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ABSTRACT

Examination of Microsporidia Spore Adherence and Host Cell Infection In Vitro

by

Timothy R. Southern

Microsporidia are obligate intracellular pathogens that cause severe disease in

immunocompromised humans.  While albendazole is the treatment of choice, no

therapy exists that effectively treats all forms or causes of human

microsporidiosis.  Recent studies show that the microsporidian Encephalitozoon

intestinalis binds glycosaminoglycans (GAGs) associated with the host cell

surface, and that the divalent cations manganese (Mn2+) and magnesium (Mg2+)

augment spore adherence to host cells by activating a constituent on the spore

surface.  These studies also illustrate a direct relationship between spore

adherence and host cell infection; inhibition of spore adherence leads to reduced

host cell infection while augmentation of spore adherence increases host cell

infection.  In light of recent studies, microsporidia spore adherence has become a

promising target for the development of novel therapeutics to treat or even

prevent human microsporidiosis.  The goal of this study was to further

characterize the molecular mechanisms governing spore adherence by

identifying specific constituents on microsporidia spores that participate in spore

adherence with host cells.  A 40 kDa Encephalitozoon cuniculi host cell binding

protein was discovered and identified as ECU01_0820, hereafter known as

Encephalitozoon cuniculi microsporidia spore adherence protein (EcMsAP).  The
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gene encoding EcMsAP has multiple heparin-binding motifs and an integrin-

binding domain, which are characteristic of proteins that interact with constituents

on the cell surface.  Immuno-transmission electron microscopy reveals that

native EcMsAP is located on the plasma membrane, endospore, exospore, and

the anchoring disk of microsporidia spores.  Recombinant EcMsAP and

antibodies to recombinant EcMsAP both inhibit spore adherence and host cell

infection.  However, the deletion of heparin-binding motif #1 from the EcMsAP

gene results in the loss of ability to inhibit spore adherence and infection.  Host

cell-binding assays reveal that recombinant EcMsAP binds Vero and CHO cell

lines but exhibits attenuated binding to glycan-deficient CHO cell lines.  Finally,

biomolecular interactions analysis provides direct evidence that EcMsAP is a

glycan binding protein.  This study not only identifies a potential microsporidial

vaccine candidate, it further supports the assertion that microsporidia spore

adherence is a critical step in the host cell infection process.
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CHAPTER 1

INTRODUCTION

Microsporidia are obligate intracellular opportunistic pathogens that infect

a variety of hosts including humans.  Thirteen species of microsporidia belonging

to eight genera are known to infect humans.  Although the first reported case of

human microsporidiosis was in 1959 (Matsubayashi et al. 1959), it was not until

the onset of the AIDS epidemic that microsporidia were recognized as important

human pathogens (Desportes et al. 1985). Enterocytozoon bieneusi and

Encephalitozoon spp. are the most common causes of human microsporidiosis

(Molina et al. 1993; Weber et al. 1994).

First described in 1985, Enterocytozoon bieneusi is the most frequent

cause of severe diarrhea in HIV patients (Canning and Hollister 1992; Didier et

al. 1998).  E. bieneusi also causes disseminated infections including sinusitis,

rhinitis, bronchitis, and pneumonia in the immunosuppressed (Weber et al. 1992;

Weber et al. 1994).  Only a few cases of microsporidiosis in patients without HIV

infection are recorded for E. bieneusi.  These include cases of self-limiting

diarrhea in a liver transplant recipient (Sandfort et al. 1994) and an otherwise

healthy individual who likely contracted microsporidiosis from travels abroad

(Weber et al. 1994).

Several Encephalitozoon species also cause human microsporidiosis.

Mammals, including rodents, carnivores, and primates are infected by
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Encephalitozoon.cuniculi suggesting zoonotic transmission to humans (Slifko et

al. 2000; Wasson and Peper 2000; Weiss 2001).  E. cuniculi causes severe

diarrhea, fulminant hepatitis, peritonitis, and a myriad of other disseminated

infections and is reported to have a predilection for cells in the brain and kidneys

(Canning et al. 1986).

Encephalitozoon hellem and E. intestinalis are also common parasites of

HIV infected humans.  E. hellem was first described in 1991 from three AIDS

patients with keratoconjunctivitis (Didier et al. 1991).  E. hellem also causes

disseminated infections including nephritis, bronchiolitis, and pneumonia

(Schwartz et al. 1992; Schwartz et al. 1993; Schwartz et al. 1993).  E. intestinalis

was first described in 1993 as Septata intestinalis (Cali et al. 1993) and causes

severe diarrhea, nephritis, and cholecystitis (Weber et al. 1994).

Treatment of Human Microsporidiosis

Most cases of human microsporidiosis are treated with albendazole, a

broad-spectrum antiprotozoal benzimidazole that disrupts microtubule

polymerization in the developing parasite (Ridoux and Drancourt 1998).

Fumagillin, although highly toxic, is also used to treat ocular microsporidial

infections (Didier 1997; Ridoux and Drancourt 1998).  A less toxic fumagillin

derivative, TNP-470, has shown promise as a systemic treatment for

microsporidiosis (Didier 1997).  While albendazole and fumagillin are the most

common treatments for microsporidiosis, they are at best variably effective

(Didier et al. 2006).  Novel compounds including Ovalicin and Ovalicin derivatives
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have also shown promise as potential therapies for microsporidiosis (Didier et al.

2006).  Unfortunately, no single compound can be used to treat all causes or

forms of human microsporidiosis.

Spore Structure

The environmentally resistant spore is the only infectious form of

microsporidia.  The spore is encased in a three-layer wall composed of an

exospore, endospore, and plasma membrane (Figure 1.1) (Wittner 1999).  Little

is known about the composition of the microsporidia spore wall except that is

partially composed of chitin or a chitin-like material, contains a protein

component, and is structurally rigid.  Unlike the spore wall, the internal

ultrastructure of the microsporidia spore is well described.  All microsporidia

possess a hollow polar tube that is used to infect host cells.  The polar tube is

associated with the polaroplast, a voluminous structure that comprises one-third

to one-half of the total spore volume.  Microsporidia spores also possess a

posterior vacuole, a membranous vesicle located at the posterior end of the

mature spore.  Together, the polar tube, polaroplast, and posterior vacuole form

the extrusion apparatus responsible for polar tube discharge and delivery of

infectious sporoplasm to the host cell (Wittner 1999).

Also of note is the polar sac-anchoring disk complex that secures the polar

tube to the polaroplast at the anterior-most portion of the spore where the spore

wall is thin. Microsporidia spores also contain a full complement of eukaryotic

membrane-bound organelles including one or more nuclei, ribosomes, Golgi, and
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an endoplasmic reticulum, among others.  Of particular interest, all microsporidia

lack mitochondria yet possess mitochondrial heat shock proteins suggesting a

secondary loss of the mitochondria during microsporidial evolution (Hirt et al.

1997).  This condition is characteristic of ancient eukaryotic organisms and was

once used to categorize microsporidia as protozoa.  However, recent

phylogenetic analysis indicates that microsporidia are highly derived fungal

pathogens (Gill and Fast 2006).  Also of interest, microsporidial ribosomal RNA

molecules have sedimentation coefficients of prokaryotic ribosomal RNA (Wittner

1999).  Loss of mitochondria and development of ribosomal RNA with prokaryotic

affinities are likely results of the selective pressures of an obligate intracellular

lifestyle.

Microsporidia Spore Activation and Host Cell Infection

Medically important microsporidia of the genus Encephalitozoon are

typically introduced to the host digestive system following ingestion of

contaminated water or food (Slifko et al. 2000).  Based on an unknown stimulus,

Pm

Adc

Pp

Ex

En

Pvac

Pt

Figure 1.1 Diagram of the
microsporidia spore. The spore wall is
a three-layer structure with an
exospore (Ex), endospore (En), and
plasma membrane (Pm).  The
extrusion apparatus is composed of the
polar tube (Pt), polaroplast (Pp), and
posterior vacuole (Pvac). The polar
tube is anchored to the polaroplast by
the polar sac-anchoring disk complex
(Adc) at the apex of the spore (adapted
from Weber et al. 1994).
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an Encephalitozoon spore becomes activated leading to polar tube discharge

and host cell infection.  Initial activation of the spore leads to a calcium-induced

increase in the internal pressure of the polaroplast (Weidner and Byrd 1982).

Calcium efflux from the swollen polaroplast then causes the polar tube to be

forcefully discharged from the apical terminus of the spore.  As it leaves the

spore, the polar tube everts, or is forced inside-out revealing an outer polar tube

surface that is decorated with polar tube proteins.  The everted polar tube

ultimately penetrates the host cell plasma membrane.  The release of pressure

from the polaroplast also forces infectious sporoplasm through the everted polar

tube and into the host cell where a new generation of spores develops (Weidner

and Byrd 1982).

Intracellular Development of Encephalitozoon spp.

Once delivered to the host cell, infectious sporoplasm gives rise to the

meront, the first of four microsporidial forms (Figure 1.2).  The meront is an

irregularly shaped microsporidial form that possesses at least one distinct

nucleus and evidence of a developing endoplasmic reticulum.  Meronts develop

at the periphery of the parasitophorous vacuole (PV), and appear electron-lucent

when viewed by transmission electron microscopy (TEM).  Meronts mature into

sporonts that are characterized by a thickening outer wall but are otherwise

ultrastructurally similar to meronts.  Sporonts also reside at the margins of the PV

and are electron-lucent compared to mature forms.  Sporonts eventually mature

into sporoblasts, which exhibit a continuous plasma membrane, a developed
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spore wall, a full complement of organelles, and early evidence of an extrusion

apparatus (polar tube, polaroplast, and posterior vacuole).  Sporoblasts develop

within the lumen of the PV and appear electron-dense compared to meronts and

sporonts when viewed by TEM.  Finally, fully mature spores are formed following

organelle polarization.  Mature spores are also electron-dense and reside in the

lumen of the vacuole.  Microsporidia spore egress, a poorly understood process,

occurs following spore maturation and results in host cell death (del Aguila et al.

1998; del Aguila et al. 2001).

Figure 1.2  Electron micrographs of developing Encephalitozoon meronts (M),
sporonts (ST), sporoblasts (SB), and spores (S) contained within a
parasitophorous vacuole (PV) (image adapted from del Aguila et al. 1998).
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Specific Aims

Little is known about the molecular events that govern microsporidia spore

activation and the initiation of host cell infection.  One hypothesis suggests that

the physical interaction between the microsporidia spore and host cell is the

stimulus required to activate the spore.  Otherwise known as spore adherence,

this phenomenon occurs in vitro during spore propagation and can be viewed by

light microscopy (personal observations).  Of particular interest to our laboratory

are microsporidial pathogens of the genus Encephalitozoon.  Encephalitozoon

intestinalis, a pathogen important to human health, is an example of a

microsporidian that binds avidly to the surface of host cells during in vitro culture.

The overall goal of this research is to better characterize the molecular

mechanisms that govern microsporidia spore adherence to host cells in vitro.

The specific aims of this research are to (1) identify potential host cell receptors

that bind spores in vitro, (2) examine the role of divalent cations in spore

adherence, and (3) identify potential microsporidia spore ligands that participate

in spore adherence to in vitro grown host cells.
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CHAPTER 2

THE ROLE OF GLYCOSAMINOGLYCANS IN ADHERENCE OF THE

MICROSPORIDIAN, ENCEPHALITOZOON INTESTINALIS, TO HOST CELLS

IN VITRO
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Abstract

Microsporidia are obligate intracellular opportunistic protists that infect a

wide variety of animals via environmentally resistant spores.  One of the more

common causes of microsporidiosis in humans is Encephalitozoon intestinalis.

Infection requires that spores be in close proximity to host cells so that the hollow

polar tube can pierce the cell membrane and inject the spore contents into the

cell cytoplasm.  Like other eukaryotic microbes, microsporidia may use a specific

mechanism(s) for adherence in order to achieve target cell proximity and

increase the likelihood of successful infection.  Our data show that E. intestinalis

exploits glycosaminoglycans (GAGs) in selection of and attachment to host cells.

When exogenous sulfated GAGs are used as inhibitors in a spore adherence

assay, E. intestinalis spore adherence is reduced as much as 88%.  However,

there is no inhibition when non-sulfated GAGs are used, suggesting that E.

intestinalis spores use sulfated host cell GAGs in adherence.  These studies

were confirmed by exposure of host cells to xylopyranoside or sodium chlorate

treatments, treatments that limit host cell surface GAGs and decreases surface

sulfation, respectively.  Spore adherence studies using the CHO mutant cell lines

either deficient in surface GAGs, or deficient in surface heparan sulfate indicate a

preference of E. intestinalis spores for heparan sulfate.  Furthermore, when

spore adherence is inhibited, host cell infection is reduced, indicating a direct

association between spore adherence and infectivity.  These data show that E.
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intestinalis specifically adheres to target cells by way of sulfated host GAGs and

this mechanism serves to enhance infectivity.

Key words:  Adherence, Infectivity, Glycosaminoglycan, Encephalitozoon

intestinalis
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Introduction

Microsporidia are obligate intracellular opportunistic protists that infect

vertebrates and invertebrates alike.  Although microsporidia were identified as

agents of disease in animals more than 150 years ago, it was during the AIDS

epidemic that microsporidia were implicated as a cause of the severe diarrhea

and systemic infections seen in some HIV infected individuals.  However,

microsporidiosis is not limited to the immunosupressed as there are numerous

reports of immunocompetent persons becoming infected (Svenungsson et al.

1998; Lopez-Velez et al. 1999; Visvesvara et al. 1999).  Most human

microsporidiosis is due to infection with Enterocytozoon bieneusi, while the

second most common is Encephalitozoon intestinalis (Kotler and Orenstein

1999).  An efficient long-term in vitro culturing method for E. bieneusi has not

been established; therefore, E. intestinalis is commonly used to study

microsporidiosis (Visvesvara et al. 1999).

Microsporidia are transmitted via an environmentally stable spore and

infect host cells by a unique mechanism.  It is thought that when an ingested

spore comes in close association with a host cell in the gastrointestinal tract, it

encounters the optimal conditions for spore activation triggering a cascade of

events leading to the extrusion of a hollow polar filament that pierces the host cell

plasma membrane (Cali and Takvorian 1999).  The infectious sporoplasm is then

injected into the host cell cytoplasm where the parasite subsequently propagates.

When developing spores mature, the host cell ruptures releasing them into the

lumen of the gut to be excreted back into the environment, infect nearby cells, or,
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as in the case of E. intestinalis, disseminate to other tissues and organs

throughout the body (Cali et al. 1993).  Microsporidia spores may also be

internalized by both professional and non-professional phagocytes via an actin-

based mechanism (Weidner and Sibley 1985; Couzinet et al. 2000).  However,

regardless of whether spores are internalized or extra-cellular, host cells are not

known to become infected without spore polar filament extrusion.

Because of the obligate intracellular nature of microsporidia, most are

routinely cultured and propagated with host cells in vitro (Visvesvara et al. 1999).

During in vitro cultivation, microsporidia spores are generally recognized to

adhere to host cell surfaces and adherent spores cannot be removed by routine

washing.  Although this adherence seems to occur spontaneously, the

mechanism of adherence has not been described.  Therefore, this study

examines spore adherence to host cells to determine if a specific mechanism is

involved.

In studies of other eukaryotic microbes, glycosaminoglycans (GAGs),

proteoglycans that are found on almost all cell types, have been shown to play

important roles in selection of and attachment to host cells.  Plasmodium

falciparum sporozoites, for example, bind heparin and heparan sulfate, allowing

them to target hepatocytes and the placenta (Frevert et al. 1993; Wadstrom and

Ljungh 1999).  And the broad host and tissue recognition of Toxoplasma gondii is

attributed to the ability of the parasite to bind a variety of host GAGs (Carruthers

et al. 2000).  Therefore, it was of interest to determine the role of host cell GAGs

in adherence of E. intestinalis spores.
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Materials and Methods

Microsporidia and Host Cell Cultivation.

