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ABSTRACT
This study mainly investigated the effects of different dietary levels
of glutamate (Glu) and aspartate (Asp) on growth performance,
blood amino acids, and amino acid transporters in piglets. Forty-two
healthy piglets were randomly divided into six groups (n = 7): a
control group in which piglets were fed 2.9% Glu and 1.5% Asp and
other groups in which piglets received 1.3% or 1.7% Asp and 2.6%,
3.2%, or 3.5% Glu for 21 days. Growth performance, serum amino
acid profiles from the mesenteric vein, portal vein, and anterior vena
cava, and amino acid transporters in the liver were determined. The
results showed that lower doses of Asp promoted growth and
enhanced the amino acids, while high doses of Asp and Glu reduced
growth and the amino acid pool in piglets (P < 0.05). Meanwhile,
3.2% Glu increased branched chain amino acids in the portal vein
and anterior vena cava (P < 0.05). 3.5% Glu downregulated SLC7A1,
SLC7A7, and SLC6A19 expression in the liver (P < 0.05). Collectively,
these results indicated that different dietary doses of Glu and Asp
influenced growth performance and serum amino acid.
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Abbreviations: Ala: alanine; Arg: arginine; Asp: aspartate; ADFI: average
daily feed intake; ADG: average daily gain; Cys: cystine; F/G: feed intake/
gain; Glu: glutamate; Gly: glycine; His: histidine; Ile: isoleucine; Leu:
leucine; Lys: lysine; Met: methionine; Phe: phenylalanine; Pro: proline;
Ser: serine; TAA: total amino acid; Thr: threonine; Try: tryptophan; Tyr:
tyrosine; Val: valine; SLC1A1: solute carrier family 1 member 1;
SLC7A1: solute carrier family 7 member 1; SLC7A7: solute carrier
family7 member 7; SLC6A19: solute carrier family 6 member 19

Introduction

Glutamate (Glu) and aspartate (Asp), two acidic amino acids, are considered as non-essential
amino acids in classical nutrition (Wu, 2010). Glu and Asp have been indicated to play impor-
tant roles in physiological and biochemical processes (Duan et al., 2014;Wang et al., 2016). For
example,Glu andAsp serve asmajor sources of energy and improve intestinal and liver function
by alleviating oxidative stress (Duan et al., 2016; Leng et al., 2014; Lin et al., 2014). Meanwhile,
dietary supplementations with Glu and Asp have been reported to enhance growth perform-
ance (Yin, Liu, et al., 2015), act as excitatory neurotransmitters in the brain (Wang, Wang,
Xia, & Wood, 2014), and mediate feeding behaver (Khropycheva, Andreeva, Uneyama,
Torii, & Zolotarev, 2011). Bin et al reported that 1% Asp lowered the ratio of Firmicutes: Bac-
teroidetes inmice andaffected the innate immunity(Bin et al., 2017).Duan et al reported that 2%
glutamate acted as a nutritional regulating factor to ameliorate the adverse effects ofmycotoxins
and improved growth performance in mycotoxins-challenged pigs (Duan et al., 2014) .
Although various studies indicate thatGlu andAsp protect piglets against different pathological
conditions, such as oxidative stress andmycotoxin infection, little is known about the effects of
different dietary contents of Glu and Asp on growth performance and amino acid metabolism
in healthy piglets. Thus, the present study examined the amino acid metabolic responses to
dietary Glu and Asp in piglets and growth performance was also focused.

Materials and methods

Animal and diets

All animal procedures were approved by the Committee on Animal Care of the Institute of
Subtropical Agriculture, Chinese Academy of Sciences (Changsha, Hunan Province,
China). Forty-two piglets (Duroc × Landrace × Yorkshire, male, 13.24 ± 0.25 kg) (Hunan
New Wellful Co., Ltd., Hunan Province, China) were randomly assigned into one of six
treatment groups (n = 7/group). Piglets in the control group (CG) were fed a basic diet con-
taining 2.9% Glu and 1.5% Asp according to our previous study (Wu et al., 2015). Other
piglets received 1.3% (LA) or 1.7% (HA) Asp and 2.6% (LG), 3.2% (HG), or 3.5% (HHG)
Glu for 21 days, respectively (Table 1). Each animal was housed in a single cage. Piglets
had free access to drinking water and diets during the experimental period.

