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ABSTRACT
The deficient functional polarization of macrophages is implicated in
the disease progression of autoimmune hepatitis (AIH). This study
aims to evaluate the impact of Magnesium isoglycyrrhizinate
(MgIG) on concanavalin A (Con A)-induced hepatitis in a mouse
model, thereby clarifying the molecular mechanisms with which it
is associated. MgIG was periodically administered to C57BL/6 mice
before one intravenous injection of Con A (20 mg/kg). The MgIG
treatment demonstrated a protective function in mice for Con
A-induced AIH, the expression of proinflammatory cytokines, and
the serum levels of alanine aminotransferase and aspartate
aminotransferase. In addition, the MgIG pre-treatment had a
significant effect on the number of F4/80+ cells entering the liver.
MgIG efficiently facilitated macrophage polarization toward an M2
phenotype. The results indicate that a relationship may exist
between the protective impacts of MgIG with respect to Con
A-induced liver injury and the capability of the hepatoprotective
agent to regulate macrophage polarization.
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1. Introduction

As a progressive inflammatory liver disease involving the diminishment of self-tolerance,
ultimately resulting in the emergence of autoantibodies paired with lymphoplasmacytic
inflammatory infiltrates in the portal tracts, autoimmune hepatitis (AIH) is also character-
ized by the appearance of the fragmentary necrosis of periportal hepatocytes (McFarlane,
1999). The underlying causal mechanisms that give rise to AIH are not yet understood.
Although it is now known that autoreactivity to certain hepatocyte components is
crucial in the course of the disease’s development, the molecular mechanisms that contrib-
ute to the impairment of immune tolerance in AIH are not understood (Heneghan,
Yeoman, Verma, Smith, & Longhi, 2013). The disease is characterized by the difficulties
healthcare practitioners have when attempting to control its progression. This is especially
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the case among patients who are refractory to (or intolerant of) conventional therapy,
which involves prednisone and azathioprine (Rubin & Te, 2016). Hence, the exploration
of novel therapeutic agents and treatment modalities is a priority in the literature.

Concanavalin A (Con A)-induced liver injury refers to a frequently used mouse model
that can identify immune cell-mediated acute hepatitis and is comparable to the pathology
of human AIH in several ways (Wahl, Wegenka, Leithauser, Schirmbeck, & Reimann,
2009). One of the crucial contributors to the Con A-induced breakdown of liver
immune homeostasis is the macrophage, which is implicated in the production of proi-
nflammatory cytokines (Assis et al., 2014). Macrophages are defined as highly plastic
cells that change in view of the surrounding tissue microenvironment (Peng & Tian,
2016; Tacke & Zimmermann, 2014; Wynn & Vannella, 2016). These cells engage in
various functions in the body, such as immune responses, tissue repair, and homeostasis
(Wynn, Chawla, & Pollard, 2013). Usually, resident macrophages in the liver, classified as
Kupffer cells, were considered as being neither diverse nor dynamic. Lloyd et al. showed
F4/80+, CD11b or CD68 could be used to identify Kupffer cells (Beyazit et al., 2015).
Meanwhile, nitric oxide may be a potential mediator of hepatic inflammation and fibro-
genesis in AIH. The serum nitric oxide metabolites like inducible nitric oxide synthase
(iNOS) and nitric oxide activity can reflect oxidant stress in the liver and detect the inflam-
mation and disease progression (Lloyd, Phillips, Cooper, & Dunbar, 2008; Yang, Zhang,
Han, Jin, & Yang, 2017). In addition, various surface markers and cytokines are expressed
and secreted, respectively, by the classical activation (M1) and the alternative activation
phenotypes (M2), both of which have variable impacts in the context of immunoregula-
tion (Ivashkiv, 2013; Ka, Daumas, Textoris, & Mege, 2014; Ying, Cheruku, Bazer, Safe,
& Zhou, 2013). In recent years, the literature has made it clear that macrophage imbal-
ances are a fundamental contributor to the pathogenesis of autoimmune diseases
(Alleva, Pavlovich, Grant, Kaser, & Beller, 2000; Cosin-Roger et al., 2013; Espinoza-
Jimenez, Peon, & Terrazas, 2012; Parsa et al., 2012; Zigmond et al., 2014).