Adherent host cell lines used for cultivation of microsporidia spores and as

substrate for spore adherence assays included African green monkey kidney

cells (Vero; ATCC number CCL-81), rabbit kidney cells (RK-13; ATCC number

CCL-37), human epithelial colorectal cells (Caco-2; ATCC number HTB-37),

chinese hamster ovary cells (CHO, ATCC number CCL-61), mutant CHO pgsA-

745 cells (ATCC number CRL-2242), and mutant CHO pgsD-677 cells (ATCC

number CRL-2244).  All cell lines were grown as previously described (Hayman

and Nash 1999) in Dulbecco’s modified Eagle’s medium (BioWhittaker,

Walkersville, MD) supplemented with L-glutamine (2 mM), penicillin (100 U/ml),

streptomycin (100 µg/ml), amphotericin B (0.25 µg/ml), and 10 % fetal bovine

serum (FBS) (BioWhittaker) in 5% CO2 at 37oC.  For maintenance of Vero and

RK cells, medium with 10% FBS was replaced with 2% FBS.

For microsporidia spore propagation, subconfluent Vero monolayers in T-

75cm2 flasks were infected with E. intestinalis spores as previously described

(Hayman et al. 2001).  Briefly, spores were incubated with the adherent host cells

for 12 to 15 days with medium replacement every two or three days.  Spores

were then harvested from the flasks daily until most host cells were dead.  The

spores were purified from host cell debris by washing once with 0.25% sodium

dodecyl sulfate (SDS), followed by several washes with sterile water.  Spore

stocks were counted and stored at 4oC.
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Spore Adherence Assays

Host cells were seeded on glass coverslips (18 mm size) at 5x105 in 12

well plates with normal growth medium and allowed to grow for a minimum of 16

hours.  Then, 1 or 10 million E. intestinalis spores were added to each well with 1

ml of fresh medium supplemented with 1 mM MnCl2 for 4 hours either on ice or at

37oC.  In the spore adherence time course experiment, the incubation period

ranged from 2 to 48 hours.  The spore inocula represent an approximate

multiplicity of infection of 2 and 20, respectively.  The coverslips were then

harvested and washed with PBS to remove any non-adherent spores.  Dried

coverslips were fixed with acetone/methanol and an immunofluorescent assay

(IFA) was performed to quantitate the number of bound spores.  The monoclonal

antibody 7G7 (Lujan et al. 1998), which recognizes SWP2 of E. intestinalis

(Hayman et al. 2001), was used as the primary antibody, and a fluorescene

isothyocyanate conjugated anti-mouse was used as the secondary antibody

(Rockland Immunochemicals).  Fluorescent microscopy (Zeiss; Axiovert S100)

was employed to count the number of bound spores per field of magnification at

630X and the results were expressed as the mean +/- standard deviation or in

some experiments as the percentage of adherent spores relative to control

samples is shown.

The glycosaminoglycans (GAGs) that were tested as potential inhibitors of

spore adherence included heparin (Sigma), chondroitin sulfate A (CSA; Sigma),

chondroitin sulfate B (CSB; Sigma), type II mucin (Sigma), dextran sulfate

(Sigma), and dextran (Sigma).  Each GAG was dissolved in maintenance
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medium supplemented with 1 mM MnCl2 at the maximal indicated concentration

and was serially diluted.  The diluted GAGs were added with the spores to Vero

host cell grown on glass coverslips as described for the adherence assay.  Spore

adherence was quantitated by IFA and the percentage of adherent spores was

calculated.  Effective concentration values (EC50), defined as the concentration of

inhibitor that produces a 50% fall of spore adherence from 100% to as

asymptotic value, were calculated by generating standard curves from the spore

inhibition data with the assistance of the SAS/PC statistical software (SAS

Institute, Inc).

To confirm the role of host cell surface GAGs in spore adherence, Vero

host cells were grown on glass coverslip in the presence of 1 or 10 mM p-

nitropheny-β-D-xylopyranoside for 24 hours prior to the addition of 10 million

spores per well.  Xylopyranoside acts as a soluble acceptor for GAG

polymerization and will compete with the endogenous proteoglycan core

assembly, resulting in an absent or diminished amount of surface proteoglycans

(Mark et al. 1990).  In control samples, p-nitrophenyl-α-D-galactopyranoside,

which does not affect GAG assembly, was substituted.

The adherence assay was also performed using the CHO mutant cell lines

pgsA-745 (ATCC# CRL-2242) and pgsD-677 (ATCC# CRL-2244) and the non-

mutated CHO-K1 parent cell line (ATCC# CCL-61).  These mutant cell lines are

deficient or have reduced surface GAGs (Esko et al. 1985; Esko et al. 1988).

After seeding the cells on glass coverslips, 10 million spores were added to the
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mutant and parent cell lines in 1 ml of medium for 4 hours on ice.  The coverslips

were removed, washed and fixed and an IFA was performed as described.

The role of host cell surface GAG sulfation was confirmed by exposing

Vero host cells to 10, 20, 40, or 60 mM NaClO3, or NaCl2 as a control, for 24 or

48 hours prior to the addition of 10 million E. intestinalis spores.  The standard

adherence assay was performed and the percentage of adherent spores were

calculated relative to untreated control samples.

Rate of Infection in the Presence of Inhibitor

Using Vero host cells grown on glass coverslips, the spore adherence

assay was performed in the presence of 10 µg/ml CSA for 4 hours.  The

inoculum ranged from 1 to 100 million spores per well of a 12 well culture plate.

Control coverslips were removed after 4 hours and processed by IFA to measure

the percentage of inhibition of spore adherence in the presence or absence of

CSA.  The remaining coverslips were washed with PBS to remove unbound

spores and placed back in culture for about 30 hours to allow infection and

intracellular spore propagation to occur.  The developing intracellular spore

clusters were visualized by propidium iodine staining, and the percentage of

infected cells was determined by dividing the number of infected cells by the total

number of host cells per field of 630X magnification.
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Transmission Electron Microscopy (TEM)

Caco-2 intestinal epithelial host cells were seeded at 1 x 105 on 8 µm

porous transwell inserts (BD Biosciences) in growth medium and were

maintained for at least 7 days prior to experimentation.  Fifty million E. intestinalis

spores were added to the upper chamber and were allowed to adhere to the host

cell surfaces for 8 hours.  The unbound spores were removed by washing and

the host cells were prepared for transmission electron microscopy as previously

described (Guseva et al. 2003).  Briefly, the host cell / spore sample was fixed in

2% glutaraldehyde, 0.5% paraformaldehyde in 0.1 M cacodylate buffer for 2

hours at 37oC.  The host cells were then scraped from the inserts, pelleted, and

enrobed in 3% SeaKem agarose.  After washing the host cell pellet in 0.2 M

cacodylate buffer containing 0.3 M sucrose, it was post-fixed for 1 hour at 25oC in

1% osmium tetroxide in 0.2 M cacodylate buffer.  The sample was sequentially

dehydrated in ethanol, infiltrated with Epon-Araldite 812 resin, and embedded in

fresh Epon.  Ultra-thin sections were cut on a Reichert Ultracut (Leica) microtome

and subsequently mounted and viewed with a Tecnai-10 electron microscope.

Results

Microsporidia Spore Adherence to Host Cells

Encephalitozoon intestinalis can be cultured easily in vitro using a variety

of adherent cell lines (Visvesvara et al. 1999).  Once in culture, the spores

adhere to the surface of host cells as observed by light microscopy.  The

adherent spores cannot be removed by routine washing.  To examine spore
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adherence more closely, TEM was performed using E. intestinalis spores and the

human intestinal epithelial cell line Caco-2 (Figure 2.1A).  Many adherent spores

were observed in direct physical contact with both the host cell surface and

microvilli.  Although it is sometimes difficult to determine the orientation of

adherent spores because of the ultra-thin sections used in transmission electron

microscopy, some spores were clearly attached longitudinally to the cell surface.

Other spores were oriented such that the apical end of the spore, where the

anchoring disk is located, was in close approximation to the host cell (Figure

2.1B).  Orientation in this manner would allow for the extrusion of the polar

filament directly into the host cell.  However, many retained the polar filament in

the characteristic coiled nature within the spore, despite attachment in this

orientation.  This may indicate that spore adherence to host cell surfaces is an

event that is a precursor to spore activation perhaps leading to polar filament

extrusion.  Alternatively, it is possible that the attached spores are incapable of

polar filament discharge.
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Rate of E. intestinalis Spore Adherence to Host Cells

An adherence assay was developed to quanitate spore adherence to host

cells.  The rate of E. intestinalis spore adherence to the surface of the host cell

was measured, and the peak in spore adherence occurred about 8 hours post

inoculation followed by a slight decrease and plateau in adherence over the next

40 hours (Figure 2.2).  At the peak of adherence in either Vero or RK cells,

approximately 800 spores were observed per field of magnification.  This equates

to approximately 10 spores per cell.  Whether this represents a saturation of

spore adherence to host cell surfaces or the limit of adherence capable spores in

the inoculum is unclear; however, these calculations indicate that approximately

Figure 2.1  TEM of E. intestinalis spores attached to Caco-2 cell surfaces.  E.
intestinalis spores were allowed to adhere to the apical surface of confluent Caco-
2 cells grown on porous transwell inserts.  After a 4-hour incubation of host cells
with 1 x 107 spores, the unbound spores were removed by washing, and the
transwell inserts were fixed and processed for TEM as described.  The attached
spores appear to be in direct contact with the cell surface or microvilli and have
either intact, un-extruded polar filaments (A) or extruded polar tubes (B).

A. B.
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one-tenth of the inoculum was attached in these experiments.  The decrease in

spore adherence beginning after 8 hours incubation may indicate phagocytosis

and subsequently degradation by the host cell.  Alternatively, it may indicate

attachment and release of spores from the host cell surface.

Inhibition of Spore Adherence by Exogenous Sulfated Glycosaminoglycans

GAGs are found on the surface of almost all vertebrate cell lineages

(Bernfield et al. 1992; Yanagishita and Hascall 1992).  The involvement of GAGs

in adherence of other pathogens to host cells, leading to invasion and infection,

has been well documented (Bernfield et al. 1999).  To determine if GAGs play a
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Figure 2.2  The rate of E. intestinalis spore adherence to Vero and RK host cells.
An adherence assay was performed with 1 x 107 spores and either Vero or RK cells
grown on glass cover slips in 12 well plates.  The cover slips were removed at the
indicated times and washed.  The bound spores were quantiated by
immunofluorescences as described. Twenty random magnification fields for each
data point were counted and the mean number of attached spores was determined
for each indicated time point.  These data represent one experiment of three that
were performed with similar results.
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role in microsporidial spore adherence to host cells, various exogenous GAGs

were used as inhibitors of adherence.  In this experiment, heparin, CSA, CSB,

mucin, and dextran sulfate inhibited E. intestinalis adherence to host cells,

implicating the involvement of host cell surface GAGs in E. intestinalis spore

adherence to host cell surfaces (Figure 2.3).  The inhibition was dose dependent,

resulting in about 73-88% reduction in spore adherence when higher

concentrations of the exogenous proteoglycans were used as compared to

control samples without exogenous proteoglycans.  Furthermore, dextran sulfate

inhibited spore adherence in a dose dependent manner, whereas, non-sulfated

dextran did not.  These results suggest that spore adherence to host cells

involves a specific GAG dependent mechanism which is limited to sulfated

GAGs.
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To evaluate and compare effective concentrations of GAG inhibitors,

standard curves were generated for each GAG tested and the EC50 values were

determined (Table 2.1).  EC50 values are defined as the effective concentration

that produces a 50% fall of spore adherence from 100% to an asymptotic value.

These data show that heparin is the most efficient and dextran sulfate is the least

efficient of the inhibitors tested.  However, when the standard curves were

generated, it was evident that dose dependent inhibition leveled off revealing the

maximal inhibition regardless of inhibitor concentration (i.e. peak reduction).
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Figure 2.3  E. intestinalis spore adherence is inhibited by exogenous sulfated
glycans.  An adherence assay was performed as described in the presence or
absence of various exogenous glycans in 10 fold serial dilutions.  The glycans
tested as potential inhibitors include the GAGs heparin, chondroitin sulfate A,
chondroitin sulfate B, and hyaluronic acid (A).  The non-GAG glycans tested
include porcine stomach mucin, dextran sulfate, and dextran (B).  After four hours
of incubation of 1 x 107 spores with or without the glycan inhibitor, the host cells
grown on coverslips were removed and washed of unbound spores.  The mean
number of attached spores was determined for each concentration of potential
inhibitor.  The percentage of spores inhibited from adherence is shown relative to
control samples without exogenous glycans.  The data presented here represent
one experiment of three that were performed with similar results.
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These data indicate that while heparin is the most efficient at inhibiting spore

adherence, the maximal level of inhibition achieved is approximately 28% of the

control, whereas the estimated maximal level of inhibition for mucin is

approximately 1.5% of control.

Table 2.1  EC50 Values for Exogenous GAG Inhibitors of Spore Adherence

GAG
EC50a 95% Confidence

Interval
Estimated

Peak
Reductionb

µg/ml Lower Upper µg/ml (+/- SEc)

Heparin 0.097 0.059 0.157 28.4 (1.38)
CSAd 14.08 6.44 30.78 18.0 (2.72)
CSBe 0.641 0.193 2.13 11.2 (2.99)
Mucin 0.119 0.003 4.87 1.5 (13.33)
Dextran
Sulfate

53.67 19.45 414.11 15.3 (4.46)

Dextran No Response Curve
a  EC50 is defined as effective concentration that produces a 50%
fall of spore adherence from 100% to the asymptotic value (i.e. Peak Reduction).
b  Peak Reduction is the lowest concentration of inhibitor calculated to
achieve the maximal inhibition.
c  Standard Error.
d  Chondroitin Sulfate A
e  Chondroitin Sulfate B

Confirmation of Sulfated Glycosaminoglycan Mediated Spore Adherence

To confirm that E. intestinalis spore adherence involves surface GAGs,

host cells were grown in the presence of p-nitrophenyl-β-D-xylopyranoside for 24

hours prior to performing the adherence assay.  p-nitrophenyl-β-D-

xylopyranoside acts as a soluble receptor for GAG polymerization and will

compete with endogenous proteoglycan core assemblies, resulting in an absent

or diminished amount of surface proteoglycans (Mark et al. 1990).  Following

host cell treatment with xylopyranoside, E. intestinalis spore adherence was
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reduced by 90% compared to untreated host cells (Figure 2.4).  As a control,

host cells were also treated with p-nitrophenyl-α-D-galactopyranoside, which

does not affect GAG assembly (Mark et al. 1990); therefore, the host cells have a

full complement of surface GAGs.  The data show no significant difference

compared to untreated host cells.

The spore adherence assay was also performed with non-mutant parent

and mutant CHO cell lines that lack specific GAG assemblies (Esko et al. 1985;

Esko et al. 1988).  Spore adherence to the pgsA-745 mutant cells that are

completely surface GAG deficient was reduced 94% in comparison to control

(Figure 2.5).  Interestingly, using the mutant cell line pgsD-677 that lacks surface

Figure 2.4  E. intestinalis spore adherence to host cells with reduced surface
proteoglycans following xylopyranoside treatment.  The standard adherence
assay was performed using Vero host cells that were treated with normal medium
supplemented with either 1 or 10 mM p-nitrophenyl-β-D-xylopyranoside or control

p-nitrophenyl-α-D-glactopyranoside for 24 hours prior to the assay.  This

experiment was repeated three times with similar results.  Asterisk indicates
significance at p<0.0001 using the Student’s t-test.
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heparan sulfate but has three-fold higher levels of chondroitin sulfate also results

in a 91% reduction in adherence. These data indicate that E. intestinalis

preferentially binds host cell surface heparan sulfate and confirm that E.

intestinalis spore adherence is dependant on host cell surface GAGs.

