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ABSTRACT
Zebrafish (Danio rerio) emerged as a model of diet-induced obesity
because of its genetic homology to humans. Peanut is a rich source
of monounsaturated fatty acid and its consumption is associated
with decreased inflammatory markers and obesity control. This
study evaluated the effects of peanut addition to the cafeteria
diet (CAF) by analysis of fatty acids into the head, adiposity and
expression of TNF, IL6 and FASN genes using zebrafish as
experimental model. The zebrafish were maintained in tanks for
60 days and treated with standard (ST) and CAF diets,
respectively. The CAF diet increased the oleic acid content in
zebrafish heads, however the body weight, body mass index,
adipose tissue and expression of inflammatory and lipid
metabolism genes did not differ between the groups. This study
suggests that the addition of peanut in the CAF diet can control
weight gain, the inflammatory markers and lipid metabolism in
zebrafish model.
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1. Introduction

Obesity is a significant human health concern (Liu et al., 2017). According to the World
Health Organization (WHO, 2014), over the past 30 years, more than 700 million people
can be characterized as obese. Factors such as a diet rich in carbohydrates and fats, seden-
tary lifestyle and stress, are associated with obesity-related disorders (Fénero, Flores, &
Câmara, 2016). High-calorie and high-energy fat diets are known as cafeteria (CAF)
diets and are responsible for increasing the mass of adipose tissue and inducing obesity.
Additionally, the CAF diet is accompanied by functional and metabolic changes, as well
as deposition of body fat and chronic inflammation (Oliveira et al., 2015; Zeeni,
Dagher-Hamalian, Dimassi, & Faour, 2015).

It is well established that obesity is associated with a state of chronic low-grade inflam-
mation, characterized by alterations in circulating immune-modulatory factors and
adipose tissue-resident immune cells, which may provide a causal link between increased
adiposity (Gil-Cardoso et al., 2017). Adipose tissue is an endocrine organ, secreting a
variety of pro-inflammatory cytokines, like tumour necrosis factor-α (TNF-α) and inter-
leukin-6 (IL-6), play roles in mediating chronic inflammation and are produced predomi-
nantly by activated macrophages and CD4+ T cells (Hartati, Widjanarko, Widyaningsih, &
Rifa’i, 2017) that could comprise up to 40% of the total cells in obese adipose tissue
(Daniele et al., 2014).

Moreover, increased expression and activity of lipogenic pathways in adipose tissue
may contribute to the development of obesity. Fatty acid synthase (FASN) is a key
enzyme in lipogenesis and has been identified as a candidate gene for body fat determi-
nation in gene expression analyzes (Berndt et al., 2007). FASN is highly expressed in lipo-
genic tissues, such as adipose tissue. There is a low level of FASN expression in normal
cells, because these cells obtain the necessary fatty acids from the diet, instead of lipogen-
esis (Abdel-Magid, 2015).

Zebrafish (Danio rerio) is emerging as a good research model of obesity, due to its
similar genome and physiology to humans (Leibold & Hammerschmidt, 2015). Its appli-
cability in lipid metabolism research as a model for lipid-related diseases, induced by diet
and obesity has been demonstrated in some studies (Hasumura et al., 2012; Oka et al.,
2010). Zebrafish have the key organs for energy homeostasis and metabolism in
mammals, as well as other associated functions, such as appetite regulation in the brain
(Broeder, Kopylova, Kamminga, & Legler, 2015), and lipid storage in white adipocytes
(Oka et al., 2010). All of these characteristics make the zebrafish also an excellent
model for the study of inflammatory pathologies, due to resemblance with the human
genome (Fénero et al., 2016).

The CAF model is a widely used form in mice to evaluate the effect of high-fat concen-
trations (Zeeni et al., 2015). High-fat meals can stimulate innate immune cells and lead to
a transient postprandial inflammatory response, altering our immune system and, sub-
sequently, our inflammatory status (Gil-Cardoso et al., 2017). Saturated fatty acids
(SFAs) are more prone to storage than monounsaturated fatty acids (MUFAs), promoting
increased inflammation in adipose tissue. Peanuts are a rich source of MUFAs, and their
consumption was linked to improved postprandial profiles of inflammatory markers
(Alves et al., 2014). Evidence suggests that peanut ingestion may favour body weight
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control, by reducing food intake and modulating energy metabolism (Alves et al., 2014;
Ha, Kim, Kim, & Kang, 2015).