Growth performance

During the experimental period, feed intake was recorded daily and all piglets were
weighed individually at day 0 and 21. Average daily feed intake (ADFI), average daily
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weight gain (ADG), and the ratio of feed intake to weight gain (F/G) were calculated
according to the feed consumption and weight of each piglet.

Amino acid determination

Blood samples were obtained from the mesenteric vein, hepatic portal vein, and anterior vena
cava after anesthetic treatment using Zoletil 50 (Virbac S.A., France). Serum was prepared via
centrifugation at 3000 g and 4°C for 10 min and stored at −80°C until analysis (Fang et al.,
2017). Eighteen amino acids (Lys, Met, Thr, Trp, Glu, Asp, Val, Ile, Leu, Phe, Arg, Ser, His,
Gly, Ala, Pro, Cys, and Tyr) in the serum were detected via 1260 liquid chromatograph
(Agilent 1260) according to our previous reports (Duan et al., 2016; Liao et al., 2017).

Real-time quantitative (RT–PCR)

Total RNA from liver samples was isolated with TRIZOL reagent (Invitrogen, USA) and
then treated with DNase I (Invitrogen, USA) (Meng et al., 2017; Reschke et al., 2017).

Table 1. Composition and nutrient levels of experimental diets for piglets (air-dried basis, %).
Feed ingredients (%) LA CG HA LG HG HHG

Extruded soybean 7 7 7 7 7 7
Soybean meal 13 12 11 12.5 11 10
Fish meal 3 3 3 3 3 3
Extruded Maize 33 33 33 33 33 33
Corn 32.6 33 33.9 33 33.9 34
Soybean oil 0.95 1 0.85 0.9 0.85 0.85
Glucose 0.5 0.5 0.5 0.5 0.5 0.5
CaHPO4 1 1 1 1 1 1
Limestone 0.5 0.5 0.5 0.5 0.5 0.5
NaCl 0.40 0.40 0.40 0.40 0.40 0.40
Dried whey 3 3 3 3 3 3
Sucrose 2 2 2 2 2 2
Citric acid 0.8 0.8 0.8 0.8 0.8 0.8
ZnO 0.3 0.3 0.3 0.3 0.3 0.3
Choline chloride 0.1 0.1 0.1 0.1 0.1 0.1
Lysine 0.655 0.685 0.715 0.67 0.715 0.745
Methionine 0.2 0.21 0.22 0.205 0.22 0.23
Threonine 0.23 0.24 0.26 0.235 0.255 0.27
Tryptophan 0.06 0.065 0.07 0.06 0.065 0.07
Multi-vitamina 0.04 0.04 0.04 0.04 0.04 0.04
Microelementa 0.15 0.15 0.15 0.15 0.15 0.15
Aspartate 0.07 0.32 0.57 0.2 0.26 0.31
Glutamate 0 0.07 0.13 0 0.5 1
Rice mill by-product 0.445 0.62 0.495 0.44 0.445 0.735
Total 100.00 100.00 100.00 100.00 100.00 100.00
Nutrient composition
Digestible energy MJ/kg 14.61 14.61 14.61 14.61 14.61 14.61
Crude protein 17.16 17.16 17.16 17.16 17.16 17.16
Calcium 0.70 0.70 0.70 0.70 0.70 0.70
Total phosphorus 0.58 0.58 0.58 0.58 0.58 0.58
Available phosphorus 0.33 0.33 0.33 0.33 0.33 0.33
Lys 1.23 1.23 1.23 1.23 1.23 1.23
Met 0.68 0.68 0.68 0.68 0.68 0.68
Thr 0.73 0.73 0.73 0.73 0.73 0.73
Trp 0.20 0.20 0.20 0.20 0.20 0.20
Asp 1.3 1.5 1.7 1.5 1.5 1.5
Glu 2.9 2.9 2.9 2.6 3.2 3.5
aThe premix provided the following per kg of diet:nicotinic acid 50 mg, pantothenic acid 5 mg, folic acid 2 mg, biotin
0.2 mg, VA 10800IU, VD3 4000IU, VE 40IU, VK3 4 mg, VB1 6 mg, VB2 12 mg, VB6 6 mg,VB12 0.05 mg, Cu 5 mg, Fe
80 mg, Mn 3 mg, Zn 85 mg,0.1 mg, Se 0.3 mg.
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Reverse transcription was performed at 37°C for 15 min, 95°C 5 sec. Primers used in this
study were designed using Primer 5.0 according to the pig gene sequence (Table 2).
β-actin was chosen as the house-keeping gene to normalize target gene levels. The PCR
cycling conditions were 36 cycles at 94°C for 40 sec, 60°C for 30 sec and 72°C for 35 sec.
Relative expression was expressed as a the ratio of the target gene to the control gene
using the formula 2-(ΔΔCt), where ΔΔCt=(CtTarget-Ctβ-actin)treatment-(CtTarget-Ctβ-actin)control
(Feng et al., 2015; Gupta et al., 2017; Lin et al., 2016; Sohail, Doran, Riedemann,Macaulay, &
Southern, 2003). Relative expression was normalized and expressed relative to the
expression in the control group according to our previous report (Gupta et al., 2017;
Reschke et al., 2017; Yin et al., 2013; Yin et al., 2017).

