sample separation, NP solutions are emerged within a fixed volume of medium and placed on an 

electronic shaker or stir plate. Solution samples are taken at various time points and centrifuged or 

filtered while fresh media is added to the NP solutions. Following sample centrifugation and/or 

filtration, the resultant supernatant is analyzed for free drug content [27]. Dialysis methods measure NP 

release as a function of continuous diffusion across a membrane [25]. The method involves the use of 

select membrane pore size and molecular weight cut off parameters for proper NP and free drug analysis 

[28]. The dialysis membrane procedure consists of two compartments, a donor compartment and receptor 

compartment. NP solutions are placed within the donor compartment and fresh medium is placed within 

the receptor compartment. At various time points, samples are collected from the receptor compartment 

and analyzed for free drug content. Solution analysis is carried out through several different methods 

including high performance liquid chromatography and ultra violet spectrometry [25, 27, 28]. 

 

1.8. Morphology 

NP morphological and shape characteristics are important for studying NP presence, surface 

characteristics, topography, degree of aggregation, and direct analysis of particle shape [29]. NP 

morphology studies are commonly carried out utilizing transmission electron microscopy (TEM) or 

scanning electron microscopy (SEM) techniques [27, 30]. In these techniques, small amounts of NP 

samples are placed on select TEM or SEM carbon film, with or without reflective coating [29]. Thin 

samples are required to allow transparency of the electron beam, as such, samples are usually coated 

lightly on microscopic film or if nanoparticle solutions are employed, allowed to dry before 

visualization [29]. TEM allows researchers to quickly and accurately achieve size distribution and particle 

density information for new NP formulations. 
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Nanoparticle Transport 

A NP placed externally to cells can interact with cellular plasma membranes and enter inside the cell via 

passive diffusion or endocytosis [15] (Fig. 2.1). Endocytosis involves a multi stage process in which 

extracellular components interact with cellular membranes forming invaginations. These invaginations 

then become pinched to form endosomes or phagosomes (depending on route of transportation) and 

delivered to targeted compartments within the cell. 

 

1.9. Passive Diffusion 

The process of passive diffusion can occur when a nanoparticle dissolves across the lipid membrane of a 

cell (Fig. 2.1). Diffusion can depend upon several factors related to nanoparticle characteristics. NP 

surface charge can influence the degree to which substances passively diffuse across the lipophilic 

plasma membrane of various cells [31]. Previous studies have demonstrated the ability of charged 

nanoparticles to facilitate a three to four fold increase in uptake across a cholesterol containing lipid 

bilayer. Further studies have elucidated diffusion of NPs within cells based on their influences on tight 

junctions. Sonaje et al. demonstrated the influence of NP formulation on the opening of tight junctions. 

It was shown that NP treatment resulted in slightly increased apical membrane space which facilitates 

paracellular transport of insulin [32]. These results indicate that the use of NPs to deliver drugs across 
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cellular membranes via diffusion mechanisms may offer advantages over current drug delivery 

strategies.   

 

1.10.  Endocytosis 

The process of endocytosis  is divided into two broad categories; pinocytosis (receptor mediated and/or 

macropinocytosis) and phagocytosis [33] (Fig. 2.1). Receptor mediated endocytosis involves the 

engulfment of receptors in conjunction with their associated ligand, into a coated pit. Clatherin protein 

coated pits are the more commonly associated receptor mediated endocytic pathway and are often 

referred to as the “classical” form of receptor mediated endocytosis. The clatherin coated pits are 

primarily responsible for uptake of essential nutrients such as cholesterol and iron [12]. Caveolae consist 

of structural caveolin proteins that function as integral membrane proteins and can be found in 

abundance in adipocytes, muscle and epithelial cells [15]. Caveolae mediated endocytosis functions by 

engulfing molecules that bind to caveola surfaces. Unlike clatherin dependent endocytosis, caveolae 

proteins do not disassociate from the vesicle following endocytosis [9]. Macropinocytosis processes 

allow for the engulfment of larger solute macromolecules and can measure as wide as 5 µm. 

Phagocytosis generally refers to cellular uptake of large microparticles such as microorganisms and dead 

cells, which are ingested and transported via phagosomes. It is important to note that phagocytosis is 

generally restricted to specialized mammalian cells, such as macrophages, that play an important role in 

the detection and elimination of foreign substances. 

 

 Types of Nanoparticles  

Nanodelivery systems are generally divided to two classes of lipid and polymer based delivery systems. 

 

1.11.  Lipid Based Nano-Delivery Systems 

Lipid based NPs have been extensively used for increased oral, topical and intravenous drug delivery [2]. 

Most commonly used lipid based nano-delivery systems are liposomes and small lipid based 

nanoparticles (Fig. 2.2A and 2.2B, respectively).  

Liposomes are spherical vesicles composed of phospholipid bilayers with a particle size distribution 

between 10 – 1000 nm [34] (Fig. 2.2A). Liposomes are formed when phospholipids are dispersed in an 

aqueous solution. When phospholipids are placed in water the hydrophilic head group interacts with the 

polar medium resulting in the formation of multi and unilayered vesicles [35]. These vesicles are 

composed of biological lipid bilayers that form a spherical shell [35]. Because of their entrapment 

capabilities, liposomes are a highly useful tool for pharmaceutical delivery. Liposomes are normally 
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developed by drying down lipids from an organic solvent, then dispersing the lipids through aqueous 

medium in the presence of a detergent, followed by purification [36]. The most extensively used method 

for dispersion in liposome formation is probe or bath sonication. Characteristics of the liposome lipid 

bilayer can allow fusion of the liposome to cell membranes, thus instigating direct delivery of material 

(i.e. drug) inside the cell [37]. 

 

Medical studies looking at liposomal effects of anti-cancer drugs demonstrated an increase total drug 

circulation and tumor exposure time brought about by increased tissue retention [38]. In fungal infections, 

it has been shown that amphotericin B liposomes function to enhance cellular adhesion and aid in 

penetrating fungal cell walls and enhance entrance into cellular cytoplasm, suggesting cell and tissue 

specific targeting [39]. As such, liposomes have been extensively used as carriers for many different 

molecules within the pharmaceutical industry. Because of their high degree of biocompatibility, low 

toxicity, site specificity, and ability to entrap both hydrophobic and hydrophilic compounds, liposomes 

have gained immense interest in commercial drug delivery [36, 40].  
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Solid lipid systems have become a major focus in drug delivery research. Their high degree of 

biocompatibility, physiochemical properties, and ability to enhance absorption of hydrophobic drugs 

through lymphatic uptake has made them popular compounds to utilize in drug carrier systems [40]. 

Compared to liquid oil solutions, solid lipids allow less formulation based drug mobility and as such, a 

much greater control in drug delivery [41]. Aside from effects on drug release, it should be noted that 

solid lipids and solid lipid nanoparticle (SLN) matrices are composed of physiological lipids which can 

effectively reduce acute and chronic toxicity associated with other forms of drug delivery [42] (Fig. 

2.2B). SLNs are produced by mechanically dispersing lipids in water or an aqueous surfactant solution, 

which allows for select advantages over common liposomes and other various forms of NPs [42, 43] (Fig. 

2.2B). Other advantages claimed with SLNs include: increased drug stability, high drug payload, and 

ease of sterilization and large scale production [42]. The enhanced stability of SLNs decreased the 

propensity of drug leakage and offers a delivery option that is more biodegradable and compatible and 

less toxic when compared to other nano-based delivery options [7, 43]. SLNs have an average particle size 

below 500 nm [42]. 

Lipid based drug conjugates are one of the most widely accepted methods for development and 

delivery of hydrophilic drugs. Other lipid delivery systems such as SLN experience low levels of 

hydrophilic drug incorporation and have low drug loading capacitance based on polarity [44]. Lipid drug 

conjugates (LDCs) are able to convert water soluble drugs into insoluble lipid drug conjugates by 

conjugation of an amino or hydroxyl group of the drug of choice to the carboxyl group present in a lipid 

core. LDCs are generally formed in bulk via covalent linkage or salt formation then converted into NPs 

via high pressure homogenization [44]. Studies have shown that the use of LDCs in drug formulation can 

effectively increase gut permeability and enhance oral delivery of select therapeutic agents via reduced 

first pass exposure and increased lymphatic absorption. Other studies have demonstrated the use of 

LDCs in effective increases in drug uptake across the blood brain barrier. A study conducted by Olbrich 

et al. showed that lipid conjugated diminazene demonstrated less cytotoxic effects and increased blood 

brain barrier passage when conjugated to a lipid matrix through enhanced LDL receptor activation [45].  

 

1.12.  Polymer Based Nanodelivery Systems 

Polymer based NPs are superior to liposomes primarily because of tissue and organ specific targeting [46] 

(Fig. 2.3A). The ability to absorb and coat polymeric formed NPs with differing substances such as 

target specific ligands for tissue specificity and polyethylene glycol for increased hydrophilic properties, 

allows investigators and drug development specialists a wide variety in reducing toxicity and inducing 

specific functions for a particular drug or compound. 
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Many biodegradable polymers are available for polymer based NP formulation. Poly (lactic acid) (PLA), 

poly (glycolic acid) (PGA), and poly (lactic-co-glycolic acid) (PLGA) polymers are a few of the more 

successfully used biodegradable polymers [46]. PLGA, PLA, and PGA are commercially available for use 

in various drug delivery systems. The use of PLA, PGA, and PLGA in NP formulations allows  

for particle manipulation without increasing toxicity as they are all biodegradable polymers that undergo 

hydrolysis to lactic acid and/or glycolic acid [47]. The formation of Krebs cycle intermediates associated 

with these polymers creates minimal physiological toxicity as they are easily and efficiently 

metabolized. Differing NP characteristics such as particle size, shape, and zeta potential can be produced 

according to parameters set forth by the specific synthesis process [48]. Degradation time for polymers 

can vary depending upon their molecular weight [47, 49]. Of all the biodegradable polymers currently 

available, PLGA seems to be the more common choice for polymer based NP synthesis and has 

appeared in several commercial formulations (Table 2.1) [50]. 

 PLA is commonly used to a lesser extent due to its prolonged degradation rate, while PGA is used when 

fast degradation and hydrolysis processes are warranted. Particle size distributions of polymeric NPs 

usually range from 50 – 500 nm [51]. Unlike liposomes, polymeric NP characteristics usually employee a 

smaller size diameter allowing for enhanced systemic circulation and reduced recognition and 

degradation by the mononuclear phagocytic system [34]. Polymer based NPs have also shown an 
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enhanced stability and resistance to drug leakage at normal physiological conditions when compared to 

liposomes [52]. Inclusion of polymer formulated liposomal NP systems have been proposed and 

researched as a means of enhancing liposome resistance to drug leakage and prevention of potential 

cytotoxic effects [53]. Studies have shown that polymerization of liposomal systems can enhance 

liposomal resistance to drug leakage at temperatures of 40 °C.    

Polymers have also been used in dendrimer delivery systems. Dendrimers (Fig. 2.3B) are highly 

branched molecules with multiple arms extending from a central core [54]. Aside from their highly 

branched structure, dendrimers also possess unique characteristics such as controlled mutlivalency, 

defined molecular weight and globular structure. The multivalency characteristics of dendrimers allows 

attachment of several different drug molecules and targeting groups to the periphery of the dendrimer. 

As such, dendrimers offer several advantages in drug delivery. Recently, polymeric and dendrimer 

science has combined to develop a new class of molecule called dendronized polymers [55]. Through 

polymeric conjugation, scientists can effectively alter the hydrodynamic size of dendrimers, all while 

maintaining particle size homogeneity and increasing drug loading capacitance [56]. Dendronized 

polymers have displayed favorable results in intracellular protein and drug delivery [57]. In vitro and in 

vivo studies have shown increased chemotherapeutic efficacy in doxorubicin (DOX) loaded dendronized 

polymers. Compared to I.V. delivery of free DOX, DOX loaded dendronized polymers have 

demonstrated a 10 fold reduction in cellular toxicity, while showing a 9 fold increase in tumor uptake 
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[56]. The increased anti-tumor activity of DOX loaded dendronized polymers is thought to be resultant 

from favorable alterations in the pharmacokinetic profile of DOX via alterations in total blood 

circulation time. Dendrimer based NP formulations have also been used successfully to target various 

viral based receptors that functions to inhibit cellular binding and entrance. Vivagel is a dendrimer based 

drug delivery system developed exclusively by Starpharma that contains uniquely designed polyvalent 

properties [20]. This dendrimeric system functions primarily through polyanionic surfaces to target 

various receptors. It has been shown to attach to viral surfaces and prevent binding to cell surfaces, 

thereby preventing cellular uptake and infection. As a result, this unique NP formulation has shown 

potent inhibitory effects in HIV and HSV studies while demonstrating relatively safe and tolerable 

effects [58, 59]. Given these results, dendronized polymers could also show favorable results in modulating 

the effects of various other drugs, making them ideal candidates for use in drug delivery. Polymeric 

micelles are formed through the self-assembly of amphiphilic macromolecules and act as efficient 

carriers for highly hydrophobic drugs [40] (Fig. 2.3C). The hydrophobic core of the micelle can be loaded 

with small hydrophobic drugs through simple emulsion or solvent evaporation techniques [60]. Their high 

capacity to solubilize largely lipophilic drugs make them extremely versatile tools for increasing the 

aqueous solubility of drugs as well as increasing and altering drug bioavailability. When factoring in the 

inherent and modifiable properties of polymeric micelles, they become extremely valuable commodities 

in the realm of drug therapeutics and delivery [61]. Polymeric micelles can be modified to control the rate 

of drug release, thus increasing blood circulation time and avoiding host defenses that would target 

drugs for degradation [62]. Relative to existing solubilizing agents such as Cremophor EL, polymeric 

micelles may demonstrate increased safety parameters for I.V. administration, allowing for alterations in 

drug dosing parameters of highly toxic and water insoluble drugs. It has been found that polymeric 

micelles also function by inhibiting p-glycoprotein in the gastrointestinal tract and brain, providing a 

way to facilitate increased drug absorption from the gut and absorption into the brain. These 

characteristics make polymeric micelles well suited and highly regarded for drug delivery purposes. 