In additional experiments, host cells were treated with sodium chlorate

that significantly reduces sulfation of surface chondroitin and heparan without

significantly altering host cell growth (Humphries and Silbert 1988).  When host

cells are treated with 10 to 60 mM sodium chlorate for 24 or 48 hours prior to the

adherence assay, E. intestinalis spore adherence is reduced approximately 40%

Figure 2.5  E. intestinalis spore adherence to host cells with reduced surface
proteoglycans.  The standard adherence assay was performed using CHO pgsA-
745 and pgsD-677 mutant cell lines in addition to the control non-mutated CHO
parent cell line.  This experiment was repeated four times with similar results.
The data are shown as the percentage of spore adherence relative to control
samples of non-mutated parent CHO cells.  Twenty random fields were counted
for each data point.  The data presented are representative of three independent
experiments.  Asterisk indicates significance at p<0.0001 using the Student’s t-
test.
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to 80%, respectively (Figure 2.6).  Host cells treated with equivalent

concentrations of sodium chloride showed no inhibition of spore adherence as

compared to untreated host cells.  These data confirm that microsporidia spore

adherence to host cells is dependent on sulfated surface GAGs.

Inhibition of E. intestinalis Spore Adherence Results In Decreased Infection

To determine the role of spore adherence in infection, the number of

infected host cells was quantified after E. intestinalis spores were allowed to

adhere to host cell surfaces in the presence or absence of an inhibitor (Figure

Figure 2.6  E. intestinalis spore adherence to host cells with reduced sulfated
surface proteoglycans following sodium chlorate treatment.  Vero host cells
grown on glass cover slips in 12 well plates were treated with 10, 20, 40, or
60 mM sodium chlorate or control sodium chloride for 24 or 48 hours prior to
the standard spore adherence assay.  The percentage of attached spores
relative to spore adherence on non-treated host cells is shown.  All sodium
chlorate treated samples are significantly different than either sodium
chloride or non-treated controls (p<0.0001).  The data presented are
representative of three experiments that were performed with similar results.
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2.7A)  Following adherence in the presence or absence of the inhibitor, the

unbound spores were removed by washing.  The coverslips were placed back in

culture without inhibitor, and the infection was allowed to progress for about 30

hours to a stage at which developing immature and mature spores can be

visualized by immunofluorescence and the percentage of host cell infection can

be calculated.  When 1 or 10 million spores are used as the inocula, there was

no significant difference in the percentage of infected host cells in CSA treated

samples as compared to untreated samples (Figure 2.7B).  However, when an

inoculum of 50 or 100 million was used, there was a significant decrease in the

percentage of infected host cells in the presence of the inhibitor.  The reduction

was 78% when 50 million spores were used and 68% when 100 million spores

were used.  These data therefore indicate a direct relationship between E.

intestinalis spore adherence and host cell infection.
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Discussion

Our data indicate that microsporidia spore adherence to host cell surfaces

involves a specific mechanism that is mediated by host cell surface sulfated

GAGs.  In these studies, all tested GAGs inhibited spore binding to host cell

surfaces with the exception of non-sulfated dextran.  This mechanism of

adherence was confirmed by treating host cells with xylopyranoside to reduce the

amount of surface GAGs, by using host cells deficient in surface GAGs, and by

exposing host cells to sodium chlorate to reduce the level of GAG sulfation.  In

Figure 2.7  The effects of spore adherence inhibition on host cell infection.  E.
intestinalis spores were allowed to adhere to Vero cells monolayers with or without
the addition of chondroitin sulfate A (CSA).  (A) After four hours of incubation, one
set of coverslips was removed to quanitate the percent inhibition.  (B) The
remaining coverslips were washed to remove unattached spores and placed back
in culture for 30 hours.  Infection was visualized by staining intracellular spore
clusters with propidium iodide as described. The percentage of infected host cells
was calculated by dividing the mean number of infected cells per field of
magnification by the mean total number of cells per field of magnification.  Twenty
random fields were counted for each data point.  The asterisk indicates significance
at the p<0.0001 level.  This experiment was repeated three times with similar
results.
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each of these studies, E. intestinalis spore adherence to host cells was reduced

compared to untreated or non-mutated host cells.  Collectively, these data give

strong evidence for the involvement of host cell surface sulfated proteoglycan in

a specific spore adherence mechanism.

GAGs are found on the surface of almost all cell types (Bernfield et al.

1992; Yanagishita and Hascall 1992) and are used by many intracellular

pathogens to attach and gain entry to host cells.  For example, the capability of

Toxoplasma gondii to infect a wide variety of hosts and tissues is thought to be

due to its ability to recognize various host cell surface GAGs (Carruthers et al.

2000).  Microsporidia are known to have a wide host range, and a variety of host

cell lines can support E. intestinalis growth in vitro (Visvesvara et al. 1999).  In

our studies, E. intestinalis spore adherence was inhibited by five different GAGs.

It is possible that microsporidia’s ability to infect a wide range of hosts and

tissues may correlate with its ability to use multiple GAGs for adherence.

However, more research is necessary in order to conclusively establish this link.

Other intracellular microbial pathogens specifically use host cell surface

heparan sulfate to attach and gain entry.  The bacterial pathogens Listeria

monocytogenes (Alvarez-Dominguez et al. 1997) and Mycobacterium spp.

(Pethe et al. 2000) produce a surface heparin binding protein involved in

adherence to epithelial cells.  The Dengue (Chen et al. 1997) and foot-and-mouth

viruses  also interact with cell surface heparan sulfate, but these interactions

alone may not in itself be sufficient for infection (Jackson et al. 1996).  In

addition, the parasites Trypanosoma cruzi (Herrera et al. 1994), Plasmodium
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spp. (Frevert et al. 1993), and Leishmania spp. (Butcher et al. 1992; Love et al.

1993) have been reported to use heparan sulfate in host cell adhesions.  Our

data show that microsporidia spores apparently have a preference for sulfated

heparan proteoglycans.  The CHO mutant cell line deficient in heparan sulfate

showed roughly the same reduction in spore adherence as the CHO mutant cell

line deficient in both heparan sultate and chondroitin sulfate.  Moreover, the

calculated EC50 values indicate that heparin was the most efficient at spore

adherence inhibition.  These data indicate that even though a variety of GAGs

can inhibit microsporidia spore adherence to host cells, microsporidia may

preferentially use host cell heparan sulfate in adherence that is similar to that

observed for other intracellular pathogens.

Another gastrointestinal pathogen, Entamoeba histolytica, recognizes the

terminal galactose / N-acetyl-D-galactosamine residues of target glycoproteins

that are found on both intestinal host cells and in colonic mucin (Petri et al.

1987).  Invasive amebiasis initiates by attachment of the amoeba to the mucus

layer followed by amebic adherence to mucosal epithelial cells (Petri and Mann

1993).  Our data show that of the sulfated proteoglycans tested for microsporidia

adherence inhibition, mucin may be the most physiologically relevant because

the spores are produced and released into the intestine.  A combination of mucin

with a change in pH has been shown to induce the extrusion of the polar filament

in spores in the absence cells (Pleshinger and Weidner 1985), but the conditions

for spore activation in vivo are not known.  It is possible the microsporidia may

adhere in a similar manner by first attaching to intestinal mucus then gaining
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access to the host cell surface.  This method would allow microsporidia to

circumvent the host cell protective measure by using intestinal mucus to its

advantage.

Several viruses are known to use a combination of host cell receptors to

attach and gain entry.  For example, herpes viruses initially bind to host cell

heparan sulfate via a viron glycoprotein (Feyzi et al. 1997; Geraghty et al. 1998).

The virions then fuse with the host cell membrane using various other viral

glycoproteins.  Furthermore, the foot-and-mouth viruses use cell surface heparan

sulfate to concentrate virus particles for subsequent integrin receptor binding

(Jackson et al. 1996; Putnak et al. 1997).  In this study, complete ablation of

spore adherence to host cells is not achieved with the inhibitors tested.

Depending on the inhibitor used, however, the maximal level of spore inhibition

achieved is roughly 70% to 90% of control.  One possible reason for this, other

than not enough inhibitor used, is that there may be another mechanism of spore

adherence that is independent of the sulfated proteoglycan mechanism.

Additional studies are underway to determine if microsporidia use an additional

mechanism for spore adherence to host cells.

Microsporidia spore adherence may be a host defense mechanism geared

toward ridding the host of a potential infection.  It has been shown that non-

professional phagocytic cells, like those lining the intestines, can take up both

live and dead Encephalitozoon ssp. spores through traditional phagocytic

mechanisms involving host cell actin poymerization (Couzinet et al. 2000).

These phaogcytic mechanisms do not involve host cell membrane ruffling
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characteristic of macropinocytosis (Couzinet et al. 2000; Foucault and Drancourt

2000).  Once inside the host cell, the phagocytosed spores could be degraded.

However, with the change in environmental conditions in degradation centers

within host cells, it is possible that microsporidia spores could still activate and

extrude its polar filament into the host cell cytoplasm and cause an infection

(Couzinet et al. 2000).  Alternatively, the internalized spores could theoretically

pass through the host cell and emerge into the subepithelial layer.  Neisseria use

a similar mechanism to transverse epithelial barriers to enter the bloodstream

(Gray-Owen 2003).  In this scenario, spore adherence may be more relative to

dissemination than infection.  Encephalitozoon spp. and others are known to

disseminate to other tissues and organs (Cali et al. 1993; Kotler and Orenstein

1999).  However, further study is required to determine if there is a relationship

between spore adherence and dissemination.

The functionality of microsporidial spore adherence is as of yet unknown.

Spore germination is a process that requires multiple steps including spore

activation, the build up of internal pressure, polar filament extrusion, and the

passage of the infectious sporoplasm.  Microsporidial spore adherence to host

cell surfaces may be the initial event that signals the spore to activate and sets

into motion the cascade of events leading to germination and infection.  In

support of this hypothesis, we clearly show that inhibition of spore adherence

results in less host cell infection, indicating a direct association between spore

adherence and infection.  If spores are activated by contact with the host cell

surface, it is postulated that a calcium influx may play an initial role in the
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following cascade of events (Pleshinger and Weidner 1985; Leitch et al. 1993;

He et al. 1996).  On the other hand, if spore-cell contact is not signaling

activation of the spore, the anchoring of a non-activated spore would be

beneficial to the physical piercing of host cells by the polar tube when the spore

becomes activated.

In summary, one specific mechanism of microsporidia spore adherence to

host cells has been identified that involves host cell surface sulfated GAGs.

Although these studies show that a variety of proteoglycans can inhibit spores

from attaching to host cells, there appears to be a preference for heparan sulfate

proteoglycans.  These studies also show a direct association of spore adherence

and host cell infection because reduced adherence due to exogenous

proteoglycans in an in vitro assay results in reduced host cell infection.

Identifying and characterizing the mechanism of spore adherence may lead to

understanding of how spores become activated.  This may ultimately lead to the

development of novel therapeutics.
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Abstract

The infection process of intracellular opportunistic microsporidia involves the

forcible eversion of a coiled hollow polar filament that pierces the host cell membrane,

allowing the passage of infectious sporoplasm into the host cell cytoplasm.  Although

the exact mechanism of spore activation leading to polar filament discharge is unknown,

we have shown that spore adherence to host cells, which is mediated by sulfated

glycosaminoglycans, may play a vital role.  When adherence is inhibited, host cell

infection decreases, indicating a direct link between adherence and infection.  The goal

of this study was to evaluate the effects of exogenous divalent cations on microsporidia

spore adherence and infection.  Data generated using an in vitro spore adherence

assay show that spore adherence is augmented by manganese (Mn2+) and magnesium

(Mg2+), but not by calcium (Ca2+).  However, each of the three divalent cations

contributed to increased host cell infection when included in the assay.  Finally, we

show that Mn2+ and Mg2+ may activate a constituent on the microsporidia spore, not on

the host cell, leading to higher infection efficiency.  This report further supports recent

evidence that spore adherence to the host cell surface is an important aspect of the

microsporidial infection process.

Keywords:  Adherence, Infectivity, Divalent Cation, Manganese, Magnesium, Calcium,

Encephalitozoon intestinalis
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Introduction

Microsporidia are obligate intracellular opportunistic pathogens that infect a wide

range of hosts including insects, fish, birds, and mammals (Wasson and Peper 2000;

Mathis et al. 2005).  These organisms were once considered primitive eukaryotes but

are now classified as highly derived fungal pathogens (Keeling et al. 2000; Keeling and

Fast 2002).  While approximately 1200 species of microsporidia have been identified,

only 13 are known to infect humans.  Of these, Enterocytozoon bieneusi is the most

frequently encountered (Mathis et al. 2005).  Immunocompromised individuals,

particularly those with AIDS, are susceptible to E. bieneusi infection.  Unfortunately, our

understanding of E. bieneusi is limited due to the lack of a reliable in vitro culture

system (Visvesvara et al. 1995).  Like E. bieneusi, Encephalitozoon species are

common causes of human microsporidiosis (Kotler and Orenstein 1999).

Encephalitozoon intestinalis and E. cuniculi cause gastrointestinal disorders as well as a

myriad of disseminated infections (Weber et al. 1994).  Unlike E. bieneusi,

Encephalitozoon species are easily cultured to high yields in vitro (Visvesvara 2002).  A

reliable culture system, coupled with the sequenced E. cuniculi genome, has

contributed to a better understanding of these unique fungal pathogens and their

interactions with host cells.

Microsporidia are unique in their infective process.  Ingested spores release a

hollow filament (or polar tube) that is used to transfer infectious sporoplasm into the

host cell cytoplasm.  Several hypotheses exist describing the method of polar tube entry

into the host cell.  One hypothesis suggests that the polar tube penetrates the host cell

cytoplasmic membrane following forceful extrusion from the spore (Keohane and Weiss
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1998).  A second hypothesis suggests the extruded polar tube is internalized following

interaction between polar tube proteins, particularly PTP1, and a yet unidentified host

cell receptor (Xu et al. 2004).  Regardless of the mechanism, infectious sporoplasm

ultimately passes through the hollow tube and into the host cell cytoplasm where the

organism begins to replicate.  After development, the host cell ruptures releasing

mature spores into the extracellular environment.  For this mechanism of infection to be

effective, it is essential for the spore to be in close proximity to the host cell.  Otherwise,

polar tube release would be misdirected and ineffective as a mode of infection.

In our previous studies, we have shown that microsporidia spores adhere to the

surface of host cells via a mechanism involving host cell surface sulfated

glycosaminoglycans (Hayman et al. 2005).  Heparin, chondroitin sulfate A, and

chondroitin sulfate B inhibited adherence as much as 88% when compared to control

without exogenous glycans.  The non-sulfated, negatively charged hyaluronic acid failed

to inhibit adherence suggesting that adherence may not be directly linked to the

negative charge.  These data were confirmed by using compounds that either limited

host cell surface expression of glycosaminoglycans or decreased surface sulfation.

Furthermore, when spore adherence was inhibited by the addition of exogenous

sulfated glycans, host cell infection was dramatically reduced.  These results shaped

our current hypothesis that spore adherence is an integral process of host cell infection.