Statistical analysis

All statistical analyses were performed using IBM SPSS 20 software. The data were per-
formed by using the one-way analysis of variance (ANOVA) to test homogeneity of var-
iances via Levene’s test and followed with student’s t test Data are expressed as mean ±
SEM. Values in the same row with * are significant (P < 0.05)

Results

Effect of Asp and Glu on growth performance in piglets

Effect of Asp on growth performance was summarized in Table 3. There was no significant
difference in body weight of piglets compared with control group (P > 0.05). Interestingly,
ADG in the LA group was higher in the control group and F/G was markedly lower in the
LA group (P < 0.05). However, dietary high Asp (1.7%) markedly decreased ADFI and
ADG but increased F/G (P < 0.05), suggesting that low Asp improve growth but high
dosage of Asp exert negative effect.

Table 2. Primers used in this study.
Gene Gene bank no. Sequence (5′–3′) Product length (bp)

SLC1A1 NM_001164649.1 F:AGTGAGCCAGAGACGAATGG 73
R:AAACAATCAAGCCCAGGACA

SLC7A1 NM_001012613.1 F:TCTGGTCCTGGGCTTCATAA 123
R:ACCTTCGTGGCATTGTTCAG

SLC7A7 NM_001110421.1 F:GAGTGCCAGAACACAAACGA 116
R:TCCTCCATCTTCCAAATCCA

SLC6A19 XM_003359855.3 F:TCATCTTCCTCTTCTTCTTCGTG 101
R:CTTGACCTTCTGGGATTTGG

β-Actin XM_003124280.4 F:CTGCGGCATCCACGAAACT 147
R:AGGGCCGTGATCTCCTTCTG

All primer sequences were designed based on the accession numbers given above.

Table 3. Effects of Asp on growth performance in piglets.
Item LA CG HA

Initial body weight (kg) 13.31 ± 1.10 13.21 ± 0.58 13.31 ± 0.84
Final body weight (kg) 23.23 ± 1.50 21.44 ± 1.05 18.58 ± 1.00
Average daily feed intake (g/d) 911 ± 49 840 ± 44 688 ± 47*
Average daily gain (g/d) 551 ± 26* 457 ± 28 330 ± 28*
Feed conversion ratio 1.66 ± 0.05* 1.85 ± 0.06 2.12 ± 0.11*

Data are expressed as the mean ± SEM (n = 7). *means the difference was significant compared with the control group.
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Dietary supplementation with different dosages of Glu failed to affect body weight in
piglets (P > 0.05; Table 4). However, dietary high Glu significantly reduced ADG and
increased F/G (P < 0.05). Moreover, ADFI in the HHG group was markedly lower than
that in the control group (P < 0.05). These results suggested that excess Glu intake
inhibit growth performance in piglets.