This study evaluated the effect of 60 days of a peanut addition to the CAF diet by analy-
sis of the composition of fatty acids into the head, adiposity and expression of TNF, IL6
and FASN genes in zebrafish as an experimental model.

2. Materials and methods

2.1. Experimental diets

The granulated diets used are described in Table 1. The standard (ST) and cafeteria (CAF)
diet were formulated according to Néia et al. (2018). The design of the cafeteria diet was
based on studies already established for mice (Akyol, Langley-Evans, & McMullen, 2009;
Higa, Spinola, Fonseca-Alaniz, & Evangelista, 2014) and adapted to the nutritional needs
of zebrafish (Siccardi et al., 2009). The CAF diet was formulated from the ST diet (37.5%)
and added: peanuts (25%), chocolate (25%) and biscuit (12.5%).

2.2. Feeding trial and fish sampling

This work was undertaken at the Laboratory PeixeGen of the State University of Maringa
(Maringá, Paraná), from August to October 2016. Forty fish were divided equally and ran-
domly, into two groups, according to the CAF and ST diet, respectively, in tanks with a
40 L h−1 water flow capacity, constant oxygenation, and external activated carbon
filtration. Before the experiment, the fish received the ST diet for fifteen days, for nutri-
tional adaptation. Next, 10 fish were euthanized, and zero time (0 day) analyzes were per-
formed. Then, the animals were divided in two groups: experimental that received CAF
diet and standard that received ST diet. The fish were fed four times daily ad libitum
(Fowler et al., 2017; Karami, Groman, Wilson, Ismail, & Neela, 2017). After 60 days of
feeding, the zebrafish were euthanized, weighed and measured. Five whole fish per treat-
ment were used for histological analysis. The livers of five animals per treatment were col-
lected for gene expression analyzes, and the heads of fifteen animals per treatment were

Table 1. Feed ingredients of experimental diets.

Ingredients (%)

Experimental diets

ST: standard diet CAF: cafeteria diet

Soy protein isolate 50.53 18.95
Grain corn 9.41 3.53
Gluten maize 20 7.50
Sunflower oil 8 3.00
Rice 5 1.88
Dicalcium phosphate 3.61 1.35
Lysine 1.51 0.57
Premix 1 0.38
Methionine 0.43 0.16
Limestone 0.43 0.16
Salt 0.3 0.11
Tryptophan 0.09 0.03
Peanut 0 25.00
Chocolate 0 25.00
Biscuit 0 12.50
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harvested for fatty acid composition determination. The heads were stored in polyethylene
bags at −18°C, until analysis. At the beginning of each analysis, the samples were equili-
brated to room temperature and then homogenized. The collected livers were maintained
in RNAlater® (Sigma-Aldrich) solution at 4°C, until RNA isolation. The full bodies of five
zebrafish per experimental diet were collected and kept in paraformaldehyde. All animal
experiments were performed in strict accordance with the regulations approved by the
Ethics Committee on the Use of Animals (CEUA) of the State University of Maringa,
with CEUA n° 5133220616 at the meeting of 08/07/2016.

2.3. Fatty acid composition

The fatty acid methyl esters (FAMEs) of the heads were prepared by total lipid methyl-
ation, as described by Figueiredo et al. (2016). The FAMEs were separated by gas chrom-
atography (GC) in a Thermo Scientific™ TRACE™ Ultra Gas chromatograph (Thermo
Scientific™, USA), fitted with a flame ionization detector (FID) and a fused-silica capillary
column (100 m × 0.25 mm i.d., 0.25 μm cyanopropyl CP-7420 select FAME). The ultra-
pure gas flows were 1.2 mL min−1 carrier gas (hydrogen), 30 mL min−1 make-up gas
(nitrogen), 300 mL min−1 synthetic air, and 35 mL min−1 hydrogen flame gas. The
injected sample volume was 1 μL with a split injection ratio of 1/40. FAMEs were ident-
ified by comparing their retention times with those of standard methyl esters (Sigma,
St. Louis, USA).

Quantification of fatty acids (mg g−1 of sample) was made using 23:0me and theoretical
FID correction factor values were used according to Visentainer (2012).