Magnesium isoglycyrrhizinate (MgIG) is a magnesium salt of the 18-alpha-glycyrrhizic
acid stereoisomer and is classified as a new molecular compound identified in the roots of
the Glycyrrhiza glabra (licorice) tree (Wu et al., 2018). The compound is notable due to its
anti-inflammatory and antioxidant effects and has been used to treat liver conditions
(Ming & Yin, 2013; van Rossum, Vulto, de Man, Brouwer, & Schalm, 1998). Nevertheless,
the impact of MgIG on Con A-induced AIH is not well understood. Therefore, this study
investigates the preventive value of the compound with respect to liver injury using a
mouse model of hepatitis (induced via intravenous Con A injection) and its underlying
molecular mechanisms.

2. Materials and methods

2.1. Chemicals and reagents

The MgIG used in this study was procured from Jiangsu Chia-Tai Tianqing Pharma-
ceutical Co., Ltd. (Nanjing, Jiangsu, China). The Con A and lipopolysaccharide (LPS)
used were procured from Sigma-Aldrich (St. Louis, MO, United States). Unless otherwise
stated, the remaining chemicals used were also purchased from Sigma-Aldrich (St. Louis,
MO, United States).
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2.2. Animals and treatment

The Experimental Animal Centre at the Tianjin Medical University (TMU, Tianjin,
China) was used to purchase male C57BL/6 mice aged 6–8 weeks. All of the mice were
kept at 25 ± 2°C and 50 ± 10% relative humidity. This was paired with a 12-hour light/
dark cycle. The animals were fed using a standard pellet diet with drinking water. The
research proceedings were authorized by the ethical committee at the TMU and all of
the procedures followed the Care and Use of Laboratory Animals regulations.

The mice were separated into the following categories: control mice (n = 7), mice that
received Con A treatment (n = 7), mice that received both Con A treatment and 50 mg/kg
MgIG (n = 7), and mice that received both Con A treatment and 100 mg/kg MgIG (n = 7).
To prepare the Con A-induced liver injury mouse model, the mice received 20 mg/kg Con
A via intravenous injection. The MgIG-treated mice were administered 50 or 100 mg/kg
MGL (diluted using saline) 2 h before Con A challenging. Before sacrifice, the mice in the
control group received an equal volume of saline. All of the mice were sacrificed 24 h after
Con A injection for blood and liver tissue analysis.

2.3. Cell culture and treatment

Murine macrophage-like RAW264.7 cells were acquired from Sigma Chemical, Co., Ltd.
(St. Louis, MO, United States) and were pre-cultured using the DMEM medium (Gibco
BRI, Grand Island, NY, United States). The DMEM was combined with 10% fetal
bovine serum. The cells were then randomly allocated into one of the following groups:
a control group (comprised of cells that received phosphate-buffered saline [PBS] treat-
ment), an LPS group (treated with 100 ng/mL LPS), an MgIG intervention + LPS group
(treated with 50 μM MgIG + 100 ng/mL LPS), and an MgIG control group. For the
MgIG intervention + LPS group, the cells were exposed to 100 ng/mL LPS and MgIG
for 24 more hours. Following treatment, all of the cells underwent washing and harvesting
(the latter by centrifugation), thereby facilitating RNA harvesting.

2.4. Evaluation of liver histopathology

Each liver sample was fixed in 4% paraformaldehyde, embedded in paraffin, and then cut
into 5-μm sections. The sections were then stained using hematoxylin and eosin (H&E).
Every sample underwent histological assessment by drawing on a pair of professional path-
ologists, which involved the use of the Knodell scoring system (KSS) to assess the extent of
liver damage (Knodell et al., 1981). The KSS assesses liver damage based on the following
criteria: (1) absence of inflammation or spotty necrosis, (2) fragmentary or confluent necro-
sis (less than 10%), (3) confluent necrosis (10–50%), and (4) significant confluent necrosis
(more than 50%) accompanied by or not accompanied by bridging necrosis.