Effect of dietary Asp on the circulating amino acids in piglets

The levels of amino acids in the mesenteric vein, hepatic portal vein, and anterior vena
cava were determined to evaluate amino acid metabolic response to dietary amino
acids. In the mesenteric pool, different doses of Asp in the diet failed to affect the levels
of Asp and other amino acids (P > 0.05; Table 5). In the hepatic portal, Trp and Tyr
levels were significantly higher in the LA group than those in the control group (P <
0.05). In the anterior vena cava, Glu level in the HA group was markedly decreased com-
pared with the control group (P < 0.05).

Effect of dietary Glu on the circulating amino acids in piglets

In the mesenteric pool, Met and Tyr were decreased in the HHG group, while Glu was
increased in the HG group compared with the control group (P < 0.05; Table 6). In the
hepatic portal, Trp, Val, Ile, Leu, and Ser levels were higher in the HG group than
those in the control group. Trp in HHG group and Ser in LG group were mark-
edly increased (P < 0.05). In the anterior vena cava, Ile and Tyr were decreased in
the LG group while His was increased compared with the control group (P < 0.05).
Moreover, Glu and Tyr in the HG group were decreased (P < 0.05) and Ile, Leu, and
Tyr in the HHG group were also decreased compared with control group (P < 0.05).

Liver expression of amino acid transporters

In this study, expressions of SLC1A1, SLC7A1, SLC7A7, and SLC6A19 were determined
via RT–PCR (Figure 1). Low-dose Asp down-regulated SLC6A19 expression in the liver
(P < 0.05). Moreover, expressions of SLC7A1, SLC7A7 and SLC6A19 were markedly
down-regulated in the HHG group (P < 0.05) mRNA in the liver. Also, dietary high
Glu significantly down-regulated SLC6A19 expression compared with the control group
(P < 0.05).

Table 4. Effects of Glu on growth performance in piglets.
Item LG CG HG HHG

Initial body weight (kg) 13.24 ± 0.54 13.21 ± 0.58 13.24 ± 0.50 13.31 ± 0.54
Final body weight (kg) 20.38 ± 0.42 21.44 ± 1.05 19.90 ± 0.84 20.20 ± 0.44
Average daily feed intake (g/d) 771 ± 33 840 ± 44 790 ± 42 687 ± 38*
Average daily gain (g/d) 400 ± 19 457 ± 28 364 ± 26* 374 ± 27
Feed conversion ratio 1.99 ± 0.06 1.85 ± 0.06 2.16 ± 0.02* 1.88 ± 0.04

Data are expressed as the mean ± SEM (n = 7). *means the difference was significant compared with the control group.
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Table 5. Effect of dietary Asp on the circulating amino acids in piglets (μg/mL).
Item LA CG HA

mesenteric vein.

Lys 52.48 ± 3.60 47.59 ± 4.32 50.96 ± 1.04
Met 12.12 ± 0.94 13.62 ± 1.17 11.94 ± 1.67
Thr 23.72 ± 2.41 20.06 ± 2.43 25.28 ± 2.55
Trp 7.24 ± 0.41 6.40 ± 0.71 6.47 ± 0.87
Asp 8.33 ± 0.98 6.43 ± 0.62 7.00 ± 0.57
Glu 99.28 ± 9.78 83.64 ± 7.85 82.48 ± 3.89
Val 25.68 ± 2.52 24.88 ± 3.64 26.02 ± 2.91
Ile 19.36 ± 2.05 16.77 ± 2.27 17.17 ± 1.85
Leu 33.07 ± 2.63 28.18 ± 3.38 30.09 ± 2.69
Phe 16.14 ± 0.94 14.91 ± 1.36 15.30 ± 0.82
Arg 24.58 ± 4.70 22.02 ± 4.98 19.20 ± 3.57
Ser 32.02 ± 2.98 32.30 ± 1.92 38.34 ± 4.29
His 8.09 ± 0.71 6.56 ± 0.98 7.07 ± 0.65
Gly 127.99 ± 9.16 131.60 ± 9.99 129.70 ± 18.67
Ala 91.90 ± 7.15 84.29 ± 7.57 79.49 ± 6.25
Pro 35.89 ± 1.24 35.33 ± 2.50 32.86 ± 2.76
Cys 1.67 ± 0.39 1.47 ± 0.34 1.89 ± 0.57
Tyr 22.89 ± 1.45 21.71 ± 1.67 19.79 ± 0.6

