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  Structural analysis of a solid-state material is vital because the structure often 

determines the physical (or chemical) properties of the material. An understanding of the 

relationship between structural components and bulk properties can be used to design 

materials with specific properties. To achieve such understanding, two things are 

required: a rigorous structural analysis method and a study of the properties of materials 

with noteworthy structural features. 

 In this thesis, the author reviews 44 pyridyl porphyrin frameworks in an effort to 

determine how these framework structures are formed, and if any overreaching trends can 

be observed. The observed trends are used to develop a method to analyze pyridyl 

porphyrin frameworks based on the types of porphyrins used, the metal node used, and 

the metal-to-porphyrin ratio. The structures of two new frameworks (MPF-3 and E-MOF-

1) are also analyzed and tested for their structural flexibility. The structural features of 

each framework are correlated to the property being examined (flexibility). The type of 

flexibility demonstrated is strongly related to the structure of the individual framework. 

The structural analysis of the frameworks presented here is a small but significant step 

towards the rational design of flexible metal-organic frameworks. 
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CHAPTER 1 

 

METAL-ORGANIC FRAMEWORKS: TOPOLOGY AND 

FLEXIBILITY 

 

1.1 Introduction 

 The following thesis contains a new classification system for coordination 

polymers1 formed of derivatives of tetrapyridylporphyrin building units, and reports two 

new flexible frameworks2 whose properties have been characterized. 

 

1.2 Coordination Polymers and Metal-Organic Frameworks 

 Over 300 years ago a new pigment soon to be known as Prussian Blue was 

discovered in Berlin.1 Many years later, this pigment was characterized and found to be 

the world’s first man-made coordination polymer.1 A coordination polymer contains two 

basic units: a metal node (or metal complex) with usually well-defined coordination 

geometry and a coordinating ligand.1 The coordination polymer is also defined as a 

molecular framework extending infinitely in at least one direction.1 Coordination 

polymers must also be formed of coordination bonds because hydrogen bonding of a 

similar nature does not qualify a material as a coordination polymer.1 These materials are 

interesting due to the degree of control made possible by the choice of metal coordination 

geometry and ligand shape (Figure 1.1). The ratio of metal nodes to ligand can also 

influence the final structure. 3 
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Figure 1.1. Influence of metal node coordination geometry and ligand shape on the final 

structure. The circles represent metal nodes and the lines are coordination ligands. All of 

the ligands are linear and the coordination number of the metal nodes is (a) 2, (b) 3, and 

(c) 4, forming 1D (a) and 2D nets (b,c). 

 

 The terms coordination polymer and metal-organic framework (MOF) have been 

debated recently.4 Some argue that a coordination polymer is different from a MOF due 

to bond strength and differing building units.4c Others would say that the dimensionality 

of the structure is what determines if it should be labeled a coordination polymer or 

MOF.4a This debate is ongoing and no consensus has been reached at present. For the 

purposes of this thesis, the terms coordination polymer and MOF will be used 

interchangeably.  

 

1.3 Flexible Frameworks 

 The importance of structural control is demonstrated by a new type of metal-

organic framework (MOF), flexible frameworks, that can undergo a reversible structural 

transformation in response to a change in temperature, pressure, or guest 

removal/uptake.2,5-7 Flexible frameworks have been reported that can separate molecules 
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by size, accommodate various guest molecules, and have demonstrated variable magnetic 

properties. 2,5-7 The specific topology and structure of a framework can determine if it is 

possible for the framework to flex. 2,5-7 Analyzing and understanding flexible frameworks 

provides insight into how to design future frameworks to be flexible. Using this 

knowledge could lead to the design of flexible frameworks with the properties described 

above, or exciting new properties not yet observed. 

 

1.4 Organization of Thesis 

 Chapter 1 introduces the basic definitions of the types of materials discussed in 

this thesis.  Chapter 2 presents a review of the dimensionality of pyridyl porphyrin 

frameworks.3 This review was originally published in the Journal of Chemical 

Crystallography.3 A search of the Cambridge Structural Database and a literature search 

was conducted, by the author, who also created all figures for the article from published 

single-crystal data.  

 Chapter 3 describes a 2D flexible framework that is sensitive to guest uptake and 

removal.8 The data in Chapter 3 was originally published in Crystal Growth and Design.8 

The initial synthesis and the synthesis of a single-crystal quality sample were developed 

by Eun-Young Choi with the aid of Richard Novotny. Eun-Young Choi also performed 

the initial solvent experiments on MPF-3. The single-crystal data were resolved by 

Chunhua Hu. The author conducted the solvation experiments, analysis of the powder 

patterns, thermal gravimetric analysis, and model construction and topological analysis of 

MPF-3.   
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 Chapter 4 relates the thermal response of a 3D flexible framework with CdSO4 

topology. The data in Chapter 4 has yet to be published. The initial synthesis and the 

synthesis of a single-crystal quality sample were developed by Evan Hurley. The single-

crystal temperature dependent X-ray diffraction data were collected by Chunhua Hu. 

Synchrotron powder diffraction data were collected by Matthew Suchomel of Argonne 

National Labs. The author performed all structural analyses, both experimental and 

theoretical, using X-ray powder patterns and topological models 

 This thesis contains three distinct chapters to discuss interrelated porphyrin 

frameworks. Especially, we examine the idea that the structure of a framework can be 

correlated to its function. In Chapter 2, a topological analysis of the pyridyl porphyrin 

frameworks was conducted to look for trends in structural control. It was revealed that 

the coordination environment around the metal, the porphyrin type, and the metal to 

porphyrin stoichiometric ratio all played key roles in the determining the final topology. 

This chapter did not seek to examine functions or properties of the frameworks analyzed. 

Instead, the reasoning behind the need to precisely control framework assembly was 

presented. The ability to dictate the structure of a material allows structural types with 

desired properties to be engineered into the final product.  

 Chapter 3 and Chapter 4 both show the structural effects on the function of 

porphyrin frameworks. The unusual topology and interdigitation of MPF-3 and the 

noninterpenetrated CdSO4 topology of E-MOF-1 are examined in Chapter 3 and 4, 

respectively, and the relationship between structure and flexibility is discussed.  
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CHAPTER 2 

 

CLASSIFICATION OF COORDINATION POLYMERS 

FORMED FROM PYRIDYL PORPHYRIN BUILDING 

UNITS 

 

2.1 Introduction 

 Topological control of self-assembled coordination polymers is an important 

theme in materials chemistry, but remains a significant challenge for chemists seeking to 

synthesize new materials with tailored properties.1-3 Although a priori predictions of solid 

state organization remain difficult, it is possible to generate a wide variety of 

self-assembled coordination polymers by the careful selection of organic and inorganic 

components.3,4 For example, the ditopic ligand 4,4’-bipyridine shows various structural 

motifs when combined with transition metals, including 1D ladder, 1D chain, 1D 

railroad, 2D square grid, 2D hexagonal grid, 2D double-layer, and 3D undulated grid.5-8 

Switching to a tritopic ligand such as 1,3,5-tris[4-pyridyl(ethenyl)]benzene or 2,4,6-

tris(4-pyridyl)1,3,5-trazine has produced various 3D nets.4 

 Compared with ditopic and tritopic ligands, tetratopic ligands are relatively rarely 

used as molecular building blocks. Among the available tetratopic ligands9-11, we and 

others are particularly interested in the tetraarylporphyrins and their use in coordination 

polymers.11-18 Porphyrins are important materials because of their exceptional 

photochemical and catalytic properties, which enable their use in sensors, catalysts, and 
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other applications.12 These macrocycles often possess approximate D4h symmetry, a point 

group rarely encountered in organic chemistry. Therefore, such porphyrins are exotic 

ligands for building frameworks with unprecedented topology that might prove 

inaccessible using other types of ligands with different connectivity and symmetry.11-18 

 During the past decade, numerous porphyrinic coordination polymers have been 

reported11-18; however, the field of porphyrinic coordination polymers is still in its 

infancy compared with the rich porphyrin chemistry developed in recent decades. In this 

review, we focus on coordination polymers constructed from the pyridyl-based 

porphyrins, specifically 5,10,15,20-tetrapyridylporphyrin (H2TPyP) and its less 

symmetrical derivatives 5-pyridyl-10,15,20-triphenylporphyrin (H2MPyP), 5,10-

dipyridyl-15, 20-diphenylporphyrin (cis-H2DPyP), and 5,15-dipyridyl-10,20-

diphenylporphyrin (trans-H2DPyP), and their respective metalloporphyrins (Fig. 1). 

 

 

Figure 2.1. Four pyridyl-based porphyrin derivatives used as building units in the 

coordination polymers discussed in this review 

 

 Based on 44 analyzed porphyrin structures, we construct 17 classifications 

according to dimensionality, connectivity, and topology. We also discuss the structural 

trends found in porphyrinic coordination polymers and their interrelationships. Table 1 

summarizes the compounds analyzed in this review, in which the structural reference 
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number used for each structure is listed next to the stoichiometric formula. For previous 

reviews of porphyrin coordination solids13-17 and porphyrin supermolecules19-21, see the 

works of Suslick13,14, Goldberg15,16, Proserpio17, Kobuke19, Alessio20, and Hupp.21 

 

2.2 Classification System 

 To understand the varied topologies possible for porphyrinic coordination 

polymers, a unified classification system was created. The 44 porphyrinic coordination 

polymers chosen to be analyzed were first separated by dimensionality: one-dimensional 

(1D), two-dimensional (2D), and three-dimensional (3D). These 44 coordination 

polymers where then assigned to one of 17 classifications based on metal-to-porphyrin 

geometry; porphyrin type; and porphyrin-to-metal ratio (see Table 2.1). The coordination 

geometry around the metal and the coordination number is listed in the Metal node 

column of Table 2.2. The number of axial connections to the metal center of a metallated 

porphyrin is detailed in the Porphyrin node column. The geometry and coordination 

number described in the Metal node column or the number of axial connections listed in 

the Porphyrin node column excludes any coordination to counter-ions or solvent. For 

example, the metal nodes of the “2D sheet-I” 12a are listed with a square planar 

geometry and a coordination number of 4. However, the Pb atoms of the metal nodes sit 

in an octahedral environment with a coordination number of 6 because each node 

coordinates to two I atoms. The I atoms are not topologically significant for the purposes 

of classification. The metal-to-porphyrin ratio in Table 2.2 represents the ratio between 

porphyrin building units and the metals that connect neighboring porphyrins. Metal 

centers of porphyrins that do not coordinate to other porphyrins are not considered. This 
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ratio is important because altering the metal-to-porphyrin ratio of a porphyrinic 

coordination polymer can result in the formation of a different type of structure (such as a 

“2D sheet-I” instead of a “1D tape”). 
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Table 2.1 Pyridyl-based porphyrin coordination networks. 