2.5. Biochemical analysis

After the mice from each group were sacrificed at the end of the experiment, blood was
extracted from the vena cava. In turn, using the Automatic Chemical Analyzer
7600-100 (Hitachi, Ltd., Tokyo, Japan), the alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) serum levels were examined.
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2.6. RNA preparation and analysis

Frozen liver tissues were cut to small sections and washed with PBS buffers. 5–10 mg of
tissue was added to 700 μl lysis buffer and homogenised with a TissueLyser II (Qiagen).
Then Trizol reagent (Invitrogen, Carlsbad, CA, United States) was used to extract total
RNA from frozen liver tissue and cultured cells according to the manufacturer’s guidelines.
The RNA was reverse transcribed with random hexamers and avian myeloblastosis virus
reverse transcriptase using a commercial kit (Perfect Real Time, SYBRR PrimeScriPTM

TaKaRa, Japan). In addition, the gene expression analysis involved the use of qRT-PCR
with SYBR Premix EX TaqTM II, facilitated by the ABI PRISM 7900 sequence detector
(Applied Biosystems, Foster City, CA, United States). Sangon Biotech Co., Ltd. (Shanghai,
China) was the source of the primer sequences for the target genes (Table 1). The standard
curve, paired with 2-ΔΔCt methods, was used to identify quantification.

2.7. Immunofluorescence analysis

Deparaffinization of the paraffin-embedded liver sections was conducted using xylene.
Furthermore, the sections were rehydrated and incubated using a blocking solution (5%
bovine serum albumin in PBS). In turn, fluorescein isothiocyanate conjugated F4/80 anti-
bodies were incubated (BD Biosciences, San Diego, CA, United States) overnight at 4°C.
After washing the PBS three times, coverslips were applied to the sections and obser-
vations were made using a confocal microscope (Olympus Inc., Center Valley, PA,
United States).

2.8. Statistical analysis

The results are expressed as mean ± SD. The data were examined using Student’s t-test and
one-way analysis of variance. To facilitate the statistical analysis, GraphPad Prism 5.0 was
used (GraphPad Software, San Diego, CA, United States). Statistical significance was
determined at the 5% level.

3. Results

3.1. MgIG preconditioning positively affects con A-induced liver damage

MgIG was administered intraperitoneally (depending on the mouse group, 50 or 100 mg/
kg), as outlined in the previous section. This facilitated the study’s attempt to identify the
degree of MgIG’s protective role in Con A-induced hepatitis (Figure 1(A)). When com-
paratively examined against the saline control groups, the serum ALT and AST levels evi-
dently increased as a consequence of the Con A treatment. Furthermore, in a dose-

Table 1. Mouse primer sequences used for qRT-PCR.
Target gene Forward primers (5′- 3′) Reverse primers (5′- 3′)

IFN-γ ATGGCTGTTTCTGGCTGTTACT AATGACGCTTATGTTGTTGCTG
TNF-α GACGTGGAACTGGCAGAAGA ACTGATGAGAGGGAGGCCAT
IL-1β GTGCAAGTGTCTGAAGCAGC CAAAGGTTTGGAAGCAGCCC
IL-6 GGAGTCACAGAAGGAGTGGC CGCACTAGGTTTGCCGAGTA
iNOS GAGCCACAGTCCTCTTTGCTA TGTCACCACCAGCAGTAGTTG
Arg-1 CGTTGTATGATGCACAGCCG CCCCACCCAGTGATCTTGAC
GAPDH TCTCCTGCGACTTCAACA TGTAGCCGTATTCATTGTCA
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dependent way, MgIG pre-treatment reduced ALT and AST activity (P < 0.05), thereby
indicating the protective role of MgIG in the context of Con A-induced hepatitis
(Figures 1(B and C)). As indicated in Figure 1(D), morphological examination provided
additional evidence suggesting the protective impact of MgIG. Administering Con A
induced significant liver damage (in particular, hepatocyte necrosis accompanied by sinu-
soidal hyperemia associated with hemorrhage). However, after MgIG was administered,
hepatocyte necrotic injury improved considerably and the number of infiltrating inflam-
matory cells in the necrotic area decreased. In addition, when comparatively examining
the MgIG pre-treated mice to the Con A-treated mice (Figure 1(E)), the liver injury
score was favorable for the former.

