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With nearly 1,350 complete genome sequences available our understanding of 

biology at the molecular level has never been more complete. A consequence of these 

sequencing projects was the discovery of large functionally unannotated segments of 

each genome. The genes (and proteins they encode) found in these unannotated regions 

are considered “hypothetical proteins”. Current estimates suggest between 12%-50% of 

the known gene sequences are functionally unannotated. Incomplete functional 

annotation of the various genomes significantly limits our understanding of biology.  

Pragmatically, identifying the functions of these proteins could lead to new therapeutics; 

making functional annotation of paramount importance.   

This dissertation describes the development of new methods for protein functional 

annotation independent of homology transfer. The hypothesis is proteins with similar 

function have significantly similar active sites. Nuclear magnetic resonance ligand 

affinity screening was employed to identify and define protein active sites. The methods 

developed were tested on a series of functionally diverse, annotated proteins including, 

serum albumins (H. sapiens, B. taurus),  and amylases (B. licheniformis, A. oryzae, B. 

amyloliquefaciens H. vulgare, I. batatas), primase C-terminal domain (S. aureus), 

nuclease (S. aureus) and the type three secretion system protein PrgI (S. typhirium).   



 

 

 

  

 

 Functional annotation using protein active sites require a high-resolution three-

dimensional structure of the protein.  In addition to method development, this dissertation 

describes the NMR solution structure of Staphylococcus aureus primase carboxy-

terminal domain (CTD). The primase CTD is essential for bacterial DNA replication and 

distinctly different from eukaryotes. With the rapid rise in antibiotic resistance, the 

primase CTD of S. aureus is an attractive antibiotic target.  The methods used for 

functional annotation were used to screen S. aureus primase CTD to identify the 

compound acycloguanosine as a binding ligand to primase CTD.   
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CHAPTER 1:  

 

GENERAL INTRODUCTION 

 

 

1.1 General introduction to functional genomics. Protein science has a long 

history inevitably intertwined with the advancements in chemistry, biology and physics.  

The term “protein” was initially used by Jöns Jakob Berzelius and Gerhardus Johannes 

Mulder who performed the first elemental analysis of a protein in 1839.
1
  Surprisingly, all 

proteins Berzelius and Mulder studied contained the general empirical formula; 

C400H620N100O120.
1
  

 Nearly a century after Mulder‟s work, Jensen et. al. discovered the first amino 

acids in a protein.
2
  This discovery eventually lead to the first complete amino acid 

sequence of a protein elucidated by F. Sanger in 1955.
3, 4

  Sanger followed up his work 

on protein sequencing with developing techniques for DNA sequencing
5, 6

 and 

successfully completed the first entire sequenced genome in 1977.
7
  Twenty-two years 

later, Haemophilus influenzae became the first living organism to have its entire genome 

sequenced.
8
  The following 6 years uncovered the complete genome sequences for 

Escherichia coli
9
, Drosophila melanogaster

10
, and in 2001 Homo sapiens.

11
  

Since the first published genome in 1977
7
 there has been an explosion in the 

number of complete genome sequences (figure 1.1).  As of August 2010, a total of 1350 

genomes have been completed and published representing all branches in the tree of life 

with nearly 6500 additional sequencing projects currently in progress.
12

 In addition to 

individual species sequencing efforts, the technological advances in genome sequencing 

and relative low cost have help push the development of metagenomics.  Metagenomics 

is the sequencing of samples collected directly from their environment.  This has led to 
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the complete sequencing of the human gut “microbiome”
13

 and the identification of 

various soil
14

 and ocean
15, 16

 microbes that could not be cultured in a laboratory setting.  

 

 
Figure 1.1 The rapid increase in sequenced genomes.  Since the first genome of a 

living organism was sequenced in 1995 there has been a dramatic increase in the total 

number of completed genomes.  The data was collected from the current status of the 

GOLD database
12

 (August 2010) which listed a total of 1350 completed genomes.   

 

A consequence of these sequencing projects was the discovery of large 

functionally unannotated segments of each genome.  The genes (and proteins they 

encode) found in these unannotated regions are considered “hypothetical proteins”. The 

term hypothetical protein is synonymous with novel gene product, unknown protein, non-

characterized protein or putative uncharacterized gene product. Current estimates suggest 
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the percent of unannotated proteins found in all sequenced genomes is between 12%-

50%.
17-19

 For example, an estimated 50% of the genes in the Escherichia coli genome 

have not been experimentally annotated.
20, 21

   

The large number of hypothetical proteins initially suggested these proteins were 

adaptations to specific environmental niches and therefore species specific.
22

 Considering 

the large degree of biodiversity this seemed like a reasonable assumption.
22, 23

  However, 

most hypothetical proteins are not species specific, but rather found in a range of 

phylogenetic distributions generating families of “conserved hypothetical proteins”.
24

  

For example the E. coli hypothetical protein yrdC is a member of a hypothetical protein 

family.  Homologous sequences to yrdC are also found in Bacillus subtilis, yeast, and 

humans.
24

   Proteins such as yrdC are annotated as conserved hypothetical proteins 

because no member in the family is completely functionally annotated.
24, 25

 

The most accurate and manually edited source for indentifying conserved 

hypothetical protein families, the Cluster of Orthologous Groups database (COG),
26

 

reports 2143 uncharacterized, putative or predicted orthologous families in bacteria.
25, 27

 

The large number of hypothetical and conserved hypothetical proteins significantly limits 

our understanding of biology.   From a pragmatic viewpoint, identifying the functions of 

these proteins could lead to new therapeutics; making functional annotation of these 

proteins of paramount importance.    

1.2 Introduction to protein functional annotation. The most basic level of 

functional annotation involves associating experimental evidence for a particular 

biochemical, biological process, or interaction to a specific gene.  A number of 

experimental methods exist to annotate protein function.  These include various 
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enzymatic assays,
28, 29

 protein-protein interaction hybrid assays,
30, 31

 knockout studies,
32, 

33
 gene silencing methods using antisense oligodeoxynucleotides,

34
 ribozymes

35
 or RNA 

interference  
36-38

 and recently metabolomic data.
39-41

    

While powerful and direct, often a single biochemical method cannot fully 

annotate a gene.  For example, with knockout and gene silencing studies a function is 

inferred from the change in observed phenotype between the wild-type and knockout 

organsim.
42

  Knockout studies of essential genes are relatively straightforward with the 

appropriate control experiments because if the gene is no longer active the cell dies.
43

  

However, these studies only prove the knockout gene is essential for survival.  These 

studies do not suggest a molecular function.  For knockout studies of non-essential genes 

the issue becomes even more problematic. If multiple different genes carry out a 

particular function the knockout of gene may give no change in phenotype.  Often this 

happens when a redundant gene compensates for the knockout.
44

   

Functional annotations from enzymatic assays generally describe the substrate 

used in the study or reaction mechanism.  For example, the general function ascribed to 

the enzyme responsible for catalyzing the oxidation of ethanol to acetaldehyde using 

nicotinamide adenine dinucleotide (NAD+) as a coenzyme, is alcohol dehydrogenase.
45

  

In humans, the alcohol dehydrogenase family consists of 7 unique genes each bind a 

range of alcohol substrates.
45

 The problem becomes, if a gene has multiple in vitro 

functions, which one is the “correct” in vivo function? For alcohol dehydrogenase this 

problem is even larger with multiple genes binding a range of substrates. 

The enzyme classification (EC) scheme attempts to standardize functional 

annotation from experimental methods.
46

 The enzyme classification scheme annotates 
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proteins based on 6 broad functional classes (oxidoreductases, transferases, hydrolases, 

lyases isomerases and ligases).  The functional annotation of the enzyme is further 

refined based on substrate and reaction chemistry. For the alcohol dehydrogenase 

example, all 7 genes in human are classified with the EC number of E.C 1.1.1.1 with each 

number designating a specific level of functional annotation (scheme 1.1) 

 

Scheme 1.1. Example of enzyme classification (EC) nomenclature. 

EC 1.1.1.1 Alcohol dehydrogenase  

 E.C 1.-.-.-    Oxidoreductases 

 E.C 1.1.-.-  Acting on the CH-OH group of donors 

 E.C 1.1.1.-  With NAD(+) or NADP(+) as acceptor 

 E.C 1.1.1.1  Alcohol dehydrogenase 

 

The EC method provides a concise method to annotate experimental functions 

down to specific reaction chemistry.  However, the problem becomes, what level of 

enzyme activity (Km, Vmax etc…) is needed to assign an EC number?  Additionally, for 

Escherichia coli, only 30% of the genome encodes for enzymes, the remaining 70% 

encodes for transport proteins, response regulators, structural proteins, and other non-

enzyme functions.
47

 

The sheer number of unannotated proteins significantly limits complete 

biochemical analysis of every gene within an organism.  A search of the NCBI protein 

sequence database for the term “hypothetical” retrieves nearly 1.5 million hits (August 

2010). Correspondingly, nearly 2730 unique structures deposited in the Protein Data 

Bank (PDB) are annotated as hypothetical (August 2010).  The large number of 

unannotated proteins makes pure experimental work impractical and supports the 

necessity of bioinformatics and hybrid bioinformatic/experimental methods.
21
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   Since the early stages of protein and gene sequencing, it was shown sequences 

directly relate to the evolution of a protein and in some instances the organism.
48-51

 This 

triggered the development of many sequence comparison methods attempting to 

accurately measure sequence relatedness.
52-59

  Today, multiple sequence alignments 

(MSA) are routinely used to identify sequence similarity, build phylogenetic 

relationships, and to measure evolutionary clocks.
60-65

   In addition to sequence based 

approaches, the three dimensional structure of a protein is related to molecular and 

organism evolution.  A number of reports have shown a protein structure can also 

generate structure based phylogenetic trees
66-70

 and protein domain complexity scales 

with organism complexity.
71

  Mapping the evolutionary relationship between proteins is 

fundamental to current automatic functional annotation methods. 

Current bioinformatic methods for functional annotation rely on gene and protein 

sequence, structure or hybrid sequence/structure similarity searches to automatically 

annotate protein function.
72

   These methods use the evolutionary conservation of a 

protein to infer a generalized function; „inheritance through homology‟.
73-75

  Homology is 

a hypothesis of the evolutionary relatedness between two or more proteins based on 

relative sequence or structure similarities.
76, 77

   The degree sequence similarity needed to 

infer homology is still being debated.  However, for highly similar sequences (≥ 70%) 

this method is effective at annotating function.
78

  

Functional annotation using homology transfer is the standard method of 

automated functional prediction. Many databases exist for automated functional 

prediction including, PFAM,
79

 Gene Ontology,
80-82

 UniProt/RefSeq/Swiss-Prot,
83

 

ProFunc,
84

 and STRING.
85

  Similarly, the COG/KOG
26

 and eggNOG
17

 databases often 
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get used for functional prediction because they contain large sets of orthologous genes. 

These databases and others have been reviewed in depth previously.
86

  Each database 

uses different methods of protein representation, different algorithms for comparison and 

different scoring functions, in the majority of cases the result is a generalized functional 

annotation.   

These automated functional annotation tools are necessary for managing the large 

volume of sequence data and remain the most popular.
87

 However, these methods often 

lead to spurious annotations because homology does not necessarily imply conservation 

of function.
88

  Additionally, these methods are often error prone and based on a small set 

of experimentally annotated proteins.
87, 89-92

 The maximum reported error rate for 

automatic functional annotation is 63% for all unannotated genes.
87, 91

  For enzymes 

approximately 30% of current automatic functional annotations are incorrect.
90

  

Differences in protein active site structure leading to different ligand specificities and 

enzyme efficiencies are suspected to be a major source of errors in automatic functional 

annotations.
78, 90, 93

   

In addition to the problems stated above, many of the automatic function 

prediction methods have reached an apparent maximum effectiveness.
94

 Essentially, (i) 

proteins with known function become overly populated in the databases so no new 

information is reported, or (ii) hypothetical proteins only match other hypothetical 

proteins.  Figure 1.2 shows a structure based similarity search of the protein Bcl-xL, 

which only retrieves other Bcl-xL proteins. Alternatively, a search of a hypothetical 

protein YtfP from E. coli only retrieves other proteins of unknown function.  Similar 

results are obtained using sequence similarity. 
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Figure 1.2 Structure based similarity searching to predict protein function. (A) The 

anti-apoptosis protein Bcl-xL (1YSN) was compared to the Dali FSSP database
95-98

 to 

identify potential new functions.  The only significant hits (Z>2.0) were redundantly 

solved protein structures of the same sequence or Bcl-2 homologs.  (B)  The structure of 

the hypothetical protein YtfP (1XHS) was compared to the same database with the most 

significant hits having no known function or a range of predicted functions.  This 

example highlights two common problems with current structure based database 

searches: (i) a protein with known function is overly populated so no new information is 

reported, or (ii) hypothetical proteins only match other hypothetical proteins. 
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1.3 Annotation of function using ligand binding.   A major source of error in 

automatic function prediction is differences in active site structure and ligand specificity. 

Could using active site information increase functional annotation? Proteins interact with 

biological molecules including other proteins, DNA, RNA or small molecule ligands.  

Therefore, the active site of a protein must be intrinsically linked to the function of the 

protein.
99

   

Active site similarity tools for functional prediction and annotation are a rapidly 

growing trend.
100-106

  Using ligands to probe protein function is an evolutionary 

independent method to predict protein function.  This should reduce the error rate of 

traditional homology based methods because active site annotations are not limited to 

correct ortholog detection.
107

 Additionally, traditional homology based methods do not 

account for post-translational modifications or the occurrence of gene sharing.  Both of 

which have dramatic biological significance.
108-110

   

A corollary to function prediction using ligand binding is using similar functions 

to predict off-target side effects of drugs.
105, 106, 111, 112

  Recent observations of potential 

drug leads binding a range of protein targets with similar function further support the idea 

of using ligand binding to predict protein function.  Attempts have been made to relate 

ligand binding to sequence or structure similarity with minimal success.
113

 To date only a 

handful of studies have attempted to relate ligand binding with protein function.
106, 114-117

   

 The work reported in this dissertation uses this most basic definition of protein 

function to establish a uniform method for identifying functional similarity.  The 

hypothesis is proteins with similar function will bind to a set of similar biologically 

relevant small molecules at a specific active site. The hypothesis is supported by reports 
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showing functional regions of a protein are more stable relative to the remainder of the 

protein sequence undergoing random drift.
118, 119

 The correlation between ligand binding 

sites, ligand structure and protein function has also been demonstrated by a network of 

ligand binding-site.
120

 A variety of computational methods have attempted to exploit the 

stability of functional regions by identifying ligand binding sites as a method to predict 

function.
121, 122

 Unfortunately, the combined requirements of predicting the ligand, the 

binding site, and a similarity to an annotated proteins leads to a high level of ambiguity.  

This dissertation will discuss the development of high-throughput screening 

methods to detect ligand binding and discovery protein active sites.  There is an inherent 

similarity between the methods used to detect ligand binding for functional annotation 

and drug discovery.  In this dissertation the high-throughput NMR screening method to 

detect ligand binding were originally developed to identify binding ligands and protein 

active sites for attractive drug targets.  

Drug discovery is a uniquely complex problem in science and medicine.
123, 124

  

This is further complicated by the fact that each disease is distinct and requires its own 

efficient strategy to successfully develop safe therapeutics.
125

  A central theme in drug 

discovery research is attempting to identify highly specific ligands (nM-pM KD) that bind 

a biological target.  Therefore, the methods used to detect ligand binding in drug 

discovery research are also amenable to identifying binding ligands for functional 

annotation. In this dissertation, the techniques developed for high-throughput NMR 

screening were used to identify binding ligand to a number of functionally diverse 

proteins including, serum albumins (H. sapiens, B. taurus),  and amylases (B. 

licheniformis, A. oryzae, B. amyloliquefaciens H. vulgare, I. batatas), primase C-terminal 
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domain (S. aureus), nuclease (S. aureus) and the type three secretion system protein PrgI 

(S. typhirium).   

1.4 General principles of high-throughput nuclear magnetic resonance 

screening.  From target selection to pre-clinical trials, nuclear magnetic resonance 

(NMR) has established itself as an invaluable tool for the chemist working in the drug 

discovery industry.
126, 127

 The flexibility provided by NMR comes from various 

molecular probes that include chemical shifts, relaxation parameters (T1, T2), spatial 

information (nuclear Overhauser effects, NOE), and diffusion rates. Each parameter is 

uniquely sensitive to the local chemical and physical environment of a sample and 

provides structural information at atomic resolution for both small (<1000 Da) and large 

(> 1000 Da) biological molecules. Additionally, in recent years NMR has proven more 

valuable to the drug discovery process than simply a tool for structural studies of 

biological molecules.
126

  This is most apparent with the increase use of NMR as a critical 

component for high-throughput screening (HTS).  The current methods for NMR affinity 

screening methods are listed in table 1.1.  

NMR affinity screening methods complement structural biology efforts by 

validating chemical leads prior to initiating a structure-based drug design program.
128-133

 

Target focused screening techniques, such as SAR by NMR,
134

 RAMPED-UP NMR,
135

 

STD-NMR,
136

 and NMR-SOLVE
137

 were developed to identify ligands that bind a 

therapeutic target in a biologically relevant manner (table 1.1).  This is often done by 

observing chemical shift changes in two-dimensional 2D 
1
H-

15
N HSQC spectra of the 

protein in the presence and absence of a small molecule ligand.  Target based NMR 

screening methods provide invaluable information about the nature of a ligand binding 
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site.
134, 138-143

  However, these methods often require high concentrations (≥ 100 M) of 

expensive 
15

N isotope enriched protein and demand large amounts of data collection 

time.  Therefore target based screening methods are often better suited for secondary 

follow-up screens.
115, 144, 145

 

Unlike the target focused methods, ligand focused techniques detect binding 

events by identifying changes in the free 
1
H ligand spectrum upon the addition of a 

protein. Many ligand focused methods have been developed that exploit various NMR 

molecular probes including saturation transfer differences,
136, 146

 line-broadening 

changes,
147-150

 diffusion rate changes,
151

 
19

F NMR,
149, 152

 spin labels,
150

 and transfer 

NOEs
153

 (table 1.1).  The ligand focused methods are relatively quick (1-5 min), do not 

require 
15

N enriched samples, and are sensitive at much lower protein concentrations (≤ 5 

M). Therefore, these methods have rapidly become invaluable to high-throughput 

screening with a high success rate of identifying potential inhibitors.
154-159

 

This dissertation will focus on using and developing screening methods for high-

throughput NMR screening to functionally annotate proteins with no known function.    

The two central methods used are the 1D line broadening experiment and the 2D 
1
H-

15
N 

HSQC experiment.  These methods will be used in tandem for each screen to detect and 

confirm ligand binding.  The tiered approach to NMR screening maximizes the total 

number of hits identified while reducing the overall sample and data collection 

requirements.
144
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Table 1.1 Various NMR screening methods and the NMR parameter used to detect ligand binding.

Screening 

Technique 
NMR Parameter used to Detect Ligand Binding 

 Labeled 

Protein? 

Limited by 

Protein MW? 
Ref. 

MS/NMR 
Retention on size-exclusion column & chemical 

shift changes 
Yes Yes 

145
 

Multi-Step NMR 
Line-broadening change (T2) & chemical shift 

changes 
Yes Yes 

144
 

RAMPED-UP 

NMR 
Chemical shift changes, screening multiple proteins Yes Yes 

135
 

SAR by NMR Chemical shift changes Yes Yes 
134

 

SMILI-NMR In-cell chemical shift changes Yes Yes 
160

 

STINT-NMR In-cell chemical shift changes Yes Yes 
161, 162

 

SLAPSTIC 
Line-broadening change (T2) due to protein spin 

label 
Yes No 

150
 

AIDA-NMR 

Line-broadening change (T2) due to protein-protein 

complex formation, labeled protein or Trp reporter 

in ligand binding site 

Yes/No Yes 
147, 148

 

TINS 
Line-broadening change (T2) due to binding to an 

immobilized protein target 
No Yes 

163
 

3-FABS Chemical shift changes, requires fluorinated ligands No No 
152

 

Affinity NMR Change in translational diffusion No No 
151

 

FAXS 
Line-broadening change (T2) due to ligand 

competition, requires fluorinated ligands 
No No 

149
 

INPHARMA Transfer nuclear Overhauser effect (NOE) No No 
164

 

NOE pumping Transfer nuclear Overhauser effect (NOE) No No 
153

 

SALMON Saturation transfer difference from solvent No No 
165

 

STD NMR Saturation transfer difference from protein No No 
136

 

WaterLOGSY Saturation transfer difference from solvent No No 
146

 

1
4
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1.5 Summary of work. The challenges of functional annotation described above 

are a product of having only a limited collection of bioinformatic tools based on a small 

set of experimentally characterized proteins.  This dissertation focuses on the 

development and implementation of new experimental approaches to extend functional 

annotation of unknown proteins. First, in chapter 2 I will discuss the development of a 

technique to measure relative dissociation constants (KD) from an NMR high-throughput 

ligand affinity screen. The method is used to qualitatively select the best binding 

ligand(s) that will be used to probe the active sites of the various targets and identify a 

biological function.   

Chapters 3 and 4 will discuss the implementation and optimization of the 

Functional Annotation Screening Technology by NMR (FAST-NMR).
166

 The FAST-

NMR method is a tiered approach to high-throughput NMR affinity screening to identify 

binding ligands and proteins active sites. The protein active sites are compared to a 

database of active sites using the Comparison of Active Site Similarity (CPASS) tool.
103

 

Functional similarity is inferred through similarities in protein active sites. 

 In chapter 3 I show the utility of the FAST-NMR method by establishing a 

functional similarity between the type III secretion system (T3SS) protein PrgI from S. 

typhirium and the human apoptosis regulating protein Bcl-xL. This relationship would 

not have been identified with current methods because sequence and structure similarity 

are below the limit of acceptable homology. In chapter 4, I validate the FAST-NMR 

method by expressing, purifying and screening the S. aureus nuclease protein.  I show the 

FAST-NMR method correctly identifies the best binding ligand thyamdine-5‟-

triphosphate and active site of the protein.  Additionally, the FAST-NMR binding site 
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correctly identified a nucleotide (thymidine-3‟,5‟-diphosphate) bound nuclease structure 

(1TR5) as the best match in the CPASS search.  I will also discuss the implementation to 

two new pulse sequences and improvements to automated data collection.  These 

improvements to the screening technology dramatically increase throughput and 

flexibility of FAST-NMR. 

The FAST-NMR method was initially developed as a tool for functional 

annotation.  However, the generalized tiered approach to NMR screening used by FAST-

NMR is also valuable to drug discovery.  In chapter 5 I will discuss the structure, 

dynamics and high-throughput screening of the DnaG primase C-terminal domain from 

Staphylococcus aureus.  The C-terminal domain of primase specifically interacts with the 

DnaC helicase to initiate primer synthesis and is therefore an attractive drug target for 

antibiotic development.  Using the FAST-NMR screening methods I show 

acycloguanosine binds to the C-terminal domain of primase at the important helicase 

interaction site.  This result was used to identify a set of structurally similar compounds 

for further antibiotic development.  

A surprising result from the S. aureus primase CTD structure was the observation 

of a potential phylogenetic dependence on protein structure similarity.  In chapter 6 I 

expand on this observation by completing a thorough analysis of functionally identical 

protein structures and report a maximum sequence and structure similarity between the 

two bacterial phyla, Firmicutes and Proteobacteria.  Additionally, the results from 

chapter 6 were used to show a constant rate of structural drift during protein evolution.  

Finally, in chapter 7 I discuss a new technique for functional annotation that 

evolved from the FAST-NMR methodology, but is independent of sequence, structure or 
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evolutionary information.  The method involves the development of a robust scoring 

system to measure ligand binding profile similarities.  A ligand binding profile is defined 

as a set of ligands that bind a protein from a high-throughput ligand affinity screen using 

a standardized chemical library. Functional annotation is inferred by clustering unknown 

proteins with previously annotated proteins that share similar ligand binding profiles. The 

method was tested on two sets of control proteins, 2 serum albumins (H. sapiens, B. 

taurus) and 5 amylases (B. licheniformis, A. oryzae, B. amyloliquefaciens H. vulgare, I. 

batatas). 
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CHAPTER 2: 

 

ESTIMATING PROTEIN-LIGAND BINDING AFFINITY USING HIGH-

THROUGHPUT SCREENING BY NMR 

 

2.1 INTRODUCTION  

In chapter 1 the general principles for using NMR as a high-throughput screening 

tool were discussed in the context of functional annotation and drug discovery.   For a 

high-throughput screen to be successful a hit must efficiently alter the biological activity 

of a protein or other biological target molecule and disrupt its normal function.
1
  This is 

generally accomplished by a small molecule changing the dynamics of a protein 
2
 or 

interfering with a critical protein-protein interaction.
3
  For a small molecule hit identified 

from a high-throughput screen to become a viable drug candidate it must elicit these 

effects while simultaneously demonstrating in vivo efficacy in the absence of toxic side-

effects. Thus, an important component of the drug discovery process is the verification 

that a small molecule ligand actually binds the protein target in a selective and 

biologically relevant fashion. 

Selectively is measured by binding affinity which is governed by the equilibrium 

parameters of a binding interaction.  The equilibrium state of a binding interaction is 

described by the concentration of the free ligand [L]F, free receptor [P]F, and the receptor-

ligand complex [PL]. For single-site binding, the relative ratios of these concentrations 

are governed by the kinetic on (kon) and off (koff) rates between the free and bound forms 

as described in eq 2.1. 

                                   

[2.1]
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The strength of a ligand‟s binding affinity is quantified by the dissociation 

constant (KD), or simply the ratio of koff and kon rates.  

                                             
[PL]

[P][L]

k

k
K FF

on

off
D

    

[2.2] 

 The selectivity of a ligand to a particular target biological molecule is inversely 

proportional to the strength of the KD.  Highly selective compounds will have a KD in the 

pM-nM range while weaker ligands will exhibit binding in the M-mM range.  Often a 

HTS will rely on the identification of M-mM binding ligands coupled with structural 

information to develop high affinity ligands through combinatorial approaches.   

Similar to traditional measurements,
4
 NMR methods rely on the collection of 

multiple data points to accurately determine a KD for a protein-ligand interaction.  This 

approach is usually impractical in a high–throughput mode that requires a rapid method 

for characterizing and ranking binding affinities. Examples of high-throughput KD 

measurements using 1D NMR experiments have been described that use 
19

F-containing 

compounds
5, 6

 or the displacement of known low-affinity inhibitors. 
7, 8

  Unfortunately, 

these approaches are typically limited in practice because known low-affinity inhibitors 

or a large library of “drug-like” and structurally diverse 
19

F-containing compounds are 

not available for a wide range of protein targets.  To increase the utility and throughput of 

NMR affinity screening a rapid and universal method to determine binding affinity was 

still needed. 

This chapter discusses a new NMR screening method that can determine the 

relative ranking of binding affinities using a variation of traditional 1D 
1
H NMR line-

broadening experiments.
9, 10

  This approach correlates the ratio of NMR peak intensities 
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for free and bound ligands to the fraction of bound ligand in a protein-ligand complex. 

This method is illustrated by using human serum albumin (HSA) as a model protein.  

HSA is also an important secondary target for efficacy screening and a well-established 

system for monitoring protein-ligand interactions.
11

 

 

2.2 THEORY 

2.2.1 Single point KD measurements. Binding interactions between a protein 

(MW > 5000 Da) and a low molecular weight ligand (MW < 500 Da) can be examined 

by using the decrease in NMR peak intensity that occurs upon the addition of a protein to 

a solution with constant ligand concentration. NMR line-broadening experiments follow 

an opposite protocol from typical experiments that measure KD values, where variable 

protein concentrations are added to solutions that contain a constant ligand concentration. 

Thus, a different form for the standard Langmuir binding isotherm (eq 2.2) was required. 

Rearrangement of eq 2.2 produces the following binding isotherm, in which fB 

represents the “fractional occupancy”, or the fraction of bound ligand. 

         

B
DT

F

[PL] 1
f

K[L]
1

[P]

      [2.3] 

It is assumed in many types of binding studies the total ligand concentration [L]T 

is approximately equal to the free ligand concentration; however, this assumption is not 

applicable to the NMR line-broadening experiments used in this study because [L]T is not 

necessarily in  excess of the maximum complex concentration [PL]. Also, a direct 

measurement of the free protein concentration is not possible for the method described in 

this report. Therefore, eq 2.3 was derived to describe this situation in terms of the total 
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protein concentration [P]T and total ligand concentration [L]T that are known to be present 

in the system (see appendix 2A and 2B for definition of variables and equation derivation 

respectively).   

    

B
DT

2

T T D T T D D T

[PL] 1
f

2K[L]
1

([P] [L] K ) ([P] [L] K ) 4K [L]

   [2.4] 

Equation 2.4 can be simplified to approximate the fractional occupancy in terms 

of the total ligand concentration [L]T and total protein concentration [P]T by using a 

Taylor series expansion and the assumption that  [L]T > [P]T.  

                                             

T
B

T T D

[P][PL]
f

[L] ([L] K )
         [2.5] 

The fractional occupancy for a protein-ligand complex can be measured using a 

ratio of NMR peak intensities (1-IB/IF), where IB is the sum of ligand NMR peak 

intensities in the presence of the protein and IF is the sum of NMR peak intensities for the 

free ligand. Therefore, Bexpt (the NMR peak intensity ratio) represents an easily 

measurable response of ligand binding that can be described in terms of the fraction of 

bound ligand (fB) and the NMR linewidth for the free ( F) and bound ( B) states (see 

Appendix B for derivation). 

B
expt

BF
B

F

I 1
B =1 1

νI
1 f ( 1)

ν

        [2.6] 

Combining eq 2.5 and eq 2.6 leads to a new binding isotherm for this system, as 

shown below, 
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                 B
expt

TF

T D

I 1
B 1 1

c[P]I
1

[L] K

            where  B

F

ν
c 1

ν
  [2.7] 

The unit-less NMR linewidth ratio constant (c), as defined in eq 2.7, accounts for 

the proportional change in ligand linewidth upon binding of a ligand to a protein. Once a 

ligand is bound, the free ligand linewidth ( F) of a ligand resonance adopts the linewidth 

of the protein ( B) and the increase in linewidth produces a corresponding decrease in 

peak intensity measured by the ratio of NMR peak intensity (B).  

The dissociation equilibrium constant for a protein-ligand complex that is 

calculated using eq 2.7 is based on relative changes in NMR peak intensity by fitting the 

given binding isotherm to a complete protein titration curve. This is impractical in the 

context of an NMR high-throughput screen where only a single titration point is 

measured. However, eq 2.7 can be rearranged to solve for KD to yield an estimate for KD 

that is based on [P]T, [L]T, c and Bsingle, where Bsingle is the fractional occupancy at a 

single protein concentration. The resulting expression is shown in eq 2.8.  

           

T
D T T

single

c[P]
K c[P] [L]

B
             [2.8] 

For proteins such as HSA that possess multiple non-specific binding sites, the 

decrease in ligand signal at a relatively high protein concentration will be an average of 

specific and non-specific binding. To correct for this effect, the non-specific binding term 

n[P]T that corresponds to a linear increase in fraction bound with the addition of protein is 

simply added to eq 2.7, as shown in eq 2.9. 
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TF

T D

I 1
B 1 1 n[P]

c[P]I
1

[L] K

    [2.9] 

 

2.3 EXPERIMENTAL 

2.3.1 Materials. The HSA (essentially fatty acid free, ≥ 96% pure), choline 

bromide (~ 99% pure), clofibrate, furosemide, phenol red, phenylbutazone, phenytoin (~ 

99% pure), sodium salicylate, tolbutamide, uridine 5‟-monophosphate (98-100% pure) 

and warfarin (> 98% pure) were purchased from Sigma (St. Louis, MO). The 

bromophenol blue (ACS reagent grade, 95% pure), bromocresol green (ACS reagent 

grade, 95% pure), and ibuprofen were from Sigma-Aldrich (Milwaukee, WI). The 

dimethyl sulfoxide-d6 (99.9% D), deuterium oxide (99.9 atom% D) and naproxen (98% 

pure) were obtained from Aldrich (Milwaukee, WI). The 3-(trimethylsilyl)propionic-

2,2,3,3-d4 acid sodium salt (98% D) was purchased from Cambridge Isotope (Andover, 

MA). The potassium phosphate dibasic salt (anhydrous, 99.1% pure) and monobasic salt 

(crystal, 99.8% pure) were purchased from Mallinckrodt (Phillipsburg, NJ).  

2.3.2 Apparatus. All NMR spectra were collected on a Bruker 500 MHz Avance 

spectrometer (Billerica, MA) equipped with a triple-resonance, Z-axis gradient cryoprobe 

and  using a Bruker BACS-120 sample changer and IconNMR software for automated 

data collection. Spectra were collected at 298 K using 512 transients, a sweep-width of 

6009 Hz, 16 K data points and a relaxation delay of 2.0 s. The residual H2O resonance 

signal was suppressed with presaturation during the recycle delay and a composite pulse 

train prior to the 90
o
 excitation pulse.  The total experiment time, including sample 

changing for each spectrum, was approximately 33 min.  



48 

 

 

  

2.3.3 Sample Preparation. All small-molecule ligands that were used in this 

study were selected based on their previously reported KD values for HSA and their good 

solubility in an aqueous solution.
11

  The small-molecule ligand samples were individually 

prepared in 10 mL stock solutions that contained 20 µM ligand, 1% (v/v) dimethyl 

sulfoxide-d6 (DMSO-d6), 10 µM 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt 

(TSP) and pH 7.0 (uncorrected) 50 mM potassium phosphate buffer prepared in 

deuterium oxide.  

A series of ten HSA stock solutions were prepared in deuterium oxide
 
by making 

serial dilutions from a 200 μM master solution of HSA in deuterium oxide. The final 

concentrations of HSA in these stock solutions ranged from 0 µM to 200 μM and were 

prepared so that a 10 µL addition of the HSA stock solution to 490 μL of a free ligand 

solution resulted in final concentrations of 0 µM, 0.1 µM, 0.2 µM, 0.4 µM, 0.6 µM, 0.8 

µM, 1 µM, 2 µM, 3 µM, and 4 µM HSA, respectively. These mixtures were prepared 

individually for each ligand in 1.5 mL microcentrifuge tubes and then transferred to 

NMR tubes. The sample for each titration that contained 0 μM HSA was used as the 

reference for calculating the free ligand intensities (IF) and free ligand linewidths ( F).  

All binding studies performed with these solutions were conducted at 25ºC. 

2.3.4 1D 
1
H NMR binding curves. Spectra were processed with the ACD/1D 

NMR manager (Advanced Chemistry Development, Inc., Toronto, Ontario). A linear 

prediction algorithm was applied to the FID in the forward direction and the resulting 

FID was Fourier transformed. The NMR spectrum was phase-adjusted and baseline-

corrected. The residual water signal was removed for spectrum clarity by the solvent 

removal function in ACD.  This function zeros‟ the spectrum baseline at the residual 
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water signal. All ligand resonance peaks were visually selected and peak positions were 

measured relative to a TSP reference set to 0.0 ppm. Peak intensities were measured 

relative to the DMSO-d6 peak at 2.69 ppm that was normalized to an intensity of 1.00.  

The DMSO-d6 peak was completely recovered during the 1D 
1
H NMR experiment using 

a 2.0 s recycle delay. This is >3x  the T1 for DMSO in D2O at 298K (0.3-0.5 s) and is 

acceptable for complete relaxation.
12, 13

  Individual peak intensities in the aromatic region 

for each ligand were summed to obtain the free (IF) and bound (IB) intensities at each 

titration point. The peak-intensity ratios were plotted versus total protein concentration 

and fit to eq 2.9 using the program KaleidaGraph version 3.52 for Windows (Synergy 

Software., Reading, PA) to estimate the KD value for each protein-ligand complex. The 

average NMR linewidth ratio (c) for each ligand was estimated by using eq 2.7, where B 

was taken to be approximately 94.2 Hz using a previously measured correlation time for 

HSA of 41 ns.
14

  The value for F was calculated as described in the next section. The fit 

of each binding curve was constrained so that KD ≥ 0 in these studies.   

2.3.5 Measuring a free ligand NMR linewidth ( F). To measure the free ligand 

linewidth ( F) for use in eq 2.7, the NMR spectrum for each free ligand (i.e., as obtained 

in a solution containing no HSA) was processed as described above to avoid any 

distortion in linewidth resulting from processing. NMR peak linewidths were measured 

using the ACD/1D NMR manager peak fitting routine. The average peak linewidth was 

used to report F for each ligand and to calculate the NMR linewidth ratio. 

2.3.6 Simulated high-throughput screening by NMR. To simulate the outcome 

of an NMR high-throughput screening assay, a single protein concentration [P]T from the 

full titration curve was used. On average, the 0.2 M HSA titration point yielded a large 
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response for all 12 ligands without reaching saturation. The static total ligand 

concentration [L]T was 20 M. A simulated response curve was generated by fitting a 

range of KD values to a range of ideal Bsingle values calculated using eq 2.8. The measured 

Bsingle value for each ligand at the 0.2 M HSA titration point was used to calculate a 

single-point binding constant from eq 2.8 and compared to the simulated response curve. 

This simulated experiment used both the individual c values calculated for each ligand 

from the full titration experiment and an average c value calculated from the 12 NMR 

titration curves. The single-point dissociation equilibrium constant for each ligand was 

calculated using this average c value. 

 

2.4 RESULTS AND DISCUSSION  

2.4.1 Measuring KD from 1D 
1
H NMR line-broadening experiments. The 

development of NMR-based screening assays that monitor changes in chemical-shifts or 

linewidth as a means to identify or verify initial chemical leads has evolved to become an 

increasingly important component of drug discovery efforts in the biotechnology and 

pharmaceutical industry.
15, 16

  Nevertheless, the direct measurement of a binding affinity 

from a high-throughput NMR screen is generally lacking.
5, 6, 8, 17, 18

  A decrease in the 

intensity of a ligand's NMR signal in the presence of a protein is commonly used in 

NMR-based screens to monitor the formation of a protein-ligand complex. 1D 
1
H NMR 

spectra of small-molecules (MW ≤ 500 Da) usually have extremely sharp peaks due to 

slow dipole-dipole relaxation (T2).
19

  Binding to a high molecular weight agent like a 

protein induces peak broadening and a corresponding decrease in the ligand's NMR 

signal intensity because the bound ligand now experiences the shorter relaxation time of 
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the protein. This effect is illustrated in figure 2.1 using binding by the protein HSA to the 

drugs phenytoin and naproxen as examples.  

The observed increase in ligand linewidth in such an experiment will depend on a 

number of factors that include the dissociation equilibrium constant for the protein-ligand 

interaction, KD. In general, the observed change in the ligand's linewidth ( obs) for the fast 

exchange limit will follow the result shown below. 

                   obs F B B Fν ν f (ν ν )        where    
DT

T
B

K[L]

[P]
f     [2.10] 

In eq 2.10, fB is the fraction of the bound protein-ligand complex, F is the free ligand 

NMR linewidth, and B is the linewidth for the bound state of the ligand (see the 

appendix B for an explanation regarding the above expression for fB).  Eq 2.10 shows that 

an increase in the observed ligand linewidth will be related to the free and bound ligand 

linewidths and the value of KD for the protein-ligand complex. If it is assumed the 

linewidth of the protein-ligand complex is significantly larger than that for the free 

ligand, the ratio of the ligand linewidth in the presence and absence of the protein should 

represent the remaining free ligand concentration, as indicated by eq 2.7. 
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Figure 2.1. Relative line broadening of in response to protein binding. 1D 

1
H NMR 

spectra for titration of 20 M of the drugs phenytoin (A) and naproxen (B) with 

increasing concentrations of HSA. The concentrations of HSA were as follows: (i) 0 µM, 

(ii) 0.4 µM, (iii) 1 µM, (iv) 2 µM, and (v) 4 µM. As the protein concentration increases, 

the intensity of the ligand NMR signal decreases due to the bound ligand adopting the 

shorter relaxation time of the protein. The decrease in the ratio of NMR signal intensity 

( B

F

I
1

I
) is proportional to the degree of binding such that tighter binding ligands (B) will 

relax more quickly than weaker binding ligands (A).  
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This relationship assumes there is a lack of any significant contribution of 

chemical or dynamic exchange to the observed change in linewidth. This is a reasonable 

assumption in the context of a high-throughput NMR screen against a single protein 

target. First, initial chemical leads tend to be weak binders in the fast exchange regime, 

where the linewidth change of the ligand will be dominated by the linewidth of the 

protein. Second, biologically relevant binders will interact with the same or similar 

binding sites on the protein. Under these circumstances, the ligand may experience a 

relatively constant contribution of chemical and dynamical line-broadening. Thus, the 

minimal contribution of linewidth from exchange processes should not affect the relative 

ranking of the ligand binding affinities that are obtained when using such an experimental 

approach.              