In the current study, we further characterize spore adherence by examining the

effects of divalent cations, which are documented effectors of numerous host-pathogen

interactions.  Examples include the Ca2+ dependent attachment of Vibrio cholerae to

rabbit intestinal cells (Jones et al. 1976), the Ca2+ and Mg2+ modulated attachment of
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Sporothrix schenckii to human fibronectin and endothelial cells (Lima et al. 2001;

Figueiredo et al. 2004), and the inhibition of Giardia intestinalis adherence to intestinal

epithelial cells by EDTA and EGTA (McCabe et al. 1991).

Historically, both cations and anions have been used to elicit microsporidia polar

tube discharge in vitro (Keohane and Weiss 1998).  Although cations and anions can

passively enter the spore, it is suggested that only cations are responsible for

germination (Frixione et al. 1994).  In addition, calcium has been shown to play a

significant role in spore germination.  Chelation of Ca2+ with EGTA or the addition of

calcium channel blockers reduce filament discharge (Leitch et al. 1993).  And, by using

a binding dye, calcium was localized to the polaroplast and was suggested to be

intimately involved in polaroplast swelling leading to polar filament discharge (Weidner

and Byrd 1982).  Other cations such as potassium, sodium, magnesium, and barium

had no apparent effect on polaroplast swelling.  In this study, we provide evidence that

cations are also involved in the augmentation of microsporidia spore adherence to host

cells and this augmentation leads to an increase in host cell infection.

Materials and Methods

Microsporidia and host cell cultivation

African green monkey kidney cells (Vero; ATCC CCL-81) and rabbit kidney cells

(RK-13; ATCC CCL-37) were used for cultivation of E. intestinalis or E. cuniculi spores

as previously described (Hayman and Nash 1999; Hayman et al. 2001).  Spores were

purified from host cell debris by washing once with 0.25% sodium dodecyl sulfate

followed by centrifugation and several washes with sterile H2O.  Spore stocks were
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counted and stored in sterile H2O at 4°C.  Alternatively, microsporidia were purified by

Percoll gradient centrifugation as previously described (Green et al. 1999).  This

protocol has the added advantage of separating mature and immature microsporidial

forms.

Spore adherence assays

Vero and RK-13 were used as substrates for spore adherence assays as

previously described (Hayman et al. 2005).  Host cells were seeded on circular glass

coverslips (18mm) at 5x105 in 12-well plates with normal growth medium and were

allowed to grow to confluence.  A serial dilution of MnCl2, MgCl2, or CaCl2 from 1 mM to

0.001 mM was prepared in HEPES buffered saline (HBS) or fresh medium.  Each

divalent cation dilution was added to a well containing a host cell monolayer.  In assays

confirming the role of the divalent cation, 0.5 mM ethylenediaminetetraacetic acid

(EDTA) was used for chelation.  Ten million (1 x 107) E. intestinalis or spores were then

added to each well followed by a 4 h incubation on ice.  Our previous study showed no

discernable difference in adherence between E. intestinalis and E. cuniculi spores

(Hayman et al. 2005).  These assays were performed on ice in an effort to minimize

host cell surface protein recycling.  Following the 4 h incubation, coverslips were

washed thoroughly in phosphate buffered saline (PBS) to remove un-bound spores.

Monolayers were fixed with acetone:methanol for 10 min at room temperature, and an

immunofluorescence assay was performed to quantify the number of bound spores as

previously described (Hayman et al. 2005).  The results were expressed as the mean

+/- standard deviation of 10-20 fields counted in a blinded fashion.  Results were also
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expressed as the percentage of adherent spores relative to control samples.

Significance was determined using the Student’s t test.

Infectivity assays

Infectivity assays were conducted by first performing duplicate spore adherence

assays in DMEM with divalent cation supplementation.  While one set of coverslips was

analyzed for adherence, the other set was washed of un-bound spores following

adherence and placed in a clean 12-well plate with 1ml fresh medium per well without

divalent cation.  These monolayers were incubated for 36 hours at 37oC in 5% CO2 to

allow infection of host cells and development of microsporidia.  Following incubation,

coverslips were removed, thoroughly washed in PBS, and fixed in acetone:methanol.

Coverslips were washed again in PBS followed by a 10 min incubation in 0.01% Uvitex

2B in PBS.  The monolayers were again washed and inverted on a microscope slide.

Microscopy using a UV filter was used to count the number of host cells and infected

host cells per field.  Ten to 20 fields were selected in a blinded fashion and evaluated at

400X magnification.  The results were expressed as percentage of host cells infected.

Host cell and spore fixation

To determine which component is activated by the divalent cation, spore

adherence assays were also conducted with fixed host cells or fixed spores.  Initially,

host cell monolayers were pretreated with 1 mM MnCl2 in DMEM medium for 1 hour on

ice.  Control monolayers were incubated under the same conditions in DMEM medium

with PBS.  The host cell monolayers were then washed with PBS and fixed with cold 2%
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paraformaldehyde for 15 min on ice.  Fixed monolayers were washed thoroughly with

PBS to remove residual fixative and were then used in spore adherence assays with or

without post-fixation treatment with 1 mM MnCl2.

A similar series of assays was conducted with fixed E. intestinalis spores.

Microsporidia spores were pelleted, suspended in PBS with 1 mM MnCl2, and incubated

for 1 hour on ice.  Control spores were incubated in PBS under similar conditions, but

without exogenous MnCl2.  All spores were washed 3 times with PBS and fixed with 2%

paraformaldehyde overnight at 4oC.  Spores were washed with PBS to remove residual

paraformaldehyde.  The fixed microsporidia spores were then used in spore adherence

assays with live host cell monolayers in fresh medium with or without post-fixation

treatment of 1mM MnCl2.

Results

Mn2+ and Mg2+, but not Ca2+, augment spore adherence

To further characterize spore adherence, we examined the effects of the divalent

cations Mn2+, Mg2+, and Ca2+ on this process.  When added independently to the

adherence assay conducted in HBS, the cations from MnCl2 and MgCl2 augmented

spore adherence to host cell surfaces in a dose-dependant manner (Figure 3.1).  No

augmentation of spore adherence was detectable at the minimum concentration of

divalent cation evaluated (0.001 mM).  However, MnCl2 augmented spore adherence 3-

fold at a concentration of 0.1 mM.  At 1 mM, both MnCl2 and MgCl2 augmented spore

adherence greater than 4-fold.  At 10 mM, MnCl2 and MgCl2 augmented spore
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adherence by >6-fold and >5-fold, respectively.  Interestingly, the addition of CaCl2 did

not influence spore adherence at any concentration assayed.

To confirm these findings, the adherence assay was performed in the presence

of both the cation and the chelator EDTA.  The addition of 0.5 mM EDTA is sufficient to

completely abrogate the augmentation seen with 1 mM concentrations of both MnCl2

and MgCl2 (Figure 3.2).  Addition of the chelator reduces spore adherence to basal

levels similar to the amount of spore adherence observed when exogenous divalent

cations are not present.  The addition of EDTA to assays with CaCl2
 had no effect on

spore adherence.
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Figure 3.1  Effects of divalent cations on spore adherence.  Spore adherence assays
were conducted with E. intestinalis spores in HEPES buffered saline with serial
dilutions of MnCl2, MgCl2, or CaCl2 to evaluate the activity of each divalent cation
across a broad range of physiologically relevant concentrations (0.001mM–10mM).
PBS was used as control.  The data shown are from one experiment, which was
repeated three times with similar results.  Asterisks indicate a statistical difference from

control as determined by the Student’s t-test (p<0.0001).
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Mn2+, Mg2+, and Ca2+ increase host cell infection efficiency

To confirm that the addition of divalent cations had an effect on host infection,

infectivity assays were conducted with each divalent cation at a 1 mM final

concentration in the presence or absence of the chelator EDTA (Figure 3.3). After the

adherence assay was performed and the un-bound spores were removed, the host cells

were cultured for an additional 36 hours, a time at which the level of host cell infection

could be quantified by Uvitex-2B staining. These data indicate that when included in the

spore adherence portion of the assay, each of the divalent cations caused increased

host cell infection.  MnCl2, MgCl2, and CaCl2 (1 mM) each facilitated an approximate 2-

fold increase in infectivity.  The increased infectivity attributed to MnCl2 and MgCl2 is not

surprising because both divalent cations also augment spore adherence.  In addition,

when EDTA is added, the level of host cell infection is reduced to control levels,
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Figure 3.2  Effects of EDTA on divalent cation augmented spore adherence.  Spore
adherence assays were conducted with E. intestinalis spores with or without the
addition of 1mM MnCl2, MgCl2, or CaCl2.  In addition, 0.5 mM EDTA was added to
chelate the cations.  The adherence assay was conducted as described.  The data
shown are from one experiment, which was repeated three times with similar results.
Asterisks indicate statistical difference from control as determined by the Student’s t-
test (p<0.0001).
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suggesting that the observed increase in spore adherence is due to the divalent cation

and is not an artifact of the in vitro assay system.  These data further support a direct

correlation between spore adherence and host cell infection.

Interestingly, CaCl2 does not augment spore adherence (Figure 3.2) but does

facilitate an increase in host cell infection (Figure 3.3).  Calcium-induced spore

activation leading to polar filament discharge has been documented (Weidner and Byrd

1982; Pleshinger and Weidner 1985; Leitch et al. 1993).  CaCl2, along with an increase

in pH, promote polar filament discharge, whereas, EGTA, calcium channel antagonist,

and calmodulin inhibitors prevent discharge (Pleshinger and Weidner 1985; Leitch et al.

1993).  It has been speculated that the movement of calcium from polaroplast

membranes leads to a swelling of the polaroplast and polar filament discharge (Weidner
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Figure 3.3  Effects of EDTA on divalent cation augmented infectivity.  Infectivity assays
were conducted with E. intestinalis spores with or without the addition of 1mM MnCl2,
MgCl2, or CaCl2.  In addition, 0.5 mM EDTA was added to chelate the cations.  The
infectivity assay was conducted as described.  The data shown are from one
experiment, which was repeated three times with similar results.  Asterisks indicate
statistical difference from control as determined by the Student’s t-test (p<0.0001).
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and Byrd 1982).  The fact that calcium does not augment adherence but is integrally

involved in polar filament discharge is evidence that adherence and activation are two

separate events.

Contrasting immature and mature spore adherence and infection

E. intestinalis and E. cuniculi spores develop in an asynchronous fashion (Cali et

al. 1993).  Upon host cell rupture, noninfectious immature spores (meronts, sporonts,

and sporoblasts) may be released along with infectious mature spores.  To determine

whether the maturity of spores affects adherence and infectivity, immature spores were

separated from mature spores by gradient centrifugation, and the adherence assay was

performed with both spore populations in the presence or absence of 1 mM MnCl2

(Figure 3.4A).  As expected, the addition of the divalent cation augmented spore

adherence of mature spores approximately 3-fold.  Moreover, adherence augmentation

of the immature spores was more than 7-fold.  Interestingly, there was no significant

difference in the total number of bound spores between immature and mature spores in

the presence of Mn2+.

Following the adherence assay, un-bound spores were removed and host cell

infection was allowed to progress (Figure 3.4B).  Compared to the mature spores, the

immature spores were essentially non-infectious.  It is possible that the limited

percentage of infected host cells detected with the immature spore inoculum was due to

contaminating mature spores from the gradient centrifugation process.  With mature

spores, the percentage of infected host cells was greatly enhanced by the addition of

MnCl2.  The absence of divalent cation during adherence resulted in 16% host cell
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infection, compared to 48% in the presence of 1 mM MnCl2.  These data show that

while the immature spores do not have the ability to infect host cells, they are capable of

adhering to host cells in a manner similar to that of mature spores.  At this time, the fate

of immature, non-infectious spores on the surface of host cells is unknown.  One might

speculate that these spores are, perhaps, phagocytized and degraded by the host cell.

However, it has been shown that apical phagocytosis by host cells is not a significant

event (Leitch et al. 2005).

Divalent cations affect a putative spore ligand

To determine if Mn2+ acts upon the host cells or the spores, these components

were treated with a paraformaldehyde fixative either prior to or following divalent cation

activation.  Pre-treating host cells with 1 mM MnCl2 and subsequently replacing the

medium with medium containing no exogenous MnCl2 did not augment adherence

(Figure 3.5A).  However, the addition of 1 mM MnCl2 with spores in the assay without
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Figure 3.4  Effects of MnCl2 on immature and mature spore adherence and infection.
Spore adherence assays (A) and infectivity assays (B) were conducted with both
immature and mature E. intestinalis spores in the presence or absence of 1 mM MnCl2 as
described.  Immature spores were separated from mature spores by gradient
centrifugation.  The data shown are from one experiment, which was repeated three times
with similar results.  Asterisks indicate statistical difference from control as determined by
Student’s t-test (p<0.0001).
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host cell fixation significantly increased adherence, as expected.  Interestingly, treating

the host cells with the fixative did not significantly alter spore adherence.  Roughly the

same number of spores bound live cells as cells treated with the fixative.  Incubating

host cells with MnCl2 prior to fixation did not augment adherence.  However, MnCl2

addition along with spores following fixation did result in adherence augmentation.

The fact that MnCl2 could augment spore adherence when host cells were fixed

strongly suggests that the cation is activating a ligand on the spore surface.  To confirm

these data, the paraformaldehyde fixative was used to fix the spores in the “active” state

following MnCl2 treatment (Figure 3.5B).  Although the fixative solution alone, without

the addition of divalent cations, reduced the level of spore adherence to approximately

63% of the unfixed control spores, adherence augmentation occurred when the spores

were induced to an active state with MnCl2 treatment prior to fixation.  Adherence was

not augmented if MnCl2 was added after fixation.

These two experiments indicate that microsporidial spores have a surface

molecule that may be activated by specific divalent cations leading to increased spore

adherence.  The identity of this spore adherence ligand is currently unknown.  Because

adherence is, in part, activated by divalent cations and because it is possible that the

activated protein is binding host cell glycoproteins (Hayman et al. 2005), this candidate

adherence ligand may in fact be a lectin.
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Figure 3.5  MnCl2 augments spore adherence by activating a putative protein(s) on the
spore.  (A) A series of spore adherence assays was conducted to determine if the
divalent cation Mn2+ activates a host cell constituent leading to augmentation of spore
adherence.  Both fixed and live host cell monolayers were used in the spore adherence
assay with or without the addition of 1 mM MnCl2.  (B) A series of spore adherence
assays were conducted to determine if the divalent cation Mn2+ activates a spore
constituent leading to augmentation of spore adherence.  This series of assays used E.
intestinalis spores that were either pretreated with 1mM MnCl2 in PBS or were incubated
in PBS alone.  Fixed and live spores were used in spore adherence assays with or
without the addition of 1 mM MnCl2 at the time of assay.  The data are presented as the
fold difference in spore adherence compared to non-MnCl2 treated, non-fixed controls
and are from one experiment, which was repeated three times with similar results.
Asterisks indicate statistical difference from control as determined by the Student’s t-test
(p<0.0001).
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Discussion

To date, five proteins have been identified in the spore wall external to the spore

plasma membrane.  Two spore wall proteins (SWP1 and SWP2) have been localized to

the exospore region in members of the Encephalitozoonidae family (Bohne et al. 2000;

Hayman et al. 2001).  These proteins have conserved cysteine residues in their N-

terminal domains, indicating similar functions, but the C-terminal domains differ.  SWP1

has a glycine/serine repetitive element, and SWP2, which to date has been identified

only in E. intestinalis, has fifty 12-15 amino acid repetitive units of unknown function

(Hayman et al. 2001).  Recently, three additional proteins have been localized to the

chitinous endospore region, which is located between the exospore region and the

plasma membrane (Peuvel-Fanget et al. 2005; Xu et al. 2006).  One protein, called

endospore protein 1 (EnP1), was identified by immunoscreening of a cDNA library

(Peuvel-Fanget et al. 2005).  It is cysteine rich and is postulated to be involved in spore

wall assembly by disulfide bridging.  Another protein, identified by two separate groups,

is called EnP2 or SWP3 (Peuvel-Fanget et al. 2005; Xu et al. 2006).  This 20-22 kDa

protein is predicted to be O-glycosylated and has the sequence motifs necessary for

glycosylphosphatidylinositol (GPI)-anchoring.  The third protein, a putative chitin

deacetylase (called EcCDA), is present in two isoforms of 33 and 55 kDa and is

associated with the plasma membrane of developing spores (Brosson et al. 2005).