Like lipid based NP systems, drug conjugation utilizing polymer formulated NPs for enhanced 

delivery have been investigated [63] (Fig. 2.3D). Drug conjugated polymer NPs have been used in the 

field of research in dual purpose circumstances. A study conducted by Feng et al. demonstrated the use 

of the positively charged fluorescent polymer PFO  and poly glutamic acid for the development of 

conjugated DOX NPs [64]. In the study, poly glutamic acid conjugates functioned to effectively delivery 

DOX to the site of action via endocytosis uptake, while the PFO conjugate enable successful 

visualization of drug/NP conjugate localization. DOX conjugated polymer NPs have also been shown to 

facilitate tumor cell localization and controlled drug release via enzymatic and pH sensitive methods. A 
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recent study showed polymer conjugates of DOX bound via pH sensitive hydrazone or enzymatically 

degradable amide bonds facilitated differing anti-tumor mechanistic actions [65]. The mechanism of 

differing actions was thought to be a result of amide linkage formulations tendency to directly penetrate 

the plasma membrane leading to accumulation of DOX throughout subcellular compartments [65, 66]. 

Conjugate NPs formulated with pH sensitive hydrazone bonds demonstrated cellular uptake via 

endocytosis and pinocytosis mechanism, leading to DOX release in low pH endosomes and lysosomes 

[65]. As such, it is believed that the differing mechanisms of action for both conjugate formulations could 

potentially lead to synergistic anti-tumor effects with low drug specific toxicity [67]. 

 

1.13.  Metal Based Systems 

Metal based NPs have been commonly seen in industry and academia. Of particular interest has been the 

utilization of gold based NPs for cancer treatment. The characteristic shine that is common with gold 

NPs and the ease of localization and visibility makes them a great tool for future research, both 

diagnostically and preventatively, in cancer therapy and treatment [68]. The dynamic in binding affinity 

of gold NPs to non-cancerous cells versus cancer cells makes them excellent choices for cancer 

identification as gold based NPs have a 600 percent greater affinity for cancer cells than for 

noncancerous cells. The abundance of cancer cells that exhibit epidermal growth factor receptor (EGFR) 

makes it possible to conjugate or bind an antibody for EGFR to gold NPs, thus allowing them to attach 

to their targeted cancer cells [69]. Various gold based nanoparticles are being used in preclinical and in 

vitro studies for the delivery of other chemotherapeutic compounds as well [70]. Drugs such as 5-

fluorouricil and docletaxel have been reformulated into gold nanoparticle delivery systems for the 

treatment of colon and squamous cancer lines. A recent study demonstrated the use of gold NPs 

conjugated with partially polymerized liposomes for DOX delivery. The study showed an enhanced 

killing effect of MDA-MB-231 breast cancer cell lines upon controlled release of DOX loaded 

polymeric-gold NPs [53]. Gold NPs have also been used for the induction of hypothermic injury in 

various cancer cell lines and have been shown to be effective in the treatment of superficial tumors. As 

such, clinical trials using hypothermic techniques coupled with gold NPs are currently under way for 

patients suffering from oropharyngeal malignancies. 

Platinum NPs are easily synthesized through the reduction of hexachloroplatinate with hydrogen gas 

[71]. One of the most surprising characteristics of platinum NPs involves their antioxidant properties [72]. 

Platinum NPs have been found to exude antioxidant properties and prolong the life span of C. elegans 

during experimental analysis. Recently, platinum based NPs have demonstrated increased efficacy of 

chemotherapeutic agents in the treatment of a variety of breast and ovarian cancer cell lines [73]. 



27 

 

Platinum nanoparticles were shown to reduce toxicity profiles commonly associated with 

chemotherapeutic drug use and significantly increase drug anti-tumor efficacy. These findings suggest 

that the beneficial properties of platinum NPs may extend beyond their antioxidant properties and offer 

novel advantages in drug delivery. 

The magnetic properties and biocompatibility of superparamagnetic iron oxide nanoparticles 

(SPION) has facilitated their emergence into the field of biomedicine as a promising agent in medical 

therapeutics and diagnostic. The high magnetization properties of SPIONs allows for their use as 

excellent image probes for MRI contrast and imaging. It has been found that SPION based contrast 

agents induced longer delineation of tumor margins and enhanced tumor localization in comparison to 

conventional contrast agents such as gandolinium [74]. As such, FDA approval has been given to several 

iron oxide based imagining agents such as Lumiren and Endorem for use in the medical field [74, 75]. Iron 

oxide has also found successful use in the field of disease treatment [74]. Drug loaded iron oxide NPs 

have shown enhanced caspase-8 activity in human cancer cell lines with increased permeation of cellular 

membranes brought about by tight junction disruption [76]. Other studies have shown further cellular 

permeability induced by iron oxide based nanoparticles as well as enhanced tumor cell targeting via 

surface bound peptide interactions, making iron oxide based NP formulation an important potential aid 

in disease treatment [74]. 

 

1.14.  Carbon Nanotubes 

Carbon nanotubes (CNTs) consist of a hexagonal arrangement of carbon atoms consisting of one or 

more walls of graphene sheets [77]. The highly toxic nature of first generation CNTs made them 

unsuitable for application in a variety of fields such as drug delivery. However, recent advances in CNTs 

formulation has enable researchers to significantly reduce the toxicity profiles commonly associate with 

CNT delivery [78]. Through surface modification and changes in covalent and non-covelent 

intermolecular interactions, researchers may be able to synthesize altered CNTs with reduced toxicities 

profiles. Given the capabilities of reducing toxic side effects, research into drug delivery using CNT has 

risen in popularity over the past few years. CNT has shown improvements for the delivery of a variety 

of different molecules [77]. Mehra et al. used multi-walled CNTs in the reformulation of DOX for cancer 

treatment. In the study it was found that drug formulations utilizing CNTs presented with increased total 

circulation time, sustained release and enhanced DOX cytotoxicity when compared to standard DOX 

dosages [78]. Sustained release of other molecules has also been reported [79]. CNTs are thought to 

facilitate cellular uptake by translocating across cellular membranes through either endocytosis or non-

endocytosis pathways [77]. CNTs have demonstrated the ability to enhance permeability and extravasate 
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in tumor tissue. When coupled with their large surface area and subsequent high loading capacity, these 

properties make them ideal candidates for new approaches to drug delivery. 

 

1.15.  Quantum Dots 

Quantum dots (QDs) are described as basic semiconductors that exude electrical characteristics with a 

particle size distribution between 2 – 10 nm [80, 81]. These specific dots are developed and manufactured  

through various techniques such as fabrication, viral assembly of inorganic nanocrystal, and 

electrochemical assembly involving ionic reactions between electrolyte and metal structures [80]. QDs 

contain a larger number of sites in which active material can be attached. As a result of the large number 

of active sites contained on QDs, multifunctional properties can be developed through tethering and 

modification of an assortment of bioactive agents [82]. Recent studies have shown that pegylated QDs 

enhanced cellular uptake and increased NP trafficking through targeting of the caveolae mediated 

endocytic pathway [15]. Other studies have demonstrated the use of QDs in tissue specific targeting of 

tumor cells by tethering prostate specific antigen to QDs [82].  Based on the increasing versatility of 

quantum dots, their use in comparison to less versatile organic dyes are rising exponentially [80].  

 

1.16.  Protein Based Systems 

Protein based NP systems have been developed to aid the delivery of certain drugs to specific, localized 

compartments [83]. Abraxane
 
is an albumin bound NP containing the chemotherapeutic agent paclitaxel 

which was approved by the FDA for use in relapsed and metastatic breast cancer [15]. Abraxane 

functions by taking advantage of receptor mediated endocytosis of tumor cells [84]. It selectively binds to 

GP-60 albumin receptors located within cell caveolae. This binding facilitates movement into the 

interstitial space where it is engulfed by secretory tumor proteins. In turn, these tumor proteins are taken 

up by tumor cells resulting in cell specific tumor cytotoxicity [85].  

 

 Nanoparticle Preparation 

Various means of preparation, solvent evaporation, high pressure homogenization, nanoprecipitation, 

salting out, microemulsion, and detergent removal have been identified for NPs. As the field grows at a 

substantial rate, a wide variety of preparation methods have been developed for nano-material 

formulation. However, there are several key properties of NPs and drug encapsulation that one must 

keep in mind. The selection of material to be used for formulation depends on several factors involving, 
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but not limited to, the nanometric size of particles needed, surface characteristics required, properties of 

the drug one wishes to encapsulated and  the bioavailability and toxicity limits required [46]. In this 

article, we discuss only solvent evaporation and high pressure homogenization. 

 

1.17.  Solvent Evaporation 

Solvent evaporation techniques are the most commonly used techniques for polymer based NP 

preparation [51]. Solvent evaporation is most prevalently used in biotech and pharmaceutical industries 

and represents the most common technique seen in the literature. There are two types of procedures 

typically used when preparing NPs through solvent evaporation, single emulsion and double emulsion 

[46]. Single emulsion preparation involves oil in water emulsions, while double emulsion techniques 

utilize water in oil in water emulsions [46]. Once solvents are properly prepared, they are homogenized 

and evaporated to facilitate the formation of solid NPs. Solid NPs are collected by ultracentrifugation 

then washed with distilled water to remove additional surfactants. After additional surfactants are 

removed the mixture is lyophilized. 

The step by step solvent evaporation process is as follows: Polymers are dissolved in organic 

solvents, followed by addition of the drug of choice [46]. The organic mixture is added into a water based 

phase containing an emulsifier or stabilizer (oil/water). The mixture is then homogenized or sonicated 

for complete homogenization, after which the solution is then stirred constantly for several minutes to 

evaporate organic phase and harden newly formed NPs. Finally, solutions undergo centrifugation or 

filtration to harness newly formed drug particles (Fig. 2.4). 
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1.18.  High Pressure Homogenization 

High pressure homogenization (HPR) is a technique commonly used in the preparations of SLNs and 

liposomes [41]. HPR can be performed as either a hot homogenization or a cold homogenization (Fig. 

2.3). For hot HPR techniques, a drug is usually dissolved in lipid being melted at 5-10°C above its 
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melting point. The melt is then dispersed under a hot aqueous surfactant solution that is being heated at 

the same temperature. The resulting solution is then homogenized to form a hot oil in water 

nanoemulsion and cooled to room temperature to enable recrystallization and the formation of lipid 

vesicles (Fig. 2.5A). In cold HPR, the drug containing melt is cooled to form a solid lipid. The solid 

lipid is then ground to form microlipid particles. Microlipids are then dispersed in a cold aqueous 

surfactant solution and homogenized at or below room temperature to facilitate SNL formation (Fig. 

2.5B).    
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 Nanoparticles for Enhancing Drug Pharmacokinetics and Pharmacodynamics  

1.19.  Biodegradation 

A key aspect in NP abilities to control and alter pharmacokinetic and pharmacodynamic parameters is 

biodegradation. NP biodegradation is thought to occur primarily through hydrolytic mechanism that can 

be enhanced or reduced dependent upon various factors. For polymer based NPs, molecule weight 

(MW), ratio, and composition play a key role in determining the extent or rate or degradation. A study 

conducted by Kamei et al. utilized two differing weights of PLGA (10,000 and 20,000 MW) in 

determinations of altered degradation rates [86]. It was found that the low molecular weight polymer 

exhibited a rate of degradation of 8 days, while the degradation of high MW polymer was doubled to 

that of 16 days. It is thought that molecular weight ranges can play a role in polymer degradation as well 

[87]. Compounds with a large MW range present with higher levels of carboxylic end groups that could 

function to increase catalytic degradation. As such, polymers of a wider MW range would be expected 

to facilitate or increase degradation whereas polymers with smaller more compact MW ranges would 

present with less carboxylic end groups thus reducing catalytic activity and degradation. 

Composition also plays an important role in overall release kinetics. A study conducted by Tabata et 

al. examined the biodegradation of particles composed of lactic acid polymer, glycolic acid polymer, or 

copolymers consisting of differing ratios of lactic and glycolic acid [88]. It was found that the rate of 

particle degradation was controlled by altering monomer composition [87]. Particles containing 50% 

glycolic acid and 50% lactic acid elicited the fasted rate of degradation, while particles composed of 

higher or lower concentrations of glycolic acid were found to degrade at a slower rate. As such, drugs 

entrapped within a polymer matrix can elicit sustained release profiles through slow diffusion from the 

polymer core and degradation of the polymer matrix [12, 87]. The rate of degradation of NPs can vary 

dependent upon several factors allowing for the design of various NP rates of drug release based on 

polymeric MW ranges or core polymer composition [89].  

 

1.20.  Bioavailability Improvement 

Oral solid drug delivery systems are a common and convenient form of drug administration. For an 

increasing numbers of drug molecules, the oral route is complicated by solubility, bioavailability, and, 

stability concerns that necessitate higher oral doses or parenteral administration [90]. These 

considerations are particularly applicable to Biopharmaceutics Classification System (BCS) Class II 

drugs that exhibit poor solubility and high permeability [91]. For a lot of drugs, the use of NPs is meant to 

improve oral bioavailability by decreasing particle size and increasing relative surface area to facilitate 

drug dissolution. A recent study looked at oral absorption and the effects of high pressure homogenized 
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nanosuspensions of itraconazole. It was found that drug nanoization resulted in a faster rate of 

dissolution accompanied by an increase in total blood plasma concentrations [92]. A recent study looked 

at the inclusion of orally dosed GLP-1 agonist in nanomatrices composed of Eudragit and silica [93]. The 

highly sensitive nature of GLP-1 to acidic conditions of the stomach makes it a relatively poor candidate 

for oral administration. However, when GLP-1 was adsorbed on the surface of solid silicon based 

nanoparticles and encapsulated with the pH-sensitive polymer, Eudragit, it displayed  a five-fold higher 

degree of mucosal adhesion and proteolytic stability within the gastrointestinal tract. 