The validity of this method for high-throughput screening by NMR was examined 

by using twelve ligands with previously determined binding affinities to HSA.
11, 20-23

 

These ligands were used to examine the relationship between the estimated values for KD 

and the relative ratios of the NMR Peak intensity. Samples containing 20 M of any 

given ligand were titrated with solutions that contained 0 to 4 μM of HSA to develop full 

binding curves for each of the twelve ligands. As a control, two suspected non-binding 

ligands (i.e., choline bromide and uridine-5‟-monophosphate) were also screened in the 

presence of HSA with no observable decrease in signal (data not shown). The KD values 

that were obtained by this method (see table 2.1) were experimentally determined by 

directly fitting the resulting binding curve of each ligand to eq 2.9. These fits gave a sum 

of residuals squared that ranged between 0.977 and 0.998 over the ten concentrations of 

HSA that were tested. Figure 2.2 shows the results that were obtained for three of the 
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tested ligands, which have previously reported dissociation equilibrium constants that 

ranged from 0.7 to 36.8 M. These figures and the corresponding fits illustrate the ability 

of this approach to be used with ligands that have weak-to-moderate strength binding to 

proteins such as HSA. 

 

 
Figure 2.2. NMR ligand binding titration. Experimental fractional occupancy (Bexpt) for 

naproxen (), tolbutamide (), and phenol red () versus the total concentration of 

HSA. The best-fit lines were obtained using eq 2.9. The r
2
 for these best-fit lines are given 

in the text and the KD values that were obtained from these lines are provided in table 2.1.  

 

2.4.2 Co-variance of KD and the NMR linewidth ratio (c). Ideally, the 

dissociation equilibrium constant (KD) and the NMR linewidth ratio (c) could be 

simultaneously derived by fitting eq 2.7 to the experimental NMR binding curves. 

Unfortunately, KD and c are completely covariant. This requires an approximation for c in 
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order to calculate KD from the NMR binding curves. The linewidth of a protein ( P) may 

provide a lower estimate of B if it is assumed that B is dominated by the protein 

linewidth ( P). Estimations of P can be made from the correlation time ( c) of the protein 

by using the intramolecular dipole-dipole relaxation rate constant (T2
-1

). 
24

 

0 0

1 2

2

3
T b {3J(0) 5J(ω ) 2J(2ω )}

20
     [2.11] 

Where 

2

o

3

μ γ
b=-

4π r

h
, c

2 2

c

τ
J(ω)

1 ω τ
 and B0     [2.12] 

In these equations, J( ) is the normalized spectral density function, 

permeability, 
-1

), ħ is Plank‟s constant, B0 

is the static magnetic field strength and r is the hydrodynamic radius of the protein. In 

addition, the Stokes-Einstein equation can be used to relate c to the molecular weight 

(MW) for a globular protein,
25

 

   

3

c

4π ηr
τ

3kT  
  with, 

c

MW
τ * (ns)

2400
      [2.13] 

where T is the temperature, k is the Boltzmann constant,  is the viscosity of the solvent, 

r is the radius and  is the shape constant.  

 The reliability of eq 2.13 to approximate a protein correlation time from its 

molecular weight is illustrated from a comparison between 27 experimental c values 
26, 27

 

and correlation times predicted using eq 2.13 (figure 2.3A). A linear best-fit was obtained 

with an R
2
 of 0.81 in this case. For a high-throughput screen, p can be estimated from 

the molecular weight of a protein by using this approximation for c with a shape constant 
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of 1.32 combined with eq 2.11 and 2.12. The shape constant was determined by 

optimizing a linear fit between the experimental and predicted c values shown in figure 

2.3A by varying . The result is an approximate correlation between P and MWP, as 

shown in eq 2.14.  

P Pν 1.26 MW          [2.14] 

This dependency of linewidth on the size and shape of a protein is plotted in 

figure 2.3B. For HSA (MW, 66 kDa), the correlation time (41 ns) has previously been 

measured using time-resolved fluorescence.
14

  This correlation time was used to calculate 

the  value used for P, which was 94.2 Hz. 
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Figure 2.3. Approximation of protein linewidth based on molecular weight. (A) 

Comparison of 27 experimental protein correlation times determined using NMR 

dynamics data with correlation times predicted from protein MW using eq 2.13 and a 

shape constant of 1.32. A best-fit line is shown with a slope of 1 and an R
2
 of 0.81. (B) A 

plot of linewidth versus protein molecular weight based on eq 2.13 for spherical proteins 

with  of 1 (solid line) and elliptical proteins with  of 1.32 (dashed).  
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The free ligand linewidth ( F) can be measured directly from the NMR spectra of 

the free ligand using an average ligand linewidth. Average F values measured from the 

free ligand NMR spectra are reported in table 2.1. However, for large and diverse 

chemical libraries it may not be feasible to measure an accurate linewidth for each 

compound. Alternatively, F is generally between 1 and 2 Hz for many small-molecules 

(MW, 500 < Da), which provides a reasonable estimate for F to calculate an average 

value for c. 

   2.4.3 Sensitivity of KD and NMR linewidth Ratio (c). A closer examination of 

eq 2.7 indicates the NMR linewidth ratio (c) acts as a scaling factor in the calculation of 

KD, with a larger c value resulting in a proportionally larger KD value. Unfortunately, 

small variations or errors in the measurement of F will result in proportionally larger 

variations in both c and KD. In the context of high-throughput screening by NMR, an 

incorrect estimate of c will result in a systematic underestimation or overestimation of 

KD. However, the relative ranking of the ligand binding affinities will be maintained. In 

addition, a lower limit to c is inherently defined by eq 2.7. 

2.4.4 Comparison of estimated KD values with literature values. Table 2.1 

shows the dissociation equilibrium constants that were measured for twelve ligands 

known to bind HSA by using the 1D 
1
H NMR line-broadening method that is described 

herein. Previously reported KD values from the literature are also listed for these twelve 

ligands.
20-22, 28-52
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Table 2.1. Comparison of KD values determined by NMR and reported in the literature under similar conditions 

Ligand Literature KD (µM) Line width (Hz) c 
Measured KD 

(µM) 

Ibuprofen 
0.3

50
 0.33

45
 0.37

49
 0.5

45
 0.52

34
 1.0

47
 1.25

30
 1.26

40
 1.74

41
 1.89

33
 2.08

30
 

2.8
35

 4.76
41

 5.56 
35

 5.68
38

 8.33
33

 7.17
29

 18.2
50

  23.81
53

 25.64
53

 
2.3 ± 0.2 41.5 0.5 ± 1.0 

Naproxen 0.83
42

 1.25
47

 7.09
39

 10.6
46

 23.7
44

 1.8 ± 0.6 51.3 0.7 ± 1.2 

Clofibrate 1.32
47

 1.7 ± 0.1 54.3 1.7 ± 3.4 

Bromophenol Blue 0.67
43

 2.5 ± 0.4 37.8 3.0 ± 2.3 

Furosimide 5.26
36

 52.63
28

 1.5 ± 0.8 57.6 3.4 ± 3.0 

Warfarin 1.61
39

 2.17
37

 2.27
37

 2.94
36

 3.03
37

 3.4
31

 3.7
46

 3.85
32

  4.76
37

 5.3
31

 6.8
31

 2.3 ± 0.9 41.7 4.0 ± 2.8 

Phenylbutazone 0.67
36

 1.9
31

 5.43
32

 8.4
31

 11
31

 15.13
34

 3.7 ± 0.6 25.2 6.5 ± 2.9 

Salicylate 5.26
36

 15.15
37

 32.15
37

 35.71
37

 141
46

 1.4 ± 0.8 63.6 7.2 ± 2.9 

Bromocresol Green 0.63
48

 1.43
43

 2.7 ± 0.3 35.1 7.4 ± 2.1 

Tolbutamide 25
36

 31.25
39

 2.7 ± 0.4 34.9 10.2 ± 1.2 

Phenol Red 35.7
43

 1.6 ± 0.5 58.7 36.8 ± 6.5 

Phenytoin 
50

20
 58.8

20
 62.5

20
 71.43

53
 96.15

20
 111

20
 1342.3

20
 153.85

20
 211

20
 

244
20

 568.2
20

  
2.0 ± 0.6 46.8 131.6 ± 12.5 

6
0
 



61 

 

 

  

In general, there is good agreement between the KD values that were estimated by 

NMR and those values reported in the literature. Variations in temperature, pH or buffer 

conditions may partly explain the range of KD values observed in the literature. There 

may have also been differences in the fatty acid content of the HSA preparations, which 

can affect the reported KD values. Thus, 1D 
1
H NMR line-broadening measurements 

appear to provide reliable preliminary estimates for binding affinities as part of a high-

throughput screening assay.      

One limitation of the model that was used for this analysis is the assumption of 

only a single site interaction between the ligand and protein. There are many cases for 

which multisite binding or other effects (e.g., allosteric interactions) are present that give 

rise to more complex binding models.
11, 19

 Multisite binding also contributes to the 

relatively large range of KD values reported in the literature for HSA ligands. In these 

situations, the KD values listed in table 2.1 (for both the NMR and literature results) 

should be regarded as weighted averages and as measures of the global affinity for a 

particular ligand with HSA. This averaging effect may be more pronounced for the NMR 

method than for other techniques because of the practical limit in ligand concentration 

that could be used to provide a measurable signal. There is also a practical limit to the 

number of concentrations and data points that could be sampled to give a binding curve. 

This effect may explain why the NMR-derived KD values tend to be lower than the 

literature values, because the use of higher concentrations for the NMR studies would 

give a higher weight and likelihood to the detection of weaker interactions between the 

ligand and protein.  
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A number of other practical limitations also need to be considered in the use of 

NMR for these binding studies. For instance, the NMR resonances that are specifically 

involved with protein binding have been shown to exhibit the most dramatic changes in 

linewidth.
9, 10

  Therefore, there are inherent errors caused by summing all peak intensity 

and selectively excluding ligand peaks due to an overlap with buffer and protein 

resonances. In addition, errors in the measurement of peak intensity might arise at lower 

ligand concentrations due to the difficulty of accurately identifying and selecting peaks 

under these conditions. The result could be either a low or high estimate for KD, 

depending on the disparity in linewidth changes and on which peaks are excluded. Using 

overlapping peaks would introduce an alternative error because the observed intensity is 

the sum of multiple peaks that cannot be easily de-convoluted. Also, the analysis of 

hundreds to thousands of NMR spectra in a high-throughput screening assay precludes a 

manual inspection to selectively determine which peaks to include or exclude.  

2.4.5 Estimating KD based on single-point 1D 
1
H NMR line-broadening 

Measurements. Since NMR-based screens are a common component of the drug 

discovery process in the pharmaceutical industry, single-point estimates of ligand binding 

affinities could be an extremely valuable tool to initially rank and prioritize chemical 

leads. During the iterative drug optimization process, it is typical to focus on a small set 

(i.e., 3-5 compounds) of structurally distinct chemical classes that are amenable to 

synthetic modification and that exhibit drug-like characteristics.
54

 For this work, an NMR 

screen could be used to verify the presence of a specific and biologically-relevant 

interaction involving a protein target and to rank the relative binding affinity of the 

screened ligands to simplify the selection of promising lead compounds. This approach 
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was illustrated in this study by simulating NMR high-throughput screening results for the 

twelve compounds that were used in the previous binding study.  

First, using an average c value of 45.7 ±11.6 and an HSA concentration of 0.2 

M, single point KD values were calculated for a range of Bsingle values using eq 2.8. The 

results of this calculation are shown in figure 2.4. Superimposed on the single point curve 

in figure 2.4A are the KD values reported in table 2.1 plotted versus the experimental B 

values at 0.2 M HSA. Superimposed on the single point curve in figure 2.4B are the KD 

values from table 2.1, where the corresponding c values were used to determine a best-fit 

to eq 2.9. This represents the typical protocol that would be used in a high-throughput 

screen and shows that an average value of c is acceptable for use when individual 

estimates of c may not be practical.  A comparison of figure 2.4B with the theoretical 

curve based on eq 2.8 indicates the single-point method can provide a reasonable 

approximation for KD.  
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Figure 2.4. Use of NMR in a single-point binding analysis for several small-molecule 

ligands with known interactions with the protein HSA. The curves in (A) and (B) 

represents the ideal single-point KD values calculated from eq 2.8 with 0.2 M HSA and 

an average c value of 45.7 ± 11.6. (A) The KD values and errors reported in table 2.1 are 

superimposed on the ideal fit. The KD values are based on the best-fit to eq 2.9 using the 

c values determined for each individual compound. (B) The KD for each compound was 

re-calculated based on the best-fit to eq 2.9 using the c values from table 2.1. The error 

bars in B represent the range of KD values measured from the range of c values with the 

error in the free ligand linewidth, F, propagated.   
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For the twelve compounds that were considered in figure 2.4B, all compounds 

gave single-point estimates that agreed within a range of one standard deviation over the 

range of binding affinities and concentrations that were tested. All twelve compounds had 

experimental and single-point estimates for KD that agreed within two standard 

deviations. A higher deviation was observed in figure 2.4A for ligands with higher KD 

values. This occurs because of differences between the individual c values and the 

average c values. Also, eq 2.9 is more sensitive to small changes in c at these high KD 

values. This occurs because, at high KD values, vanishingly small differences in NMR 

intensities correspond to large differences in KD. In other words, this method is reaching 

a practical limit of detection since KD rapidly approaches infinity as NMR peak intensity 

changes approach zero. 

The relative ranking of the KD values were also the same for results that were 

obtained by the single-point calculations or the full titration method. These results 

indicate the single-point method can, at least in cases such as these, provide a preliminary 

estimate of KD values and binding affinities that can be used in the context of a high-

throughput screening assay. At a minimum, the relative changes in linewidth provide a 

rapid and efficient mechanism to prioritize NMR screening leads for further evaluation. 

However, it is still recommended that a more robust approach for measuring binding 

affinities for promising leads follow the NMR ligand affinity screen. This precaution 

follows, in part, from the fact that the accuracy of the KD values that are measured from 

the single-point 
1
H NMR line-broadening experiments will be strongly dependent on 

having a reasonable estimate for the value of NMR linewidth ratio (c) in such a study.   
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Appendix A: Glossary of terms found in chapter 2 

L  small-molecule ligand 

[L]T  total ligand concentration  

[L]F  free ligand concentration  

P  protein target 

[P]T  total protein concentration  

[P]F  free protein concentration  

[PL]  protein-ligand complex concentration 

IB   NMR peak height of bound ligand  

IF  NMR peak height of free ligand 

KD  dissociation equilibrium constant for a protein-ligand complex 

c  NMR linewidth ratio constant  

B  NMR signal response dependent on fraction of bound ligand 

Bsingle NMR signal response dependent on fraction of bound ligand at a single  

F  linewidth of the free ligand 

B  linewidth of the bound protein-ligand complex 

P  linewidth of the protein 

obs  observed linewidth change upon addition of protein or ligand 

fB  fraction bound complex in solution 

fF  fraction of free ligand in solution 

T2
-1

  dipole-dipole relaxation constant 

c  correlation time 
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J( )  normalized density function of T2
-1 

Bo  static magnetic field strength 

Larmor frequency 

MWP molecular weight of a protein target 
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Appendix B: Derivation of equations for rapid KD method found in chapter 2 

The binding of a protein (P) with a single small ligand (L) can be represented by the 

following reaction. 

[PL]  [P] + [L]             [B1] 

The dissociation equilibrium constant for this system is described by the expression in eq 

B2, where the concentrations [P]F, [L]F and [PL] represent the concentration of free 

protein, free ligand, and protein-ligand complex, respectively. 

F F
D

[P] [L]
K =

[PL]     

          [B2] 

Based on mass balance, eq B3 can be used to express [L]F and [PL] in terms of the total 

ligand concentration and other concentrations in this system. 

[P]T [P]F [PL]  [L]T [L]F   [L]F [L]T [P]T [P]F        [B3] 

Substitution of these relationships into eq B2 gives eq B4. 

F T T F

D

T F

[P] [L] -[P] +[P]
 K =

[P] -[P]
            [B4] 

Eq B4 can now be rearranged into the following form,  

D T F F T T F

2

F T T D F D T

 K [P] -[P] =[P] [L] -[P] +[P]

[P] + [L] -[P] +K [P] -K [P] =0
                     [B5] 

which makes it possible to solve for [P]F by using the quadratic formula, as indicated in 

eq B6, where only the positive root has any meaning in a real protein-ligand system. 

2

T T D T T D D T

F

- [L] -[P] +K ± [L] -[P] +K +4K [P]
[P] =   

2
        [B6] 

The bound fraction of ligand fB is next defined as given in eq B7. 
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B
DF

F

[PL] 1
f = =

K[PL]+[L]
1+

[P]
   

         [B7] 

If we substitute the positive root of eq B6 into eq B7, the result is eq B8. 

B
D

2

T T D T T D D T

-1

D D T

2

T T D T T D

1
f =

2K
1+

- [L] -[P] +K + [L] -[P] +K +4K [P]

1
=

2K 4K [P]
1+ 1+ -1

[L] -[P] +K [L] -[P] +K

        [B8] 

A further simplification of eq B8 can be accomplished by expanding the square root as a 

power series where D T

2

T T D

4K [P]
x=

[L] -[P] +K
about x = 0. This approach is valid as long as the 

ligand is in considerable excess relative to the protein. The power series that is used here 

is shown below.  

2x x
1+x=1+ - +...

2 8
        

 [B9] 

If eq B9 is truncated at the second term, this allows the square root term in eq B8 to be 

written in the approximate form that is given in eq B10. 

D T D T

2 2

T T D T T D

4K [P] 2K [P]
1+ 1+

[L] -[P] +K [L] -[P] +K
     [B10] 

The overall result of this simplification is that eq B8 converts to the expression shown 

below, there the fraction of bound ligand fB is now described in terms of only KD, the 

total ligand concentration and the total protein concentration. 
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T
B

T T D T D

T

[P]1
f =

[L] -[P] +K [L] +K
1+

[P]

          [B11] 

If it is assumed the observed free and bound NMR linewidths are represented by F and 

B, respectively, and that exchange occurs between free and bound states, the general 

solution to the NMR lineshape is bilorentzian. In the slow limit, the spectrum is 

obviously just a sum of the spectra of free and bound species, weighted by their relative 

abundances. If exchange rates become comparable to the inverse linewidths, then a 

conventional solution of the pair of coupled linear differential equations, including auto 

and cross relaxation terms but neglecting any chemical-shift difference between the 

states, gives a time domain (free induction decay): 

f (t) c e c e   [B12.a] 

with  

e exp t
 

 [B12.b] 

c c2

c1
  [B12.c] 

c1
1

4
K11 2K 21 K 22 ML 0 K11 2K12 K 22 MPL 0  [B12.d] 

c2
1

2
ML 0 MPL 0   [B12.e] 

K11 K 22

2

2

K12 K 21

 

 [B12.f] 

K11

1

T2, f

k1 P   [B12.g] 
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K22

1

T2,b

k 1
  [B12.h] 

K12 k 1
  [B12.i] 

K21 k1 P   [B12.j] 

where ML and MPL are the magnetization of the free and bound species, respectively. In 

the fast exchange limit, the solution is still formally biexponential, but the coefficient c– 

goes to zero, and the free induction decay signal, normalized to unity at zero time, 

becomes 

f (t) exp
1

T2, f

[L]

[L] [PL]

1

T2,b

[PL]

[L] [PL]
exp

f f

T2, f

fb

T2,b

 [B13] 

Fourier transforming, the fast exchange NMR signal height can be written as shown in eq 

B14: 

F F
B

F F B B

I
I =

f +f
                 [B14] 

where IF is the height of the ligand signal in the absence of protein and IB is the observed 

peak height of the bound complex. This is exactly the same as the height of the free 

ligand signal in extreme slow exchange!  Rearranging eq B14 explains the observed 

decrease in NMR peak signal for a free small-molecule ligand upon its binding to a 

protein. The relative ratio of NMR peak height ( B

F

I

I
) is now in terms of the fraction of 

free ligand (fF) and the fraction of bound ligand (fB) and is dependent on the observed 

increase in NMR linewidth upon the binding of a ligand to a protein. 
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F F F B B F B B F B B B F

B
B

F

I 1 1
1- 1 1 1

I f f f f 1 f f

1
1

1 f 1

     [B15] 

Inserting B11 into B15 provides a measure of the dissociation equilibrium constant for 

the protein-ligand complex by relating the fraction of bound ligand to the observed 

change in NMR peak height. 

B

T B TF

T D F T D

I 1 1
B 1- 1 1

[P] c[P]I
1 ( 1) 1

[L] +K [L] +K

    where    c = B

F

-1  [B16] 

The NMR linewidth ratio, c, is then measured by using the free ligand NMR spectrum 

and by assuming the linewidth of the bound complex approximates the linewidth of the 

protein.  
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CHAPTER 3:  

 

STRUCTURAL AND FUNCTIONAL SIMILARITY BETWEEN THE 

BACTERIAL TYPE III SECRETION SYSTEM NEEDLE PROTEIN PRGI AND 

THE EUKARYOTIC APOPTOSIS BCL-2 PROTEINS 

 

 

3.1 INTRODUCTION 

The previous chapter discussed the development of a high-throughput screening 

methodology to measure and rank relative binding affinities.  One of the primary reasons 

for developing such a method was for the use in the Functional Annotation Screening 

Technology by NMR (FAST-NMR).
1
  The FAST-NMR method is a multi-step approach 

to high-throughput screening using nuclear magnetic resonance (NMR).  A target protein 

is screened with a library of biologically functional compounds to identify which 

compounds bind to the target protein, known as a “hit”.  The first step in the FAST-NMR 

approach is a 1D 
1
H line broadening experiment, similar to the experiments described in 

chapter 2.   

The 1D 
1
H line broadening experiment is a ligand focused experiment in which 

the response of the free ligand is compared to a sample with the target protein added.   

For FAST-NMR, the 1D 
1
H line broadening step is used to identify potential hits as an 

initial screen.  The method developed in chapter 2 is then used to prioritize which ligand-

protein interactions are further studied using a secondary target focused 2D 
1
H-

15
N 

HSQC screen based on relative binding affinity. The 2D 
1
H-

15
N HSQC monitors the 

changes in the protein spectrum upon addition of the binding ligands. FAST-NMR also 

utilizes the Comparison of Protein Active Site Structures (CPASS) software and database 

to identify similar sequence and structure characteristics between experimentally 

identified ligand binding sites for proteins of known and unknown function.
2
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Functional regions of a protein are more stable relative to the remainder of the 

protein sequence undergoing random drift.
3, 4

 The correlation between ligand binding 

sites, ligand structure and protein function has also been demonstrated by a network of 

ligand binding-site similarity described by Park & Kim.
5
 A variety of computational 

methods have attempted to exploit the stability of functional regions by identifying ligand 

binding sites as a method to predict function.
6, 7

 Unfortunately, the combined 

requirements of predicting the ligand, the binding site, and a similarity to an annotated 

proteins leads to a high level of ambiguity. The FAST-NMR approach attempts to 

experimentally identify ligand binding sites to annotate proteins of unknown function.
7-9

 

Applying the FAST-NMR method to previously annotated systems also enables 

experimental ligand binding site data to identify functional relationships that otherwise 

would not be recognized based solely on global sequence and structure similarity.  

The type three secretion system (T3SS) is composed of 20-25 different proteins, 

which are assembled in a highly choreographed mechanism similar to the assembly of 

flagella.
10-12

 In Salmonella typhimurium, the needle complex is responsible for puncturing 

a host‟s cell membrane to allow effector proteins (SipB, SipC, SipD) from S. 

typhimurium to enter the host.
13

 Many of these effectors can activate bacterial induced 

apoptosis of a hosts‟ cell by interacting with capsase-1
14

 in a mechanism similar to 

apoptosis in eukaryotic cells.
15

 The needle complex is a large homomultimer composed 

of ~120 repeated copies of the monomeric protein PrgI, a small helical protein of 83 

amino acids.
16

 The monomeric form of PrgI is a helix-turn-helix motif with two 

symmetrically charged surfaces and a conserved loop region, PxxP domain, which are 

important for needle assembly.
16-18

 The charged surfaces of PrgI responsible for needle 
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assembly also provide a potential binding site for small molecule ligands. This makes 

PrgI an attractive drug target to disrupt the formation of the needle complex and prevent 

infection by S. typhimurium. However, to date there has been no reported ligands that 

bind to either region of this protein-protein interaction site.  

The PrgI needle complex protein from S. typhimurium T3SS was screened in our 

FAST-NMR assay, which resulted in the identification of a functional similarity between 

the ligand binding sites of PrgI and the anti-apoptosis protein Bcl-xL. Additionally, Dali
19

 

and T-Coffee
20

 analysis found regions of structure and sequence similarity between the 

two proteins consistent with the FAST-NMR results. The predicted active-site similarity 

between PrgI and Bcl-xL was also used to experimentally verify that chelerythrine,
21

 a 

ligand known to inhibit Bcl-xL and induce apoptosis, also binds PrgI. These results 

provide experimental evidence that suggest a functional relationship between the 

bacterial type III secretion systems and apoptosis. This is consistent with a general 

conservation in function between PrgI and the Bcl-2 family of proteins that includes Bcl-

xL; both form membrane pores through oligomerization using a conserved helix-turn-

helix motif to release effectors to stimulate cell death.  

 

3.2 EXPERIMENTAL 

3.2.1 FAST-NMR screen of PrgI.   The Salmonella typhimurium type three 

secretion protein (T3SS) PrgI was screened with a functional library 
22

 using the FAST-

NMR assay.
7, 8

 Unlabeled and 
15

N labeled monomeric PrgI was graciously provided by 

Dr. Roberto DeGuzman (University of Kansas) along with the assigned 2D 
1
H-

15
N 

HSQC spectrum. Sample preparation and experimental parameters for the NMR screen 
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were executed in the same manner as described previously 
8
.  Briefly, each ligand 

mixture was screened at 100 M/ligand concentration with 25 M protein in a 99.99% 

D2O buffered solution of 20 mM d19-bis-Tris at pH 7.0 with 5% DMSO-d6 to maintain 

ligand solubility and 11.1 M 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt as a 

chemical shift reference.  1D 
1
H NMR spectra for each sample was collected using a 

presaturation pulse sequence with 64 real transients, 8 dummy transients with 8 k data 

points, a sweep width of 11.0 ppm and a recycle delay of 2.0 s.  Data was Fourier 

transformed, auto-phase and baseline corrected. Each 1D 
1
H NMR spectrum were 

compared to the corresponding free ligand mixture reference spectrum and visually 

analyzed to identify binding ligands.  A binding event was identified by the decrease in 

ligand intensity of the nuclease-mixture relative to the free ligand mixture. Total data 

collection time including sample changing was approximately 10 min/spectrum. All 1D 

1
H NMR spectra were collected on a Bruker 500 MHz Avance spectrometer (Billercia, 

MA) equipped with a triple resonance, Z-axis gradient cryoprobe and using a Bruker 

BACS-120 sample changer and IconNMR software for automated data collection.  All 

spectra were collected at 298 K. 

All 2D 
1
H-

15
N HSQC spectra were collected at 298K using the same 

instrumentation with the standard 2D 
1
H-

15
N HSQC (hsequetf3gp) pulse sequence 

implemented in Bruker TopSpin 1.3 with optimized sample specific 90
o
 pulse lengths.  A 

total of 16 real scans and 128 dummy scans were collected with 2 k data points  with a 

sweep width of 9.5 ppm in the 
1
H dimension and 128 data points with a sweep width of 

28.0 ppm in the 
15

N dimension.  A ligand free 2D 
1
H-

15
N HSQC spectrum was collected 

using the same buffer conditions with 95% H2O/5% D2O to ensure the protein was 



86 

 

 

  

properly folded prior to addition of ligands. Total experiment time was approximately 1.5 

hrs/spectrum. 

A total of 113 1D 
1
H NMR line-broadening spectra were collected to identify 5 

binding ligands from the functional chemical library of 437 compounds. Measurement of 

binding dissociation constants were completed as described in chapter 2 and as described 

previously.
23

 Secondary 2D 
1
H-

15
N HSQC NMR experiments were collected only for the 

5 compounds identified as binders in the line-broadening experiments. Chemical shift 

perturbations (CSPs) (eq 3.1) from the 2D 
1
H-

15
N HSQC NMR  experiments were used 

to identify the PrgI ligand binding site, where only residues with a CSP greater than one 

standard deviation from the mean were used 

               [3.1] 

where NH is the difference between free and bound 
1
H amide chemical shifts (ppm) and 

15N is the difference between free and bound 
15

N chemical shifts (ppm).  

 A rapid approach to determine a ligand binding orientation was employed to 

determine a PrgI co-structure in the same manner as described previously.
24

 The CSPs 

minimize the search space by using a significantly reduced AutoDock 3D grid. AutoDock 

4.0 was used to generate 100 docked PrgI-ligand co-structures using the Lamarckian 

search algorithm with a population size of 300 and 500,000 energy evaluations.
25

 The 

AutoDockFilter (ADF) program then uses an NMR energy function based on the 

magnitude of CSPs to select the best ligand conformation.  

    [3.2] 
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where ADF calculates a pseudo-distance (dCSP) based on the magnitude of the NH CSP, 

which is then compared to the shortest distance (dS) between any atom in the residue that 

incurred an NH CSP and any atom in each docked ligand conformer. Comparison of 

these CSP-directed and selected ligand-docked structures with experimental x-ray and 

NMR structures has yielded an overall average rmsd  of 1.17 ± 0.74 Å.
24

 

A co-structure of the lipid derivative didecyldimethylammonium bromide 

(DDAB) bound to PrgI was uploaded to the CPASS database (http://cpass.unl.edu) to 

identify proteins with similar ligand binding sites by maximizing an rmsd weighted 

BLOSUM62
26, 27

 scoring function (Sab).  

     [3.3] 

where active site a contains n residues and is compared to active site b from the CPASS 

database which contains m residues, pi,j is the BLOSUM62 probability for amino-acid 

replacement for residue i from active site a with residue j from active site b, i,j is a 

corrected root-mean square difference in the C  coordinate positions between residues i 

and j, and dmin/di is the ratio of the shortest distance to the ligand among all amino-acids 

in the active site compared to the current amino-acid‟s shortest distance to the ligand. Sab 

is only summed over the optimal alignment for residue i from active site a with residue j 

from active site b. It is not summed over all possible combinations of i and j. If the 

number of residues are not identical between active sites a and b (n ≠ m), then the 

additional residues will not have a corresponding match. Each residue can only be used 

once in the alignment. If active site a contains unmatched residues, then no contribution 

is made to Sab which effectively reduces the maximal possible score that can be achieved 

http://cpass.unl.edu/
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for active site a. At the time of this study (May 2008), there were ~35,000 protein-ligand 

structures in the CPASS database. CPASS was run on a 16 node Beowulf Linux cluster, 

requires approximately 40 sec for each pair-wise comparison and took ~24 hrs to 

complete a full search against the entire database.  

3.2.2 Structure similarity searching Native protein structures for PrgI (PDB ID: 

2JOW) 
16

 and Bcl-xL (PDB ID: 1YSN)
28

 were uploaded to the DaliLite
29

 web server 

(http://www.ebi.ac.uk/DaliLite/) to identify regions of structure homology between the 

two proteins. To identify structure similarity and possible homology with other proteins 

within the PDB, the structures were also uploaded to the full Dali
19

 web server 

(http://www.ebi.ac.uk/dali/). A truncated version of the Bcl-xL structure was generated 

by identifying the amino acids within regions of structure similarity and removing these 

residues from the native PDB file. The truncated PDB file was searched for regions of 

similarity using the DaliLite web server (http://www.ebi.ac.uk/Tools/dalilite/index.html).  

3.2.3 Sequence similarity searching using BLAST and T-Coffee. Sequences 

from the T3SS and apoptosis regulation were downloaded from the NCBI server 

(http://www.ncbi.nlm.nih.gov/) and included PrgI (gi|16766179), InvJ (gi|16766198) and 

InvG (gi|474941) from S. typhimurium,  and Bcl-xL, (gi|510901), Bak1 (gi|82571458), 

Bid (gi|4557361) and Bax (gi|231632) from Homo sapiens respectively. A full BLAST 

search was completed using these sequences associated with both systems as queries.
30

 

All BLAST sequence searches used default settings. In addition, the sequences and 

structures for Bcl-xL (PDB-ID: 1YSN), S. typhimurium PrgI (PDB-ID: 2JOW), B. 

pseudomallei BsaL (PDB-ID: 2GOU) and S. flexneri MxiH (PDB-ID: 2CA5) obtained 

from the PDB were uploaded to the T-Coffee
20

 web server (http://www.tcoffee.org/) to 

http://www.ebi.ac.uk/DaliLite/
http://www.ebi.ac.uk/dali/
http://www.ebi.ac.uk/Tools/dalilite/index.html
http://www.ncbi.nlm.nih.gov/
http://www.tcoffee.org/
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obtain a multiple sequence alignment using the EXPRESSO(3DCoffee) software.
31

 Only 

the sequence region of the Bcl-xL structure that contained the pore-forming domain and 

yielded the highest alignment score was used for the multiple sequence alignment. 

3.2.4 Secondary binding site similarity between Bcl-xL and PrgI. To further 

support a structural and functional similarity between Bcl-xL and PrgI,  the BindingDB
32

 

(http://www.bindingdb.org/) was searched for commercially available compounds to test 

for binding to PrgI. The free 2D 
1
H-

15
N HSQC spectrum was collected using 100 M 

15
N 

labeled PrgI in 20 mM bis-Tris buffer with 100 mM sodium chloride at pH 7.0. A second 

PrgI sample was prepared in the same manner as above with the addition of 500 M 

chelerythrine to generate the bound 2D 
1
H-

15
N HSQC spectrum. Chemical shift 

perturbations and a PrgI-chelerythrine docked co-structure were determined as described 

previously
24

 and was compared to the Bcl-xL-chelerythrine model 
33

.  

 

3.3 RESULTS 

3.3.1 Results from the FAST-NMR screen. The needle complex protein, PrgI, 

from S. typhimurium is an attractive antibacterial target because the protein is exposed to 

the cell surface and blocking this target could prevent injection of virulence factors into 

the host.
34

 The interaction of PrgI with the host membrane stimulates the delivery of 

effectors from the bacteria into the host cytosol to induce cell death. Recently an NMR 

structure was determined for a monomeric form of PrgI,
16

 which enabled the screening of 

PrgI using the FAST-NMR assay.
8
 FAST-NMR combines NMR ligand affinity 

screening
35

 using a fragment-based functional library
22

 with structural biology and 

bioinformatics
2
 to rapidly determine protein-ligand complexes

24
 and infer functional 

http://www.bindingdb.org/
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relationship between proteins based on similarities in functional epitopes. Also, the 

resulting protein-ligand co-structure provides a valuable starting point for structure-based 

drug design. 

FAST-NMR applies a tiered approach to screening
35

 to minimize resources and 

increase throughput (figure 3.1). First, PrgI was screened with the functional chemical 

library using 1D 
1
H NMR line-broadening experiments. Five compounds (L-carnitine 

inner salt, didecyldimethylammonium bromide, 1-methylimidazole, methiothepin 

mesylate salt, sucrose) were found to bind PrgI by showing a significant decrease in 
1
H 

peak intensity upon addition of 25 M of PrgI. This was determined by comparing 

normalized 
1
H ligand peak intensities between the free and bound NMR spectra (figure 

3.1A). However, the secondary 2D 
1
H-

15
N HSQC

 
experiments identified the lipid 

derivative didecyldimethylammonium bromide (DDAB) as the only specific PrgI binder 

(figure 3.1B) based on the observation of a significant number of chemical shift changes 

in the spectrum. The remaining four compounds elicited no change in chemical shifts in 

the PrgI 2D 
1
H-

15
N HSQC

 
spectrum, which suggest the compounds bound non-

specifically to PrgI. PrgI was found to bind DDAB with a KD of 553 M as calculated by 

a 1D 
1
H line broadening method of chapter 2.

23
 Finding a lipid derivative that specifically 

binds to PrgI is consistent with the protein‟s function; sensing new host cells and 

signaling secretion through an interaction with the host membrane.
36

  

Chemical shift perturbations (CSPs) in the 2D 
1
H-

15
N HSQC experiments 

between free PrgI and the complex identified the PrgI residues that bind DDAB. Mapping 

these CSPs onto the PrgI surface identified the DDAB binding site as corresponding to 

residues at the bifurcation point of the two helices (figure 3.1C). Specifically, residues 
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S6, L9, S13, K15, and D17 of helix 1 and N59, V65, K66, V67, F68, K69, D70, D72, 

A73 and L76 of helix 2 showed significant CSPs in the presence of DDAB as calculated 

by eq 3.1. This ligand binding site has been shown to be important for the formation of 

the T3SS needle complex in which PrgI forms a repeating coiled-coils structure.
11

 

According to recent alanine scanning and structural studies, the surface residues in the 

region between the bifurcation point of the two helices and the conserved loop region, 

PxxP domain, are important for needle assembly.
16-18

 These residues bind to the backside 

of the bifurcation point of the two helices in a stacked N-terminus to C-terminus 

manner.
16-18
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Figure 3.1: Identification of PrgI Binding Ligands. (A) DDAB NMR spectra in the 

absence (top) and presence (bottom) of PrgI illustrating changes in NMR intensities 

(boxed) upon binding PrgI. Both free and bound 1D 
1
H NMR spectra were normalized to 

a constant DMSO signal intensity. (B) Expanded view of the superimposed 2D 
1
H-

15
N 

HSQC
 
spectra of the free and DDAB bound PrgI NMR samples. Residues that incur a 

chemical shift perturbation are boxed. (C) Expanded view of PrgI surface rendered in 

VMD
37

 where residues that incur a chemical shift change are colored blue and DDAB is 

colored yellow. Co-structure based on NMR determined ligand binding site using 

AutoDock and our AutoDockFilter program.  
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The PrgI residues exhibiting significant CSPs upon binding DDAB were used to 

guide and filter a molecular docking simulation based on our method to rapidly determine 

protein-ligand co-structures.
24

 AutoDock 4.0
25

 was used to calculate 100 docked 

structures within a 3D grid defined by the CSPs. Our AutoDock Filter program (ADF) 

selected the best conformer based on consistency with the magnitude of chemical shift 

changes.
24

 The ligand is expected to be closest to the protein residues that incurred the 

largest CSPs. The best PrgI-DDAB docked structure is shown in figure 3.1C, where 

DDAB adopts an extended conformation that straddles both helices of PrgI.  

3.3.2 Analysis of CPASS and structure similarity results. Comparison of 

Protein Active Site Structures (CPASS) analysis of the PrgI-DDAB complex identified a 

human Bcl-2 protein family member (the anti-apoptosis regulating protein Bcl-xL (PDB-

ID:1YSN) complexed to an acyl-sulfonamide-based inhibitor (ABT-737))
28

 as the top hit 

based on a ligand binding-site CPASS similarity score of 37.7%. The CPASS alignment 

is shown in figure 3.2A and is based on maximizing the spatial orientation of similar 

residue types between the two ligand binding sites. All other proteins with a CPASS 

similarity > 30%  were also evaluated, but Bcl-xL was the only protein that gave a 

reliable CPASS score and showed some level of structure or sequence similarity to PrgI. 