2.4. Measurement of zebrafish body weight, length and body mass index (BMI)

The body weight and length of zebrafish were measured both, at the beginning and end of
treatment. The BMI was calculated, by dividing the body weight (g) by the square of the
body length (cm2) (Oka et al., 2010).

2.5. Morphometric analysis of zebrafish fat tissue and adipocytes

For histological analysis, the fish were individually anesthetized, by immersion in a vessel
with ice flakes and water at approximately 4°C. The anesthesia time was individualized
and the fish were considered anesthetized after not responding to external stimuli. Five
whole animals were used per treatment, fixed in 4% paraformaldehyde, decalcified in
20% sodium citrate and 50% formic acid, and cut transversely at the height of the dorsal
fin. The samples were dehydrated in a series of alcohols of increasing concentrations, dia-
phanized in xylol and embedded in paraffin. The sampleswere positioned on themicrotome
and cut until reaching the liver region of each fish. From the liver region, serial cross sections
(5 μm thick) were obtained and stained with hematoxylin and eosin (HE). The histological
slides were analyzed under a Nikon® optical microscope (Eclipse 80i, Shinjuku, Japan),
equipped with a high-resolution Nikon® camera (DS-Fi1c, Shinjuku, Japan), using a 20X
objective. Two histological sections were analyzed per animal, capturing 20 fields per
slide, totalling 100 images per treatment. Morphometric analysis was performed, using
Image-Pro® Plus software version 4.5. In each histological field, morphometric analysis
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was performed on all subcutaneous adipose tissue. The number and themean area (μm2) of
all the adipocytes present in each field were analyzed. The different mean areas of the adi-
pocytes found were grouped into classes of measurements and plotted in a histogram for
each treatment, according to the various sizes of fish adipocytes.

2.6. RNA extraction and quantitative real-time PCR

Total RNA of the zebrafish liver was extracted from a random sample of five males per
treatment diet, using QIAampH DNA blood mini kit Qiagen (Hilden, Germany), accord-
ing to the manufacturer’s specifications. The liver tissue was maintained in RNA at 4°C,
until the extraction. Subsequently, the samples were pretreated with RQ1 RNase-free
DNase (Promega, USA) and reverse transcribed into first-strand cDNA using a
Nanogen kit, according to the manufacturer’s instructions. The sequences of the PCR
primers used have been described by Yang et al. (2014) and Hasumura et al. (2012): β-
actin (endogenous control), ATGGATGAGGAAATCGCTG, ATGCCAACCAT-
CACTCCCTG; TNF, GCTGGATCTTCAAAGTCGGGTGTA, TGTGAGTCTCAGCA-
CACTTCCATC; IL6, AGACCGCTGCCTGTCTAAAA, TTTGATGTCGTTCACCA
GGA and FASN, ATCTGTTCCTGTTCGATGGC, AGCATATCTCGGCTGACGTT.
For real-time PCR, 3 µL of first-strand cDNA was reacted with a 25-µL mixture, consisting
of 12.5 µL SYBR® green RT–PCR reaction mix, 0.5 µL of each primer (100 mM) and 6.5 µL
of free-RNA water. The PCR programme involved an initial denaturation at 95°C for
5 min; 40 amplification cycles of 95°C for 30 s, 95°C for 45 s, and 60°C for 30 s. All reac-
tions were done in duplicate, on a StepOne Plus real-time PCR system. Amplification plots
indicating fluorescence intensity at each cycle were obtained, from which Ct values were
measured for each sample. PCRs were run in duplicate for each sample, and Ct averages
were acquired, followed by normalization to the average of the β-actin (housekeeping)
gene, following the 2−ΔΔCt method (Livak & Schmittgen, 2001).

2.7. Statistical analysis

The results (mean ± standard deviation, SD) were submitted to analysis of variance
(ANOVA) at 5% significance level, using GraphPad Prism 5 software (San Diego, CA,
USA). The mean values of the zebrafish body weight, length, BMI, fat tissue, adipocytes
and quantitative real-time PCR data were compared by Student’s t-test. The fatty acid
compositions of the zebrafish heads were compared by Tukey’s test.