 

1.21.  Pharmacokinetics Alterations 

Characterization of drug NP in vivo kinetics is further complicated by the unique attributes of each drug, 

excipient, and route of administration. A simplification of available reports is the use of NPs increases 

the area under the curve (AUC), a common measure of total drug exposure. Improvements in 

bioavailability relative to current preparations helps explain these observations [94]. It is important to 

note that as bioavailability increases, access to various body compartments increase as well [95]. Changes 

in distribution will profoundly impact other pharmacokinetic parameters, including drug clearance (Cl), 

volume of distribution (Vd), maximum drug plasma concentration (Cmax), time of maximum drug 

plasma concentration (Tmax), elimination rate constants, and drug half-life. Drug concentration-time 

profiles for NPs can reflect either immediate or extended release characteristics as a function of baseline 

solubility when compared to commercially available preparations. Drugs with poor solubility, like BCS 

Class II compounds, will have their solubility enhanced by nanoparticles and achieve a higher Cmax in 

less time (lower Tmax) [91]. The converse is true of more hydrophilic compounds, where NPs will delay 

a compound's dissolution [96]. Other extended release applications use pH-dependent matrices to help 

conserve stability throughout the gastrointestinal tract [4]. 

 

1.22.  Side Effect Reduction 

Traditional examples of improved side effect profiles include amphotericin and cyclosporine [97]. More 

recent studies have addressed the severe toxicity associated with chemotherapeutic agents. Cremophor 

EL is a toxic solubilizing agent used in the formulation of highly lipophilic drugs, such as paclitaxel [98]. 

Recent studies comparing new nanometric formulations of paclitaxel with Cremophor based vehicle 

formulations have shown favorable results in drug response, safety and side effect profiles. Paclitaxel 

nanosuspension has also been shown to exhibit distinct distribution profiles that may complement their 

tolerability in the foundation of new applications in liver, lung, or spleen metastases [95]. NP renal side 



34 

 

effects in regards to chemotherapeutic and antibiotic reformulation are further expounded on within this 

review.  

 

7.4.1. Antibiotic Drug Induced Nephrotoxicity 

Amphotericin B is a popular anti-fungal agent that is considered the gold standard for the treatment of 

an assortment of fungal based diseases [99]. However, amphotericin B use has been linked to a variety of 

adverse side effects, the most common being nephrotoxicity [100]. Nephrotoxic effects of amphotericin B 

are very high and can produce acute renal failure symptoms in patients [101]. Previous studies have 

shown that 49 - 64 % of patients administered amphotericin B developed acute renal failure symptoms 

[102]. When compared to baseline, 29 % of patients show serum creatinine concentrations greater than 

250 mmol/L [103].  

Due to the extreme toxic nature of amphotericin B, reformulation tactics have been used to minimize 

toxic side effects. Studies have demonstrated that the use of biodegradable NPs significantly reduce 

nephrotoxic side effects of amphotericin B while still maintaining potent anti-fungal activity [104]. 

Several studies have looked at specific renal cell effects of amphotericin B formulated NPs. In one 

study, lactate dehydrogenase release was measured as an indicator of cell damage. It was shown that 

amphotericin B formulated NPs reduced cellular lactate dehydrogenase release, indicating reduce 

nephrotoxicity [105]. Another study showed reduced protein expression in cell lines treated with base 

amphotericin B in comparison to NP formulated amphotericin B, indicating mechanistic actions on 

protein synthesis as a possible means of NP reduced nephrotoxicity [105, 106].  

Vancomycin is a potent antibiotic drug used in the treatment of multi-drug resistant bacterial 

infection [107]. Although its high efficacy in regards to treatment of infection is ideal, it has been shown 

to increase serum creatinine concentrations and cause severe nephrotoxic side effects [108]. Poly ethylene 

glycol is an excipient commonly used to stabilize and solubilize pharmaceutical products, when low 

molecular weight variants are wanted. Recent studies have shown that solubilized formulations of 

vancomycin utilizing D-mannitol and poly ethylene glycol effectively reduced renal side effects of 

vancomycin when administered at the nephrotoxic dose of 400 mg/kg in rats [109]. Groups receiving 

reformulated vancomycin showed no marked changes in BUN parameters and experienced no 

alterations in histological parameters of the kidneys when compared to control. At twice the daily 

clinical dose, renal tissue accumulation of vancomycin increased substantially in groups receiving 

conventional formula (653.8 ± 186.0 µg/g) when compared to groups receiving vancomycin 

reformulation (442.9 ± 120.6 µg/g) [110]. These findings suggest that vancomycin reformulation reduces 
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renal damage and prevents nephrotoxic side effects through modifications of drug release and tissue 

targeting. 

 

 

7.4.2. Chemotherapeutic and Immunosuppressive Drug Induced Nephrotoxicity 

Cyclosporine (CsA) is a potent chemotherapeutic and immunosuppressing agent used for the prevention 

of graft and organ transplant rejection and the treatment of certain cancers and autoimmune disorders 

[111]. CsA is a highly toxic drug that may induce sever nephrotoxic symptoms ranging from acute kidney 

failure to chronic renal disease [112]. As such, it is important to develop a delivery system that could 

serve to alter drug efflux, tissue accumulation, and system circulation for avoidance of adverse effects 

[104, 113]. Several studies have reported the benefits of polymeric micelle cyclosporine encapsulation on 

pharmacokinetic parameters as well as drug induced nephrotoxicity symptoms [114, 115]. In a study 

conducted in 2005, it was found that volume of distribution and clearance values of micelle encapsulated 

cyclosporine was 10 and 7.6 fold lower than conventional formulas, while tissue accumulation of 

cyclosporine in the kidneys experienced a 1.4 fold reduction in comparison to groups receiving standard 

drug delivery [114].  

Tacrolimus is a potent immunosuppressive drug. [116]. Originally marketed for the prevention of 

organ transplant rejection, tacrolimus has recently gained wide spread attention for its use in the 

treatment of inflamed bowel disease (IBD) [117]. Recent studies discovered that the immunosuppressive 

effect of tacrolimus was not selective to inflamed tissue [117]. As a consequence of tacrolimus non-

selectivity, it was found to cause severe nephrotoxic symptoms in patient receiving drug treatment for 

IBD. Interestingly, the effectiveness of NP formulations on reducing nephrotoxic side effects commonly 

associated with tacrolimus use has been reported. NP reformulation of tacrolimus has been successfully 

used for the development of tissue specific drug delivery and enhancement in phagocytosis mediated 

cellular uptake [118]. It has been shown that PLGA formulated tacrolimus NPs can effectively target 

lymphatic T cells for enhanced immunosuppressive properties [119]. A recent study looked at both PLGA 

and Eudragit formulated tacrolimus nephrotoxicity and found that drugs treated with NP formulated 

tacrolimus exhibited similar creatinine and BUN levels as compared to untreated controls [117].  

Cisplatin is a highly effective chemotherapeutic agent used in the treatment of various cancers [120]. 

The most common side effect associated with cisplatin use is nephrotoxicity of the proximal tubule [121]. 

As such, altered formulations of cisplatin for patients receiving chemotherapy treatments are highly 

desirable to prolong quality of life and drug effectiveness [122]. Several studies have been performed on 

the use of NPs and cisplatin encapsulation with promising results. Cisplatin incorporated polymeric 



36 

 

micelles have been shown to reduce or eliminate nephrotoxic side effects while prolonging its anti-

tumor activity [123]. Rats receiving cisplatin polymeric micelle formulations showed no marked changes 

in nephrotoxic parameters such as BUN, creatinine, or tubular damage and necrosis when compared to 

rats receiving control [124]. Cisplatin is thought to effect renal toxicity through up regulation of reactive 

oxygen species (ROS) and increases in oxidative stress [125]. Recent studies have shown the ability of 

NPs to increase effectiveness of ROS scavengers during co-administration with cisplatin. ROS 

scavengers such as selenium have been shown to prevent or reverse cisplatin induced nephrotoxicity 

above control when co-administered as NP encapsulated product [126]. Cisplatin is highly reabsorbed in 

the kidneys [121, 127]. The degree of drug reabsorption is thought to play a role in the onset of nephrotoxic 

side effects associated with cisplatin use [127]. It is thought that liposomal formulated cisplatin functions 

to reduce or diminish tubular reabsorption of cisplatin resulting in a reduction in nephrotoxic side 

effects. A recent clinical human study looked at the benefit of dual combination of paclitaxel and 

liposomal formulated cisplatin in comparison to traditional formulated cisplatin with paclitaxel [127]. The 

study showed a marked reduction in toxic side effects, including nephrotoxic effects, with adverse side 

effects mainly occurring in patient groups receiving traditional formulation. A statistically significant 

decrease in nephrotoxic side effects was noted in groups receiving liposomal reformulated cisplatin 

when compared to traditional cisplatin formulation (P < 0.001). 

Another chemotherapeutic agent, DOX, is one of the most important drugs used for the treatment of 

malignancies and tumors [128]. It has been shown that NP formulated DOX effectively enhances systemic 

circulation time, increases cellular drug uptake via macropinocytosis, and possibly down regulates P-gp 

efflux [129]. Formulation alterations involving the use of lipomers and NPs have demonstrated favorable 

outcomes in regards to increased bioavailability, decreased toxicity, and increase in kidney tissue 

specific antioxidant capacitance of doxorubicin [130-132]. Similar to co-administration of cisplatin and 

selenium, these studies show elevated antioxidant parameters along with reduced levels of lipid 

peroxidation in renal tissue samples of rats receiving orally formulated NP-Dox compared to 

conventional formula [130]. These findings suggest that NPs may play a role in both direct and indirect 

means of renal adverse effect prevention. 

 

7.4.3. Potential Use of Nanoparticle Formulations in Decreasing Renal Side Effects of 

Nonsteroidal Anti-Inflammatory Drugs 

Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), has been successfully formulated for 

ocular, transdermal and colonic delivery using NPs with promising results [133-135]. Oral formulations of 

diclofenac have been developed using polymer based NPs that altered pharmacokinetic parameters 
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resulting in lower systemic exposure and faster absorption in comparison to standard diclofenac 

formulations [4]. A recent phase 2 study using diclofenac loaded NPs showed increased tolerability and 

enhanced drug efficacy and pain relief in patients suffering from acute dental pain [136]. Diclofenac 

loaded SLNs have also demonstrated enhanced systemic circulation and increased permeation in ocular 

delivery [137]. Indomethacin, another non-selective NSAID, has shown results in NP formulations as 

well. In recent experiments, NP encapsulated indomethacin has demonstrated increased bioavailability, 

prolonged drug release, and a higher degree of anti-inflammatory activity [138]. Recent NP conjugates 

utilizing indomethacin have shown enhanced cellular uptake compared to base indomethacin. In a study 

conducted by Li et al. indomethacin was successfully conjugated to heparin, which resulted in increased 

indomethacin uptake into human nasopharyngeal carcinoma cell lines via increased drug permeability 

and endocytosis pathway uptake [139]. 

Celecoxib is a highly metabolized cyclooxygenase (COX)-2-selective inhibitor known to increase 

risk of cardiovascular and renal side effects [140, 141]. As a result of its high rate of metabolism, higher 

dosages of celecoxib are often required to reach effective concentrations at the site of action [142]. 

Several studies involving celecoxib entrapped NPs have been performed that elucidate their 

effectiveness at overcoming celecoxib bioavailability issues [91, 143]. A study conducted by Morgen et al. 

showed that orally administered NP loaded celecoxib resulted in an increase in bioavailability and faster 

time to peak plasma concentrations [91]. Another study showed that intra-articular injections of celecoxib 

formulated small lipid NPs enhanced site of action and drug retention in patients suffering from joint 

pain [144]. Additionally, two other studies demonstrated increased anti-inflammatory properties and 

tumor growth inhibition of celecoxib entrapped NP formulations during subcutaneous delivery [145]. 

Celecoxib loaded NPs have shown the ability to undergo strong binding and cellular uptake via non-

endocytosis pathways in HT-29 cancer cells [146]. Cytoplasmic and nuclei localization was also observed 

in HT-29 cell lines as a consequence of non-specific interactions between the charged surfaces of NPs 

and the negatively charged cellular membrane. 

NP formulated NSAIDs offer a wide variety of benefits in terms of altered pharmacokinetic 

parameters. Their impact on NSAID related gastrointestinal side effects are well documented. It has 

been shown that NP formulated NSAIDs decrease incidences of gastric irritation and ulceration in 

comparison to conventional delivery systems [147]. Conversely, the use of NP formulations in NSAID 

therapy for carcinoma treatment has shown favorable results. Recent studies show the use of celecoxib 

loaded NPs resulted in 78% to 95% reduction in cell proliferation with a marked increase in apoptosis in 

colon cancer cell lines [146]. Interestingly, even though renal side effects are some of the more adverse 
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occurrences associated with NSAIDs, the beneficial effects of NP formulated NSAIDs on renal and 

cardiorenal side effects are yet to be elucidated. 

 

Conclusion 

Nanoparticle formulation presents many advantages for drug delivery. Depending upon individual needs 

and interest, scientist can easily modify NP formulations for a variety of different compounds. The ease 

of use in developing NPs makes them ideal for utilization within multiple areas of research. NPs offer a 

plethora of biological advantages. They can protect drugs from damage and oxidation, act as a drug 

stabilizer, increase tissue specific targeting, and aid in diffusion. Variations in surface modifications for 

NPs allow flexibility in drug design and optional modifications based on individual research needs. NP’s 

can improve the pharmacokinetic and pharmacodynamics profiles of a variety of drugs and can reduce 

drug toxicity and increase drug safety parameters. NP formulations offer a highly feasible alternative in 

the realm of new drug development. They have been shown to effectively work in reducing major side 

effects in many applicable drugs of today. As such, the use of NPs in new drug formulation offers a 

promising alternative to side effect, risk reduction and overall patient safety and quality of life.  