portal vein

Lys 53.52 ± 4.57 46.69 ± 5.04 49.58 ± 2.37
Met 12.36 ± 0.96 12.97 ± 1.28 11.70 ± 1.50
Thr 23.72 ± 2.70 19.27 ± 2.67 24.38 ± 3.43
Trp 7.75 ± 0.62** 5.67 ± 0.67 6.09 ± 0.62
Asp 8.56 ± 1.54 7.26 ± 1.18 7.85 ± 1.54
Glu 107.07 ± 12.41 81.94 ± 7.13 88.92 ± 10.24
Val 26.58 ± 3.22 23.37 ± 3.61 24.98 ± 2.51
Ile 19.81 ± 2.51 16.53 ± 2.16 16.17 ± 1.41
Leu 33.76 ± 3.52 27.71 ± 3.28 28.37 ± 2.21
Phe 16.65 ± 1.41 14.17 ± 1.20 14.32 ± 1.06
Arg 21.80 ± 4.69 16.60 ± 6.02 14.58 ± 2.60
Ser 32.17 ± 2.79 31.39 ± 2.28 40.37 ± 6.39
His 7.96 ± 1.06 6.76 ± 0.86 7.28 ± 0.62
Gly 124.97 ± 8.57 128.29 ± 10.56 134.82 ± 22.14
Ala 91.52 ± 7.72 79.12 ± 6.94 78.80 ± 7.96
Pro 35.96 ± 2.19 32.99 ± 2.23 31.98 ± 2.48
Cys 2.18 ± 0.56 1.65 ± 0.41 2.05 ± 0.84
Tyr 23.25 ± 1.65* 19.29 ± 1.67 19.61 ± 1.21

anterior vena cava

Lys 43.50 ± 2.49 41.42 ± 3.00 43.99 ± 2.18
Met 10.93 ± 0.98 13.02 ± 1.10 10.98 ± 1.52
Thr 19.76 ± 2.26 18.02 ± 1.65 22.50 ± 3.04
Trp 6.46 ± 0.38 5.70 ± 0.50 5.01 ± 0.56
Asp 6.67 ± 0.72 6.20 ± 1.12 4.82 ± 0.36
Glu 85.11 ± 9.36 73.96 ± 4.40 61.49 ± 5.33*
Val 21.89 ± 2.41 22.97 ± 2.79 21.98 ± 2.56
Ile 16.17 ± 1.73 15.12 ± 1.48 13.56 ± 1.44
Leu 26.46 ± 2.13 24.85 ± 2.01 24.08 ± 1.50
Phe 13.37 ± 0.82 13.35 ± 0.72 12.71 ± 0.87
Arg 16.94 ± 3.13 18.52 ± 3.27 19.19 ± 2.00
Ser 28.25 ± 2.78 29.86 ± 1.67 33.66 ± 4.33
His 5.33 ± 0.71 4.47 ± 0.45 5.00 ± 0.26
Gly 116.17 ± 8.89 126.23 ± 9.51 129.18 ± 18.94
Ala 77.04 ± 6.24 71.78 ± 6.44 64.00 ± 4.35
Pro 29.43 ± 1.09 30.45 ± 1.29 27.10 ± 1.30
Cys 1.47 ± 0.29 1.28 ± 0.37 0.88 ± 0.30
Tyr 19.54 ± 0.85 18.64 ± 1.53 18.65 ± 0.89