It is important to note the CPASS identified similarity between PrgI and Bcl-xL was 

fundamentally dependent on the existence of a Bcl-xL-ligand complex in the PDB. 

Ligand complexes for other members of the Bcl-2 protein family (Bax, Bid) currently do 

not exist.  

While DDAB and ABT-737 are distinctly different ligands, the compounds share 

strong similarities in their mode of protein interactions. ABT-737 binds Bcl-xL edge-on 
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in an elongated conformation where a minimal number of atoms contact the hydrophobic 

binding cleft of Bcl-xL. In this manner, DDAB mimics this edge contact interaction of 

ABT-737 with the similar hydrophobic binding cleft in PrgI. Also, ABT-737 binds in a 

protein-protein binding interface similar to DDAB, where inhibiting protein interactions 

is the drugs mechanism of action in cancer cells.
28

 Thus, the PrgI and Bcl-xL ligand 

binding-sites are functionally similar. 

A pairwise structure alignment using DaliLite
29

 yielded a non-significant Z-score 

of 1.4 and only 6% sequence identity between PrgI (PDB ID:2JOW) and Bcl-xL (PDB 

ID:1YSN). Nevertheless, the helix-turn-helix structure of PrgI (residues S13-V65) 

overlaps the buried helix-turn-helix motif (N136-I182) in Bcl-xL that corresponds to 

helices 5 (residues W137-D156) and 6 (residues L162-D176) (figure 3.2B). A focused 

pairwise comparison between the full PrgI protein and the 5 and 6 helices of Bcl-xL 

gave a low but significant Z-score of 3.3 with an root-mean-square-difference (rmsd) of 

3.1Å. The sequence identity also increases from 6% to 9% between the full and focused 

pairwise alignments, respectively.  

While there is an overlap between the DaliLite alignment of PrgI with Bcl-xL and 

the protein ligand binding sites identified by CPASS, these sites are not identical. This 

arises because the CPASS similarity is not confined by the primary sequence of the two 

proteins, but simply captures the spatial orientation of conserved residues around a ligand 

binding site. This is illustrated by the non-sequential sequence alignment of the PrgI and 

Bcl-xL ligand binding sites in figure 3.2. The exclusion of the sequence connectivity as a 

constraint to determine an alignment illustrates the advantage of CPASS in identifying a 

functional relationship over global sequence and structure alignments.
29, 30
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Figure 3.2. Active Site Similarity between PrgI and Bcl-xL. (A) CPASS alignment of 

the S. typhimurium PrgI active-site complexed to DDAB with the active-site of human 

Bcl-2 protein (Bcl-xL) complexed with acyl-sulfonamide-based inhibitor. The residues 

aligned by CPASS are labeled and colored blue in the structures. The active site sequence 

alignment is also shown below the structures. The ligands are colored yellow. (B) 

Overlay of the human Bcl-2 protein (red) with S. typhimurium PrgI (turquoise) based on a 

DaliLite alignment. (C) Multiple-sequence alignment of the three known T3SS structures 

of S. typhimurium PrgI, B. pseudomallei BsaL, and S. flexneri MxiH with the human Bcl-

2 protein (Bcl-xL). The reliability of the each amino acid alignment is color-coded from 

blue (poor) to red (good) using the CORE index.
38

 The consensus alignment received a 

score of 69, where a perfect alignment receives a score of 100. 
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3.3.3 Sequence similarity results. A BLAST
30

 homology search using the PrgI 

and Bcl-xL sequences did not yield any significant information relating PrgI to Bcl-xL. 

The Bcl-xL sequence only identified homology to other Bcl-2 proteins. Similarly, the 

PrgI sequence was only aligned to other T3SS needle proteins. This is consistent with a 

ClustlW2
39

 sequence alignment between PrgI and Bcl-xL that resulted in a low 14.3% 

sequence similarity, which falls below the twilight zone of sequence similarity.
40

 Also, 

focused BLAST searches did not provide any new information. Searching microbial 

genomes using the Bcl-2 sequences or searching the human genome with T3SS 

sequences did not identify any sequence alignments with significant E-values. Thus, 

global sequence alignments did not readily result in identifying any relationship between 

T3SS and apoptosis proteins. This highlights the power of active site similarity searches 

to identify potentially new functional similarities in proteins. 

Hidden Markov model (HMM) methods
41

 provide an alternative and more robust 

approach to identify homology between distantly related proteins with low sequence 

similarity relative to traditional BLAST searches. The T-Coffee web server 

(http://www.tcoffee.org/) provides a consensus sequence alignment (M-Coffee) using 

multiple HMM protocols.
20

 A reliable alignment of conserved residues (figure 3.2C) was 

obtained between the known T3SS structures of PrgI (PDB ID: 2JOW), BsaL (PDB ID: 

2G0U) from Burkholderia pseudomallei, and MxiH (PDB ID: 2CA5) from Shigella 

flexneri with the human Bcl-xL (PDB ID: 1YSN) protein. The multiple-sequence 

alignment was obtained using EXPRESSO(3DCoffee) 
31

 that combines structural 

information with a HMM sequence alignment method. The reliability of the per residue 

alignment is color-coded using the color index,
38

 where the majority of residues where in 

http://www.tcoffee.org/
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the average to good range. The alignment of Bcl-xL with the three T3SS structures 

received a score of 53, where a score of 100 results from a perfect alignment. For 

comparison, the alignment of the three known human T3SS proteins resulted in a range 

of scores from 72 to 76. Conversely, scores that range from the 20 to the 30 indicate poor 

or insignificant alignments. Thus, PrgI aligns preferentially to the other T3SS proteins, 

but its alignment to the pore forming helices in Bcl-xL is significant and reliable.  

Importantly, the sequence alignment of PrgI with Bcl-xL encompasses the same residues 

involved in the ligand binding sites identified by CPASS and the structural similarity 

identified by DaliLite.  

3.3.4 Identification of a second PrgI ligand binding site. The identification of a 

compound that binds similarly to both PrgI and Bcl-xL would further establish a 

functional relationship between these two proteins. BindingDB
32

 was used to identify 

potential inhibitors of PrgI based on the CPASS predicted active site similarity with Bcl-

xL. A total of 71 ligands were reported to bind Bcl-xL. A majority of the compounds 

were piperazine derivatives and were not readily available. Two compounds, 

chelerythrine and sanquinarine were identified as having affinity to Bcl-xL and were both 

available from commercial suppliers. Chelerythrine was selected over sanquinarine based 

on previous NMR screening and docking studies that suggested chelerythrine binds 

between 4, 5 and 6 of Bcl-xL.
33

 This region of Bcl-xL was predicted to overlap with 

PrgI based on the pairwise Dali alignment (figure 3.2B). Conversely, sanquinarine bound 

the BH3 binding cleft of Bcl-xL and thus was not selected for this secondary binding 

analysis.
33
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A comparison between the free and chelerythrine bound PrgI 2D 
1
H-

15
N HSQC 

spectra (figure 3.3A) identified a chelerythrine binding site on PrgI (figure 3.3B). The 

PrgI residues that exhibited chemical shift changes upon binding chelerythrine include 

residues A14, K15 in helix 1 and residues Y57, N59, A60, V65, K66, V67, F68, and D72 

in helix 2. The AutoDock/ADF docked structure of PrgI with chelerythrine suggests PrgI 

residues K15 and Y57 are the most important residues for chelerythrine binding based on 

a close contact with the ligand (figure 3.3B). Many of the residues that show significant 

CSPs for PrgI bound to chelerythrine overlap with the DDAB residues, however, the 

chelerythrine binding site is on the opposite face of PrgI (figure 3.4). This indicates there 

are two ligand binding sites on PrgI that is consistent with the two known protein-protein 

interaction sites for PrgI self-oligermization. The chelerythrine AutoDock docking energy 

decreased significantly compared to DDAB, -0.43 to -5.29 kcal/mol, respectively 
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Figure 3.3. Verification the Bcl-xL inhibitor chelerythrine also binds PrgI.  (A). 

Expanded overlay of the 2D 
1
H-

15
N HSQC spectra for free PrgI (black) and PrgI bound 

to chelerythrine (blue). CSPs greater than one standard deviation are boxed. (B) An 

AutoDock/ADF docked structure of PrgI complexed with chelerythrine based on the 

observed CSPs from (A). (C) The Bcl-xL region shown to bind chelerythrine is 

highlighted while the reaming protein structure is transparent. Chelerythrine is colored 

yellow and is drawn with licorice bonds. Side-chains for Y173 and V135 are shown as 

licorice bonds and colored grey.  (D) A ribbon diagram of the AutoDock/ADF docked 

PrgI-chelerythrine co-structure. The PrgI-chelerythrine binding region that overlaps with 

Bcl-xL is highlighted. Chelerythrine is colored yellow and is drawn with licorice bonds. 

Side-chains for Y57 and K15 are shown as licorice bonds and colored grey. (E) An 

expanded view of the overlay of Bcl-xL (red) with PrgI (blue) illustrating the structural 

similarity of the chelerythrine binding sites. 
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Figure 3.4. The two PrgI ligand binding sites identified using FAST-NMR. The two 

PrgI ligand binding sites are highlighted on an electrostatic potential surface (blue 

positive charge, red negative charge) calculated with the DelPhiController implemented 

in Chimera 
42

.  The didecyldimethylammonium bromide binding site (A) is found in a 

region responsible for needle formation while the chelerythrine binding site (B) is found 

on the opposite face of PrgI.  
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The binding site of chelerythrine on PrgI is nearly identical to the binding site of 

chelerythrine to Bcl-xL (figure 3.3C and 3.3D). In Bcl-xL the chelerythrine binding site 

is described as being located in the BH groove of helix 4, 5 and 6, which is 

composed of residues F131, R132, V135, Y173 and H177 (figure 3.3C).
33

 Pairwise 

structure analysis between PrgI and Bcl-xL shows that Y173 of Bcl-xL and Y57 on PrgI 

are overlapping residues and K15 from PrgI is proximal to V135 from Bcl-xL (figure 

3.3E). The primary difference between the two proteins is the lack of -helix 4 in PrgI, 

where helix 4 of Bcl-xL appears to act as a „cap‟ encasing the ligand and effecting its 

relative binding orientation. Chelerythrine binds flat in the PrgI binding site, while the 

compound points into the corresponding Bcl-xL binding site partially overlaying helix 

4. Again, both of these structures are docked models based on NMR CSPs and require a 

high-resolution x-ray or NMR structure to confirm the conformation of the chelerythrine 

binding site. It is paramount to note that this similarity in chelerythrine binding between 

the two proteins would have not been discovered if it was not for the identification of the 

initial conserved ligand binding site between PrgI and Bcl-xL using the FAST-NMR 

method in combination with the CPASS database.  

 

3. 4 DISCUSSION  

3.4.1 Ligand binding similarity of the Bcl-2 family of proteins with PrgI.  A 

structural and functional similarity between PrgI, a type three secretion system protein, 

and Bcl-xL, a member of the Bcl-2 family of proteins involved in eukaryotic apoptosis, 

was identified from a FAST-NMR ligand affinity screen in combination with a 

bioinformatic analysis. This association is fundamentally based on the similarity in ligand 
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binding sites depicted in figure 3.2A, where the conserved helix-turn-helix motif simply 

provides secondary support of a PrgI and Bcl-2 functional link. While similar active sites 

provide a measure of functional similarity, inferring homology based solely on the 

observation of a similar helix-turn-helix motif is questionable. The helix-turn-helix is a 

common motif and without a global sequence similarity, an evolutionary lineage based 

solely on active site similarity cannot be readily established. However, identifying similar 

ligand binding sites between the two proteins does provide support the proteins share a 

common function and are expected to bind similar ligands.  

The initial identification of the conserved DDAB ligand binding site between Bcl-

xL and PrgI was used to predict, test and confirm that chelerythrine binds PrgI in a 

similar manner to Bcl-xL. This further supports the structural and functional similarity 

between PrgI and Bcl-xL, but also demonstrates the utility of active site similarity as a 

predictive tool for ligand binding. Chelerythrine was only tested for PrgI binding because 

of the proposed active site similarity with Bcl-xL. Thus, these studies have identified the 

first known ligands to bind PrgI (DDAB and chelerythrine). Both ligand binding sites are 

associated with the functionally important PrgI self-oligomerization sites. Therefore, 

compounds based on either the DDAB or chelerythrine scaffold may disrupt PrgI 

oligomerization. These compounds may serve as valuable chemical leads to develop 

novel antibiotics. Additionally, since the ligands bind in separate locations on the PrgI 

surface (figure 3.4), the compounds present two distinct approaches for developing drugs 

targeting PrgI. Unfortunately, because chelerythrine also binds Bcl-xL it is reasonable to 

expect that an antibiotic designed using chelerythrine as a scaffold may produce 

undesirable off-target side effects. This issue may be minimized or eliminated by simply 
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improving the PrgI binding affinity for chelerythrine derivatives. This illustrates another 

important feature of the FAST-NMR protocol; active site similarity is a useful tool to 

predict potential side effects due to off target inhibition in addition to predicting potential 

drug leads. While computational methods for predicting potential drug toxicity
43

 are 

useful because of their speed, validation requires experimental methods such as the 

FAST-NMR approach.  

3.4.2 Functional similarity of the Bcl-2 family of proteins with PrgI.  The Bcl-

2 family of proteins are essential for eukaryotic apoptosis; where Bcl-xL is responsible 

for repressing cell death activity.
15

 The in vivo binding partners of Bcl-xL include the 

pro-apoptosis proteins Bax, Bak and Bid. It has been shown that expression levels of 

repressor (Bcl-xL) and pro-apoptosis proteins (Bax, Bak and Bid) are reciprocal in nature 

suggesting precise regulation of eukaryotic apoptosis.
44

 A combination of mutational and 

structure work has shown the BH3 binding domain of Bcl-xL is critical for binding 

interactions with  other Bcl-2 proteins and apoptosis regulation.
44

  

 The structure of Bcl-xL very closely resembles the structures of Bax, Bid, Bcl-2, 

and other members of the Bcl-2 family of proteins, which all resemble pore-forming 

domains of bacterial toxins.
45-47

 Bcl-2, Bcl-xL, Bax and the truncated active form of Bid 

(tBid) have all been shown to form pores in liposomes, but a similar cellular function has 

only been observed for Bax.
44, 48, 49

 In healthy cells, Bax is a monomer in the cytosol. 

Many different apoptotic signals result in the transfer of Bax to the outer mitochondrial 

membrane where an interaction with Bid and the lipid membrane induces Bax to form a 

supramolecular opening in the outer mitochondrial membrane.
50, 51

 This pore structure 

causes the release of pro-apoptotic factors from the mitochondria into the cytoplasm to 
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induce cell death
52

 and contains ~22 copies of Bax with a diameter of ~20 nm. The 

interaction of Bcl-xL with Bax prevents Bax induced cell death,
53

 where drugs that 

disrupt Bcl-xL interacting with Bcl-2 proteins are a promising form of cancer therapy.
54

 

Bcl-xL has been described as a dominant-negative version of Bax.
55

  

PrgI comprises the T3SS needle structure, which is formed by a PrgI 

homomultimer composed of ~ 120 copies of the protein.
10-12

 This needle structure senses 

and punctures host membranes forming a pore to transfer proteins to induce cell death in 

a mechanism similar to eukaryotic apoptosis.
13-15

 A general conservation in function 

between PrgI and the Bcl-2 protein family is thus maintained and readily apparent; both 

form membrane pores via a helix-turn-helix motif through oligomerization to release 

effectors to stimulate cell death. Additionally, PrgI requires PrgJ for oligomerization into 

the needle
11

 while Bax requires Bid to induce pore formation.
51

 Thus, a protein 

interaction with other members of the Bcl-2 family is required to either promote (Bid) or 

inhibit (Bcl-xL) Bax oligomerization. It is also interesting that PrgI was found to bind to 

a lipid analog and lipids have been found to play a role in Bax oligomerization.
51

  

Importantly, the experimentally observed ligand binding sites for both PrgI and 

Bcl-xL are functionally equivalent and within the conserved helix-turn-helix motif. Both 

sites correspond to functionally critical protein-protein interaction sites required for 

oligomerization and pore formation. The DDAB binding site on PrgI overlaps with key 

residues involved in PrgI oligomerization and needle assembly. Similarly, ABT-737 is an 

inhibitor of apoptosis and functions by inhibiting Bcl-xL protein interactions.
56

 Thus, the 

similarity in the ligand binding sites helps establish a functional link between the two 

proteins.  
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3.4.3 Structural similarity of the Bcl-2 family of proteins with PrgI. The Bax 

pore-forming domain is conserved in Bcl-xL, Bcl-2 and Bid
45, 57

 and corresponds to the 

helix-turn-helix motif (helices 5 and 6) that was identified by CPASS to be similar to 

PrgI (figure 3.2A). Also, a comparison of the Bcl-xL and PrgI structure by Dalilite 

resulted in the alignment of the PrgI structure with this conserved Bcl-2 helix-turn-helix 

motif (figure 3.2B). Additionally, a multiple sequence alignment indicated a reliable 

similarity between T3SS needle-forming proteins and the Bcl-2 pore-forming region 

(figure 3.2C). Thus, the PrgI structure can be viewed as a minimalistic version of the Bcl-

2 structure, and corresponds to the functionally essential and conserved core pore-

forming domain.    

Gene duplication along with insertion and/or deletions of sub-structures into 

variable genetic regions are known methods for the evolution of protein function.
58, 59

 

These processes may explain the evolution of the Bcl-2 family of proteins from a smaller 

PrgI-like ancestor. Since the PrgI structure overlaps with residues N136 to I182, this may 

suggest N- and C-terminal insertions generated a Bcl-2 protein from a PrgI-like ancestor. 

This is consistent with the hypothesis proposed by Aouacheria et al.,
60

 where the 

ancestral toxic pore forming domain (helices 5 and 6) required developing a means to 

prevent inappropriate apoptosis and to regulate cell death. 

Presumably, a main function of the N- and C-terminal inserts into a PrgI-like 

ancestor would be to stabilize the monomer form of Bax until an apoptotic signal occurs. 

In effect, the insertions would provide a stronger control over the pore formation process. 

This is consistent with what has been experimentally observed, both the N- terminus and 

C-terminus residues of Bax are essential to maintain the monomer form of Bax in the 
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cytosol.
47, 61, 62

 Deletion of the first 20 amino acids from the N-terminus results in Bax 

being localized to the mitochondria.
61, 62

 Similarly, the Bax structure indicates the C-

terminal hydrophobic helix 9 is bent in a hydrophobic groove, but contains some critical 

solvent exposed polar residues that are necessary to maintain solubility.
47

 In fact, a model 

for the translocation of Bax from the cytosol to the mitochondria requires a 

conformational change in Bax that opens up helix 9 and exposes the pore forming 

region composed of helices 5 and 6.
47, 63

 Deletions of 21 residues from the C-terminus, 

which includes part of helix 6, prevents oligomerization.
64

  

While Bax oligomerizes to form a circular pore structure containing ~22 copies, 

this oligomerization process does not extend to form layers like the PrgI needle structure. 

The conformational change in Bax results in the globular domain remaining in the 

cytosol and sterically prevents oligomerization perpendicular to the membrane.
65

 Thus, 

the structural insert that maintains a monomer Bax in the cytosol also prevents an 

unnecessary linear extension of the Bax oligomer out of the mitochondria membrane. 

Conversely, regulating PrgI oligomerization is not necessary since the assembly of the 

T3SS system is not detrimental to the cell. Therefore, a minimal pore-forming structure is 

all that is necessary for the T3SS system.  The length of the PrgI needle is controlled by 

the proper assembly of the inner rod (PrgJ) that requires the InvJ protein.
66

 The deletion 

of InvJ results in long non-functional needles. 

3.4.4 An evolutionary relationship between T3SS and eukaryotic apoptosis?   

Based on the observed similarity in the structure and function between PrgI and the Bcl-2 

protein family it is tempting to hypothesize the proteins share a common ancestor. The 

structural comparison of PrgI with the Bcl-2 family of proteins discussed above suggests 
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a possible evolutionary path. A common ancestral protein has been suggested for the Bcl-

2 protein family, where pore formation using helices 5 and 6 is the ancestral proteins 

predicted primary function.
60

 Similarly, T3SS are also predicted to evolve from a single 

gene
67

 that is a simple but versatile export system.
68

 Again, the helix-turn-helix is a 

common and ancient motif
69

 demonstrating both its diverse utility and evolutionary 

stability. Thus, it is plausible that a simple and ancient PrgI-like protein could be an 

evolutionary precursor to both the Bcl-2 protein family and PrgI. It also appears unlikely 

that PrgI and the Bcl-2 protein family would evolve through a convergent process since 

the helix-turn-helix is such a simple and ancient motif
69

 and essential to the function of 

both proteins. Evolving a readily available helix-turn-helix protein into either PrgI or the 

Bcl-2 protein family seems like a simpler path than the conversion of a uniquely distinct 

fold to incorporate a core helix-turn-helix motif. Also, the evolution of proteins from 

simple structural components has been previously proposed
70

 and is consistent with other 

general evolutionary trends where complex systems evolve from simpler systems.
71

 

By analogy, the sharing of a common ancestor by PrgI and the Bcl-2 family of 

proteins would imply an evolutionary relationship between the T3SS and eukaryotic 

apoptosis systems. T3SS is a prime example of a vestigial system and an important 

illustration of the stepwise evolution of the flagella machinery.
72, 73

 Therefore, it is 

reasonable to expect that other systems will be identified that share an evolutionary 

relationship with T3SS. T3SS is also an ancient system and clearly predates the origin of 

the mitochondria from prokaryote endosymbiosis.
74, 75

 -proteobacteria,
74

 which are 

close relatives of the mitochondria, are known to contain T3SS.
68, 76, 77

 Could an obsolete 

T3SS system contribute valuable components to the eukaryotic apoptosis system after 
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endosymbiosis? An evolutionary link has already been observed between a mitochondrial 

and T3SS protein.
78, 79

  Furthermore, a detailed analysis of the origin of apoptotic proteins 

suggests a pivotal role for bacterial proteins in the evolution of eukaryotic apoptosis.
80
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CHAPTER 4: 

 

OPTIMIZATION AND VALIDATION OF THE FAST-NMR METHOD 

 

 

4.1 INTRODUCTION 

The predicted functional similarity between PrgI and the Bcl-2 family of proteins 

described in chapter 3 illustrates the enhanced benefit of combining experimental data 

with bioinformatics.  The Functional Annotation Screening Technology by NMR (FAST-

NMR) is an initial step in achieving high-throughput functional analysis of proteins, 

independently of global sequence or structure homology transfer. FAST-NMR uses a 

tiered approach to NMR screening to identify protein active sites.
1, 2

  First, each protein is 

screened with a library of approximately 437 compounds distributed across 113 

mixtures.
3, 4

 Binding is detected using the 1D 
1
H NMR line broadening methods 

discussed in chapters 2 and 3.
2
  The compounds that show the tightest binding are passed 

to the second tier screening step (2D 
1
H-

15
N HSQC) to identify the protein active site.   

The experimentally identified active site is compared to a database of known protein 

active sites using the CPASS database and software.
5
  Finally, protein function is inferred 

by identifying similar active sites in the CPASS database.  

The tiered approach to screening, along with screening in mixtures, reduces the 

total amount of time and sample requirements needed to identify a protein active site.
1, 3, 4

  

However, the reduction in data collection time is relative to screening a protein with 

individual compounds.  A significant bottleneck in the process remains the large data 

collection time for screening all 113 mixtures and relatively large sample requirements 

needed in the 2D 
1
H-

15
N screening step.  
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NMR is a relatively insensitive technique that uses signal averaging to increase 

signal-to-noise.  Data collection time is directly proportional to the total number of scans 

needed and the recycle delay between each scan.  To maximize signal-to-noise and 

suppress residual solvent signal; the initial FAST-NMR 1D 
1
H screening step required 

64-128 scans with a recycle delay of 1.0-2.0 s (chapter 3).  The total time to collect an 

NMR spectrum for a mixture and move to the next sample is approximately 10-14 min 

(2-6 min data collection, 8 min sample change and set up).  This correlates to 

approximately 19-26 hrs of total 1D 
1
H experiment time for each protein screen.   

The tiered approach to NMR screening saves experimental time and protein 

sample by prioritizing which ligands from the 1D screen get passed to the 2D 
1
H-

15
N 

HSQC conformation screens.
1
   However, the average number of hits for the 4 proteins 

(PA1324, SAV1430, PrgI, and S. aureus primase CTD) screened with the initial method 

was 16.75 ± 10.75 ligands with a range between 5-30 ligands.  Using the tiered approach 

method still requires large sample concentrations and experimental time.  For the 30 

ligands identified that bound SAV1430 the total amount of 
15

N labeled protein was 

approximately 30 mgs and nearly 80 hrs of data collection (2.5 hrs/HSQC with 

8min/sample change).
2
  For PrgI, the protein with the lowest number of hits, the total 

time for the 2D 
1
H-

15
N HSQC screen was approximately 11.5 hrs (1.5 hrs/HSQC with 

8min/sample changing).
6
 Obviously, spending between 30-100 hrs of total experiment 

time and the large protein requirement significantly limits the throughput of the FAST-

NMR method.   

In this chapter I will discuss the optimization of the FAST-NMR method by 

implementing two new pulse sequences and making significant updates to the automated 
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NMR data collection.  The improvements made to the screening method decreased the 

total experimental time for the 1D 
1
H NMR screening step by approximately 8 hrs per 

protein.  Additionally, the improvements made to the 2D 
1
H-

15
N HSQC screening step 

provides a greater flexibility in data collection by reducing the total amount of sample 

needed or reducing to over experimental time.    

I evaluated the improvements to FAST-NMR screening using Staphylococcus 

aureus nuclease, a well-established model protein for NMR screening with a number of 

previously solved free and ligand-bound NMR structures.
7-9

 I demonstrate the improved 

FAST-NMR screening method can correctly identify the previously reported nuclease 

ligand binding site in a high-throughput manner.  Additionally, the binding site found by 

FAST-NMR was used by CPASS to correctly identified the reference nuclease structure 

from the CPASS ligand binding site database.
5
  

   

4.2 EXPERIMENTAL 

4.2.1 Materials. The bromocresol green (ACS reagent grade, 95% pure) was 

purchased from Sigma-Aldrich (Milwaukee, WI). The dimethyl sulfoxide-d6 (99.9% D),  

2,2-Bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol-d19  (98% D), naproxen (98% pure) and  

deuterium oxide (99.9% D) was obtained from Aldrich (Milwaukee, WI). The 3-

(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (98% D) was purchased from 

Cambridge Isotope (Andover, MA). The potassium phosphate dibasic salt (anhydrous, 

99.1% pure) and monobasic salt (crystal, 99.8% pure) were purchased from Mallinckrodt 

(Phillipsburg, NJ).  E. coli cells containing the pET28a(+) plasmid with nuclease 

sequence and kanamycin resistance gene was obtained from Dr. Greg Somerville‟s lab 
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(see appendix A for nuclease sequence).  The plasmid isolation kit, Quickclean 5M 

miniprep, was purchased from GenScript (Piscataway, NJ).  All competent cell lines were 

purchased from Stratagene (La Jolla, CA).  All unlabeled growth media components 

including tryptone, yeast extract, agar, sodium chloride, and IPTG were purchased from 

Aldrich.  Cobalt affinity resin was purchased from ClonTech (Mountain View, CA).      

4.2.2 Apparatus. Two different pulse sequences with improved solvent 

suppression were implemented to decrease sample requirements and data collection time 

in the FAST-NMR method.  All NMR spectra were collected on a Bruker 500 MHz 

Avance spectrometer (Billerica, MA) equipped with a triple-resonance, Z-axis gradient 

Cryoprobe.  All samples were tuned, matched and shimmed to optimize the observed 

signal.  All sample volumes were at a constant 600 L volume in a 178 mm long x 5 mm 

OD NMR tube rated for 500-700 MHz (NE-UL5-7 New Era Enterprise, Vineland, NJ) to 

minimize shimming between samples. All samples were collected at 298K. 1D 
1
H data 

was processed using ACD labs v. 12.0 while 2D 
1
H-

15
N HSQC data was processed using 

NMRPIPE
10

 and visualized using PIPP
11

 and CCCPNMR.
12

 

4.2.3 Optimization of automated data collection. As described in chapter 2 and 

3, the FAST-NMR method utilizes the Bruker BACS-120 sample changer and IconNMR 

software for automated data collection. To increase throughput, the automatic receiver 

gain adjustment was turned off and each sample was collected at a constant receiver gain.  

Additionally, an automatic shimming routine using a single iteration of the Bruker 

gradient shimming to optimize Z1 and Z2 field axes was developed to minimize the time 

needed to shim a sample while providing adequate line shape.  
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4.2.4 Implementation of the 1D 
1
H excitation sculpting pulse sequence. The 

1D 
1
H excitation sculpting pulse sequence

13
 came as a standard and compiled pulse 

sequence in the Bruker pulse sequence library (zgesgp).  All 
1
H 90

o
 pulse lengths were 

optimized by finding a 360
o
 spectral null at a constant power level of -4.3 dB.  The 

optimized 
1
H 90

o
 pulse length was used to calculate all 

1
H pulses used in the sequence. A 

total of 64 real transients and 8 dummy transients at 8k data points were collected with a 

recycle delay of 1.0 s. Total experiment time was approximately 1.25 min. 

The excitation sculpting pulse sequence was compared to the presaturation pulse 

sequence to examine differences in spectral quality, signal to noise and ability to measure 

a single point binding constant (chapter 2).   The presaturation sequence was executed in 

the same manner as the excitation sculpting sequence with a recycle delay of 2.0 s to 

maximize solvent suppression. Total experiment time was approximately 2.5 min. 

A free ligand solution was prepared in a 5 mL stock containing 50 M naproxen, 

5% (v/v) deuterated dimethyl sulfoxide-d6 (DMSO-d6), 11.1 M 3-

(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) and 50 mM potassium 

phosphate buffer pH 7.0 (uncorrected) in 99.98% deuterium oxide.  Five replicate 

samples were made from the 5 mL stock solution and transferred to individual NMR 

tubes.  These 5 samples were used for calculating the average free ligand intensities (IF) 

and average free ligand linewidths ( F).  Data for each sample was collected using the 

excitation sculpting sequence and presaturation sequence.  

A bound ligand solution was prepared in a 5 mL stock solution containing 50 M 

naproxen, 5 M human serum albumin (HSA), 5% (v/v) deuterated dimethyl sulfoxide-

d6 (DMSO-d6), 11.1 M 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) 
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and 50 mM potassium phosphate buffer pH 7.0 (uncorrected) in 99.98% deuterium oxide. 

Five replicate samples were made from this stock solution and transferred to individual 

NMR tubes.  These 5 samples were used to calculate the average bound ligand intensities 

(IB).   Data for each sample was collected using the excitation sculpting sequence and 

presaturation sequence. 

 4.2.5 Implementation of the 2D 
1
H -

15
N HSQC with WATERGATE and 

water flip-back for solvent suppression. The 2D 
1
H-

15
N HSQC utilizing 

WATERGATE and water flip-back pulses came as a standard and compiled pulse 

sequence in the Bruker pulse sequence library (hsqcfpf3gpphwg). All 
1
H 90

o
 pulse 

lengths were optimized in the same manner as describe above in section 4.2.2.1.  

Additionally, all 
13

C and 
15

N pulse powers were optimized using the Bruker dec90 and 

dec90F3 pulse sequences, respectively.  A 100 M 
15

N labeled S. aureus nuclease sample 

and 5 M 
15

N labeled S. aureus nuclease sample were used to test the pulse sequence.  

Both samples were prepared in a 95% H2O/5%D2O buffered solution of 50 mM KPO4 

(pH 7.0) with 300 mM NaCl. 

4.2.6 Expression of unlabeled and 
15

N labeled S. aureus nuclease. The 

pET28a(+) plasmid with the recombinant nuclease sequence and kanamycin resistance 

gene was extracted from the stock E. coli cells using the method outlined in the Genscript 

Quickclean 5M miniprep kit (appendix 4B).  The plasmid was transformed into Bl21-

DE3-pLySs and Bl21-DE3-codon+ competent E. coli cells using the method described in 

the Stratagene manual.   Transformed cells were grown at 37 
o
C for 12 hrs on LB agar 

plates containing 50 mg/L kanamycin.  Only the Bl21-DE3-codon+ cells produced any 

colonies.  
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Three different isolated colonies were selected from the agar plate, individually 

inoculated into three different centrifuge tubes containing 25 mL of LB broth and left to 

grow for 12 hrs in an incubated shaker at 37 
o
C.  A 1 mL sample from each 12 hr growth 

was inoculated into three different 25 mL cultures of LB broth and left to grow until an 

O.D of 0.6 at 600nm was reached. Protein expression was induced by the addition of 500 

mM IPTG.  Induced cells were grown for an additional three hours and expression was 

checked by running a 15% PAGE gel of the whole cells (figure 4.5A).  The colony that 

gave the best expression was used to make a 25 mL 40% glycerol stock suspension stored 

in 1 mL aliquots for future expressions as previously described.
14

  

A 1 mL glycerol stock sample was thawed and used to make a LB agar streak 

plate.  Unlabeled S. aureus nuclease was expressed by isolation of a single colony from 

the streak, growing strain BL21(DE3)codon+/pET28a(+) in 25 mL LB broth containing 

kanamycin at 50 mg/L at 37 
o
C for 12 hrs.  A 5 mL sample of the 12 hr growth was 

inoculated into 1 L cultures (2 L total) of LB broth containing kanamycin at 50 mg/L at 

37 
o
C until an absorbance of 0.67 at 600 nm was reached (~4 hrs).  Protein expression 

was induced by the addition of 500 mM IPTG to each culture and shaken for an 

additional 3.5 hrs at 37 
o
C (appendix 4C).   Cells were harvested by centrifugation at 

10,000 G and stored frozen at -80 
o
C.   

A 1 mL glycerol stock sample was thawed and used to make a LB agar streak 

plate.  
15

N-labeled S. aureus nuclease was expressed by isolation of a single colony from 

the streak, growing strain BL21(DE3)codon+/pET28a(+) in 25 mL M9 minimal media 

broth (2 mL 1M MgSO4, 100 uL 1M CaCl2, 10 mL 100x Basal Medium Eagle Vitamin 

Solution (Gibco), 1.0 g 
15

N-NH4Cl, 4 g d-glucose, 200 mL of 5xM9 salts) containing 
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kanamycin at 50 mg/L at 37 
o
C for 12 hrs.  A 5 mL sample of the 12 hr growth was 

inoculated into 1 L cultures (2 L total) of M9 minimal media broth until an absorbance of 

0.79 at 600 nm was reached (6.75 hr) (appendix 4C).  Protein expression was induced by 

the addition of 500 mM IPTG to each culture and shaken for an additional 3 hrs at 37 
o
C.   

Cells were harvested by centrifugation at 10,000 G and stored frozen at -80 
o
C.   

4.2.7 Purification of unlabeled and 
15

N-labeled S. aureus nuclease. Both 

unlabeled and 
15

N-labeled S. aureus nuclease expressions were treated the same for 

purification. Cells were thawed, re-suspend in equilibration/wash buffer (50 mM sodium 

phosphate pH 7.0 and 300 mM NaCl) in 25 mL aliquots and sonicated on ice 3 times at 

45 s intervals.  The lysate was centrifuged for 30 min at 10,000 g and incubated with 10 

mL Talon Cobalt affinity resin for 30 min at 4 
o
C.  The protein bound resin was washed 

by passing 4 column bed volumes of equilibration/wash buffer through the resin bed.  

Nuclease was eluted with 5 column bed volumes of elution buffer (50 mM sodium 

phosphate pH 7.0, 300 mM NaCl and 150 mM imidazole) and stored at 4 
o
C. 

4.2.8 FAST-NMR screening of S. aureus nuclease. A FAST-NMR screen, 

AutoDock ligand bound co-structures and CPASS analysis of the S. aureus nuclease 

ligand binding site was completed using the methods described in chapter 3 with 

additional modifications. Specifically, the FAST-NMR ligand affinity screen of nuclease 

utilized the pulse sequences and experimental parameters described above. The increase 

in solvent suppression efficiency required using less protein sample per screen due to 

aliphatic protein resonance overlap with the ligand signals.  The total protein 

concentration was reduced from 25 M in the PrgI screen to 5 M in the nuclease screen.   
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A 10 mL volume of stock nuclease was buffer exchanged with equilibration/wash 

buffer to remove residual imidazole.  Each buffer exchange involved centrifuging the 

nuclease sample at 5,000 G for 5 min to a volume of ~1 mL using a 15 mL Amicon 

Ultra-15, 10,000 MW cutoff centrifugal filter unit (Millipore, Billerica, MA).  After each 

centrifugation, 10 mL of equilibration/wash buffer was added to the Amicon Ultra-15 and 

the process was repeated 5 times.  After the final buffer exchange the nuclease sample 

was concentrated to 5 mL.  The final concentration of the sample was approximately 1 

mM nuclease in a buffered solution of 50 mM sodium phosphate pH 7.0 and 300 mM 

NaCl. 

 1D 
1
H NMR ligand affinity screening was completed in a similar manner 

described in chapter 3.  Briefly, 5 M nuclease was added to each ligand mixture (100 

M/ligand) in a 99.99% D2O buffered solution of 20 mM d19-bis-Tris at pH 7.0 with 5% 

DMSO-d6 to maintain ligand solubility and 11.1 M 3-(trimethylsilyl)propionic-2,2,3,3-

d4 acid sodium salt as a chemical shift reference.  A total of 113 mixture samples were 

prepared.  1D 
1
H NMR spectra for each sample was collected using the excitation 

sculpting sequence with 64 real scans, 8 dummy scans with 8 k data points, a sweep 

width of 12.0 ppm and a recycle delay of 1.0 s.  Data was Fourier transformed, auto-

phase and baseline corrected. The 1D 
1
H NMR spectra were compared to free ligand 

mixture reference spectra and visually analyzed to identify binding ligands.  A binding 

event was identified by the decrease in ligand intensity of the nuclease-mixture relative to 

the free ligand mixture.  Total data collection time including sample changing was 

approximately 6 min/spectrum 
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All 2D 
1
H-

15
N HSQC affinity screens were completed by the addition of 500 M 

ligand to a 100 M 
15

N labeled nuclease sample in a 95% H2O/5%D2O buffered solution 

of 20 mM bis-Tris at pH 7.0 with 5% DMSO-d6 to maintain ligand solubility.  2D 
1
H-

15
N 

HSQC spectra were collected using the WATERGATE/flip-back pulse sequence 

described in section 4.2.5 with 8 real scans, 128 dummy scans, 1 k data points in the 
1
H 

dimension and 128 data points in the 
15

N dimension.  The sweep width of the spectrum 

was 12.0 ppm in the 
1
H dimension and 30.0 ppm in the 

15
N dimension.  A recycle delay 

for the pulse sequence was set to 1.0 s.  Total data collection time was approximately 20 

min/spectrum.  Spectra were processed using the same parameters as described in section 

4.2.4.     

 

4.3 RESULTS AND DISCUSSION 

As described in chapters 2 and 3, NMR affinity screening generally involves 

collecting an NMR spectrum at a low analyte concentration in an aqueous buffer.  This 

poses a significant challenge when developing a high-throughput NMR screening 

methods.  The relative concentration of residual protons in 99.99% D2O is 1100 mM 

compared to 20-100 M for the free ligand. The ~10-50 fold intensity difference between 

solvent and analyte peaks decreases the limit of detection (figure 4.1A). A number of 

solvent suppression techniques exist to selectively irradiate the solvent peak and increase 

the detection limit. 