Refcode Composition Structural motif Ref. 
BAKJOM [(HgI2)2(H2TPyP)]·2(TCE), 1 1D tape 22 
BAKNOQ [(HgI2)2(Zn0.5 TPyP)]·4(TCE), 2 1D tape 22 
BAKKED [(HgI2)2(Zn0.3 TPyP)]·4(TCE) 1D tape 22 
QODHEW [(HgI2)2(H2TPyP)]·2(TCE) 1D tape 23 
QODHEW1 [(HgI2)2(H2TPyP)]·2(TCE) 1D tape 23 
UFOMEH [(HgI2)2(H2TPyP)]·C70(TCE)·(MeOH), 3 1D tape 24 
HAZSOQ [(HgBr2)2(H2TPyP)]·2(CHCl3) 1D tape 25 
TUSHAQ [Ag(H2TPyP)](NO3), 4  1D rod 26 
QARNOM [Ag(H2TPyP)](PF6)·1.5(TCE)·(MeOH)·(H2O) 1D rod 27 
GETLAS [(ZnMPyP)], 5 1D single zig-zag chain 28 
NAZZUK [(cis-ZnDPyP)]·(CH3OH), 6 1D single zig-zag chain 29 
YOVTEI [(ZnTPyP)]·(C6H7N) 1D single zig-zag chain 30 
YOVTAE [(ZnTPyP)], 7 1D single zig-zag chain 30 
SAWJIK [(ZnTPyP)]·1.33(CHCl3), 8 1D double zig-zag chain 31 
BIJSAP [(trans-CoDPyP)3]·4(C3H7NO), 9 1D double zig-zag chain 32 
BABCEN [Zn2(TPyP)2]·5(C6H5NO2), 10 1D ladder 33 
IGOHOB [FeTPyP], 11 2D grid 34 
IGOHOB01 [FeTPyP] 2D grid 34 
BAKPOS [(HgBr2)2(H2TPyP)]·6(TCE) 2D sheet-I 22 
BAKREK [(HgI2)2(ZnTPyP)]·4(TCE) 2D sheet-I 22 
BAKKIH [(PbI2)(H2TPyP)]·4(TCE), 12a 2D sheet-I 22 
BAKNEG [(CdI2)(H2TPyP)]·4(TCE) 2D sheet-I 22 
UFOMAD [Pb(NO3)2· (H2TPyP)]·C60·6(TCE), 7b 2D sheet-I 24 
FEWGEU [Ag2(H2TPyP)]·(m-C6H4NH2Cl)4·2(C7H7O3S), 13 2D sheet-II 35 
FEWGOE [Ag2(ZnTPyP)]·(CH3C6H5 SO3)2·(DMA)], 14 2D sheet-II 35 
TUSGIX [Ag4(H2TPyP)3]·4(NO3), 15 2D sheet-III 26 
FEWGAQ [Ag2(H2TPyP)]·2(CF3SO3), 16 2D undulated tape 35 
FEWGIY [Ag2(ZnTPyP)2]·(m-C6H4NH2)·2(CF3SO3), 17 2D hybrid net 35 
PIZJEN [Cu2(TPyP)]·(BF4), 18 3D net-I (pts) 18 
YOVTOS [(ZnTPyP)]·3(H2O), 19 3D net-II (nbo) 30 
YOVTIM [(ZnTPyP)]·(MeOH)·2(H2O) 3D net-II (nbo) 30 
SAZQEQ [(ZnTPyP)]·1.33(CHCl3) 3D net-II (nbo) 31 
CAYSOK [(MnTPyP)]·10(H2O) 3D net-II (nbo) 37 
CAYSIE [(CoTPyP)]·2(CH3COOH)·2(H2O) 3D net-II (nbo) 37 
CAYYEG [(MnTPyP)]·2(EtOH)·4(H2O) 3D net-II (nbo) 37 
QANSEE [(ZnTPyP)]·1.6(C2H4O2) 3D net-II (nbo) 38 
CATDEH [(trans-ZnDPyP)]·0.33(MeOH) 3D net-II (nbo) 39 
CATDIL [(trans-ZnDPyP)]·0.33(C6H12) 3D net-II (nbo) 39 
CAYRIE [(trans-ZnDPyP)]·0.33(C2H6O) 3D net-II (nbo) 39 
CAYROK [(trans-ZnDPyP)] 3D net-II (nbo) 39 
CAZGOZ [Fe(FeTPyP)3]·2(Mo6O19)·38(H2O), 20 3D net-III (pcu)  40 
TUSGUJ [Ag8(ZnTPyP)7]·8(NO3), 21 3D net-IV 26 
TUSGOD [Ag2(H2TPyP)]·(NO3), 22 3D net-V 26 
SOBTUY [Cd2(PdTPyP)]·2(NO3) ·(py) ·8.6(H2O), 23 3D net-VI 11 
TCE = tetrachloroethane; DMA = N,N’-dimethylacetamide; py = pyridine 

pts- platinum sulfide net, nbo- niobium oxide net, pcu- primitive cubic 
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Table 2.2 Classification of coordination porphyrin networks 

Metala Porphyrinb

1D tape bent (~90°) ─ TPyP, M TPyP 2:1 7

1D rod linear (~180°) ─ TPyP 1:1 2

1D single zig-zag chain ─ 1 MPyP, cis -DPyP, TPyP 1:1 4

1D double zig-zag chain ─ 1 and 2 trans -DPyP, TPyP 1:1 2

1D ladder ─ 1 and 2 TPyP 1:1 1

2D undulated tape bent (~100°) ─ TPyP 2:1 1

2D grid ─ 2 TPyP 1:1 2

2D sheet-I square planar ─ TPyP, M -TPyP 1:1 5

2D sheet-II linear (~180°) ─ TPyP, M -TPyP 2:1 2

2D sheet-III T-shape ─ TPyP 4:3 1

2D hybrid net distorted tetrahedral, bent (~90°) 1 M TPyP XXX 1

3D net-I (pts) tetrahedral ─ TPyP 1:1 1

3D net-II (nbo) ─ 2 M TPyP, trans -M DPyP 1:1 11

3D net-III (pcu) octahedral 2 M TPyP 1:1 1

3D-net-IV T-shape 1 M TPyP XXX 1

3D net-V linear (~180°) ─ TPyP 2:1 1

3D net-VI bent (~90°) ─ TPyP 1:1 1

Classification Porphyrinc M:Pord # Netse
Node

 

[a] Geometry that connects metal node to porphyrin; [b] Number of axial connections to another porphyrin 

or a metal node; [c] Type of porphyrin that formed specified network; [d] Ratio of structurally important 

metals to porphyrins in network; [e] Number of example coordination networks for each classification 

 

2.3 1D Coordination Polymers 

2.3.1 1D Tapes 

 The 1D tape motif resembles a length of “tape” extending infinitely in one 

dimension. This tape consists of porphyrins linked together by metal nodes. In the case of 

1 (Figure 2.2a), the porphyrins are of the TPyP type and the metal nodes are mercury 

atoms with iodide ions attached at tetrahedral positions. The resulting 1D planar array can 

be partially metallated to produce 2 (Figure 2.2b). The general formula of this 1D tape 
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series is [(HgX2)2MyTPyP]·n(TCE), where X = Br, I; M = Zn, or H2; n = 2,4,6 (TCE= 

tetrachloroethane)].22-23 These 1D tape structures can hold various amounts of TCE 

molecules in between the tapes22-23, and even accommodate C70 molecules as can be seen 

in 3 (Figure 2.2c). Pan et al. also reported identical 1D tape motif using CHCl3 as a 

solvent25. The 1D tape motif is interesting because it is observed in multiple 2D 

variants.22,35 

 

Figure 2.2. Variations of the 1D tape structural motif in (a) 1, (HgI2)2(H2TPyP)]·2(TCE), 

(b) 2,[(HgI2)2(Zn0.5 TPyP)]·4(TCE), and (c) 3, [(HgI2)2(H2TPyP)]·C70(TCE)·(MeOH) are 

all approximately planar, and utilize fully coordinated TPyP units. 

 

2.3.2 1D Rod 

 The 1D rod motif is so named because a single “rod” of metal nodes can be 

visualized as the backbone of the porphyrin network (Figure 2.3). In 4 only two pyridyl 

arms of each H2TPyP molecule are coordinated to a silver metal node.26 The 

uncoordinated nature of the “extra” pyridyl arms is puzzling until the synthesis conditions 

are examined. The silver to porphyrin ratio is 1:1, and as such, there are not enough silver 
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atoms to fully coordinate all of the pyridyl arms.27 With a larger concentration of silver 

atoms, a 2D structure would be possible. This type of porphyrin rod formation is unusual, 

and has only been demonstrated by porphyrin networks containing silver salts such as 

Ag(NO3)
26 and AgPF6.

27 

 

 

Figure 2.3. The 1D rod in 4, [Ag(H2TPyP)](NO3). 

 

2.3.3 1D Single Zig-Zag Chains 

 A 1D single zig-zag chain is a common structural motif found in 1D porphyrin 

coordination solids (Figure 2.4). This motif requires a metallated porphyrin because the 

only connection point is the metal node in the center of the porphyrin. It is also 

noteworthy to mention that Zn atoms in these porphyrins are all five coordinated. Zinc-

metallated MPyPs are linked through their zinc metal centers to one of pyridyl arms of a 

neighboring ZnMPyPs28 as illustrated in 5. The resulting geometry is the “zig-zag” 

pattern. Other pyridyl-based porphyrins such as cis-ZnDPyP (6) and ZnTPyP (7) also 

form similar zig-zag patterns29, despite additional uncoordinated pyridyl arms. A 

plausible explanation for this is the competition for pyridyl coordination sites from 

solvent molecules hydrogen bonded to the vacant pyridyl arms.30 
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Figure 2.4. 1D single zig-zag chain in 7, [(ZnTPyP)] 

 

2.3.4 1D Double Zig-Zag Chains 

 The 1D double zig-zag chain 8 is closely related to the 1D zig-zag chains 

mentioned previously (Figure 2.5a,b).31 A metallated porphyrin is again needed to 

provide a metal node; however, in this topology there are fewer uncoordinated pyridyl 

arms. Unlike the single chain, in this double chain motif, there are two distinct 

metalloporphyrin units found; five- and six-coordinate zinc(II) ions in a 2:1 ratio (Figure 

2.5a). This ratio of metalloporphyrin coordination environments will be especially 

important. As shown in Figure 2.5b, Pan et al reported the identical 1D motif of 9, but the 

two networks display a notable difference in stability.31,32 The structure 8 is highly 

sensitive to solvent loss, and rapidly becomes amorphous upon solvent removal.31 In 

contrast, the structure 9 retains crystallinity in the absence of solvent molecules.32 This is 

a prime example of the same topology displaying significantly different physical 

properties. 
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a 
 
 
 
 
 
b 
 

 

Figure 2.5. 1D double zig-zag chains in (a) 8, [(ZnTPyP)]·1.33(CHCl3), and (b) 9, 

[(trans- CoDPyP)3]·4(C3H7NO) 

 

2.3.5 1D Ladder 

 The 1D ladder network of 10 is illustrated in Figure 2.6.33 The ladder 

configuration is related to both the 1D single zig-zag chain and the 1D double zig-zag 

chain. A major difference between this ladder and 1D double zig-zag chain is the ratio 

between five- and six-coordinate ZnTPyP. The ratio is 2:1 for 1D double zig-zag chain 

and 1:1 for 1D ladder. Therefore, this ratio is an important variable to control the 

topology of 1D porphyrin arrays. The formation of this 1D ladder instead of a 1D single 

zig-zag chain or a 1D double zig-zag chain may be influenced by the use of nitrobenzene 

as a solvent.33  Diskin-Posner et al propose that the rigidity and polarity of nitrobenzene 

provide a significant influence in the formation of 10.33 
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Figure 2.6. 1D ladder motif in 10, [Zn2(TPyP)2]·5(C6H5NO2) 

 

2.4 2D Coordination Polymers 

2.4.1 2D Grid 

 The 2D grid of 11 is shown in Figure 2.7.34 An individual FeTPyP porphyrin is 

connected to four neighboring ones; two through its metal center and the other two 

through its pyridyl arms. This coordination mode leaves two pyridyl arms uncoordinated. 