 

Expert Opinion 

NP use in drug delivery is increasing exponentially as the elucidation of their effectiveness progresses in 

the field of medicine and bioscience. The use of NPs offers the medical researcher a plethora of 

alternative avenues in the investigation and elucidation of effects in drug delivery on clinical efficacy 

and outcomes. As such, researchers are investigating the use of NPs in a range of medical avenues from 

image enhancement to skin graft procedures [148]. The potential for NP based drug delivery is virtually 

limitless and is measurable only by our current understanding of mechanistic and molecular properties 

that facilitate NP function. In the future, NP drug delivery should find inclusion into a number of 

prescription based medical products above and beyond those currently seen in the literature and the 

medical community today. At present, the pharmaceutical industry is investigating altered drug delivery 

methods for new and currently patented drugs as a means to offset exponential cost in novel new drug 

development and prevention of attrition [149]. Changes in formulation design and drug delivery have been 

found to effectively increase the efficacy and therapeutic use of various drugs. The current 

understanding of NP based drug delivery designs lends itself to industrial utilization to spur economic 

growth and/or offset economic loss brought forth by new drug development. These altered delivery 

methods can provide companies with avenues to change overall effectiveness and functionality of 
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current popular medicines used in multiple disease based therapies. As such, the use of NP technology 

should experience significant growth in industrial sectors not only for their ability to increase current 

drug effectiveness but also for their ability to facilitate new targeted delivery and stimulated economic 

growth.  

 

Although seldom addressed in such reviews, it is important to note that production cost and 

model scale-up for reformulated NP designs would present itself as a major hurdle in the continuation of 

any NP drug creation. While the examples illustrated within the context of this article are promising in 

regards to the use of NPs as novel treatment alternatives for the future, several formulations have not 
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processed beyond pre-clinical studies based on large scale production cost and NP formulation 

reproducibility. Fortunately, the advent of new and emerging FDA regulated NP based drugs has led to 

an increase in industrial capabilities in NP production (Table 2.2).  

Currently marketed NP drug designs have paved the way for easier transition of model scale up 

for a variety of new NP drug products that may come in the future. Unfortunately, not all NP systems 

have been recognized in a mass market approach, leaving avenues of scale up and mass production 

susceptible to select NP systems.  

Further research into differing avenues of NP delivery must be highlighted for a complete 

understanding of most effective routes of administration. At present, studies done with NP reformulated 

drugs have focused primarily on oral, intravenous, or transdermal delivery. Research into the effective 

avenues of NP formulated drug administration must be taken into account in order to properly 

understand the pinnacle effects a new drug delivery system utilizing NPs can offer. NPs can alter 

various properties of a drug, which in turn affects the traditional method of drug delivery. It is important 

to highlight differing modes of administration to properly gauge effects of NP drug reformulation on 

delivery. For example, the use of PLGA is known to impart hydrophobic properties of NP encapsulated 

drugs based on the extent of lactic acid content [150]. The alteration in drug lipophilic properties can 

theoretically act to alter a drugs best means of delivery. As such, dependent upon the investigators 

chosen NP system for delivery, emphasis should be placed on not only the effects of NP encapsulated 

drug delivery but the effect of NP encapsulated drugs in various delivery methods. Further clarification 

in best fits for modes of delivery will further strengthen use of NPs in newly developed pharmaceutical 

products.  

In this article, we have highlighted many examples of drug induced nephrotoxicity, summarized 

in Table 2.3. The beneficial aspects of NP formulated alternatives in renal complications seen within this 

review supports the possibility of creating viable drug alternatives in hopes of quenching and/or 

reducing major treatment side effects. Unfortunately, further studies are still needed to clarify the extent 

of their benefits and the overall best practice in terms of NP design. Exact mechanistic approaches for 

the reduction of renal side effects noticed with NP entrapped drugs are not completely understood at the 

present time. Further investigation into the mechanistic effect NP design has on drug excretion, kidney 

accumulation, and cellular uptake is warranted to fully understand pharmacodynamics and 

pharmacokinetic effects in relation to nephrotoxicity and onset of renal side effects. Also, renal 

complications in relations to NSAID consumption are commonplace for a variety of COX inhibitors. 

Surprisingly, few, if any studies have been performed looking at known COX inhibiting NP 
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formulations and their effects on renal function. Further studies to elucidate the effectiveness of NP 

formulations on NSAID induced nephrotoxicity are highly warranted.  
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Figure Legends 

Figure 2.1. Simplified schematic representation of cellular uptake showing passive diffusion or 

pinocytosis and phagocytosis invagination pathways.  

Figure 2.2. Structural diagram of liposomal bilayer (A) and small lipid nanoparticle (B).  

Figure 2.3. Schematic diagram demonstrating multiple polymer based NP systems including (A) 

polymer based NP with lipophilic core, (B) dendrimer based NP with multivalent branching arms, (C) 

polymeric micelles containing a hydrophilic outer shell with corresponding hydrophobic inner core, (D) 

and drug-polymer conjugate systems.  

Figure 2.4. Schematic representation of solvent evaporation processes commonly used in NP production 

showing separate organic and aqueous phase solution with dissolved constituents, and formation of 

particle dispersion. 

Figure 2.5. Diagram showing the process of (A) hot homogenization and (B) cold homogenization 

techniques. 
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Abstract 

 

Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for 

their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side 

effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as 

diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to 

several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was 

to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based 

nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with 

varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or 

didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 

8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta 

potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108 ± 2.1 

nm) and highest zeta potential (-27.71 ± 0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 

12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4 ± 7.6 nm) 

and highest zeta potential (-11.14 ± 0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 

12,000 rpm. Drug entrapment reached 77.3 ± 3.5% and 80.2 ± 1.2% efficiency with DMAB and PVA 

formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle 

stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle 

formulation for diclofenac.  
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Introduction 

Over the past decade, there has been an increased interest in particle manipulation and nanosizing of 

selected drugs. In particular, polymeric nanoparticle formulation has gained an increasing amount of 

public attention in the fields of drug delivery and pharmaceutics. In recent years, the application of 

polymer based nanoparticles in drug formulation has garnered immense attention. Industry has focused, 

in large part, on the utilization of biodegradable polymer based nanoparticles as effective drug delivery 

agents because of their ability to prolong drug release, increase drug bioavailability, decrease drug 

degradation and reduce drug toxicity [1]. Research in nanoparticle drug formulations has focused 

heavily on the use of poly(lactic acid) (PLA), poly(D,L glycolide) (PLG), and poly(lactide-co-glycolide) 

(PLGA) (Fig. 3.1) based nanoparticles because of their tissue compatibility, low toxicity, and high rate 

of hydrolysis [2] 

.  

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed drugs in 

the world [3]. NSAIDs are pharmaceutical agents that exert analgesic and anti-inflammatory effects 

through the inhibition of the cyclooxygenase family of enzymes. Diclofenac is a NSAID that is 

commercially available in its sodium (Fig. 3.2) or potassium salt form [4]. 

 

 Like other NSAIDs, common side effects associated with the use of diclofenac include 

gastrointestinal lesion formation, and renal damage [4]. Interestingly, studies have shown a reduction in 

gastrointestinal and renal side effects associated with various drugs when encapsulated into polymer 
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based nanoparticles and administered orally [5-7]. These results demonstrate the effectiveness of 

nanoparticle formulation in reducing and/or eliminating potential adverse side effects associate with 

orally delivered toxic drugs.  

Diclofenac nanoparticle reformulation has been used for ophthalmic and transdermal delivery with 

promising results [8-11]. The purpose of this study was to develop and characterize a new oral 

formulation of diclofenac using polymer based nanoparticles. Nanoparticles were synthesized using a 

solvent-evaporation technique and the effects of centrifugation speed and concentrations of two different 

stabilizers, poly (vinyl alcohol) (PVA) (Fig. 3.3) or didodecyldimethylammonium bromide (DMAB) 

(Fig. 3.4), was examined for effects on entrapment efficiency, particle size, and stability. 

 

Materials and methods 

2.1. Materials  

 

PLGA (50:50 copolymer compositions; MW 30,000 Da), didodecyldimethylammonium bromide 

(DMAB), poly vinyl alcohol (MW 89,000 Da) and 15 mL Corning centrifuge tubes were purchased 

from Aldrich (St. Louis, MO, USA). Diclofenac was obtained from MP Biomedical (Solon, OH, USA). 

Ethyl acetate and HPLC grade water were purchased from Fischer Scientific Laboratory (Fair Lawn, NJ, 

USA). Phosphate buffer pH 7.0 was purchased from EMD Chemicals Inc. (Gibbstown, NJ, USA). 0.2 

micron syringe filters were obtained from Millipore Corporation (Carrigtwohill, Ireland). 

 

 2.2. Method of Nanoparticle Preparation 

 

Nanoparticles were prepared by an emulsion – diffusion – evaporation technique [5] with slight 

modifications. Briefly, 45 mg of diclofenac and 50 mg of PLGA were placed in 3 mL ethyl acetate and 

stirred at 750 rpm for 30 minutes. Varying concentrations of PVA (0.1, 0.25, 0.5, or 1% w/v) or DMAB 
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(0.1, 0.25, 0.5, 0.75, or 1% w/v) stabilizers were placed within 6 mL of HPLC grade water heated to 140 

°C and stirred at 750 rpm until fully dissolved. The organic phase was then added to aqueous phase in a 

drop wise manner under moderate stirring then sonicated for 5 minutes at 20 kHz using a sonic 

dismembrator (Fischer Scientific, Fair Lawn, NJ, USA). To facilitate diffusion, 25 mL of water was 

added to each emulsion under constant stirring at 750 rpm. Emulsions were stirred at 750 rpm for 4 

hours to insure complete organic phase evaporation. After which, each emulsion was centrifuge (8,800 

rpm or 12,000 rpm) and supernatant was collected. 

 

 2.3. Particle Size and Zeta Potential  

 

Particle size was measured by dynamic light scattering using a Nicomp particle sizer (Particle Sizing 

Systems, Port Richy, FL, USA). Zeta potential was estimated on the basis of electrophoretic mobility 

under an electrical field. All measurements were performed in triplicates. 

 2.4. Entrapment Efficiency 

 

To measure the amount of diclofenac nanoparticle entrapment, the amount of diclofenac present within 

solutions following end stage centrifugation was calculated. Diclofenac stock solution dissolved in 

methanol (200 mg/mL) was used to construct a standard calibration curve (10,000 – 2,000,000 ng/mL). 

Pure methanol was used as a blank experiment before UV measurement, after which total NP drug 

content was calculated using the standard curve after control for blank NPs. Quantification was 

performed by UV-spectrophotometry (Eppendorf Biophotometer, Hauppauge, NY, USA) with 

absorbance set at 280 nm. Entrapment efficiency was calculated using the following equation: 

Entrapment Efficiency = (Amount of diclofenac entrapped within nanoparticles/Total amount of 

diclofenac used for synthesis) X 100 

 

2.5. Effects of Centrifugation Speed and Stabilizer Concentration on Nanoparticle Properties 

  

NPs were formulated with five different concentrations of DMAB (0.1, 0.25, 0.5, 0.75, or 1 % w/v) and 

four different concentrations of PVA (0.1, 0.25, 0.5, or 1% w/v). Effect of stabilizer concentrations and 

two centrifugation rates (8,800 or 12,000 rpm) on zeta potential, particle size, and entrapment efficiency 

was evaluated. 

 

2.6. Nanoparticle Morphology Characterization 
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Shape and surface morphology of NPs were examined with a transmission electron microscope (TEM) 

(Tecnai Philips Transmission Electron Microscope; FEI, Hillsboro, Oregon, USA). NP solutions were 

vortex mixed and 2 µL of suspension was placed on a 100 mesh copper grid covered with Formvar film 

(Electron Microscopy Sciences, Hatfield, Pennsylvania). Samples were kept under ventilation for 2 

hours to allow for complete drying, than examined by TEM at 80 kV.   

 

2.7. In Vitro Drug Release Study 

 

In vitro release of diclofenac sodium was carried out as previously described with slight modification 

[12,13]. Briefly, 2 mL of solution containing diclofenac formulated nanoparticles were placed into 15 

mL centrifuge tubes containing 8 mL phosphate buffer. Suspensions were then placed on an electronic 

shaker set at 100 rpm. At various time points, 2 mL of release medium was removed and replaced with 

the same volume of fresh medium. Isolated samples were centrifuged at 4,400 rpm for 5 minutes and 

filtered through a 0.2 micron syringe filter. Analysis was carried out using a UV spectrophotometer set 

at 280 nm with empty nanoparticle solutions used as control. 

 
2.8. Data treatment  

Data is represented as mean ± standard deviation (SD). The unpaired Student’s t-test was used to 

analyze cumulative release data for identical stabilizer concentrations.  

 

Results 

3.1. Synthesis and assembly of diclofenac loaded PLGA based nanoparticles 

 

The synthesis of PLGA based nanoparticles was achieved through an emulsion – diffusion – evaporation 

technique. A solution of diclofenac and PLGA dissolved in ethyl acetate was added to an aqueous 

solution containing stabilizer in a drop wise manner, followed by sonication and moderate stirring for 4 

hours to ensure complete organic phase evaporation. The synthesis of PLGA polymer based 

nanoparticles using ethyl acetate as the primary solvent has been reported before [5,14,15]. In the 

present study, PLGA NPs containing diclofenac were prepared using  DMAB and PVA as stabilizers. 

To determine optimal nanoparticle production, varying levels of DMAB and PVA stabilizer 

concentration along with varying centrifugation speeds were evaluated in the determination of peak 

nanoparticle synthesis (Table 3.1). Aqueous to organic phase ratios of 1:1 were found to elicit particle 

aggregation during formulation process (data not shown). As a result, a direct 1:2 ratio of organic to 

aqueous phase solution was used for nanoparticle synthesis.  
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3.2. Influence of centrifugation and DMAB stabilizer on nanoparticle size and stability 

 

Particle size and zeta potential measurements were conducted using a NICOMP Zeta Sizer System with 

DMAB formulated polymer NPs (Fig. 3.5). 