The initial pulse program used for the 1D 
1
H NMR affinity screening in the 

FAST-NMR method was a presaturation sequence with a composite pulse train prior to 

the 90
o
 pulse (figure 4.1B).  The presaturation pulse is a low power pulse implemented 
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during the recycle delay at the frequency of the solvent signal.  As the presaturation pulse 

length is increased there is an increase in solvent suppression.  To maximize signal, the 

recycle delay is set at 1-5 times larger than the T1 relaxation rate for the analyte. A 

recycle delay of 2.0 s (see chapter 2 and 3) is used for the presaturation method. 
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Figure 4.1 Solvent suppression for low concentration experiments. (A) A 100 M 

sample of bromocresol green in an aqueous buffer prepared with 99.99% D2O.  The 

residual protons from the water (~1100 mM) squelched the bromocresol green signals 

giving one strong peak in the center of the spectrum.  (B) The presaturation with 

composite pulse water suppression technique is used to selectively suppress the solvent 

signal.  Quality of solvent suppression is dependent on the power (p19) of the 

presaturation pulse (presat) and the pulse length, which is the same as the recycle delay 

(d1).  A composite pulse (thin vertical black bars) is applied for analyte excitation to 

decrease the effect of inhomogeneities in the applied B1 field. (C) A 100 mM sample of 

bromocresol green after solvent suppression. The experiment was collected using the 

pulse program in (B) with a recycle delay of 2.0 s and 64 scans.  The time to collect one 

spectrum is approximately 2.25 min.  The residual solvent peak can be removed for 

clarity during processing, but has a baselinewidth of 117 Hz.   
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4.3.1 Optimization of automated data collection.  The largest limiting factor for 

high-throughput ligand binding studies using the FAST-NMR method is the nearly 8 min 

required for sample changing and experimental set up.  This correlates to approximately 

15 hrs of “dead time” between data collection.  A large portion of the time was tied to the 

receiver gain adjustment and shimming routine (~3 min).  The previously described 

method for FAST-NMR (chapter 3) required samples to be prepared in 500 L volumes 

to reduce sample requirements.  However, this inadvertently required a longer shimming 

routine because the sample was not uniformly covering the receiver coil.  By preparing 

samples at a larger 600 L volume that extends beyond the receiver coil, a shorter 

gradient shimming routine was implemented while maintaining good line shape and 

linewidth. Using a simple gradient shim routine saved nearly 2 min between samples.  

Additionally, setting the receiver gain to a constant value based on the first sample and 

removing the automatic receiver gain adjustment saved nearly 1 min of sample set up 

time.  A total time savings of ~3 min per sample was seen by making small adjustments 

to the automatic data collection protocols reducing the total time between samples to ~5 

min. For the FAST-NMR library of 113 mixtures this correlates to a savings of ~5.5 hrs, 

reducing the total time for sample changing and set up during a FAST-NMR screen to 9.4 

hrs.  

4.3.2 Improving 1D 
1
H NMR screening efficiency. To further increase 

throughput of the FAST-NMR screen requires using a 1D 
1
H pulse sequence that will 

give comparable or better results with a shorter recycle delay.  The excitation sculpting 

pulse sequence for solvent suppression developed by Hwang et. al,
13

 uses gradient pulses 
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to selectively irradiate the water.  This removes the dependency on the recycle delay as 

found in the presaturation sequence. 

I compared the standard FAST-NMR presaturation pulse sequence with the 

excitation sculpting sequence to determine if there were any improvements in the ligand 

binding analysis.  Specifically, I was looking for improvement in water suppression, 

increases in signal to noise and overall spectral quality.  Spectral quality was determined 

by the amount of post-processing editing required.  I was also looking for differences in 

measured single point binding dissociations constants (KD) as described in chapter 2.  

 Five replicate samples were made at two different human serum albumin (HSA) 

concentrations (0 M and 5 M) containing 50 M naproxen, 5% (v/v) deuterated 

dimethyl sulfoxide-d6 (DMSO-d6), 11.1 M 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid 

sodium salt (TSP) and 50 mM potassium phosphate buffer pH 7.0 (uncorrected) in 

99.98% deuterium oxide.  All samples at 0 M HSA were used for calculating the 

average free ligand intensities (IF) and average free ligand linewidths ( F).  All samples at 

5 M HSA were used for calculating the average bound ligand intensities (IB).  A 1D 
1
H 

NMR spectrum using the presaturation sequence and the excitation sculpting sequence 

were collected sequentially for each sample. All samples were collected under the same 

conditions at a constant receiver gain of 32.   

The excitation sculpting method efficiently suppressed the solvent signal such that 

no residual solvent signal remained (figure 4.2C&D). The resulting baseline was flat and 

did not require any baseline corrections. The presaturation sequence did not completely 

remove the residual solvent signal and required post-processing editing of the residual 
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solvent signal. Additionally, a baseline correction was needed because of a rolling edge 

near 10.0 ppm (figure 4.2A&B). 

The signal to noise ratio for both sequences was comparable at the constant 

receiver gain set to 32 with the excitation sculpting sequence S/N = 74.9 and the S/N for 

the presaturation was 68.8 compared to the methyl peak in naproxen. The presaturation 

sequence is limited to a low receiver gain because the residual water signal is still large 

relative to the analyte concentration.  However, the improved water suppression of the 

excitation sculpting method allows a larger receiver gain (1 k). This improves the S/N to 

431.6 relative to the methyl peak in naproxen.  This was a 6 fold improvement in S/N 

compared to the initial presaturation pulse sequence.   

The naproxen average linewidth for the presaturation sequence was 3.52 ± 0.5 Hz, 

where the average linewidth for the excitation sculpting sequence was to 2.52 ± 0.1 Hz.  

The differences are due to removing the residual water signal.  For example, without 

removing the residual water signal in the presaturation sequence the reference TSP peak 

has a half width of 7.79 Hz calculated by the peak fitting routine in ACD labs.  Once the 

water peak is removed the reference peak linewidth drops to 1.91 Hz.  The difference is 

caused by the automatic peak fitting routine in ACD misreading the true baseline of the 

spectrum, this is due to negative data points in the residual solvent signal (figure 4.2 A) 

and the baseline roll at the edge of the spectrum (figure 4.2 B).  The excitation sculpting 

sequence does not have these issues and therefore the average calculated linewidth is 

smaller.  
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Figure 4.2. Comparison between two water suppression techniques. (A) The 

presaturation pulse sequence of a 50 M naproxen sample in a 99.99% D2O buffer.  The 

pulse sequence does not completely suppress the residual water signal at 4.69 ppm.  (B) 

An expanded view of the presaturation spectrum. In addition to not sufficiently 

suppressing the solvent signal the presaturation sequence generates a baseline roll at the 

edge of the spectrum around 10 ppm.  These issues distort the accurate measurement of 

the free ligand linewidth and introduce significant error in the KD measurement.  (C) The 

excitation sculpting sequence efficiently suppresses the solvent signal so no post 

processing editing is required. (D) Additionally the excitation sculpting method does not 

introduce baseline roll in the spectrum. The total time to collect a spectrum using the 

excitation sculpting sequence is approximately 1.25 min compared to 2.5 min for the 

presaturation method. 
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   The difference in measured average linewidth between the two pulse programs 

has a dramatic effect on the accuracy in measuring single point binding constants (KD).  

The peak height for each spectrum was summed and then averaged to calculate Bexpt (eq 

2.7) and the single point KD (eq 2. 8) (see chapter 2 for method description).  The 

measured KD for naproxen biding to HSA was 0.36 M using the excitation sculpting 

method and   -43.7 M using the presaturation pulse.  The non-sense KD value from the 

presaturation pulse was caused by the over estimation of the free ligand linewidth.  In 

chapter 2, the average ligand linewidth using the presaturation pulse sequence was 1.8 Hz 

and the single point KD was 0.7 ± 1.2.  The data for chapter 2 was collected under 

analytical conditions with a large number of scans (512) and long experiment time of 33 

min per sample.  This is not amenable to high-throughput screening. The problem with 

accurately measuring a free ligand linewidth under high-throughput conditions severely 

limits the utility of the presaturation pulse sequence.    

The results from the excitation sculpting sequence show a significant 

improvement over the presaturation pulse for the FAST-NMR screening.  Solvent 

suppression using this sequence is not dependent on the recycle delay reducing the total 

time needed to collect a single spectrum by approximately 1.25 min.   Additionally, the 

results from an excitation sculpting sequence do not need post processing solvent filtering 

which dramatically improves the single point KD method for high-throughput NMR 

ligand affinity screens.  

 4.3.3 Improving 2D 
1
H-

15
N HSQC NMR screening efficiency. The standard 

2D 
1
H-

15
N HSQC spectrum correlates the amide proton to the amide nitrogen giving a 

single peak for each amino acid (figure 4.3).  The current method using the standard 2D 
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1
H-

15
N HSQC requires between 1.5-2.5 hrs per spectrum and is therefore a significant 

portion of the screening time for FAST-NMR.  In addition to the data collection time, the 

method requires a minimum of 100 M 
15

N labeled protein per sample equaling between 

1-30 mgs of protein depending on the number of hits from the 1D 
1
H NMR screen.  

 

 

Figure 4.3 A standard 2D 
1
H-

15
N HSQC Spectrum.  The standard 2D 

1
H-

15
N HSQC 

correlates each backbone amide proton with its corresponding backbone amide nitrogen.  

Samples are collected in 95% H2O/5%D2O buffers with a large residual solvent streak 

(5.0 ppm). The relative ratio of analyte to solvent signal reduces the overall signal to 

noise requiring larger concentrations of analyte and longer data collection times (1.5-2.5 

hrs).  The sample was 100 M PrgI in 95%H2O/5%D2O buffered solution of 20 mM bis-

Tris pH 7.0). 
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To increase the efficiency and versatility of the 2D 
1
H-

15
N HSQC screening step 

in FAST-NMR, a solvent suppressed 2D 
1
H-

15
N HSQC pulse sequence was 

implemented.  The sequence uses the WATERGATE and water flip back method for 

solvent suppression.
15

 Suppressing the residual water in 2D 
1
H-

15
N HSQC increases the 

flexibility for NMR screening.  If sample is a limiting factor, the pulse sequence can 

detect protein concentrations as low as 5 M with an extended acquisition time.  If 

sample concentration is not a limiting factor, the pulse program can be used to collect an 

NMR spectrum in approximately 20 min at 100 M protein concentration (figure 4.4).  

 A 5 M sample of 
15

N labeled S. aureus nuclease was prepared in a 95% 

H2O/5%D2O buffer with 50 mM KPO4 and 300 mM NaCl.  Data was collected using the 

WATERGATE
15

/water flip back 2D 
1
H-

15
N HSQC

16
 pulse sequence with 400 real scans, 

128 dummy scans, 1 k data points in the 
1
H dimension and 128 data points in the 

15
N 

dimension.  The sweep width of the spectrum was 17.0 ppm in the 
1
H dimension and 30.0 

ppm in the 
15

N dimension.  A recycle delay for the pulse sequence was set to 1.0 s. The 

total experiment time was 13 hrs.  A 100 M sample of 
15

N labeled S. aureus nuclease 

was prepared using the same buffer conditions. An NMR spectrum was collected similar 

to the 5 M sample, but with only 8 real scans. The total time to collect a 2D 
1
H-

15
N 

HSQC at 100 M protein concentration was approximately 20 min. There was no 

difference in peak position between the two experiments. No differences were observed 

compared to a standard 2D 
1
H-

15
N HSQC spectrum of free nuclease at 1.2 mM protein 

concentration (figure 4.5C).  The WATERGATE/water flip back 2D 
1
H-

15
N HSQC 

experiments sufficiently suppressed the residual solvent peak such that no post-

processing editing was required.    
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Figure 4.4 Concentration study of the  WATERGATE/water flip back 2D 
1
H-

15
N 

HSQC. (A) A 5 M sample of 
15

N labeled S. aureus nuclease was prepared in the a 95% 

H2O/5%D2O buffer with 50 mM KPO4 and 300 mM NaCl. NMR spectrum was collected 

with 400 scans and experiment time was approximately 13 hrs.  (B) A 100 M sample of 
15

N labeled S. aureus nuclease under the same conditions collected with 8 scans.  Total 

experiment time was approximately 20 min.  
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4.3.4 FAST-NMR screen of S. aureus nuclease. The 19 kDa protein 

Staphylococcus aureus nuclease is a well-studied NMR model system and was used to 

test the FAST-NMR optimization and validate its functional annotation.
7-9

 The goal of 

the experiment was to identify nuclease binding ligands using the FAST-NMR screening 

methods, to identify the active site of the protein, and to complete a successful CPASS 

analysis.  The hypothesis was that we would find the same binding site as previously 

reported for the nuclease- thymidine-3‟,5‟-diphosphate ligand bound co-structure.
7-9

 

Furthermore, we would identify a preferential similarity between this nuclease‟s ligand 

binding site and other nuclease ligand binding sites. 

Unlabeled and uniformly 
15

N labeled nuclease was expressed and purified as 

described in the experimental sections 4.2.6 and 4.2.7.  Expression was checked by 

comparing induced and non-induced samples of three growth cultures (figure 4.5A).  A 

total of 75.6 mg/L unlabeled and 23.4 mg/L 
15

N labeled purified nuclease was obtained 

from 2 L growths.  All concentrations were measured by maximum UV absorbance at 

280 nm with a molar extinction coefficient,  of 17,420 M
-1

 cm
-1

.  A 2D -
1
H-

15
N HSQC 

was collected on the purified sample of 
15

N labeled nuclease and compared to the 

reported 2D 
1
H-

15
N HSQC spectrum

7-9
 and associated assignments to check for proper 

folding of the protein (figure 4.5C).  The spectrum for the expressed nuclease was 

comparable to the reference spectrum
7-9

 with differences most likely accounted for by 

differences in buffer, temperature, spectral resolution and the slightly longer sequence of 

the expressed nuclease (9 additional N-terminal amino acids, see appendix 4A for 

comparison between expressed nuclease and reference sequence).    
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Figure 4.5 Expression and purification of S. aureus nuclease. (A) Induced cultures 

(lane 3, 5 and 7) of unlabeled nuclease from 3 randomly selected colonies of E. coli 

BL21-DE3-codon+(nuc) were compared to non-induced cultures (lane 2, 4, 6).  A dark 

band was identified in the induced cultures at approximately 19 kDa (MW lane 1).  (B) 

Purification of the culture media with a his-tag resin gave 5 isolated bands (lane 3-7) at 

the same molecular weight as in (A).  (C)  The expression and purification was repeated 

under minimal media conditions for expression of 
15

N labeled nuclease.  A 2D 
1
H-

15
N 

HSQC was collected on a sample from the purified stock solution (1.2 mM).  The protein 

spectrum was dispersed indicating a folded protein.          
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Unlabeled nuclease was screened against the compound library as described in the 

experimental section 4.2.8.  A total of 18 ligands were identified in the 1D 
1
H NMR 

screening. Table 4.1 reports the list of all nuclease-binding ligands found in our chemical 

library.  All nucleotides in the chemical library bound nuclease.  Binding of thymidine-

5‟-triphosphate was indicated by relative changes in peak height between the free and 

bound spectrum and the appearance of enzymatic turnover of the ligand (figure 6A).  

Two new peaks at 7.32 ppm and 8.3 ppm are visible when the 5 M nuclease is added to 

the sample.  

 

Table 4.1 Ligands identified to bind nuclease from a high-throughput NMR screen.  

 

Binding ligand 

Adenosine-5‟-triphosphate 

Guanosine-5‟-triphosphate 

Uracil-5‟-triphosphate 

Cytosine-5‟-triphosphate 

Thymadine-5‟-triphosphate 

3'-5'-cyclic guanosine monophosphate 

3'-5'-cyclic adenosine monophosphate 

Suramin 

Mitoxantrone dihydrochloride 

Phosphocholine 

4-Hydroxy-3-methoxyphenylglycol 

Aquocobalamin 

L-leucine 

Bepridil dihydrocholoride 

Ciprofloxacin 

Diminazene 

Lumicolchince 

Acebutolol hydrochloride 
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 Confirmation of ligand binding was completed by monitoring changes in 
15

N and 

1
H chemical shifts upon addition of 500 M thymidine-5‟-triphosphate ligand to a 100 

M 
15

N labeled nuclease sample.  Binding site residues between nuclease and thymidine-

5‟-triphosphate were identified in a similar manner as described in chapter 3.  A total of 

17 residues were identified to have greater than 1 standard deviation from the average 

chemical shift difference upon addition of the ligand.  Of these 17 residues, 6 were 

identified in the side chain amide region, 6 residues were unambiguously identified and 

the remaining 5 were either not assigned in the reference spectrum or could not be 

unambiguously identified.  Four of the unambiguously identified residues, F34, R35, 

K84, and Y113, were residues found in the active site of the reference structure (figure 

4.6B&C). The reference binding pocket is composed of 8 amino acids F34, R35, and 

L36, T82, D83, K84, Y115, V114, and Y113.  Thymidine-5‟-triphophate was the only 

ligand titrated with 
15

N labeled nuclease because thymidine-3‟,5‟-diphosphate is the 

bound ligand for the reference nuclease structure (PDB 1JOK), which was not in the 

FAST-NMR chemical library at the time of screening.   
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Figure 4.6 FAST-NMR screen of S. aureus nuclease. (A) Unlabeled nuclease was 

screened with the FAST-NMR compound library as described in chapter 2 using the new 

pulse sequences as described in section 4.2.8.  18 ligands were found to bind nuclease 

with thymidine-5‟-triphosphate (AI single, AII mixture free) showing possible enzymatic 

turnover (AIII bound) in addition to a decrease in signal.  Two new NMR resonance not 

found in the free mixture (AII) are observed in the complex (AIII).  The assignment of 

these peaks is not clear, but most likely correspond to  the formation of thymidine-5‟-

diphosphate from thymidine-5‟-triphosphate.  The non-binding compounds in the mixture 

include biotin and acetylsalicylic acid.  (B) 17 peaks significantly changed in a 2D 
1
H-

15
N HSQC spectrum upon the addition of 500 M thymidine-5‟-triphophate to a 100 M 

sample of 
15

N labeled nuclease.  For clarity, an example of the relative change upon 

ligand binding for two residues (F34 and R35) is shown (black free nuclease, red ligand 

bound nuclease).  (C) The residues identified in the 2D 
1
H-

15
N HSQC spectrum are 

highlighted on the protein structure (1JOK) and used to generate a ligand bound co-

structure.   Structure images were generated with VMD
17
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A ligand bound co-structure of nuclease with thymidine-5‟-triphosphate was 

generated in the same manner as described in detail in chapter 3.   The residues identified 

in the 2D 
1
H-

15
N HSQC spectrum binding study that overlapped with the known binding 

site were used to define the grid search space for AutoDock. The Autodock Filter 

program
18

 was run to select the best conformation.  Finally, the ligand bound co-structure 

was uploaded to CPASS.
5
  

The best hit for the nuclease-thymidine-5‟-triphosphate docked co-structure was a 

Staphylococcus nuclease protein (PDB 1TR5) bound to thymidine-3,-5‟-diphosphate.  

The active site similarity score was 47.47% with an average rmsd of 0.69 ± 0.3 Å for the 

overlapping active site residues.   CPASS did not find the structure used to generate the 

ligand bound structure (PDB 1JOK) because the program filters out proteins with ≥ 95% 

sequence similarity and/or ligand binding sites with ≥ 80% sequence similarity.  

However, recent updates to the CPASS database and software now allow for pairwise 

active site comparisons.  The pairwise comparison between the docked nuclease co-

structure and the experimental co-structure bound to thymidine-3‟,5‟-diphosphate had a 

pairwise active site similarity score of 48.1% with and an average rmsd of 0.76 ± 0.3 Å 

for the overlapping active site residues.  
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Figure 4.7 CPASS analysis of S. aureus nuclease. (A) The ligand bound co-structure 

for nuclease complexed with thymidine-5‟-triphosphate (yellow) was uploaded to the 

CPASS database. (B) The best match was the Staphylococcus nuclease protein (PDB 

1TR5) bound to thymidine-3,-5‟-diphosphate (yellow). (C) An overlay of the two active 

sites (1JOK blue, 1TR5 red) gave an overall rmsd of 0.69± 0.3 Å and a CPASS similarity 

score of 47.47%. The sequence alignment of the two ligand binding sites is shown below 

the figures, where the aligned residues are colored blue in A and B. Structure images 

were generated with VMD.
17

 



152 

 

 

  

4.4 REFERENCES 

1. Mercier, K. A.; Shortridge, M. D.; Powers, R., A multi-step NMR screen for the 

identification and evaluation of chemical leads for drug discovery. Comb Chem 

High Throughput Screen 2009, 12, (3), 285-95. 

2. Mercier, K. A.; Baran, M.; Ramanathan, V.; Revesz, P.; Xiao, R.; Montelione, G. 

T.; Powers, R., FAST-NMR: functional annotation screening technology using 

NMR spectroscopy. J Am Chem Soc 2006, 128, (47), 15292-9. 

3. Mercier, K. A.; Germer, K.; Powers, R., Design and characterization of a 

functional library for NMR screening against novel protein targets. Comb Chem 

High Throughput Screen 2006, 9, (7), 515-34. 

4. Mercier, K. A.; Powers, R., Determining the optimal size of small molecule 

mixtures for high-throughput NMR screening. J. Biomol. NMR 2005, 31, (3), 243-

258. 

5. Powers, R.; Copeland, J. C.; Germer, K.; Mercier, K. A.; Ramanathan, V.; 

Revesz, P., Comparison of protein active site structures for functional annotation 

of proteins and drug design. Proteins 2006, 65, (1), 124-35. 

6. Shortridge, M. D.; Hage, D. S.; Harbison, G. S.; Powers, R., Estimating protein-

ligand binding affinity using high-throughput screening by NMR. J Comb Chem 

2008, 10, (6), 948-58. 

7. Wang, J. F.; Hinck, A. P.; Loh, S. N.; Markley, J. L., Two-dimensional NMR 

studies of staphylococcal nuclease: evidence for conformational heterogeneity 

from hydrogen-1, carbon-13, and nitrogen-15 spin system assignments of the 



153 

 

 

  

aromatic amino acids in the nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+ 

ternary complex. Biochemistry 1990, 29, (17), 4242-53. 

8. Wang, J. F.; Hinck, A. P.; Loh, S. N.; Markley, J. L., Two-dimensional NMR 

studies of staphylococcal nuclease. 2. Sequence-specific assignments of carbon-

13 and nitrogen-15 signals from the nuclease H124L-thymidine 3',5'-

bisphosphate-Ca2+ ternary complex. Biochemistry 1990, 29, (1), 102-13. 

9. Wang, J. F.; LeMaster, D. M.; Markley, J. L., Two-dimensional NMR studies of 

staphylococcal nuclease. 1. Sequence-specific assignments of hydrogen-1 signals 

and solution structure of the nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+ 

ternary complex. Biochemistry 1990, 29, (1), 88-101. 

10. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A., NMRPipe: 

a multidimensional spectral processing system based on UNIX pipes. J Biomol 

NMR 1995, 6, (3), 277-93. 

11. Garrett, D. S.; Powers, R.; Groenenborn, A. M.; Clore, G. M., A common sense 

approach to peak picking in two-, three-, and four-dimensional spectra using 

automatic computer analysis of contour diagrams. Journal of Magnetic Resonance 

(1969-1992) 1991, 95, (1), 214-20. 

12. Fogh, R.; Ionides, J.; Ulrich, E.; Boucher, W.; Vranken, W.; Linge, J. P.; Habeck, 

M.; Rieping, W.; Bhat, T. N.; Westbrook, J.; Henrick, K.; Gilliland, G.; Berman, 

H.; Thornton, J.; Nilges, M.; Markley, J.; Laue, E., The CCPN project: an interim 

report on a data model for the NMR community. Nat Struct Biol 2002, 9, (6), 416-

8. 



154 

 

 

  

13. Hwang, T.-L.; Shaka, A., Water Suppression That Works. Excitation Sculpting 

Using Arbitrary Waveforms and Pulsed-Field Gradients. J Mag Res, Series A 

1995, 112, (2), 275-279. 

14. Maniatis, T.; Fritsch, E. F.; Sambrook, J., Molecular Cloning. A laboratory 

manual. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1982. 

15. Piotto, M.; Saudek, V.; Sklenar, V., Gradient-tailored excitation for single-

quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 1992, 2, (6), 

661-5. 

16. Andersson, P.; Gsell, B.; Wipf, B.; Senn, H.; Otting, G., HMQC and HSQC 

experiments with water flip-back optimized for large proteins. J Biomol NMR 

1998, 11, (3), 279-88. 

17. Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics. J Mol 

Graph 1996, 14, (1), 33-8, 27-8. 

18. Stark, J.; Powers, R., Rapid protein-ligand costructures using chemical shift 

perturbations. J Am Chem Soc 2008, 130, (2), 535-45. 

 

 

 

 

 

 

 

 



155 

 

 

  

Appendix 4A.  Sequence of S. aureus nuclease.  A ClustalW sequence alignment with 

the sequence of the expressed nuclease (dNuclease) is shown with the reference nuclease 

sequence (refNuclea).  The reference nuclease sequence was reported from the PDB ID 

1JOK
7-9
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Appendix 4B. Comparison of the standard pET-28a(+) and nuclease inserted pET-

28a(+)–nuc plasmids used for the nuclease expression.  (A) Standard pET-28a(+) 

plasmid (B) nuclease inserted plasmid. (C) 1% agarose gel of the isolated pET-28a(+)-

nuc plasmid (lane2), digested plasmid (lane 3) and control pET-28a(+) plasmid (lane 4).   
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Appendix 4C.  Growth curves for nuclease expression. (A) Expression of unlabeled 

nuclease with IPTG induction at 3.5hrs OD600nm 0.67.  (B) Expression of 
15

N labeled 

nuclease with IPTG induction at 6.75 hrs OD600nm 0.79.  The difference in growth rates 

was caused by the difference in growth media.   
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CHAPTER 5:  

THE STRUCTURE, DYNAMICS AND LIGAND SCREENING OF THE 

PRIMASE C-TERMINAL DOMAIN (CTD) FROM STAPHYLOCOCCUS AUREUS 

 

 

5.1 INTRODUCTION 

 

  Bacterial primase (DnaG) is a conserved and essential enzyme responsible for the 

synthesis of Okazaki fragments during DNA replication.
1
  The protein is composed of 

three domains; N-terminal domain responsible for DNA binding, the catalytic core 

responsible for synthesis of Okazaki fragments, and the C-terminal domain (CTD) 

responsible for the interaction between primase and bacterial helicase (DnaB).
2, 3

 Full 

length primase is conserved among all organisms and exhibits relatively large sequence 

similarity.
1, 4, 5

 However, the sequence conservation is limited to the N-terminus and 

catalytic core.
1
 The C-terminal domain (primase CTD) is highly variable; even among 

similar species.
1, 4, 5

 The functional consequence of the low sequence conservation of the 

C-terminal domain is still unclear, but it could play a role in regulating species-specific 

DNA replication.
6
   

The solution structures of primase CTD shows significant variability between 

Geobacillus stearothermophilus (PDB 1Z8S) and Escherichia coli (PDB 2HAJ).
4, 7

  

Generally, the primase CTD structure is composed of two sub-domains, an N-terminal 

six-helix bundle (sub-domain C1) that is essential for DnaB activity and correct primer 

length and a helical hairpin (sub-domain C2) that mediates binding to DnaB.
4, 8

  The two 

solution structures share significant structure similarity at the N-terminal bundle (C1 sub-

domain) but show a sharp difference in the corresponding C2 sub-domain.
4, 7, 8

  In E. coli 

primase CTD is composed of 7 helices with the two sub-domains connected through a 

long ridged helix 6.
7
  In G. stearothermophilus the helix linking the two sub-domains is 
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kinked at a Pro556 residue forming two distinct helices (helix 6 and 7).
4
  The recent 

structure of the DnaG-DnaB complex shows that both the C1 and C2 sub-domains are 

important for binding to helicase.
9
  

The discrepancy in the DnaG CTD structures has yet to be fully resolved.   

However, it has been shown that primer synthesis is only carried out when primase CTD 

and helicase N-terminal domain (NTD) interact.
6
  The differences in sequence and 

structure of the primase CTD between the two organisms suggest a species-specific 

method of replication regulation.
6
  The S. aureus sequence (see appendix 5A) for primase 

CTD is more similar to the G. stearothermophilus sequence with 20% sequence identity 

and 58% sequence similarity.  However the sequence similarity between S. aureus 

sequence and the E. coli sequence (57% similarity and only 10% sequence identity) is 

comparable to the sequence similarity between S. aureus and G. stearothermophilus. The 

comparable sequence similarities make direct homology modeling challenging because 

either structure is a possible model for S. aureus. But, by comparing the sequence 

similarities of the loop region between helix 6 and 7, the proline residue (Pro556) that 

forms the kink in the linking helix in G. stearothermophilus is replaced with a glycine in 

S. aureus (appendix 5A).  Glycine has the second largest propensity (second to proline) to 

be found in a loop region.
10, 11

 Conversely, the E. coli sequence contains a methionine in 

the corresponding position consistent with a rigid helix 6. This single amino acid 

substitution between the three proteins suggests the S. aureus primase structure is more 

likely to be similar to the G. stearothermophilus structure.   

The rapid rise in community acquired antibiotic resistance, particularly to S. 

aureus, requires the rapid identification of new antibiotic targets and potential drugs.
12
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The primase-helicase interaction is an attractive antibiotic target because it is functionally 

conserved in bacteria, essential for DNA replication and the bacterial DnaG-DnaB 

interaction is distinctly different from that of eukaryotes.
1, 6

  Additionally, the high degree 

of sequence variability and differences in structure suggest a possible means to tailor 

antibiotic development to a specific organism.   

As described in chapter 1, the 1D 
1
H and 2D 

1
H-

15
N HSQC screening methods 

used for FAST-NMR was originally developed for high-throughput drug discovery.  

However, to specifically find an active site for structure based drug discovery, the 

complete backbone resonance assignments and a high-resolution, three-dimensional (3D) 

structure are required. In this chapter, I will discuss the NMR determination of the 

solution structure for S. aureus primase CTD. I will examine a potential phylum 

dependency on the two sub-domain structures using sequence and structure similarities.  I 

will also report protein dynamics for the conformation of a loop region between the two 

sub-domains.  Finally, I will discuss the discovery of a potential lead compound that 

binds to the C2 sub-domain of primase CTD. 

 

5.2 EXPERIMENTAL 

 

5.3.1 Materials. For the DnaG primase CTD  structure determination, NMR 

dynamics analysis of the structure, and the NMR ligand affinity screens, purified and 

uniformly 
13

C, 
15

N labeled [U-
13

C, 
15

N] DnaG primase CTD and 
5
N labeled [U-

15
N] 

DnaG primase CTD  was purchased from Nature Technologies (Lincoln, NE) (see figure 

5.1A for gel).  The dimethyl sulfoxide-d6 (99.9% D) and deuterium oxide (99.9% D) 

were obtained from Aldrich (Milwaukee, WI). The 3-(trimethylsilyl)propionic-2,2,3,3-d4 
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acid sodium salt (98% D) was purchased from Cambridge Isotope (Andover, MA). The 

potassium phosphate dibasic salt (anhydrous, 99.1% pure) and monobasic salt (crystal, 

99.8% pure) were purchased from Mallinckrodt (Phillipsburg, NJ).  All compounds used 

for screening were obtained as described in chapters 3, 4 and elsewhere.
13

  Briefly, the 

compound library is composed of 437 known biologically active compounds distributed 

across 113 mixtures with 3-4 compounds in each mixture. 

 5.3.2 Apparatus. All NMR experiments used for the protein backbone 

assignments of DnaG primase CTD were collected at 298 K on a five channel 600 MHz 

Bruker Avance spectrometer equipped with a 5 mm TXI probe. NMR experiments used 

for the protein side chain resonances and distance constraints were collected at the Rocky 

Mountain Regional 900 MHz NMR Facility on a four channel 900 MHz Varian INOVA 

spectrometer equipped with a 5 mm HCN probe.   Assignments of the backbone and side 

chain resonances were obtained from the following spectra: 2D 
1
H-

15
N-HSQC, 2D 

1
H-

13
C-HSQC, HNCO, HNCA, CBCACONH, CBCANH, HNHA, HBHACONH, 

CCCONH, HCCCONH and H(CCH)-COSY (collected on 900MHz).
14

 Distance 

constraints were obtained from 3D 
15

N-edited NOESY and 3D 
13

C-editied NOESY 

(collected at 900 MHz).
14

  

 Hydrogen bond constraints were determined using the (CLEANEX-PM)-FHSQC 

experiment.
15

 A total of 2048 data points were collected in the 
1
H dimension and 128 data 

points were collected in the 
15

N dimension. The spectrum was collected with 16 

transients and a sweep width of 8012.82 Hz in the 
1
H dimension and 1613.424 Hz in the 

15
N dimension. The mixing time was set to 100 ms with a CLEANEX spinlock power of 

2 KHz.  
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All NMR experiments for protein dynamics analysis were collected on a Bruker 

500 MHz Avance spectrometer (Billercia, MA) equipped with a triple resonance, Z-axis 

gradient Cryoprobe.  Experiments used for dynamics study have been described 

previously
16-18

 and included a 2D 
1
H

-15
NN HSQC experiment (hsqct1etf3gpsi)designed 

to measure T1 relaxation rates with delay times of 0.0 ms, 5.39 ms, 53.92 ms, 134.80 ms, 

269.60 ms, 404.40 ms, 539.20 ms, 674.00 ms and 1078.40 ms, a 2D 
1
H-

15
N HSQC 

experiment (hsqct2etf3gpsi) designed to measure T2 relaxation rates with delay times of 

0.0 ms, 17.6 ms, 35.2 ms, 52.8 ms, 70.4 8 ms, 105.6 ms,  123.2 ms, 140.8 ms, 158.4 ms, 

176.0 ms, and a 2D 
1
H-

15
N HSQC experiment  (hsqcnoef3gpsi) designed to measure 

NOE enhancements.   

The relaxation rates (T1,T2) for each DnaG primase CTD amino acid was 

calculated by fitting the intensity of each peak to the intensity decay curve (appendix 5B) 

(eq 5. 1) where It is the intensity of each peak at the delay time t, I0 is the initial steady 

state intensity  

           [5.1] 

The NOE values were determined by the ratio of peak intensity between the 

saturated (Isat) and unsaturated (Iunsat) spectra 

                                                         [5.2] 

All T1, T2 and NOE data measurements were used to calculate an overall 

correlation time ( r), order parameters (S
2
), internal motion ( e) or chemical exchange 

(Rex) using the Lipari-Szabo model free method
19

 implemented by FAST-MODEL 

FREE.
20

   

All NMR experiments used for the ligand binding screen were collected on a 
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Bruker 500 MHz Avance spectrometer (Billercia, MA) equipped with a triple resonance, 

Z-axis gradient cryoprobe and using a Bruker BACS-120 sample changer and IconNMR 

software for automated data collection. All 1D 
1
H NMR spectra were collected at 298K 

using the pulse sequence described in chapter 3.  To increase throughput, only 64 

transients were signal averaged for each spectrum with 8k data points.  All 2D 
1
H-

15
N 

HSQC spectra were collected at 298K using the standard pulse sequence implemented in 

Bruker TopSpin 1.3 with optimized sample specific 90
o
 pulse lengths.   

All multidimensional experiments were processed using NMRpipe,
21

 analyzed 

using PIPP
22

 or CCPNMR.
23

 All 1D 
1
H NMR spectra were processed with the ACD/1D 

NMR manager v. 12.0 (Advanced Chemistry Development, Inc., Toronto, Ontario).   All 

ligand protein docking studies were completed as described in chapter 3 and 4.  

 5.3.3 Sample preparation.  For NMR backbone assignment experiments, 

uniformly 
13

C, 
15

N labeled [U-
13

C, 
15

N] DnaG primase CTD was concentrated to 1.2 mM 

in a 95% H2O/5% D2O buffered solution of 100 mM NaCl, 25 mM KPO4 pH 6.64 

(uncorrected) using an Amicon ultra centricon (MW cutoff 10 000 Da). 50 mM arginine 

and 50 mM glutamine was added to the NMR sample for long term stability. For side 

chain experiments uniformly 
13

C, 
15

N labeled [U-
13

C, 
15

N] DnaG primase CTD was 

concentrated to 1.4 mM in the same buffer conditions used for the NMR backbone 

assignment experiments.   

 NMR dynamics data was collected using a uniformly 
15

N labeled [U-
15

N] sample 

of DnaG primase CTD concentrated to 1.2 mM in a 95% H2O/5% D2O buffered solution 

of 100 mM NaCl, 25 mM KPO4 pH 6.64 (uncorrected) using an Amicon ultra centricon 
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(MW cutoff 10 000 Da). 50 mM arginine and 50 mM glutamine was added to the NMR 

sample for long term stability.   

Sample preparation and experimental parameters for the NMR ligand affinity 

screen were executed in the same manner as described previously
24

 and in chapter 3.  

Briefly, each ligand mixture (113 total) was screened using 1D 
1
H NMR at 100 M 

ligand concentration with 25 M protein in a 99.99% D2O buffered solution of 20 mM 

d19-bis-Tris at pH 7.0 (uncorrected) with 2% DMSO-d6 to maintain ligand solubility and 

11.1 µM 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt as a chemical shift 

reference.  1D 
1
H NMR spectra for each sample was collected using a pre-saturation 

pulse sequence with 64 real transients, 8 dummy transients with 8 K data points, a sweep 

width of 11.0 ppm and a recycle delay of 2.0 s.  Data was Fourier transformed, auto-

phase and baseline corrected. Each 1D 
1
H NMR spectrum were compared to the 

corresponding free ligand mixture reference spectrum and visually analyzed to identify 

binding ligands.  A binding event was identified by the decrease in ligand intensity of the 

nuclease-mixture relative to the free ligand mixture.  Total data collection time including 

sample changing was approximately 10 min/spectrum 

Additionally, a ligand free 2D 
1
H-

15
N HSQC spectrum was collected using the 

same buffer conditions with 95% H2O/5% D2O to ensure the protein was properly folded 

prior to addition of each ligand.  

5.3.4 NMR Structure calculations and refinement. NOE assignments were 

obtained by using 3D 
15

N-edited NOESY and 3D 
13

C-edited NOESY experiments. NOE 

intensities were sorted visually into four classes: strong (1.8–2.5), medium (1.8–3.0), 

weak (1.8–4.0), very weak (3.0–5.0). Upper limits for distances involving methyl protons 
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and nonstereospecifically assigned methylene protons were corrected appropriately for 

center averaging.
 
 Initial NOE assignment was completed by the program Autostructure

25
 

which identified 1055 intra-residue, 173 sequential, 312 medium range (1 ≥ 5) and 73 

long range (5 >) NOEs.   Due to significant peak overlap, even at a high magnetic field 

(900 mHz), manual refinement was needed to complete NOE assignment. All torsion 

angle constraints were obtained by chemical shift analysis using the TALOS
26

 software 

program, and measured coupling constants from an HNHA experiment.
27

 

Hydrogen bond constraints were determined using the (CLEANEX-PM)-FHSQC 

experiment.
15

 The (CLEANEX-PM)-FHSQC spectrum was compared with the 2D 
1
H-

15
N HSQC spectrum, where amides with missing peaks were assigned hydrogen bond 

constraints. These residues were selected because the (CLEANEX-PM)-FHSQC 

spectrum identifies amide residues with fast water exchange rates. The hydrogen bond 

distance constraints were set at 2.8 Å between the carboxyl oxygen and the amide 

nitrogen, and 1.8 Å between the carboxyl oxygen and the amide proton. Carboxyl groups 

within 2.5 Å of the slowly exchanging amide groups were selected to be involved in a 

hydrogen bond. 