The resulting 2D grid pattern shows two different stacking sequences; AB or ABCD. This 

2D network is exceptionally robust and thermally stable up to 550 ºC under nitrogen.34 In 

this motif, all the Fe(II) ions inside the porphyrin ring are octahedrally coordinated.  As 

the ratio between the five- and six-coordination metal centers inside the porphyrin 

changes from 100%, 67%, 50%, to 0%, the respective structural motifs varies: 1D single 

zig-zag chain, 1D double zig-zag chain, 1D ladder, and finally to 2D grid. With one 

exception, the synthesis of 11 is significantly different from the synthesis methods used 

for the 1D single zig-zag chain, 1D double zig-zag chain, and 1D ladder.28-34 The 

compound 11 was synthesized under solvothermal conditions, and the 1D double zig-zag 

chain compound 9 uses cobalt in DMF and a similar solvothermal process as 11.32,34 The 

similarities between compound 11 and compound 9 do not end at the synthesis 

techniques because cobalt and iron both prefer octahedral coordination. 
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Figure 2.7. 2D grid-I motif in 11, FeTPyP 

 

2.4.2 2D Sheets 

 The 2D sheet-I is a variation of the 1D tape motif described earlier (Figure 

2.8a,b). The tape motif extends in two perpendicular directions, while the metal node 

changes from tetragonal HgI2 to octahedral PbI2 or CdI2.
22 The connectivity of the metal 

node to the porphyrin sheet is square planar as seen in 12a and 12b.22,24 Structure 12a 

consists of H2TPyP units linked by PbI2 as shown in Figure 2.8a, that connect four 

neighboring H2TPyP units.22 This 2D sheet-I pattern (12b) can accommodate C60 

molecules in the space between the 2D sheets, as illustrated by Figure 2.8b.24 2D sheet-II 

pattern of 13 (Figure 2.9a) is a variation of the previously discussed 1D rod with a greater 

stoichiometric ratio of silver atoms to porphyrin units: 2:1 versus 1:1 for the 1D rod.26,35 

A metallated version of this 2D sheet-II 14 is shown in Figure 2.9b has also reported.35 

Recently Ohmura et al. reported a similar 2D sheet pattern using CuTPyP units and Cu 
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paddle-wheel clusters.36 The 2D sheet-III shown by 15 (Figure 2.10) also uses silver 

nodes to connect the porphyrin units in a T-shaped geometry.26 The metal-to-porphyrin 

ratio is again a major variable in forming a network that is topologically different from 4, 

13, or 14. As stated above, the 2D sheet-II (13) has a silver atom to porphyrin ratio of 2:1, 

but the silver atom to porphyrin ratio of 15 is 4:3.26,35 Other than this ratio, the synthetic 

conditions are essentially identical.26,35 The effective coordination number of the metal 

connector plays an important role in the 2D sheets shown here. The 2D sheet pattern 

varies as the effective coordination number changes from 4 (2D sheet-I) to 3 (2D sheet-

III), and to 2 (2D sheet-II). 
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a b 

Figure 2.8. (a) 2D sheet-I in 12a, [(PbI2)(H2TPyP)]·4(TCE), (b) 2D sheet-I with C60 

molecules found in 12b, [(Pb(N2O6)(H2TPyP)]·C60·6(TCE) 

 

   

a b 

Figure 2.9. (a) 2D sheet-II in 13, [Ag2(H2TPyP)]·(m-C6H4NH2Cl)4·2(C7H7 SO3),
 (b) 2D 

sheet-II with ZnTPyP, 14, [Ag2(ZnTPyP)]·(CH3C6H5SO3)2·(DMA) 
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Figure 2.10. 2D sheet-III in 15, [Ag4(H2TPyP)3]·4(NO3). 

 

2.4.3 2D Undulated Tape 

 The 2D undulated tape 16 in Figure 2.11 possesses the same connectivity as 13, 

but has a significantly different topology.35 It also has the same silver atom to porphyrin 

ratio as 13 (2:1).35 The solvents used in each synthesis may be a contributing factor to the 

differing structures. It was found that for 16, two m-chloroaniline molecules were 

tetrahedrally coordinated to each silver atom along with two pyridyl arms.35 These 

solvent molecules may block the pyridyl arms from the coordination environment that 

would form 13 and so compound 16 forms instead. Structure 16 can also be viewed as a 

2D variation of the 1D tape motif.35 Similarly, the metal node connection geometry of 16 

is similar to 1D tape (1); however, instead of a planar array, the metal nodes connect to 

porphyrins above and below the plane of the 1D tape. 
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Figure 2.11. 2D undulated tape motif in 16, [Ag2(H2TPyP)]·2(CF3SO3). 

 

2.4.4 2D Hybrid Net 

 The 2D hybrid net of 17 shows the combination of a 1D tape layer and a 1D 

single zig-zag chain layer (Figure 2.12a,b).35 As seen in Figure 2.12a, 17 can be 

visualized as a 1D single zig-zag chain layer sandwiched between two 1D tape layers. 

The structure propagates in a “stair-step” pattern with the 1D tape motif as the base, and 

the 1D zig-zag layers as the upright (Figure 2.13a,b). Another remarkable feature of this 

network is that it contains three different coordination environments and two different 

metal nodes.35 The two metal nodes are the zinc atoms in the center of the porphyrins and 

the silver atoms that make up the connectivity of the 1D tape layers. All of the porphyrins 

(i.e., those in the 1D single zig-zag chain layer and those in the 1D tape layer) are 

metallated with zinc. These zinc atoms in the porphyrin are all five-coordinate and are 

axially connected to the pyridyl arm of a neighboring porphyrin. The silver nodes display 

two different coordination geometries, depending on their position in the network. The 

silver nodes at the junction of each “stair-step” section are four-connected (Figure 2.13a) 

while the silver nodes at the non-shared edges of the “stairs” are two-connected (Figure 

2.13b). Finally, 17 is notable because it is a bimetallic framework using porphyrin units. 
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Figure 2.12. a Visualization of 1D tape and 1D single zig-zag motifs present in 17.  

b Assembled ‘‘stair-step’’ 2D hybrid net in 17, [Ag2(ZnTPyP)2]·(m-C6H4NH2) 

·2(CF3SO3) 
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Figure 2.13. a Alternate view of the propagation of 17, emphasizing the four-coordinate 

silver connections (orange arrows) and showing the ‘‘stair’’ units of Fig. 12 in a different 

view. b Assembled view showing the four-coordinate silver atoms connected and the two 

coordinate silver connections (green arrows) 

 

2.5 3D Coordination Polymers 

2.5.1 3D Net-I 

 Figure 2.14 shows the pts (or PtS structure type) net 18, synthesized by Robson 

and coworkers.18 In this structure, pyridyl groups of CuTPyP molecules coordinate to 

Cu(I) ions, forming a tetrahedral geometry. There are an equal number of tetrahedral 
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copper atoms and square planar CuTPyP. These two metal nodes connect in an 

alternating pattern and form the open channel structure of a pts net4, demonstrating that 

ca. 70% of the cell volume is void.17 However, this framework is not robust and the 

channels collapse upon the loss of solvent molecules.18 

 

 

Figure 2.14. 3D net-I (pts) in 18, [Cu(CuTPyP)]·(BF4) 

 

2.5.2 3D Net-II 

 The 3D nbo (NbO structure type) net of 19 was first reported by Goldberg30, and 

the same pattern has been studied extensively.30,37-39 As shown in Figure 2.15, this net is 

significantly distorted from its ideal nbo topology4, creating large, open hexagonal 

channels. This structure can accommodate various solvent molecules (e.g. water, 

methanol, acetic acid, and cyclohexane) inside the hexagonal channel.30,37-39 Using trans-

DPyP molecular building blocks, Hosseini and coworkers reported a single-crystal-to-

single-crystal transformation upon solvent exchange38, thereby demonstrating the 

robustness of this framework. 
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Figure 2.15. 3D net-II (nbo) in 19, [(ZnTPyP)]·3(H2O) 

 

2.5.3 3D Net-III 

 The 3D net-III structure 20 contains two different six-coordinate Fe centers: the 

Fe center in the FeTPyP unit and the Fe node joining six surrounding porphyrins.40 This 

forms a primitive cubic (pcu) network (Figure 2.16a) that shares the same octahedral 

connectivity of the 2D grid (11) shown earlier in Figure 2.7. However, the 2D “layers” of 

the 3D net-III consist of FeTPyP units and iron nodes, whereas 11 only contains FeTPyP 

units.34,40 The connectivity of structure 20 can be viewed as a single 2D pattern being 

translated by (½ ½ ½) to form the observed AB packing (Figure 2.16b). In this example, 

the 2D layers are essentially identical; only the orientation of the layers changes (Figure 

2.16c). The synthesis of 11 and 20 both use the solvothermal method and metallate the 

porphyrin in situ34,40; however, this is where the similarities end. The 2D structure (11) 

uses DMF as a solvent, whereas the 3D structure (20) uses water.34,40 The metal sources 

also differ: ferrocene for 11 and Fe2Cl·(H2O)4 for 20.34,40 Perhaps the most significant 
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difference is the addition of MoO3 to the synthesis of 20.40 The addition of this oxide is 

noteworthy because hexamolybdate [Mo6O19]
2- clusters are formed during synthesis and 

the structure is cationic [Fe8(TPyP)6]
8+.40 The clusters are centered in some of the large 

voids of the 3D FeTPyP network and the remaining adjacent voids contain water 

molecules.40 These water-filled voids are arranged in an octahedral orientation around 

each hexamolybdate-filled void.40 The presence of the hexamolybdate ion prevents any 

potential interpenetration, which is common in frameworks with such large voids.4 
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Figure 2.16. a 3D net-III (pcu) in 20, [Fe(FeTPyP)3]·2(Mo6O19)·38(H2O). b View of 

the 2D layers related by a (½½½) translation to form the AB packing of 20. The structure 

has been separated into individual layers to emphasize the (½½½) translation. c ‘‘A’’ and 

‘‘B’’ layers in 20 

 

2.5.4 3D Net-IV 

 The 3D net-IV 21 is shown in Figure 2.17.26 The vertical (red in the figure) and 

horizontal (blue in the figure) layers connect through the axial coordination of the 

ZnTPyP molecules of each layer to a “rod” (green in the figure) of porphyrins running 

down the center of the channel. The vertical and horizontal layers are analogous to a zinc 
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metallated version of the 2D sheet-III (15) mentioned previously (Figure 2.18), and the 

“rod” is made of stacked ZnTPyP molecules. In addition, the vertical and horizontal 2D 

layers are interpenetrated through the large void space of the other 2D layers (Figure 

2.19).26 The red section in Figure 2.18 corresponds to both the vertical red layers in 

Figure 2.17 and the vertical red layers in Figure 2.19. This interpenetration is not limited 

to one set of vertical and horizontal layers. There is a second set of parallel 2D layers 

running along each vertical and horizontal sheet that also interpenetrates the other 2D 

layers (Figure 2.19). This second set of 2D layers is connected to the neighboring 

porphyrin “rods,” and each 2D layer is connected to three other layers as shown in Figure 

2.20.26 It should also be noted that not all of the ZnTPyP porphyrins are structurally 

coordinated. The stacked ZnTPyP porphyrins that make up each “rod” are not 

coordinated, and neither are the porphyrins located where the 2D sheets intersect (see the 

central area of Figure 2.20). 