Although it is possible that any of these proteins could be responsible for the divalent

cation enhanced adherence of spores, it is expected that this adherence ligand would

be accessible in the exospore region.  Whether SWP1 or SWP2 is capable of such

activity remains to be determined.
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Spore adherence to host cells may serve as the initial event that signals the

beginning of the infection process.  Historically, the events of polar filament discharge

and host cell infection have been divided into four steps: 1) activation, 2) increased

internal osmotic pressure, 3) polar filament release by eversion, and 4) the movement of

sporoplasm from the spore through the polar tube and into the host cell cytoplasm.

Because our findings confirm earlier studies showing that calcium plays an integral role

in activation but is not involved in spore adherence augmentation to host cells, we

propose that spore adherence is an event that precedes activation.  Our hypothesis is

supported by the fact that spores are commonly found attached to host cell surfaces

with intact, non-discharged, polar filaments (Hayman et al. 2005).  Following adherence,

it is possible that the physical joining of the spore to the host cell surface may initiate a

signaling cascade resulting in the activation step.  Previously, we have shown that

adherence is directly linked to infection because inhibiting adherence reduces infection.

In this study, we show that by augmenting adherence, host cell infection increases.

Together, these two studies substantiate the direct relationship between adherence and

infection.  Finally, this study indicates that microsporidia spores have a surface

molecule, perhaps a lectin, which can be activated in the presence of magnesium or

manganese divalent cations.  Once activated, spores adhere more efficiently to host cell

surfaces, which leads to more efficient infection.  Examining and gaining an

understanding of the mechanisms of spore adherence as it may relate to activation may

ultimate lead to the development of novel therapeutics.
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Abstract

Microsporidia are spore-forming fungal pathogens that require the intracellular

environment of a host cell for propagation.  Human microsporidiosis is typically

limited to immunocompromised individuals and is characterized by severe

diarrhea with potential for wasting disease and disseminated infections.  While

the infection process is well characterized, little is known about the molecular

events that govern spore adherence and infection initiation.  The goal of this

study was to examine the physical interaction between the microsporidia spore

wall and the host cell surface during spore adherence.  In this study we identify a

single Encephalitozoon cuniculi spore protein that interacts with the host cell

surface.  The E. cuniculi protein was identified as ECU01_0820, a hypothetical

protein with no known function.  Analysis of the ECU01_0820 amino acid

sequence revealed two heparin-binding motifs and an integrin-binding motif.

These highly conserved sequences are characteristic of proteins that bind

constituents on the cell surface or extracellular matrix.  An E. intestinalis

homologue of the ECU01_0820 gene was also identified using a subtractive

cDNA library.  Sequence analysis revealed three heparin-binding motifs and an

integrin binding motif at the conserved location.  The ECU01_0820 gene was

cloned and recombinant protein was produced for antibody production.  Immuno-

transmission electron microscopy using ECU01_0820 antibodies revealed that

the ECU01_0820 protein is embedded in the microsporidial endospore,

exospore, plasma membrane, and is found in high concentration on the

anchoring disk.  Recombinant ECU01_0820 protein and protein A/G purified
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ECU01_0820 antibodies also inhibited spore adherence to host cells when used

in spore adherence assays in vitro.  Site-directed mutagenesis of the heparin-

binding motifs of the ECU01_0820 gene dramatically influenced the ability of the

recombinant protein to inhibit spore adherence and infection.  Collectively, these

data suggest that ECU01_0820, known here as Encephalitozoon cuniculi

Microsporidia Adherence Protein (MsAP), interacts with the host cell surface and

potentially plays a role in microsporidia spore adherence to host cells.

Key words: Microsporidia, Encephalitozoon cuniculi, Microsporidia Adherence
Protein, Adherence, Infectivity
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Introduction

Microsporidia are obligate intracellular opportunistic organisms that are

currently classified as highly derived fungal pathogens (Keeling and Fast 2002;

Keeling 2003; Gill and Fast 2006).  To date, more than 1200 species of

microsporidia belonging to almost 150 genera are known to science.

Microsporidia infect a wide variety of hosts including insects, fish, and mammals,

including humans.  Most human infections are attributed to 13 species of

microsporidia that belong to 8 genera including Enterocytozoon,

Encephalitozoon, Nosema, Brachiola, Pleistophora, Trachipleistophora,

Vittaforma, and Microsporidium.

Human microsporidiosis is most often attributed to Enterocytozoon

bieneusi, although Encephalitozoon species are also commonly diagnosed.  Until

recently, human microsporidiosis was almost exclusively diagnosed from

individuals with AIDS (Lambl et al. 1996).  Improved detection and better

surveillance have contributed to an increase in observed microsporidiosis in

other immunocompromised populations including transplant recipients and

individuals taking immunosuppressive therapies.  Although rare, cases of

microsporidiosis in otherwise healthy individuals have also been reported (Weber

et al. 1994; Fournier et al. 1998; Mathis et al. 2005).

Human microsporidiosis is typically characterized by voluminous diarrhea,

although severe cases may result in wasting disease or disseminated infections

(Canning and Hollister 1992).  Otherwise healthy individuals exposed to

microsporidia typically show no symptoms of infection but may exhibit
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unexplained self-limiting diarrhea (Weber et al. 1994).  The most common

treatment for microsporidiosis is albendazole, a broad-spectrum antiprotozoal

benzimidazole that disrupts microtubule polymerization in the developing

parasite.  A second treatment, fumagillin, is used topically to treat ocular

microsporidiosis, but may also be used systemically (Didier 1997).  While

albendazole and fumagillin are used to treat some forms of microsporidiosis, they

cannot be used as a broad-spectrum treatment for all microsporidial infections.

Furthermore, toxicity of fumagillin limits its use as an effective systemic anti-

microsporidial therapy (Didier et al. 2006).

Our ability to identify new therapies for treating and preventing

microsporidiosis is largely dependent upon our understanding of the molecular

mechanisms that govern host cell recognition and the initiation of infection.

Unfortunately, little is known about these parasite-host interactions.  It is known,

however, that microsporidia spores adhere to glycosaminoglycans (GAGs) on in

vitro grown host cells (Hayman et al. 2005; Leitch et al. 2005).  Inhibition of GAG

mediated spore adherence ultimately reduces infection while augmentation of

adherence by specific divalent cations increases infection (Hayman et al. 2005;

Southern et al. 2006).

The goal of this study was to further evaluate microsporidia spore adherence

by examining the physical interactions at the spore-host cell interface.  A single

~40kDa microsporidial protein, known here as Encephalitozoon cuniculi

Microsporidial Attachment Protein (EcMsAP), was identified as a spore wall

associated protein that interacts with the host cell surface.  Data overwhelmingly
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support the role of EcMsAP in spore adherence and indicate that MsAP may be a

potential target for the development therapeutics to treat or even prevent

microsporidiosis.

Materials and Methods

Microsporidia and Host Cell Cultivation

African green monkey kidney cells (Vero; ATCC CCL-81) and rabbit kidney

cells (RK-13; ATCC CCL-37) were used for cultivation of microsporidia spores.

Adherent cells were maintained in Dulbecco’s modified Eagle’s medium

(BioWhittaker, Walkersville, Md.) supplemented with L-glutamine (2 mM),

penicillin (100 U/ml), streptomycin (100 µg/ml), amphotericin B (0.25 µg/ml), and

2% fetal bovine serum (BioWhittaker) in 5% CO2 at 37°C (Hayman and Nash

1999),  For microsporidial spore propagation, confluent host cell monolayers

were grown in 75-cm2 flasks and infected with spores as previously described

(Hayman et al., 2001).  Infected cells were monitored for 12-14 days with

medium replacement every 2-3 days.  Spores were harvested periodically until

most host cells were dead. The spores were purified from host cell debris by

washing once with 0.25% sodium dodecyl sulfate followed by centrifugation and

several washes with sterile H2O.  Spores were washed until free of host cell

debris.  Spore stocks were then counted using a hemacytometer and stored at

4°C.
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Host cell-binding assay, SDS-PAGE, and Western Analysis

A host cell-binding assay was designed to determine which, if any,

microsporidia spore proteins interact with the host cell surface.  Ten billion (109)

E. cuniculi spores were labeled with NHS-biotin according to the manufacturers

recommendations (Pierce).  Spores were suspended in 100 ul of SDS-boiling

buffer (120 mM Tris-HCl pH 7.5, 5% SDS, and 100 mM DTT).  Spores were

boiled for 10 minutes followed by incubation at room temperature for 30 minutes.

The spore suspension was centrifuged for 10 minutes at 13,000xg at 4oC.  The

supernatant was moved to a clean microcentrifuge tube and deoxycholic acid

was added to 0.02% final concentration.  The sample was incubated for 30

minutes at room temperature followed by addition of trichloroacetic acid (TCA) to

a final concentration of 20%.  The protein sample was precipitated overnight at

4oC with rocking.  The sample was centrifuged at 18,000xg for 20 minutes and

the supernatant was removed.  The protein pellet was incubated in ice-cold

acetone for 30 minutes at 4oC followed by a second centrifugation at 18,000xg.

The supernatant was removed and the pellet was air dried.  The protein pellet

was solubilized in 200ul of host cell binding buffer (120 mM Tris-HCl pH 6.8 with

1% glycerol) at stored at -20oC until needed.  Vero monolayers were grown on 18

mm glass coverslips in a 12-well plate according to the conditions above.  Once

confluent, a single monolayer was washed in sterile PBS (x3) and the TCA

precipitated protein sample was incubated on the Vero monolayer for 2 hours at

room temperature.  The Vero monolayer was then washed in sterile PBS (x3) to

remove non-bound spore proteins.  The monolayer was solubilized in 5% SDS
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with 100 mM DTT and boiled for 10 minutes.  The solubilized protein sample was

resolved by SDS-PAGE and the protein was transferred to nitrocellulose for

Western analysis.  The nitrocellulose blot was blocked in 5% non-fat dry milk for

60 minutes followed by 3 washes in TBS-T.  The blot was incubated for 1 hour in

streptavidin conjugated to alkaline phosphatase (1:2000 in TBST) followed by 3

washes in TBST.  Proteins were detected using NBT/BCIP (Pierce).

The host cell-binding assay was also conducted with recombinant

EcMsAP.  The recombinant protein was expressed and purified by nickel affinity

chromatography (see below).  The protein solution was dialyzed against 100 mM

tris buffer (pH 6.8).  Protein precipitated during dialysis was collected by

centrifugation and solubilized overnight in host cell binding buffer at 95oC.  The

sample was centrifuged and the supernatant was stored at -20oC until needed.

MALDITOF-MS Analysis

The Coomassie stained gel band corresponding to the molecular weight of

interest (~40 kDa) from the host cell-binding assay was excised and submitted

for mass spectrometry and database analysis.  Sample preparation, mass

spectrometry (MALDITOF-MS), and database analysis were performed by

Midwest BioServices (Overland, KS).

Cloning and Recombinant Protein Expression

 The gene encoding EcMsAP was PCR amplified directly from E. cuniculi

genomic DNA using primers EcCD22-E (5’-GGAATTCAAGGCTCTTCACCTTAC
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AGG-3’) and EcCD22-X (5’-GTACTCGAGATCGAGATCGAGAGGTCCAA-3’).

PCR product size was evaluated by 0.7% agarose gel electrophoresis.  The

remaining PCR product was cleaned (Qiagen), digested with the appropriate

restriction enzymes, and cloned into the pET21 vector (Novagene).  XL1-Blue E.

coli cells (Stratagene) were transformed with the pET21a vector containing the

EcMsAP gene.  The plasmid was recovered for sequencing and transformation

into E. coli Rosetta Gami (RG) expression cells (Novagene).  A clonal population

of transformed RG cells was grown in LB to an OD600 0.6.  The culture was

induced with IPTG (1 mM final concentration) and incubated at 37oC shaking for

4 hrs.  Bacteria were harvested by centrifugation, suspended in 500 ul PBS, and

sonicated for 90 seconds.  The sonicated sample was centrifuged and the

soluble fraction was removed to a clean microcentrifuge tube.  The remaining

insoluble fraction was suspended in 250 ul 5% SDS with 2% β-mercaptoethanol

followed by sonication for 60 seconds.  The SDS treated sample was centrifuged

to remove cell debris.  A non-induced bacterial control sample was also

processed as described.  Soluble and insoluble fractions were run in duplicate on

a 4-12% Bis-Tris polyacrylamide gel.  One half of the gel was Coomassie stained

and the other half was used for Western Analysis.  Protein transferred to

nitrocellulose was blocked using 5% non-fat dry milk for 30 minutes.  The blot

was washed in tris buffered saline with 0.05% Tween-20 (TBS-T) followed by

incubation in a monoclonal HIS-tag antibody (1:2000 in TBS-T; Sigma).  The blot

was washed in TBST followed by incubation in a rabbit anti-mouse alkaline
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phosphatase conjugated secondary (1:2000 in TBS-T for 1 hr).  The blot was

washed in TBST and protein was detected using NBT/BCIP (Pierce).

Histidine-tagged recombinant protein was expressed in RG cells as described

above.  Following protein expression, bacteria were centrifuged (10 min at

3700xg) and the pellet was suspended in 25ml 1x phosphate buffer.  The

bacteria suspension was sonicated (power level 15; Microson Ultrasonic Cell

Disruptor) for 30 seconds (x3).  The suspension was centrifuged (10 min at

3700xg) and the pellet was suspended in 35 ml binding buffer (8M urea in 1x

phosphate buffer with 20 mM imidazole) followed by sonication at power level 15

(Microson Ultrasonic Cell Disruptor) for 30 seconds (x3).  The sample was

solubilzed overnight at 4oC rocking followed by centrifugation (25 min at

10,000xg).  The supernatant was applied to at equilibrated 5 ml nickel affinity

column (GE Biosciences).  The column was washed with 5 column volumes of

Binding Buffer followed by 3 column volumes of elution buffer (8M urea in 1x

phosphate buffer with 300 mM imidazole).  Ten 1.5 ml elution fractions were

taken and a portion of each sample was resolved using SDS-PAGE.  Protein

containing fractions were dialyzed against 10 mM Tris buffer (pH 7.4) with 0.5

mM EDTA.  The resulting dialysate was centrifuged and the protein containing

supernatants were pooled and stored at -20oC for further use.  Precipitated

protein was also collected at stored at -20oC for further use.
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Antibody Production and Protein A/G Purification

Serum from candidate rabbits was screened using Western analysis to

detect prior exposure to microsporidia.  Naive rabbits were selected for antibody

production with the recombinant EcMsAP protein (ProteinTech Group, Inc.).