Data are expressed as the mean ± SEM (n = 6). *means the difference was significant compared with the control group.
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Table 6. Effect of dietary Glu on the circulating amino acids in piglets(μg/mL).
Item LG CG HG HHG

mesenteric vein

Lys 54.84 ± 7.67 47.59 ± 4.32 64.28 ± 5.55* 50.15 ± 1.82
Met 12.64 ± 1.79 13.62 ± 1.17 13.90 ± 1.83 10.29 ± 1.10*
Thr 26.09 ± 3.44 20.06 ± 2.43 24.82 ± 3.35 21.35 ± 1.99
Trp 6.75 ± 0.95 6.40 ± 0.71 7.70 ± 1.09 5.92 ± 0.38
Asp 7.57 ± 1.13 6.43 ± 0.62 7.86 ± 1.20 6.78 ± 0.91
Glu 89.79 ± 6.97 83.64 ± 7.85 86.18 ± 8.08 84.06 ± 10.40
Val 28.72 ± 3.35 24.88 ± 3.64 31.94 ± 3.57 21.82 ± 1.04
Ile 19.19 ± 2.09 16.77 ± 2.27 22.35 ± 2.82 14.89 ± 1.09
Leu 33.12 ± 3.95 28.18 ± 3.38 37.57 ± 3.75 27.15 ± 1.65
Phe 16.73 ± 2.11 14.91 ± 1.36 18.34 ± 2.09 14.91 ± 0.31
Arg 25.00 ± 3.76 22.02 ± 4.98 33.35 ± 7.16 18.06 ± 4.33
Ser 35.92 ± 3.48 32.30 ± 1.92 39.41 ± 3.17 33.10 ± 2.41
His 8.37 ± 1.36 6.56 ± 0.98 9.31 ± 1.22 7.00 ± 0.31
Gly 127.56 ± 10.84 131.60 ± 9.99 132.63 ± 2.64 132.59 ± 15.79
Ala 77.99 ± 8.89 84.29 ± 7.57 82.42 ± 7.49 80.88 ± 3.67
Pro 33.44 ± 3.59 35.33 ± 2.50 37.13 ± 3.43 31.94 ± 1.81
Cys 2.56 ± 0.51 1.47 ± 0.34 1.72 ± 0.28 1.97 ± 0.57
Tyr 20.08 ± 2.24 21.71 ± 1.67 21.94 ± 2.06 16.65 ± 0.74*

portal vein

Lys 46.51 ± 3.46 46.69 ±5.04 53.70 ± 2.07 50.05 ± 2.36
Met 10.78 ± 0.82 12.97 ± 1.28 12.05 ± 1.15 10.84 ± 0.97
Thr 23.03 ± 3.89 19.27 ± 2.67 19.84 ± 1.82 21.35 ± 1.69
Trp 5.75 ± 0.88 5.67 ± 0.67 6.77 ± 0.47* 6.09 ± 0.24*
Asp 7.24 ± 1.03 7.26 ± 1.18 6.57 ± 0.59 7.55 ± 0.99
Glu 94.62 ± 12.15 81.94 ± 7.13 85.60 ± 7.84 94.59 ± 12.74
Val 25.17 ± 2.04 23.37 ± 3.61 28.15 ± 1.71** 20.76 ± 1.43
Ile 16.08 ± 3.03* 16.53 ± 2.16 18.49 ± 1.33* 13.46 ± 1.57
Leu 28.55 ± 1.93 27.71 ± 3.28 31.13 ± 1.33* 25.90 ± 2.25
Phe 14.16 ± 1.00 14.17 ± 1.20 15.08 ± 0.55 14.61 ± 0.62
Arg 17.41 ± 1.26 16.60 ± 6.02 22.14 ± 3.86 22.03 ± 4.28
Ser 32.76 ± 3.21 31.39 ± 2.28 37.11 ± 2.45* 39.48 ± 3.37*
His 6.72 ± 0.98 6.76 ± 0.86 6.77 ± 0.49 7.35 ± 0.46
Gly 116.37 ± 12.60 128.29 ± 10.56 116.74 ± 5.17 139.78 ± 15.58
Ala 70.11 ± 6.68 79.12 ± 6.94 71.72 ± 3.43 84.15 ± 4.30
Pro 29.05 ± 2.46 32.99 ± 2.23 31.34 ± 1.16 32.42 ± 1.83
Cys 2.78 ± 0.32* 1.65 ± 0.41 1.53 ± 0.25 1.67 ± 0.45
Tyr 17.27 ± 1.03 19.29 ± 1.67 14.61 ± 3.40 16.54 ± 0.65