 

Figure 2.17. 3D net-IV in 21, [Ag8(ZnTPyP)7]·8(NO3) 
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Figure 2.18. 2D layer of 21, a variation of 2D Sheet-III 15. The highlighted red section is 

a ‘‘front’’ view of all of the red layers present in Figs. 17, 19, and 20 

 

 The synthesis conditions of 15 and 21 are remarkably the same except for two 

notable differences. Both structures were synthesized using the solvent layering method.26 

They share the same solvent metal layer (AgNO3 dissolved in dimethylamine), and the 

porphyrins used for each structure where dissolved in 3:1 TCE:MeOH.26 The differences 

that separate 15 and 21 are the temperature of the synthesis (room temperature for 15 

versus -20° C for 21) and the use of freebase TPyP or ZnTPyP, respectively.26 The 

framework pattern of 21 would be impossible without metallated porphyrins to connect 

the 2D layers. 
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Figure 2.19. Interpenetration of the 2D layers of 21 through the large voids in each layer 

 

 

Figure 2.20. Alternate view of 21, showing the intersection of the 2D layers at the voids 

where they interpenetrate, and the pattern in which the porphyrin ‘‘rods’’ (green) connect 

to the 2D layers (red and blue) 

 

2.5.5 3D Net-V 

 The 3D structure 22 is a 3D variation of the 2D sheet-II.26 The main difference is 

that the silver atoms at the junctions are three coordinate instead of the two coordinate 
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silver atoms in the 2D sheets. The layers are joined by the NO3
- ions to form the 3D 

structure of 22 (Figure 2.21). 

 

 

Figure 2.21. 3D net-V in 22, [Ag2(H2TPyP)]·(NO3) 

 

 Robson and coworkers synthesized 23.11 In this structure, Cd atoms are used as 

two different types of connectors: linear connectors (N-Cd-N, 180˚) and bent L-shaped 

connectors (N-Cd-N, 103˚). The porphyrin linkers (PdTPyPs) are joined by these Cd 

atoms to form 3D frameworks in which porphyrin molecules are all stacked along the 

[001] direction (Figure 2.22). 
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Figure 2.22. 3D net-VI in 23, [Cd2(PdTPyP)]·2(NO3)·(py)·8.6(H2O) 

 

2.6 Synthetic Methods 

 This study has considered a total of 44 porphyrinic coordination polymers with 

various topologies, yet the synthetic methods employed in making these structures are 

not as varied as might be expected. Upon examination, three main synthetic methods are 

used to synthesize the structures detailed in this thesis: solvent layering, evaporation, and 

the solvothermal method.  

 The solvent layering method involves the addition of starting materials to two or 

more solvents. The solvents are layered on top of each other to either reduce the 

solubility of the product in a single layer to promote crystallization, or to slow diffusion 

between starting materials. The choice of the two (or more) solvents is important (based 

on polarity, viscosity, solubility, etc.). The 2D sheet-I in Fig. 7b was made by layering 

the metal source, dissolved in one solvent, over C60 and H2TPyP dissolved in another 

solvent.24  
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 The evaporation method involves simply allowing the reaction mixture to sit 

undisturbed for an extended period (days to weeks) while the solvent evaporates. The 1D 

ladder in Fig. 5 was formed using the evaporation method.33  

 The solvothermal method uses a pressure vessel to contain the reaction mixture 

while it is heated, under autogeneous pressure, to a certain temperature (usually greater 

than 100 °C) for a set time. The thermal ramping, reaction temperature, and duration can 

all be altered. The 2D grid in Fig. 6 was the product of solvothermal reaction between 

ferrocene and H2TPyP at 150 °C for 5 days in a Teflon lined autoclave.34 

 

2.7 Conclusion 

Numerous structural motifs are self-assembled from pyridyl-based porphyrin building 

units. Due to the intrinsic properties of porphyrin, these multi-dimensional porphyrinic 

coordination polymers and/or subsequent solids have potential as useful materials for 

practical applications in catalytic chemistry, optoelectronics, gas storage, and molecular 

magnets.12 Topological control is important in providing the properties required for each 

of these applications. It is therefore essential to understand the underlying building 

principle of these porphyrin coordination solids. The metal coordination, porphyrin type, 

and metal-to-porphyrins ratio can all be used to produce varied structural motifs. A solid 

working knowledge of the effects of changing any one (or more) parameter(s) is the key 

to producing a coordination polymer with the desired topology. Many structures 

discussed in this paper can be thought of as being made of two distinct units: 

metalloligands and metal nodes. Kitagawa demonstrated that the physical properties of 

materials using metalloligands can be altered by using a different organic linker.40 If a 



35 

correlation could be found between the properties and structure of such metalloligand-

based frameworks, a material with tailored properties could be produced by combining 

different structural motifs. A structural understanding can be further utilized to engineer 

new types of functional 3D porous porphyrin frameworks. 
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CHAPTER 3 

 

MPF-3: AN INTERDIGITATED PORPHYRIN 

FRAMEWORK WITH GUEST SELECTIVE PROPERTIES 

 

3.1 Introduction 

 A major driving force behind the intensive research efforts in metal-organic 

frameworks (MOFs) is their unique structural characteristics, which are not easily 

achievable in conventional solid-state materials.1 One advantage of MOFs is their use in 

the rational design of a framework consisting of two kinds of building units: metal nodes 

and organic linkers.1 Metal nodes are connected by organic linkers, and together they can 

form a remarkable variety of MOFs.1-6 The MOF topologies are often determined by the 

coordination geometry of the metal nodes and the shape of the organic linkers.1-6 

 A recent addition to MOF compounds is flexible frameworks that can respond to 

external stimuli, such as pressure, temperature, and guest removal/uptake.7-10 Application 

of external stimuli causes the framework to modify its shape while preserving the original 

connectivity. Kitagawa recently classified flexible MOFs into six categories.7b Some 

MOFs are flexible due to their framework topology.7,9,10 For example, Férey and co-

workers have demonstrated a three-dimensional (3D) framework that swells to 170% of 

its initial volume due to guest inclusion. Such a drastic change is made possible by the 

flexible trinuclear metal node incorporated in the framework.9 Another example is a 
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MOF synthesized by Kitagawa et al., which has a two dimensional (2D) interdigitated 

structure whose “gate pressure” varies depending on the gas being introduced.10  

 Of the numerous organic building blocks used for MOF synthesis, we and others 

are particularly interested in rigid porphyrin-based ligands.11-14 The porphyrin unit is 

useful because it is a metalloligand that represents an additional approach to control the 

structure of a MOF.14 In this present paper, we report a flexible, interdigitated, 2D 

porphyrin framework MPF-3 (MPF=metalloporphyrin framework), assembled from 

meso-tetra(3-pyridyl)porphine (hereafter, 3-TPyP) (see Figure 3.1).  

 

Figure 3.1. The molecular building block, meso-tetra(3-pyridyl)-porphine (3-TPyP). 

 

3.2 Experimental Methods 

3.2.1 General Methods 

All chemicals were purchased from commercial sources. Crystallization 

experiments were performed in a Yamato DKN400 mechanical convection oven. No 

special precautions were taken to exclude oxygen or moisture during crystallization. 

Thermal gravimetric analysis (TGA) was conducted on a Perkin-Elmer STA 6000. X-ray 

powder diffraction data were obtained using a Rigaku D/Max-B X-ray diffractometer 

with Bragg-Brentano parafocusing geometry, a diffracted beam monochromator, and a 

conventional copper-target X-ray tube set to 40 kV and 30 mA. 
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Single-crystal structure determination was performed as follows: a plate-shaped 

crystal was sealed in a capillary tube for measurement. Geometry and intensity data were 

obtained at room temperature with a Bruker SMART Apex CCD area detector 

diffractometer. Preliminary lattice parameters and orientation matrices were obtained 

from three sets of frames. Data were collected using graphite-monochromated and 

MonoCap-collimated Mo KR radiation (λ = 0.71073 Å) by the ω-scan method.15 Data 

were processed with the SAINT+ program16 for data reduction and cell refinement. 

Multiscan absorption corrections were applied to the data set using the SADABS 

program for the area detector.17 The structure was solved by a direct method and refined 

using SHELXTL.18 Crystallographic data are summarized in Table 1.19 

 

3.2.2 Synthesis  

Zn(NO3)2·6H2O (6.0 mg, 0.02 mmol), meso-tetra-(3-pyridyl)porphine (3-TPyP; 

6.2 mg, 0.01 mmol), and N,N-dimethylformamide (DMF, 4 mL) were combined in a 

small capped vial. The vial contents were mixed by sonication. The purple solution was 

heated to 100 °C for 25 h, and then slowly cooled to room temperature over 35 h. The 

sample was characterized by X-ray powder diffraction and found to consist of a single 

phase. Yield: 36% based on porphyrin. Elemental analysis for C40H24N8Zn. Calcd C: 

70.4%, H: 3.6%, N: 16.4%; Found: C: 69.7%, H: 3.7%, N: 16.3%. 
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Table 3.1. Single-Crystal Data for MPF-3 

Compound MPF-3 
formula C40H24N8O2Zn·2(C3H7NO) 
temperature 100 K
crystal system monoclinic
space group C 2/c
crystal color red
a (Å) 29.931(5)
b (Å) 9.5639(14)
c (Å) 14.227(2)
Β (deg) 109.978(2)
V (Å3) 3827.4(10)
Z 4
ρcalc (g/cm3) 1.437
R1 (I > 2 (I)) 0.0433
wR2 (all reflections) 0.0887
GOF 1.055

 

3.2.3 Desolvation and Resolvation 

The sample was centrifuged and the majority of the solvent was decanted using a 

pipette. The sample was heated to 150 °C for 10 h. The desolvated sample was immersed 

in 3 mL of various solvents and stored for 3 days. 