Measurements revealed low particle size and increased zeta potential stability with low stabilizer 

concentrations. Zeta potential reached peak measurements at 0.1 and 0.25% DMAB concentration. A 

maximum zeta potential was reached at -27.7 ± 0.6 mV using 0.25% DMAB formulation (Table 3.2). 

Particle size was lowest using 0.1% DMAB concentrations and highest at 0.5 and 0.75% DMAB 

concentrations (Table 3.2). Interestingly, centrifugation speed was found to positively affect stability 

and particle size. As centrifugation speed was increased from 8,800 rpm to 12,000 rpm, there was a 

further increase in zeta potential and decrease in particle size when compared to lower centrifugation 



59 

 

speed. Stability and particle size still followed the same trends as seen in lower centrifugation speeds in 

relation to stabilizer concentration with the exception of 0.25 and 0.5%, which showed an increase in 

zeta potential and reduction in particle size (Table 3.2). 

 

3.3. Influence of centrifugation and PVA stabilizer on nanoparticle size and stability 

 

Measurements of NP formulated nanoparticles using PVA stabilizer revealed lower stability and lower 

particle size parameters in comparison to DMAB formulations (Table 3.3). At 8,800 rpm centrifugation 

speed, particle size and zeta potential showed inverse trends in relations to stabilizer concentration. As 

stabilizer was increased zeta potential decreased, conversely particle size increased with increasing 

stabilizer concentrations. Higher centrifugation speeds maintained similar patterns with the exception of 

0.25 and 1% PVA concentrations (Table 3.3). Formulations at 0.25% showed a slight reduction in 

particle size, reaching its lowest diameter at 92.4 ± 7.6 nm.  Also, 1% stabilizer formulations showed a 

higher degree of stability with increasing zeta potential, reaching a peak zeta potential of -11.1 ± 0.5 mV 

(Table 3.3). 
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3.4. Effects of stabilizer concentrations on diclofenac entrapment 

 

Amount of drug entrapment was determined by UV-spectroscopy in varying stabilizer concentrations. 

DMAB formulated NPs reached peak entrapment at low w/v concentration. Entrapment levels with 

DMAB reached as high as 77.3 ± 3.5% and were seen at 0.1% w/v DMAB concentrations. When the 

concentration of DMAB increased, a linear reduction in overall drug entrapment and entrapment 

amounts was seen (Fig. 3.6A) (Table 3.4). 
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Conversely, as centrifugation speed was increased, slightly lower levels of drug entrapment were 

obtained for each formulation. Linear regression in overall drug entrapment percentages were still 
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maintained (Fig. 3.6B) (Table 3.4). 

 

Measurements of drug entrapment utilizing PVA stabilizers showed similar findings to DMAB 

formulations. Drug entrapment levels reached 73.6 ± 0.9% and 75.2 ± 1.7% entrapment for PVA 

formulations at 0.25 and 0.5% w/v (Table 3.5). When centrifugation speed was increased, drug 

entrapment of diclofenac reached 80.2 ± 1.2% entrapment at a lower 0.1% PVA formulation (Table 3.5). 

Increases in centrifugation speed increased drug entrapment at 0.1%, 0.25% and 1% PVA 

concentrations. Drug entrapment efficiency reduced from 75.2 ± 1.7% to 28.6 ± 1.9% in 0.5% PVA 

formulations when speed in centrifugation was increased (Table 3.5).  

 

3.5. Nanoparticle Shape and Surface Morphology 
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Morphology studies were carried out using 0.25% DMAB and 1% PVA concentrations. These stabilizer 

concentrations were chosen based on zeta potential and nanoparticle stability characteristics. The TEM 

images of blank and diclofenac loaded DMAB (Fig. 3.7A and 3.7B, respectively) and PVA (Fig. 3.8A 

and 3.8B, respectively) formulated NPs support the particle size data obtained by our characterization 

studies performed with the zetasizer. DMAB formulated NPs have a distinct, spherical shape composed 

of a dense core with diclofenac loaded NPs showing a slightly increased size diameter due to drug 

incorporation (Fig. 3.7B). Drug incorporation did not affect overall particle shape. Morphology of PVA 

formulated NPs show a high degree of shape variation and aggregation in both blank NPs (Fig. 3.8A) 

and diclofenac loaded NPs (Fig. 3.8B).  
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3.6. Stabilizer Influence on In Vitro Diclofenac Release  
 

In vitro release studies were performed on two different stabilizer concentrations for both DMAB and 

PVA formulated NPs. Stabilizer concentrations of 0.1% and 0.25% centrifuged at 12,000 rpm were 

chosen based on their efficient level of drug entrapment and best fit mean representation of particle 
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stability of each stabilizer group. The in vitro release of both DMAB and PVA formulated diclofenac 

loaded NPs are given in Figs. 3.9 and 3.10. 

 

 

The statistical comparison of the percentage drug release values obtained with the different nanoparticle 

stabilizer compositions at specific sampling times revealed significant difference (P < 0.05) in both 

stabilizer concentration groups. DMAB formulations at 0.1% showed an initial significant increase in 

drug release in comparisons to 0.1% PVA formulations during the initial 4 hr time frame (Fig. 3.9) (P < 

0.05). After 24 hrs, total drug release was similar with a cumulative release of over 80% achieved for 

both groups (Fig. 3.9). The drug release of NPs formulated with 0.25% PVA showed a similar pattern of 

initial release of diclofenac in comparison to DMAB formulation (Fig.3.10). Both formulations 

experienced greater than 40% release during the first hour of the study. However, after the first initial 
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hour, cumulative release began to increase significantly in PVA formulated groups at each successive 

time point (P < 0.05). PVA formulations reached an average cumulative release percentage of 88%, 

while DMAB formulation reached an average cumulative release of 73% (Fig. 3.10). 

 

Discussion 

The adverse cardiovascular, gastrointestinal, and renal side effect caused by NSAID consumption has 

restricted the clinical use of these important drugs. The main objective of our research was to 

reformulate and develop a new nanoparticle formulation for diclofenac sodium that could replace 

traditional capsule and tablet oral administration and minimize or delay the onset of adverse side effects 

commonly associated with NSAIDs. Nanoparticles have been used for the development of a variety of 

different drug delivery systems [1,14,16-20]. Recent studies have shown the use of polymer based 

nanoparticles in the reformulation of diclofenac for ophthalmic and colonic us with promising results 

[13,21-23]. Topically formulated diclofenac delivery systems have also been used with success for the 

treatment of a variety of inflammatory skin diseases [24-26]. Diclofenac delivery utilizing small lipid 

nanoparticles showed promising results in the realm of drug reformulation and enhanced drug delivery 

systems [27,28]. Interestingly, the use of microspheres in reformulation has demonstrated enhanced drug 

entrapment and drug release of diclofenac [29]. One study showed that the use of Eudragit and alginate 

polymer systems improved drug release profiles and enhanced the physical properties of tablet 

compaction [30], while other studies have demonstrated a high degree of stability and morphology in 

microsphere development with the use of PVA [31,32]. However, to date, reformulation characteristics 

of diclofenac nanoparticles for oral delivery has yet to be extensively examined. 

 In this study, diclofenac loaded PLGA NPs were formulated following an emulsion – diffusion – 

evaporation technique using DMAB or PVA as stabilizers. Stabilizers function as emulsifying agents 

that can offset the surface tension between organic and aqueous phases, thereby increasing drug 

solubility and nanoparticle encapsulation. Because of this understanding, a variation in the level of 

stabilizer used can equate to variations in nanoparticle characteristics during the formulation process 

[5,33-36]. In our study, we formulated drug loaded NPs at varying levels of PVA and DMAB stabilizer 

concentrations to elucidate the most efficient formulation characteristics for maximum drug 

encapsulation, stability and size.  

 A study conducted by Cetin et al. [12] demonstrated low levels of diclofenac NP stability and 

entrapment efficiency when using a Eudragit®L100 and Eudragit®L100 PLGA based nanoparticle 

formulation with PVA as stabilizer. Consequently, they also showed that variations in polymer 

concentrations did not effectively alter NP characteristics to a measurable degree. Based on these 
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findings diclofenac formulated NPs appeared to offer complications in achieving premium NP 

characteristics during formulation [12]. In our study, drug loaded NPs were prepared at varied DMAB 

(0.1, 0.25, 0.5, 0.75, or 1% w/v) and PVA (0.1, 0.25, 0.5, or 1% w/v) concentrations. Nanoparticle size 

was at its largest when DMAB concentrations were between 0.25, 0.5, and 0.75% w/v. Consequently, 

zeta potential and stability of NPs were highest when DMAB concentrations were lower (Table 2). 

Surprisingly, our study demonstrated diclofenac loaded NP particle sizes of 108 and 92.4 nm with 

DMAB and PVA, respectively. Zeta potential stability measurements reached as high as -27.7 ± 0.6 mV 

in formulations using DMAB, and were substantially lower in formulation utilizing PVA stabilizers 

(Tables 3.2 and 3.3). These results are further supported by previously published findings in which a 

Eudragit®RS100 based formulation of diclofenac was used for nanoparticle characterization. It was 

found that variations in Eudragit concentrations effectively altered drug entrapment and particle 

diameter characteristics for diclofenac loaded NPs. Alterations in diclofenac to Eudragit concentrations 

resulted in variable measurements in particle diameter, ranging in size from 103 ± 6 to 170 ± 36 nm, 

which are consistent with the size variations of  92.4 ± 7.6 to 216 ± 3.4 nm found within our study [37]. 

Our morphological analysis showed distinct, well defined diclofenac loaded NPs when formulated with 

0.25% DMAB stabilizer (Fig. 3.7B). The visualization of 1% PVA formulations showed distinct NP 

aggregation (Fig. 3.8A and 3.8B). These findings are consistent with particle properties of low zeta 

potential noticed during our characterization studies performed with the zetasizer. A more pronounced 

zeta potential value has a tendency to stabilize and prevent particle aggregation [38]. It is known that 

particles with a larger charge experience a much higher degree of repulsion from other like charged 

particles [38]. The high degree of particle aggregation of 1% PVA formulations are indicative of poor 

stability and reduced zeta potential [38,39], which is in line with our initial findings. TEM scaling 

measured particle sizes within the range reported by zetasizer analysis for both formulations (Table 3.2 

and 3.3). These findings suggest the use of specific DMAB concentrations in effectively formulating 

stable PLGA based diclofenac loaded NPs. 

 Entrapment efficiency is a crucial step in the characterization of an effectively formulated drug 

encapsulated nanoparticle. In our study, the result of drug encapsulation efficiencies with differing 

stabilizer concentrations and centrifugation speeds is shown in Tables 3.4 and 3.5. Our study showed 

high degrees of drug encapsulation for both DMAB and PVA formulations. In DMAB formulations, 

drug encapsulation followed a linear decline in the amount of drug entrapped in relation to the amount 

(Figs. 3.6A and 3.6B) or concentration (Table 3.4) of stabilizer used. The highest level of entrapment 

reached was 77.3 ± 3.5% and was seen with DMAB concentrations of 0.1% w/v. It is important to note 

that stabilizing agents are important factors in determining the entrapment efficiency of lipophilic drugs. 
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Stabilizers function by forming molecular micelles through interactions between hydrophobic portions 

of the stabilizers with the hydrophobic core of the NP. In other studies, it was shown that as 

concentrations of DMAB increases, entrapment of lipophilic drug increases in response [5]. Our 

findings have demonstrated the opposite in regards to entrapment, suggesting that the high polarizability 

of diclofenac effectively works against the micelle formation properties of DMAB resulting in a 

reduction in drug entrapment as DMAB concentrations increase. 

 Measurements of entrapment efficiency in formulations utilizing PVA as stabilizer showed 

similar results to those obtained with DMAB. An entrapment efficiency of 80.2 ± 1.2% was seen at PVA 

concentrations of 0.1% following centrifugation at 12,000 rpm (Table 3.5). Interestingly, while 

entrapment efficiency remained high, zeta potential measurements remained close to zero, indicating 

low levels of stability (Table 3.3). Two possible explanations of our findings exist. One possibility is the 

presence of residual PVA. The presence of residual PVA on the nanoparticle surface has been found to 

mask charged groups existing on the surface of PVA formulated nanoparticle [40]. Thus, residual PVA 

may effectively create a shield between the nanoparticle and its surrounding medium, resulting in lower 

zeta potential measurements that still maintain higher levels of entrapment [40,41]. A second possibility 

is the correlation between zeta potential and nanoparticle stability. Zeta potential measurements closer to 

zero represents a high degree of non-stability with a weak surface charge surrounding the NP. It is 

highly possible that NPs degrade and break during the centrifugation process, in turn causing entrapped 

drug to leak from the NP into the medium. The leakage of free drug into the medium could result in 

higher levels of spectrophotometric drug detection during entrapment studies.  

Results of our in vitro study showed an increased initial diclofenac burst release for NPs 

formulated with 0.1% DMAB when compared to 0.1% PVA (Fig.3. 9). Inverse results were seen with 

stabilizer concentrations at 0.25%. Formulations with PVA at 0.25% concentration demonstrated a 

marked increase in drug release following one hour of agitation when compared to 0.25% DMAB 

formulation. Drug release from nanoparticles can occur through several means such as desorption of 

drug close to the surface of the nanoparticle, diffusion through the polymer matrix, or matrix erosion [2]. 

The fast release of diclofenac in 0.1% DMAB concentrations may be due to diclofenac polarity and 

increased levels of diclofenac absorbed closer to the surface of our DMAB nanoparticles [42]. The 

stunted release noticed in 0.25% DMAB formulation could be attributed to increased electrostatic 

adhesion of the drug molecules to the polymeric matrix. It has been shown that particles with larger zeta 

potential demonstrate higher adhesion of drug molecules to the polymeric matrix as a result of 

electrostatic adhesion [2]. It is possible that adhesion may be taking place within these particles that may 
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reduce diffusion of diclofenac within the PLGA nanoparticle core after exposure to dissolution medium 

[42,43].  