3. Results

3.1. Fatty acid composition of the diets

The CAF and ST diets were well accepted by the fish, and there was no death due to dietary
intake of the treatments. The composition of fatty acids in the ST and CAF diets was
described in Néia et al. (2018). A total of 12 fatty acids were found in the diets. The major
SFA, MUFA, and polyunsaturated fatty acid (PUFA) in both diets were palmitic (16:0),
oleic (18:1n-9), and linoleic (18:2n-6) acids, respectively. The CAF diet presented high con-
centrations of oleic (102.58 ± 2.85 mg g−1) and linoleic (44.47 ± 1.32 mg g−1) acids.
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3.2. Fatty acid composition in zebrafish’s head

After the supplemented diet administration, 20 fatty acids were identified and quantified
in zebrafish heads. The profile of supplemented fatty acids in zebrafish heads at the end of
supplementation (60 days) is shown in Table 2. The same classes of the fatty acids of SFAs,
MUFAs, and PUFAs were found in heads from fish submitted to both diets, ST and CAF,
however, in different concentrations. Palmitic acid (16:0) was the SFA found in the highest
concentration. For MUFAs and PUFAs, oleic acid (18:1n-9) and linoleic acid (18:2n-6)
predominated, respectively. The CAF diet increased the oleic acid content in zebrafish
heads by 1.4-fold, from 28.17 mg g−1 (0-day of supplementation) to 40.21 mg g−1 (60-
day of supplementation), such behaviour was not observed in fish fed the ST diet, in
which there was a 1.3-fold decrease in oleic acid, from 28.17 mg g−1 (0-day of supplemen-
tation) to 21.58 mg g−1 (60-day of supplementation).

3.3. Body fat distribution in zebrafish

The histological and morphometric data demonstrated that there was no difference in the
analysis of adipocyte sizes between the two experimental groups at the end of the 60 days,

Table 2. Fatty acid composition (mg g−1 of sample) of zebrafish head submitted to different
treatments.