 

3.3 Results and Discussion 

3.3.1 Structural Description 

The MPF-3 structure is shown in Figure 3.2. The porphyrin unit is axially 

connected through the Zn metal center. Only two of the four available pyridyl arms of 

each porphyrin connect to neighboring porphyrins, resulting in a 2D porphyrinic layer, as 

shown in Figure 3.3a. The views down the [010] and [001] directions are shown in Figure 

3.3, panels b and c, respectively. The uncoordinated pyridyl arms can be seen in these 

two views. Uncoordinated pyridyl rings are spaced 7.1 Å apart (centroid-to-centroid 

distance) and are aligned parallel to each other (Figure 3.3b). Interestingly, the spacing 

and alignment of the uncoordinated pyridyl arms give the pyridyl arms in adjacent layers 
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sufficient room to interdigitate, as shown in Figure 3.4.20 The centroid-to-centroid 

distance observed between the 2D layers of MPF-3 (4.0 Å or 4.4 Å due to the uneven 

separation of the interdigitated pyridyl arms) is beyond the traditionally accepted 

maximum distance for π-π interactions (3.6-3.8 Å).21 The perpendicular separation 

between pyridyl arms is 3.4 or 3.7 Å due to the uneven separation of the interdigitated 

pyridyl arms, and the slippage distance between centroids is 2.2 Å (Figure 3.5). The 

perpendicular separation distance of MPF-3 (3.4 or 3.7 Å) has been previously observed, 

but the slippage distance of MPF-3 (2.2 Å) is larger than that of other known pyridyl 

systems, making the aromatic π-π interactions much weaker.21b However, the distance 

between the uncoordinated pyridyl position nitrogen (N3) of one layer and a beta 

hydrogen on the porphyrin of the adjacent layer (H7) is ca. 2.5 Å and is within accepted 

limits of a CH3···N interaction.22 

 

 

Figure 3.2. Coordination environment around the Zn metal center in MPF-3. 
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Figure 3.3. Crystal structure of MPF-3 (a) 2D layer, and views along the (b) [010] and 

(c) [001] directions 

 

 

Figure 3.4. Interdigitation and stacking pattern of MPF-3. 
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Figure 3.5. The perpendicular separation (a), and the slippage distance (b) between the 

pyridyl arms of MPF-3. 

 

3.3.2 2D Tessellations 

To analyze the tessellation of MPF-3, it is useful to compare MPF-3 with a 

similar 2D porphyrin framework, FeTPyP (TPyP=meso-tetra(4-pyridyl)porphine) 

reported by Li and co-workers.23 This framework is assembled from TPyP with an 

octahedral Fe metal center, exhibiting stacked 2D layers.23 A significant structural 

difference between MPF-3 and FeTPyP stems from the porphyrin building block: the N 

atoms in the pyridyl ring are in different positions. 
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Figure 3.6. (a) Overlay of Cairo pentagonal and basketweave tessellations. 

Transformation of (b) Cairo pentagonal and (c) basketweave tessellations to (d) hourglass 

and (e) square-grid tessellations, respectively. The latter two patterns can be compared 

with the topologies of (f) MPF-3 (this work) and (g) the FeTPyP structure.23 

 

The topologies of the FeTPyP structure and MPF-3 are analyzed by identifying the 

tessellation of the respective 2D layers (Figure 3.5). The relationship between MPF-3 and 

the FeTPyP structure can be traced to the 2D tessellations, referred to as Cairo pentagonal 

and basketweave tessellations, respectively.24,25 Both tessellations are based on 3- and 4-

connected nodes and have been proven to be topologically equivalent.25 To illustrate the 

similarity, the Cairo pentagonal and basketweave tessellations are overlapped in Figure 

3.5a. The former pattern (blue, Figure 3.5b) can be converted into the latter pattern (gray, 

Figure 3.5c) by bending the trigonal 3-connected nodes into T-shaped linkages while 

maintaining the individual connections. To relate these tessellations to MPF-3 and the 

FeTPyP structure, the two tessellations are modified by deleting linkages at the 3-

connected nodes while leaving the overall topology unaltered (Figure 3.5d,e). The Cairo 

pentagonal pattern can be modified to resemble an hourglass tessellation (Figure 3.5d), 

which has recently been observed in MOFs by Férey and others.26 The resulting 

tessellation is very similar to MPF-3 (Figure 3.5f). The metal nodes (green) and organic 

nodes (purple) in the center of the coordinated pyridyl rings can be connected to form a 

slightly distorted hourglass tessellation. Similarly, the modified basketweave tessellation 

becomes a square-grid tessellation (Figure 3.5e) and can be related to the FeTPyP 

structure (Figure 3.5g). The metal nodes of the TPyP building units and a node located in 
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the coordinated pyridyl arms are connected to form a square grid tessellation. Such a 

square-grid tessellation, known as a 2D (4,4) net, is commonly observed in MOFs.27 

 

3.3.3 Framework Flexibility  

 Figure 3.6 shows that one-dimensional (1D) channels are sandwiched between the 

interdigitated layers of MPF-3. Single-crystal data revealed that these channels are filled 

with DMF molecules.19 These solvent molecules play a significant role in the formation 

of the MPF-3 phase because we note that the MPF-3 phase does not form without DMF. 

Many experiments were conducted using various solvents and solvent ratios. No 

combination of solvents or solvent ratios that excluded DMF produced MPF-3 crystal. 

We hypothesize that the DMF molecule may act as a template in the formation of the 

framework, as has been noted in previous studies on other MOF syntheses.28 

 

Figure 3.7. Two interdigitated layers of MPF-3 with 1D solvent channels. The red 

spheres indicate DMF molecules. 

 

The interactions between the 2D layers and the guest molecules could affect the 

interlayer spacing. Since the reflections corresponding to the 2D interlayer spacing are 

often the most intense, X-ray powder diffraction can be used to monitor the interlayer 
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spacing of the 2D layered materials.  

 Testing of the flexibility of MPF-3 involves analyzing samples of the compounds 

at three stages: an as-synthesized sample, a desolvated sample, and a resolvated sample in 

various solvents. Figure 3.8 shows the powder patterns of MPF-3 in these three stages, 

along with the theoretical pattern from the single-crystal data. The synthesized MPF-3 

has a preferential orientation that arises from diffractions from the stacked 2D layers. 

When the powder patterns of the synthesized sample and the desolvated sample are 

compared (Figure 3.8), the most intense peaks are shifted, indicating a clear change in the 

interlayer spacing, which decreases from 14.06 Å in the fully solvated sample to 12.41 Å 

in the desolvated phase. The powder pattern for the resolvated sample closely matches 

that for the synthesized sample, demonstrating that the structure of MPF-3 can be 

restored. MPF-3 was further analyzed by TGA, and it exhibited thermal stability up to 

450 °C (Figure 3.9). A sample of MPF-3 was heated to 400 °C and the X-ray powder 

pattern taken after heating was compared to the desolvated X-ray powder pattern (Figure 

3.10). On the basis of this comparison, MPF-3 is structurally stable at 400 °C. 
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Figure 3.8. X-ray powder diffraction patterns for MPF-3. 

 

 

Figure 3.9. TGA for MPF-3 
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Figure 3.10. Structural stability of MPF-3 at 400 °C. 

 

Instead of resolvating in DMF, a similar trial was run in N,N-diethylformamide 

(DEF). Even after immersion in DEF, the powder patterns are identical to that of the 

desolvated sample (Figure 3.8), indicating that the larger DEF molecules cannot be 

incorporated as easily as DMF molecules. Other solvents, such as hexane, yield similar 

results (see Appendix 1, Figure A1.1, A1.2). 

 The structure of the desolvated sample is unknown because of a lack of suitable 

crystals for X-ray single-crystal diffraction. However, changes in the interlayer spacing 

are evident from the X-ray powder pattern. A structural model of the desolvated phase of 

MPF-3 is constructed based on the single-crystal structure of the MPF-3 layer and the 

interlayer spacing (12.41 Å) derived from experimental X-ray powder-diffraction data for 

desolvated MPF-3.29 The distance between the 2D layers is set to the interlayer spacing 

and the layers are moved such that they no longer interdigitate. A simulated X-ray 

powder diffraction pattern generated from this model shows a good match with 

experimental data for the desolvated phase of MPF-3 (Figure 3.11). The space group of 
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the structural model is monoclinic P21/a with cell parameters of a = 14.227 Å, b = 9.564 

Å, c = 17.105 Å, and β = 133.50°. 

 We hypothesize a plausible transformation mechanism of the desolvated 

structures (Figure 3.12). A stacking model, based on a decrease in the interlayer spacing 

due to movement in two directions, is sterically probable (see Appendix 1, Figure A1.3). 

To further support this hypothesis, Connolly surface modeling was added to the structural 

model of the desolvated phase of MPF-3 and the single-crystal model of the solvated 

phase of MPF-3 (Figure 3.13).30 Connolly surface modeling uses a spherical probe to 

determine the solvent-accessible surface of a molecule or structure.30 The probe moves 

around the van der Waals surface and defines a surface that bridges the gaps between 

neighboring atoms.30 Additional refinement of this surface can be achieved by using a dot 

surface.30 To create this surface, a dot is placed on the surface everywhere the probe does 

not experience van der Waals forces.30 The probe represents a solvent molecule and the 

dot surface defines the areas of the molecule accessible to the solvent.30 Figure 3.13 

clearly shows that the void space of the solvated phase is drastically reduced for the 

desolvated phase. Solvent inclusion is unlikely in the desolvated model. The 1D channel 

of DMF molecules is no longer present, and the 2D layers rearrange to fill this space. 
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(a) 

(b) 

Figure 3.11. Comparison of the X-ray powder diffraction patterns of (a) the 

experimentally determined desolvated MPF-3 and (b) the structural model for desolvated 

MPF-3. 

 

 

Figure 3.12. Proposed structural transition of MPF-3 and selective accommodation of 

DMF molecules. 
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Figure 3.13. Connolly surfaces of (a) solvatedMPF-3, (b) solvatedMPF-3 with the DMF 

molecules removed, and (c) structural model of desolvatedMPF-3. Disorder of DMF 

molecules are removed for clarity. 

 

 As discussed previously, the title compound MPF-3 is similar to the FeTPyP 

structure. However, the 2D layer stacking shows a marked difference between MPF-3 

and the FeTPyP structure. The stacking of the FeTPyP structure is quite compact 

(interlayer spacing of 9.15 Å) when compared to the stacking of desolvated MPF-3 

(interlayer spacing of 12.41 Å), and no solvent molecules are present between the 2D 

layers (see Appendix 1, Figure A1.4).23 A structure similar to FeTPyP reported by 
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Goldberg and co-workers uses ZnTPyP molecular building blocks and also packs more 

tightly than MPF-3 (interlayer spacing of 11.03 Å).31 The flexibility of FeTPyP and 

ZnTPyP has not been reported yet. The 3-pyridyl connections in MPF-3 create undulating 

2D layers that do not stack as tightly as the FeTPyP or ZnTPyP layers. 