Following antibody production, pre-bleed and final bleed sera were Protein A/G

purified according to the manufacturers recommendations (Pierce).  Briefly, a

gravity flow column containing 250 ul Protein A/G agarose was poured and the

column was equilibrated with binding buffer.  The serum sample was applied to

the column followed by thorough washing with binding buffer.  The purified

antibodies were eluted from the column with elution buffer and the pH of the

eluate was adjusted to neutral with 100 ul of neutralization buffer.  Purified

antibodies were stored at -20oC until needed.

Immuno-Transmission Electron Microscopy

Confluent RK-13 monolayers grown in T-75 cm2 flasks were infected with

Encephalitozoon cuniculi or E. intestinalis spores.  Infected monolayers were

maintained for at least 3 days or until numerous infected cells were visible by

light microscopy.  Heavily infected monolayers were fixed for 1 hour with 2%

paraformaldehyde and 0.05% glutaraldehyde in 0.2 M Sorenson’s buffer.

Monolayers were then washed thoroughly in 0.1 M Sorenson’s buffer and

scrapped from the flask.  The host cell debris was enrobed in 3% SeaKem agar

and the enrobed pellet was washed three times in 0.1M Sorenson’s buffer at 4oC

for 15 minutes.  The enrobed pellet was dehydrated in 35%, 50%, and 70%
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methanol at 4oC for 5 minutes at each dilution.  The pellet was incubated in 90%

methanol for 30 minutes at  -20oC.  The pellet was then sequentially incubated in

following solutions at -20oC for 1 hour:  Lowicryl K4M resin:90% methanol at 1:1,

Lowicryl K4M resin:90% methanol at 2:1, and Lowicryl K4M resin only.  The

pellet was then incubated in Lowicryl K4M overnight at -20oC.  The pellet was

then imbedded in Lowicryl K4M resin with photopolymerization at -20oC for 2

days, 4oC for 2 days, and at room temperature for 2 days.  Ultrathin sections of

the Lowicryl embedded pellet were applied to gold grids.  The sections were

blocked for 5 minutes in 1% albumin and 0.01M glycine prepared in PBS.  The

sections were then incubated for 40 minutes at 37oC in a 1:25 dilution of protein

A/G purified polyclonal rabbit antisera generated against recombinant EcMsAP.

The protein A/G purified antibodies were diluted in the albumin/glycine blocking

solution.  Sections were blocked again for 5 minutes followed by incubation in a

1:200 dilution of AuroProbe EM 15 nm gold-labeled goat anti-rabbit IgG (H+L).

Sections were washed 3 times in PBS for 5 minutes each followed by 3 fifteen-

minute washes in sterile water.  Finally, sections were counterstained with 5%

uranyl acetate followed by a sterile water rinse.  Sections were viewed using a

Tecnai 10 (FEI) transmission electron microscope.

Site-Directed Mutagenesis

Heparin-binding motifs were sequentially deleted from the parent EcMsAP

gene previously cloned into the pET21a vector.  Site-directed mutagenesis was

conducted using the QuickChange XL Site-Directed Mutagenesis kit (Stratagene)
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according to manufacturers recommendations.  Briefly, primer sets were

designed to delete heparin-binding motif #1 (5’-GCATCGAGCCGGTTGAGAT

CGTCGTCAATCCATC-3’ and 5’-GATGGATTGACGACGATCTGTTGGCCGAGC

TACG-3’, heparin-binding motif #2 (5’-TACAGAAACCTCCACCACAAGCTCCGA

GAGCTT-3’ and 5`-AAGCTCGCGGAGCTTGTGGTGGAGGTTTCTGTA-3’), and

an N-terminal portion of the EcMsAP gene (5`-TACCTCCAGGCAATGGTGCTCT

ACTGGAA-3’ and 5`-TTCCAGTAGAGCACCATTGCCTGGAGGTA-3`).  The N-

terminal deletion was conducted to determine if amino acid deletion unduly

influences protein activity during in vitro assays.  The parent EcMsAP construct

in the pET21 vector was used as the template for site directed mutagenesis.

Once each deletion mutant was created, the PCR products were treated with

DpnI to digest the methlyated template DNA leaving only the mutated construct.

The mutant DNA constructs were gel purified and sequenced to verify

mutagenesis.  Four mutant constructs were produced using this method including

Heparin-binding motif #1 Deletion Mutant (HBM1DM), Heparin-binding motif #2

Deletion Mutant (HBM2DM), Double Deletion Mutant (DDM), and the control N-

Terminal Deletion Mutant (NTDM).  Each mutant protein was expressed and

purified as described above.

Spore Adherence Assays

Vero cells (1x105) were seeded on circular glass coverslips (18mm) in 12-

well plates with normal growth medium and were allowed to grow to 95%

confluence.  Serial dilutions of recombinant protein (1 ug/ml to 0.001ug/ml) were
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made in 2% DMEM supplemented with L-glutamine, antibiotics, and FBS.  Old

medium was removed from each well and 1 ml of fresh medium with recombinant

protein was added.  The 12-well plate was incubated on ice for 1 hr during.  Ten

million (107) E. intestinalis or E. cuniculi spores were then added to each well

followed by a 4 hr incubation on ice.  Assays were performed on ice to minimize

host cell surface protein recycling and phagocytosis.  Following the 4 hr

incubation, coverslips were washed thoroughly in sterile PBS to remove non-

bound spores.  Monolayers were fixed with acetone:methanol for 10 min at room

temperature and an immunofluorescence assay was performed.  Monolayers

were incubated in 1 ml blocking buffer (5% FBS in PBS) for 1 hour at room

temperature.  Rabbit antiserum raised against E. cuniculi spores was used as the

primary (1:1,000 in blocking buffer) and a fluorescein isothiocyanate-conjugated

(FITC) anti-rabbit immunoglobulin was used as secondary (1:500 in blocking

buffer; Rockland Immunochemicals).  The rabbit antiserum was also cross-

reactive with E. intestinalis spores.  Fluorescence microscopy (Zeiss; Axiovert

S100) was used to count the number of bound spores per field of magnification

at 630X.  Results are expressed as the mean + standard deviation of 20 fields

counted in a blinded fashion.  Results may also be expressed as the percentage

of adherent spores relative to control samples.  Statistical significance was

determined using the Student’s t-test.
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Host Cell Infection Assays

Host cell infection assays were conducted by first conducting the spore

adherence assay in duplicate.  Following the spore adherence assay, one set of

coverslips were washed, fixed, and prepared for fluorescence microscopy and

spore adherence quantification.  The duplicate set of coverslips was washed of

non-bound spores and placed in a clean 12-well plate with 1ml fresh 2% DMEM

supplemented with fetal bovine serum, antibiotics, non-essential amino acids,

and L-glutamine.  These monolayers were incubated for 36 hours at 37oC in 5%

CO2 to allow infection of host cells and development of vacuole-bound

microsporidia.  Following incubation, coverslips were washed in PBS and host

cells were fixed in acetone:methanol for 10 min at room temperature.  Coverslips

were washed again in PBS followed by incubation in 0.01% Uvitex for 10 min at

room temperature.  The monolayers were washed with PBS and inverted on a

microscope slide.  The coverslips were sealed with cement and UV microscopy

(Zeiss; Axiovert S100) was used to evaluate infection at 400X.  Host cells and

infected host cells were counted in 10-20 randomly selected fields.  Results are

expressed as a percent of host cells infected.  Statistical difference was

determined using the Student’s t-test.

Biomolecular Interactions Analysis

Biomolecular interactions analysis was conducted using a BIAcore 2000

instrument.  All reactions were conducted at 4oC unless otherwise specified.  To

activate the carboxymethylated dextran on the sensorchip surface, EDC (0.1 M)
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and NHS (0.4 M) were injected at a flowrate of 5 ul/min for 15 minutes.  Two

micrograms of tetra-HIS monoclonal antibody were suspended in 100 ul of a 100

mM sodium acetate solution (pH 4.0).  Following activation of the CM5

sensorchip surface, the monoclonal antibody solution was injected at a flow rate

of 5 ul/minute for 10 minutes.  Active sites not occupied by the tetra-HIS

monoclonal antibody were blocked with 1 M ethanolamine (pH 8.5) injected at a

flow rate of 5 ul/minute for 20 minutes.  The chip surface was then equilibrated

with HBS-EP buffer at a flow rate of 10 ul/minute for 1 hour.  Following

stabilization of the sensorchip surface, 1 ug of recombinant Encephalitozoon

cuniculi MsAP was manually applied to a single flow well at 5 ul/min for 20

minutes using the Kinject function.  The flow well was washed with HBS-EP at a

flow rate of 10 ul/minute until the sensorchip surface stabilized.  Solutions of

heparin, chondroitan sulfate A, dextran sulfate, and dextran were prepared in the

HBS-EP buffer to a final concentration of 100 ug/ml.  One hundred microliters of

each carbohydrate solution was injected stepwise over the flow well surface at a

flow rate of 10 ul/minute.  A total of 10 micrograms of each carbohydrate was

injected over the flow well surface using the Kinject function.  The flow well

surface was regenerated using two short pulses of Gentle Antibody/Antigen wash

solution (Pierce) after injection of each carbohydrate solution.  The wash solution

strips bound exogenous carbohydrate from the chip surface with little, in any,

effect on the immobilized EcMsAP.  Data are given in resonance units and as a

function of Rmax, or the theoretical maximum amount of each carbohydrate

capable of binding the immobilized EcMsAP.
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Results

Identification of a Putative Microsporidia Host Cell Binding Protein

The host cell-binding assay was used to determine which, if any,

microsporidia spore proteins interact with the host cell surface.  Western analysis

of biotin labeled Encephalitozoon cuniculi spore protein shows a ~40kDa band

that binds the surface of in vitro grown host cells (Figure 4A; lane 5; arrow).  The

host cell-binding assay was repeated with biotin labeled E. intestinalis spore

protein revealing a slightly larger band that also binds the host cell surface

(Figure 4B; lane 5; arrow).  Also included on each blot is total spore protein

before and after TCA precipitation.  Each blot includes a negative control

showing host cell proteins that interact with alkaline phosphatase conjugated

streptavadin; the host cell background reaction must be subtracted from the

sample lanes containing host cell and microsporidia spore protein.
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MALDI-TOF and Database Analysis

To identify the microsporidial protein of interest, Encephalitozoon cuniculi

spore protein was resolved by SDS-PAGE followed by Coomassie staining.  The

Coomassie stained band corresponding to the ~40kDa E. cuniculi protein of

interest was excised and identified using MALDI-TOF mass spectrometry.

Database analysis revealed several E. cuniculi proteins in the excised gel band

that were screened for conserved motifs that may be involved in adhesion.  The

amino acid sequence of each E. cuniculi gene identified was evaluated for highly

conserved heparin-binding motifs characterized by ‘XBXBBX’ or ‘XBXBBXBX,’

where “X” is any neutral amino acid and “B” is a basic amino acid.  Candidate

proteins were also screened for the integrin-binding motif (-RGD-).

Figure 4.1  Identification of Encephalitozoon cuniculi and E. intestinalis host cell
binding proteins.  Proteins were incubated on the host cell surface for 2 hours
followed by thorough washing. Host cell and spore proteins were resolved by
SDS-PAGE followed by transfer to nitrocellulose.  Proteins were labeled with
alkaline phosphatase conjugated streptavidin followed by detection with
NBT/BCIP.  Also included on each blot is a protein size standard (lanes 1), total
spore protein before (lanes 2) and after (lanes 3) TCA precipitation, host cell
protein negative control (lanes 4), and host cell protein with bound spore protein
(lanes 5).  Arrow shows molecular weight band that was excised from a
Coomassie stained gel for MALDI-TOF.

A B

1     2     3      4     5  1    2     3      4      5



92

 A single E. cuniculi gene (ECU01_0820) was discovered which contained

two heparin-binding motifs and an integrin-binding motif (Figure 4.2).

Coincidentally, previous analysis of an E. intestinalis cDNA library revealed a

homolog of the ECU01_0820 gene.  Sequence analysis of the E. intestinalis

gene revealed three heparin-binding motifs and an integrin binding motif at the

conserved location (Figure 4.2).

Figure 4.2  Amino acid sequence alignment of Encephalitozoon intestinalis
microsporidia adherence protein (EiMsAP) and the E. cuniculi microsporidia
adherence protein (EcMsAP).  A consensus sequence is also shown.
Conserved amino acids are shaded in black and similar amino acids are
shaded in gray.  Heparin-binding motifs for each amino acid sequence are
outlined.  The basic amino acids (‘B’) and neutral amino acids (‘X’) of each
heparin-binding motif are labeled.  Cysteine residues are indicated by
asterisks. Every 10th amino acid is indicated by a dot.
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Western Analysis with Purified EcMsAP Rabbit Antibodies

Rabbit polyclonal antisera were generated against heterologously

expressed EcMsAP.  Antibodies from pre-bleed and final bleed serum samples

were Protein A/G purified and used in Western analysis to confirm reaction with

recombinant EcMsAP as well as native EcMsAP and EiMsAP from microsporidia

spore lysates (Figure 4.3).  Western analysis revealed that the purified antibodies

react with a ~42 kDa recombinant EcMsAP (Figure 4.3A; lane 2) as well as a ~40

kDa EcMsAP (Figure 4.3A; lane 3) and ~40 kDa EiMsAP (Figure 4.3B; lane 1)

from microsporidia spore lysates.

Figure 4.3  Western analysis of recombinant EcMsAP (A; lane 2),
Encephalitozoon cuniculi spore lysate (A; lane 3), and E. intestinalis spore lysate
(B; lane 1) using Protein A/G purified EcMsAP antibodies.  Proteins were resolved
by SDS-PAGE and transferred to nitrocellulose.  The blot was blocked overnight
with 5% nonfat dry milk.  The proteins were reacted with the protein A/G purified
EcMsAP antibodies followed by reaction with an alkaline phosphatase conjugated
goat anti-rabbit secondary antibody.  Proteins were detected with NBT/BCIP.
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1  2   3 1
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MsAP Localization

Purified EcMsAP antibodies were used to determine localization of MsAP

in host cells infected with Encephalitozoon cuniculi spores using immuno-gold

labeling and transmission electron microscopy (Figure 4.4).  Immuno-TEM

analysis of immature and mature microsporidial forms shows that MsAP is

present on all developmental forms of E. cuniculi including meronts (M), sporonts

(SP), sporoblasts (SB), and mature spores (MS) (Figure 4.4A).  EcMsAP is also

located in the cytoplasm of meronts and sporonts, as well as on the developing

plasma membrane (Figure 4.4B).  Mature spore forms show high levels of

immuno-gold labeling throughout the spore wall including the plasma membrane,

endospore, and exospore (Figure 4.4C).

Purified EcMsAP antibodies were also used to determine localization of

MsAP in host cells infected with Encephalitozoon intestinalis spores (Figure 4.5).

Immuno-TEM analysis of E. intestinalis infected rabbit kidney cells shows mostly

mature forms including the sporoblast and mature spore (Figure 4.5A).  The most

prominent immuno-gold labeling of the E. intestinalis sporoblast (Figure 4.5B)

and mature spores (Figure 4.5C) is associated with the endospore and exospore.