anterior vena cava

Lys 43.12 ± 2.84 41.42 ± 3.00 48.63 ± 3.23 44.62 ± 1.00
Met 10.75 ± 1.23 13.02 ± 1.10 11.55 ± 1.67 9.80 ± 0.78
Thr 21.49 ± 3.15 18.02 ± 1.65 19.65 ± 2.27 19.53 ± 1.21
Trp 5.00 ± 0.95 5.70 ± 0.50 5.57 ± 0.69 5.06 ± 0.28
Asp 5.00 ± 0.52 6.20 ± 1.12 5.09 ± 0.39 6.05 ± 0.58
Glu 66.62 ± 5.42 73.96 ± 4.40 60.99 ± 6.17* 70.50 ± 6.37
Val 23.31 ± 2.78 22.97 ± 2.79 24.02 ± 2.33 18.31 ± 1.89
Ile 14.86 ± 2.62* 15.12 ± 1.48 15.57 ± 1.78 11.26 ± 1.51*
Leu 25.08 ± 1.8 26.64 ± 2.01 26.61 ± 1.70 21.29 ± 1.89*
Phe 13.18 ± 0.91 13.35 ± 0.72 13.58 ± 0.97 12.62 ± 0.56
Arg 20.66 ± 1.52 18.52 ± 3.27 23.57 ± 2.68 14.89 ± 2.48
Ser 28.54 ± 2.20 29.86 ± 1.67 34.12 ± 1.86 33.50 ± 2.91
His 4.95 ± 0.60 4.47 ± 0.45 5.48 ± 0.49* 5.50 ± 0.28
Gly 117.91 ± 10.92 126.23 ± 9.51 125.82 ± 2.54 135.23 ± 13.86
Ala 63.66 ± 3.27 71.78 ± 6.44 65.86 ± 4.45 72.59 ± 3.45
Pro 26.82 ± 1.40* 30.45 ± 1.29 28.69 ± 1.42 28.54 ± 1.18
Cys 1.61 ± 0.29 1.28 ± 0.37 0.94 ± 0.21 0.73 ± 0.18
Tyr 15.84 ± 1.44 18.64 ± 1.53 14.13 ± 2.41* 14.43 ± 0.52*

Data are expressed as the mean ± SEM (n = 6). *means the difference was significant compared with the control group.
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Discussion

Glu and Asp play important roles in the nervous system, immunity, and nutrition in
animals and humans (Khropycheva et al., 2011; Leng, 2014; Lin et al., 2014; Wang
et al., 2016; Yanni et al., 2010). Our previous studies showed that dietary supplementation
with Asp and Glu reduced oxidative stress-induced growth suppression (Duan et al., 2016;
Yin, Liu, et al., 2015). Shi et al. also reported that dietary 0.5% and 1% Asp improved ADG
in piglets after exposure to lipopolysaccharide (Shi, 2013). Meanwhile, dietary 2% Glu atte-
nuated mycotoxin-induced growth suppression by improving ADFI, ADWG, and the
feed/weight ratio in piglets (Wu, 2014). The animals may change in diet and bring
about poor growth performance under weaning stress (Li et al., 2017; Ren et al., 2018).
Thus, we investigated dietary Asp and Glu in healthy piglets with initial weight 10 kg
and pre-feeding for a week. In the current study indicated that dietary supplementation
with high dosages of Asp and Glu reduced growth performance and diets with low
levels of Asp or Glu improved growth performance in piglets. Together, we speculated
that low doses of Asp and Glu may satisfy the nutritional requirements in healthy
piglets, while supplementations with excess Asp and Glu exhibit a negative effect on
growth performance under healthy conditions.