The structures were refined using the hybrid distance geometry dynamical-

simulated annealing method
28

 with minor modifications
29

 using the program XPLOR-

NIH
30

 adapted to incorporate pseudopotentials for 
3
J(HN-Hα) coupling constants,

31
 

secondary 
13

Cα/
13

Cβ chemical shift constraints,
32

 and a conformational database 

potential.
33-35

 A total of 1000 structures were calculated. The 20 lowest energy structures 

were then subjected to further energy minimization with CNS using explicit water 

solvation that included Lennard-Jones and electrostatic potentials using a modification of 
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the procedure and forcefield of Nilges.
36, 37

  An average DnaG primase CTD structure 

was calculated from these 20 structures. 

The target function that is minimized during restrained minimization and 

simulated annealing comprises quadratic harmonic terms for covalent geometry, 
3
J(HN-

Hα) coupling constants, and secondary 
13

Cα/
13

Cβ chemical shift constraints, square-well 

quadratic potentials for the experimental distance and torsion angle constraints, and a 

quadratic van der Waals term for nonbonded contacts. The force constant for the 

conformational database was kept relatively low (0.5–1.0 kcal/mol) throughout the 

simulation to allow the experimental distance and torsion angle constraints to 

predominately influence the resulting structures. The force constant for the NOE and 

dihedral constraints were 30 times and 10 times stronger than the force constants used for 

the conformational database.
38

 All peptide bonds were constrained to be planar and trans. 

There were no hydrogen-bonding, electrostatic, or 6–12 Lennard-Jones empirical 

potential energy terms in the target function. 

 

5.3 RESULTS AND DISCUSSION 

 5.3.1 NMR assignments and secondary structure prediction of primase C-

terminal domain from Staphylococcus aureus.  The backbone resonance assignments 

were completed using the NMR experiments described above (
1
H-

15
N HSQC, HNCO, 

HNCA, HNCOCA, CBCACONH, CBCANH, HNHA, HBHACONH and the 
1
H-

15
N 

HSQC edited NOESY) and manually analyzed using PIPP
22

 and CCPNMR.
23

 The 

backbone resonance assignment was 85% complete with 139 amino acids of the 163 

unambiguously assigned in the 
1
H-

15
N HSQC (figure 5.1).  Unassigned residues in the 
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1
H-

15
N HSQC include M1-H13, D19, E28, H37, L38, M9, T58, R94, E95, E101, P109, 

and Y110.  The majority of the unassigned residues correlate to the engineered N-

terminal sequence (MGHNHNHNHNHNHNGGDDDD) for purification, residues M1-

H13 correlated with the N-terminal his-tag, and residue D19 is part of an engineered 

proteolytic cleavage site.   Excluding the purification tag the backbone assignments were 

94% complete. The ten amino acids found in the primase sequence that were not assigned 

were primarily found in unstructured loop regions, turns between two helices or at the 

edge of a helix.   Residues H37-M39 were in a turn region between helix 1 and 2, residue 

T58 was in an unstructured loop region between helix 2 and helix 3 and residues E101, 

P109 and Y110 were in an unstructured loop region between helix 5 and helix 6.  

Residues R94 and E95 are the second and third residues of helix 5. An exhaustive 

analysis of the NMR data set was unable to yield an assignment for these residues, 

suggesting the end of the helix may undergo partial unfolding and exchange broadening.   

Aliphatic side chain carbon chemical shift assignments were completed using the 

CCCONH experiment correlating the preceding (i-1) residue to the following (i) 

backbone amide chemical shift.   Aliphatic side chain proton chemical shifts were 

completed with the HCCH-COSY and HCCCONH experiments. Aromatic side chain 

assignments were completed using the 3D 
13

C-edited NOESY experiment.  The statistics 

for resonance assignment include, 139/163 HN, 139/201 N, 139/163 C , 134/168 H , 

128/141 C , 148/181 H , 85/92 C , 89/160 H C , 49/64 

C C H and 132/143 CO.  All assignments will be 

uploaded to the BMRB.
39
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Figure 5.1 Assigned 2D 
1
H-

15
N HSQC spectrum of S. aureus primase CTD.   (A) 

Purification of S. aureus primase CTD, lane 1 MW marker, lane 2 shows the expressed 

and purified 
13

C/
15

N labeled S. aureus primase CTD used for all studies in this work. (B) 

Complete backbone 
1
H and 

15
N assignments of the DnaG primase CTD from S. aureus.  

The spectrum was fully assigned with the exception of one peak at 
1
H 7.90 ppm and 

15
N 

120.4 ppm. The peak is large and broad relative to other peaks in the spectrum and is 

likely the remaining unassigned his tag residues. 
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  Secondary structure prediction using the difference in backbone ∆
13

C /
13

C  

carbon chemical shifts between the assigned residues and random coil chemical shifts 

predict an all -helical protein with 8 helices (figure 5.2A).  Helical structures in primase 

CTD include Helix 1 Arg26-Lys36, Helix 2 Asp41-Glu50, Helix 3 Gln60-Glu75, Helix 4 

Ile81-Tyr87, Helix 5 Asn91-Gln102, Helix 6 Try110-Lys124, Helix 7 Ile129-Arg141, 

Helix 8 Glu146-Glu161. The C1 sub-domain of primase CTD includes Helix 1-6 and the 

C2 sub-domain includes Helix 7-8 (figure 5.3B). This is consistent with the S. aureus 

DnaG primase CTD homology modeling predicted from the Geobacillus 

stearothermophilus structure
4
 and the secondary structure prediction server NetSurfP 

(figure 5.2B).
40

   

Of particular interest are the residues between the predicted helices 6 and 7 

(residues K124-T128). This region is significantly different in G. stearothermophilus 

primase CTD compared to E. coli primase CTD solution structures (PDB 1Z8S and 

2HAJ, respectively).
7
   In G. stearothermophilus, this region is a loop forming two 

distinct sub-domains (C1, C2) of primase CTD.  In E. coli, the region is a long and rigid 

 helix.  For S. aureus, the experimental secondary structure 
13

C  and 
13

C  chemical 

shift differences suggest that region is similar to the G. stearothermophilus structure with 

an extend loop region starting at residue Gly125 (figure 5.2).  The 
13

C  and 
13

C  

chemical shifts for residues in this region are near random coil chemical shift values. 

 

 

 

 



170 

 

 

  

 

 

 

 

 
 



171 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Secondary structure prediction for S. aureus primase CTD based on 
13

C  and 
13

C  chemical shifts.  (A) secondary structures in S. aureus primase CTD are predicted based on 

differences in measured 
13

C  and 
13

C  chemical shifts compared to random coil chemical shift 

values. For ∆
13

C  positive regions represent  helical structure. For ∆
13

C negative values 

indicate helix.  The secondary structures are overlaid onto the results showing regions of  

helix.  (B) The predicted secondary structures in S. aureus primase CTD measured by 

NetSurfP.
40

  Positive regions are the probability of the sequence stretch adopting  helix 

secondary structure. Both experimental and predicted secondary structure analysis suggest a loop 

region between helix 6 and 7 starting at residue G125.  
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5.3.2 Structure calculation and analysis of primase C-terminal domain (CTD) from 

Staphylococcus aureus.  The solution structure of S. aureus primase CTD was calculated using 

1823 distance restraints, 280 dihedral restraints measured by TALOS
26

, 256 
13

Cα/
13

Cβ carbon 

chemical shift restraints and 82 
3
JNH  coupling constant restraints.  A complete list of the 

restraints used for the structure calculation is described in table 5.1.  A total of 1000 structures 

were calculated from 10 individual sets of 100 structures using XPLOR-NIH
30

 scripts described 

previously.
41

  The lowest energy structures from each set were consolidated to generate a set of 

20 low energy structures which were further refined in a water bath using the RECOORD 

scripts
37

 implemented with CNS.
42, 43

 

The resulting S. aureus primase CTD structures are consistent with the NMR data as 

evident by the relatively low rms deviations from experimental distance, dihedral, 
13

Cα/
13

Cβ 

chemical shift and 
3
J(HN-Hα) coupling constant constraints (figure 5.3A). Also there are no 

distance violations > 0.5 Å or dihedral angle violations > 5°. The average root-mean square 

deviation (RMSD) of the 20 lowest energy structures about the mean coordinate positions is 0.97 

± 0.16 Å for all backbone atoms and 1.73 ± 0.39 Å for all heavy atoms with  aligned residues 26-

35, 40-49, 60-75, 82-85, 92-100 and 112-124.  The final restrained minimized average structure 

of S. aureus primase CTD has an RMSD about the mean coordinate positions of 0.19 Å for all 

backbone atoms and 0.49 Å for all heavy atoms.  
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Table 5.1: Structural Statistics and Atomic rms Differencesa 

A. Structural Statistics 

 <SA>             (SA )r 

rms deviations from experimental distance restraints (Å) 

 all (1823) 0.046 ±  0.008 0.079 

 interresidue sequential (|i-j| = 1) (460) 0.038 ± 0.008             0.096 

 interresidue short range (1 <|i-j|  5) (446) 0.058 ± 0.010  0.074 

 interresidue long-range (|i-j| > 5) (140) 0.074±0.016                 0.180 

 intraresidue (663) 0.003±0.008                0.004 

 H-bonds (114)b 0.072±0.030                0.040 

rms deviation from exptl dihedral restraints (deg) (280)c,d 1.644±0.754                 0.611 

rms deviation from exptl C  restraints (ppm) (130) 1.12 ± 0.05                    1.08  

rms deviation from exptl C restraints (ppm) (126) 1.06 ± 0.02                    1.02 

rms deviation from 
3
JNH  restraints (Hz) (82) 0.83 ± 0.06                    1.02 

FNOE (kcal mol-1)d 212 ± 84.6                 602.59 

Ftor (kcal mol-1)d 36 ± 45                        6.36 

Frepel (kcal mol-1)e 65.63 ± 24                   26.38 

FL-J (kcal mol-1)f  -553.91 ± 29           -1212.10 

deviations from idealized covalent geometry 

 bonds (Å) (2684) 0.003±0.0                     0.002 

 angles (deg) (04795) 0.504 ± 0.045 0.035 

 impropers (deg) (1468)g 0.441±0.069                 0.344 

PROCHECKh 

 Overall G-Factor -0.13 ± 0.03                  -0.19 

 % Residues in most favorable region of Ramachandran plot 80.2 ± 3.1 85.5 

 H-bond energy 0.41 ± 0.41   0.45 

 Number of bad contacts/100 residues
 

25 ± 5.3
   

0.0
 

 

 

1
7
3
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B. Atomic rms Differences (Å) 

  C1 Domain (residues 26-124) secondary structurei    

 backbone atoms  all atoms  backbone atoms   all atoms  

<SA> vs SA   1.2 ± 0.1.7 2.00 ± 0.17 0.70 ± 0.44 2.4 ± 2.40   

<SA> vs (SA)r 1.37 ± 0.19 2.32 ± 0.25 0.58 ± 0.22 1.52 ± 0.6   

(SA)r vs SA   1.02 1.67 0.52 ± 0.33 1.21 ± 0.58  

1
7
4
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aThe notation of the structures is as follows: <SA> are the final 20 

simulated annealing structures and (SA )r is the restrained minimized mean 

structure obtained by restrained minimization of the mean structure SA  . 

The number of terms for the various restraints is given in parentheses.  

bFor backbone NH-CO hydrogen bond there are two restraints: rNH-O = 

1.5-2.3 Å and rN-O = 2.5 - 3.3 Å.  All hydrogen bonds involve slowly 

exchanging NH protons inferred from calculated structures and CLEANX 

fast-exchange experiment.
15

  cThe torsion angle restraints comprise 140  

and 140 .  dThe values of the square-well NOE (FNOE) and torsion angle 

(Ftor) potentials (cf. eqs 2 and 3 in 
44

) are calculated with force constants of 

50 kcal mol -1 Å-2 and 200 kcal mol-1 rad-2, respectively.  
e
The value of 

the quadratic van der Waals repulsion term (Frep) (cf. eq 5 in 
45

) is 

calculated with a force constant of 4 kcal mol -1 Å-4 with the hard-sphere 

van der Waals radius set to 0.8 times the standard values used in the 

CHARMM 
46

 empirical energy function. 
28, 46, 47

 fEL-J is the Lennard-

Jones-van der Waals energy calculated with the CHARMM empirical 

energy function and is not included in the target function for simulated 

annealing or restrained minimization.  gThe improper torsion restraints 

serve to maintain planarity and chirality.  hThese were calculated using the 

PROCHECK program. iThe residues in the regular secondary structure are: 

, 40-49( , 60-75( , 82-85( 4) 92-100( 5 , 112-124 ( 6 , 

128-143( 7  and 146-162( 8  rmsd values were measured by aligning each 

secondary structure element individually and calculating an average and 

standard deviation. 
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The quality of the S. aureus primase CTD NMR structure was analyzed using 

PROCHECK. The results for the average minimized structure (figure 5.3B) show that S. 

aureus primase CTD has an overall G-Factor of -0.13 ± 0.03 with no bad contacts, which 

are all consistent with a good quality structure. Also, all non-glycine dihedral angles lie 

within the expected region of the Ramachandran plot, where 85.5% of the backbone 

dihedral residues lie within the most favorable region with 100% of the residues falling in 

the allowed region.  The PROCHECK analysis of the average minimized structure was 

completed with the removal of the N-terminal his-tag. The consistency of the dihedral 

angles further illustrates the quality of the structure. The 20 lowest energy structures and 

the restrained-minimized average structure will be deposited into the PDB.
48

 

The S. aureus primase CTD structure is composed of 8 helices.   Helical 

structures in primase CTD include Helix 1 Arg26-Lys36, Helix 2 Asp41-Glu50, Helix 3 

Gln60-Glu75, Helix 4 Ile81-Tyr87, Helix 5 Asn91-Gln102, Helix 6 Try110-Lys124, 

Helix 7 Ile128-Arg141, Helix 8 Glu146-Glu161. The C1 sub-domain of primase CTD 

includes Helix 1-6 and the C2 sub-domain includes Helix 7-8 (figure 5.3B).  

Conformation of the loop region between the two sub-domains was established by the 

lack of sequential NH-NH NOEs in the 2D 
1
H-

15
N HSQC edited NOESY and the 

presence of exchange peaks for each residue (G125, Q126 and E127) in the CLEANX 

experiment.
15

  The results of the CLEANX experiment suggest these residues are 

undergoing exchange with the solvent and therefore not protected by hydrogen bonding; 

indicative of a loop structure. 
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Figure 5.3 Comparison of the ensemble overlay and average minimized structure.  

(A) An overlay of the backbone trace of the 20 low energy, water refined structures 

aligned with residues 26-35, 40-49, 60-75, 82-85, 92-100 and 112-124 from the N-

terminal C1 sub-domain.  (B) A ribbon diagram of the average water refined structure 20.   

The two sub-domains are labeled C1 and C2.  The C1 sub-domain is composed of helices 

1-6 and the C2 sub-domain is composed of helices 7-8.  Both structures are colored 

according to the secondary structure: red, α-helix; green, loop both images were 

generated with VMD.
49
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Figure 5.4. Ensemble overlay aligned to either sub-domain C1 or C2.  (A) An overlay 

of the backbone trace of the 20 low energy structures aligned with residues 26-35, 40-49, 

60-75, 82-85, 92-100 and 112-124 from the N-terminal C1 sub-domain.    (B) An overlay 

of the backbone trace of the 20 low energy structures aligned with residues 128-141 and 

146-161from the C-terminal C2 sub-domain. Both structures are colored according to the 

secondary structure: red, α-helix; green, loop both images were generated with VMD.
49
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The overall resolution of the protein structure was lower than what is generally 

possible with current NMR techniques. This lower resolution is an indication of the 

severe peak overlap in the NMR spectra, even at 900 MHz resolution.  Figure 5.5A is the 

resulting 2D 
1
H-

13
C HSQC slice of the aliphatic 3D 

13
C-edited NOESY experiment 

collected at the Rocky Mountain Regional 900 MHz NMR Facility.  The spectrum was 

folded to increase resolution with the blue peaks representing the proton-carbon peaks for 

the H -C , H -C , H -C , H -C side chain resonances.  The orange peaks correspond 

to the proton-carbon peaks for the H -C  backbone resonances (for absolute C  

chemical shift add 35.804 ppm to each 
13

C resonance).  As an example of the severe peak 

overlap, the resolved H -C  peaks in figure 5.5A only represent about half of the 163 

possible assignments. The remaining peaks are buried in the broad and significantly 

intense region between 4.5 ppm 
1
H and 15.0 ppm 

13
C.   

The severe peak overlap is also seen in the 2D 
1
H-

1
H slice of the aliphatic 3D 

13
C-

edited NOESY experiment (figure 5.5B). This is particularly problematic in the region 

1.0-2.0 
1
H and 1.0-2.0 

1
H corresponding to the H  and H  side chain resonances of 

lysine, leucine, isoleucine and H  of valine. These 4 amino acids compose nearly 25% of 

the total amino acid composition of S. aureus primase CTD.  

The severe peak overlap significantly complicated the complete side chain 

assignments with only 56% of H  assigned and 76% H  assigned.  The corresponding 

number of long range (>5) NOEs was lower than anticipated (only 140) for a protein of 

19.6 kDa; the main cause of the lower structure resolution.  Peak overlap was also caused 

by degenerate chemical shifts due to an all  helical protein and by broader peaks due to 

protein dynamics (see section 5.3.5)   
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Figure 5.5. 3D 
1
H-

13
C HSQC edited NOESY of S. aureus primase CTD at 900 MHz. (A) The 

2D 
1
H-

13
C plane of the 3D 

13
C-edited NOESY spectrum of S. aureus primase CTD shows 

significant peak overlap, specifically in the H -C  region (orange, note spectrum is folded add 

35.804 ppm to all orange peaks for absolute chemical shift).  A number of broad and intense 

peaks at 15.0 ppm 
13

C and ~4.5 ppm 
1
H show severe degeneracy in chemical shifts.  (B) The 2D 

1
H-

1
H plane of the 3D 

13
C-edited NOESY spectrum showing significant peak overlap in the H  

and H  regions (1.5 ppm 
1
H and 1.5 ppm 

1
H)     
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5.3.3 Comparison between the three bacterial DnaG primase CTD 

structures. In E. coli, the primase CTD is composed of 7 helices with a long helix 6 

connecting the C-terminus helix to the N-terminal bundle (figure 5.6 C).
7
  The G. 

stearothermophilus structure is composed of 8 helices with the long helix 6 of E. coli 

broken into two helices forming two sub-domains (C1, C2) (figure 5.6B).  A flexible loop 

region between helix 6 and 7 separates the two sub-domains in G. stearothermophilus.
4
  

The structure of S. aureus primase CTD is also composed of 8 helices with two sub-

domains (C1, C2) separated by a flexible loop region between helix 6 and 7 (figure 

5.6A).   Figure 5.6 shows a side-by-side comparison for all three bacterial primase CTD 

structures.  The residues found in the loop region between helix 6 and 7 are highlighted 

on figure 5.6. 

A pairwise Dali
50

 structure based alignment of the three primase CTD structures 

shows the S. aureus structure is similar to the G. stearothermophilus structure with a loop 

region separating the two sub-domains.  The Z-scores for the pairwise structure 

similarities of the three structures are S. aureus-G. stearothermophilus 8.0, S. aureus –E. 

coli 6.5 and G. stearothermophilus - E. coli 5.3.  The structure overlays are found in 

figure 5.7. Structure similarity between the three proteins is limited the N-terminal (C1) 

sub-domain. E. coli and G. stearothermophilus have the same overall fold with a 

backbone rmsd of 3.2 Å observed for the alignment of the first 6 helices that form an N-

terminal helical bundle (C1).
4, 7

 The same comparison for S. aureus to E. coli gives a 

backbone rmsd of 3.4 Å and the comparison between S. aureus and G. 

stearothermophilus gives a backbone rmsd of 2.8 Å.    
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Figure 5.6. Three bacterial primase CTD structures.  The three bacterial primase CTD 

structures are reported showing the two different sub-domains and the residue responsible 

for the flexible linker. (A) Solution structure of S. aureus primase CTD, (B) solution 

structure of G. stearothermophilus primase CTD, and (C) solution structure of E. coli 

primase CTD.  In both A and B, the two sub-domains are separated by a loop region 

linker.  In E. coli, the loop region forms a ridged, continuous helix with a methionine 

residue in the structurally similar site to S. aureus and G. stearothermophilus.     

  



185 

 

 

  

 

 

 

 
Figure 5.7.  Structure similarities between the three primase CTD structures.  (A). 

Comparison between S. aureus (blue) and G. sterarothermophilus (green) primase CTD 

gave a Z-score of 8.0and sequence identity of 20%. (B) Comparison between S. aureus 

(blue) and E. coli (red) primase CTD gave a Z-score of 6.5 and a sequence identity of 

10%. (C) Comparison between G. sterarothermophilus (green) and E. coli (red) primase 

CTD gave a Z-score of 5.3 and sequence identity of 14%.  (D) Multiple structure 

alignment of all three structures shows the conservation in the N-terminal bundle. The E. 

coli structure has an extend helix 6, which is broken into two helices in the two 

Firmicutes structures. The long helix 6 of E. coli is highlighted to show the primary 

difference in the structures. 
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As described previously, the only known structure similarity for the two 

previously solved primase CTD structures is the N-terminus of the replicateive 

helicases.
4, 7

 The S. aureus primase CTD structure is also similar to the N-terminal 

domain of the replicative helicases. As with E. coli and G. stearothermophilus, the 

similarity is limited to the N-terminal helical bundle (C1).  A comparison of S. aureus 

primase CTD with the Dali
51, 52

 database identified the N-terminal domain of the G. 

stearothermophilus helicase as having the highest similarity (Z-score of 8.4) to S. aureus 

primase CTD. The remaining significant hits included the 3 previously solved primase 

CTD structures (1Z8S, 1T3W, and 2HAJ) from G. stearothermophilus and E. coli 

respectively. Additionally, the N-terminal domains of DnaB helicase from E. coli (1B79), 

H. pylori (3GXV) T. aquaticus (2Q6T) and Bacillus phage spp1 (3BGW)  were identified 

as structurally similar to S. aureus primase CTD. 

5.3.4 Phylum dependency of the helix 6 structure. Similar to G. 

stearothermophilus, the S. aureus primase CTD structure also has a loop between helix 6 

and 7. Examining the 3 non-redundant structures currently solved for the C-terminal 

domain of primase suggests a phylum dependency on the helix 6 loop structure. The 

difference in this helix is the primary reason the two Firmicutes structures are more 

similar to each other than to the Proteobacteria primase CTD structure. In G. 

stearothermophilus, the loop between helix 6 and 7 is composed of the amino acids 

Asn554, Arg555, and Pro556.  Conversely, in the S. aureus structure, the loop is 

composed of the amino acids Gly125, Gln126, and Glu127.  A multiple sequence 

alignment suggests the helix breaking proline appears to be limited to bacillus 

organisms.
7
  Correspondingly, the glycine that forms the loop region between helix 6 and 
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7 in S. aureus appears to be limited to other Staphylococcus organisms. Thus, the loop 

that forms the C1 and C2 sub-domains in the G. stearothermophilus and S. aureus 

primase CTD structures appears to be phylum dependent and the sequence appears to be 

species dependent.   

To follow this hypothesis further, the secondary structure of primase CTD for 6 

different organisms was completed using NetSurfP.
40

  The NetSurfP
40

 accurately 

predicted the secondary structure for S. aureus primase CTD (figure 5.2B), supporting its 

reliable for accurately predicting secondary structures. In all three Firmicutes sequences 

(G. stearothermophilus, S. aureus and B. anthracis), a loop is predicted between helix 6 

and 7 that forms two independent sub-domains (figure 5.8).  Interestingly, the residues 

that form the loop are not highly conserved (figure 5.9).  In all three Proteobacteria 

sequences (E. coli, Y. pestis and P. aeruginosa), the loop is not present and a long ridged 

helix 6 remains (figure 5.8). Again, the residues that make up the ridged portion of helix 

6 and are structurally aligned with the loop region in the Firmicutes are not highly 

conserved (figure 5.10).  My hypothesis is that primase CTD regulates binding to 

helicase in a phylum dependent manner based on structure. Secondly, primase CTD 

binding to DnaB helicase is sequentially regulated in a species-specific manner.   

The helicase interaction with the CTD of primase is essential for primer synthesis 

during DNA replication.
2, 53, 54

 It has been previously shown that S. aureus helicase will 

only stimulate primer synthesis when incubated with the cognate primase
6
 suggesting a 

species-specific interaction. The observed difference in Firmicutes and Proteobacteria 

primase CTD structures reported here could explain the observed species-specific results 

of primer synthesis.   
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Figure 5.8 Secondary structure prediction of 6 primase CTD sequences. The 

secondary structures for 6 primase CTD domains were predicted using NetSurfP.
40

  The 

probability index ranges from 0-1 with 0 indicating a loop and 1 indicating a helix. Three 

Firmicutes sequences (S. aureus Sau, G. stearothermophilus Gst, and B. anthracis Ban) 

all predict 8 helices with a loop region between helix 6 and 7 based on lower probablilty 

indices forming two sub-domains (C1 and C2).  Three Proteobacteria sequences (E. coli 

Eco, P. aeruginosa Pae and Y. pestis Ype) all show 7 helices with a ridged helix 6. The 

Sau, Eco and Gst structures have all been solved confirming secondary structure 

prediction.   
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Ban             -------PKLTGFERAEREIIYHMLQSPEVAVRMESHIED--FHTEEHKGILYELYAYYE 51 

Gst             -------KLLPAFQNAERLLLAHMMRSRDVALVVQERIGGR-FNIEEHRALAAYIYAFYE 52 

Sau             PIGMAQFDNLSRQEKAERAFLKHLMRDKDTFLNYYESVDKDNFTNQHFKYVFEVLHDFYA 60 

                         *.  :.*** :: *:::. :. :   . :    *  :..: :   :: :*  

 

Ban             KGNEPSVGTFLSWLSDEKLKNIITDISTDEFINPEYTEEVLQSHLETLRRHQEKLEKMEI 111 

Gst             EGHEADPGALISRIPG-ELQPLASDVSLLLIADDVSEQELEDYIRHVLNRPKWLMLKVKE 111 

Sau             ENDQYNISDAVQYVNSNELRETLISLEQYNLNDEPYENEIDDYVNVINEKGQETIESLN- 119 

                :..: . .  :. : . :*:    .:.   : :    :*: :      .: :  : .::  

 

Ban             IFKIKQMEKTDPVEAAKYYVAYLQNQKARK-- 141 

Gst             QEKTEAERRKDFLTAARIAKEMIEMKKMLSSS 143 

Sau             -HKLREATRIGDVELQKYYLQQIVAKNKERM- 149 

                  * .   : . :   :     :  ::      

 

 

Figure 5.9. Multiple sequence alignment of 3 Firmicutes primase CTD sequences.  A multiple sequence alignment was completed 

using ClustlW for 3 Firmicutes sequences (Ban, B. anthracis, Gst, G. stearothermophilus, Sau, S. aureus).  The residue found in the 

loop region predicted by NetSurfP is highlighted yellow.  In all 3 sequences a loop is predicted between helix 6 and 7.  However, the 

amino acid that forms the loop is not conserved.  This suggests a structural and sequence method to regulate primer synthesis through 

interaction of DnaB helicase. 
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Eco             QLKRTTMRILIGLLVQNPELATLVPPLENLDENKLPGLGLFRELVNTCLSQPGLTTGQLL 60 

Ype             QLKRTTMRILIGLLVQNPQLATLIPSLQGLEQAKLAGLPLFIELVETCLAQPGLTTGQLL 60 

Pae             SVESTTLNALR-TLLHHPQLALKVDDAGTLAREQDTYAQLLVSLLEALQKNPRQSSMQLI 59 

                .:: **:. *   *:::*:**  :     * . : .   *: .*:::   :*  :: **: 

 

Eco             EHYRGTNNAATLEKLSMWDDIADKNIAEQTFTDSLNHMFDS-LLELRQEEL--IARERTH 117 

Ype             ELYRDNKFSQQLETLATWNHMIVEDMVEPTFVDTLASLYDS-ILEQRQETL--IARDRTH 117 

Pae             ARWHGTPQGRLLQALGEKEWLIVQENLEKQFFDTITKLSESQRFGEREERLRSVMQKSYS 119 

                  ::..  .  *: *.  : :  ::  *  * *::  : :*  :  *:* *  : :.    

 

Eco             GLSNEERLELWTLNQELAKK---- 137 

Ype             GLNAEERKELWSLNLALARKK--- 138 

Pae             ELTDEEKALLREHYSVAASSPSQS 143 

                 *. **:  *       * .   

 

Figure 5.10. Multiple sequence alignment of 3 Proteobacteria primase CTD sequences.  A multiple sequence alignment was 

completed using ClustlW for 3 Proteobacteria sequences (Eco, E. coli, Ype, Y. pestis, Pae, P. aeruginosa).  The residues found in 

helix 6 that correspond to the residues of the loop region predicted by NetSurfP
40

 are highlighted yellow.  In all 3 sequences helix 6 is 

predicted to be ridged.  However, the amino acids that form the helix are not highly conserved.  This suggests a structural and 

sequence method to regulate primer synthesis through interaction of DnaB helicase. 
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5.3.5 Dynamics of the primase C-terminal domain from S. aureus.  The 

flexibility of the C2 sub-domain in the G. stearothermophilus structure is thought to play 

an important role in the structural differences with the E. coli structure.  To determine if 

the same flexibility is seen in the S. aureus structure, the dynamics of the protein was 

measured using NMR relaxation parameters T1, T2 and the relative ratio of NOE 

enhancement.   All T1, T2 and NOE values were measured on a per residue basis by eq 

5.1 and 5.2 respectively and imported into the program FASTModel Free
20

 to measure 

the Lapri-Szabo order parameters
19

 (figure 5.11 D), which show relative local motions in 

the structure compared to the complete structure.   

Generally, S
2
 values are near 1.0 for well folded and ridged structures with S

2
 

values below 0.8 indicative of local motion within a structure.  For S. aureus primase 

CTD, the overall model free analysis was very noisy with an average S
2
 of 0.83 ± 0.13 

for all residues except the his-tag.  The large amount of noise in the S
2
 data makes 

identifying significant local motions within the structure challenging based on order 

parameters alone.  The C1 sub-domain (residues 21-124) order-parameters were nosier 

than the C2 domain (residues 128-163) suggesting more flexibility within the C1 sub-

domain.  The increased flexibility apparently played a significant role in the lower 

resolution of the S. aureus primase CTD structure due to exchange broadening and a lack 

of NOE build up, reducing the total number of long range NOEs.  

The raw relaxation data provides further support regarding the overall dynamics 

of the structure.  The average T1 relaxation rate excluding the flexible his-tag residues 

was 657.7 ± 115.5 ms (figure 5.11A) and the average T2 relaxation rate was 64.2 ±17.8 

ms (Figure 5.8B).   The large standard deviations of the relaxation measurements appear 
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to be caused by a difference in relaxation rates between the two sub-domains of the 

protein.  Individually each sub-domain has an average T1 of 716 ± 93.5 ms for C1 and 

545.2 ± 53.4 ms for C2.  The average T2 for each sub-domain was 55.5 ±7.3 ms for C1 

and 78.0 ±12.6 ms for C2.  Residue 146 was excluded in these measurements because of 

the increased local motion of the residues in the loop region between helix 7 and 8.   

The difference in the average relaxation times for the two sub-domains and the 

overall noise associated with the T1 data suggest the structure is undergoing significant 

motions.   Each sub-domain of the primase CTD is stable and structured as indicated by 

the average relative ratios of peak intensities between a NOE enhanced and non-enhanced 

spectra (figure 5.11C).  For the C1 sub-domain the average ratio excluding loop regions 

was 0.96 ±0.13 and the C2 sub-domain was 0.95 ±0.17.   

The loop region between helix 6 and 7 (specifically G125) appears to be a pivot 

point for a change in average relaxation rates. The change in relaxation rates, the lack of 

distance restraints and the in ability to simultaneously overlay the two sub-domains 

suggest the two sub-domains act independently of each other on a larger time scale than 

the model free analysis.  The residues of sub-domain C1 fit model 3, which includes both 

S
2
 , a generalized order parameter that reflects the amplitude of internal motions and Rex, 

which accounts for chemical exchange in T2 measurements.  Proteins that fit model three 

generally have internal motions on the ms timescale. The observation that sub-domain C1 

has a significant Rex contribution accounts for the noise in the S
2
 plot (figure 5.11D) and 

the reduced resolution of the structure.  Rex contributions are plotted in figure 5.12.  The 

residues of domain C2 generally fit model 1, which only contributes S
2
 order parameter.   
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 If the two sub-domains exhibit independent motion relative to each other, this 

would result in a separate total correlation times for each sub-domain and contribute to 

the overall noise observed in the model free analysis.  The measured correlation time ( m) 

from the NMR relaxation data for the full protein is 9.8 ns. This is slightly larger than the 

predicted 8.2 ns based on molecular weight of 19.6 kDa where m ≈ MW/24000.
55

  The 

predicted correlation time for the protein based on HYDRONMR
56, 57

 is 15.8 ns.  

HYDRONMR uses the structure of the protein to back calculate the relaxation parameters 

and predict a correlation time.  The predicted correlation time is much larger than 

predicted based on molecular weight.  As described in chapter 2, the molecular weight 

approximation is for spherical, globular proteins.   Having both measured and predicted 

correlation times larger than the approximation value further suggest internal motion 

between the two sub-domains (C1, C2).  Each sub-domain has a predicted correlation 

time using HYDRONMR
56, 57

 of 10.0 ns for C1 and 3.9 ns for C2.  Both predictions are 

longer than the predicted correlation times based on the molecular weight approximation, 

5.5 ns and 1.9 ns for C1 and C2 respectively. 

The dynamic nature of the primase CTD structure could play a role in helicase 

binding.  It was shown the loop region of G. stearothermophilus becomes more extended 

upon binding DnaB helicase N-terminal domain.
9
  This could also be true for S. aureus 

primase CTD, but further analysis will be needed to confirm this hypothesis.  The 

difference in dynamics between bound and free G. stearothermophilus coupled with the 

phylum specific dependency on the loop region further suggest the primase C-terminal 

domain is involved in species-specific regulation of DNA replication.  
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Figure 5.11. Dynamics of S. aureus primase CTD.  The NMR relaxation parameters T1 (A) 

and T2 (B), NOE enhancements (C) and S
2
 order parameters (D) are plotted per residue. The 

graphs show the relative flexibility between the two sub-domains of S. aureus primase CTD. The 

C2 sub-domain (residues 129-163) has different relaxation rates relative to the N-terminal bundle 

suggesting dynamic motion between the two sub-domains on a longer time scale than standard 

Lapri-Szabo Modelfree
19

 measurements ( > ps-ns).   
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Figure 5.12. Contribution of Rex to dynamics of S. aureus primase CTD.  The Rex term in 

model free analysis contributes to chemical exchange due to ms timescale motions of the protein.  

The majority of the C1 sub-domain has a large value for Rex indicating large degree of flexibility.  

This increase in chemical exchange caused an increase in overall linewidth leading to large peak 

overlap, which can account for the lower resolution of the structure.   
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 5.3.6 Identification of binding ligands to S. aureus primase CTD.  A high-

throughput NMR ligand affinity screen of the S. aureus primase CTD was completed to 

identify potential inhibitors of the DnaG - DnaB interaction.  A total of 12 compounds 

(table 5.2) were shown to bind S. aureus primase CTD using the 1D 
1
H NMR screening 

methods described in this dissertation (see chapters 3 & 4).  Two of the ligands, 

acycloguanosine and mitoxantrone dihydrochloride were previously identified as 

inhibitors of the DnaG - DnaB interaction in herpes simplex virus.
58, 59

  Additionally, the 

compound myricetin was shown to inhibit the bacterial helicases with an IC50 of 10 M.
60

 

These three compounds were further analyzed for their binding with primase CTD from 

S. aureus.   

A 2D 
1
H-

15
N HSQC spectrum was collected for ligand free primase CTD and a 

bound primase CTD-ligand complex for acycloguanosine, mitoxantrone, and myricetin 

(figure 5.13). The buffer used for the ligand affinity screen was different from the 

structural work, but did not significantly change the 2D 
1
H-

15
N HSQC spectrum depicted 

in Figure 5.9A.   All three compounds showed primase CTD binding based on chemical 

shift perturbations in the 2D 
1
H-

15
N HSQC spectrum with the addition of the compounds. 

Acycloguanosine showed the most promising specific interaction based on the magnitude 

and clustering of chemical shift changes (figure 5.13C). Conversely, myricetin showed a 

mix of specific and non-specific interactions (figure 5.13B) and mitoxantrone 

dihydrochloride induced the formation of large molecular weight aggregates (figure 

5.13D). 
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Table 5.2 Ligands identified to bind S. aureus primase CTD from a high-throughput 

NMR ligand  affinity screen.   

 

Binding ligand 

(±)-a-Lipoamide 

L-Histidine (His) 

Acycloguanosine 

Sodium DL-lactate    

3-Aminopropionitrile fumarate salt 

Sodium creatine phosphate dibasic tetrahydrate 

mitoxantrone dihydrochloride 

Chelerythrine chloride 

5,5-Diphenylhydantoin 

 1-Methylimidazole 

Didecyldimethylammonium bromide 

(±)-Propranolol hydrochloride 

Myricetin 
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Figure 5.13. 2D 

1
H-

15
N HSQC ligand affinity screen for S. aureus primase CTD inhibitors.  

Ligands identified from the 1D 
1
H NMR line-broadening screen were added to a 100 M 

solution of primase CTD to a final concentration of 500 M (black free primase CTD, blue 

bound primase CTD).  The screening buffer had no effect on the structure or the 2D 
1
H-

15
N 

HSQC spectrum (A).  Myricetin showed a mix of specific and non-specific binding to primase 

CTD indicated by a decrease in peak intensity (B). Acycloguanosine bound specifically to 

primase CTD (C). Residues corresponding to the acycloguanosine binding site are boxed and 

labeled. Mitoxantrone dihydrochloride induced large MW aggregates upon binding to primase 

CTD as indicated by a complete loss of primase CTD signal (D).     
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The residues in primase CTD showing the largest change upon addition of 

myricetin (figure 5.13B) were GLY 16, ASP 17, ASP 19, ASP 20, PHE 21, and LEU 24.  

The corresponding HSQC peaks show a decrease in signal intensity upon binding 

myricetin, which suggests an exchange broadened non-specific interaction.  These 

residues are primarily found in the his-tag and the extreme N-terminus of the primase 

CTD structure. In addition to the decrease in intensity of the N-terminus, residues S51, 

D53, D55, and F57 also showed a significant change in chemical shift as calculated by 

the weighting equation (eq 5.1 see chapter 3 for discussion). 

                                                                       [5.3] 

The change in chemical shift upon addition of myricetin to primase CTD suggests 

a specific interaction between the protein and the ligand.  If the ligand specifically binds 

to residues 51, 53, 55, and 57, the non-specific binding of the his-tag can be explained by 

a transient effect due to the mobility of the his-tag residues and the proximity of the 

ligand bound to helix 51, 53, 55 and 57. 

 Acycloguanosine was shown to specifically and significantly interact with 

primase CTD residues R32, V52, D53, F72, V85, N106, E113, N122, G125, I142, G143, 

Q154, V156, E161, R161 and M163. These residues exhibited chemical shift changes 

above 1 standard deviation from the average of all residues (figure 5.13C).  Importantly, 

no decrease in peak intensity was observed, implying a specific interaction.    