Fatty acid t = 0 day t = 60 day

ST ST CAF

12:0 0.49 ± 0.05a 0.26 ± 0.01b 0.37 ± 0.04c

16:0 13.96 ± 0.88a 10.93 ± 0.27b 14.29 ± 0.75a

16:1n-9 0.45 ± 0.02a 0.50 ± 0.01a 0.66 ± 0.05b

16:1n-7 1.71 ± 0.08a 1.13 ± 0.05b 1.51 ± 0.14a

16:1n-5 0.33 ± 0.03a 0.28 ± 0.01a 0.40 ± 0.01b

17:0 0.34 ± 0.03a 0.25 ± 0.01b 0.33 ± 0.01b

17:1n-9 0.28 ± 0.03a 0.13 ± 0.01b 0.19 ± 0.01c

17:1n-7 0.41 ± 0.02a 0.35 ± 0.02a 0.30 ± 0.02b

18:0 4.60 ± 0.39a 3.10 ± 0.11b 3.83 ± 0.10c

18:1n-9 28.17 ± 2.62a 21.58 ± 0.89b 40.21 ± 3.05c

18:1n-7 1.75 ± 0.15a 1.25 ± 0.04b 1.56 ± 0.10b

18:2n-6 11.59 ± 1.07a 10.96 ± 0.51a 13.58 ± 1.18b

18:3n-3 0.45 ± 0.03a 0.39 ± 0.04a 0.51 ± 0.03b

18:3n-6 0.54 ± 0.04a 0.30 ± 0.01b 0.37 ± 0.03a

20:4n-6 0.72 ± 0.06a 0.78 ± 0.03a 0.94 ± 0.06b

20:5n-3 0.15 ± 0.01a 0.08 ± 0.01b 0.13 ± 0.07a

22:0 1.88 ± 0.10a 1.79 ± 0.17a 1.89 ± 0.01c

24:0 0.49 ± 0.02a 0.37 ± 0.02b 0.32 ± 0.01c

24:1n-9 Nd 0.81 ± 0.03a 0.76 ± 0.06b

22:6n-3 1.82 ± 0.10a 1.09 ± 0.04b 1.25 ± 0.04b

n-6 12.85 3 ± 1.09a 12.04 ± 0.55ª 14.89 ± 1.27b

n-3 2.41 ± 0.1a 1.56 ± 0.08b 1.89 ± 0.04c

n-6/n-3 5.33 ± 0.40a 7.73 ± 0.06b 7.87 ± 0.53b

SFA 21.77 ± 1.05a 16.71 ± 0.46b 21.03 ± 0.89a

MUFA 33.10 ± 2.93a 25.21 ± 0.98b 45.58 ± 3.28c

PUFA 15.26 ± 1.14a 13.60 ± 0.63a 16.78 ± 1.30a

PUFA/SFA 0.56 ± 0.1a 0.81 ± 0.02b 0.80 ± 0.03b

PUFA/MUFA 0.46 ± 0.01a 0.54 ± 0.01b 0.37 ± 0.01c

Notes: Results expressed as mean ± standard deviation of triplicates. Values with different letters in the same row are sig-
nificantly different (p < 0.05) by Tukey’s test. CAF: cafeteria diet, MUFA: total monounsaturated fatty acids, n-3: total
omega-3 fatty acid, n-6: total omega-6 fatty acid, n-6/n-3: omega-6/omega-3 ratio, nd: not detected, PUFA: total poly-
unsaturated fatty acids, SFA: total saturated fatty acids, ST: standard diet.
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as illustrated in Figure 1(a) and (b). The subcutaneous adipocyte average area (Figure 1(c))
was 5103.3074 ± 3741.3847 µm2 for the ST diet and 5426.637 ± 4614.798 µm2 for the CAF
diet. The number of adipocytes between the two experimental groups at the end of the 60
days (Figure 1(d)) was 161.4 ± 5.55 and 156.6 ± 5.55 for the ST and CAF diet, respectively.
The adipocyte area distribution histogram showed the adipocyte areas between the treat-
ments were not significantly different (Figure 1(e)).

3.4. Body weight in zebrafish

The BMI is a useful measure of obesity in fish. In our study, BMI was evaluated by dividing
bodyweight (g) by the square of body length (cm2), from the tip of themouth to the end of the
body (Oka et al., 2010). Therewas no significant difference between treatments in bodyweight
(ST: 0.4915 ± 0.1081 g; CAF: 0.52 ± 0.1196 g), at the end of the 60 days (Figure 2(a)). Also, the
BMIs of the animals fed ST (0.0355 ± 0.00056 g/cm2) andCAF (0.0385 ± 0.00083 g/cm2)diets
were not statistically different following 60 days of treatment (Figure 2(b)).

3.5. Liver mRNA expression in zebrafish

Analysis of the mRNA expression levels of the lipid metabolism gene (FASN) in the liver
of DIO male zebrafish, revealed no significant differences of (Figure 3(a)). Likewise,
there were no significant differences in the mRNA expression levels of IL-6 (Figure 3
(b)) and TNF-α (Figure 3(c)), in the liver of DIO male zebrafish. FASN plays a key
role in lipogenesis, while both IL-6 and TNF-α play major role in the inflammatory
process of obesity.

Figure 1. Subcutaneous adipocytes. Transversal section of subcutaneous zebrafish adipocytes of ST (A)
and CAF (B) diets. HE; bars = 100 μm. Comparison of the mean area of adipocytes (C), adipocyte
numbers (D), and adipocyte mean area distribution histogram (E) between ST and CAF diets. The
results of quantitative studies are expressed as mean ± standard error of the mean, according to
the Student’s t-test.
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4. Discussion

4.1. Zebrafish as a useful animal model of diet-induced obesity (DIO)

Innumerable animal models have been used to study the etiology of obesity in order to gain a
better understanding of molecular mechanisms and possible treatments (Broeder et al., 2015).
In recent years, Zebrafish has emerged as an alternative vertebrate animal model for human

Figure 2. Effects of CAF diet on body weight (A) and body mass index (BMI)(B) at t = 0 and t = 60 days.
Values are mean ± standard error of the mean. Statistical analyses were performed using analysis of
variance. There was no significant difference in weight gain and BMI among the treatments.

Figure 3. Effects of the CAF diet on the mRNA (A) expression of the fatty acid synthase (FASN) lipid
metabolism gene in the liver, and the gene expression of the inflammatory cytokines interleukin-6
(IL-6) (B) and tumor necrosis factor-α(TNF-α) (C) in the liver of male zebrafish on day 60 of feeding.
The expression of each mRNA was normalized against peptidylprolyl isomerase A (PPIA) mRNA
expression and the corresponding expression in the diet-induced obese (DIO) group. Values are
means ± standard error. Statistical analyses were performed using the Student’s t test.
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physiology, including studies of energetic homeostasis and metabolic diseases (Leibold &
Hammerschmidt, 2015) because of their similarity to the lipid metabolism of humans. There-
fore Zebrafish is increasingly being used as a model for human diseases because of its ease of
genetic manipulation and its low cost of reproduction (Fénero et al., 2016).