Serum amino acid levels are highly associated with animal health and growth perform-
ance (Li et al., 2016; Liao et al., 2017; Wu et al., 2014; Yin, Ren, et al., 2015). Previous
studies have shown that dietary supplementation with 2.0% Glu, 0.5% −2.0% glutamine,
1.0% Asp or their combinations reduced oxidized stress or a pathological amino acid
profile in weaned piglets (Duan et al., 2016; Ren et al., 2014). Moreover, Glu and Asp
can transform alanine, citrulline, glutathione, ornithine and arginine and other precursor
substances (Wu et al., 2007; Zhang et al., 2012). A portion of the free amino acids in the
intestine are selectively absorbed into the mesenteric vein, and some amino acids, such as
Glu and Asp, are used by the intestine to maintain intestinal health (Deutz, Bruins, &
Soeters, 1998; Pi et al., 2014; Stoll & Burrin, 2006; Xi et al., 2012). Portal vein blood is

Figure 1. Effects of dietary Asp (A, B, C, D) and Glu (E, F, G, H) on amino acid transporters in the liver.
Data are presented as mean ± SEM, n = 6. SLC1A1 solute carrier family 1 (neuronal/epithelial high affi-
nity glutamate transporter, system XAG, member 1), SLC7A1 solute carrier family 7 (cationic amino acid
transporter, y + system; member 1), SLC7A7 solute carrier family7 (amino acid transporter light chain, y
+ L system, member 7), and SLC6A19 solute carrier family 6 (neurotransmitter/neutral amino acid trans-
porter, member 19).
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collected by the stomach, intestine, spleen, and other organs (extracorporeal tissue, Portal-
Drained Viscera, PDV) (Stoll et al., 1998). Studies have shown that the liver contains high
levels of Glu and Asp under low crude protein diets (17% crude protein) (Zheng, 2015).
Meanwhile, Glu and Asp are absorbed and oxidized in the intestine and liver to maintain
the intestinal and liver structure and function (Jinap & Hajeb, 2010; Leng et al., 2014;
Wang et al., 2015; Wang et al., 2017). In the current work, only Glu levels in the anterior
chamber of the HA and HG group were markedly decreased. The reason may be explained
by that low doses of Glu and Asp meet the needs of the body, thus extra Glu and Asp may
be oxidized by intestinal epithelial cells and liver cells to provide energy.

Zhenyukh et al. found that pathological conditions increased plasma levels of branched
chain amino acids (Zhenyukh et al., 2017). In this study, the hepatic portal vein in the HG
group (3.2% Glu group) contained the highest levels of branched chain amino acids, which
may explain why 3.2% Glu appeared to have a negative effect on growth performance. Try is
a precursor of the neurotransmitter serotonin, which promotes feed intake (Burgoon,
Knabe, & Gregg, 1992; Eder, Nonn, Kluge, & Peganova, 2003; Kendall, Gaines, Kerr, &
Allee, 2007), reduces energy waste, and enhances feed utilization (Zhang et al., 2013). Mean-
while, tryptophan inhibits xanthine oxidase activity and reactive oxygen, as well as oxidative
stress (Lv et al., 2012). The current study showed that the portal vein of the LA, HG, and
HHG group showed a high tryptophan level, which might affect growth performance and
amino acid metabolism and detailed mechanisms should be further investigated.

Amino acids are mainly sensed and transported by specific amino acid transporters
(Burckhardt Birgitta & Burckhardt, 2017; Yin et al., 2017; Zuo et al., 2015). For
example, SLC1A1 transports Asp and Glu and SLC7A1 contributes to Lys, Arg, and
His uptake (Verrey, Meier, Rossier, & Kuhn, 2000). In this study, high dosage of Glu
downregulated SLC7A1, SLC7A1, and SLC6A19 expressions, which may be associated
with the feedback regulation as excess of amino acids are toxic to cells. SLC6A19 trans-
ports all neutral amino acids and is the only transporter of Trp in the small intestine
(Bröer et al., 2004). Thus, we speculated that SLC6A19 may mediate Trp metabolism in
this study.

Conclusions

Low levels of Glu and Asp in the diet increased growth performance of piglets and the
serum tryptophan level. High doses of Glu and Asp, especially 3.2% Glu, inhibited the
growth of piglets, increased BCAA levels in the hepatic portal vein and may have toxico-
logical effects.
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