3.2. MgIG preconditioning inhibits the secretion of proinflammatory cytokines
for con A-treated mice

Given that the secretion of large quantities of inflammatory cytokines performs an impor-
tant function in the disease progression of Con A-induced AIH, one of the aims of this
study is to determine the extent to which MgIG pre-treatment affects the expression of
inflammatory cytokines in mice. As outlined in Figure 2, the mRNA levels of pro-inflam-
matory cytokines (IL-1β, IL-6, IFN-γ, TNF-α, and inducible nitric oxide synthase [iNOS])

Figure 1. Impacts of pre-treatment using MgIG (intraperitoneal administration of 50 or 100 mg/kg) for
Con A-induced liver damage. (A) MgIG’s chemical structure; (B) Serum ALT levels; (C) Serum AST levels;
(D) H&E staining of liver tissue; (E) Liver injury score. The data are expressed as mean ± SD (n = 7, ##P <
0.01 versus control; *P < 0.05, **P < 0.01 versus Con A). a: Control; b: Con A; c: Con A + MgIG-50; d: Con
A + MgIG-100.
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Figure 2.MgIG pre-treatment of mice decreases the release of proinflammatory cytokines in the liver tissue following inducement of Con A (n = 7, ##P < 0.01 versus
control; *P < 0.05, **P < 0.01 versus Con A).
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in the liver were considerably greater in response to Con A exposure than those of the
control mice (P < 0.01). Nevertheless, MgIG administration rehabilitated this increasing
trend among the Con A-induced mice in a dose-dependent manner (P < 0.05).

3.3. Preconditioning with MgIG-Impaired macrophage infiltration of the liver for
con A-treated mice

Immunofluorescence assays were used to illuminate the impact of MgIG on the infiltration
of F4/80+ macrophages in the livers of the Con A-induced mice. As indicated in Figure 3,
the F4/80+ macrophage numbers increased considerably following Con A challenging
(P < 0.01). However, it was possible to move them back to basal levels after MgIG treat-
ment (P < 0.05 or P < 0.01).

3.4. MgIG regulates M1 and M2 inflammatory macrophage polarization in LPS-
Stimulated RAW264.7 cells

Finally, to examine the impact of MgIG on the polarization of macrophages within the
RAW264.7 cells, the degree to which MgIG could convert macrophages into an anti-
inflammatory M2 phenotype was assessed. iNOS, the M1 phenotype marker, increased
considerably due to LPS stimulation in the RAW264.7 cells and LPS-induced iNOS gen-
eration was inhibited following MgIG treatment. In contrast, the M2 marker arginase-1
(Arg-1) expression in the LPS-induced RAW264.7 cells was markedly upregulated by
MgIG (Figure 4). Thus, MgIG facilitated M1 phenotype switching to the M2 macrophage.

4. Discussion

Licorice has a long history as a medicinal agent. Appearing in an early materia medica
manuscript, “Shennong’s Classic Materia Medica,” it has since been applied across
China in many contexts as a result of its characteristics (Yang et al., 2016). MgIG, a mag-
nesium salt of the 18-alpha-glycyrrhizic acid stereoisomer and classified as a new molecu-
lar compound identified in the roots of the Glycyrrhiza glabra (licorice) tree (Lu, Xu, et al.,
2017), is associated with anti-inflammatory and antioxidant properties and hepatic protec-
tion and liver function enhancement (He et al., 2010; Sun et al., 2007). For the inhibition of
ethanol-induced lipid peroxidation, MgIG has also been used as a pharmaceutical for liver
protection (Xie et al., 2015). Other liver-protective properties stem from how the drug pre-
vents ischemia/reperfusion-induced liver injury (Huang, Qin, & Lu, 2014) and free fatty
acid-induced hepatic lipotoxicity (Cheng, Zhang, Shang, & Zhang, 2009). Nevertheless,
with respect to AIH, the literature on MgIG’s anti-inflammatory and immunoregulatory
impacts is not extensive. Con A-induced liver damage is a common mouse model that has
been used to identify immune cell-mediated acute hepatitis and is similar to the pathology
of human AIH in various respects (Wahl et al., 2009). In this study, the mice suffering
from Con A-induced hepatitis had elevated ALT and AST serum levels accompanied by
hepatic damage. Nevertheless, following MgIG pre-treatment, the inflammatory
pathway was inhibited, thus reducing the pathological damage of liver cells and enhancing
liver cell function.
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This study also seeks to identify the underlying molecular mechanism through which
MgIG gains its protective properties for mice suffering from Con A-induced hepatitis. Evi-
dently, the breakdown of immune tolerance is important in AIH pathogenesis and