Some studies have used Artemia or Artemia cysts as a food source for DIO in zebrafish
(Hasumura et al., 2012; Oka et al., 2010). However, we believe that our group is the first to
report a CAF diet to induce obesity in zebrafish, similar to human diets (Néia et al., 2018)
and evaluate the fatty acid intake in zebrafish fillets fed a CAF diet.

In humans, increasing availability of high-calorie, high-fat diets is considered a major
contributor to obesity (Leibold & Hammerschmidt, 2015). In general, diets containing
more than 30% of total energy from fat can lead to the development of obesity (Hariri
& Thibault, 2010). In experimental rodents, a positive relationship was found between
dietary fat content and body fat gain (Meguro, Hasumura, & Hase, 2015). The cafeteria
diet (CAF) is widely used in animal models to induce obesity because of its high caloric
and lipid density (Leibold & Hammerschmidt, 2015).

4.2. Effect of peanut addition on fatty acid composition of CAF diet

Peanuts were chosen because its consumption in the diet leads to an increase in the intake
of MUFAs and PUFAs, in the presence of the reduction of SFAs, which presumably
favours the lipid and glucose metabolism, reducing the risk of chronic non communicable
diseases, such as obesity (Bes-Rastrollo et al., 2007). In this study, the addition of 25%
peanut in the CAF diet, led to increased 4.5 times the MUFA content in CAF diet
(Néia et al., 2018), from 27.47 mg g−1 (0-day of supplementation) to 106.12 mg g−1

(60-day of supplementation), as this oleaginous fraction is rich in oleic acid (18:1n-9),
as described in the work of Ha et al. (2015).

4.3. Effect of peanut addition on CAF diet on fatty acid composition into
zebrafish’s head

The CAF diet used in this study presented higher concentrations of oleic acid (102.58 ±
2.85 mg g−1) than ST diet, due to the use of peanut in its preparation (Néia et al.,
2018), which in our study increased the oleic acid (18: 1n-9) content in the zebrafish
head from 28.17 mg g−1 (0 days of supplementation) to 40.21 mg g−1 (60 days of sup-
plementation) in fish fed CAF diet. This increase may be related to increased satiety, gen-
erated by oleic acid in the head of the zebrafish once the central nervous system, primarily,
the hypothalamus, is responsible for regulating energy balance and control of food con-
sumption in vertebrates, from humans to zebrafish (Montalbano et al., 2016). Acoording
with this fact, Cintra et al. (2012) using fatty acid component of flax seed olive oil (rich in
18:1n-9) observed that unsaturated fatty acids could act either as nutrients or directly in
the hypothalamus, reverting diet-induced inflammation, increase satiety and reducing
body adiposity in a mouse DIO model.

Additionally, it has been described that ingestion of oilseeds at least twice a week may
contribute to decreasing the risk of weight gain, even if there is an increase in caloric intake
(Bes-Rastrollo et al., 2007). It is probable that body weight control is related to a reduction
in the bioaccessibility of oil lipids given that part of these lipids is excreted in the feces and,
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therefore, not used as an energy source by the body (Hollis & Mattes, 2007). Furthermore,
it is suggested that the satietogenic effect of these foods may contribute to reduced food
intake (Alves et al., 2014).

4.4. Effect of peanut addition on CAF diet on zebrafish body composition

In our study, there was no significant difference in the number and area of subcutaneous
adipocytes. These results were similar to those documented by Oliveira et al. (2015), who
evaluated the anti-inflammatory capacity of omega-3 and -9 fatty acids and adipose tissues
in obese mice.

We observed that the increase in oleic acid, generated by the addition of 25% peanut in
the CAF ration, may be related to the regulation of the increased number and area of the
zebrafish subcutaneous adipocytes. Likewise, Alves et al. (2014) observed that the regular
consumption of peanuts, particularly the high oleic content type, in a hypocaloric diet,
increased fat oxidation and decreased body fat in overweight and obese men. Barbour,
Howe, Buckley, Bryan, and Coates (2015), observed an inverse association between olea-
ginous food intake and obesity, inflammation, hyperlipidemia, and glucose intolerance.
They investigated the effects of high oleic acid peanut intake versus a non-oleaginous
diet on adiposity and cardiovascular risk markers of healthy subjects for 12 weeks.