The purpose of our study was to elucidate a novel formulation for diclofenac sodium using 

polymer based nanoparticles. Our results are based on NP formulations using two different stabilizers at 

varying concentrations at two distinct centrifugation speeds. As such, our results are limited to NP 

characteristics utilizing PVA and DMAB stabilizers. It is entirely possible that the use of other 

stabilizing agents could result in alterations of NP characteristics above what has been seen in our study.  

Solvents play a critical role in the determination of NP characteristics as well. In our study, we 

utilized ethyl acetate as our primary organic solvent for NP preparation. Our choice of solvent was based 

on evidence seen in previous publications which utilized ethyl acetate in conjunction with other solvents 

on the determination of NP characteristics. Ethyl acetate was shown to be most effective at creating 

stable NPs in conjunction with the use of PLGA and DMAB as stabilizer [5,44]. The use of differing 

solvents would alter pH characteristic of formulation medium. Since our focus was on the salt form of 

diclofenac it is possible that alteration in organic solvents could alter ionization and solubility of 

diclofenac sodium, leading to differences in particle size, stability and entrapment.  

 

Conclusions 

In summary, our findings revealed the fact that diclofenac loaded PLGA NPs could be prepared utilizing 

low concentrations of PVA and DMAB stabilizers. Formulation was achieved through a very basic and 

simple evaporation – diffusion technique utilizing ethyl acetate as organic solvent. In comparisons to 

previous reports, the NPs of diclofenac developed in this study provided adequate diclofenac entrapment 

levels and showed superior levels of stability with a marked reduction in overall particle size. Diclofenac 

loaded PLGA NPs could be used as an alternative to existing oral delivery methods and aid in offsetting 

deleterious side effects common to NSAID use.  
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Figure Legends 

Figure 3.1. Chemical structure of poly (lactide-co-glycolide) [45] 

Figure 3.2. Chemical structure of diclofenac sodium [46] 

Figure 3.3. Chemical structure of poly vinyl alcohol (PVA) [47] 

Figure 3.4. Chemical structure of didodecyldimethylammonium bromide (DMAB) [48] 

Figure 3.5. Particle Sizing Systems NICOMP analysis of diclofenac loaded, PLGA based, 0.1% DMAB 

NP formulation. 

Figure 3.6. Entrapment effects of varying DMAB stabilizer concentrations. Entrapment efficiency after 

8,800 rpm centrifugation of diclofenac loaded NPs (A); Entrapment efficiency after 12,000 rpm 

centrifugation of diclofenac loaded NPs (B). Values are expressed as mean ± standard deviation. 

Figure 3.7. Morphological Analysis of 0.25% DMAB Formulated NPs. Transmission electron 

microscopy image of empty NPs formulated with 0.25% DMAB stabilizer (A); Transmission electron 

microscopy image of diclofenac loaded NPs formulated with 0.25% DMAB stabilizer (B). 

Figure 3.8. Morphological Analysis of 1% PVA Formulated NPs. Transmission electron microscopy 

image of empty NPs formulated with 1% PVA stabilizer (A); Transmission electron microscopy image 

of diclofenac loaded NPs formulated with 1% PVA stabilizer (B). 

Figure 3.9. NP Formulation In-vitro Drug Release Study with 0.1% Stabilizer Concentrations. In vitro 

release profile of diclofenac sodium in phosphate buffer of pH 7 from 0.1% PVA formulated NPs and 

0.1% DMAB formulated NPs (mean ± SD, n = 3, p < 0.05). 

Figure 3.10. NP Formulation In-vitro Drug Release Study with 0.25% Stabilizer Concentrations. In vitro 

release profile of diclofenac sodium in phosphate buffer of pH 7 from 0.25% PVA formulated NPs and 

0.25% DMAB formulated NPs (mean ± SD, n = 3, p < 0.05). 
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Abstract 

 

Polymer based nanoparticle formulations have been shown to increase drug bioavailability and/or reduce 

drug adverse effects. Nonsteroidal anti-inflammatory drugs (e.g. celecoxib) reduce prostagladin 

synthesis and cause side effects such as gastrointestinal ulcerations and renal complications. The aim of 

this study was to formulate celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a 

solvent evaporation process using didodecyldimethylammonium bromide or poly vinyl alcohol as 

stabilizer. Nanoparticles were characterized for zeta potential, particle size, entrapment efficiency, and 

morphology. Effects of stabilizer concentration (0.1, 0.25, 0.5, and 1 % w/v), drug amount (5, 10, 15, 

and 20 mg), and emulsifier (lecithin) on nanoparticle characterization were examined for formula 

optimization. The use of 0.1%, 0.25% and 0.5% w/v didodecyldimethylammonium bromide resulted in 

more than a 5-fold increase in zeta potential and more than a 2 fold increase in entrapment efficiency 

with a reduction in particle size over 35%, when compared to stabilizer free formulation. Nanoparticle 

formulations were also highly influenced by emulsifier and drug amount. Using 0.25% w/v 

didodecyldimethylammonium bromide NP formulations, peak zeta potential was achieved using 15 mg 

celecoxib with emulsifier (17.15 ± 0.36 mV) and 20 mg celecoxib without emulsifier (25.00 ± 0.18 mV). 

Peak NP size reduction and entrapment efficiency was achieved using 5 mg celecoxib formulations with 

(70.87 ± 1.24 nm and 95.55 ± 0.66%, respectively) and without (92.97 ± 0.51 nm and 95.93 ± 0.27%, 

respectively) emulsifier. In conclusion, formulations using 5 mg celecoxib with 0.25% w/v 

didodecyldimethylammonium bromide concentrations produced nanoparticles exhibiting enhanced size 

reduction and entrapment efficiency. Furthermore, emulsifier free formulations demonstrated improved 

zeta potential when compared to formulations containing emulsifier (p < 0.01). Therefore, our results 

suggest the use of emulsifier free, 5 mg celecoxib drug formulations containing 0.25% w/v 

didodecyldimethylammonium bromide for production of polymeric NPs that demonstrate enhanced zeta 

potential, small particle size, and high entrapment efficiency.  
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Introduction 

 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are well established for the treatment of pain and 

inflammation. They function by acting on the cyclo-oxygenase (COX) family of enzymes and inhibiting 

the conversion of arachidonic acid to prostaglandins and thromboxanes [1-4]. The COX enzyme exists 

as at least two different isozymes, COX-1 and COX-2. The COX-1 enzyme is constitutively expressed 

in most tissue and functions to regulate hemodynamics and maintain gut integrity. COX-2 is an 

inducible enzyme found primarily at sites of inflammation that mediates fever and pain [5-7]. COX-2 

has been found to be constitutively expressed in certain tissue such as the kidneys, the reproductive tract, 

and gastric mucosa [2,8-11]. Traditionally, NSAIDs function by inhibiting both COX-1 and COX-2 

isozymes and provide analgesic and anti-inflammatory benefits. These benefits are thought to arise 

primarily from the inhibition of COX-2, while the adverse effects (e.g. ulceration) were thought to occur 

from over inhibition of COX-1 [12-14]. As a result, COX-2-selective inhibitors (COXIBs) were 

developed to provide analgesic and anti-inflammatory benefits, while minimizing the gastrointestinal 

adverse side effects associated with traditional NSAID use [1,12].  

Celecoxib (CEL) is a COXIB used in the treatment of pain and inflammation [13-15]. Evidence suggests 

that CEL use effectively reduces clinical gastrointestinal events in comparison to other NSAIDs, making 

it one of the most commonly prescribed COX-2 specific inhibitors [16-18]. Despite the general safety of 

CEL in regards to gastrointestinal tolerability, its use has been associated with the development of 

several adverse side effects including cardiovascular events, and renal toxicity [18,19]. Many CEL 

delivery systems designed to help reduce and alleviate the formation of CEL associated side effects have 

been developed [20-23]. Studies utilizing nanoparticle (NP) formulations have shown promising results 

in overcoming high dose oral administration of CEL [22,24-26]. One study showed enhanced drug 

retention at the site of action following intra-articular injection of small lipid nanoparticle formulated 

CEL in the treatment of joint pain [27]. Another study showed enhanced anti-inflammatory effects of 
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CEL utilizing NP formulated transdermal drug delivery [28]. A third study showed enhanced inhibition 

of tumor growth with a reduction in side effects using hydroxyapatite-chitosan nanocomposited CEL in 

the treatment of colon cancer [29]. 

 Polymer based NPs are commonly used to improve drug bioavailability and/or reduce drug 

associated side effects [30]. Poly lactide-co-glycolide (PLGA) is a polymer that has been 

commercialized for a variety of drug delivery systems and is frequently used in the design of 

biocompatible NPs [31]. PLGA is approved by the Food and Drug Administration as a biodegradable 

polymer that degrades to the nontoxic tricarboxylic acid  cycle intermediates, lactic acid and glycolic 

acid [31-33]. Use of PLGA based NPs for enhanced delivery of CEL has been met with a variety of 

different results. [20,21]. However, known NP stabilizers such as didodecyldimethylammonium bromide 

(DMAB) and poly vinyl alcohol (PVA) have yet to be used in the development of CEL loaded PLGA-

NPs.  

 Previous studies have shown effective use of DMAB and PVA for formulation of small, highly 

entrapped NPs [34,35]. The aim of this study was to characterize and optimize CEL loaded PLGA-NPs 

by examining the influence of varying DMAB and PVA concentrations on NP characterstics. The effect 

of drug amount and emulsifier (lecithin) on zeta potential, particle size, entrapment efficiency, and 

morphology was also examined. 

 

Materials and methods 

 

1.1.  Materials 
 

DMAB, PVA (MW 89,000 – 98,000 Da, 99.9+% hydrolyzed), PLGA (50:50 copolymer compositions; 

MW 30,000 – 60,000 Da), and lecithin (99% phosphatidylcholine) were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). CEL base powder was obtained from Biovision Incorporated (Milpitus, CA, 
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USA). Acetone, ethyl acetate, and high-performance liquid chromatography (HPLC)-grade water were 

purchased from Fischer Scientific Laboratory (Fair Lawn, NJ, USA).  

 
1.2.  Preparation of CEL loaded PLGA-NPs  
 

Formulation of NPs was carried out using a previously described solvent evaporation technique [34,36]. 

CEL-loaded NPs were formulated by dissolving 20 mg of CEL and 50 mg PLGA into 3 mL of ethyl 

acetate. The solution was stirred for 30 minutes at 750 rpm. Afterwards, 30 mg of lecithin was added to 

the organic solution followed by addition of 500 µL acetone as co-solvent. A varying range of DMAB or 

PVA concentrations (0.1%, 0.25%, 0.5%, and 1% w/v) was dissolved in 6 mL of HPLC grade water. 

Organic phase was then added to aqueous phase in a drop wise manner under moderate stirring followed 

by sonication for 5 minutes at 20 KHz. After sonication, solutions were stirred at 750 rpm for 1 hour to 

evaporate organic phase. Emulsions were then centrifuged at 12,000 rpm followed by separation of 

supernatant from precipitants. Additional NP formulations for optimization studies were carried out with 

0.25% w/v DMAB concentration. Using the previously described process, emulsifier free CEL loaded 

PLGA-NPs were formulated with the exclusion of lecithin, while NP preparation looking at effects of 

drug amount was carried out using various amounts of CEL (5, 10, 15, and 20 mg).  

1.3.  Particle size and zeta potential 
 

Intensity weighted mean particle size (diameter) was measured in triplicate by dynamic light scattering 

using a NICOMP particle sizer (Particle Sizing Systems, Port Richy, FL, USA). Zeta potential was 

estimated on the basis of electrophoretic mobility under an electrical field. 

1.4.  Drug entrapment 
 

To measure drug entrapment efficiency 100 µL NP solution was added to 300 µL acetonitrile and vortex 

mixed for 30 seconds. Afterwhich,  100 µL of drug loaded NP solution was analyzied under ultraviolet–

visible spectroscopy (Eppendorf Biophotometer, Hauppauge, NY, USA) at 260 nm using empty NPs 

solutions as blank. A standard calibration curve (50,000 – 2,000,000 ng/mL) was constructed using 
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titrated dilutions of CEL stock solution dissolved in acetonitrile. Drug entrapment efficiency (EE) was 

calculated using the following equation: 

Entrapment efficiency = (Amount of CEL entrapped within nanoparticles/Total amount of CEL used for 

formulation) X 100 

1.5.  Morphology 

 

Transmission electron microscopy (TEM) (Tecnai Philips Transmission Electron Microscope; FEI, 

Hillsboro, Oregon, USA) was used for evaluation of CEL loaded PLGA-NP shape and surface 

morphology. NP emulsions were vortex mixed and 2 µL of suspension was placed on a 200 mesh copper 

grid covered with Formvar film (Electron Microscopy Sciences, Hatfield, Pennsylvania). Samples were 

air dried for 1 hour then examined at 80 kV.  

1.6.  Stability of CEL loaded PLGA-NPs 

 

CEL loaded PLGA-NP emulsions (5 mL) formulated at various drug amounts (5, 10, 15, and 20 mg) 

with or without emulsifier (0.25% w/v DMAB) were stored at 4 °C for a period of 16 weeks. After 16 

weeks samples were removed from storage and analyzed for particle size, zeta potential, and drug 

entrapment efficiency. Particle characteristics were evaluated as previously described. 

1.7.  Data analysis 

 

All experiments were performed in triplicate. NP characteristic data is represented as mean ± standard 

deviation (SD). A Student’s t-test was used for comparison of two groups. 