Also of interest, MsAP is heavily localized to the polar sac anchoring disk

region of mature Encephalitozoon spores (Figure 4.6).  This is the first

microsporidial protein identified that shows anchoring disk localization.  A second

microsporidial protein, MADAM, is also localized to the anchoring disk region of

E. cuniculi and E. intestinalis spores (unpublished).
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Figure 4.4  Immuno-transmission electron micrographs of developing
Encephalitozoon cuniculi within a parasitophorous vacuole (A), a meront (B), and
the spore wall of a mature spore (C).  Lowicryl embedded E. cuniculi infected host
cells were sectioned and blocked using BSA.  Sections were then reacted with
purified EcMsAP antibodies followed by labeling with 10 nm gold particles
conjugated to anti-rabbit antibodies.  Sections were viewed using a Tecnai 10 (FEI)
transmission electron microscope (M = meront; SP = sporont; SB = sporoblast; MS
= mature spore; Cy = cytoplasmic localization; En = endospore localization ; Ex =
exospore localization; P = plasma membrane localization).
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Figure 4.5  Immuno-transmission electron micrographs of developing
Encephalitozoon intestinalis parasites within a parasitophorous vacuole (A), a
sporoblast (B), and the spore wall of a mature spore (C).  Lowicryl embedded
E. intestinalis infected host cells were sectioned and blocked using BSA.
Sections were then reacted with purified EcMsAP antibodies followed by
labeling with 10 nm gold particles conjugated to anti-rabbit antibodies.
Sections were viewed using a Tecnai 10 (FEI) transmission electron
microscope (M = meront; SB = sporoblast; MS = mature spore; En =
endospore localization; Ex exospore localization).
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Inhibition of Spore Adherence and Host Cell Infection by Recombinant EcMsAP

A series of in vitro assays were used to determine if recombinant EcMsAP

influences spore adherence and host cell infection.  Also included in these

assays were recombinant EcMsAP mutant proteins created using site directed

mutagenesis.  Site directed mutagenesis was used to sequentially remove the

two heparin-binding motifs of the parent EcMsAP gene resulting in proteins

lacking heparin-binding motif #1 (HBM1DM), heparin-binding motif #2

(HBM2DM), both heparin-binding motifs (DDM), and an N-terminal deletion

mutant (NTDM) used as a control (Figure 4.7).

Figure 4.6  Localization of MsAP to the anchoring disk complex (ADC) and
polar sac (PS) of an E. intestinalis mature spore.  Lowicryl embedded
microsporidia infected host cells were sectioned and blocked using BSA.
Sections were then reacted with purified EcMsAP antibodies followed by
labeling with 10 nm gold particles conjugated to anti-rabbit antibodies.
Sections were viewed using a Tecnai 10 (FEI) transmission electron
microscope.

   PS          ADC
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Spore adherence assays with the parent EcMsAP construct and the

deletion mutants indicate that recombinant EcMsAP inhibits E. intestinalis spore

adherence to host cells by almost 70% at a concentration of 1 ug/ml (Figure

4.8A).  The NTDM and HBM2DM proteins also inhibit spore adherence in a dose

dependent manner, effectively mimicking recombinant EcMsAP.  HBM1DM and

DDM proteins did not influence spore adherence at protein concentrations up to

1 ug/ml, the highest concentration assayed.  These data indicate that

recombinant EcMsAP losses all ability to inhibit spore adherence following

deletion of heparin-binding motif #1.  Deletion of heparin-binding motif #2 had no

effect on spore adherence inhibition suggesting it is not an active heparin-binding

motif or that it is not an exposed epitope of the recombinant protein.

HBM-1 HBM-2

EcMsAP

HBM1DM

HBM2DM

NTDM

DDM

Figure 4.7  Diagram of the parent EcMsAP construct including deletion
mutants created by site directed mutagenesis.  Mutagenesis was used to
sequential remove heparin-binding motif #1 (HBM-1) and heparin-binding motif
#2 (HBM-2).  The resulting constructs include the N-Terminal Deletion Mutant
(NTDM), used as a control in spore adherence and infectivity assays, a
Heparin-binding motif #1 Deletion Mutant (HBM1DM), a Heparin-binding motif
#2 Deletion Mutant (HBM2DM), a and the Double Deletion Mutant.
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A series of in vitro assays was also conducted to determine the influence

of recombinant EcMsAP and the EcMsAP mutants on host cell infection (Figure

4.8B).  Addition of EcMsAP, NTDM, and HBS#2DM proteins during the spore

adherence portion of the assay each reduced infectivity by over 60% at a

concentration of 1 ug/ml.  However, HBD#1DM and DDM proteins did not

significantly influence infectivity compared to the NTDM control.  Infectivity assay

data mirror results from the spore adherence assay and support the conclusion

from previous studies that spore adherence directly influences host cell infection.

These data also support the hypothesis that native EcMsAP participates in spore

adherence to host cell surfaces.  Finally, spore adherence and infectivity assay

data suggest that heparin-binding motif #1 is responsible for most if not all of the

binding ability of recombinant EcMsAP.
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Figure 4.8  Spore adherence (A) and host cell infection (B) assays with
recombinant EcMsAP and the EcMsAP deletion mutants.  Each recombinant
protein was incubated on individual host cell monolayers in the presence of
Encephalitozoon intestinalis spores.  Multiple dilutions of each protein were
evaluated.  For the spore adherence assay, monolayers were washed, fixed,
and an immunofluorescence assay was performed to visualize microsporidia
spores.  Spores were counted using fluorescence microscopy.  For the
infectivity assay, monolayers were washed, incubated in supplemented DMEM
for an additional 36 hours, washed, fixed, and stained with Uvitex.  Host cells
were evaluated for infection using UV microscopy.  Data are representative of
three independent experiments (n=20).  The Student’s t-test was used to
determine significance.  Data boxed in red show significant difference as
compared to a control without the addition of recombinant protein (p<0.0001).
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Inhibition of Spore Adherence and Host Cell Infection by EcMsAP Specific

Antibodies

In vitro assays were also used to assess the influence of EcMsAP

antibodies on Encephalitozoon intestinalis spore adherence and host cell

infection (Figure 4.9).  Spore adherence assay data indicate that purified

EcMsAP specific antibodies inhibit spore adherence to host cells in a dose

dependent manner at dilutions from 1:105 to 1:103.  Maximum spore adherence

inhibition of 56% was attained with a 1:1000 dilution of EcMsAP antibodies.  Host

cell infection was also inhibited following the addition of purified EcMsAP

antibodies during the spore adherence portion of the infectivity assay.  Infectivity

assay data indicate that antibody dilutions from 1:105-1:103 inhibit host cell

infection in a dose dependent manner.  Maximum infectivity inhibition of 46% was

attained with a 1:1000 dilution of EcMsAP antibodies.

These data suggest the EcMsAP is spore wall associated protein that

potentially interacts with the host cell during spore adherence.  Inhibition of spore

adherence and infection with EcMsAP specific antibodies indicates that

antibodies could potentially be used as a therapeutic agent to block spore

adherence to the surface of enterocytes.  Finally, these data support the use of

EcMsAP as a potential vaccine candidate to prevent microsporidiosis.
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Recombinant EcMsAP Binds the Host Cell Surface

The host cell-binding assay was used to evaluate the ability of

recombinant EcMsAP to bind to the surface of cells grown in vitro (Figure 4.10).

Western analysis using purified EcMsAP antibodies indicates that recombinant

EcMsAP binds the surface of Vero cells as well as Chinese hamster ovary cells

(CHO-K1).  Recombinant EcMsAP exhibits attenuated binding to the heparin

deficient CHO cell line pgsA-745, as well as the GAG-deficient CHO cell line

Figure 4.9  Spore adherence and host cell infection assays with purified EcMsAP
antibodies.  Dilutions of EcMsAP specific antibodies were incubated on individual
host cell monolayers in the presence of Encephalitozoon intestinalis spores.
Dilutions from 1:106-1:103 were evaluated.  For the spore adherence assay,
monolayers were washed, fixed, and an immunofluorescence assay was performed
to visualize microsporidia spores.  Spores were counted using fluorescence
microscopy.  For the infectivity assay, monolayers were washed, incubated in
supplemented DMEM for an additional 36 hours, washed, fixed, and stained with
Uvitex.  Host cells were evaluated for infection using UV microscopy.  Data are
representative of three independent experiments (n=20).  The Student t-test was
used to determine significance. Data in the red box show significance compared to
the control (p<0.0001).

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

10-7 10-6 10-5 0.0001 0.001 0.01

S
p

o
re

 A
d

h
e

re
n

c
e

 -
 P

e
rc

e
n

ta
g

e
 o

f 
C

o
n

tr
o

l
(S

o
lid

 L
in

e
s
)

H
o

s
t C

e
ll In

fe
c
tio

n
 - P

e
rc

e
n

ta
g

e
 o

f C
o

n
tro

l
(D

a
s
h

e
d

 L
in

e
s
)

Antibody Concentration



103

pgsD-677.  An Encephalitozoon cuniculi total spore protein sample was included

as a positive control.  CHO cell and Vero cell total protein samples were included

as negative controls.  Negative control lanes represent host cell monolayers that

were not incubated with recombinant EcMsAP.

Host cell-binding assay data illustrate that recombinant EcMsAP binds the

surface of host cells in vitro.  Inability of recombinant EcMsAP to bind GAG-

deficient cells indicates that EcMsAP most likely interacts with glycans on the

host cell surface.  These data support the hypothesis that spore wall associated

EcMsAP is the lectin responsible for microsporidia spore adherence to host cell

glycans.

1 = Protein size standard
2= rMsAP Control
3= CHO cell protein w/o spore protein
4= rMsAP protein on CHO cells
5= rMsAP protein on psgA 745 cells
6= rMsAP protein on psgD-677 cells
7= rMsAP protein on Vero cells
8= Vero cell protein w/o spore protein
9= rMsAP control
10 = Protein Size Standard

Figure 4.10  Analysis of recombinant EcMsAP attachment to the surface of host
cells grown in vitro.  One microgram of recombinant EcMsAP was applied to
confluent host cell monolayers grown in 12-well plates.  Monolayers were
incubated for 2 hours at room temperature followed by washing with PBS.  Host
cell and bound spore protein was solubilized in SDS-Boiling Buffer followed by
SDS-PAGE.  Protein was transferred to nitrocellulose and the blot was blocked
overnight in 5% non-fat dry milk in TBS.  The blot was washed in TBST and was
incubated in purified EcMsAP antibodies (1:500 in TBST) for 2 hours.  The blot
was washed in TBST and was incubated for 1 hour in an alkaline phosphatase
conjugated goat anti-rabbit secondary antibody (1:2000 in TBST).  The blot was
washed in TBST and detected using NBT/BCIP (Pierce).

1 2 3   4  5 6   7 8   9 10
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Sulfated Glycans Bind Recombinant EcMsAP

Biomolecular interactions analysis (BIA) was used to evaluate the

molecular interactions between recombinant EcMsAP and exogenous glycans

(Figure 4.11).  These interactions were evaluated by measuring the surface

plasmon resonance of each molecular interaction in real-time. Data are

presented as resonance units (RUs) and as a percentage of RMax, or the

theoretical maximum binding capacity of immobilized EcMsAP for each glycan.

RUs and Rmax was calculated from baseline data collected before and after the

injection of each gycan.  Sharp peaks on the sensorgram indicate an RU shift in

response to sensorchip surface regeneration using the Gentle Antibody/Antigen

wash solution (Pierce).  The sensorchip surface was regenerated following

injection of each carbohydrate.  Although complete regeneration of the chip

surface was never attained between carbohydrate injections, the chip surface

was stabilized providing accurate baseline readings.  While not an uncommon

BIA complication, incomplete regeneration of the sensorchip surface could

influence the total resonance unit shift.  However, incomplete sensorchip surface

regeneration should not otherwise influence the molecular interaction between

immobilized EcMsAP and the exogenous glycans.

BIA data indicate that 1242 resonance units of EcMsAP were immobilized

on the CM5 sensorchip surface.  Ultimately, 231 RUs of dextran sulfate (47% of

Rmax), 483 RUs of CSA (31% of Rmax), 956 RUs of heparin (86% of Rmax), and 0

RUs of dextran (0% of Rmax) were bound to the immobilized recombinant

EcMsAP.  These preliminary data indicate that the sulfated GAGs heparin and



105

CSA interact with immobilized recombinant EcMsAP.  The sulfated carbohydrate

dextran sulfate also interacts with immobilized EcMsAP, but non-sulfated dextran

does not.  Not only does BIA confirm our hypothesis that EcMsAP is a lectin, it

provides the first line of direct evidence that the recombinant protein possesses

glycan binding ability.

Discussion

Attachment of obligate intracellular pathogens to the host cell surface is

often the first step in a series of events leading to infection and propagation.

Viral, bacterial, fungal, and parasitic pathogens employ this tactic, usually

resulting in receptor-mediated endocytosis or active invasion.  Microsporidians of

the genus Encephalitozoon, specifically E. cuniculi and E. intestinalis, adhere to

Figure 4.11  Biomolecular interactions analysis sensorgram showing
recombinant EcMsAP binding by exogenous glycans.  A tetra-histidine epitope
tag monoclonal antibody was covalently linked to the surface of a CM5
sensorchip.  Recombinant EcMsAP was immobilized by the antibody and
glycans were injected over the CM5 sensorchip surface.  Interaction between
recombinant EcMsAP and each glycan is indicated by a positive shift in
resonance units.  Glycan binding data are given as Rmax values, or the
theoretical maximum amount of each glycan that can bind recombinant
EcMsAP immobilized on the CM5 sensorchip surface.

Analyte Immobilization

CSA
483 RUs

31% of Rmax

Dex. Sulfate
231 RUs

47% of Rmax

Heparin
956RUs

86% of Rmax

Dextran
0 RUs

0% of Rmax

EcMsAP
1242 RUs

Ligand Immobilization
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host cell surfaces prior to and during host cell infection.  However, microsporidia

spores typically do not enter the host cell during infection.  Instead, a hollow polar

tube is discharged from the apical end of the spore that ultimately penetrates the

host cell cytoplasmic membrane.  The polar tube is then used to transfer

infectious sporoplasm into the host cell cytoplasm, giving rise to a new

generation of spores (Wittner 1999).

Recent examination of microsporidia spore adherence to in vitro grown

host cells indicates that microsporidia spores bind glycosaminoglycans (GAGs)

on the host cell surface (Hayman et al. 2005; Leitch et al. 2005).  These studies

also indicate that inhibition of GAG mediated adherence by exogenous GAGs

reduces host cell infection.  Host cell infection is highly attenuated in the GAG-

deficient Chinese hamster ovary cell lines pgsA-745 and pgsD-677.  Chemical

inhibitors of host cell GAG synthesis and GAG sulfation also reduce spore

adherence and infection (Hayman et al. 2005).  A recent study also indicates that

the divalent cations manganese and magnesium activate a spore surface

constituent leading to a dose-dependent increase in spore adherence to host cell

surfaces.  Consequently, augmentation of spore adherence by manganese and

magnesium contributes to a significant increase in host cell infection (Southern et

al. 2006).  Unfortunately, little else is known about the molecular events that

govern the early stages of host cell infection, including host cell recognition.  The

goal of this study was to identify and characterize microsporidia spore protein(s)

that interact with the host cell surface.

A host cell-binding assay was designed to determine if microsporidia
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spore proteins interact with the host cell surface.  This experiment yielded a

single ~40kDa Encephalitozoon cuniculi spore protein that was eventually

identified as ECU01_0820, a hypothetical gene with no known function.

ECU01_0820 is known here as Encephalitozoon cuniculi Microsporidial

Adherence Protein (EcMsAP).  A highly conserved E. intestinalis homologue of

EcMsAP was recovered from a subtractive cDNA library.  The conserved nature

the EcMsAP and EiMsAP genes suggests a critical function for these proteins.

Coincidentally, ECU01_0820 (EcMsAP) was recently described by

Peuvel-Fanget and colleagues as strictly an endospore protein and was

consequently named Endospore Protein 1 (EnP1) (Peuvel-Fanget et al. 2006).