 Mitoxantrone dihydrochloride induced the formation of large molecular weight 

aggregates upon addition to primase CTD.  This is apparent from the complete 

disappearance of NMR signals in the primase CTD 2D 
1
H-

15
N HSQC spectrum, 

presumably caused by molecular-weight induced peak broadening (figure 5.13D).   
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5.3.7 Comparison between primase CTD ligand binding site and helicase 

binding site.  The chemical shift differences between free and acycloguanosine bound 

primase CTD were mapped to the surface of the average water refined structure (figure 

5.14A).  The largest chemical shift differences were found on the last two helices of the 

structure.  This region has been shown to be required for primase CTD binding to the N-

terminal domain of the helicase in E. coli and G. steraothermophilus.
3, 9, 53, 61

  As shown 

by Bailey et. al, 
9
 both the C1 and C2 sub-domains of primase CTD interact with the N-

terminus of helicase.  Specifically, the binding of the C2 sub-domain to the N-terminal 

domain of DnaB helicase is essential for binding the helicase and stimulating primer 

synthesis, while interaction of the C1 sub-domain with helicase is essential for correct 

primer synthesis.   

Using inference through homology, the binding sites from the G. 

stearothermophilus structure with helicase were color coded onto the S. aureus primase 

CTD structure (figure 5.14B).   The residues that undergo the largest chemical shift 

change upon addition of acycloguanosine are in the same region of the helicase binding 

sub-domain (C2).  There are differences between the two binding sites.  Particularly, the 

acycloguanosine site appears to be on the opposite face of the C2 sub-domain relative to 

the helicase binding sites.  However, the S. aureus helicase binding site was only 

identified by inference through homology with G. stearothermophilus.  The exact binding 

site for S. aureus may be different enough to encompass the acycloguanosine binding 

site.  This point highlights the challenges of targeting a large protein-protein interaction 

sites for drug development.   
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Conformation of the acycloguanosine binding site and inhibitory activity can be 

achieved through activity assays showing a decrease in primer synthesis, comparative 

dynamic studies between free and bound primase CTD in complex with helicase, and the 

full structure determination of the ligand bound primase CTD structure.  These studies 

are beyond the scope of this work.  However, identifying a ligand that appears to bind the 

C2 sub-domain of S. aureus primase CTD suggests a potential mechanism of inhibiting 

primer-induced helicase activity. Acycloguanosine may be a viable lead compound for a 

structure-based drug discovery since it may target the essential primase CTD C2 sub-

domain mediated DnaG-DnaB interaction. Pending the conformation studies, the results 

described in this chapter suggest the identification of a new antibiotic drug target; the 

interaction between primase CTD and helicase N-terminal domain.       
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Figure 5.14. Comparison between ligand binding and helicase binding sites.   (A) 

The residues that illustrate the largest chemical shift difference upon addition of 

acycloguanosine are colored blue on the S. aureus primase CTD NMR solution structure.  

(B) The residues that interact with the N-terminal domain of DnaB helicase are colored 

based on sub-domain interaction (red C2, blue C1).  The helicase interactions are based 

on homology transfer between the G. stearothermophilus primase CTD structure 

interacting with the N-terminal domain of G. stearothermophilus DnaB helicase.
9
   



204 

 

 

  

5.4 REFERENCES  

1. Frick, D. N.; Richardson, C. C., DNA primases. Annu Rev Biochem 2001, 70, 39-

80. 

2. Tougu, K.; Marians, K. J., The interaction between helicase and primase sets the 

replication fork clock. J Biol Chem 1996, 271, (35), 21398-405. 

3. Bird, L. E.; Pan, H.; Soultanas, P.; Wigley, D. B., Mapping Protein-Protein 

Interactions within a Stable Complex of DNA Primase and DnaB Helicase from 

Bacillus stearothermophilusâ€ Biochemistry 1999, 39, (1), 171-182. 

4. Syson, K.; Thirlway, J.; Hounslow, A. M.; Soultanas, P.; Waltho, J. P., Solution 

structure of the helicase-interaction domain of the primase DnaG: a model for 

helicase activation. Structure 2005, 13, (4), 609-16. 

5. Pan, H.; Wigley, D. B., Structure of the zinc-binding domain of Bacillus 

stearothermophilus DNA primase. Structure 2000, 8, (3), 231-9. 

6. Koepsell, S. A.; Larson, M. A.; Griep, M. A.; Hinrichs, S. H., Staphylococcus 

aureus helicase but not Escherichia coli helicase stimulates S. aureus primase 

activity and maintains initiation specificity. J Bacteriol 2006, 188, (13), 4673-80. 

7. Su, X. C.; Schaeffer, P. M.; Loscha, K. V.; Gan, P. H.; Dixon, N. E.; Otting, G., 

Monomeric solution structure of the helicase-binding domain of Escherichia coli 

DnaG primase. Febs J 2006, 273, (21), 4997-5009. 

8. Oakley, A. J.; Loscha, K. V.; Schaeffer, P. M.; Liepinsh, E.; Pintacuda, G.; Wilce, 

M. C.; Otting, G.; Dixon, N. E., Crystal and solution structures of the helicase-

binding domain of Escherichia coli primase. J Biol Chem 2005, 280, (12), 11495-

504. 



205 

 

 

  

9. Bailey, S.; Eliason, W. K.; Steitz, T. A., Structure of hexameric DnaB helicase 

and its complex with a domain of DnaG primase. Science 2007, 318, (5849), 459-

63. 

10. Costantini, S.; Colonna, G.; Facchiano, A. M., Amino acid propensities for 

secondary structures are influenced by the protein structural class. Biochem 

Biophys Res Commun 2006, 342, (2), 441-51. 

11. Chou, P. Y.; Fasman, G. D., Prediction of protein conformation. Biochemistry 

1974, 13, (2), 222-45. 

12. Larson, E., Community factors in the development of antibiotic resistance. Annu 

Rev Public Health 2007, 28, 435-47. 

13. Mercier, K. A.; Germer, K.; Powers, R., Design and Characterization of a 

Functional Library for NMR Screening against Novel Protein Targets. 

Combinatorial Chemistry and High Throughput Screening 2006, 9, (7), 515-534. 

14. Sattler, M.; Schleucher, J.; Griesinger, C., Heteronuclear multidimensional NMR 

experiments for the structure determination of proteins in solution employing 

pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, (2), 93-158. 

15. Hwang, T.-L.; Mori, H.; Shaka, A.; van Zijl, P., Application of Phase-Modulated 

CLEAN Chemical EXchange Spectroscopy (CLEANEX-PM) to Detect 

Waterâˆ‟Protein Proton Exchange and Intermolecular NOEs. 1997, 119, (26), 

6203-6204. 

16. Farrow, N. A.; Muhandiram, R.; Singer, A. U.; Pascal, S. M.; Kay, C. M.; Gish, 

G.; Shoelson, S. E.; Pawson, T.; Forman-Kay, J. D.; Kay, L. E., Backbone 



206 

 

 

  

dynamics of a free and phosphopeptide-complexed Src homology 2 domain 

studied by 15N NMR relaxation. Biochemistry 1994, 33, (19), 5984-6003. 

17. Kay, L. E.; Torchia, D. A.; Bax, A., Backbone dynamics of proteins as studied by 

15N inverse detected heteronuclear NMR spectroscopy: application to 

staphylococcal nuclease. Biochemistry 1989, 28, (23), 8972-9. 

18. Mandel, A. M.; Akke, M.; Palmer, A. G., 3rd, Backbone dynamics of Escherichia 

coli ribonuclease HI: correlations with structure and function in an active enzyme. 

J Mol Biol 1995, 246, (1), 144-63. 

19. Lipari, G.; Szabo, A., Model-free approach to the interpretation of nuclear 

magnetic resonance relaxation in macromolecules. 1. Theory and range of 

validity. 1982, 104, (17), 4546-4559. 

20. Cole, R.; Loria, J. P., FAST-Modelfree: a program for rapid automated analysis of 

solution NMR spin-relaxation data. J Biomol NMR 2003, 26, (3), 203-13. 

21. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A., NMRPipe: 

a multidimensional spectral processing system based on UNIX pipes. J Biomol 

NMR 1995, 6, (3), 277-93. 

22. Garrett, D. S.; Powers, R.; Groenenborn, A. M.; Clore, G. M., A common sense 

approach to peak picking in two-, three-, and four-dimensional spectra using 

automatic computer analysis of contour diagrams. Journal of Magnetic Resonance 

(1969-1992) 1991, 95, (1), 214-20. 

23. Fogh, R.; Ionides, J.; Ulrich, E.; Boucher, W.; Vranken, W.; Linge, J. P.; Habeck, 

M.; Rieping, W.; Bhat, T. N.; Westbrook, J.; Henrick, K.; Gilliland, G.; Berman, 

H.; Thornton, J.; Nilges, M.; Markley, J.; Laue, E., The CCPN project: an interim 



207 

 

 

  

report on a data model for the NMR community. Nat Struct Biol 2002, 9, (6), 416-

8. 

24. Mercier, K. A.; Baran, M.; Ramanathan, V.; Revesz, P.; Xiao, R.; Montelione, G. 

T.; Powers, R., FAST-NMR: functional annotation screening technology using 

NMR spectroscopy. J Am Chem Soc 2006, 128, (47), 15292-9. 

25. Huang, Y. J.; Tejero, R.; Powers, R.; Montelione, G. T., A topology-constrained 

distance network algorithm for protein structure determination from NOESY data. 

Proteins 2006, 62, (3), 587-603. 

26. Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A., TALOS+: a hybrid method for 

predicting protein backbone torsion angles from NMR chemical shifts. J Biomol 

NMR 2009, 44, (4), 213-23. 

27. Vuister, G. W.; Wang, A. C.; Bax, A., Measurement of three-bond nitrogen-

carbon J couplings in proteins uniformly enriched in nitrogen-15 and carbon-13. J 

Am Chem Soc 1993, 115, (12), 5334-5335. 

28. Nilges, M.; Clore, G. M.; Gronenborn, A. M., Determination of three-dimensional 

structures of proteins from interproton distance data by hybrid distance geometry-

dynamical simulated annealing calculations. FEBS Lett 1988, 229, (2), 317-24. 

29. Clore, G. M.; Appella, E.; Yamada, M.; Matsushima, K.; Gronenborn, A. M., 

Three-dimensional structure of interleukin 8 in solution. Biochemistry 1990, 29, 

(7), 1689-96. 

30. Schwieters, C. D.; Kuszewski, J. J.; Tjandra, N.; Clore, G. M., The Xplor-NIH 

NMR molecular structure determination package. J Magn Reson 2003, 160, (1), 

65-73. 



208 

 

 

  

31. Garrett, D. S.; Kuszewski, J.; Hancock, T. J.; Lodi, P. J.; Vuister, G. W.; 

Gronenborn, A. M.; Clore, G. M., The impact of direct refinement against three-

bond HN-C alpha H coupling constants on protein structure determination by 

NMR. J Magn Reson B 1994, 104, (1), 99-103. 

32. Kuszewski, J.; Qin, J.; Gronenborn, A. M.; Clore, G. M., The impact of direct 

refinement against 13C alpha and 13C beta chemical shifts on protein structure 

determination by NMR. J Magn Reson B 1995, 106, (1), 92-6. 

33. Kuszewski, J.; Gronenborn, A. M.; Clore, G. M., Improving the quality of NMR 

and crystallographic protein structures by means of a conformational database 

potential derived from structure databases. Protein Sci 1996, 5, (6), 1067-80. 

34. Kuszewski, J.; Gronenborn, A. M.; Clore, G. M., Improvements and extensions in 

the conformational database potential for the refinement of NMR and X-ray 

structures of proteins and nucleic acids. J Magn Reson 1997, 125, (1), 171-7. 

35. Kuszewski, J.; Clore, G. M., Sources of and solutions to problems in the 

refinement of protein NMR structures against torsion angle potentials of mean 

force. J Magn Reson 2000, 146, (2), 249-54. 

36. Linge, J. P.; Nilges, M., Influence of non-bonded parameters on the quality of 

NMR structures: a new force field for NMR structure calculation. J Biomol NMR 

1999, 13, (1), 51-9. 

37. Nederveen, A. J.; Doreleijers, J. F.; Vranken, W.; Miller, Z.; Spronk, C. A.; 

Nabuurs, S. B.; Guntert, P.; Livny, M.; Markley, J. L.; Nilges, M.; Ulrich, E. L.; 

Kaptein, R.; Bonvin, A. M., RECOORD: a recalculated coordinate database of 



209 

 

 

  

500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 

2005, 59, (4), 662-72. 

38. Powers, R.; Mirkovic, N.; Goldsmith-Fischman, S.; Acton, T. B.; Chiang, Y.; 

Huang, Y. J.; Ma, L.; Rajan, P. K.; Cort, J. R.; Kennedy, M. A.; Liu, J.; Rost, B.; 

Honig, B.; Murray, D.; Montelione, G. T., Solution structure of Archaeglobus 

fulgidis peptidyl-tRNA hydrolase (Pth2) provides evidence for an extensive 

conserved family of Pth2 enzymes in archea, bacteria, and eukaryotes. Protein Sci 

2005, 14, (11), 2849-61. 

39. Markley, J. L.; Ulrich, E. L.; Berman, H. M.; Henrick, K.; Nakamura, H.; Akutsu, 

H., BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank 

(wwPDB): new policies affecting biomolecular NMR depositions. J Biomol NMR 

2008, 40, (3), 153-5. 

40. Petersen, B.; Petersen, T. N.; Andersen, P.; Nielsen, M.; Lundegaard, C., A 

generic method for assignment of reliability scores applied to solvent accessibility 

predictions. BMC Struct Biol 2009, 9, 51. 

41. Halouska, S.; Zhou, Y.; Becker, D. F.; Powers, R., Solution structure of the 

Pseudomonas putida protein PpPutA45 and its DNA complex. Proteins 2009, 75, 

(1), 12-27. 

42. Brunger, A. T., Version 1.2 of the Crystallography and NMR system. Nat Protoc 

2007, 2, (11), 2728-33. 

43. Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-

Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. 

J.; Rice, L. M.; Simonson, T.; Warren, G. L., Crystallography & NMR system: A 



210 

 

 

  

new software suite for macromolecular structure determination. Acta Crystallogr 

D Biol Crystallogr 1998, 54, (Pt 5), 905-21. 

44. Clore, G. M.; Nilges, M.; Sukumaran, D. K.; Bruenger, A. T.; Karplus, M.; 

Gronenborn, A. M., The three-dimensional structure of a1-purothionin in 

solution: combined use of nuclear magnetic resonance, distance geometry and 

restrained molecular dynamics. EMBO Journal 1986, 5, (10), 2729-35. 

45. Nilges, M.; Gronenborn, A. M.; Bruenger, A. T.; Clore, G. M., Determination of 

three-dimensional structures of proteins by simulated annealing with interproton 

distance restraints. Application to crambin, potato carboxypeptidase inhibitor and 

barley serine proteinase inhibitor 2. Protein Engineering 1988, 2, (1), 27-38. 

46. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; 

Karplus, M., CHARMM:  a program for macromolecular energy, minimization, 

and dynamics calculations. J. Comput. Chem 1983, 4, (2), 187-217. 

47. Nilges, M.; Gronenborn, A. M.; Brunger, A. T.; Clore, G. M., Determination of 

three-dimensional structures of proteins by simulated annealing with interproton 

distance restraints. Application to crambin, potato carboxypeptidase inhibitor and 

barley serine proteinase inhibitor 2. Protein Eng 1988, 2, (1), 27-38. 

48. Deshpande, N.; Addess, K. J.; Bluhm, W. F.; Merino-Ott, J. C.; Townsend-

Merino, W.; Zhang, Q.; Knezevich, C.; Xie, L.; Chen, L.; Feng, Z.; Green, R. K.; 

Flippen-Anderson, J. L.; Westbrook, J.; Berman, H. M.; Bourne, P. E., The RCSB 

Protein Data Bank: a redesigned query system and relational database based on 

the mmCIF schema. Nucleic Acids Res 2005, 33, (Database issue), D233-7. 



211 

 

 

  

49. Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics. J Mol 

Graph 1996, 14, (1), 33-8, 27-8. 

50. Holm, L.; Park, J., DaliLite workbench for protein structure comparison. 

Bioinformatics 2000, 16, (6), 566-7. 

51. Holm, L.; Sander, C., Dali/FSSP classification of three-dimensional protein folds. 

Nucleic Acids Res 1997, 25, (1), 231-4. 

52. Holm, L.; Sander, C., The FSSP database: fold classification based on structure-

structure alignment of proteins. Nucleic Acids Res 1996, 24, (1), 206-9. 

53. Tougu, K.; Marians, K. J., The extreme C terminus of primase is required for 

interaction with DnaB at the replication fork. J Biol Chem 1996, 271, (35), 21391-

7. 

54. Hiasa, H.; Marians, K. J., Initiation of bidirectional replication at the 

chromosomal origin is directed by the interaction between helicase and primase. J 

Biol Chem 1999, 274, (38), 27244-8. 

55. Cantor, C. R.; Schimmel, P. R., Biophysical Chemistry Part II: Techniques for the 

study of biological structure and function. W. H. Freeman and Co.: San 

Francisco, 1980; p 461. 

56. Garcia de la Torre, J.; Huertas, M. L.; Carrasco, B., HYDRONMR: prediction of 

NMR relaxation of globular proteins from atomic-level structures and 

hydrodynamic calculations. J Magn Reson 2000, 147, (1), 138-46. 

57. Bernado, P.; Garcia de la Torre, J.; Pons, M., Interpretation of 15N NMR 

relaxation data of globular proteins using hydrodynamic calculations with 

HYDRONMR. J Biomol NMR 2002, 23, (2), 139-50. 



212 

 

 

  

58. Crute, J. J.; Grygon, C. A.; Hargrave, K. D.; Simoneau, B.; Faucher, A. M.; 

Bolger, G.; Kibler, P.; Liuzzi, M.; Cordingley, M. G., Herpes simplex virus 

helicase-primase inhibitors are active in animal models of human disease. Nat 

Med 2002, 8, (4), 386-91. 

59. Kleymann, G.; Fischer, R.; Betz, U. A.; Hendrix, M.; Bender, W.; Schneider, U.; 

Handke, G.; Eckenberg, P.; Hewlett, G.; Pevzner, V.; Baumeister, J.; Weber, O.; 

Henninger, K.; Keldenich, J.; Jensen, A.; Kolb, J.; Bach, U.; Popp, A.; Maben, J.; 

Frappa, I.; Haebich, D.; Lockhoff, O.; Rubsamen-Waigmann, H., New helicase-

primase inhibitors as drug candidates for the treatment of herpes simplex disease. 

Nat Med 2002, 8, (4), 392-8. 

60. Griep, M. A.; Blood, S.; Larson, M. A.; Koepsell, S. A.; Hinrichs, S. H., 

Myricetin inhibits Escherichia coli DnaB helicase but not primase. Bioorg Med 

Chem 2007, 15, (22), 7203-8. 

61. Thirlway, J.; Soultanas, P., In the Bacillus stearothermophilus DnaB-DnaG 

complex, the activities of the two proteins are modulated by distinct but 

overlapping networks of residues. J Bacteriol 2006, 188, (4), 1534-9. 

 

 

 

 

 



213 

 

 

  

Appendix 5A: Sequence of the S. aureus primase C-terminal domain used in these 

studies. The CTD of DnaG primase is approximately 17.2kDa protein (without his-tag, 

19.6kDa with his tag). The glycine residue (G125) that is structurally similar to P543  in 

the G. stearothermophilus structure is highlighted. The sequence has an additional N-

terminal his-tag added for purification shown as lower case.   

 

 

 

>S.aureus primaseCTD     

mghnhnhnhn hnhnggdddd FDNLSRQEKA ERAFLKHLMR 

DKDTFLNYYE SVDKDNFTNQ HFKYVFEVLH DFYAENDQYN 

ISDAVQYVNS NELRETLISL EQYNLNDEPY ENEIDDYVNV 

INEKGQETIE SLNHKLREAT RIGDVELQKY YLQQIVAKNK 

ERM
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Appendix 5B.  Relative relaxation parameters for the S. aureus primase CTD 

structure.  Overall, on a per residue basis the T1 and T2 values were measured to a high 

degree of accuracy using eq 5.1 and 5.2 based on the fit quality.  (A) T1 (B) T2.   
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CHAPTER 6:  

 

BACTERIAL PROTEIN STRUCTURES REVEAL PHYLUM DEPENDENT 

DIVERGENCE 

 

6.1 INTRODUCTION 

As highlighted in Chapter 5, selecting the best model protein for a biological 

system can be challenging if limited to sequence and structure information alone.  The 

differences between the primase CTD structures suggest a third constraint, evolution, for 

selecting a correct model protein.  Quantifiable models of protein evolution are useful for 

developing robust tools to identify suitable drug-binding sites, to predict increases in 

susceptibility to a human genetic disease, and to study organism niches.  Some of the 

strongest arguments in favor of evolution draw from studies on  protein sequence 

homology.
1
 Multiple sequence alignments are routinely used to highlight sequence 

similarity and variability between organisms and create phylogenetic relationships.
2, 3

   

Protein evolution is a direct result from changes to the protein‟s gene sequence, which are 

selected and modulated by a number of factors including structure.
4, 5

 

What is the impact on protein structure as its sequence undergoes genetic drift? 

Maintaining the correct protein fold is fundamental to preserving its function,
6
 but 

evolving the sequence would also be expected to result in structural changes.
7, 8

  The 

resulting paradox is that sequence determines a protein‟s structure, but the structure is 

relatively invariant over a large range of sequences. This paradox is highlighted by the 

tremendous difference between the number of known protein structures versus protein 

folds.
9
 Even though the Protein Data Bank (PDB)

10
 contains 67,529 protein structures as 
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of August, 2010, there are only 1,110 unique topologies and 1,195 unique folds in the 

CATH
11

 and SCOP
12

 structure classification databases, respectively. The significant 

reduction in the number of protein folds relative to the number of protein sequences 

implies a strong correlation between structure and function.  

While the explicit reason for the reduction in fold space remains unclear, some 

have suggested that  protein fold space may be more appropriately described as a 

continuum instead of a collection of discreet folds.
13

 In this manner, a protein fold should 

be considered as being plastic, where sequence changes are accommodated by local 

perturbations in the structure while maintaining the general characteristics of a particular 

fold.
14-16

  Correspondingly, the genetic drift in a protein‟s sequence may imply a similar 

gradual divergence in structure instead of a sudden dramatic transition to a new fold. If 

this perspective is accurate, then a comparative analysis of homologous proteins should 

identify correlated rates of structure and sequence divergence.  Previous studies have 

examined structure similarities between homologous proteins, but did not evaluate if 

structure divergence is correlated with phylogeny.
14-16

  In this chapter, I expand on this 

previous work by quantifying a maximum structure/sequence similarity between the two 

bacterial phyla, Proteobacteria and Firmicutes. I will also discuss the viability of 

phylogeny as a suitable constraint for selecting a homology model by showing certain 

protein folds are more sensitive than others to changes in sequence.      

 

6.2 EXPERIMENTAL 

6.2.1 Cluster of Orthologous Groups (COG) assignment of the Protein Data 

Bank (PDB). Assignment of each bacterial protein in the Protein Data Bank (PDB) to a 
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COG number in the clusters of orthologous groups
17

 database required downloading the 

complete sequence lists from both databases and running a pairwise Basic Local 

Alignment Search Tool  (BLAST) comparison. The pairwise protein BLAST search was 

run using the Protein Mapping and Comparison Tool  (PROMPT v. 0.9.2)
18

 that allowed 

for large pairwise BLAST searching and reported the best match between the two 

databases. The BLAST search was run using the BLOSUM62 matrix with a gap penalty 

of 11, gap extension penalty of 1, a word size of 5, and a BLAST expectation threshold 

(E-value) of 10
-9

. This E-value was used to unambiguously match genes in the COG 

database with proteins in the PDB. All PDB-to-COG matches were reported and stored in 

the PROFESS (Protein Function, Evolution, Structure, and Sequence) database 

(http://cse.unl.edu/~profess/).
19

  

After matching structures to their representative COG each PDB entry was 

matched with its source organism and phylum. The data set was then filtered according to 

the number of unique organisms. Specifically, only those COGs with structures from two 

or more different source organisms in both Proteobacteria and Firmicutes were analyzed 

further. 

6.2.2 Pairwise structure comparison. The pairwise structure comparison 

program DaliLite v. 2.4.2
20

 was installed on our 16-node Dual Athlon AMD 2.13 GHz 

with 1 GB of RAM Beowulf cluster running CentrOS 4.4 Linux with a 2.25 TB RAID 

array. A C-shell script matches the PDB files from each Proteobacteria-Proteobacteria 

comparison (-/-), Firmicutes-Firmicutes comparison (+/+) and Proteobacteria-Firmicutes 

comparison (-/+) and then submits the job to the program DaliLite. Each structural 

comparison took approximately 2-10 min, depending on the size and relative similarity of 

http://cse.unl.edu/~profess/
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structures. The total time to run all 63,504 comparisons was approximately 7 weeks.  

The shell script extracts all structural comparison information reported by 

DaliLite (comparison files, rmsd, %Sequence ID, Z-score) on a per chain basis. A single 

PDB file may contain multiple protein chains, where each chain may have a separate 

COG assignment. All structure information is stored in the PROFESS database, which is 

parsed to find the largest Z-score for each pairwise structure comparison. The largest Z-

score represents the best structure comparison for a pair of proteins and ensures the 

correct PDB chains were used for the analysis and the correct COG assignments were 

made. All best matches from each COG were used to calculate the Fractional Structure 

Similarity score (FSS) described by eq  6.1.  

,    [6.1] 

where ZAB was the Z-score for comparing proteins A and B, ZAA was the Z-score 

when protein A was compared to itself and ZBB was the Z-score when protein B was 

compared to itself. Thus, ZAA and ZBB represent the Z-score that can be achieved for 

perfect similarity. 

6.2.3 Manual filtering and data analysis. Manual refinement of the dataset 

included verification of each PDB assignment to a COG and filtering out redundantly 

solved structures from the same organism. When multiple structures were reported from 

the same organism (or organism with synonymous name), the structure that gave the 

largest Dali Z-score within the COG was kept while remaining structures were discarded 

from the analysis. This confirmed a single best PDB-to-COG match for each organism. 

Manual refinement was accomplished by opening all PDB IDs within a COG and 

checking biological information against the PDB (http://www.rcsb.org/pdb/home), COG 

http://www.rcsb.org/pdb/home
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(http://www.ncbi.nlm.nih.gov/COG/) and the NCBI (http://www.ncbi.nlm.nih.gov/) web 

servers. Consistency in functional and structural assignment within a COG coupled with 

very low E-values between COG and PDB confirmed the best PDB-to-COG match was 

made. Additionally, manual refinement was used to verify uniform sample conditions 

(i.e., the same ligand bound to all proteins within a COG or all proteins correspond to 

wild-type sequences) for cases of redundantly solved structures.  

6.2.4 Structure based phylogenetic trees. In addition to pairwise alignment, all 

the protein structures from each COG were simultaneously aligned using the multiple 

structure alignment program MAMMOTH-multi 

(http://ub.cbm.uam.es/mammoth/mult/).
21

 The resulting aligned structures and the 

structure-based sequence alignment was used with in-house software to calculate an all-

versus-all matrix of per-residue C  distances. Standard boot-strapping techniques were 

then applied to the all-versus-all matrix of per-residue C  distances to generate 100 

distance-matrix tables. Columns of structure-based sequence alignments with the 

corresponding C  distances were randomly selected until the total number of columns in 

the original sequence alignment was reached. The resulting set of C  distances were then 

used to calculate a root mean square deviation (rmsd) between each pair of structures in 

the matrix. The 100 distance-matrix tables were imported into PHYLIP 3.68
22

 to generate 

a consensus phylogenetic tree and bootstrap confidence levels.  

Each set of 100 bootstrapped distance matrices were analyzed by the Fitch-

Margoliash method implemented in PHYLIP. Each matrix was jumbled with 100 

replicates using 37 as the random number generator seed. This resulted in 10000 unique 

and random distance matrices for each COG. The best tree was identified with the 

http://www.ncbi.nlm.nih.gov/COG/
http://www.ncbi.nlm.nih.gov/
http://ub.cbm.uam.es/mammoth/mult/
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program Consense implemented in PHYLIP using the extended majority rule 

conservation. Since the bootstrapped trees do not show distance relationship, the original 

distance matrix generated by MAMMOTH-multi was used to generate a distance based 

phylogenetic tree. Each original distance matrix was jumbled with 100 replicates using 

37 as the random number seed. The distance based phylogenetic tree was drawn using the 

program Drawtree implemented in PHYLIP.  

Representative distance based phylogenetic trees are shown in (figure 6.4). Each 

tree was visually inspected and compared with the DaliLite analysis using the bootstrap 

values to determine if a tree fit the split, starburst, or split +1. A “split” means the 

Firmicutes and Proteobacteria proteins were strongly separated from one another, 

“Starburst” means there was little to no evidence for a split according to phyla, and “Split 

+1” means there was strong evidence for a split according to phyla with the exception of 

one protein 

6.2.5 Measuring functional similarity within a COG. Each protein in our 

dataset was annotated with the corresponding Gene Ontology
23

 identification number(s) 

found in the PDB. By definition, a strong consensus requires each protein to share the 

same set of GO terms. Instead, a weak consensus set of GO terms was generated for each 

COG, where only a majority of proteins are required to share the same GO term. A 

distance was measured between the weak consensus set and the set of GO terms assigned 

to each individual protein. An average, normalized distance is reported for each COG, 

where a score of 1 indicates an identical functional classification and a score of 0 

indicates a lack of functional similarity. The distance between each protein‟s GO terms 

and the consensus GO term set was measured as follows:  
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     [6.2] 

where GOsim is the normalized GO functional similarity score, WC denotes the weak 

consensus set of GO terms for the COG, and GOi denotes the set of GO terms set for each 

protein in the COG. 

 

6.3 RESULTS 

6.3.1 Creating the COG structure families. Current functional annotation tools 

available in the PDB include the Gene Ontology (GO)
23

 and Enzyme Classification  

(EC).
24

 Unfortunately, due to potential for convergence of function, these annotation 

tools are not useful for the study of homologous structures. To accurately observe phylum 

dependent structure divergence of proteins, it is important to construct a dataset of 

functionally similar orthologs. Among the 20 resources for structural classification of 

proteins, the clusters of orthologous groups (COGs) scheme is the only one that attempts 

to identify orthology
25

 while providing moderate functional information. Therefore, each 

sequence and structure in the PDB was annotated with one COG number. Additionally, 

each protein was annotated with GO numbers and the relative functional similarity for 

each COG was measured (table 6.1). 
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Table 6.1. COG structure families. 
a
COG Structure Families have two or more 

represented structures from among the Firmicutes and two or more from among the 

Proteobacteria. 
b
Functonal similarities are measured by overlapping consensus GO terms 

(eq 6.2) 
c
“Split” means the Firmicutes and Proteobacteria proteins were strongly 

separated from one another, “Starburst” means there was little to no evidence for a split 

according to phyla, and “Split +1” means there was strong evidence for a split according 

to phyla with the exception of one protein. The relative functional similarity of a COG is 

reported by measuring an average distance between a weak consensus set of Gene 

Ontology (GO) annotations and the set of all GO annotations for each protein within a 

COG.  Perfect functional similarity is reported as a 1, while no similarity is reported as a 

0.  See appendix 6B for a list of the PDB files associated with each COG. *No CATH 

value available for reported structures, CATH values were predicted using a sequence 

based search in the CATH database where the best match is reported.  
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COG
a
 

 

COG Function Annotation 

COG Function 

Similarity
b
  

Phylogenetic 

Structure Tree
c
 

    

CATH 

28 Thiamine pyrophosphate requiring 

enzymes 

0.59 Split 3.40.50.970 

39 Malate/lactate dehydrogenases 0.8 Split 3.40.50.720 

394 Protein-tyrosine-phosphatase 0.61 Split 3.40.50.270 

604 NADPH:quinone reductase and 

related Zn-dependent 

oxidoreductases 

0.88 Split 3.40.50.720 

605 Superoxide dismutase 0.76 Split 3.20.20.80* 

742 N6-adenine-specific methylase 0.73 Split 3.40.50.150* 

813 Purine-nucleoside phosphorylase 0.87 Split 3.40.50.1580 

1012 NAD-dependent aldehyde 

dehydrogenases 

0.58 Split 3.40.309.10 

1075 Predicted acetyltransferases and 

hydrolases with the alpha/beta 

hydrolase fold 

0.7 Split 3.40.50.1820 

1607 Acyl-CoA hydrolase 0.87 Split 3.40.0.1820* 

1940 Transcriptional regulator/sugar 

kinase 

0.31 Split 3.30.420.40 

2124 Cytochrome P450 0.8 Split 1.10.630.10 

2188 Transcriptional regulators 0.89 Split 3.40.1410.10 

446 Uncharacterized NAD (FAD) -

dependent dehydrogenases 

0.85 Split  3.30.390.30 

1057 Nicotinic acid mononucleotide 

adenylyltransferase 

0.95 Split  3.40.50.620 

242 N-formylmethionyl-tRNA 

deformylase 

0.87 Split +1    3.90.45.10 

1052 Lactate dehydrogenase and related 

dehydrogenases 

0.89 Split +1 3.40.50.720 

2141 Coenzyme F420-dependent 

N5,N10-methylene 

tetrahydromethanopterin 

0.76 Split +1 3.20.20.30 

2
2
3
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reductase and related flavin-

dependent oxidoreductases 

3832 Uncharacterized conserved 

protein 

1 Split +1 3.30.530.20 

110 Acetyltransferase  (isoleucine 

patch superfamily)  

0.56 Starburst 2.160.10.10 

171 NAD synthase 0.85 Starburst 3.40.50.620 

251 Putative translation initiation 

inhibitor, yjgF family 

0 Starburst 3.30.1330.40 

346 Lactoylglutathione lyase and 

related lyases 

0.11 Starburst 3.10.180.10 

366 Glycosidases 0.51 Starburst 2.60.40.1180 

454 Histone acetyltransferase HPA2 

and related acetyltransferases 

0.83 Starburst  3.40.630.30 

491 Zn-dependent hydrolases, 

including glyoxylases 

0.5 Starburst 3.60.15.10 

500 SAM-dependent 

methyltransferases 

0.59 Starburst 3.40.50.150 

526 Thiol-disulfide isomerase and 

thioredoxins 

0.96 Starburst 3.40.30.10 

590 Cytosine/adenosine deaminases 0.7 Starburst 3.40.140.10 

637 Predicted 

phosphatase/phosphohexomutase 

0.52 Starburst 1.10.164.10 

664 cAMP-binding proteins 0.5 Starburst 1.10.10.10 

745 Response regulators consisting of 

a CheY-like receiver domain and 

a winged-helix DNA-binding 

domain 

0.73 Starburst 3.40.50.2300 

753 Catalase 0.93 Starburst 3.30.63.10* 

778 Nitroreductase 0.64 Starburst 3.40.109.10 

784 FOG: CheY-like receiver 0.48 Starburst 3.40.50.2300 

796 Glutamate racemase 0.92 Starburst 3.40.50.1860 

1028 Dehydrogenases with different 0.84 Starburst 3.40.50.720 

2
2
4
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specificities  (related to short-

chain alcohol dehydrogenases)  

1151 6Fe-6S prismane cluster-

containing protein 

0.71 Starburst 1.20.1270.30 

1309 Transcriptional regulator 0.8 Starburst 1.10.357.10 

1396 Predicted transcriptional 

regulators 

0.54 Starburst 1.10.260.40 

1404 Subtilisin-like serine proteases 0.6 Starburst 3.40.50.200 

1733 Predicted transcriptional 

regulators 

1 Starburst 1.10.510.10* 

1846 Transcriptional regulators 0.85 Starburst 1.10.10.10 

2159 Predicted metal-dependent 

hydrolase of the TIM-barrel fold 

0.83 Starburst 3.20.20.140* 

2367 Beta-lactamase class A 0.93 Starburst 3.40.710.10 

2730 Endoglucanase 0.88 Starburst 3.20.20.80 

3693 Beta-1,4-xylanase 0.89 Starburst 3.20.20.80 

4948 L-alanine-DL-glutamate 

epimerase and related enzymes of 

enolase superfamily  

0.71 Starburst 3.20.20.120 

2
2
5
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The development of the PROFESS (PROtein Function, Evolution Sequence and 

Structure) database (http://cse.unl.edu~profess)
19

 contains all  PDB-to-COG annotations 

along with other biologically relevant information. This includes associating each 

structure with its phyla classification, which allowed for the structures from Firmicutes 

and Proteobacteria to be easily selected for further analysis.  

The most recent COG database was created by finding the genome-specific best-

hit for each gene in 66 unicellular genomes (50 bacteria, 13 archaea, and 3 eukaryota). 

Specifically, the orthologs present in three or more genomes were detected automatically 

and then multidomain proteins were manually split into component domains to eliminate 

artifactual lumping. The online COG database contains 192,987 sequences distributed 

among 4,876 COGs, accounting for 75% of genes in these 66 genomes.  

At the time of our COG-to-PDB annotation, the PDB included 45,368 protein 

structures (August 2008), although many of them were composed of multiple subunits 

(and therefore associated with an even larger number of sequences). The two best-

represented bacterial phyla, which accounts for nearly one-fourth of all structures in the 

PDB, were selected for annotation. The PDB contains 8,298 Proteobacteria protein 

structures and 3,416 Firmicutes structures. The sequences for each of these structures 

were compared to the COG reference sequences using the Basic Local Alignment Search 

Tool (BLAST).
26

 The initial match between the COG and PDB databases was completed 

with an expectation cut-off of 1x10
-9

 to maximize the likelihood of matching each PDB 

with its correct COG. The BLAST similarity matching was required for two reasons, first 

the PDB did not list gene names and secondly to capture structures from organisms that 

were not present in the COG database.  The BLAST comparison matched 82% of the 

http://cse.unl.edu~profess/
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Firmicutes and Proteobacteria sequences to specific COGs, resulting in functional 

assignments for 2,728 Firmicutes structures and 6,881 Proteobacteria structures. Of 

these hits, 27% were 100% identical to the COG reference sequence and 97% matched 

with greater than 50% sequence identity. To carry out our comparative study, we selected 

only those COGs that contained a minimum of two Firmicutes organisms and two 

Proteobacteria organisms. This requirement gave 281 unique COGs with a total of 3,047 

bacterial proteins (1,066 Firmicutes and 1,981 Proteobacteria).  

6.3.2 Pairwise structure similarity. The pairwise structure comparison tool 

DaliLite
20

 was used to perform 63,504 pairwise comparisons between all of the proteins 

in our dataset. In total, the backbone structure similarity corresponded to 31,542 

Proteobacteria-Proteobacteria comparisons (-/-), 12,674 Firmicutes-Firmicutes 

comparisons (+/+), and 19,288 Proteobacteria-Firmicutes comparisons (-/+). All 

comparisons were manually filtered within their respective COG to remove all but one 

redundantly solved structure (the largest contributor to the size of the dataset), multiple or 

non-functionally relevant conformations (mutant protein, non-native experimental 

conditions, inhibited ligand complex), and the shorter of two protein structures. The final 

dataset contained 48 COGs (table 6.1) with a total of 1,713 structural comparisons with 

147 Firmicutes proteins from 58 unique organisms and 176 Proteobacteria proteins from 

84 unique organisms (see appendix 6A for complete list of proteins used in this study).  

After manual analysis the resulting dataset was predominantly populated with 

very low E-values further supporting correct annotation of a structure to the correct COG.  

The distribution of E-values is reported in figure 6.1.  The histogram shows only 3 PDB-

to-COG matches with the minimum E-value cutoff, with the majority of the PDB-to-
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COG matches falling below 1.0E
-40

.   The median E-value for each COG is reported in 

appendix 6B with a range between 4E
-16

 and 0.   Where an E-value of 0 indicates all 

structures within a COG were perfectly matched.    