 

3.4 Conclusion 

MPF-3 has been synthesized, and the topology of its framework and its guest-

dependent properties are presented. When the topology of MPF-3 is analyzed, the 

topology of MPF-3 structure is closely related to Cairo pentagonal tessellation. The MPF-

3 frameworks were exposed to several different guest molecules. X-ray powder 

diffraction data indicate that the movement of the 2D layers depends on the choice of 

guest molecule. 
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CHAPTER 4 

 

E-MOF-1: AN EXPANDABLE PORPHYRIN FRAMEWORK 

WITH CdSO4-TYPE TOPOLOGY  

 

4.1 Introduction 

 A new class of metal-organic frameworks (MOFs), flexible MOFs, have also been 

the subject of significant study recently,.1-4 These flexible MOFs respond to external 

stimuli, such as pressure, temperature, and guest removal/uptake and change their 

structures while preserving original connectivity .1-4 Flexible frameworks that are 

thermally responsive have been shown to have the potential to also be negative thermal 

expansion (NTE) materials.5b,5c Such NTE materials decrease in volume as the 

temperature increases, and are relatively rare.6 The importance of NTE materials is their 

use in creating composites that can be engineered to “match” a desired thermal expansion 

behavior.5a  The NTE material is often combined with a material with an appropriate 

positive thermal expansion (PTE) material.5a Such composites with nearly zero thermal 

expansion can be used in many applications, including refractive index compensation for 

optics, biomedical devices that expand with bone or teeth, and sensitive circuit 

boards.5a,5d  Optical components with such a coating would provide protection against the 

loss of ideal optical properties as the temperature varied.5a MOFs that have demonstrated 

NTE include derivatives of IRMOF-15c,5d, and Ag3[Co(CN)6], a MOF with “colossal” 

NTE . 7 
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 In this present paper, we report a flexible, 3D porphyrin framework E-MOF-1 (E-

MOF = Expandable Metal-Organic Framework), assembled from meso-tetra(4-

pyridyl)porphine (hereafter, 4-TPyP) (see Figure 4.1) and cadmium atoms that form a 

CdSO4 topology (cds).8-15 E-MOF-1 is subjected to thermal testing and demonstrates 

anisotropic thermal-expansion behavior.7  

 

 

 

Figure 4.1. The molecular building block, meso-tetra(4-pyridyl)porphine (4-TPyP). 

 

4.2 Experimental Methods 

4.2.1 General Methods 
 

All chemicals were purchased from commercial sources. Crystallization 

experiments were performed in a Yamato DKN400 mechanical convection oven. No 

special precautions were taken to exclude oxygen or moisture during crystallization. X-

ray powder diffraction data were obtained using a Rigaku D/Max-B X-ray diffractometer 

with BraggBrentano parafocusing geometry, a diffracted beam monochromator, and a 

conventional copper-target X-ray tube set to 40 kV and 30 mA. Temperature-dependent 

X-ray data was obtained through two sources: Bruker SMART Apex CCD area detector 

diffractometer and the 11-BM beamline located at Argonne National Labs.16 Single-

crystal structure determination was performed as follows. A plate-shaped crystal was 

sealed in a capillary tube for measurement. Geometry and intensity data were obtained at 
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room temperature with a Bruker SMART Apex CCD area detector diffractometer. 

Preliminary lattice parameters and orientation matrices were obtained from three sets of 

frames. Data were collected using graphite monochromated and MonoCap-collimated Mo 

Kα radiation ( = 0.71073 Å) by the  scan method.17 Data were processed with the 

SAINT+ program18 for data reduction and cell refinement. Multiscan absorption 

corrections were applied to the data set using the SADABS program for the area 

detector.19 The structure was solved by a direct method and refined using SHELXTL.20  

 

4.2.2 Synthesis 

 Meso-tetra(4-pyridyl)porphine (4-TPyP; 5.7mg, 0.009 mmol), 1,1,2,2-

tetrachloroethane (TCE, 0.75 mL) , and methanol (MeOH, 0.25 mL) were added to a long 

tube. 3’-chloroaniline (1 mL) is layered on next and CdI2 (7.2 mg, 0.02 mmol) and N,N’-

dimethylacetamide (DMA, 1 mL) are layered on last. The tube opening was wrapped 

with parafilm and allowed to sit undisturbed at room temperature for several months. 

 

4.2.3 Temperature Dependent Powder Diffraction  

 Temperature-dependent X-ray powder-diffraction scans were conducted on E-

MOF-1 at temperatures below and above room temperature (297K). Single-crystal data 

were taken at 100K, 200K, and 297K. Synchrotron data (11-BM beamline, Argonne 

National Labs) were also taken with a range of 297K-495K. The temperature was 

increased in 25K increments from 297-375K, and then increased to 425K, 475K, and 

495K. The temperature was cycled back to room temperature between each elevated 

temperature scan, and a room temperature scan was conducted. This made for a total of 6 
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elevated scans, and 8 room temperature scans. Adding in the single-crystal scan, a total of 

17 temperature scans were collected on E-MOF-1.  

 

4.3 Structural description  

 Figure 4.2 shows the single-crystal structure of E-MOF-1, a metal-organic 

framework formed of 4-TPyP units linked to cadmium atoms through coordination to the 

pyridyl groups of the porphyrin. Each cadmium atom is equatorially coordinated to four 

porphyrins, and is capped with two iodide atoms axially in a nearly ideal octahedral 

geometry. Closer examination of the structure of E-MOF-1 reveals that the framework 

has a CdSO4 (cds) topology. This type of (4,4) net is often reported for MOFs.10 Many of 

the previously reported MOFs are interpenetrated.11-13 This is not surprising because the 

cds net is self-dual.11 The frameworks have demonstrated 2- to 5-fold 

interpenetration.11,12 E-MOF-1 is a rare example of a MOF with cds topology that is not 

interpenetrated.13  
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Figure 4.2. The (a) unit cell of E-MOF-1 is shown and can be simplified by (b) removing 

the iodide ions and replacing the porphyrins with squares that also have D4h symmetry. 

Further simplification can be achieved by (c) replacing each porphyrin square with a 4-

connected node centered in the pore of the porphyrin. The unit cell can then be seen as 

the (d) 4-connected net cds. 

 

4.4 Topological Analysis 

 As shown in Figure 4.3, the cds topology can be derived from the primitive cubic 

structure and is related to another 4-connected net nbo. The cds net is derived from the 

primitive cubic structure by deleting half of all the connections that are perpendicular to a 

(001) plane. In this way the cds net retains all of the connection nodes of the primitive 

cubic structure, but has significantly fewer connections than the primitive-cubic type (see 

Figure 4.3). The nbo net is created by deleting the nodes and connections at each corner 
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of the primitive-cubic structure, and deleting the node in the center. When we build these 

structural models, we discover that the rigid nature of the primitive cubic structure is 

maintained in the nbo topology, while absent in the cds topology. It is quite remarkable 

to see that the deleted connectors allow the cds topology to be continuously variable. The 

range of variability of a framework with cds topology is directly related to the interaction 

between the framework and itself. Because E-MOF-1 has the cds topology, we envision 

that E-MOF-1 could be flexible in the solid state. In order to test flexibility of E-MOF-1, 

we carried out a temperature-dependent X-ray diffraction study. 

 

 

Figure 4.3. The (a) primitive-cubic structure can be related to the 4-connected nets (b) 

cds and (c) nbo. 

 

4.5 Thermal Response of E-MOF-1  

 One of the definitions of a flexible framework includes the ability to be cycled 

between a “resting” state and a state in which some stress is applied (guest exchange, 

change in temperature, increase in pressure, etc.).1-4 In order to test thermal flexibility, the 
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E-MOF-1 sample sent to Argonne National Labs was cycled between room temperature 

and a series of elevated temperatures to determine if it would return to its “resting” state. 

Temperature-dependent X-ray diffraction scans were run on two different samples. We 

have low temperature single-crystal data on one sample, and high temperature 

synchrotron powder diffraction on a different sample. The cell parameters of the single-

crystal sample were taken directly from the solved structure file (Appendix 2,  Table 

A2.1). The cell parameters of the synchrotron sample were calculated using the raw 2θ 

data, the indexing data of the room temperature single-crystal scan, and the program Unit 

Cell (For a more detailed explanation, See Appendix 2.).21 These 17 temperature scans 

provided a significant amount of data on which to judge the flexibility of E-MOF-1.  As 

shown in Figure 4.4, all scans indicate that the unit cell of E-MOF-1 changes with 

temperature. Figure A2.1 compares the single-crystal, room-temperature scan with the 

synchrotron powder diffraction room temperature scans. It can be seen that E-MOF-1 

does return to its room temperature state after being heated to as high as 495K.  Figure 

4.5 shows the shift of two peaks with indexing (101) and (110) to lower Q values (where 

Q = 2π/d, and d is the d-spacing) as the temperature was increased. This supports the 

flexible behavior of E-MOF-1 because both peaks have indexing that corresponds to a 

significant change in the a and/or b parameter. The a parameter undergoes the most 

drastic change when the temperature is increased (see Figure 4.6). Over a 350K 

temperature range, the a parameter changes by nearly 6% (Figure 4.6)! In contrast, the b 

parameter only changes by less than 1% and the c parameter changes by less than 0.3%. 

Therefore, we conclude that a change in a parameter is the major factor in altering the 

shape of E-MOF-1 in the solid state.  
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Figure 4.4. Experimental cell parameters and unit-cell volume of E-MOF-1 plotted 

versus temperature. 
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Figure 4.5. Indexed peaks (101) and (110) shifting to lower Q values (indicating an 

increase in cell parameter) as the temperature is increased. 

 

 

Figure 4.6. The percent deviation of each cell parameter from their respective room-

temperature values are plotted versus temperature. 
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4.6 Flexible Model  

 Figure 4.7 illustrates a simple structural model of E-MOF-1 that has been created 

to analyze the flexibility of E-MOF-1 and its cds topology. When the unit cell of E-MOF-

1 is viewed down the c-axis (Figure 4.7),  it reveals that the structure deviates from the 

ideal cds topology shown in Figure 4.3. The angle 2θ is less than 90°, and this accounts 

for the tilted structure shown in Figure 4.2. The behavior of this angle in response to 

external stimulus is one of the ways in which we tested the flexibility of E-MOF-1. A 

change in θ will change a and b parameters of E-MOF-1 according to a simple 

trigometric relationship as shown in Figure 4.7. The orthorhombic space group of E-

MOF-1, Pnnm (No. 58), allows the use of this simple model because of the way that E-

MOF-1 is oriented within the unit cell (see Appendix 2, Table A2.1). The porphyrin 

node-to-cadmium-node distance, d, is defined as c/2. The c parameter is assumed to be 

unaffected by any change in θ, and the hypotenuse of the right-angle triangle is the same 

distance as the value of the c parameter (see Figure 4.7). This provides a way to arrive at 

an experimental value of θ utilizing only cell parameters derived from measured X-ray 

powder-diffraction data. With aid of this simple model, we are able to estimate θ from X-

ray powder patterns. The flexible model can also be used to calculate a theoretical 

minimum value of θ (for more information see Appendix 2). Due to the close contact 

between the adjacent iodine anions, the theoretical minimum value of θ was calculated to 

be 24.55° (see the detailed calculation in Appendix 2). This is little more than 1° different 

from the θ value for the single-crystal structure at 100K (which is the smallest observed θ 

value, 25.5°). This would seem to indicate that E-MOF-1 is near its minimum θ value at 

100K. 
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Figure 4.7.  View of E-MOF-1 unit cell down the c direction. The cell parameters a and 

b are related trigometrically by the angles 2θ and θ, and the porphyrin node to cadmium 

node distance d. The triangle defined by a, b, and θ is defined as a right angle triangle. 

 

 Before finding the θ values at each temperature, the flexible model was first 

tested. To test the reliability of the model, a theoretical curve was derived from the 

trigometric relationships shown in Figure 4.7 (see Appendix 2). The curve is generated 

from a range of b-parameter values that were imported to calculate theoretical a-

parameter values. The experimental cell parameters a versus cell parameter b were then 

plotted on the curve.  As shown in Figure 4.8, the curve (and therefore the flexible 

model) fits reasonably well with the experimental data. It should be noted that the points 

most divergent from the curve occur at higher temperatures. This indicates that at higher 

temperatures, the flexible model no longer applies. The flexible model is dependent on E-

MOF-1 maintaining an orthorhombic space group. The divergence from the model at 

higher temperatures could be due to an impurity phase present at higher temperatures. 