We observed that the addition of peanut to the CAF ration and the increase in oleic acid
might be related to the regulation of weight gain and the BMI of zebrafish. The study by
Nouran, Kimiagar, Abadi, Mirzazadeh, and Harrison (2010) supported the current find-
ings. These authors added peanut oil to the diet of adult subjects for 8 weeks and observed
a 43% lower than expected weight gain among overweight individuals, despite the distinct
difference in the amount of energy consumed by the individuals.

In our study, 134.83 kcal of peanuts were added to the CAF diet, suggesting that it was
sufficient to control weight gain and increase the BMI in fish. These results were compar-
able to those of Alper and Mattes (2002), who added 505 kcal of peanuts to the diet of 15
eutrophic individuals, which led to a lower than expected weight gain. It was expected that
one animal would gain 3.6 kg, yet, the weight gain was only 1 kg. At another time, indi-
viduals replaced food calories with peanuts, and there was no increase in body weight.

We also observed that the variables weight, BMI, and subcutaneous adipocytes did not
present significant differences between the groups studied. These results correlated with
Ha et al. (2015), who investigated the effect of peanut bud extracts and variables, such
as abdominal circumference and body fat in overweight and obese women. They noted
that supplementation of peanut bud extract improved abdominal obesity, suggesting
that an adequate amount of peanut sprouts may be a plausible effective agent for
obesity and obesity-related health problems in obese women.

4.5. Effect of peanut addition on CAF diet on liver mRNA expression in zebrafish

Clinical and epidemiological evidence also indicates that peanut consumption can
improve inflammatory markers with daily doses of 30 g of peanut (Barbour et al.,
2015). In our study, we used 25% of peanut in the CAF diet, and it was not observed a
significant difference in the FASN expressions between the experimental and standard
groups, even though this gene was expressed more in the CAF than ST diet. There are
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conflicting literature results, regarding the expression of the FASN gene in adipose tissue
and visceral tissue. Park et al. (2011) observed downregulation of the FASN gene in the
visceral adipose tissue of obese mice. In contrast, Letexier, Pinteur, Large, Fréring, and
Beylot (2003) reported that the FASN expression in adipose tissue was not affected by a
high-fat diet in a wild type rodents’ model and is reduced in obese humans.

Crew, Waddell, and Mark (2016) evaluated the expression of TNF-α, IL-6, IL-1β, toll-
like receptor-2 (TLR2), TLR4, IL-1β, IL-1β, IL-1β, cyclooxygenase-2 and macrophage-
surface marker (Emr1) in the fetal liver from two mice groups feed a CAF and normal
diet, respectively. In support of the our findings, the authors did not observe a variation
in the expression of these genes, concluding that maternal obesity induced by a CAF
diet before and during pregnancy, does not increase the inflammatory state of the
mother, placenta or fetus in late gestation.

Contrastingly, Gil-Cardoso et al. (2017) illustrated that the CAF diet increased the
expression of inflammatory genes, such as TNF. These authors examined the impact of
an obesogenic diet on the intestinal health status of DIO-fed rats compared to the Zucker
rat ( fa/fa) female leptin receptor obesity model and evaluated gene expression of TNF-α
and inducible nitric oxide synthase (iNOS). The authors stated that TNF-α was overex-
pressed in the CAF diet ileal and fa/fa groups, and ileal inflammation was associated with
the degree of obesity and metabolic changes. However, many pathways could influence
the TNF expression, due to the wide interactions and functions of this gene.

5. Conclusions

If it is important to understand the capability and limitation of mammalian models, the
need is even greater for zebrafish, which are phylogenetically further removed from
humans. However, among model systems that are amenable to screening, zebrafish
stand out for their highly conserved integrative physiology, MacRae and Peterson
(2015) selected 65 examples of published chemical screens in zebrafish of many metabolic
systems, including dietary lipid absorption. To the best of our knowledge, this is the first
publication that uses CAF diet in a zebrafish model DIO.

In our experimental diet, the addition of peanut to the CAF diet led to an increased
oleic acid in the CAF ration, which increased the incorporation of oleic acid in the
head of the zebrafish. This finding may be related to the increased satiety of the fish
and, consequently, to the control of weight gain and expression of inflammatory genes
and lipid metabolism in fish fed a CAF diet.
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