 

 
Figure 6.1. Distribution of E-values within manually filtered dataset. A set of E-

values at each division consisted of the total number of PDB-to-COG matches between 

the upper and lower bounds.  An E-value of 1x10
-9

 approximately relates to a standard 

significance P-value of 1x10
-9

.  
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The resulting Dali Z-scores from the pairwise structure comparisons were plotted 

against sequence identity (figure 6.2) to reveal a saturating relationship as the percent 

identity rose to 100%. The lowest observed Z-score was 5.7 with a corresponding 16% 

sequence identity. This Z-score was still above the minimum cutoff of 2.0 (dashed line) 

for matches that were two standard deviations above a random match. This lowest Z-

score came from the comparison of two Firmicutes proteins in COG0346 

(lactoylglutathione lyase and related lyases): 2QH0 (Clostridium acetobutylicum); and 

2QQZ (Bacillus anthracis). The average Z-score for all comparisons was 27 ± 13, 

indicating that all structural comparisons were significant.  

Since Z-scores increase as a function of the protein length, we normalized this 

effect by calculating the Fractional Structure Similarity (FSS) score as described in eq 

6.1. The pairwise FSS scores plotted against sequence identity (figure 6.3) resulted in a 

hyperbolic curve. All FSS values fell below an upper-limit at each percent identity. In 

fact, 20% sequence identity yielded a maximal FSS of 60%. This FSS limit was observed 

when all of the data were used (figure 6.3A), when only the pairwise comparisons within 

either phyla were used (figure 6.3B and C), or when only the pairwise comparisons 

between the two phyla were used (figure 6.3D). The pairwise comparison plot between 

the two phyla (figure 6.3D) showed an abrupt cutoff at 61% sequence identity and a 0.84 

FSS score. This abrupt cutoff was not an artifact created by culling the dataset, since a 

similar plot prior to the manual filtering also demonstrated the same effect (appendix 6C).  
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Figure 6.2. The relationship between structure similarity and sequence identity for 48 

COGs. Structure similarity is given as the raw Z-score, which increases as the protein length 

increases. The comparisons were for all proteins against all proteins, and include the comparison 

for each protein against itself. The dashed line identifies a Dali Z-score of 2, which is the 

minimal limit for inferring structural similarity.  
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Figure 6.3. The fractional structure similarity (FSS) and sequence identity for 48 

COGs. FSS was calculated using eq  6.1 to normalize the Dali Z-scores for their different 

sizes. The FSS values were plotted against sequence identity for (A) all the pairwise 

comparisons, (B) only Proteobacteria-Proteobacteria comparisons, (C) only Firmicutes-

Firmicutes comparisons and (D) only Proteobacteria-Firmicutes comparisons.  
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The protein structures in COG0028 (thiamine pyrophosphate requiring enzymes) 

provides a useful example of the structural divergence that occurred after the Firmicutes 

and Proteobacteria phyla split. The overall fold is conserved between the phyla while 

there are discrete structural elements that are unique to each phylum. The two Firmicutes 

structures (figure 6.4A) yield a Z score of 59.6 and an FSS of 0.83, indicating very high 

structural conservation. The structure comparison between the 4 representative 

Proteobacteria structures (figure 6.4B) yield an average Z-score of 37.7 ± 1.6 and an 

average FSS of 0.58 ± 0.03. Again, the structures share a similar fold despite the slightly 

lower scores.  

Comparison of the structures between the Firmicutes and Proteobacteria (figure 

6.4C and D, respectively) phyla yield a lower Z-score of 34.8 ± 1.2 and a lower FSS of 

0.49 ± 0.02 then the comparisons within each phylum. This suggests a divergence in 

structural details while conserving the overall fold. A detailed analysis reveals localized 

differences between the structures from the two phyla (see red highlights in figure 6.4C 

and D). In the Firmicutes representative structure, there is a continuous helix compared to 

helical breaks and loop insertions in the Proteobacteria structure. This is similar to the C-

terminal domain of primase, where a long continuous helix found in the E. coli structure 

is broken by a loop region in G. stearothermophilus
27-30

 and S. aureus (chapter 5).  
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Figure 6.4. Comparison of protein structures for COG0028 between two bacterial 

phyla.  The protein structures for COG0028 thiamine pyrophosphsate requiring enzymes 

show (A) the two Firmicutes structures have highly overlapping structures and (B) the 

four Proteobacteria structures are very similar to each another. See also the phylogenetic 

structure tree for COG0028 in (figure 6.5). On the other hand, the major structural 

differences between the Firmicutes and Proteobacteria are highlighted in red on a 

representative Firmicutes  (C) structure from L. plantarum (Lpl) (PDB ID: 1POW)  and 

the representative Proteobacteria structure  (D) from P. fluorescens  (Pfl) (PDB ID: 

2AG0).  
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6.3.3 COG structure phylogenies. Structure based phylogenies were created 

from root-mean square differences (rmsd) in per residue C  positions for optimally 

aligned protein structures using MAMMOTH-multi.
21

 A separate phylogenetic tree was 

generated for each COG, where three distinct patterns were observed (table 6.1): 15 

exhibited a strong split at the phylum level, 29 exhibited a starburst pattern suggesting 

little to no evidence for a split according to phyla, and 4 exhibited a strong split at the 

phylum level but with the exception of a single structure (split +1).  

The 15 COG phylogenies with strong phylum-splitting patterns had two branches, 

one with closely related Firmicutes structures and the other with closely related 

Proteobacteria structures. Two examples are COG0028 (Thiamine pyrophosphate 

requiring enzymes) and COG0446 (Uncharacterized NAD(FAD)-dependent 

dehydrogenases)  (figure 6.5). The structures for both of these COGs are classified in the 

CATH system as  3-layer sandwiches, but differ in that COG0028 proteins have a 

Rossmann fold topology (figure 6.4) and COG0046 proteins have a FAD/NAD (P)-

binding domain topology.  

The 29 COGs with phylogenetic starburst patterns showed no evidence for the 

separation of structures according to phyla (table 6.1). Two examples were COG0491 

(Zn-dependent hydrolases) and COG1309 (Transcriptional regulator) (figure 6.5). The 

CATH classification for COG0491 Bacillus cereus Zinc-dependent beta-lactamase (PDB 

ID: 1BC2) 
31

 describes it as an  4-layer sandwich with metallo-beta-lactamase Chain 

A topology. The large category of beta-lactamases constitutes a collection of enzymes 

that can be derived from any one of a group of proteins that bind, synthesize, or degrade 

peptidoglycans. The protein structures assigned to COG0491 gave FSS scores with large 



235 

 

 

 

standard deviations, as is evident from the separated clusters within the Proteobacteria 

arm of the phylogenetic tree. 

The COG1309 structural family falls into one of two CATH topologies, Arc 

Repressor Mutant (subunit A) or Tetracycline Repressor (domain 2). Only those 

structures similar to the Arc Repressor Mutant (subunit A) topology were used for the 

pairwise comparison, since it was the dominant fold in this COG. The protein structures 

in the COG1309 structure family gave low FSS scores. However, even with low overall 

FSS the average absolute Z-score was 13 ± 2 indicating that it has significant overall 

structure similarity. The high FSS deviations of COG0491 structural family and the low 

average FSS scores of COG1309 structural family both indicate rapid structural 

divergence following the phyla split, consistent with the observed starburst phylogenetic 

patterns.  
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Figure 6.5. Protein structure based phylogenetic trees highlighting the split and 

starburst patterns. The phylogenetic structure trees showed three different patterns: 

(top) strong split according to phyla; (bottom) starburst with no clear relationship to a 

common ancestor; and (figure 6.6) strong splits with the exception of one outlier. The 

Firmicutes protein structures are in blue and the Proteobacteria in black. The bootstrap 

values from 100 bootstrap replicates are indicated on branches and represent how often a 

branch appeared in the distance matrix. The two examples for the split pattern were from 

COG0028 (thiamine pyrophosphate requiring enzymes) and COG0446 (uncharacterized 

NAD(FAD)-dependent dehydrogenases). In the case of a strong split, the central 

branches were observed more than 95 times out of 100 replicate trials. The two examples 

for starburst pattern were from COG0491 (Zn-dependent hydrolases) and COG1309  

(transcriptional regulator).  For starburst patterns, very few branches were observed in 

more than two-thirds of the 100 replicate trials. The organism abbreviations are: A. 

hydrophila  (Ahy) ; A. tumefaciens (Atu); A. viridians (Avi) ; B. cereus (Bce) ; B. 

japonicum (Bja); B. subtilis (Bsu) ; B. thuriagienes (Bth); E. carotovora (Eca); E. coli 

(Eco); E. faecalis (Efa); F. gormanii (Fgo); K. pneumonia (Kpn); L. lactis (Lla); L. 

sanfranciscens (Lsa); L. plantarum (Lpl); O. formigens (Ofo) ; P. aeruginosa  (Pae); P. 

fluorescens (Pfl); P. pantotrophus (Ppa); P. putida (Ppu); P. species (Psp); S. aureus 

(Sau); S. marcescens (Sma); S. typhimurium  (Sty); and X. maltophilia  (Xma).  
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Four COG structure phylogenies showed a strong split pattern with a single 

outlier (figure 6.6). This result provides further evidence for the observation of phyla split 

based on structure similarity. The presence of the outlier in a clear split pattern suggests a 

horizontally transferred gene (table 6.1) or potential paralog. For all four families 

[COG0242 (N-formylmethionyl-tRNA deformylase) COG1052 (Lactate dehydrogenase 

and related dehydrogenases), COG2141  (Coenzyme F420-dependent N5,N10-methylene 

tetrahydromethanopterin reductase and related flavin-dependent oxidoreductases), and 

COG3832 (Uncharacterized conserved protein)] there was a large and significant average 

absolute Z-score for all comparisons along with strong BLAST E-values indicating the 

correct match was made between COG and PDB. For COG0242, the Bacillus cereus 

gene def that encodes the N-formylmethionyl-tRNA deformylase protein (PDB ID: 

1WS0) has been previously identified as a gene that has undergone horizontal gene 

transfer.
32
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Figure 6.6. Protein structure based phylogenetic trees highlighting the split +1 

pattern.  Protein structure phylogenies of 4 COGs out of 48 had a strong split pattern 

with the exception of one outlier structure. The phylogenies were very reliable because 

the central branches were observed in 100 out of 100 replicate trials. When one 

Firmicutes or Proteobacteria protein structure clusters on a branch with the other 

phylum, its structure diverges from its closest relatives while resembling those of the 

other phyla. The COGs that fit this pattern are from COG0242 (N-formylmethionyl-

tRNA deformylase), COG1052 (lactate dehydrogenase and related dehydrogenases), 

COG2141 (coenzyme F420-dependent N5, N10-methylene tetrahydromethanopterin 

reductase and related flavin-dependent oxidoreductases), and COG3832 (uncharacterized 

conserved protein). The organism abbreviations are: A. fermentans (Afe); A. tumefaciens 

(Atu); B. cereus (Bce); B. halodurans (Bha); B. stearothermophilus (Bst); B. subtilis 

(Bsu); C. violaceum (Cvi); E. coli (Eco); E. faecalis (Efa); H. methylovorum (Hme); H. 

pylori (Hpy); L. delbrueckii (Lde); L. helveticus (Lhe); M. species (Msp); N. europaea 

(Neu); P. aeruginosa (Pae) ; P. species (Psp), S. aureus (Sau); S. pneumoniae (Spn); and 

V. harveyi (Vha).  
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6.3.4 Structure divergence rates across phyla. As a way to quantify the 

relationship between structure difference and sequence difference, each phylogenetic tree 

was reduced to a single coordinate by calculating a structure similarity ratio ( FSS and a 

sequence identity ratio ( SeqID). FSS was determined for all 48 COGs by calculating an 

average FSS score for the Proteobacteria-Firmicutes structure comparisons, Avg(FSS+/-), 

and dividing by the sum of the average Proteobacteria-Proteobacteria, Avg(FSS-/-), and 

Firmicutes-Firmicutes, Avg(FSS+/+), comparisons: 

              [6.3] 

Similarly, a sequence identity ratio ( SeqID) was determined by calculating an 

average sequence identity for the Proteobacteria-Firmicutes structure comparisons,  

Avg(SeqID+/-), and dividing by the sum of the average Proteobacteria-Proteobacteria, 

Avg(SeqID-/-), and Firmicutes-Firmicutes, Avg(SeqID+/+), comparisons: 

                                    [6.4] 

In general, most starburst phylogenies (see representative COG0491 and 

COG1309 in (figure 6.5) had a branch length between members of different phyla that 

was much shorter than the branch lengths between members within the same phyla. That 

is, a starburst phylogeny was expected to have FSS and SeqID values greater than unity. 

Likewise, most split phylogenies had longer branches between phyla than within each 

phyla (see representative COG0028 and COG0446 in (figure 6.5) and were expected to 

yield FSS SeqID of less than unity.  

When FSS and SeqID for all 48 COGs were plotted versus one another (figure 

6.7), the starburst phylogenies clustered around unity for both structure and sequence 
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whereas the split phylogenies clustered around 0.85 for structure and 0.70 for sequence. 

This indicated that split phylogenies occur when the structure differences are 

significantly less than their sequence differences. In addition, the plot of FSS versus SeqID 

conformed to a linear relationship regardless of the shape of the phylogenetic tree 

indicating that all homologous protein structure differences are constant with respect to 

homologous protein sequence differences ( FSS = 0.55 SeqID + 0.45; R
2
 = 0.7). Thus, this 

curve represents the relative structural drift rate for each COG structural family between 

the two phyla. The slope indicates that structure branch lengths change approximately 

half as fast as sequence branch lengths. 

 

 

Figure 6.7. Constant rate of structural drift.  The relationship between structure and 

sequence change was constant regardless of the phylogenetic starburst (x) or split (■) 

pattern. Structure changes measured using a structure similarity ratio ( FSS), where the 

average FSS between members of the two phyla (Firmicutes versus Proteobacteria) was 

divided by the average FSS between members of the same phyla  (see eq  6.3). Sequence 

change was calculated similarly (see eq  6.4). The best-fit line, FSS=0.55 SeqID + 0.45, 

yielded an R
2
 of 0.70. 
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6.3.5 Fold dependency on structure similarity.  A plot of FSS vs. sequence 

identity for the two most populated CATH families in our dataset (figure 6.8) was used to 

investigate if particular protein architectures are more amenable to structural changes. 

The largest portion of our data set, 24 of 48 COGs (50%), is represented by CATH 3.40  

( , 3-layer ( ) sandwich). Within CATH 3.40, 12 of 24 COGs (50%) are 

represented by the starburst phylogenetic tree pattern. The remaining 12 COGs 

correspond to 11 splits and 1 split +1 phylogenetic tree patterns.  

 

 

 
Figure 6.8. Fold dependency on fractional structure similarity (FSS) and sequence 

comparisons.  The FSS between two CATH families, CATH 1.10 (●) CATH 3.40 (◊).  

CATH 1.10 (mainly , orthogonal bundle) family is apparently limited to approximately 

40% sequence identity and 0.6 FSS while CATH 3.40 ( , 3-Layer ( ) sandwich) 

fills in the complete curve. 87.5% of the COGs (7 of 8) represented by CATH 1.10 give a 

starburst structure similarity tree. Contrastingly, only 50% (12 of 24) of the COGs 

represented by CATH 3.40 give a starburst structure similarity tree. The remaining 12 

COGs formed either split (11 of 12) or split +1 (1 of 12).  
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 The second most populous CATH family is CATH 1.10 (mainly , orthogonal 

bundle) with 15% of our COGs belonging to this CATH family. Most (85.7%) of the 

COGs (6 of 7) in the CATH 1.10 family are represented by the starburst phylogenetic tree 

pattern with only 1 COG represented by a split pattern. There appears to be a limit in 

structure similarity at approximately 0.6 FSS and a corresponding sequence identity limit 

at 40% for CATH 1.10  (figure 6.8, solid circles). This limit is not observed in the CATH 

3.40 family (figure 6.8, open diamonds). The sequence and structure similarity limit for 

CATH 1.10 combined with a larger percentage of COGs assigned to the starburst family 

suggests that CATH 1.10 is more susceptible to mutations that affect the protein 

structure. The results suggest a faster evolutionary rate leading to a higher structural 

divergence relative to other CATH architectures.  

  

6.4 DISCUSSION 

There is an inherent challenge in obtaining an accurate functional annotation for a 

large set of proteins from a relatively small number of experimentally determined 

functions.
33-37

 The available functional information is incomplete, ambiguous and error-

prone
38, 39

 and requires multiple sources
35

 to improve the accuracy in the annotation of a 

protein. There is also the complicating factor of correctly distinguishing between 

orthologs and paralogs, where it has been previously noted the COG database does 

include some paralog members
17, 40

. Thus, the accuracy of this analysis is fundamentally 

dependent on a reliable functional assignment for each protein structure.  Given these 

challenges, the independent and separate utilization of both COG and GO terms provides 

a reasonable and robust approach to identify clusters of functionally similar proteins. The 
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overall high sequence (E-value ≤ 10
-9

, sequence identity ≥ 16%), structure (Z-score > 5.7) 

and GO term similarity (0.72 ± 0.21) within each COG supports this conclusion. The lack 

of identity for the GO term similarity scores should not be interpreted as evidence for 

functional divergence. GO terms are assigned based on a validated source. So, a missing 

GO term for a protein is more likely attributed to the fact the protein has not been 

explicitly tested for the specified activity. Similarly, a protein being assigned a GO term 

does not provide definitive evidence the function is relevant in vivo.
41-44

     

The comparison of homologous protein structures with the same function 

provides quantitative evidence that protein structures diverged following the speciation 

events that created the modern bacterial phyla of Firmicutes and Proteobacteria. The 

abrupt cutoff at 61% sequence identity and 0.84 fractional structure similarity observed 

between Firmicutes and Proteobacteria proteins was mirrored by an approximate 60% 

protein sequence identity between these two phyla observed by 16S rRNA sequence 

similarity.
45, 46

 Thus, this maximum observed sequence identity imparts limits to the 

maximum possible structure similarity between homologus proteins from these two 

phyla. This is consistent with prior observations that sequence identity ≤ 40-50% 

sometimes results in significant structural and functional differences.
7, 8, 47 Furthermore, 

the results imply an inherent allowable structural plasticity that does not perturb function. 

The random drift after speciation inexorably leads to non-identical structures despite 

maintenance of function. There are a number of cases where FSS was below 0.20 

indicating a significant structural change. Proteins with completely different folds but the 

same function are extreme examples of the plasticity of the structure-function 

relationship and include such proteins as peptidyl-tRNA hydrolases (COG1990),
48
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pantothenate kinase (KOG2201).
49

 polypeptide release factors 
50

 and lysyl-tRNA 

synthetases (COG1190),
51

 these proteins are not in our dataset.  

Forty percent of the COGs we examined have evolved slowly enough that it was 

possible to generate phylogenetic trees consistent with this ancient split. The other COGs 

have either evolved too rapidly or are otherwise subject to few evolutionary constraints to 

provide evidence for this split. This distinction between the COGs is clearly apparent 

from the comparison of FSS and SeqID in (figure 6.7). The linear relationship implies a 

fixed relative structure drift rate, where structure changes half as fast as sequence across 

phyla. This correlation in the divergence of protein sequences and protein structures has 

additional ramifications beyond bacterial evolution. Our analysis implies a continuum of 

protein folds that adapt to large sequence changes by incurring local structural 

modifications.
13-16

 This continuum of protein folds makes it challenging to apply protein 

structural classification to identify function, as has been previously noted.
52, 53

  

Does the nature of the protein‟s three-dimensional structure play a role in protein 

structure divergence? Our analysis demonstrates that some proteins evolve slowly and 

maintain high sequence identity (>80%) and structure similarity (> 0.80 FSS) while other 

proteins exhibit rapid evolution rates where sequence identity is ≤ 20% and FSS ≤ 0.40.  

This implies the underlying architecture of a particular protein may be more or less 

amenable to amino-acid substitutions in order to maintain functional activity. A specific 

protein fold may have a higher intrinsic plasticity that enables it to readily accommodate 

sequence changes through local conformational changes without a detrimental impact on 

activity. This is exactly what was observed, structural variations were localized to 

specific regions as illustrated by the comparison of the COG0028 protein structures see 
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(figure 6.4). This is consistent with the observation of different structure divergence rates 

within a protein.
54, 55

 Regions of the protein that do not impact biological activity are 

expected to yield a higher divergence rate and incur larger local structural changes.
56, 57

 

As a result, a fold with a relatively high plasticity would experience an elevated structural 

diversity between phyla, where the rate of change may closely parallel the mutation 

rate.
14

 Conversely, another fold may be extremely sensitive to amino-acid substitutions, 

where minor sequence perturbations may result in a decrease in structural integrity and a 

corresponding loss of activity. As a result, the sequence and structure of this protein class 

would be relatively conserved. This analysis is consistent with the known range of 

protein thermodynamic stabilities,
58

 and the general observation that most mutations 

destabilize protein structures.
59

  

This chapter illustrates the inherent value in solving structures for functionally 

identical proteins from multiple organisms. A major challenge in creating our COG-to-

PDB dataset was the fundamental requirement to have structures from at least two 

Firmicutes organisms and two Proteobacteria organisms. Only 48 (~1%) of the 4,876 

COGs meet this stringent requirement. The limited number of multiple homologous 

structures has partly occurred because structural biology efforts are focused on obtaining 

single representative structures for each functional class or protein fold
60

  and 

understandably biased toward therapeutically relevant proteins.
61

 If we are to achieve a 

more accurate understanding of the relationship between the evolution of protein fold, 

protein sequence, and the organisms in which they function, the fields of bioinformatics 

and structural biology must expand their focus to include efforts to obtain a more diverse 

set of homologous protein structures. 
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Appendix 6A. A table of all manually curated proteins used in chapter 6 with their 

associated COG annotation, phylogenetic pattern, phylum classification and source 

organism. 

 

Split 
   COG PDB Phylum Source 

28  2JI7 Proteobacteria OXALOBACTER FORMIGENES 

28  2AG0 Proteobacteria PSEUDOMONAS FLUORESCENS 

28  1YNO Proteobacteria PSEUDOMONAS PUTIDA 

28  1OZF Proteobacteria KLEBSIELLA PNEUMONIAE 

28  1V5E Firmicutes AEROCOCCUS VIRIDANS 

28  1POW Firmicutes LACTOBACILLUS PLANTARUM 

    39  2PWZ Proteobacteria ESCHERICHIA COLI 

39  1B8P Proteobacteria AQUASPIRILLUM ARCTICUM 

39  1Y6J Firmicutes CLOSTRIDIUM THERMOCELLUM 

39  1LDN Firmicutes BACILLUS STEAROTHERMOPHILUS 

39  1EZ4 Firmicutes LACTOBACILLUS PENTOSUS 

    394  2GI4 Proteobacteria CAMPYLOBACTER JEJUNI 

394  2FEK Proteobacteria ESCHERICHIA COLI 

394  1LJL Firmicutes STAPHYLOCOCCUS AUREUS 

394  1JL3 Firmicutes BACILLUS SUBTILIS 

    446  2V3A Proteobacteria PSEUDOMONAS AERUGINOSA 

446  1Q1R Proteobacteria PSEUDOMONAS PUTIDA 

446  1D7Y Proteobacteria PARACOCCUS PANTOTROPHUS 

446  2CDU Firmicutes LACTOBACILLUS SANFRANCISCENSIS 

446  2BC0 Firmicutes STREPTOCOCCUS PYOGENES 

446  1YQZ Firmicutes STAPHYLOCOCCUS AUREUS 

446  1F8W Firmicutes ENTEROCOCCUS FAECALIS 

    604  1WLY Proteobacteria BURKHOLDERIA SP. WS 

604  1QOR Proteobacteria ESCHERICHIA COLI 

604  1XA0 Firmicutes BACILLUS STEAROTHERMOPHILUS 

604  1TT7 Firmicutes BACILLUS SUBTILIS 

    605  2BKB Proteobacteria ESCHERICHIA COLI 

605  1DT0 Proteobacteria PSEUDOMONAS PUTIDA 

605  1XRE Firmicutes BACILLUS ANTHRACIS 

605  1JR9 Firmicutes BACILLUS HALODENITRIFICANS 
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742  2IFT Proteobacteria HAEMOPHILUS INFLUENZAE 

742  2FPO Proteobacteria ESCHERICHIA COLI 

742  2FHP Firmicutes ENTEROCOCCUS FAECALIS 

742  2ESR Firmicutes STREPTOCOCCUS PYOGENES 

    813  1VHJ Proteobacteria VIBRIO CHOLERAE 

813  1ECP Proteobacteria ESCHERICHIA COLI 

813  2AC7 Firmicutes BACILLUS CEREUS G9241 

813  1XE3 Firmicutes BACILLUS ANTHRACIS 

    1012  2HG2 Proteobacteria ESCHERICHIA COLI 

1012  1EYY Proteobacteria VIBRIO HARVEYI 

1012  1T90 Firmicutes BACILLUS SUBTILIS 

1012  1EUH Firmicutes STREPTOCOCCUS MUTANS 

    1057  1YUM Proteobacteria PSEUDOMONAS AERUGINOSA 

1057  1K4M Proteobacteria ESCHERICHIA COLI 

1057  2H2A Firmicutes STAPHYLOCOCCUS AUREUS 

1057  1KAQ Firmicutes BACILLUS SUBTILIS 

    1075  1TAH Proteobacteria BURKHOLDERIA GLUMAE 

1075  1OIL Proteobacteria BURKHOLDERIA CEPACIA 

1075  1EX9 Proteobacteria PSEUDOMONAS AERUGINOSA 

1075  2HIH Firmicutes STAPHYLOCOCCUS HYICUS 

1075  1KU0 Firmicutes BACILLUS STEAROTHERMOPHILUS 

    1607  2GVH Proteobacteria AGROBACTERIUM TUMEFACIENS STR. C58 

1607  1YLI Proteobacteria HAEMOPHILUS INFLUENZAE 

1607  1Y7U Firmicutes BACILLUS CEREUS 

1607  1VPM Firmicutes BACILLUS HALODURANS CProteobacteria25 

    1940  1Z6R Proteobacteria ESCHERICHIA COLI 

1940  1Z05 Proteobacteria VIBRIO CHOLERAE O1 BIOVAR ELTOR 

1940  2QM1 Firmicutes ENTEROCOCCUS FAECALIS V583 

1940  2GUP Firmicutes STREPTOCOCCUS PNEUMONIAE 

1940  1XC3 Firmicutes BACILLUS SUBTILIS 

    2124  1YRD Proteobacteria PSEUDOMONAS PUTIDA 

2124  1T2B Proteobacteria CITROBACTER BRAAKII 

2124  1Q5E Proteobacteria POLYANGIUM CELLULOSUM 

2124  1IZO Firmicutes BACILLUS SUBTILIS 

2124  1FAG Firmicutes BACILLUS MEGATERIUM 
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2188  2PKH Proteobacteria PSEUDOMONAS SYRINGAE PV. TOMATO STR. DC3000 

2188  2FA1 Proteobacteria ESCHERICHIA COLI 

2188  2OOI Firmicutes STAPHYLOCOCCUS AUREUS 

2188  2OGG Firmicutes BACILLUS SUBTILIS 

    

    Split with HGT 
  COG PDB Phylum Source 

242  2EW7 Proteobacteria HELICOBACTER PYLORI 

242  1IX1 Proteobacteria PSEUDOMONAS AERUGINOSA 

242  1ICJ Proteobacteria ESCHERICHIA COLI 

242  2AI9 Firmicutes STAPHYLOCOCCUS AUREUS 

242  1WS0 Firmicutes BACILLUS CEREUS 

242  1LQY Firmicutes BACILLUS STEAROTHERMOPHILUS 

242  1LM6 Firmicutes STREPTOCOCCUS PNEUMONIAE 

    1052  2GSD Proteobacteria MORAXELLA SP. 

1052  2GO1 Proteobacteria PSEUDOMONAS SP. 

1052  1GDH Proteobacteria HYPHOMICROBIUM METHYLOVORUM 

1052  2DLD Firmicutes LACTOBACILLUS HELVETICUS 

1052  1XDW Firmicutes ACIDAMINOCOCCUS FERMENTANS 

1052  1J4A Firmicutes LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS 

    2141  2I7G Proteobacteria AGROBACTERIUM TUMEFACIENS 

2141  1M41 Proteobacteria ESCHERICHIA COLI 

2141  1BRL Proteobacteria VIBRIO HARVEYI 

2141  2B81 Firmicutes BACILLUS CEREUS 

2141  1TVL Firmicutes BACILLUS SUBTILIS 

    3832  1Z94 Proteobacteria CHROMOBACTERIUM VIOLACEUM ATCC 12472 

3832  1XFS Proteobacteria NITROSOMONAS EUROPAEA 

3832  2NN5 Firmicutes ENTEROCOCCUS FAECALIS 

3832  2IL5 Firmicutes STAPHYLOCOCCUS AUREUS 

3832  1XN6 Firmicutes BACILLUS CEREUS 

3832  1XN5 Firmicutes BACILLUS HALODURANS 

    Starburst 
  COG PDB Phylum Source 

110  2NPO Proteobacteria CAMPYLOBACTER JEJUNI 

110  1KRR Proteobacteria ESCHERICHIA COLI 

110  2IC7 Firmicutes GEOBACILLUS KAUSTOPHILUS 

110  1KK5 Firmicutes ENTEROCOCCUS FAECIUM 

    



259 

 

 

 

171  1XNG Proteobacteria HELICOBACTER PYLORI 

171  1WXE Proteobacteria ESCHERICHIA COLI 

171  2PZB Firmicutes BACILLUS ANTHRACIS 

171  1KQP Firmicutes BACILLUS SUBTILIS 

    251  2IG8 Proteobacteria PSEUDOMONAS AERUGINOSA 

251  1QU9 Proteobacteria ESCHERICHIA COLI 

251  1J7H Proteobacteria HAEMOPHILUS INFLUENZAE 

251  2EWC Firmicutes STREPTOCOCCUS PYOGENES 

251  1XRG Firmicutes CLOSTRIDIUM THERMOCELLUM 

251  1QD9 Firmicutes BACILLUS SUBTILIS 

    346  2PJS Proteobacteria AGROBACTERIUM TUMEFACIENS 

346  1R9C Proteobacteria RHIZOBIUM LOTI 

346  1NPB Proteobacteria SERRATIA MARCESCENS 

346  1MPY Proteobacteria PSEUDOMONAS PUTIDA 

346  1LQK Proteobacteria PSEUDOMONAS AERUGINOSA 

346  1LGT Proteobacteria BURKHOLDERIA SP. 

346  1KMY Proteobacteria BURKHOLDERIA CEPACIA 

346  1F9Z Proteobacteria ESCHERICHIA COLI 

346  1EIL Proteobacteria PSEUDOMONAS SP. 

346  1ECS Proteobacteria KLEBSIELLA PNEUMONIAE 

346  2QQZ Firmicutes BACILLUS ANTHRACIS STR. AMES 

346  2QH0 Firmicutes CLOSTRIDIUM ACETOBUTYLICUM 

346  2P7K Firmicutes LISTERIA MONOCYTOGENES 

346  2P25 Firmicutes ENTEROCOCCUS FAECALIS 

346  2I7R Firmicutes STREPTOCOCCUS PNEUMONIAE 

346  1ZSW Firmicutes BACILLUS CEREUS 

346  1SS4 Firmicutes BACILLUS CEREUS 

    366  1ZJA Proteobacteria PSEUDOMONAS MESOACIDOPHILA 

366  1M53 Proteobacteria KLEBSIELLA SP. LX3 

366  1G5A Proteobacteria NEISSERIA POLYSACCHAREA 

366  1B0I Proteobacteria PSEUDOALTEROMONAS HALOPLANKTIS 

366  1WZA Firmicutes HALOTHERMOTHRIX ORENII 

366  1W9X Firmicutes BACILLUS HALMAPALUS 

366  1UA7 Firmicutes BACILLUS SUBTILIS 

366  1PAM Firmicutes BACILLUS SP. 

366  1OT2 Firmicutes BACILLUS CIRCULANS 

366  1JI1 Firmicutes THERMOACTINOMYCES VULGARIS 

366  1HVX Firmicutes BACILLUS STEAROTHERMOPHILUS 

366  1E3X Firmicutes BACILLUS AMYLOLIQUEFACIENS 

366  1BPL Firmicutes BACILLUS LICHENIFORMIS 
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    454  2Q0Y Proteobacteria RALSTONIA EUTROPHA JMP134 

454  2OZH Proteobacteria XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS 

454  2GE3 Proteobacteria AGROBACTERIUM TUMEFACIENS 

454  2FT0 Proteobacteria ESCHERICHIA COLI 

454  2FIW Proteobacteria RHODOPSEUDOMONAS PALUSTRIS CGA009 

454  2EUI Proteobacteria PSEUDOMONAS AERUGINOSA 

454  1S3Z Proteobacteria SALMONELLA ENTERITIDIS 

454  1GHE Proteobacteria PSEUDOMONAS SYRINGAE PV. TABACI 

454  2PC1 Firmicutes STREPTOCOCCUS AGALACTIAE 2603V/R 

454  2OH1 Firmicutes LISTERIA MONOCYTOGENES STR. 4B F2365 

454  2JDC Firmicutes BACILLUS LICHENIFORMIS 

454  2ATR Firmicutes STREPTOCOCCUS PNEUMONIAE TIGR4 

454  2AJ6 Firmicutes STAPHYLOCOCCUS AUREUS 

454  1Z4E Firmicutes BACILLUS HALODURANS 

454  1Y9K Firmicutes BACILLUS CEREUS 

454  1U6M Firmicutes ENTEROCOCCUS FAECALIS 

454  1TIQ Firmicutes BACILLUS SUBTILIS 

    491  2OBW Proteobacteria SALMONELLA TYPHIMURIUM 

491  2GMN Proteobacteria BRADYRHIZOBIUM JAPONICUM 

491  2FM6 Proteobacteria XANTHOMONAS MALTOPHILIA 

491  2FHX Proteobacteria PSEUDOMONAS AERUGINOSA 

491  1X8G Proteobacteria AEROMONAS HYDROPHILA 

491  1WUO Proteobacteria SERRATIA MARCESCENS 

491  1P9E Proteobacteria PSEUDOMONAS SP. 

491  1K07 Proteobacteria FLUORIBACTER GORMANII 

491  2BTN Firmicutes BACILLUS THURINGIENSIS 

491  1BC2 Firmicutes BACILLUS CEREUS 

    500  2PKW Proteobacteria SALMONELLA TYPHIMURIUM 

500  2P7I Proteobacteria ERWINIA CAROTOVORA SUBSP. ATROSEPTICA SCRI1043 

500  2OYR Proteobacteria SHIGELLA FLEXNERI 2A 

500  2IP2 Proteobacteria PSEUDOMONAS AERUGINOSA 

500  1PJZ Proteobacteria PSEUDOMONAS SYRINGAE PV. PISI 

500  1NKV Proteobacteria ESCHERICHIA COLI 

500  1IM8 Proteobacteria HAEMOPHILUS INFLUENZAE 

500  2P8J Firmicutes CLOSTRIDIUM ACETOBUTYLICUM 

500  2GH1 Firmicutes BACILLUS CEREUS 

500  1XXL Firmicutes BACILLUS SUBTILIS 

500  1VL5 Firmicutes BACILLUS HALODURANS CProteobacteria25 

    526  2TRX Proteobacteria ESCHERICHIA COLI 
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526  2I4A Proteobacteria ACETOBACTER ACETI 

526  2O7K Firmicutes STAPHYLOCOCCUS AUREUS 

526  2GZY Firmicutes BACILLUS SUBTILIS 

526  1NW2 Firmicutes ALICYCLOBACILLUS ACIDOCALDARIUS 

    590  2G84 Proteobacteria NITROSOMONAS EUROPAEA 

590  2A8N Proteobacteria AGROBACTERIUM TUMEFACIENS 

590  1Z3A Proteobacteria ESCHERICHIA COLI 

590  2NX8 Firmicutes STREPTOCOCCUS PYOGENES SEROTYPE M6 

590  1WKQ Firmicutes BACILLUS SUBTILIS 

    637  2FDR Proteobacteria AGROBACTERIUM TUMEFACIENS 

637  1TE2 Proteobacteria ESCHERICHIA COLI O157:H7 

637  1RQN Firmicutes BACILLUS CEREUS 

637  1LVH Firmicutes LACTOCOCCUS LACTIS 

    664  1VP6 Proteobacteria RHIZOBIUM LOTI 

664  1U12 Proteobacteria MESORHIZOBIUM LOTI MAFF303099 

664  1G6N Proteobacteria ESCHERICHIA COLI 

664  1FT9 Proteobacteria RHODOSPIRILLUM RUBRUM 

664  2HKX Firmicutes CARBOXYDOTHERMUS HYDROGENOFORMANS 

664  1OMI Firmicutes LISTERIA MONOCYTOGENES 

    745  2PLN Proteobacteria HELICOBACTER PYLORI 

745  1XHF Proteobacteria ESCHERICHIA COLI 

745  2A9O Firmicutes STREPTOCOCCUS PNEUMONIAE 

745  1MVO Firmicutes BACILLUS SUBTILIS 

    753  2ISA Proteobacteria VIBRIO SALMONICIDA 

753  1QWL Proteobacteria HELICOBACTER PYLORI 

753  1M85 Proteobacteria PROTEUS MIRABILIS 

753  1GGE Proteobacteria ESCHERICHIA COLI 

753  2J2M Firmicutes EXIGUOBACTERIUM OXIDOTOLERANS 

753  1SI8 Firmicutes ENTEROCOCCUS FAECALIS 

    778  1VFR Proteobacteria VIBRIO FISCHERI 

778  2ISJ Proteobacteria SINORHIZOBIUM MELILOTI 

778  1KQD Proteobacteria ENTEROBACTER CLOACAE 

778  1F5V Proteobacteria ESCHERICHIA COLI 

778  2H0U Proteobacteria HELICOBACTER PYLORI 

778  2HAY Firmicutes STREPTOCOCCUS PYOGENES SEROTYPE M1 

778  2B67 Firmicutes STREPTOCOCCUS PNEUMONIAE TIGR4 

778  1ZCH Firmicutes BACILLUS SUBTILIS 
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778  2I7H Firmicutes BACILLUS CEREUS 

    
784  2FKA Proteobacteria 

SALMONELLA ENTERICA SUBSP. ENTERICA SEROVAR 
TYPHIMURIUM 

784  1P6Q Proteobacteria RHIZOBIUM MELILOTI 

784  1M5T Proteobacteria CAULOBACTER CRESCENTUS 

784  6CHY Proteobacteria ESCHERICHIA COLI 

784  2I6F Proteobacteria MYXOCOCCUS XANTHUS 

784  1F51 Firmicutes BACILLUS SUBTILIS 

784  1QMP Firmicutes BACILLUS STEAROTHERMOPHILUS 

    796  2JFN Proteobacteria ESCHERICHIA COLI 

796  2JFX Proteobacteria HELICOBACTER PYLORI 

796  2JFO Firmicutes ENTEROCOCCUS FAECALIS 

796  2JFQ Firmicutes STAPHYLOCOCCUS AUREUS 

796  2GZM Firmicutes BACILLUS ANTHRACIS 

    
1028 

 
2EWM Proteobacteria AZOARCUS 

1028  2DKN Proteobacteria PSEUDOMONAS SP. 