This is supported by examining the powder-diffraction patterns taken at the highest 
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temperature (495K). Additional reflections that do not correspond to E-MOF-1 appear at 

495K (see Figure A2.3).  

 

 

Figure 4.8. The experimental values of the a and b parameters plotted against the a 

theoretical curve (red) derived from the flexible model. The error bars for each point are 

plots of the error of the cell parameters a and b. The black curves are derived from the 

standard deviation of the c parameter (which is directly comparable to the curve as 2d is 

part of the calculation of the curve and c = 2d) to the theoretical curve. 

 

 The flexible model is used to calculate the θ values of E-MOF-1 at various 

temperatures (Figure 4.9). Simple trigometric relationships were used to remove d from 

the calculation so that only the experimental values of the a and b parameters were used 

to calculate the θ values at each temperature (for more information see Appendix 2). It 

can be seen that as the temperature increases the value of θ continues to increase in a 

nearly linear fashion (Figure 4.9). Perhaps more significant is that the θ value of E-MOF-

1 changes by almost 2° over the entire temperature range. The accuracy of the model was 

again tested by comparing the calculated values of the three single-crystal θ values to the 

angle of θ generated by using an atomic modeling program and the solved single-crystal 
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files (see Table A.2.2). The largest percent deviation between the “measured” θ and the 

calculated θ was less than 2%. This deviation supports the viability of our flexible model.  

 

 

Figure 4.9. The angle, θ plotted versus temperature for the low temperature single-crystal 

data, initial room temperature synchrotron data, and elevated temperature synchrotron 

data up to 425K. 

 

4.7 “Colossal” Thermal Expansion 

 Negative thermal expansion (NTE) is the property of a material that decreases in 

volume as the temperature is increased. These materials are useful in creating composites 

that contain materials with positive thermal expansion (PTE, far more common) and have 

tunable thermal properties.5,6 Other applications include thermally-tuned biomedical 

devices, ceramics for use in sensitive electronics, and thermally stable optical materials 

for precise spectrographic sensing.5,6 Specific structural characteristics are important 

when analyzing whether or not a material has the potential to be a NTE material. One of 

these characteristics is the type of bonding present in the material. Material with rigid 

unit nodes (RUMS) or M__O bonds are the most common canidates.6 RUMS usually 
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consist of rigid polyhedral units that can change orientation in space without losing 

connectivity.6 When heated, the material contracts as the RUMS rotate.6 NTE materials 

with M__O bonds undergo transverse vibrations at the M__O__M linkage (the “guitar 

string” model) when the temperature is increased. This reduces the volume of the 

material as the metal atoms are pulled closer together by the vibration of the oxygen 

atom.6 Additional structural features, such as linker length, can also increase the NTE 

properties of a material.5c E-MOF-1 is most like the RUM model and does not posses any 

M__O bonds. In E-MOF-1, the rigid polyhedral units would be the cadmium nodes 

between the porphyrins. E-MOF-1 does experience NTE in the b parameter only, and 

furthermore; the positive thermal expansion (PTE) in the a parameter is so drastic that it 

qualifies as “colossal” as defined by Goodwin, et al.15 The anisotropic nature of E-MOF-

1 is one of its more interesting properties. 

 To determine if a material has “colossal” (׀α100 ≤  ׀ x 10-6 K-1) NTE, its 

coefficient of thermal expansion (CTE or α) must first be calculated.15 The α-value of a 

material is 
parameter celleTemperatur

parameter cell 




   (for more information, see Appendix 2). 

The α-value can be either positive (PTE) or negative (NTE). Some materials posses a α 

value that changes as the temperature is increased.6 This usually involves a change in 

symmetry.6 The temperature dependent scans did not indicate that E-MOF-1 ever 

changed symmetry over the temperature range tested. The calculation of the α-value of E-

MOF-1 also supports the stability of its symmetry as it does not change the sign of α after 

the lowest temperature scan (see Appendix 2). It has also been shown that the inclusion 

of another framework within the primary framework (interpenetration) has an effect on 

the magnitude of α.5b The α-values of two isostructural frameworks (one with a 
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secondary 1D framework and one without) were calculated.5b The change in one of the 

cell parameters for the framework without a secondary framework was nearly an order of 

magnitude greater than the framework with the secondary framework.5b The largest value 

of α for the a parameter of E-MOF-1 (approximately 225 x 10-6 K-1) is larger than any 

previously reported α value.15 E-MOF-1 is not a NTE material, but there is significant 

NTE behavior in the b parameter, and a “colossal” PTE behavior in the a parameter. This 

does suggest that it may be possible for a derivative of E-MOF-1 to be used as part of a 

NTE/PTE composite.  

 

4.8 Conclusion 

E-MOF-1 has been synthesized, and the topology of its framework and its thermal 

dependent properties are presented. When the topology of E-MOF-1 is analyzed, the 

topology of E-MOF-1 is shown to be a match for the cds framework. Temperature-

dependent X-ray powder and single-crystal diffraction data were collected at a wide 

range of temperatures. The single-crystal and synchrotron powder-diffraction data 

indicate that the movement of the 3D structure of E-MOF-1 is sensitive to changes in 

temperature. A flexible model was developed from this data and used to further analyze 

the behavior of E-MOF-1 as the temperature was varied. Additionally, it was discovered 

that E-MOF-1 posses “colossal” NTE in the a-parameter, demonstrating highly 

anisotropic thermal behavior. 
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Appendix 1  

ADDITIONAL STRUCTURAL ANALYSIS DATA OF MPF-3 

 

A1.1 Resolvation Results 

 

 

Figure A1.1. X-ray powder diffraction patterns of the desolvation and attempted hexane 

resolvation of MPF-3. 

 

 

Figure A1.2. X-ray powder diffraction patterns of the desolvation and attempted DCM 

resolvation of MPF-3. 
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A1.2 Construction of the Desolvated Structural Model of MPF-3 

 A structural model of the desolvated phase of MPF-3 is constructed based on data 

from the solvated single-crystal structure and the desolvated experimental X-ray powder-

diffraction pattern. In constructing the model, several assumptions were also made: the 

layers do not change orientation in relation to one another; the layers do not form a new 

structural pattern, and the layers do not lose connectivity. With these guidelines in place, 

the next step was to analyze the most intense peaks of both the solvated and desolvated 

structures. It is assumed that the metal atoms present in the periodically stacked layers of 

MPF-3 account for the majority of the diffraction signal observed. The 2D layers of 

MPF-3 can be thought of as “layers” of metal atoms separated by d (Bragg’s Law layer 

spacing). Therefore, the peak shift observed in the desolvated X-ray powder-diffraction 

pattern would be due to a change in the layer spacing (d). This is important to note when 

analyzing the desolvated X-ray powder-diffraction pattern, and is key to adjusting the 

layer stacking and the desolvated cell parameters. 

 The stacking distance d can be related to the a-parameter, but the layers do not 

stack in the a direction. This is due to the symmetry of the unit cell. The relationship of 

the a-parameter, and, thus, the a direction, is as follows: d = a·sin(180 - β). If is assumed 

that β is held constant, there is a direct relationship between the a cell parameter and the d 

spacing. Additionally, single-crystal data of the solvated phase indicates that the most 

intense peaks correspond to the h00 reflections. These assumptions and relationships 

were the basis used to construct the desolvated structural model. 

 A blank crystal lattice was first constructed using the space group of the solvated 

phase and altering the a parameter based on the experimental X-ray powder-diffraction 
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pattern and the relationship between a and d detailed above. The theoretical d spacing of 

the desolvated sample was calculated using the most intense peak position of the 

experimental X-ray powder diffraction pattern and Bragg’s Law. The a-parameter of the 

new unit cell was set to this value. All other cell parameters were left unchanged from the 

solvated single-crystal data. Once the crystal lattice was constructed, the two layers from 

the solvated single-crystal model were transplanted into the new unit cell. The layer 

separation was then adjusted to the theoretical d spacing (12.41 Å). The layers were 

moved within the cell to the proper separation distance. This process was repeated until 

16 layers were constructed. This process was necessary to provide a large enough sample 

of the periodicity of the model for Materials Studio to find the symmetry of the 

desolvated structural model. A simulated X-ray powder-diffraction pattern generated 

from this model matches well with experimental data for the desolvated phase of MPF-3 

(see Figure S8). The space group for the structural model is monoclinic P21/a with the 

cell parameters of a = 14.227 Å, b = 9.564 Å, c = 17.105 Å, and β = 133.50°. 
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Figure A1.3. A structural model for the desolvated of MPF-3 showing the stacking 

pattern (left) and the interdigitated layers (right).
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Table A1.1. Unit cell parameters and atomic parameters of the structural model for 

desolvated MPF-3. 

MPF-3 

Monoclinic P21/a 

a = 14.227 Å, b = 9.564 Å, c = 17.105 Å, β = 133.498° 

atom x y z 

N1 0.29948 0.02679 0.86533 

C2 0.10318 0.05779 0.69134 

N3 0.45724 0.90700 0.07985 

C4 0.33800 0.89070 0.04601 

C5 0.35501 0.83900 0.13480 

C6 0.48438 0.82400 0.22037 

C7 0.54806 0.86780 0.18564 

C8 0.07812 0.99949 0.74745 

C9 0.20184 0.98079 0.85702 

C10 0.21815 0.92270 0.94148 

C11 0.09879 0.88890 0.91864 

C12 0.07851 0.75380 0.93514 

C13 0.00462 0.98889 0.88244 

N14 0.97817 0.71963 0.92184 

C15 0.89778 0.95322 0.86477 

C16 0.88808 0.81723 0.88594 

N17 0.08132 0.13439 0.43454 

C18 0.30858 0.12729 0.73778 

C19 0.24232 0.07339 0.76548 

C20 0.22788 0.18208 0.62551 

C21 0.15572 0.09289 0.53663 

C22 0.22093 0.32408 0.60445 

C23 0.14473 0.36998 0.49982 

C24 0.07678 0.27298 0.41840 

H25 0.33653 0.47702 0.44400 

H26 0.22177 0.90241 0.32631 

H27 0.36078 0.98630 0.51749 

H28 0.48625 0.81573 0.66691 

Zn29 0.50000 0.00000 0.00000 
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A1.3 Stacking Patterns of MPF-3 and the FeTPyP Structure 

 

 

Figure A1.4. Interdigitation and stacking pattern of (a) MPF-3 and (b) FeTPyP.
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Appendix 2 

CALCULATIONS FOR THE CELL PARAMETERS, FLEXIBLE 

MODEL, AND COEFFICIENT OF THERMAL EXPANSION 

 