 

Results and discussion 

 
1.8.  Effect of stabilizer concentration on NP characteristics 

 

CEL encapsulated PLGA-NPs were developed using lecithin as an emulsifier with DMAB or PVA 

(Table 4.1). The use of DMAB or PVA resulted in formation of CEL loaded PLGA-NPs with surface 

characteristics that displayed positive and negative charges, respectively. Because of the cationic 
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properties of DMAB [37-39], NPs formulated with inclusion of DMAB showed highly positive surface 

charges (Fig. 4.1A). 

 

DMAB formulated CEL loaded NPs reached a peak zeta potential of 20.03 ± 0.84 mV at 0.5% w/v 

concentration. The anionic characteristics of PVA lead to the formation of NPs with slightly negative 

surface charges (Fig. 4.1B). PVA formulated NPs reached a peak zeta potential of -6.09 ± 1.39 mV with 
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0.25% w/v concentration. 

 

 When comparing zeta potential as a measure of stability, all CEL-NP formulations containing 

DMAB or PVA showed significant alterations in NP system stability compared to stabilizer free 

formulations (plain formulation) (Fig. 4.1A and Fig. 4.1B). These results are indicative of altered NP 

characteristics as a result of adsorption or inclusion of DMAB and PVA onto or within the NP polymer 

shell. The inclusion of cationic and anionic DMAB (Fig. 4.1A) or PVA (Fig. 4.1B) on NP surfaces can 

effectively alter overall NP charge, in turn, effecting overall system stability [39-41]. 

In comparison to plain formulation, a significant reduction in particle size was seen in formulations 

incorporating 0.1%, 0.25%, and 0.5% DMAB (Fig. 4.2). 
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Particle size was significantly increased in 1% DMAB concentrations when compared to plain 

formulation. The largest reduction in particle size was achieved using 0.25% DMAB concentration 

(99.97 ± 3.27 nm) (p < 0.01). High concentrations of DMAB have been shown to increase solution 

viscosity, resulting in a direct increase in particle size [42], which may explain the significant rise in 

particle size noticed with CEL-NPs formulated using larger amounts of stabilizer. Furthermore, DMAB 

can act as a solubilizing agent for known hydrophobic compounds [36]. It is possible that lower DMAB 

concentrations may act to effectively reduce drug crystallization, further reducing NP size, which may 

explain NP size reductions seen in our study with lower DMAB concentrations (Fig. 4.2). Conversely, a 

significant increase in CEL solubility brought forth by higher DMAB content could function to increase 

NP drug loading capacitance and increase particle size by means of expanding NP drug content within 

the polymer shell.  
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Formulations using 0.1% w/v PVA did not demonstrate any significant difference in particle size when 

compared to plain formulation (p > 0.77). Particle size measurements of 0.25%, 0.5% and 1% PVA 

formulations were not detectable by our NICOMP particle sizer due to reduced entrapment efficiency 

and total drug concentrations in PVA based NP solution. 

The amount (1.99 ± 0.01 mg) and percent (9.94 ± 0.01%) of CEL entrapped in formulations without 

stabilizer were compared to DMAB and PVA based formulations (Table 4.2). All stabilizer based 

formulations demonstrated significant changes in entrapment efficiency when compared to plain 

formulation (Table 4.2) (P < 0.01). 

 

All DMAB formulations and 0.1% PVA formulation exhibited significant increases in the level of CEL 

entrapment with a maximum percent entrapment of 61.07 ± 0.06% reached with 1% DMAB 

formulation. All PVA concentrations above 0.1% w/v underwent a significant reduction in drug 

entrapment (Table 4.2). The reduction in drug entrapment can be explained by elucidation of PVA 

properties. PVA is a highly hydrophilic stabilizer, which can result in reduced NP stability in aqueous 

solutions [43]. As PVA concentrations increase, the hydrophilic nature of the NP system increases. The 

increased inclusion of PVA into the NP polymer shell could increase hydrophilic properties leading to 

NP solubilization in the aqueous medium following organic phase evaporation. The increased 
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hydrophilic properties of PVA-NP systems could reduce entrapment and drug solubility leading to an 

increased loss of drug in solution precipitant following centrifugation.  

In this study, DMAB was shown to effectively increase zeta potential, reduce particle size, and facilitate 

drug entrapment when compared to PVA based formulations. As such, DMAB based NP morphology 

was visualized and confirmed under transmission electron microscopy (TEM) (Fig. S1) with further 

variable analysis carried out using DMAB formulations. 
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0.28. Analysis of NP characteristics in absence of emulsifier 

 

To analyze effect of emulsifier on CEL loaded NP characteristics, formulations containing 0.1%, 0.25%, 

0.5%, and 1% w/v DMAB without lecithin were developed, characterized and compared to previously 

observed characteristics of NP formulations with lecithin (Fig. 4.3). 

NP 
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visual identification of emulsifier free formulations was performed via TEM analysis (Fig. S2). 

When 

compared to emulsifier based formulations, absence of emulsifier resulted in a significant  increase of 

zeta potential in formulations using 0.25%, 0.5%, and 1% stabilizer concentrations (Fig. 4.3A) (P < 

0.01). These findings indicate that the use of an emulsifier may function to reduce overall particle 

repulsion and system stability. The cationic property of DMAB has become increasingly popular for 
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development of positively charged NPs [44]. In emulsifier free formulations, we found that rising zeta 

potential was associated with increased DMAB concentration. These results can be indicative of 

enhanced DMAB inclusion into the NP polymer shell. Furthermore, lecithin contains low concentrations 

of phosphatidic acid. The presence of phosphatidic acid can impart negatively charged, anionic 

characteristics during inclusion into NP formulations [45]. As such, the anionic properties of lecithin can 

act to reduce polymer surface charge and effectively mask the cationic charge associated with DMAB 

inclusion, which would explain the findings of reduced particle charge seen in emulsifier based NP 

formulations. 

 In emulsifier free formulations particle size increased with increasing stabilizer concentrations, with 

peak particle size reaching micron levels at 0.5% and 1% DMAB concentration (972.93 ± 547.71 nm 

and 4849.77 ± 313.75 nm, respectively) (Fig. 4.3B). These results indicate that lecithin effectively 

functions to reduce interfacial tension between organic and aqueous phases. In solvent evaporation 

processes, when organic phase is added to aqueous phase in a drop wise manner, the resultant organic 

droplets are stabilized by polymers formed at solute interfaces [45]. The type of polymer, surfactant, or 

emulsifier used can act to alter interfacial tensions between the organic droplets and the aqueous 

solution. After placement of organic phase into aqueous phase, interfacial spreading occurs as a result of 

diffusion between solvents, providing energy for NP formation [45]. NP size is dependent on rate of 

diffusion and diffusion is dependent on changes in the interfacial tension between organic and aqueous 

phases. Lower interfacial tension equates to smaller NP size properties [45-48]. The addition of 

compounds such as lecithin act to effectively change interfacial tension which can have altering effects 

on particle size and NP formation [48,49]. Changes in organic and aqueous phase interface alters the rate 

of solvent diffusion, as lecithin favors a higher organic phase to aqueous phase interface resulting in 

reduced particle size [46] as seen in our study.  
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 Peak drug entrapment was seen at DMAB concentrations of 1% for formulations without emulsifier 

(82.91 ± 0.67%) (Fig. 4.3C). In relations to 1% DMAB formulation carried out with emulsifier, these 

results equate to an almost 22% increase in NP drug loading (P < 0.01). In theory, inclusion of lecithin 

could act to offset surface tension allowing for fast organic phase diffusion into the aqueous phase [50]. 

The alteration in interfacial tension could also function to reduce barrier transport of drug outside of the 

organic phase during solvent diffusion. Inclusion of lecithin into the polymeric shell with increasing 

concentrations of DMAB resulted in a net reduction in drug entrapment compared to its emulsifier free 

counterpart. Much like lecithin, DMAB can form micelle aggregates that function through hydrophobic 

interactions of DMAB with the hydrophobic core of the NP [34]. The interactions of the hydrophobic 

portion of the stabilizer can function to solubilize the hydrophobic drug entrapped within the NP core 

[36]. It is possible that as concentration of both DMAB and lecithin increased in formulations, the net 

rise in hydrophobic interaction resulted in increased NP and CEL solubility leading to drug leakage and 

reduced drug entrapment. Similar results were obtained by Thakkar et al. when using Span-85 as an 

emulsifying agent during the development of CEL microspheres [51]. In the study, it was found that 

addition of emulsifier with high concentrations of stabilizer (1% w/v) enhanced CEL solubility and 

dissolution, which led to a reduction in both particle size and drug entrapment. 

 Previously, our lab completed formulation of diclofenac (a non-selective NSAID) loaded PLGA-NPs 

using DMAB and PVA [34]. With no change in drug amount (45 mg) or use of emulsifier, diclofenac 

loaded PLGA-NPs with DMAB or PVA exhibited negative surface charges and a peak entrapment 

efficiency as high as 80.21 ± 1.21%. The negative NP surface charge associated with diclofenac NP 

formulations using DMAB contrast with the highly positive surface charge of DMAB formulated CEL 

loaded NPs found in this study. When using diclofenac, PVA formulated NPs showed smaller negative 

surface charges, similar to the negative surface charge characteristics associated with our PVA 

formulated CEL-NP formulation. In physiological conditions, diclofenac is a negatively charged 
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molecule which may play a role in the development of negatively charged NPs during formulation with 

DMAB [52]. Conversely, at physiological pH, CEL presents as a neutrally charged molecule [53] that, 

when formulated with cationic DMAB, resulted in formation of positively charged NPs. Particle size 

analysis showed a similar pattern when comparing CEL formulation results with that of diclofenac. 

Diclofenac NP formulation showed a maximum increase of NP size (189.9 ± 4.9 nm) using 1% w/v 

DMAB. Similarly, results of our CEL formulation study demonstrated maximum NP size with 1% w/v 

DMAB concentration (Fig. 4.3B). Measurements of entrapment efficiency showed opposite effects. For 

diclofenac NPs, a linear reduction in total entrapment efficiency was seen with regards to increasing 

DMAB concentrations with the lowest amount of diclofenac entrapment occurring with 1% w/v DMAB. 

Conversely, maximum CEL loading seen within this study was observed at 1% DMAB, which when 

compared to the highly polarizable diclofenac [54], supports the theory that higher concentrations of 

DMAB may increase solubility of lipophilic drugs such as CEL, in turn leading to increases in particle 

size and drug entrapment [42]. 

0.28. Effect of drug amount on NP characteristics 

 

To study the effect of drug amount on NP characteristics, formulations consisting of 0.25% DMAB 

concentrations were chosen based on their sufficient size and general representation of drug entrapment 

and zeta potential. In conjunction with previously formulated NP systems using 20 mg CEL, new NPs 

with or without emulsifier were formulated with increasing amounts (5, 10, and 15 mg) of CEL (Table 

4.3). 
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Morphological characterization of NPs formulated with (Fig. 4.4) and without (Fig. 4.5) emulsifier at 

various drug amounts showed spherical shape and size similar to what was noticed in previous 

formulation studies [24,25,55-59]. All NP formulations without emulsifier displayed significantly higher 

zeta potential compared to formulations with emulsifier (Fig. 4.6A) (p < 0.01). Maximum zeta potential 

was reached in formulations of 20 mg CEL without emulsifier (25.00 ± 0.18 mV). Formulations with 

emulsifier reached peak zeta potential using 15 mg CEL (17.15 ± 0.36 mV). These results further 

indicate that use of emulsifiers such as lecithin, can function to mask surface charge of the incorporated 

stabilizer thereby reducing overall cationic charge associated with DMAB formulated NPs [45].  

 Peak size reduction and entrapment efficiency for formulations with (70.87 ± 1.24 nm and 95.55 ± 

0.66%, respectively) and without (92.97 ± 0.53 nm and 95.93 ± 0.27%, respectively) emulsifier was 

achieved using 5 mg drug amounts (Fig. 4.6B and Fig. 4.6C, respectively). These results indicate an 

important role for drug solubility on the characterization of CEL loaded NPs. 
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 CEL belongs to the biopharmaceutical classification system class II drug exhibiting poor aqueous 

solubility [60-62]. During formulation, several techniques such as size reduction, use of emulsifier, or 

surfactants can be applied to help increase the degree of drug solubility in aqueous media [63]. In 
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applications towards NP production, several of these techniques are often applied in order to increase 

drug solubility and prevent drug precipitation outside of the NP shell. In this study, stabilizers and an 

emulsifier were used to measure effects on particle characteristics through means of increased solubility. 

The use of drug amount was also analyzed as a measurement of solubility effects on zeta potential, 

particle size, and drug entrapment. In an effort to optimize drug entrapment, drug amounts were titrated 

to measure extent of effects on NP encapsulation. The solubility of a drug is related to surface area and 

volume ratios [63]. In particle size reduction, surface area is increased and allows greater interactions 

with the solvent which causes an increase in solubility. In conjunction with particle size reduction via 

sonication, reductions in drug amount allows further enhancement in surface area to volume ratio. We 

found that when drug amount was decreased in CEL-NP formulations, entrapment efficiency was able to 

achieve over 95% loading capacitance (Fig. 4.6C). This success indicates the importance of drug amount 

in conjunction with size reduction for the prevention of drug precipitation and enhancement of drug 

entrapment efficiency during NP formulations.   

 Interestingly, in this study it was found that as drug amount increased to 20 mg, total entrapment of 

CEL increased in formulations with emulsifier while amounts of 15 mg and 10 mg CEL displayed 

increasing total drug entrapment in regards to emulsifier free formulation (Fig. 4.6C). It is possible that 

higher concentrations of CEL undergoes enhanced solubilization in the presence of emulsifier, enabling 

a larger degree of drug entrapment in the presence of higher drug amounts. Furthermore, lecithin is a 

non-ionic emulsifier known to impart steric stabilizing effects in colloidal systems, preventing particle 

collision and reducing drug leakage [64,65]. It is possible that as drug amounts increase, lecithin 

functions to increase drug solubility, stabilize NP formation, and reduce drug leakage leading to an 

increase in drug entrapment. The observation that larger drug amounts undergo increased NP entrapment 

in the presence of lecithin may support the use of emulsifiers during NP production of high, lipophilic 

drug concentrations.   
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3.4. Stability of CEL loaded PLGA-NPs 

To avoid particle aggregation and coalescence, it is recommended to store PLGA-NP systems at 4 °C 

[66]. Therefore, to analyze stability of PLGA-NP systems, emulsions of varying drug amounts with or 

without emulsifier were kept at 4 °C for a period of 16 weeks then characterized to determine storage 

effects on zeta potential, particle size, and drug entrapment efficiency. 