Figure 3. Impact of MgIG on F4/80+ macrophage infiltration in the liver samples of Con A-induced
mice. (A) Immunofluorescence assays were used to identify F4/80+ macrophage infiltration; (B)
Quantification of F4/80+ macrophages in the mice livers took place for each group. The data are
expressed as mean ± SD (n = 7, ##P < 0.01 versus control; *P < 0.05, **P < 0.01 versus Con A). a:
Control; b: Con A; c: Con A + MgIG-50; d: Con A + MgIG-100.
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macrophages perform critical functions in innate immune defense and homeostasis (Lavin
et al., 2014). The literature is replete with publications showing how macrophages are
similarly implicated in the Con A-induced hepatitis model (Higashimoto et al., 2013;
Orsolic, Jazvinscak Jembrek, & Terzic, 2017). Hence, the inhibition of macrophage infiltra-
tion constitutes the therapeutic target for Con A-induced hepatitis. In this study, the
number of infiltrating F4/80+ cells in the livers of the Con A-induced hepatitis mice
increased considerably. However, this could be inhibited by MgIG pre-treatment. Macro-
phages, which are key factors in promoting innate immunity, are not a cell population
characterized by homogeneity and when exposed to certain signals, these cells can
undergo classical M1 or alternative M2 activation (Lu, Chen, Ren, Yang, & Zhao, 2017;
Udalova, Mantovani, & Feldmann, 2016). The cells are defined by how they express cell
surface markers, how they secrete cytokines and chemokines, and their transcription
and epigenetic pathways (Zhou et al., 2014). The findings cumulatively suggest that M1
macrophage activation plays an important role in liver inflammation and fibrosis. In par-
ticular, M1 macrophages are responsible for secreting a range of pro-inflammatory
mediators, such as TGF-β1, TNF-α, IL-1β, and IL-6, which result in the inflammatory
cascade (Beljaars et al., 2014; Sica, Invernizzi, & Mantovani, 2014). Contrastingly,
several studies have demonstrated that M2 macrophages, typified by conventional M2
markers, such as Arg-1, YM1, FIZZ1, and MGL2 (Sica et al., 2008), can inhibit hepatic
inflammation and are also important in solving fibrosis (Labonte, Sung, Jennelle, Dande-
kar, & Hahn, 2017; Tosello-Trampont et al., 2016). The phenotype alteration informs the
part they play in liver immunoregulation, the implication of which is that M1/M2 macro-
phage polarization manipulation may yield effective therapeutic interventions (Tacke,
2017; Xu et al., 2015). This study indicates that MgIG treatment constitutes an alternative
to M2 macrophage polarization, as it induces Arg-1 expression and lowers the production
of M1 inflammatory markers. In view of this, this study proposes that the anti-inflamma-
tory impact of MgIG stems from altering macrophage phenotype.

Taken together, this study’s findings show that MgIG constitutes a protective agent
against Con A-induced hepatitis. Furthermore, it is clear that its positive action in this

Figure 4. MgIG underpins the regulation of LPS-induced M1 and M2 inflammatory macrophage polar-
ization. (A) iNOS mRNA expression; (B) Arg-1 mRNA expression. The data are expressed as mean ± SD
(n = 6, #P < 0.05 versus control alone; *P < 0.05 versus LPS alone).
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respect can be accounted, as it facilitates the regulation of macrophage polarization. These
findings may allow for the development of a new pharmacological treatment for AIH in
future research.
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