A2.1 Cell Parameters Derived from Synchrotron Data 

 The raw 2θ data form Argonne was converted to d-spacing values. The resulting 

data was plotted and the peaks were compared to the indexed d-spacing peaks of the 

room-temperature single-crystal data. The experimental synchrotron peak position and 

peak intensity were compared to the peak positions and the corresponding F2 values of 

the single-crystal data. This method was used to index the major experimental peaks of 

each temperature-dependent data set. These peaks were then analyzed for peaks that were 

present in all of the scans. The scans contained 13 peaks that were common to the scans 

from 197K to 425K. The peak indexing and position of each peak were used to calculate 

the cell parameters of for each temperature run. The program Unit Cell was used to 

generate the cell parameters of the temperature-dependent experimental data.1 The cell 

parameters were used to analyze the temperature-dependent nature of E-MOF-1. The 

significant cell parameter and volume change of E-MOF-1 indicates that E-MOF-1 is a 

flexible framework. The cell parameters change at different temperatures, and then return 

to nearly the same room temperature (297K) values. 
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Table A2.1. Single-crystal Data for E-MOF-1 

formula C58H52CdCl2I2N12O2

temperature 297 K
crystal system orthorhombic
spacegroup Pnnm
crystal color dark red
a  (Å) 8.9939(17)
b  (Å) 18.270(4)
c  (Å) 20.380(4)

V  (Å3) 3348.7(11)
Z 2

ρcalc (g/cm3) 1.375

R 1  (I > 2σ (I)) 0.0426

wR 2  (all reflections) 0.1182
GOF 1.01  

 

Table A2.2. Temperature Dependent Cell Parameter Data 

a b c a b c
100 8.7268(10) 18.294(2) 20.384(2) -2.9079 0.1658 0.1957
200 8.8045(6) 18.2945(13) 20.3640(15) -2.0435 0.1680 0.0969
297 8.9939(17) 18.270(4) 20.380(4) 0.0638 0.0311 0.1736

a b c a b c
297 8.9882 18.2638 20.3443 0.0000 0.0000 0.0000
325 9.0463 18.2354 20.3578 0.6467 -0.1557 0.0664
350 9.0680 18.2177 20.3445 0.8883 -0.2526 0.0011
375 9.1483 18.2089 20.3474 1.7817 -0.3010 0.0152
425 9.1979 18.1565 20.3733 2.3332 -0.5874 0.1428
475 8.6052 18.6475 20.1989 -4.2614 2.1009 -0.7145
495 8.8266 18.4536 20.1426 -1.7973 1.0392 -0.9915

Temperature (K)
Parameters % Deviation

ELEVATED TEMPERATURE

SINGLE CRYSTAL

Temperature (K)
Parameters % Deviation
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Figure A2.1. The room-temperature single-crystal data (red) and room-temperature 

synchrotron powder diffraction data plotted as Q. 
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A2.2 Flexible Model Calculations and Relationships 

 

 

Figure A2.2. Flexible model of E-MOF-1. 

 

Trigometric relationships: 

Eqn-A2.1  sin2da   

Eqn-A2.2  cos2db   

Eqn-A2.3   dc 2

 

Eqn-A2.4   222 sin4da 

Eqn-A2.5   222 cos4db 

 

Factor Eqn-A2.4 and Eqn-A2.4 using the trigometric relationship:  1cossin 22  

    222 4dba 

Eqn-A2.6   224 bda   
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Calculating Theta 

Calculate theta using only experimental values using Pythagorean Theorem and 

previously defined trigometric relationships 

 

Eqn-A2.7  , where c = 2d 222 cba 

Eqn-A2.8  222 bad   

 

Substitute Eqn-A2.8 into Eqn-A2.1 

Eqn-A2.9    sin22 baa   

 

Rearrange Eqn-A2.9 and solve for Theta 

Eqn-A2.10  
22

sin
ba

a


  

 

Table A2.3. Comparison of Theta from the Model and Single-crystal Data  

Single Crystal  
Temperature

Measured θ Calculated θ % Deviation

100 25.502 25.107 1.548
200 25.700 25.486 0.833
297 26.211 26.151 0.228  

 

 

Figure A2.3. At higher temperatures, previously unobserved peaks appear in the powder-

diffraction pattern of E-MOF-1 and some peaks disappear completely.
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A2.3 Calculation of the Minimum Value of θ 

 

 
Figure A2.4. Model of E-MOF-1 viewed down the c direction defining the trigometric 

relationships of theoretical iodide interactions where a is the a-parameter and γ, α, and β 

are angles. All triangles are defined as right-angle triangles. 

 

 

 
Figure A2.5. Expanded view of the trigometric relationships of theoretical iodide 

interactions where  is a length. n
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Trigonometric relationships      Constants: 
 18022           182.10d

   90         935.21 

 18090          98.12 

 18090)90(    
 0  
 
Eqn-A2.12     
 

 cos13    

 cos24    

Eqn-A2.13  a1/2  43    

 
Eqn-A2.14   coscos 212/1  a  
 
Eqn-A2.15  521 sinsin     

  
Eqn- A2.16    22

2
22

1 sinsin  
 

Do not have a relationship defining β, and so it must be factored out. 
Eqn- A2.17   1cossin 22  
 
Eqn- A2.18    22 cos1sin 
 

Substitute for sin2β 
Eqn- A2.19    22

1
22

2 sin)cos1(  
 

Eqn- A2.20   2

2

2

12 sincos1 












 

 

Eqn- A2.21  1sincos 22

2

2

1 









  




 

Eqn- A2.22  2
2

2

2

2

122
2 )sin1()(cos 




  








  

 
Eqn- A2.23    22

1
2
2

22
2 sincos  
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Remove β term using Eqn- A2.23. 




coscos

coscos

12

21

1/2

1/2








a

a
 

 
 
 
 
 







22
111

22
2

11
2

2

2
1

2
2

coscoscos)cos(

)cos)(cos()cos(

)cos()cos(

1/21/21/4

1/21/2

1/2













aaa

aa

a

Eqn- A2.24    22
11

22
2 coscos)cos( 1/4   aa

 
Substitute Eqn-24 into Eqn-23. 
Eqn- A2.25    22

1
2
2

22
11

2 sincoscos1/4   aa
 
Simplify terms by converting sines to cosines. 
Eqn- A2.26    22

1
2
1

2
2

22
1

2
2 cossin  

 
Substitute Eqn-25 into Eqn-24 and use relationship of Eqn-12. 
Eqn- A2.27    22

1
2
1

2
2

22
11

2 coscoscos1/4   aa

  2
1

2
21

2 cos1/4   aa
 

Eqn- A2.28   0cos 2
1

2
21

21/4   aa
 
Define a. 
Eqn- A2.29  sin2da   
 
Substitute Eqn- A2.29 into Eqn- A2.28. 
    0cos)sin2()sin2 2

1
2
21

21/4(    dd
 
Eqn- A2.30   0cossin2sin 2

1
2
21

22    dd
 
Simplification 

 cossin2sin 1
2
1

2
2

22  dd   
 
Eqn- A2.31    cossin2sin 1

2
2

2
1

22 dd  
 
Everything in terms of sine 

2)cossin21(2))2
2

2
1(2sin2(  dd    

)2sin1(2sin242
1

2)2
2

2
1()2

2
2
1(2sin2)2

2
2
1(2sin24sin4   dddd 
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Eqn- A2.32 
 42

1
222

1
222

2
2
1

2
2

2
1

2244 sin4sin4)()(sin2sin  dddd   
 
Simplification 

0)(sin2sin2sin4sin

0)(sin4sin2sin2sin4sin

0sin4sin4)()(sin2sin

22
2

2
1

22
1

222
2

242
1

244

22
2

2
1

22
1

222
2

222
1

242
1

244

422
1

222
1

22
2

2
1

2
2

2
1

2244



















dddd

ddddd

dddd

 

 
Eqn- A2.33   0)()22(sin)4(sin 22

2
2
1

2
1

22
2

222
1

244   dddd 
 
Substitute the term  into Eqn-33 )(sin2 x
Eqn- A2.34   0)()22()4( 22

2
2
1

2
1

22
2

22
1

242   ddxddx
 
Substitute constants into Eqn- A2.34 
 

0032.2201.259937.14320 2  xx  
 
Solve for x  where  state) relaxed""most at  (framework 1-MOF-E of angle minimumx

 24.55  
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A2.4 Coefficient of Thermal Expansion (α) 

 The coefficient of thermal expansion was calculated to determine if the thermal 

behavior of E-MOF-1 (a change of nearly 6% in the a-parameter) was large enough to be 

noteworthy. The coefficient of thermal expansion (CTE or α) was calculated by first 

plotting the cell parameter data versus temperature. The best polynomial fit was found 

and the first derivative was taken of this function. The CTE at each temperature was then 

calculated by first substituting temperature values into the first derivative function of the 

polynomial fit (x) to find the slope at that temperature. The slope was then divided by the 

cell parameter value at that temperature to arrive at the CTE. 

Coefficient of Thermal Expansion: 
parameter celleTemperatur

parameter cell 




  

Where fit polynomial of slopefit polynomial  theof derivativefirst 
eTemperatur

parameter cell 





 

 

Table A2.4. Colossal positive thermal expansion of the a parameter 

Temperature (K)
TERM 1                    

(-0.00297 + 3.40316 x 10-5x )

TERM 2          

(-5.7984 x 10-8x 2)
SLOPE

α       
(10-6K-1)

100 4.3316E-04 -5.7984E-04 -1.4668E-04 -16.81
200 3.8363E-03 -2.3194E-03 1.5170E-03 172.29
297 7.1374E-03 -5.1147E-03 2.0227E-03 224.89

297 7.1374E-03 -5.1147E-03 2.0227E-03 225.04
325 8.0903E-03 -6.1246E-03 1.9657E-03 217.29
350 8.9411E-03 -7.1030E-03 1.8380E-03 202.69
375 9.7919E-03 -8.1540E-03 1.6379E-03 179.03
425 1.1493E-02 -1.0473E-02 1.0201E-03 110.90
475 1.3195E-02 -1.3083E-02 1.1237E-04 13.06
495 1.3876E-02 -1.4208E-02 -3.3189E-04 -37.60

a  parameter
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Table A2.5. Negative thermal expansion of the b parameter 

Temperature (K)
Term 1                           

(5.55322 x 10-4 + -3.73264 x 10-6x )
SLOPE

α       
(10-6K-1)

100 1.7996E-04 1.7996E-04 9.84
200 -1.9331E-04 -1.9331E-04 -10.57
297 -5.5537E-04 -5.5537E-04 -30.40

297 -5.5537E-04 -5.5537E-04 -30.41
325 -6.5989E-04 -6.5989E-04 -36.19
350 -7.5320E-04 -7.5320E-04 -41.34
375 -8.4652E-04 -8.4652E-04 -46.49
425 -1.0332E-03 -1.0332E-03 -56.90
475 -1.2198E-03 -1.2198E-03 -65.41
495 -1.2944E-03 -1.2944E-03 -70.15

b  parameter

 

 

Table A2.6. Positive thermal expansion of the c parameter 

Temperature (K)
Term 1                           

(-6.11871 x 10-04 + 2.09198 x 10-06x )
SLOPE

α       
(10-6K-1)

100 -4.0267E-04 -4.0267E-04 -19.75
200 -1.9348E-04 -1.9348E-04 -9.50
297 9.4471E-06 9.4471E-06 0.46

297 9.4471E-06 9.4471E-06 0.46
325 6.8022E-05 6.8022E-05 3.34
350 1.2032E-04 1.2032E-04 5.91
375 1.7262E-04 1.7262E-04 8.48
425 2.7722E-04 2.7722E-04 13.61
475 3.8182E-04 3.8182E-04 18.90
495 4.2366E-04 4.2366E-04 21.03

c  parameter
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