 Results showed that zeta potential, particle size, and entrapment efficiency were at or below initial 

reported NP characterization measurements (Fig. 4.7 and Fig. 4.8). 
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All peak characteristic measurements after 16 weeks of cold storage was noticed in formulations that 

included emulsifier (Fig. 4.7). When compared to our initial formulations (Fig. 4.6), zeta potential was 
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reduced across all formulations (p < 0.05), with a peak zeta potential seen in formulations using 10 mg 

drug amounts with emulsifier (5.92 ± 0.98 mV) (Fig. 4.7A). When analyzing particle diameter, a peak 

reduction was seen in 10 mg formulations with emulsifier (63.23 ± 3.33 nm). Furthermore, when 

compared to initial characteristic measurements, significant particle size reductions were seen in 10 mg 

and 20 mg CEL formulations with emulsifier (Fig. 4.7B) (p < 0.01), as well as 5 mg and 15 mg 

formulations without emulsifier (Fig. 4.8B) (p < 0.01). All formulations showed a significant reduction 

(p < 0.01) in entrapment efficiency with the highest level of entrapment maintained in 5 mg formulation 

with emulsifier (79.58 ± 0.611%) (Fig. 4.7C). These results indicate the possible role emulsifying agents 

may have on maintenance of NP stability. The reduction of zeta potential observed in all formulations 

could be a result of possible DMAB dissociation from the NP shell after 16 weeks. Loss of DMAB 

would lead to reduced particle charge, net repulsion, and stability resulting in increased drug leakage, 

particle size reduction, and reduced entrapment efficiency [67]. Furthermore, the emulsifier in our 

formulation may be exerting unknown effects on drug permeation and NP aggregation, allowing for 

enhanced time-dependent stability of PLGA-NPs formulated with lecithin [68]. 

 

Conclusion 

 

In this study, we performed a solvent evaporation technique to developed and characterize CEL loaded 

PLGA-NPs using varying concentrations of DMAB or PVA as stabilizer. NPs were examined and 

characterized based on zeta potential, size, drug entrapment efficiency, and morphology. The results of 

this study showed that the use of DMAB as stabilizer led to the development of NPs that displayed 

sufficient size and stability with moderate increases in drug entrapment when compared to plain 

formulation. Of the two stabilizers, DMAB proved to be highly efficient in developing well 

characterized CEL loaded PLGA based NPs, whereas PVA based formulations failed to reach optimum 

parameters in NP development. Variables such as emulsifier and drug amount were also analyzed to 
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further optimize NP formulations. When formulations were carried out in the presence of emulsifier a 

reduction in zeta potential was noted. Emulsifier based formulations displayed reduced surface charge as 

a consequence of lecithin induced anionic interactions and  masking of cationic DMAB properties, 

indicating that in the presence of DMAB based formulations, emulsifiers such as lecithin may act to 

reduce NP stability and formula optimization. Additional formula evaluation showed that reduction in 

drug amount was effective at reducing particle size and enhancing drug entrapment efficiency, further 

elucidating the role of drug solubility and the importance of increasing surface area to solvent 

interactions for effective development of CEL loaded NPs. Interestingly, while use of emulsifier resulted 

in reduced zeta potential and system stability, time-dependent stability testing which looked at zeta 

potential, size, and entrapment efficiency after 16 weeks cold storage showed peak particle 

characteristics in formulations with emulsifier. These results may indicate that while emulsifiers such as 

lecithin function to reduce overall particle charge during formulation, they could function to prolong NP 

system stability over an extended period of time. However, further testing is needed to determine the 

extent of emulsifier effects on CEL loaded PLGA-NP stability. Overall, results of our study indicate 

formulation of PLGA-NPs using 0.25% w/v DMAB and 5 mg CEL amounts without emulsifier for 

creation of highly entrapped, stable NPs of a sufficient size that could function to enhance the 

application of orally delivered CEL and provide a potential effective dosage form for CEL 

administration.  
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Supporting Information 

Figure S1. TEM images of emulsifier based formulation illustrating morphology of A) 0.1% w/v 

DMAB formulated NPs, B) 0.25% w/v DMAB formulated NPs, C) 0.5% w/v DMAB formulated NPs 

and D) 1% w/v DMAB formulated NPs. 

Figure S2. TEM images of emulsifier free formulations illustrating morphology of A) 0.1% w/v DMAB 

formulated NPs, B) 0.25% w/v DMAB formulated NPs, C) 0.5% w/v DMAB formulated NPs and D) 

1% w/v DMAB formulated NPs. 
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Figure Legends 

Figure 4.1. Zeta potential measurements of A) DMAB and B) PVA formulated NPs of celecoxib. 

Values are expressed as mean ± SD, n = 3. 
*
p < 0.05, significantly different from plain formulation. 

Figure 4.2. Particle size analysis of increasing concentrations of DMAB compared to formulation 

without stabilizer (plain formulation). Values are expressed as mean ± SD, n = 3. 
*
p< 0.05, significantly 

different from plain formulation. 

Figure 4.3. Nanoparticle characteristic comparison of A) zeta potential, B) particle size, and C) 

entrapment efficiency of initial emulsifier based DMAB formulations with emulsifier free DMAB 

formulations. Values are expressed as mean ± SD, n = 3. 
*
p < 0.05, significantly different from initial 

formulations.  

Figure 4.4. TEM images illustrating morphology of 0.25% w/v DMAB NP formulations with emulsifier 

at A) 5 mg drug amount, B) 10 mg drug amount, C) 15 mg drug amount, and D) 20 mg drug amount. 

Figure 4.5. TEM images illustrating morphology of 0.25% w/v DMAB NP formulations without 

emulsifier at A) 5 mg drug amount, B) 10 mg drug amount, C) 15 mg drug amount, and D) 20 mg drug 

amount  

Figure 4.6. The effect of varying drug amounts on A) zeta potential, B) NP size, and C) entrapment 

efficiency. Values are expressed as mean ± SD, n = 3. 
*
p < 0.05, significantly different from 

formulations with emulsifier. 

Figure 4.7. Nanoparticle characteristic comparison of A) zeta potential, B) particle size, and C) 

entrapment efficiency of initial emulsifier based formulations with those observed following 16 weeks 

cold storage at 4 °C. Values are expressed as mean ± SD, n = 3. 
*
p < 0.05, significantly different from 

initial formulations. 

Figure 4.8. Nanoparticle characteristic comparison of A) zeta potential, B) particle size, and C) 

entrapment efficiency of initial emulsifier free formulations with those observed following 16 weeks 

cold storage at 4 °C. Values are expressed as mean ± SD, n = 3. 
*
p < 0.05, significantly different from 

initial formulations. 
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CHAPTER 5 

SUMMARY 

 

The purpose of this study was to formulate, develop and optimize a new NP based drug delivery 

system that could be used to enhance and/or mitigate effects of the nonsteroidal anti-inflammatory drugs 

(NSAIDs) diclofenac or celecoxib (Cooper and Harirforoosh 2014; Cooper and Harirforoosh 2014). A 

solvent-evaporation technique was used to developed and characterize diclofenac or celecoxib loaded 

polymeric NPs using DMAB or PVA as stabilizer. NPs were characterized based on size, stability, 

morphology and percent of drug entrapped. For all active pharmaceutical ingredients examined in this 

study, the use of DMAB as stabilizer resulted in the development of NP systems that demonstrated 

sufficient size and stability characteristics while also showing moderate increases in drug entrapment 

when compared to plain formulation. Optimization experiments were designed and carried out for each 

drug as well. Effects of centrifugal force, stabilizer concentration, emulsifier and total drug amounts on 

formulation parameters such as zeta potential, drug entrapment, and particle size were examined.  

During formulation studies, it was found that PLGA based NPs using DMAB as stabilizer, 

resulted in formation of highly stable NPs for both diclofenac and celecoxib. In diclofenac 

formulation, PLGA based NPs showed the lowest particle size (108 ± 2.1 nm) and highest zeta 

potential (-27.71 ± 0.6 mV) at 0.1 and 0.25% DMAB respectively, when centrifuged at 12,000 rpm. 

Peak drug entrapment reached 77.3 ± 3.5% (20). Results of diclofenac and PVA based NP formulation 

showed the smallest particle size (92.4 ± 7.6 nm) and highest zeta potential (11.14 ± 0.5 mV) at 0.25% 

and 1% w/v, respectively, after centrifugation at 12,000 rpm. Diclofenac NP formulations utilizing PVA 

stabilizer reached an entrapment efficiency of 80.2 ± 1.2%. Over all, zeta potential levels were 

dramatically lower in PVA based formulations then DMAB based formulations. The lower level of zeta 

potential seen in PVA formulas indicates a high degree of system instability and particle agglomeration 

(Cooper, D.L. 2014). Hindrance of particle repulsion brought forth by the reduced surface charge would 
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allow cohesion and aggregation of NP presented within the system. This aggregation would negate the 

benefits of nanosizing and lead to leaching of the drug out of the NP shell and/or falling out of solution. 

This finding alone supports the use of DMAB as the primary stabilizer to be used during diclofenac NP 

formulation. 

In optimization techniques it was found that both emulsifier and drug amount could affect NP 

characteristics during formulation of celecoxib loaded NPs (Cooper and Harirforoosh 2014). For these 

formulations, peak zeta potential was achieved using 15 mg celecoxib with emulsifier (17.15 ± 0.36 mV) 

and 20 mg celecoxib without emulsifier (25.00 ± 0.18 mV). The largest particle size reduction and 

entrapment efficiency was achieved using 5 mg celecoxib formulations with (70.87 ± 1.24 nm and 95.55 

± 0.66%, respectively) and without (92.97 ± 0.51 nm and 95.93 ± 0.27%, respectively) emulsifier. It is 

important to note that during celecoxib NP formula optimization, reaching entrapment efficiency at or 

above 50%, while maintaining favorable characteristic profiles for both zeta potential and particle size, 

was difficult to achieve. Initial formulations that looked at effects of stabilizer concentration and 

emulsifier on NP characteristics showed entrapment percent’s over 50% only when total stabilizer 

concentrations reached 0.5 – 1%. Unfortunately, although entrapment efficiency reached adequate 

levels, higher amounts of stabilizer, both with and without emulsifier, demonstrated particle sizes on a 

micron scale. When dealing with nano based formulations, these findings are unacceptable. It was only 

when optimization techniques were employed that altered the actual amount of drug used, were 

favorable characteristics seen among the categories of both zeta potential and particle size as well as 

drug entrapment. Effects of drug amount on formulation characteristics were analyzed by formulating 

celecoxib based NP systems using 5 mg, 10 mg, 15 mg or 20 mg drug amounts. In this study, when 

lower amounts of drug was used (5 mg) entrapment efficiency reached a peak level of over 95% with or 

without the use of an emulsifier. Do to the extremely high levels of entrapment seen, a conclusion could 

be drawn that formulations performed with 5 mg drug amounts gave the best celecoxib loaded NPs. 



108  

Furthermore, this study shows that formulas utilizing 5 mg drug amounts without the use of a secondary 

emulsifier led to formation of sufficiently small NPs with a high degree of stability. These findings 

support the conclusion that formulation of celecoxib NPs using lower drug amounts without emulsifier 

results in optimal NP system development.  

Overall, results of this study demonstrated successful formulation of diclofenac and celecoxib 

loaded polymeric NPs (Cooper and Harirforoosh 2014; Cooper and Harirforoosh 2014). The findings 

presented here may indicate a novel delivery method that could function to decrease or eliminated drug 

induced adverse side effects seen in the clinical settings (Marimuthu et al 2013; Tai et al 2013; Cooper 

and Harirforoosh 2014; Cooper and Harirforoosh 2014). However, while the present research is 

promising, further research is needed to elucidate the overall effect of NP drug delivery on these select 

pharmacotherapeutics. 

Despite successful formulation techniques presented here, extensive research is still needed to 

uncover the exact affect these new formulations will have on overall drug function and characteristics. In 

depth research and examinations, including in vivo studies should be performed to measure the extent of 

NP effects on maintenance of drug efficacy and the formation of adverse events associated with acute 

and chronic drug exposure. For NSAID formulated NPs, in vivo pharmacokinetic and pharmacodynamic 

studies should be carried out to assess and examine drug dosing and formula effects on systemic 

exposure, onset of adverse effects and maintenance of overall drug efficacy. Due to known adverse 

effects of NSAIDs in regards to gastrointestinal disturbances and renal complications, the extent of drug 

induced NSAID NP effects to be analyzed should include analysis of electrolyte concentrations before 

and after regimen initiation, and gastrointestinal histological examination. Furthermore, biomarkers such 

as blood urea nitrogen and urinary kidney injury molecule 1, as a measure of the extent of drug induced 

renal stress, should also be examined. Examination of effects on inflammation and prostaglandin 
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expression as a measure of drug efficacy could be carried out utilizing ELISA assays and biomarker 

analysis of cyclo-oxygenase (COX), myeloperoxidase, and prostaglandin E2 levels.  

The experiments outlined above are designed to evaluate the effectiveness of these polymer 

encapsulate drugs in achieving enhanced systemic absorption following oral dosing. Utilization of in 

vivo data will serve as a strong indicator in regards to formulation effectiveness at achieving adequate 

and sustained plasma drug concentrations and further elucidate effects of these formulations on 

associated adverse drug events and the maintenance or enhancement of overall drug efficacy.  
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