However, our immuno-TEM analysis shows that, in addition to the endospore,

MsAP is clearly localized to the exospore region of the spore wall.  This suggests

that MsAP is exposed to the extra-spore environment and could potentially

interact with constituents associated with the host cell surface.  Furthermore, our

immuno-TEM analysis indicates that every developmental form of E. cuniculi

possesses MsAP, including immature microsporidial forms that lack a defined

endospore.  Meronts and sporonts show MsAP localization in the cytoplasm as

well as the developing plasma membrane.  Cytoplasmic localization likely

indicates protein precursors associated with ribosomes, the endoplasmic

reticulum, or vesicles bound for the plasma membrane.  MsAP is also localized

throughout the spore wall of E. cuniculi sporoblasts and matures spores including

the plasma membrane, endospore, and exospore.  MsAP is also detected in

abundance on the anchoring disk and polar sac regions of mature E. cuniculi
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parasites.  Immuno-TEM analysis using E. intestinalis infected host cells shows

similar patterns in MsAP distribution.  MsAP is predominantly associated with the

spore wall of E. intestinalis sporoblasts and spores.  As with E. cuniculi, MsAP is

also localized to the anchoring disk and polar sac regions of the mature E.

intestinalis spore.

Progression of MsAP localization from the cytoplasm of immature

microsporidia forms sequentially through the plasma membrane,

endospore/exospore, and the anchoring disk of mature spores may illustrate

developmental distribution of this protein.  Concentration of gold labeling in the

endospore region of mature spores suggests that MsAP may be a structural

protein involved in supporting or maintaining the highly cross-linked chitinous

endospore.  With multiple heparin binding domains, exposure of MsAP on the

exospore may explain the affinity of spores for sulfated glycans such as heparin

and chondroitin sulfate A.  Surface exposure of the MsAP heparin binding

domains may allow interaction with host cell proteoglycans resulting in spore

“tethering” to the host cell surface.  This interaction may facilitate other binding

events, possibly with host cell integrins, or may solitarily provide the necessary

stimulus to initiate polar tube extrusion and host cell infection.  Surface exposure

of MsAP may also facilitate spore adherence to matrix-associated

glycosaminoglycans potentially contributing to dissemination throughout host

tissues.

Spore adherence and infectivity assay data support the hypothesis that

MsAP is surface exposed and involved in spore adherence to the host cell
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surface.  Both the EcMsAP recombinant protein and EcMsAP specific antibodies

inhibited spore adherence and reduced host cell infection.  Sequential deletion of

the EcMsAP heparin binding domains significantly influenced the ability of

recombinant EcMsAP to inhibit spore adherence and infection.  Deletion of the

first E. cuniculi heparin-binding motif removed all inhibitory property from

recombinant EcMsAP suggesting a critical function for this amino acid sequence.

Deletion of the second heparin-binding motif did not influence the ability of

EcMsAP to inhibit spore adherence.  This suggests that the second heparin-

binding motif does not participate in the adherence event or is not an exposed

epitope of MsAP.  Unfortunately, the uniqueness of this protein precludes any

assumptions about its structure.

Host cell-binding assay data also support the hypothesis that MsAP is

located on the spore wall and interacts with the host cell surface.  Recombinant

EcMsAP bound the surface of in vitro grown Vero and CHO cells.  As with intact

Encephalitozoon spores, the recombinant protein could not be washed from the

surface of the host cell once bound.  This suggests avid binding between the

recombinant protein and the host cell receptor.  Host cell-binding assays with the

CHO mutant cell lines pgsA-745 and pgsD-677 indicates that MsAP interacts

with host cell glycans.  Recombinant EcMsAP bound to CHO cells in a manner

similar to Vero cell binding but exhibited attenuated binding to the glycan-

deficient CHO cell lines.  These data confirm prior results showing attenuated

spore adherence to glycan-deficient CHO cells lines (Hayman et al. 2005).
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Finally, biomolecular interactions analysis (BIA) data indicate that

recombinant EcMsAP interacts with exogenous heparin, chondroitan sulfate A,

and dextran sulfate.  The carbohydrate dextran did not bind to immobilized

recombinant EcMsAP.  These data show definitively that recombinant EcMsAP

possesses glycan binding ability.  To this point all information supporting spore

adherence to host cell glycans has been indirect.  Data gathered using BIA

provides directed evidence that recombinant EcMsAP is a glycan binding protein.

BIA suggests that the glycan binding ability of Encephalitozoon spores is, at least

in part, attributed to spore wall MsAP.  Furthermore, preliminary evidence

suggests that the addition of EDTA during BIA reduces glycan interaction with

immobilized recombinant EcMsAP.  Additionally, presence of manganese during

BIA increases the amount of glycan that binds the immobilized EcMsAP (data not

shown).  Pending further analysis, these data may confirm that EcMsAP is in

some way activated by manganese.  Collectively, BIA data indicate that EcMsAP

may be the lectin on the spore surface that facilitates spore adherence to host

cell glycans.

Although several novel microsporidia spore proteins have been described

in the past few years, few have any described function.  Instead of a rapid-fire

protein identification approach, we selected a single novel protein and not only

determined its localization but also examined its function using a series of in vitro

assays.  Unfortunately, the absence of a genetic system for the microsporidia

prevents knockout or knockdown analysis of MsAP.  Even without such definitive

studies, this research shows localization of MsAP throughout the sporewall, and
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argues the point that MsAP (EnP1) is not strictly an endospore protein.  This

study also shows that recombinant EcMsAP inhibits spore adherence and host

cell infection.  This research also shows that recombinant EcMsAP possesses

the ability to bind the surface of in vitro grown host cells.  Most importantly, this

research reaffirms the importance of spore adherence to host cell infection and

supports our hypothesis that spore adherence is integral to spore activation and

host cell infection.
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CHAPTER 5

CONCLUSION

Microsporidia are receiving increasingly more attention due to their

classification as emerging pathogens of importance to human health.  Thanks to

modern electron microscopy, the intracellular developmental cycle of several

pathogenic microsporidia species is well defined (Wittner 1999).  Microsporidial

ultrastructure throughout intracellular development is also described providing

insights into these unique fungal pathogens (Wittner 1999).  Unfortunately, little

information is available regarding the molecular events that govern basic

microsporidia biology, including spore adherence, spore activation, host cell

infection, intracellular development, nutrient acquisition, subversion of host cell

resources, inhibition of host cell apoptosis, and parasite egress from the dying

host cell.  A better understanding of these activities at the molecular level will

likely provide new avenues for the development of novel therapeutics to treat or

even prevent human microsporidiosis.

Our laboratory is most interested in deciphering the molecular

mechanisms that mediate spore adherence.  Our research strategy was

designed to (1) elucidate the host cell receptor that participates in spore

adherence, (2) evaluate the effects of divalent cations on spore adherence, and

(3) identify and characterize ligands on the spore surface that mediate spore

adherence to host cells.
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The goal of our first study was to determine the specific host cell receptors

that participate in spore adherence in vitro (Hayman et al. 2005).  Numerous

viruses, bacteria, parasites, and fungi bind host cell surface glycans to facilitate

infection or colonization.  Our initial hypothesis was that microsporidia employ a

similar tactic by exploiting glycans associated with the host cell surface.  A series

of in vitro, commercially available exogenous glycosaminoglycans were used as

potential inhibitors of spore adherence.  The GAGs heparin, heparan sulfate,

chondroitin sulfate A, and chondroitin sulfate B each inhibited spore adherence to

the surface of in vitro grown host cells.  The non-GAG carbohydrates dextran

sulfate and mucin also inhibited spore adherence in a dose dependent manner.

In all cases, spore adherence inhibition was dose dependent but complete

inhibition was never achieved.  The non-sulfated carbohydrates dextran and

hyaluronic acid did not inhibit spore adherence suggesting that glycan sulfation

and structure are important in the spore adherence process.  Collectively, these

assays suggested that host cell GAGs may be exploited by microsporidia during

spore adherence.

Several other approaches were taken to evaluate the role of GAGs during

microsporidia spore adherence.  Chinese hamster ovary (CHO) cell lines

deficient in surface-expressed GAGs were used in a series of spore adherence

assays along with a non-mutant parent CHO cell line.   These data show a

significant decrease in spore adherence to the mutant CHO cells that lack

surface expressed GAGs.  A chemical inhibitor of GAG expression and a

chemical inhibitor of GAG sulfation were also used to examine the role of host
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cell GAGs in spore adherence.  The GAG inhibitor p-nitrophenyl-β-D-

xylopyranoside inhibited spore adherence when host cells were incubated in the

compound prior to the spore adherence assay.  The GAG sulfation inhibitor

sodium chlorate also inhibited spore adherence when host cells were incubated

in the compound prior to the spore adherence assay.  Finally, by modifying the

spore adherence assay, we were able to show that host cell infection is directly

influenced by adherence of microsporidia spores to the host cell surface.

Infectivity assay data revealed that a decrease in spore adherence contributes to

reduced infection.  This report was not only the first to describe spore adherence

in terms of a molecular mechanism, it also illustrated a direct relationship

between spore adherence and host cell infection.

The goal of our second study was to evaluate the influence of divalent

cations on spore adherence and host cell infection (Southern et al. 2006).  The

divalent cations manganese, magnesium, and calcium are important cofactors

known to influence adherence of pathogenic organisms to the host cell surface.

Divalent cations also play an important physiological role in cell-to-cell and cell-

to-matrix interactions, especially among integrins.  Our initial hypothesis was that

divalent cations would augment spore adherence and infection in vitro.  Our initial

studies support our hypothesis by showing a dose dependent increase in spore

adherence attributed to manganese and magnesium.  Calcium, however, did not

influence spore adherence to the host cell surface.  When used in the infectivity

assay, all three divalent cations contributed to an increase in host cell infection.

This is not surprising for manganese and magnesium because both divalent
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cations also contributed to an increase in spore adherence.  Interestingly,

calcium did not contribute to increased spore adherence but did cause and

increase in host cell infection.  Data from infectivity assays using calcium support

a decades-old study that illustrates the importance of calcium ion flux to

polaroplast swelling and polar tube discharge.

A series of spore adherence and infectivity assays were also conducted

with divalent cations and the chelator EDTA.  When included in the in vitro

assays, EDTA abrogated all divalent cation induced spore adherence and host

cell infection.  These data suggest that the observed increase in spore

adherence and infection is attributed to the presence of divalent cations in the

assay buffer and is not an artifact of this assay system.  Finally, a series of spore

adherence assays was performed to determine whether a host cell or spore

constituent was being activated by manganese.  Numerous permutations of the

spore adherence assay were conducted with host cells and spores that were (1)

pretreated with manganese or not pretreated, (2) fixed with paraformaldehyde or

not fixed, and (3) treated with manganese at the time of the spore adherence

assay or not treated.  This series of spore adherence assays indicated that the

divalent cation manganese activates a constituent on the spore surface and not

the host cell surface.  Data from this study not only confirmed a direct

relationship between spore adherence and host cell infection, it illustrated that

spore adherence is a dynamic event that is activated by divalent cations.

The goal of our third and most recent study was to determine which, if

any, microsporidia spore wall associated proteins participate in spore adherence
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to host cells in vitro.  To answer this fundamental question, we adapted a

commonly used assay to evaluate the adherence of individual microsporidia

spore proteins to the surface of a host cell monolayer.  This assay revealed a

single protein from Encephalitozoon cuniculi spore lysate that binds the host cell

surface.  This protein could not be washed from the surface of the host cell

monolayer suggesting avid binding with a host cell receptor.  The microsporidia

host cell binding protein was visualized using Western analysis and was

ultimately identified from a Coomassie stained gel band using mass

spectrometry.  The gene was identified as ECU01_0820, known hereafter as

Encephalitozoon cuniculi Microsporidia Adherence Protein (EcMsAP).  Knowing

the microsporidia spores bind host cell GAGs, the EcMsAP gene was screened

for heparin-binding motifs as well as the integrin-binding motif.  Analysis of the

EcMsAP amino acid sequence revealed two heparin-binding motifs and a single

integrin-binding motif.

The EcMsAP gene was eventually cloned and recombinant protein was

heterologously expressed.  The histidine-tagged fusion protein was used to raise

antibodies in rabbits that were previously identified as naive to microsporidia

infection.  Protein A/G purified antibodies from pre-bleed and terminal bleed

antisera samples were used to evaluate localization of native MsAP in host cells

infected with E. cuniculi or E. intestinalis.  Immuno-transmission electron

microscopy revealed that MsAP is associated with every developmental form of

E. cuniculi and is associated with the cytoplasm, plasma membrane, endospore,
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exospore, and anchoring disk.  MsAP is also localized to the same structures in

E. intestinalis sporoblasts and mature spores.

Recombinant EcMsAP was used in a series of in vitro assays to determine

the influence of the protein on spore adherence and host cell infection.  Data

from these assays indicate that recombinant EcMsAP is a potent inhibitor of

spore adherence and infection.  Site-directed mutagenesis was then used to

determine amino acids critical to the function of EcMsAP as a spore adherence

inhibitor.  Site-directed mutagenesis was used to sequentially remove the two

heparin-binding sites resulting in gene constructs that lacked heparin-binding

motif #1, heparin-binding motif #2, and a construct that lacked both heparin-

binding motifs.  An N-terminal deletion was also engineered to determine if

deletion mutagenesis unduly influenced protein function.  All four mutant

constructs were used in spore adherence and infectivity assays along with

EcMsAP parent construct.  In short, spore adherence and infectivity assay data

revealed that deletion of the first heparin-binding motif abolished all ability of

EcMsAP to inhibit spore adherence and host cell infection.  The N-terminal

deletion mutant and the heparin-binding motif #2 deletion mutant inhibited

infection similar to the parent EcMsAP construct.  Similarly, protein A/G purified

EcMsAP antibodies were used in the spore adherence and infectivity assays.

Data from these assays indicate that EcMsAP specific antibodies are also potent

inhibitors of spore adherence and host cell infection.  Protein A/G purified

antibodies generated against a microsporidial heat shock protein did not inhibit

spore adherence, providing a needed negative control (data not shown).
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Recombinant EcMsAP was also used in the host cell-binding assay to

determine if the heterologously expressed protein could bind to the surface of in

vitro grown host cells.  Western analysis revealed that the recombinant EcMsAP

binds Vero and CHO cells but does not bind the glycan-deficient CHO cell lines

pgsA-745 and pgsD-677.  Host cell-binding assay data confirm previous findings

that show reduced spore adherence to the glycan deficient cell lines.

Finally, recombinant EcMsAP was used in the highly quantitative

biomolecular interactions analysis, also known as surface plasmon resonance

(SPR).  SPR data indicate that heparin, chondroitin sulfate A, and dextran sulfate

bind EcMsAP with a clear preference for heparin; non-sulfated dextran did not

bind EcMsAP.  These data are the first to directly show glycan interaction with

recombinant EcMsAP and suggest that native E. cuniculi and E. intestinalis

MsAP may also bind glycans, including the glycans associated with the host cell

surface.  Furthermore, these data agree with several previously published

studies showing heparin, CSA, and dextran sulfate, but not dextran, as potent

inhibitors of spore adherence.

The three studies described here provide unique insights into the

molecular events that govern microsporidia spore adherence to host cells

surfaces.  These studies also provide evidence supporting a direct relationship

between adherence and host cell infection.  Furthermore, our studies indicate

that the physical interaction between spores and the host cell surface may be the

stimulus required to activate microsporidia spores ultimately leading to polar tube

discharge and host cell infection.
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A better understanding of the molecular biology of microsporidia spore

adherence and infection is an irreplaceable resource in a quest to develop novel

therapeutics to treat or even prevent microsporidiosis.  Thankfully, the basic

molecular biology of the microsporidia is now receiving attention from research

groups worldwide.  A continued focus on the molecular biology of microsporidia

will almost assuredly provide better insights into this “curious” group of

organisms.
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