1028  2CFC Proteobacteria XANTHOBACTER AUTOTROPHICUS 

1028  2B4Q Proteobacteria PSEUDOMONAS AERUGINOSA 

1028  1ZEM Proteobacteria GLUCONOBACTER OXYDANS 

1028 
 
1WMB Proteobacteria PSEUDOMONAS FRAGI 

1028  1PWX Proteobacteria AGROBACTERIUM TUMEFACIENS 

1028  1K2W Proteobacteria RHODOBACTER SPHAEROIDES 

1028  1GEG Proteobacteria KLEBSIELLA PNEUMONIAE 

1028  1FJH Proteobacteria COMAMONAS TESTOSTERONI 

1028  1AHH Proteobacteria ESCHERICHIA COLI 

1028  2UVD Firmicutes BACILLUS ANTHRACIS 

1028  2HQ1 Firmicutes CLOSTRIDIUM THERMOCELLUM 

1028  1NXQ Firmicutes LACTOBACILLUS BREVIS 

1028  1G6K Firmicutes BACILLUS MEGATERIUM 

    1151  1JQK Proteobacteria RHODOSPIRILLUM RUBRUM 

1151  1E2U Proteobacteria DESULFOVIBRIO VULGARIS 

1151  1OA0 Proteobacteria DESULFOVIBRIO DESULFURICANS 

1151  1SU6 Firmicutes CARBOXYDOTHERMUS HYDROGENOFORMANS 

1151  1OAO Firmicutes MOORELLA THERMOACETICA 

    1309  2UXH Proteobacteria PSEUDOMONAS PUTIDA 

1309  2HYT Proteobacteria ERWINIA CAROTOVORA SUBSP. ATROSEPTICA 
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1309  2G7S Proteobacteria AGROBACTERIUM TUMEFACIENS 

1309  2FBQ Proteobacteria PSEUDOMONAS AERUGINOSA 

1309  1T33 Proteobacteria SALMONELLA TYPHIMURIUM 

1309  1PB6 Proteobacteria ESCHERICHIA COLI 

1309  2IU5 Firmicutes LACTOCOCCUS LACTIS SUBSP. LACTIS IL1403 

1309  2FX0 Firmicutes BACILLUS CEREUS 

1309  1Z0X Firmicutes ENTEROCOCCUS FAECALIS V583 

1309  1VI0 Firmicutes BACILLUS SUBTILIS 

    1396  1Y9Q Proteobacteria VIBRIO CHOLERAE 

1396  1Y7Y Proteobacteria AEROMONAS HYDROPHILA 

1396  2P5T Firmicutes STREPTOCOCCUS PNEUMONIAE 

1396  2B5A Firmicutes BACILLUS CALDOLYTICUS 

1396  1B0N Firmicutes BACILLUS SUBTILIS 

    1404  2B6N Proteobacteria SERRATIA SP. 

1404  1V6C Proteobacteria PSEUDOALTEROMONAS SP. ASProteobacteria1 

1404  1S2N Proteobacteria VIBRIO SP. PA-44 

1404  3TEC Firmicutes HIRUDINARIA MANILLENSIS 

1404  2SIC Firmicutes BACILLUS AMYLOLIQUEFACIENS 

1404  2IXT Firmicutes BACILLUS SPHAERICUS 

1404  1YU6 Firmicutes MELEAGRIS GALLOPAVO 

1404  1XF1 Firmicutes STREPTOCOCCUS PYOGENES 

1404  1V5I Firmicutes PLEUROTUS OSTREATUS 

1404  1TEC Firmicutes THERMOACTINOMYCES VULGARIS 

1404  1SEL Firmicutes BACILLUS SUBTILIS 

1404  1SBN Firmicutes HIRUDO MEDICINALIS 

1404  1MEE Firmicutes BACILLUS PUMILUS 

1404  1IAV Firmicutes BACILLUS LENTUS 

1404  1DBI Firmicutes BACILLUS SP. 

1404  1BH6 Firmicutes BACILLUS LICHENIFORMIS 

    1733  2F2E Proteobacteria PSEUDOMONAS AERUGINOSA 

1733  1YYV Proteobacteria SALMONELLA TYPHIMURIUM 

1733  2HZT Firmicutes BACILLUS SUBTILIS 

1733  1Z7U Firmicutes ENTEROCOCCUS FAECALIS V583 

    1846  2FBH Proteobacteria PSEUDOMONAS AERUGINOSA 

1846  2FA5 Proteobacteria XANTHOMONAS CAMPESTRIS 

1846  1JGS Proteobacteria ESCHERICHIA COLI 

1846 
 
2QWW Firmicutes LISTERIA MONOCYTOGENES STR. 4B F2365 

1846  2BV6 Firmicutes STAPHYLOCOCCUS AUREUS 
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1846  1Z91 Firmicutes BACILLUS SUBTILIS 

1846  1LJ9 Firmicutes ENTEROCOCCUS FAECALIS 

    2159  2HBV Proteobacteria PSEUDOMONAS FLUORESCENS 

2159  2DVT Proteobacteria RHIZOBIUM SP. 

2159  2QPX Firmicutes LACTOBACILLUS CASEI ATCC 334 

2159  2F6K Firmicutes LACTOBACILLUS PLANTARUM 

    2367  1N4O Proteobacteria XANTHOMONAS MALTOPHILIA 

2367  1JTG Proteobacteria STREPTOMYCES CLAVULIGERUS 

2367  1JTD Proteobacteria STREPTOMYCES EXFOLIATUS 

2367  1HZO Proteobacteria PROTEUS VULGARIS 

2367  1HTZ Proteobacteria KLEBSIELLA PNEUMONIAE 

2367  1G68 Proteobacteria PSEUDOMONAS AERUGINOSA 

2367  1FQG Proteobacteria ESCHERICHIA COLI 

2367  1DY6 Proteobacteria SERRATIA MARCESCENS 

2367  1BUE Proteobacteria ENTEROBACTER CLOACAE 

2367  1KGG Firmicutes STAPHYLOCOCCUS AUREUS 

2367  1I2S Firmicutes BACILLUS LICHENIFORMIS 

    2730  1TVN Proteobacteria PSEUDOALTEROMONAS HALOPLANKTIS 

2730  1EGZ Proteobacteria ERWINIA CHRYSANTHEMI 

2730  2JEP Firmicutes PAENIBACILLUS PABULI 

2730  1QHZ Firmicutes BACILLUS AGARADHAERENS 

2730  1LF1 Firmicutes BACILLUS SUBTILIS 

2730  1G01 Firmicutes BACILLUS SP. 

    Starburst 
  COG PDB Phylum Source 

3693  2CNC Proteobacteria CELLVIBRIO MIXTUS 

3693  1US3 Proteobacteria CELLVIBRIO JAPONICUS 

3693  1E5N Proteobacteria PSEUDOMONAS FLUORESCENS 

3693  2F8Q Firmicutes BACILLUS SP. NG-27 

3693  2DEP Firmicutes CLOSTRIDIUM STERCORARIUM 

3693  1R85 Firmicutes BACILLUS STEAROTHERMOPHILUS 

    4948  2QDE Proteobacteria AZOARCUS SP. EBN1 

4948  2PPG Proteobacteria SINORHIZOBIUM MELILOTI 

4948  2PMQ Proteobacteria ROSEOVARIUS SP. HTCC2601 

4948  2PGE Proteobacteria DESULFOTALEA PSYCHROPHILA LSV54 

4948  2PCE Proteobacteria ROSEOVARIUS NUBINHIBENS ISM 

4948  2OZ8 Proteobacteria MESORHIZOBIUM LOTI 

4948  2OZ3 Proteobacteria AZOTOBACTER VINELANDII AVOP 
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4948  2OX4 Proteobacteria ZYMOMONAS MOBILIS 

4948  2OO6 Proteobacteria BURKHOLDERIA XENOVORANS 

4948  2OG9 Proteobacteria POLAROMONAS SP. JS666 

4948  2NQL Proteobacteria AGROBACTERIUM TUMEFACIENS 

4948  2HZG Proteobacteria RHODOBACTER SPHAEROIDES 

4948  2GSH Proteobacteria SALMONELLA TYPHIMURIUM 

4948  2DW6 Proteobacteria BRADYRHIZOBIUM JAPONICUM 

4948  1YEY Proteobacteria XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS 

4948  1NU5 Proteobacteria PSEUDOMONAS SP. 

4948  1MUC Proteobacteria PSEUDOMONAS PUTIDA 

4948  1EC7 Proteobacteria ESCHERICHIA COLI 

4948  1CHR Proteobacteria RALSTONIA EUTROPHA 

4948  2P88 Firmicutes BACILLUS CEREUS ATCC 14579 

4948  2OQY Firmicutes OCEANOBACILLUS IHEYENSIS 

4948  2OKT Firmicutes STAPHYLOCOCCUS AUREUS 

4948  2GGE Firmicutes BACILLUS SUBTILIS 

4948  2GDQ Firmicutes BACILLUS SUBTILIS SUBSP. SUBTILIS 

4948  1WUF Firmicutes LISTERIA INNOCUA CLIP11262 

4948  1WUE Firmicutes ENTEROCOCCUS FAECALIS 

4948  1JPM Firmicutes BACILLUS SUBTILIS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



266 

 

 

 

Appendix 6B: The median E-value for each COG.  A median of 0 represents all proteins 

within the COG gave a perfect match to the PDB.   

 

COG Median E-value 

28 1E-175 

39 1E-121 

110 1E-74 

171 2.5E-147 

242 7E-90 

251 4.9E-66 

346 1E-56 

366 1E-138 

394 1.51E-80 

446 5E-96 

454 4E-72 

491 4.5E-26 

500 6E-136 

526 7E-55 

590 8E-78 

604 3.5E-113 

605 5E-91 

637 1E-120 

664 4E-16 

742 2.5E-89 

745 1E-61 

753 0 

778 1E-117 

784 2E-58 

796 7E-128 

813 4.5E-97 

1012 0 

1028 3E-66 

1052 1E-56 

1057 3.5E-109 

1075 1E-96 

1151 1.5E-147 

1309 5E-96 

1396 4E-58 

1404 1.35E-87 

1607 3.5E-72 

1733 3E-52 

1846 1E-69 

1940 4E-155 
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2124 2E-48 

2141 1.5E-58 

2159 1.5E-21 

2188 5.02E-84 

2367 2E-58 

2730 2.1E-59 

3693 2E-48 

3832 3.75E-50 

4948 1E-140 
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Appednix 6C: The complete Fractional Structure Similarity (FSS) compared to sequence 

identity prior to manual filtering.  As in figure 6.3, (A) is all vs. all comparisons, (B) is 

the comparisons of Proteobacteria structure against Proteobacteria structure, (C) is the 

Firmicutes against Firmicutes and (D) is the Proteobacteria against the Firmicutes.  As 

stated in the text above the comparisons between Proteobacteria and Firmicutes show an 

abrupt cutoff at about 65% sequence identity and 0.85 Fraction Structure Similarity.  

Outliers were shown to be comparisons of the same protein from the same organism 

solved under non-uniform conditions. The large density of structures a 100% sequence 

identity illustrates the propensity of solving structures redundantly from the same 

organism and the large spread of data shows the need for manual curation of the dataset 
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CHAPTER 7:  

 

A SEQUENCE AND STRUCTURE INDEPENDENT METHOD TO PREDICT 

PROTEIN FUNCTION 

 

7.1 INTRODUCTION 

The recent explosion in sequenced genomes has revealed a vast number of 

proteins that lack a functional annotation.
1
 Many of these unannotated proteins may play 

an important role in human disease and correspondingly, are critical for developing new 

therapeutics. Protein sequence and structure similarity methods are currently the most 

robust and widely-used tools to annotate a protein of unknown function.
2
 Nevertheless, 

these methods are limited in scope, prone to errors, and based on a small set of 

experimentally characterized proteins.
3
 Only 40 to 60% of sequences suggest a potential 

functional assignment. Moreover, error rates of < 30% occur even with conservative 

sequence identities of > 60%. The accuracy of functional annotations decreases 

substantially in the twilight zone of 20-35% sequence identity. 

Recent attempts to extend functional prediction beyond global sequence and 

structure similarity have led to the development of active-site similarity search methods.
4-

6
   These methods try to identify protein surface structures that interact with biologically 

important compounds or other proteins.  Protein active-sites that share similar sequence, 

structure and bind similar ligands are predicted to be functionally related.  While 

promising, current active-site similarity techniques still rely on high-resolution protein 

structures to identify and measure functional similarity.
7, 8

  The availability of structures 

for the entire proteome remains a significant bottleneck for high-throughput functional 

annotation of hypothetical proteins.  
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In the previous chapters, functional annotation of proteins was discussed in the 

presence of sequence, structure and active site information.  As shown in chapters 1,3 and 

4 these methods are powerful, but have  limitations that prevent complete annotation of a 

specific genome in a high-throughput manner.  Specifically, sequence similarity methods 

often fail below 30% sequence identity
9, 10

 and structure similarity or active site similarity 

methods require a high-resolution protein structure.  Additionally, functional similarity is 

not necessarily dependent on homology.  This can lead to similar sequences having 

different functions or significantly different sequences with similar functions.
9, 11

  The 

issues raised above suggest a new approach to function annotation that is independent of 

sequence or structure is needed.   

 Proteins interact with biological compounds to perform specific yet versatile 

functions.  Identifying and comparing which compounds bind a target protein provides an 

alternative method to predict function. In this chapter I discuss the development of a 

quantifiable and rapidly adaptable model for protein functional analysis using 

experimentally derived ligand binding profiles (LBP). This new approach is independent 

of sequence, structural or evolutionary information; therefore, extending the current 

analysis of novel genes and predicting ligand binding. A ligand binding profile is defined 

as a set of ligands that bind a protein from a high-throughput ligand affinity screen. The 

hypothesis is that proteins with similar function will bind a similar set of compounds 

from the same high-throughput screening library. A general functional similarity is 

identified by clustering proteins similar binding profiles. 

In this chapter, I discuss the theory behind the ligand binding profile method and 

report screening and similarity results from 19 proteins with a range of functions defined 
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by Gene Ontology (GO) terms.
12

 With the availability of GO terms, many studies relate 

functional similarity to protein-protein interactions,
13

 network prediction,
14

 prediction of 

cellular localization,
15

 pathway modeling,
16

 and improving the quality of microarray 

data.
17

 This chapter is the first attempt to relate ligand binding similarity to functional 

similarity.   

 

7.2 THEORY  

7.2.1 Development of a ligand binding profile scoring function. Measuring a 

significant similarity between two ligand binding profiles requires the development or 

adaptation of a robust scoring function. Current similarity scoring methods used for 

sequence analysis, such as the E-value developed by Karlin and Altschul,
18

 are also well-

suited for  measuring a similarity between ligand binding profiles.  

SKmneE                                                        [7.1] 

Here, the E-value is only dependent on the total number of compounds that bind 

each protein (m and n) and the total number of compounds that bind both proteins (S). 

Additionally, the probability of finding a significant similarity is proportional to the 

probability search space (K) and scoring function (λ).  

p

q
ln and

q

)pq(
K

2

                                             [7.2] 

Unlike sequence similarity, a similarity between ligand binding can be thought of 

as a binary system (binding vs. non-binding) therefore the probabilities p and q simply 

become the probability of finding a hit within a library:  

sizelibrary

1
p                                                         [7.3] 
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and the probability of finding a ligand that binds both proteins: 

S
q

mn
                                                              [7.4] 

The standard E-value also provides a robust measure of the probability. This 

shows a significant ligand binding similarity is not due to chance using the standard P-

value. 

Ee1P                                                              [7.5] 

As expected, the ligand binding profile E-value rapidly becomes non-significant 

(P > 0.0001) as the probability of finding a ligand that binds both proteins (q) decreases 

(figure 7.1). Binding profiles that have a P < 0.0001 are significant at the 99.99% 

confidence interval (~E=10
-5

).   

 

 

 

Figure 7.1. E-value response to the probability of finding overlapping ligands 

between two proteins.  A set of 33,207 randomly generated hypothetical binding profiles 

was generated to observe the response of the E-value similarity with probability of 

overlapping ligands (q=S/mn) as the probability of finding an overlapping ligand 

decreases the E-value rapidly becomes non-significant (E>1x10
-5

).  
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7.3 EXPERIMENTAL  

7.3.1 Hypothetical binding profiles. A set of hypothetical binding profiles was 

generated to test the E-value scoring method for the ligand binding profiles.  To generate 

the hypothetical binding profiles, an Excel program was written to generate random 

values for m, n and S for 100,000 hypothetical binding profiles.  The hypothetical library 

size was 437 compounds; random numbers were generated between 0 and 437.  The data 

set was filtered such that S ≤ m and S ≤ n giving 33,207 comparisons.  The data set was 

used to compare the E-value response to probablilty of finding an overlapping ligand 

(figure 7.1).   

7.3.2 Materials. The human serum albumin (HSA) (essentially fatty acid free, ≥ 

96 % pure), bovine serum albumin (BSA) (minimum 98% agarose gel electrophoresis, 

lyophilized), α-amylase from Bacillus lincheniformis (Bli) (500-1,500 units/mg protein, 

93-100% (SDS page)), α-amylase from Aspergillus oryzae (Aor) (powder, ~30 units/mg), 

α-amylase from Bacillus amyloliquefaciens (Bam) (liquid, ≥250 units/g protein), β-

amylase from barley (Hvu) (type II-B 20-80 units/mg protein), and β-amylase from sweet 

potato (Iba) (Type I-B, ammonium sulfate suspension, ≥750 units/mg protein) protein 

samples were all purchased from Sigma (St. Louis, MO). The S. typhimurium PrgI 

protein samples and assigned 2D 
1
H-

15
N HSQC spectrum were generously provided by 

Dr. Roberto DeGuzman (University of Kansas). Staphylococcus aureus primase C-

Terminal domain (CTD) protein sample was purchased from Nature Technologies 

Corporation (Lincoln, NE). H. sapiens diacylglycerol kinase alpha (DGKA), P. 

aeruginosa unannotated protein PA1324, S. aureus unannotated protein SAV1430, S. 

typhimurium unannotated protein STM1790, H. sapiens ubiquitin-fold modifier-
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conjugating enzyme 1 (UFC1), E. coli unannotated protein YjbR, E. coli unannotated 

protein YkfF, B. subtilis unannotated protein YkvR and E. coli unannotated protein YtfP 

protein samples were provided by Dr. Gaetano Montelione, Director of the Northeast 

Structural Genomics Consortium (NESG, www.nesg.org). The S. aureus nuclease was 

over-expressed in house from a cell stock of E. coli Bl21 DE3 codon+ (Stratagene) 

containing the pET28(a)+plasmid with the dnuc gene provided by Dr. Greg Somerville 

(University of Nebraska-Lincoln) grown in LB broth and purified using a Talon cobalt 

affinity resin (Clontech). The deuterium oxide (99.9% D) and the dimethyl sulfoxide-d6 

(99.9% D) were purchased from Aldrich (Milwaukee, WI) The 3-

(trimethylsilyl)propionic acid-2,2,3,3-d4 (TMS) was purchased from Cambridge Isotope 

(Andover, MA). The bis-Tris-d19 (98% D) was purchased from Isotec (Milwaukee, WI). 

The compound library was previously complied as described elsewhere 
19

 .  

7.3.2 Apparatus. All NMR data was collected on a Bruker 500 MHz Avance 

spectrometer (Billercia, MA) equipped with a triple resonance, Z-axis gradient cryoprobe 

and using a Bruker BACS-120 sample changer and IconNMR software for automated 

data collection. The screening data for this study was compiled over a 5 year time span in 

which two different 1D 
1
H solvent suppression pulse sequences were used for the 

measurement of ligand 1D 
1
H NMR line broadening.  High-throughput NMR screening 

spectra for the HSA, BSA, S. aureus primase CTD, PrgI, PA1324, and SAV1430 were 

collected at 298 K using 64 transients with a sweep-width of 6009 Hz with 8 K data 

points and a 2.0 s relaxation delay using the using a presaturation solvent suppression 

pulse sequence (chapter 3 & 5).
4, 20-22

 High-throughput NMR screening spectra for 

DGKA, STM1790, UFC1, YjbR, YkfF, YkvR and YtfP, the 5 amylases and S. aureus 
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nuclease proteins were collected at 298 K using 64 transients with a sweep-width of 6009 

Hz with 8 K data points and a 1.0 sec relaxation delay using the excitation sculpting
23

 

method for solvent suppression of the residual H2O resonance signal (chapter 4).  

7.3.3 Sample preparation.  All NMR ligand affinity assays were completed by 

screening each protein individually with a library of biologically active compounds.  The 

compound library is composed of 113 mixtures with 3-4 ligands per mixture and is 

described in detail elsewhere.
19

  The screens of HSA, BSA, S. aureus primase CTD, PrgI, 

PA1324, and SAV1430 were prepared as previously described.
4, 20-22

 S. aureus nuclease, 

DGKA, STM1790, UFC1, YjbR, YkfF, YkvR, YtfP, and the 5 amylases were screened at 

5 µM protein concentration and 100 µM ligand concentration in a screening buffer of 2% 

DMSO-d6, 20 mM Bis-Tris pH 7.0 (uncorrected), 11.1 M TMSP in “!00%”D2O. 

7.3.4 Binding assay. Ligand binding was identified by a decrease in free ligand 

signal upon the addition of protein.  The methods for data processing and identifying 

binding ligands have been previously discussed in detail in the previous chapters 2, 3, and 

4 and references.
4, 21, 24

  Briefly, data was Fourier transformed, auto-phase and baseline 

corrected. Each 1D 
1
H NMR spectrum were compared to the corresponding free ligand 

mixture reference spectrum and visually analyzed to identify binding ligands.  A binding 

event was identified by the decrease in ligand intensity of the nuclease-mixture relative to 

the free ligand mixture. 

7.3.5 Ligand binding profiles. A ligand binding profile score was measured for 

each protein comparison using equation 7.1.  Overlapping binding ligands (S) for every 

protein were identified in a pairwise manner for a total of 171 comparisons.  The 

probability of finding overlapping ligands between two proteins was calculated using eq  
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7.5 Each pairwise E-value was calculated using a library size of 437 compounds (with p 

= 1/437 = 0.00229).   

7.3.6 Functional similarity measurement. The Uniprot accession number was 

obtained for each protein in the study (http://www.uniprot.org/). The list of Uniprot 

accession numbers was uploaded to the semantic similarity tool FunSimMat.
25

 All 

reported functional similarities are expressed as the funsim score measured as described.
25

 

Briefly, the funsim score is measure of relative functional similarity between GO terms at 

the biological process and molecular function levels of the gene ontology. It ranges from 

0 for no functional similarity to 1 for maximal functional similarity  

 

Where, max(BPscore) and max(MFscore) denote the maximal similarity scores 

for biological process and molecular function, respectively.  The max(BPscore) and 

max(MFscore) scores for the funSim score is computed using simRel. simRel is a 

combination of Resnik's and Lin‟s measure of semantic similarity
25-27

 

 

Where, c1 and c2 are the semantic similarity terms of a protein, maxS(c1,c2) is 

the set of common terms, p(c) is the relative frequency of occurrence of a term.   

 

 

http://www.uniprot.org/
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7.4 RESULTS AND DISCUSSION  

7.4.1 Establishing a set of functionally diverse proteins.  Chapter 1 discussed 

the difficulties with non-uniform methods for functional annotation.  The Gene Ontology 

Annotation project
28, 29

 is becoming the standard representation for functional annotating 

of individual proteins.  The success of the GO method lies in the hierarchical approach to 

protein annotation.  Each protein or gene product is annotated with three levels of 

functional similarity, biological process, molecular function and cellular component.  

This approach annotates a specific GO number for each level of function which allows 

for development of computational functional similarity scoring methods. A number of 

methods have been developed to measure functional similarity with the majority of the 

methods based on semantic similarity of GO terms.
25, 26, 30-32

  In this study the functional 

similarity score from FunSimMat
25, 32

 was used to measure functional similarly between 

19 proteins with a range of functional similarity (appendix 7A).  FunSimMat is a 

composite average method for semantic similarity. The composite methods are generally 

more biologically accurate
33

  

For the 19 proteins screened in the NMR ligand affinity assay, 13 proteins have a 

previously annotated function based on GO terms and 6 proteins have an unknown 

function. As a positive control, two sets of functionally related proteins (2 serum 

albumins and 5 amylases) were evaluated. A functional similarity score between each 

pair of proteins was measured by the semantic similarity tool of GO annotations 

FunSimMat (table 7.1).
25

 The FunSimMat similarity for HSA and BSA was 0.98 and an 

average FunSimMat similarity score of 0.69 ± 0.01 was calculated for the amylases. The 

remaining 12 proteins exhibited no functional relationship to any other protein in the 
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screening set, yielding an average FunSimMat similarity score of 0.1 ± 0.1. A weak 

functional similarity was observed between the two albumins and the human protein 

ubiquitin-fold modifier-conjugating enzyme 1 (UFC1, Uniprot: Q9Y3C8). However, this 

similarity is limited to one overlapping and generic “protein binding” GO number 

(GO:0005515). 

7.4.2 High-throughput ligand screening of a set of functionally diverse 

proteins. To experimentally support the ligand binding profile hypothesis, 19 proteins 

were screened by NMR using a chemical library of biologically active compounds.
19

 

Binding events were identified as previously described by measuring a decrease in ligand 

1
H NMR peak intensities in the presence of a protein (figure 7.4).

4, 21
 As an example, 

figure 7.4 shows the relative responses in binding for HSA and BSA to the non-steroidal 

anti-inflammatory drug naproxen.  Naproxen was identified from a screen of the entire 

ligand library as a binder for both proteins.  The relative change in linewidth for naproxen 

binding HSA was comparable to naproxen binding BSA. The ligand binding profile 

method only uses the identification of binding ligands (hit vs. no hit) to compare 

functional similarities.  The binary mode of measuring ligand binding similarities makes 

the ligand binding profile a high-throughput method for functional annotation.  
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Table 7.1 A diverse set of proteins have been screened by 1D 
1
H NMR line broadening experiments (see methods 7.3.3).  The set of 

19 proteins is comprised of 2 sets of positive controls (set1=albumins, set2=amylases). Functional similarity between each protein was 

measured by the semantic similarity tool FunSimMat.
25

  The 6 unannotated proteins in the data were removed from the table for 

clarity; there was no measured functional similarity due to the lack of Gene Ontology
12

 annotations for the proteins.  The nuclease 

protein was also removed for clarity because there was no functional similarity to any protein in the dataset. 

 

HSA BSA Primase PrgI Aor-A Hvu-B Bam-A Bli-A Iba-B DGKA UFC1 

HSA 
 

0.98 0.07 0.28 0.05 0.02 0.04 0.04 0.03 0.23 0.49 

BSA 
  

0.07 0.28 0.05 0.03 0.04 0.04 0.04 0.25 0.49 

Primase 
   

- 0.2 0.15 0.19 0.19 0.17 0.24 0.15 

PrgI 
  

 
 

0 0 0 0 0 0 0 

Aor-A 
     

0.64 0.68 0.68 0.67 - - 

Hvu-B 
      

0.63 0.63 0.71 - - 

Bam-A 
       

0.68 0.63 - - 

Bli-A 
        

0.63 - - 

Iba-B 

         

0.07 0.22 

STM1790 

         

- - 

DGKA 

          

0.03 

YjbR 

          

- 

UFC1 

           

2
7
9
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Figure 7.4. Proteins with similar function bind similar ligands. Ligand binding is 

identified by a decrease in ligand peak intensity upon addition of a target protein. The 1D 
1
H NMR spectrum of the non-steroidal anti-inflammatory drug naproxen (I) is shown to 

broaden in the presence of H. sapiens serum albumin (HSA) (II) and B. taurus serum 

albumin (BSA) (III) indicating a positive binding event. The NMR line broadening 

experiments used 100 M ligand and 5 M protein as described in the methods section. 
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7.4.3 Ligand binding profiles for a set of functionally diverse proteins. An all-

vs-all pairwise comparison of the 19 proteins gave a total of 171 ligand binding profile 

comparisons with only 11 comparisons giving a significant similarity score (P < 0.0001). 

The comparisons with the highest similarity scores corresponded to the set of albumins 

(E-value 1x10
-58

) and the set of amylases (average E-value ~1x10
-11

). Table 7.2 lists all 

protein pairs with a significant ligand binding similarity score along with the 

corresponding FunSimMat functional similarity score. The complete list of ligand 

binding similarity scores (appendix 7A) shows an abrupt decrease in significance for the 

remaining proteins.  This correlates with the remaining proteins having no functional 

similarity to one another.  

As shown in table 7.2, human serum albumin (HSA) and bovine serum albumin 

(BSA) had a large number of binding ligands (178 and 171, respectively) compared to the 

overall size of the library. The relative hit rate for these two proteins was 40.7% and 

39.1%, respectively. With a large hit rate, false similarities may arise if a second protein 

serendipitously bound to a small subset of compounds that were shown to bind HSA or 

BSA. However, the ligand binding similarity score (eq 7.2) effectively eliminates this 

concern by scaling the score based on both the total number of compounds found to bind 

each protein and by the number of overlapping binding ligands. As an example, the S. 

typhimurium type III secretion system protein PrgI bound to a total of five compounds, 

where each compound was also shown to bind HSA and BSA. The corresponding E-

values for the ligand binding profile comparisons between PrgI and HSA (6.9 x 10
-2

) and 

BSA (6.4 x 10
-2

) were not significant. 
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Table 7.2 The number of hits per protein (m and n), overlapping ligands (S), E-values 

and functional similarity scores (FunSim) are reported for the significant ligand binding 

profiles at 99.99% confidence interval from a comparison of 19 proteins. The set of 

serum albumins from H. sapiens (HSA) and B. taurus (BSA) and amylases (Aor, Bam, 

Bli, Hvu, and Iba) gave significant similarity. The set of amylases was composed of 3 -

amylases from A. oryzae (Aor), B. amyloliquefaciens (Bam), and B. licheniformis (Bli) 

and 2 -amylases H. vulgare (Hvu) and I. batatas (Iba). A complete list of binding 

profiles is reported in the appendix 7A.  

Comparison m/n S E-value Funsim Score 

HSA-BSA 178/171 162 2.16X10
-58

 0.98 

Bam-Aor 35/36 22 6.38X10
-19

 0.68 

Bam -Hvu 35/29 14 1.17X10
-10

 0.63 

Bli- Aor 28/36 18 1.19X10
-15

 0.68 

Bli - Bam 28/35 16 1.42X10
-14

 0.68 

Bli - Hvu 28/29 9 3.86X10
-06

 0.63 

Hvu - Aor 29/36 13 2.98X10
-08

 0.64 

Iba- Aor 29/36 12 2.98X10
-08

 0.67 

Iba - Bam 29/35 15 7.56X10
-12

 0.63 

Iba - Bli 29/28 11 2.43X10
-08

 0.63 

Iba - Hvu 29/29 12 2.45X10
-09

 0.71 
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There was an observed similarity in ligand binding profiles between S. aureus 

nuclease and the -amylases from A. oryzae and B. amyloliquefaciens. However, the 

similarity in the ligand binding profiles was limited to the nucleosides in the library. 

Additionally, the remaining 3 amylases did not bind these ligands or exhibit a significant 

ligand binding similarity to nuclease. The observed ligand binding similarity between the 

nuclease and two of the -amylases is potentially due to trace amounts of a nuclease that 

may be present in the A. oryzae and B. amyloliquefaciens -amylases samples. This is a 

likely occurrence since the samples were purchased as crude mixtures, where size-

exclusion chromatography only yielded a modest improvement in purity. 

   The ligand binding profiles for all 19 proteins is represented as a heat map in 

figure 7.5.  Each binding ligand was colored red while each non-binding ligand was 

colored white.  The heat map shows the overall clustering patterns for each binding 

profile.  The heat map correlates well with table 7.2 showing that functionally similar 

proteins bind a consensus set of ligands from a standardized library of compounds. 

Ligands that are not included in the consensus set could either be due to non-specific 

binding, differences between sample preparation, or potentially unique and specific 

binders.    
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Figure 7.5 Heat map summarizing the NMR ligand affinity screens. For 19 proteins: 

H. sapiens serum albumin (HSA), B. taurus serum albumin (BSA), A. oryzae -amylase 

(Aor), B. amyloliquefaciens -amylase (Bam), B. licheniformis amyloliquefaciens -

amylase (Bli), I. batatas -amylase (Iba), H. vulgare -amylase (Hvu), S. aureus 

nuclease, S. aureus primase C-terminal domain, S. typhimurium type III secretion system 

protein (PrgI), S. aureus unannotated protein SAV1430,  E. coli unannotated protein 

YtfP, P. aeruginosa unannotated protein PA1324, B. subtilis unannotated protein YkvR, 

E. coli unannotated protein YkfF, S. typhimurium  unannotated protein STM1790, H. 

sapiens diacylglycerol kinase alpha (DGKA), E. coli unannotated protein YjbR, H. 

sapiens ubiquitin-fold modifier-conjugating enzyme 1 (UFC1), where the albumins are 

colored red, the amylases cyan and the remainder of the proteins grey. A binding ligand 

is indicated by a red line. The 437 ligands were sorted to maximize the clustering of 

binding ligands for the albumins and amylases. 
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 7.4.4 Future developments to the ligand binding profile method.  Ligand 

binding profiles are independent of sequence and structural information and thus provide 

an experimental-based approach to predict protein function in a relatively robust and 

high-throughput fashion. The results reported herein demonstrate a clear correlation 

between ligand binding similarity scores and FunSimMat functional similarity scores. 

Specifically, only the set of albumins and amylases gave significant ligand binding 

similarity scores. Unfortunately, the ligand binding profile method was unable to 

differentiate between the  and  amylase families. A further refinement of the functional 

annotation would require a second screening step using a focused library to differentiate 

these functional classes. In the case of the amylases, this would involve screening the 

proteins with a carbohydrate library, where a subset of the compounds would selectively 

bind to the - or -amylase proteins.  

The success of the ligand binding profile approach to annotate a protein depends 

on a functionally diverse and modestly sized chemical library that differentiates between 

various functional classes. Importantly, the methodology used to identify binding ligands 

must efficiently eliminate non-specific or irrelevant interactions. This is not the case with 

traditional high-throughput screening (HTS) methods that encounter significant false-

positive and false-negative rates. Applying the ligand binding profile technique to HTS 

data sets from the High Throughput Screening Laboratory at the University of Kansas 

were unsuccessful. Alternatively, NMR ligand-affinity screens provide a direct 

observation of a specific interaction between the ligand and protein. As demonstrated, the 

preponderance of binding ligands identified from the 19 NMR ligand affinity screens was 
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uniquely associated with each functional class and were shown to correlate with the 

protein‟s GO terms.    
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Appendix 7A Complete list of ligand binding profile scores, - marks indicate no 

overlapping binding ligands 
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CHAPTER 8: 

 

 CONCLUSIONS 

 

8.1 SUMMARY OF WORK 

 Protein science has always had a long history intertwined with the advancements 

in chemistry, biology and physics.  Today, with nearly 1350 complete genome sequences 

available, our understanding of biology at the molecular level has never been more 

complete.  While our understanding of biology continues to grow exponentially, we are 

still at the beginning of having a truly systematic understanding of Mother Nature‟s most 

fundamental secrets. This is most evident by the large functionally unannotated segments 

of each organism‟s genome.   

The genes (and proteins they encode) found in these functionally unannotated 

regions are considered “hypothetical proteins”. Current estimates suggest between 12%-

50% of the known gene sequences belong to unannotated proteins.
1-3

 This is true even for 

the most highly studied model organisms Escherichia coli. An estimated 50% of the 

genes found in the E. coli genome have no experimental annotation.
4, 5

  Considering the 

large degree of biodiversity, it was initially suggested that hypothetical proteins were 

adaptations to specific environmental niches and therefore species specific.
6, 7

  However, 

many hypothetical proteins are not species-specific and homologous sequences are found 

in a range of phylogenetic distributions. These evolutionary “conserved hypothetical 

proteins” significantly limits our understanding of biology.
8
   

From a pragmatic viewpoint, identifying the functions of these proteins could lead 

to new therapeutics; making functional annotation of paramount importance. Considering 

the large number of unannotated proteins (~1.5 million), the most popular tools for 

functional annotation rely on homology transfer of sequences and structures to 
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automatically predict protein function.  However, sequence and structure homology does 

not always imply functional conservation and these automatic methods often lead to 

spurious annotations.  Estimates in the error rates suggested nearly 30% of all automatic 

functional annotations of enzymes are incorrect.
9
  Differences in protein active site 

structures leading to different ligand specificities and enzyme efficiencies are suspected 

to be a major source of errors in automatic functional annotations.
9-11

   

 The large error rate of automatic functional annotation methods strongly supports 

the need for developing new methods that are independent of homology transfer.  In this 

dissertation I thoroughly tested the hypothesis of using ligand-defined active sites for 

functional annotation. In chapter 2, I discussed the theory and experimental validation of 

a method to measure single point binding dissociation constants (KD) from 1D 
1
H NMR. 

The primary goal of the project was to develop a method that would be robust for a broad 

functional library of compounds to a variety of biological target molecules.  The method 

was intended as a qualitative screening tool to provide accurate ranking of target 

molecules for both drug discovery and functional annotation using the Functional 

Annotation Screening Technology by NMR (FAST-NMR) method.  

In chapter 3 I used this single point KD method in concert with the FAST-NMR 

method to select the best binding ligand to the type three-secretion system protein PrgI 

(didecyldimethylammonium bromide, DDAB).  Didecyldimethylammonium bromide 

was identified from a compound library using 1D 
1
H NMR screening techniques and 

used to identify the active site of PrgI. Finding the active site of PrgI facilitated the 

identification of a functional similarity between PrgI and Bcl-xL using the Comparison of 

Protein Active Site Similarities (CPASS) database.
12
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The results from the FAST-NMR screen of S. aureus nuclease in chapter 4 

confirmed the use of NMR screening to identify a protein active site and the use of active 

site similarities to identify protein functional similarities. Additionally, the successful 

identification of a ligand bound S. aureus nuclease structure having the best active site 

similarity validated CPASS and using active site similarity as a functional annotation 

tool.  Finally, the optimization of the initial version of the NMR screening techniques 

utilized by FAST-NMR significantly improved the efficiency of the high-throughput 

screen.  

The rapid rise in community acquired antibiotic resistance, particularly to S. 

aureus, requires the rapid identification of new antibiotic targets and potential drugs.
13

   

The interaction between bacterial primase C-terminal domain and replicative helicase N-

terminal domain is an attractive antibiotic target because it is functionally conserved in 

bacteria, essential for DNA replication and distinctly different from eukaryotes.
14, 15

  

Additionally, the high degree of sequence variability and differences in structure suggest 

a possible means to tailor antibiotic development to a specific organism. In chapter 5, I 

reported the NMR solution structure of S. aureus primase CTD.  I use the structure to 

show a strong phylum dependency for primase CTD structure similarity and reported a 

potential drug lead for further antibiotic development.    

In chapter 6, I expanded upon the work of phylum dependent structure similarity 

by thoroughly analyzing functionally conserved, orthologous structures..  I quantify a 

maximum structure/sequence similarity between the two bacterial phyla, Proteobacteria 

and Firmicutes, and discussed the viability of phylogeny as a suitable constraint for 
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selecting a homology model.  This was supported by showing protein folds are not 

uniformly sensitive changes in sequence.     

The problems with automatic functional annotation were thoroughly discussed in 

this dissertation.  The development of the FAST-NMR method is a significant 

advancement towards high-throughput functional annotation but is limited by the 

availability of a high-resolution protein structure. In chapter 7, I discussed the 

development the ligand binding profile (LBP) method for functional annotation.  A 

ligand binding profile is defined as a set of ligands that bind a protein from a high-

throughput ligand affinity screen. The hypothesis was proteins with similar function will 

bind a similar set of compounds from the same high-throughput screening library. I tested 

the method on a set of 19 proteins with a range of functions and reported only proteins 

with high degree of functional similarity gave significant LBP scores. The ligand binding 

profile method is independent of sequence, structure or evolutionary information and 

therefore not limited by the issues of automatic functional annotation discussed in this 

dissertation.   

 As a final thought, the ligand binding profile is not dependent on screening 

method or chemical library (provided binding profiles are generated from the same 

chemical library). This opens the door for virtual screening methods to identify binding 

ligands and compare ligand binding profiles.  Virtual screens significantly reduce the 

time scale of ligand screening relative to experimental based approaches. The continual 

advancements in virtual screening coupled with the ligand binding profile will help make 

high-throughput functional annotation a reality.  
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